drm/i915: Ignore VBT backlight presence check on Acer C720 (4005U)
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98                                          struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106         if (!connector->mst_port)
107                 return connector->encoder;
108         else
109                 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113         int     min, max;
114 } intel_range_t;
115
116 typedef struct {
117         int     dot_limit;
118         int     p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
124         intel_p2_t          p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131
132         WARN_ON(!HAS_PCH_SPLIT(dev));
133
134         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140         if (IS_GEN5(dev)) {
141                 struct drm_i915_private *dev_priv = dev->dev_private;
142                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143         } else
144                 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148         .dot = { .min = 25000, .max = 350000 },
149         .vco = { .min = 908000, .max = 1512000 },
150         .n = { .min = 2, .max = 16 },
151         .m = { .min = 96, .max = 140 },
152         .m1 = { .min = 18, .max = 26 },
153         .m2 = { .min = 6, .max = 16 },
154         .p = { .min = 4, .max = 128 },
155         .p1 = { .min = 2, .max = 33 },
156         .p2 = { .dot_limit = 165000,
157                 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 1, .max = 6 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187         .dot = { .min = 20000, .max = 400000 },
188         .vco = { .min = 1400000, .max = 2800000 },
189         .n = { .min = 1, .max = 6 },
190         .m = { .min = 70, .max = 120 },
191         .m1 = { .min = 8, .max = 18 },
192         .m2 = { .min = 3, .max = 7 },
193         .p = { .min = 5, .max = 80 },
194         .p1 = { .min = 1, .max = 8 },
195         .p2 = { .dot_limit = 200000,
196                 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 7, .max = 98 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 112000,
209                 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214         .dot = { .min = 25000, .max = 270000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 17, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 10, .max = 30 },
221         .p1 = { .min = 1, .max = 3},
222         .p2 = { .dot_limit = 270000,
223                 .p2_slow = 10,
224                 .p2_fast = 10
225         },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229         .dot = { .min = 22000, .max = 400000 },
230         .vco = { .min = 1750000, .max = 3500000},
231         .n = { .min = 1, .max = 4 },
232         .m = { .min = 104, .max = 138 },
233         .m1 = { .min = 16, .max = 23 },
234         .m2 = { .min = 5, .max = 11 },
235         .p = { .min = 5, .max = 80 },
236         .p1 = { .min = 1, .max = 8},
237         .p2 = { .dot_limit = 165000,
238                 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242         .dot = { .min = 20000, .max = 115000 },
243         .vco = { .min = 1750000, .max = 3500000 },
244         .n = { .min = 1, .max = 3 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 17, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 28, .max = 112 },
249         .p1 = { .min = 2, .max = 8 },
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 14, .p2_fast = 14
252         },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256         .dot = { .min = 80000, .max = 224000 },
257         .vco = { .min = 1750000, .max = 3500000 },
258         .n = { .min = 1, .max = 3 },
259         .m = { .min = 104, .max = 138 },
260         .m1 = { .min = 17, .max = 23 },
261         .m2 = { .min = 5, .max = 11 },
262         .p = { .min = 14, .max = 42 },
263         .p1 = { .min = 2, .max = 6 },
264         .p2 = { .dot_limit = 0,
265                 .p2_slow = 7, .p2_fast = 7
266         },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270         .dot = { .min = 20000, .max = 400000},
271         .vco = { .min = 1700000, .max = 3500000 },
272         /* Pineview's Ncounter is a ring counter */
273         .n = { .min = 3, .max = 6 },
274         .m = { .min = 2, .max = 256 },
275         /* Pineview only has one combined m divider, which we treat as m2. */
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 200000,
281                 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285         .dot = { .min = 20000, .max = 400000 },
286         .vco = { .min = 1700000, .max = 3500000 },
287         .n = { .min = 3, .max = 6 },
288         .m = { .min = 2, .max = 256 },
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 7, .max = 112 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 112000,
294                 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298  *
299  * We calculate clock using (register_value + 2) for N/M1/M2, so here
300  * the range value for them is (actual_value - 2).
301  */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303         .dot = { .min = 25000, .max = 350000 },
304         .vco = { .min = 1760000, .max = 3510000 },
305         .n = { .min = 1, .max = 5 },
306         .m = { .min = 79, .max = 127 },
307         .m1 = { .min = 12, .max = 22 },
308         .m2 = { .min = 5, .max = 9 },
309         .p = { .min = 5, .max = 80 },
310         .p1 = { .min = 1, .max = 8 },
311         .p2 = { .dot_limit = 225000,
312                 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 3 },
319         .m = { .min = 79, .max = 118 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 127 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 56 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343         .dot = { .min = 25000, .max = 350000 },
344         .vco = { .min = 1760000, .max = 3510000 },
345         .n = { .min = 1, .max = 2 },
346         .m = { .min = 79, .max = 126 },
347         .m1 = { .min = 12, .max = 22 },
348         .m2 = { .min = 5, .max = 9 },
349         .p = { .min = 28, .max = 112 },
350         .p1 = { .min = 2, .max = 8 },
351         .p2 = { .dot_limit = 225000,
352                 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 3 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 14, .max = 42 },
363         .p1 = { .min = 2, .max = 6 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369          /*
370           * These are the data rate limits (measured in fast clocks)
371           * since those are the strictest limits we have. The fast
372           * clock and actual rate limits are more relaxed, so checking
373           * them would make no difference.
374           */
375         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376         .vco = { .min = 4000000, .max = 6000000 },
377         .n = { .min = 1, .max = 7 },
378         .m1 = { .min = 2, .max = 3 },
379         .m2 = { .min = 11, .max = 156 },
380         .p1 = { .min = 2, .max = 3 },
381         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385         /*
386          * These are the data rate limits (measured in fast clocks)
387          * since those are the strictest limits we have.  The fast
388          * clock and actual rate limits are more relaxed, so checking
389          * them would make no difference.
390          */
391         .dot = { .min = 25000 * 5, .max = 540000 * 5},
392         .vco = { .min = 4860000, .max = 6700000 },
393         .n = { .min = 1, .max = 1 },
394         .m1 = { .min = 2, .max = 2 },
395         .m2 = { .min = 24 << 22, .max = 175 << 22 },
396         .p1 = { .min = 2, .max = 4 },
397         .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402         clock->m = clock->m1 * clock->m2;
403         clock->p = clock->p1 * clock->p2;
404         if (WARN_ON(clock->n == 0 || clock->p == 0))
405                 return;
406         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411  * Returns whether any output on the specified pipe is of the specified type
412  */
413 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414 {
415         struct drm_device *dev = crtc->dev;
416         struct intel_encoder *encoder;
417
418         for_each_encoder_on_crtc(dev, crtc, encoder)
419                 if (encoder->type == type)
420                         return true;
421
422         return false;
423 }
424
425 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426                                                 int refclk)
427 {
428         struct drm_device *dev = crtc->dev;
429         const intel_limit_t *limit;
430
431         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
432                 if (intel_is_dual_link_lvds(dev)) {
433                         if (refclk == 100000)
434                                 limit = &intel_limits_ironlake_dual_lvds_100m;
435                         else
436                                 limit = &intel_limits_ironlake_dual_lvds;
437                 } else {
438                         if (refclk == 100000)
439                                 limit = &intel_limits_ironlake_single_lvds_100m;
440                         else
441                                 limit = &intel_limits_ironlake_single_lvds;
442                 }
443         } else
444                 limit = &intel_limits_ironlake_dac;
445
446         return limit;
447 }
448
449 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450 {
451         struct drm_device *dev = crtc->dev;
452         const intel_limit_t *limit;
453
454         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
455                 if (intel_is_dual_link_lvds(dev))
456                         limit = &intel_limits_g4x_dual_channel_lvds;
457                 else
458                         limit = &intel_limits_g4x_single_channel_lvds;
459         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
461                 limit = &intel_limits_g4x_hdmi;
462         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
463                 limit = &intel_limits_g4x_sdvo;
464         } else /* The option is for other outputs */
465                 limit = &intel_limits_i9xx_sdvo;
466
467         return limit;
468 }
469
470 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
471 {
472         struct drm_device *dev = crtc->dev;
473         const intel_limit_t *limit;
474
475         if (HAS_PCH_SPLIT(dev))
476                 limit = intel_ironlake_limit(crtc, refclk);
477         else if (IS_G4X(dev)) {
478                 limit = intel_g4x_limit(crtc);
479         } else if (IS_PINEVIEW(dev)) {
480                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
481                         limit = &intel_limits_pineview_lvds;
482                 else
483                         limit = &intel_limits_pineview_sdvo;
484         } else if (IS_CHERRYVIEW(dev)) {
485                 limit = &intel_limits_chv;
486         } else if (IS_VALLEYVIEW(dev)) {
487                 limit = &intel_limits_vlv;
488         } else if (!IS_GEN2(dev)) {
489                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490                         limit = &intel_limits_i9xx_lvds;
491                 else
492                         limit = &intel_limits_i9xx_sdvo;
493         } else {
494                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
495                         limit = &intel_limits_i8xx_lvds;
496                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
497                         limit = &intel_limits_i8xx_dvo;
498                 else
499                         limit = &intel_limits_i8xx_dac;
500         }
501         return limit;
502 }
503
504 /* m1 is reserved as 0 in Pineview, n is a ring counter */
505 static void pineview_clock(int refclk, intel_clock_t *clock)
506 {
507         clock->m = clock->m2 + 2;
508         clock->p = clock->p1 * clock->p2;
509         if (WARN_ON(clock->n == 0 || clock->p == 0))
510                 return;
511         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
513 }
514
515 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516 {
517         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518 }
519
520 static void i9xx_clock(int refclk, intel_clock_t *clock)
521 {
522         clock->m = i9xx_dpll_compute_m(clock);
523         clock->p = clock->p1 * clock->p2;
524         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525                 return;
526         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
528 }
529
530 static void chv_clock(int refclk, intel_clock_t *clock)
531 {
532         clock->m = clock->m1 * clock->m2;
533         clock->p = clock->p1 * clock->p2;
534         if (WARN_ON(clock->n == 0 || clock->p == 0))
535                 return;
536         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537                         clock->n << 22);
538         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539 }
540
541 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
542 /**
543  * Returns whether the given set of divisors are valid for a given refclk with
544  * the given connectors.
545  */
546
547 static bool intel_PLL_is_valid(struct drm_device *dev,
548                                const intel_limit_t *limit,
549                                const intel_clock_t *clock)
550 {
551         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
552                 INTELPllInvalid("n out of range\n");
553         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
554                 INTELPllInvalid("p1 out of range\n");
555         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
556                 INTELPllInvalid("m2 out of range\n");
557         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
558                 INTELPllInvalid("m1 out of range\n");
559
560         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561                 if (clock->m1 <= clock->m2)
562                         INTELPllInvalid("m1 <= m2\n");
563
564         if (!IS_VALLEYVIEW(dev)) {
565                 if (clock->p < limit->p.min || limit->p.max < clock->p)
566                         INTELPllInvalid("p out of range\n");
567                 if (clock->m < limit->m.min || limit->m.max < clock->m)
568                         INTELPllInvalid("m out of range\n");
569         }
570
571         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
572                 INTELPllInvalid("vco out of range\n");
573         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574          * connector, etc., rather than just a single range.
575          */
576         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
577                 INTELPllInvalid("dot out of range\n");
578
579         return true;
580 }
581
582 static bool
583 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
584                     int target, int refclk, intel_clock_t *match_clock,
585                     intel_clock_t *best_clock)
586 {
587         struct drm_device *dev = crtc->dev;
588         intel_clock_t clock;
589         int err = target;
590
591         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
592                 /*
593                  * For LVDS just rely on its current settings for dual-channel.
594                  * We haven't figured out how to reliably set up different
595                  * single/dual channel state, if we even can.
596                  */
597                 if (intel_is_dual_link_lvds(dev))
598                         clock.p2 = limit->p2.p2_fast;
599                 else
600                         clock.p2 = limit->p2.p2_slow;
601         } else {
602                 if (target < limit->p2.dot_limit)
603                         clock.p2 = limit->p2.p2_slow;
604                 else
605                         clock.p2 = limit->p2.p2_fast;
606         }
607
608         memset(best_clock, 0, sizeof(*best_clock));
609
610         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611              clock.m1++) {
612                 for (clock.m2 = limit->m2.min;
613                      clock.m2 <= limit->m2.max; clock.m2++) {
614                         if (clock.m2 >= clock.m1)
615                                 break;
616                         for (clock.n = limit->n.min;
617                              clock.n <= limit->n.max; clock.n++) {
618                                 for (clock.p1 = limit->p1.min;
619                                         clock.p1 <= limit->p1.max; clock.p1++) {
620                                         int this_err;
621
622                                         i9xx_clock(refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626                                         if (match_clock &&
627                                             clock.p != match_clock->p)
628                                                 continue;
629
630                                         this_err = abs(clock.dot - target);
631                                         if (this_err < err) {
632                                                 *best_clock = clock;
633                                                 err = this_err;
634                                         }
635                                 }
636                         }
637                 }
638         }
639
640         return (err != target);
641 }
642
643 static bool
644 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645                    int target, int refclk, intel_clock_t *match_clock,
646                    intel_clock_t *best_clock)
647 {
648         struct drm_device *dev = crtc->dev;
649         intel_clock_t clock;
650         int err = target;
651
652         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653                 /*
654                  * For LVDS just rely on its current settings for dual-channel.
655                  * We haven't figured out how to reliably set up different
656                  * single/dual channel state, if we even can.
657                  */
658                 if (intel_is_dual_link_lvds(dev))
659                         clock.p2 = limit->p2.p2_fast;
660                 else
661                         clock.p2 = limit->p2.p2_slow;
662         } else {
663                 if (target < limit->p2.dot_limit)
664                         clock.p2 = limit->p2.p2_slow;
665                 else
666                         clock.p2 = limit->p2.p2_fast;
667         }
668
669         memset(best_clock, 0, sizeof(*best_clock));
670
671         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672              clock.m1++) {
673                 for (clock.m2 = limit->m2.min;
674                      clock.m2 <= limit->m2.max; clock.m2++) {
675                         for (clock.n = limit->n.min;
676                              clock.n <= limit->n.max; clock.n++) {
677                                 for (clock.p1 = limit->p1.min;
678                                         clock.p1 <= limit->p1.max; clock.p1++) {
679                                         int this_err;
680
681                                         pineview_clock(refclk, &clock);
682                                         if (!intel_PLL_is_valid(dev, limit,
683                                                                 &clock))
684                                                 continue;
685                                         if (match_clock &&
686                                             clock.p != match_clock->p)
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err) {
691                                                 *best_clock = clock;
692                                                 err = this_err;
693                                         }
694                                 }
695                         }
696                 }
697         }
698
699         return (err != target);
700 }
701
702 static bool
703 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704                    int target, int refclk, intel_clock_t *match_clock,
705                    intel_clock_t *best_clock)
706 {
707         struct drm_device *dev = crtc->dev;
708         intel_clock_t clock;
709         int max_n;
710         bool found;
711         /* approximately equals target * 0.00585 */
712         int err_most = (target >> 8) + (target >> 9);
713         found = false;
714
715         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
716                 if (intel_is_dual_link_lvds(dev))
717                         clock.p2 = limit->p2.p2_fast;
718                 else
719                         clock.p2 = limit->p2.p2_slow;
720         } else {
721                 if (target < limit->p2.dot_limit)
722                         clock.p2 = limit->p2.p2_slow;
723                 else
724                         clock.p2 = limit->p2.p2_fast;
725         }
726
727         memset(best_clock, 0, sizeof(*best_clock));
728         max_n = limit->n.max;
729         /* based on hardware requirement, prefer smaller n to precision */
730         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
731                 /* based on hardware requirement, prefere larger m1,m2 */
732                 for (clock.m1 = limit->m1.max;
733                      clock.m1 >= limit->m1.min; clock.m1--) {
734                         for (clock.m2 = limit->m2.max;
735                              clock.m2 >= limit->m2.min; clock.m2--) {
736                                 for (clock.p1 = limit->p1.max;
737                                      clock.p1 >= limit->p1.min; clock.p1--) {
738                                         int this_err;
739
740                                         i9xx_clock(refclk, &clock);
741                                         if (!intel_PLL_is_valid(dev, limit,
742                                                                 &clock))
743                                                 continue;
744
745                                         this_err = abs(clock.dot - target);
746                                         if (this_err < err_most) {
747                                                 *best_clock = clock;
748                                                 err_most = this_err;
749                                                 max_n = clock.n;
750                                                 found = true;
751                                         }
752                                 }
753                         }
754                 }
755         }
756         return found;
757 }
758
759 static bool
760 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761                    int target, int refclk, intel_clock_t *match_clock,
762                    intel_clock_t *best_clock)
763 {
764         struct drm_device *dev = crtc->dev;
765         intel_clock_t clock;
766         unsigned int bestppm = 1000000;
767         /* min update 19.2 MHz */
768         int max_n = min(limit->n.max, refclk / 19200);
769         bool found = false;
770
771         target *= 5; /* fast clock */
772
773         memset(best_clock, 0, sizeof(*best_clock));
774
775         /* based on hardware requirement, prefer smaller n to precision */
776         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
778                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
779                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
780                                 clock.p = clock.p1 * clock.p2;
781                                 /* based on hardware requirement, prefer bigger m1,m2 values */
782                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
783                                         unsigned int ppm, diff;
784
785                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786                                                                      refclk * clock.m1);
787
788                                         vlv_clock(refclk, &clock);
789
790                                         if (!intel_PLL_is_valid(dev, limit,
791                                                                 &clock))
792                                                 continue;
793
794                                         diff = abs(clock.dot - target);
795                                         ppm = div_u64(1000000ULL * diff, target);
796
797                                         if (ppm < 100 && clock.p > best_clock->p) {
798                                                 bestppm = 0;
799                                                 *best_clock = clock;
800                                                 found = true;
801                                         }
802
803                                         if (bestppm >= 10 && ppm < bestppm - 10) {
804                                                 bestppm = ppm;
805                                                 *best_clock = clock;
806                                                 found = true;
807                                         }
808                                 }
809                         }
810                 }
811         }
812
813         return found;
814 }
815
816 static bool
817 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818                    int target, int refclk, intel_clock_t *match_clock,
819                    intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823         uint64_t m2;
824         int found = false;
825
826         memset(best_clock, 0, sizeof(*best_clock));
827
828         /*
829          * Based on hardware doc, the n always set to 1, and m1 always
830          * set to 2.  If requires to support 200Mhz refclk, we need to
831          * revisit this because n may not 1 anymore.
832          */
833         clock.n = 1, clock.m1 = 2;
834         target *= 5;    /* fast clock */
835
836         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837                 for (clock.p2 = limit->p2.p2_fast;
838                                 clock.p2 >= limit->p2.p2_slow;
839                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841                         clock.p = clock.p1 * clock.p2;
842
843                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844                                         clock.n) << 22, refclk * clock.m1);
845
846                         if (m2 > INT_MAX/clock.m1)
847                                 continue;
848
849                         clock.m2 = m2;
850
851                         chv_clock(refclk, &clock);
852
853                         if (!intel_PLL_is_valid(dev, limit, &clock))
854                                 continue;
855
856                         /* based on hardware requirement, prefer bigger p
857                          */
858                         if (clock.p > best_clock->p) {
859                                 *best_clock = clock;
860                                 found = true;
861                         }
862                 }
863         }
864
865         return found;
866 }
867
868 bool intel_crtc_active(struct drm_crtc *crtc)
869 {
870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872         /* Be paranoid as we can arrive here with only partial
873          * state retrieved from the hardware during setup.
874          *
875          * We can ditch the adjusted_mode.crtc_clock check as soon
876          * as Haswell has gained clock readout/fastboot support.
877          *
878          * We can ditch the crtc->primary->fb check as soon as we can
879          * properly reconstruct framebuffers.
880          */
881         return intel_crtc->active && crtc->primary->fb &&
882                 intel_crtc->config.adjusted_mode.crtc_clock;
883 }
884
885 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886                                              enum pipe pipe)
887 {
888         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         return intel_crtc->config.cpu_transcoder;
892 }
893
894 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
895 {
896         struct drm_i915_private *dev_priv = dev->dev_private;
897         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
898
899         frame = I915_READ(frame_reg);
900
901         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902                 WARN(1, "vblank wait timed out\n");
903 }
904
905 /**
906  * intel_wait_for_vblank - wait for vblank on a given pipe
907  * @dev: drm device
908  * @pipe: pipe to wait for
909  *
910  * Wait for vblank to occur on a given pipe.  Needed for various bits of
911  * mode setting code.
912  */
913 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914 {
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         int pipestat_reg = PIPESTAT(pipe);
917
918         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919                 g4x_wait_for_vblank(dev, pipe);
920                 return;
921         }
922
923         /* Clear existing vblank status. Note this will clear any other
924          * sticky status fields as well.
925          *
926          * This races with i915_driver_irq_handler() with the result
927          * that either function could miss a vblank event.  Here it is not
928          * fatal, as we will either wait upon the next vblank interrupt or
929          * timeout.  Generally speaking intel_wait_for_vblank() is only
930          * called during modeset at which time the GPU should be idle and
931          * should *not* be performing page flips and thus not waiting on
932          * vblanks...
933          * Currently, the result of us stealing a vblank from the irq
934          * handler is that a single frame will be skipped during swapbuffers.
935          */
936         I915_WRITE(pipestat_reg,
937                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939         /* Wait for vblank interrupt bit to set */
940         if (wait_for(I915_READ(pipestat_reg) &
941                      PIPE_VBLANK_INTERRUPT_STATUS,
942                      50))
943                 DRM_DEBUG_KMS("vblank wait timed out\n");
944 }
945
946 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947 {
948         struct drm_i915_private *dev_priv = dev->dev_private;
949         u32 reg = PIPEDSL(pipe);
950         u32 line1, line2;
951         u32 line_mask;
952
953         if (IS_GEN2(dev))
954                 line_mask = DSL_LINEMASK_GEN2;
955         else
956                 line_mask = DSL_LINEMASK_GEN3;
957
958         line1 = I915_READ(reg) & line_mask;
959         mdelay(5);
960         line2 = I915_READ(reg) & line_mask;
961
962         return line1 == line2;
963 }
964
965 /*
966  * intel_wait_for_pipe_off - wait for pipe to turn off
967  * @dev: drm device
968  * @pipe: pipe to wait for
969  *
970  * After disabling a pipe, we can't wait for vblank in the usual way,
971  * spinning on the vblank interrupt status bit, since we won't actually
972  * see an interrupt when the pipe is disabled.
973  *
974  * On Gen4 and above:
975  *   wait for the pipe register state bit to turn off
976  *
977  * Otherwise:
978  *   wait for the display line value to settle (it usually
979  *   ends up stopping at the start of the next frame).
980  *
981  */
982 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
983 {
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986                                                                       pipe);
987
988         if (INTEL_INFO(dev)->gen >= 4) {
989                 int reg = PIPECONF(cpu_transcoder);
990
991                 /* Wait for the Pipe State to go off */
992                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993                              100))
994                         WARN(1, "pipe_off wait timed out\n");
995         } else {
996                 /* Wait for the display line to settle */
997                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
998                         WARN(1, "pipe_off wait timed out\n");
999         }
1000 }
1001
1002 /*
1003  * ibx_digital_port_connected - is the specified port connected?
1004  * @dev_priv: i915 private structure
1005  * @port: the port to test
1006  *
1007  * Returns true if @port is connected, false otherwise.
1008  */
1009 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010                                 struct intel_digital_port *port)
1011 {
1012         u32 bit;
1013
1014         if (HAS_PCH_IBX(dev_priv->dev)) {
1015                 switch (port->port) {
1016                 case PORT_B:
1017                         bit = SDE_PORTB_HOTPLUG;
1018                         break;
1019                 case PORT_C:
1020                         bit = SDE_PORTC_HOTPLUG;
1021                         break;
1022                 case PORT_D:
1023                         bit = SDE_PORTD_HOTPLUG;
1024                         break;
1025                 default:
1026                         return true;
1027                 }
1028         } else {
1029                 switch (port->port) {
1030                 case PORT_B:
1031                         bit = SDE_PORTB_HOTPLUG_CPT;
1032                         break;
1033                 case PORT_C:
1034                         bit = SDE_PORTC_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_D:
1037                         bit = SDE_PORTD_HOTPLUG_CPT;
1038                         break;
1039                 default:
1040                         return true;
1041                 }
1042         }
1043
1044         return I915_READ(SDEISR) & bit;
1045 }
1046
1047 static const char *state_string(bool enabled)
1048 {
1049         return enabled ? "on" : "off";
1050 }
1051
1052 /* Only for pre-ILK configs */
1053 void assert_pll(struct drm_i915_private *dev_priv,
1054                 enum pipe pipe, bool state)
1055 {
1056         int reg;
1057         u32 val;
1058         bool cur_state;
1059
1060         reg = DPLL(pipe);
1061         val = I915_READ(reg);
1062         cur_state = !!(val & DPLL_VCO_ENABLE);
1063         WARN(cur_state != state,
1064              "PLL state assertion failure (expected %s, current %s)\n",
1065              state_string(state), state_string(cur_state));
1066 }
1067
1068 /* XXX: the dsi pll is shared between MIPI DSI ports */
1069 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070 {
1071         u32 val;
1072         bool cur_state;
1073
1074         mutex_lock(&dev_priv->dpio_lock);
1075         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076         mutex_unlock(&dev_priv->dpio_lock);
1077
1078         cur_state = val & DSI_PLL_VCO_EN;
1079         WARN(cur_state != state,
1080              "DSI PLL state assertion failure (expected %s, current %s)\n",
1081              state_string(state), state_string(cur_state));
1082 }
1083 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
1086 struct intel_shared_dpll *
1087 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088 {
1089         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
1091         if (crtc->config.shared_dpll < 0)
1092                 return NULL;
1093
1094         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1095 }
1096
1097 /* For ILK+ */
1098 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099                         struct intel_shared_dpll *pll,
1100                         bool state)
1101 {
1102         bool cur_state;
1103         struct intel_dpll_hw_state hw_state;
1104
1105         if (WARN (!pll,
1106                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1107                 return;
1108
1109         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1110         WARN(cur_state != state,
1111              "%s assertion failure (expected %s, current %s)\n",
1112              pll->name, state_string(state), state_string(cur_state));
1113 }
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178                        enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183
1184         reg = FDI_RX_CTL(pipe);
1185         val = I915_READ(reg);
1186         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187         WARN(cur_state != state,
1188              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189              state_string(state), state_string(cur_state));
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         int pp_reg, lvds_reg;
1196         u32 val;
1197         enum pipe panel_pipe = PIPE_A;
1198         bool locked = true;
1199
1200         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201                 pp_reg = PCH_PP_CONTROL;
1202                 lvds_reg = PCH_LVDS;
1203         } else {
1204                 pp_reg = PP_CONTROL;
1205                 lvds_reg = LVDS;
1206         }
1207
1208         val = I915_READ(pp_reg);
1209         if (!(val & PANEL_POWER_ON) ||
1210             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211                 locked = false;
1212
1213         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214                 panel_pipe = PIPE_B;
1215
1216         WARN(panel_pipe == pipe && locked,
1217              "panel assertion failure, pipe %c regs locked\n",
1218              pipe_name(pipe));
1219 }
1220
1221 static void assert_cursor(struct drm_i915_private *dev_priv,
1222                           enum pipe pipe, bool state)
1223 {
1224         struct drm_device *dev = dev_priv->dev;
1225         bool cur_state;
1226
1227         if (IS_845G(dev) || IS_I865G(dev))
1228                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1229         else
1230                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1231
1232         WARN(cur_state != state,
1233              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234              pipe_name(pipe), state_string(state), state_string(cur_state));
1235 }
1236 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
1239 void assert_pipe(struct drm_i915_private *dev_priv,
1240                  enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246                                                                       pipe);
1247
1248         /* if we need the pipe A quirk it must be always on */
1249         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250                 state = true;
1251
1252         if (!intel_display_power_enabled(dev_priv,
1253                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1254                 cur_state = false;
1255         } else {
1256                 reg = PIPECONF(cpu_transcoder);
1257                 val = I915_READ(reg);
1258                 cur_state = !!(val & PIPECONF_ENABLE);
1259         }
1260
1261         WARN(cur_state != state,
1262              "pipe %c assertion failure (expected %s, current %s)\n",
1263              pipe_name(pipe), state_string(state), state_string(cur_state));
1264 }
1265
1266 static void assert_plane(struct drm_i915_private *dev_priv,
1267                          enum plane plane, bool state)
1268 {
1269         int reg;
1270         u32 val;
1271         bool cur_state;
1272
1273         reg = DSPCNTR(plane);
1274         val = I915_READ(reg);
1275         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276         WARN(cur_state != state,
1277              "plane %c assertion failure (expected %s, current %s)\n",
1278              plane_name(plane), state_string(state), state_string(cur_state));
1279 }
1280
1281 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
1284 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285                                    enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int reg, i;
1289         u32 val;
1290         int cur_pipe;
1291
1292         /* Primary planes are fixed to pipes on gen4+ */
1293         if (INTEL_INFO(dev)->gen >= 4) {
1294                 reg = DSPCNTR(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & DISPLAY_PLANE_ENABLE,
1297                      "plane %c assertion failure, should be disabled but not\n",
1298                      plane_name(pipe));
1299                 return;
1300         }
1301
1302         /* Need to check both planes against the pipe */
1303         for_each_pipe(i) {
1304                 reg = DSPCNTR(i);
1305                 val = I915_READ(reg);
1306                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307                         DISPPLANE_SEL_PIPE_SHIFT;
1308                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1309                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310                      plane_name(i), pipe_name(pipe));
1311         }
1312 }
1313
1314 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315                                     enum pipe pipe)
1316 {
1317         struct drm_device *dev = dev_priv->dev;
1318         int reg, sprite;
1319         u32 val;
1320
1321         if (IS_VALLEYVIEW(dev)) {
1322                 for_each_sprite(pipe, sprite) {
1323                         reg = SPCNTR(pipe, sprite);
1324                         val = I915_READ(reg);
1325                         WARN(val & SP_ENABLE,
1326                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327                              sprite_name(pipe, sprite), pipe_name(pipe));
1328                 }
1329         } else if (INTEL_INFO(dev)->gen >= 7) {
1330                 reg = SPRCTL(pipe);
1331                 val = I915_READ(reg);
1332                 WARN(val & SPRITE_ENABLE,
1333                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1334                      plane_name(pipe), pipe_name(pipe));
1335         } else if (INTEL_INFO(dev)->gen >= 5) {
1336                 reg = DVSCNTR(pipe);
1337                 val = I915_READ(reg);
1338                 WARN(val & DVS_ENABLE,
1339                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1340                      plane_name(pipe), pipe_name(pipe));
1341         }
1342 }
1343
1344 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1345 {
1346         u32 val;
1347         bool enabled;
1348
1349         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1350
1351         val = I915_READ(PCH_DREF_CONTROL);
1352         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1353                             DREF_SUPERSPREAD_SOURCE_MASK));
1354         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1355 }
1356
1357 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1358                                            enum pipe pipe)
1359 {
1360         int reg;
1361         u32 val;
1362         bool enabled;
1363
1364         reg = PCH_TRANSCONF(pipe);
1365         val = I915_READ(reg);
1366         enabled = !!(val & TRANS_ENABLE);
1367         WARN(enabled,
1368              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369              pipe_name(pipe));
1370 }
1371
1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373                             enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375         if ((val & DP_PORT_EN) == 0)
1376                 return false;
1377
1378         if (HAS_PCH_CPT(dev_priv->dev)) {
1379                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1380                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1381                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1382                         return false;
1383         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1384                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1385                         return false;
1386         } else {
1387                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1388                         return false;
1389         }
1390         return true;
1391 }
1392
1393 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1394                               enum pipe pipe, u32 val)
1395 {
1396         if ((val & SDVO_ENABLE) == 0)
1397                 return false;
1398
1399         if (HAS_PCH_CPT(dev_priv->dev)) {
1400                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1401                         return false;
1402         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1403                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1404                         return false;
1405         } else {
1406                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1407                         return false;
1408         }
1409         return true;
1410 }
1411
1412 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1413                               enum pipe pipe, u32 val)
1414 {
1415         if ((val & LVDS_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv->dev)) {
1419                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1420                         return false;
1421         } else {
1422                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1423                         return false;
1424         }
1425         return true;
1426 }
1427
1428 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1429                               enum pipe pipe, u32 val)
1430 {
1431         if ((val & ADPA_DAC_ENABLE) == 0)
1432                 return false;
1433         if (HAS_PCH_CPT(dev_priv->dev)) {
1434                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1435                         return false;
1436         } else {
1437                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1438                         return false;
1439         }
1440         return true;
1441 }
1442
1443 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1444                                    enum pipe pipe, int reg, u32 port_sel)
1445 {
1446         u32 val = I915_READ(reg);
1447         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449              reg, pipe_name(pipe));
1450
1451         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1452              && (val & DP_PIPEB_SELECT),
1453              "IBX PCH dp port still using transcoder B\n");
1454 }
1455
1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457                                      enum pipe pipe, int reg)
1458 {
1459         u32 val = I915_READ(reg);
1460         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462              reg, pipe_name(pipe));
1463
1464         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1465              && (val & SDVO_PIPE_B_SELECT),
1466              "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470                                       enum pipe pipe)
1471 {
1472         int reg;
1473         u32 val;
1474
1475         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1476         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1477         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1478
1479         reg = PCH_ADPA;
1480         val = I915_READ(reg);
1481         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1482              "PCH VGA enabled on transcoder %c, should be disabled\n",
1483              pipe_name(pipe));
1484
1485         reg = PCH_LVDS;
1486         val = I915_READ(reg);
1487         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1488              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1489              pipe_name(pipe));
1490
1491         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1492         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1493         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1494 }
1495
1496 static void intel_init_dpio(struct drm_device *dev)
1497 {
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499
1500         if (!IS_VALLEYVIEW(dev))
1501                 return;
1502
1503         /*
1504          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1505          * CHV x1 PHY (DP/HDMI D)
1506          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1507          */
1508         if (IS_CHERRYVIEW(dev)) {
1509                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1510                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1511         } else {
1512                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1513         }
1514 }
1515
1516 static void intel_reset_dpio(struct drm_device *dev)
1517 {
1518         struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520         if (IS_CHERRYVIEW(dev)) {
1521                 enum dpio_phy phy;
1522                 u32 val;
1523
1524                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525                         /* Poll for phypwrgood signal */
1526                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527                                                 PHY_POWERGOOD(phy), 1))
1528                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530                         /*
1531                          * Deassert common lane reset for PHY.
1532                          *
1533                          * This should only be done on init and resume from S3
1534                          * with both PLLs disabled, or we risk losing DPIO and
1535                          * PLL synchronization.
1536                          */
1537                         val = I915_READ(DISPLAY_PHY_CONTROL);
1538                         I915_WRITE(DISPLAY_PHY_CONTROL,
1539                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540                 }
1541         }
1542 }
1543
1544 static void vlv_enable_pll(struct intel_crtc *crtc)
1545 {
1546         struct drm_device *dev = crtc->base.dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         int reg = DPLL(crtc->pipe);
1549         u32 dpll = crtc->config.dpll_hw_state.dpll;
1550
1551         assert_pipe_disabled(dev_priv, crtc->pipe);
1552
1553         /* No really, not for ILK+ */
1554         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1555
1556         /* PLL is protected by panel, make sure we can write it */
1557         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1558                 assert_panel_unlocked(dev_priv, crtc->pipe);
1559
1560         I915_WRITE(reg, dpll);
1561         POSTING_READ(reg);
1562         udelay(150);
1563
1564         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1565                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1566
1567         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1568         POSTING_READ(DPLL_MD(crtc->pipe));
1569
1570         /* We do this three times for luck */
1571         I915_WRITE(reg, dpll);
1572         POSTING_READ(reg);
1573         udelay(150); /* wait for warmup */
1574         I915_WRITE(reg, dpll);
1575         POSTING_READ(reg);
1576         udelay(150); /* wait for warmup */
1577         I915_WRITE(reg, dpll);
1578         POSTING_READ(reg);
1579         udelay(150); /* wait for warmup */
1580 }
1581
1582 static void chv_enable_pll(struct intel_crtc *crtc)
1583 {
1584         struct drm_device *dev = crtc->base.dev;
1585         struct drm_i915_private *dev_priv = dev->dev_private;
1586         int pipe = crtc->pipe;
1587         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1588         u32 tmp;
1589
1590         assert_pipe_disabled(dev_priv, crtc->pipe);
1591
1592         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1593
1594         mutex_lock(&dev_priv->dpio_lock);
1595
1596         /* Enable back the 10bit clock to display controller */
1597         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1598         tmp |= DPIO_DCLKP_EN;
1599         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1600
1601         /*
1602          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1603          */
1604         udelay(1);
1605
1606         /* Enable PLL */
1607         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1608
1609         /* Check PLL is locked */
1610         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1611                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1612
1613         /* not sure when this should be written */
1614         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1615         POSTING_READ(DPLL_MD(pipe));
1616
1617         mutex_unlock(&dev_priv->dpio_lock);
1618 }
1619
1620 static void i9xx_enable_pll(struct intel_crtc *crtc)
1621 {
1622         struct drm_device *dev = crtc->base.dev;
1623         struct drm_i915_private *dev_priv = dev->dev_private;
1624         int reg = DPLL(crtc->pipe);
1625         u32 dpll = crtc->config.dpll_hw_state.dpll;
1626
1627         assert_pipe_disabled(dev_priv, crtc->pipe);
1628
1629         /* No really, not for ILK+ */
1630         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1631
1632         /* PLL is protected by panel, make sure we can write it */
1633         if (IS_MOBILE(dev) && !IS_I830(dev))
1634                 assert_panel_unlocked(dev_priv, crtc->pipe);
1635
1636         I915_WRITE(reg, dpll);
1637
1638         /* Wait for the clocks to stabilize. */
1639         POSTING_READ(reg);
1640         udelay(150);
1641
1642         if (INTEL_INFO(dev)->gen >= 4) {
1643                 I915_WRITE(DPLL_MD(crtc->pipe),
1644                            crtc->config.dpll_hw_state.dpll_md);
1645         } else {
1646                 /* The pixel multiplier can only be updated once the
1647                  * DPLL is enabled and the clocks are stable.
1648                  *
1649                  * So write it again.
1650                  */
1651                 I915_WRITE(reg, dpll);
1652         }
1653
1654         /* We do this three times for luck */
1655         I915_WRITE(reg, dpll);
1656         POSTING_READ(reg);
1657         udelay(150); /* wait for warmup */
1658         I915_WRITE(reg, dpll);
1659         POSTING_READ(reg);
1660         udelay(150); /* wait for warmup */
1661         I915_WRITE(reg, dpll);
1662         POSTING_READ(reg);
1663         udelay(150); /* wait for warmup */
1664 }
1665
1666 /**
1667  * i9xx_disable_pll - disable a PLL
1668  * @dev_priv: i915 private structure
1669  * @pipe: pipe PLL to disable
1670  *
1671  * Disable the PLL for @pipe, making sure the pipe is off first.
1672  *
1673  * Note!  This is for pre-ILK only.
1674  */
1675 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1676 {
1677         /* Don't disable pipe A or pipe A PLLs if needed */
1678         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1679                 return;
1680
1681         /* Make sure the pipe isn't still relying on us */
1682         assert_pipe_disabled(dev_priv, pipe);
1683
1684         I915_WRITE(DPLL(pipe), 0);
1685         POSTING_READ(DPLL(pipe));
1686 }
1687
1688 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1689 {
1690         u32 val = 0;
1691
1692         /* Make sure the pipe isn't still relying on us */
1693         assert_pipe_disabled(dev_priv, pipe);
1694
1695         /*
1696          * Leave integrated clock source and reference clock enabled for pipe B.
1697          * The latter is needed for VGA hotplug / manual detection.
1698          */
1699         if (pipe == PIPE_B)
1700                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1701         I915_WRITE(DPLL(pipe), val);
1702         POSTING_READ(DPLL(pipe));
1703
1704 }
1705
1706 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1707 {
1708         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1709         u32 val;
1710
1711         /* Make sure the pipe isn't still relying on us */
1712         assert_pipe_disabled(dev_priv, pipe);
1713
1714         /* Set PLL en = 0 */
1715         val = DPLL_SSC_REF_CLOCK_CHV;
1716         if (pipe != PIPE_A)
1717                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1718         I915_WRITE(DPLL(pipe), val);
1719         POSTING_READ(DPLL(pipe));
1720
1721         mutex_lock(&dev_priv->dpio_lock);
1722
1723         /* Disable 10bit clock to display controller */
1724         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1725         val &= ~DPIO_DCLKP_EN;
1726         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1727
1728         /* disable left/right clock distribution */
1729         if (pipe != PIPE_B) {
1730                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1731                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1732                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1733         } else {
1734                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1735                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1736                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1737         }
1738
1739         mutex_unlock(&dev_priv->dpio_lock);
1740 }
1741
1742 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1743                 struct intel_digital_port *dport)
1744 {
1745         u32 port_mask;
1746         int dpll_reg;
1747
1748         switch (dport->port) {
1749         case PORT_B:
1750                 port_mask = DPLL_PORTB_READY_MASK;
1751                 dpll_reg = DPLL(0);
1752                 break;
1753         case PORT_C:
1754                 port_mask = DPLL_PORTC_READY_MASK;
1755                 dpll_reg = DPLL(0);
1756                 break;
1757         case PORT_D:
1758                 port_mask = DPLL_PORTD_READY_MASK;
1759                 dpll_reg = DPIO_PHY_STATUS;
1760                 break;
1761         default:
1762                 BUG();
1763         }
1764
1765         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1766                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1767                      port_name(dport->port), I915_READ(dpll_reg));
1768 }
1769
1770 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1771 {
1772         struct drm_device *dev = crtc->base.dev;
1773         struct drm_i915_private *dev_priv = dev->dev_private;
1774         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1775
1776         if (WARN_ON(pll == NULL))
1777                 return;
1778
1779         WARN_ON(!pll->refcount);
1780         if (pll->active == 0) {
1781                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1782                 WARN_ON(pll->on);
1783                 assert_shared_dpll_disabled(dev_priv, pll);
1784
1785                 pll->mode_set(dev_priv, pll);
1786         }
1787 }
1788
1789 /**
1790  * intel_enable_shared_dpll - enable PCH PLL
1791  * @dev_priv: i915 private structure
1792  * @pipe: pipe PLL to enable
1793  *
1794  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1795  * drives the transcoder clock.
1796  */
1797 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1798 {
1799         struct drm_device *dev = crtc->base.dev;
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1802
1803         if (WARN_ON(pll == NULL))
1804                 return;
1805
1806         if (WARN_ON(pll->refcount == 0))
1807                 return;
1808
1809         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1810                       pll->name, pll->active, pll->on,
1811                       crtc->base.base.id);
1812
1813         if (pll->active++) {
1814                 WARN_ON(!pll->on);
1815                 assert_shared_dpll_enabled(dev_priv, pll);
1816                 return;
1817         }
1818         WARN_ON(pll->on);
1819
1820         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1821
1822         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1823         pll->enable(dev_priv, pll);
1824         pll->on = true;
1825 }
1826
1827 void intel_disable_shared_dpll(struct intel_crtc *crtc)
1828 {
1829         struct drm_device *dev = crtc->base.dev;
1830         struct drm_i915_private *dev_priv = dev->dev_private;
1831         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1832
1833         /* PCH only available on ILK+ */
1834         BUG_ON(INTEL_INFO(dev)->gen < 5);
1835         if (WARN_ON(pll == NULL))
1836                return;
1837
1838         if (WARN_ON(pll->refcount == 0))
1839                 return;
1840
1841         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1842                       pll->name, pll->active, pll->on,
1843                       crtc->base.base.id);
1844
1845         if (WARN_ON(pll->active == 0)) {
1846                 assert_shared_dpll_disabled(dev_priv, pll);
1847                 return;
1848         }
1849
1850         assert_shared_dpll_enabled(dev_priv, pll);
1851         WARN_ON(!pll->on);
1852         if (--pll->active)
1853                 return;
1854
1855         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1856         pll->disable(dev_priv, pll);
1857         pll->on = false;
1858
1859         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1860 }
1861
1862 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1863                                            enum pipe pipe)
1864 {
1865         struct drm_device *dev = dev_priv->dev;
1866         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1868         uint32_t reg, val, pipeconf_val;
1869
1870         /* PCH only available on ILK+ */
1871         BUG_ON(INTEL_INFO(dev)->gen < 5);
1872
1873         /* Make sure PCH DPLL is enabled */
1874         assert_shared_dpll_enabled(dev_priv,
1875                                    intel_crtc_to_shared_dpll(intel_crtc));
1876
1877         /* FDI must be feeding us bits for PCH ports */
1878         assert_fdi_tx_enabled(dev_priv, pipe);
1879         assert_fdi_rx_enabled(dev_priv, pipe);
1880
1881         if (HAS_PCH_CPT(dev)) {
1882                 /* Workaround: Set the timing override bit before enabling the
1883                  * pch transcoder. */
1884                 reg = TRANS_CHICKEN2(pipe);
1885                 val = I915_READ(reg);
1886                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1887                 I915_WRITE(reg, val);
1888         }
1889
1890         reg = PCH_TRANSCONF(pipe);
1891         val = I915_READ(reg);
1892         pipeconf_val = I915_READ(PIPECONF(pipe));
1893
1894         if (HAS_PCH_IBX(dev_priv->dev)) {
1895                 /*
1896                  * make the BPC in transcoder be consistent with
1897                  * that in pipeconf reg.
1898                  */
1899                 val &= ~PIPECONF_BPC_MASK;
1900                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1901         }
1902
1903         val &= ~TRANS_INTERLACE_MASK;
1904         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1905                 if (HAS_PCH_IBX(dev_priv->dev) &&
1906                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1907                         val |= TRANS_LEGACY_INTERLACED_ILK;
1908                 else
1909                         val |= TRANS_INTERLACED;
1910         else
1911                 val |= TRANS_PROGRESSIVE;
1912
1913         I915_WRITE(reg, val | TRANS_ENABLE);
1914         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1915                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1916 }
1917
1918 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1919                                       enum transcoder cpu_transcoder)
1920 {
1921         u32 val, pipeconf_val;
1922
1923         /* PCH only available on ILK+ */
1924         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1925
1926         /* FDI must be feeding us bits for PCH ports */
1927         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1928         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1929
1930         /* Workaround: set timing override bit. */
1931         val = I915_READ(_TRANSA_CHICKEN2);
1932         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1933         I915_WRITE(_TRANSA_CHICKEN2, val);
1934
1935         val = TRANS_ENABLE;
1936         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1937
1938         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1939             PIPECONF_INTERLACED_ILK)
1940                 val |= TRANS_INTERLACED;
1941         else
1942                 val |= TRANS_PROGRESSIVE;
1943
1944         I915_WRITE(LPT_TRANSCONF, val);
1945         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1946                 DRM_ERROR("Failed to enable PCH transcoder\n");
1947 }
1948
1949 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1950                                             enum pipe pipe)
1951 {
1952         struct drm_device *dev = dev_priv->dev;
1953         uint32_t reg, val;
1954
1955         /* FDI relies on the transcoder */
1956         assert_fdi_tx_disabled(dev_priv, pipe);
1957         assert_fdi_rx_disabled(dev_priv, pipe);
1958
1959         /* Ports must be off as well */
1960         assert_pch_ports_disabled(dev_priv, pipe);
1961
1962         reg = PCH_TRANSCONF(pipe);
1963         val = I915_READ(reg);
1964         val &= ~TRANS_ENABLE;
1965         I915_WRITE(reg, val);
1966         /* wait for PCH transcoder off, transcoder state */
1967         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1968                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1969
1970         if (!HAS_PCH_IBX(dev)) {
1971                 /* Workaround: Clear the timing override chicken bit again. */
1972                 reg = TRANS_CHICKEN2(pipe);
1973                 val = I915_READ(reg);
1974                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1975                 I915_WRITE(reg, val);
1976         }
1977 }
1978
1979 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1980 {
1981         u32 val;
1982
1983         val = I915_READ(LPT_TRANSCONF);
1984         val &= ~TRANS_ENABLE;
1985         I915_WRITE(LPT_TRANSCONF, val);
1986         /* wait for PCH transcoder off, transcoder state */
1987         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1988                 DRM_ERROR("Failed to disable PCH transcoder\n");
1989
1990         /* Workaround: clear timing override bit. */
1991         val = I915_READ(_TRANSA_CHICKEN2);
1992         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1993         I915_WRITE(_TRANSA_CHICKEN2, val);
1994 }
1995
1996 /**
1997  * intel_enable_pipe - enable a pipe, asserting requirements
1998  * @crtc: crtc responsible for the pipe
1999  *
2000  * Enable @crtc's pipe, making sure that various hardware specific requirements
2001  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2002  */
2003 static void intel_enable_pipe(struct intel_crtc *crtc)
2004 {
2005         struct drm_device *dev = crtc->base.dev;
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         enum pipe pipe = crtc->pipe;
2008         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2009                                                                       pipe);
2010         enum pipe pch_transcoder;
2011         int reg;
2012         u32 val;
2013
2014         assert_planes_disabled(dev_priv, pipe);
2015         assert_cursor_disabled(dev_priv, pipe);
2016         assert_sprites_disabled(dev_priv, pipe);
2017
2018         if (HAS_PCH_LPT(dev_priv->dev))
2019                 pch_transcoder = TRANSCODER_A;
2020         else
2021                 pch_transcoder = pipe;
2022
2023         /*
2024          * A pipe without a PLL won't actually be able to drive bits from
2025          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2026          * need the check.
2027          */
2028         if (!HAS_PCH_SPLIT(dev_priv->dev))
2029                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2030                         assert_dsi_pll_enabled(dev_priv);
2031                 else
2032                         assert_pll_enabled(dev_priv, pipe);
2033         else {
2034                 if (crtc->config.has_pch_encoder) {
2035                         /* if driving the PCH, we need FDI enabled */
2036                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2037                         assert_fdi_tx_pll_enabled(dev_priv,
2038                                                   (enum pipe) cpu_transcoder);
2039                 }
2040                 /* FIXME: assert CPU port conditions for SNB+ */
2041         }
2042
2043         reg = PIPECONF(cpu_transcoder);
2044         val = I915_READ(reg);
2045         if (val & PIPECONF_ENABLE) {
2046                 WARN_ON(!(pipe == PIPE_A &&
2047                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2048                 return;
2049         }
2050
2051         I915_WRITE(reg, val | PIPECONF_ENABLE);
2052         POSTING_READ(reg);
2053 }
2054
2055 /**
2056  * intel_disable_pipe - disable a pipe, asserting requirements
2057  * @dev_priv: i915 private structure
2058  * @pipe: pipe to disable
2059  *
2060  * Disable @pipe, making sure that various hardware specific requirements
2061  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2062  *
2063  * @pipe should be %PIPE_A or %PIPE_B.
2064  *
2065  * Will wait until the pipe has shut down before returning.
2066  */
2067 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2068                                enum pipe pipe)
2069 {
2070         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2071                                                                       pipe);
2072         int reg;
2073         u32 val;
2074
2075         /*
2076          * Make sure planes won't keep trying to pump pixels to us,
2077          * or we might hang the display.
2078          */
2079         assert_planes_disabled(dev_priv, pipe);
2080         assert_cursor_disabled(dev_priv, pipe);
2081         assert_sprites_disabled(dev_priv, pipe);
2082
2083         /* Don't disable pipe A or pipe A PLLs if needed */
2084         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2085                 return;
2086
2087         reg = PIPECONF(cpu_transcoder);
2088         val = I915_READ(reg);
2089         if ((val & PIPECONF_ENABLE) == 0)
2090                 return;
2091
2092         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2093         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2094 }
2095
2096 /*
2097  * Plane regs are double buffered, going from enabled->disabled needs a
2098  * trigger in order to latch.  The display address reg provides this.
2099  */
2100 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2101                                enum plane plane)
2102 {
2103         struct drm_device *dev = dev_priv->dev;
2104         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2105
2106         I915_WRITE(reg, I915_READ(reg));
2107         POSTING_READ(reg);
2108 }
2109
2110 /**
2111  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2112  * @dev_priv: i915 private structure
2113  * @plane: plane to enable
2114  * @pipe: pipe being fed
2115  *
2116  * Enable @plane on @pipe, making sure that @pipe is running first.
2117  */
2118 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2119                                           enum plane plane, enum pipe pipe)
2120 {
2121         struct drm_device *dev = dev_priv->dev;
2122         struct intel_crtc *intel_crtc =
2123                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2124         int reg;
2125         u32 val;
2126
2127         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2128         assert_pipe_enabled(dev_priv, pipe);
2129
2130         if (intel_crtc->primary_enabled)
2131                 return;
2132
2133         intel_crtc->primary_enabled = true;
2134
2135         reg = DSPCNTR(plane);
2136         val = I915_READ(reg);
2137         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2138
2139         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2140         intel_flush_primary_plane(dev_priv, plane);
2141
2142         /*
2143          * BDW signals flip done immediately if the plane
2144          * is disabled, even if the plane enable is already
2145          * armed to occur at the next vblank :(
2146          */
2147         if (IS_BROADWELL(dev))
2148                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2149 }
2150
2151 /**
2152  * intel_disable_primary_hw_plane - disable the primary hardware plane
2153  * @dev_priv: i915 private structure
2154  * @plane: plane to disable
2155  * @pipe: pipe consuming the data
2156  *
2157  * Disable @plane; should be an independent operation.
2158  */
2159 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2160                                            enum plane plane, enum pipe pipe)
2161 {
2162         struct intel_crtc *intel_crtc =
2163                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2164         int reg;
2165         u32 val;
2166
2167         if (!intel_crtc->primary_enabled)
2168                 return;
2169
2170         intel_crtc->primary_enabled = false;
2171
2172         reg = DSPCNTR(plane);
2173         val = I915_READ(reg);
2174         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2175
2176         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2177         intel_flush_primary_plane(dev_priv, plane);
2178 }
2179
2180 static bool need_vtd_wa(struct drm_device *dev)
2181 {
2182 #ifdef CONFIG_INTEL_IOMMU
2183         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2184                 return true;
2185 #endif
2186         return false;
2187 }
2188
2189 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2190 {
2191         int tile_height;
2192
2193         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2194         return ALIGN(height, tile_height);
2195 }
2196
2197 int
2198 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2199                            struct drm_i915_gem_object *obj,
2200                            struct intel_engine_cs *pipelined)
2201 {
2202         struct drm_i915_private *dev_priv = dev->dev_private;
2203         u32 alignment;
2204         int ret;
2205
2206         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2207
2208         switch (obj->tiling_mode) {
2209         case I915_TILING_NONE:
2210                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2211                         alignment = 128 * 1024;
2212                 else if (INTEL_INFO(dev)->gen >= 4)
2213                         alignment = 4 * 1024;
2214                 else
2215                         alignment = 64 * 1024;
2216                 break;
2217         case I915_TILING_X:
2218                 /* pin() will align the object as required by fence */
2219                 alignment = 0;
2220                 break;
2221         case I915_TILING_Y:
2222                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2223                 return -EINVAL;
2224         default:
2225                 BUG();
2226         }
2227
2228         /* Note that the w/a also requires 64 PTE of padding following the
2229          * bo. We currently fill all unused PTE with the shadow page and so
2230          * we should always have valid PTE following the scanout preventing
2231          * the VT-d warning.
2232          */
2233         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2234                 alignment = 256 * 1024;
2235
2236         dev_priv->mm.interruptible = false;
2237         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2238         if (ret)
2239                 goto err_interruptible;
2240
2241         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2242          * fence, whereas 965+ only requires a fence if using
2243          * framebuffer compression.  For simplicity, we always install
2244          * a fence as the cost is not that onerous.
2245          */
2246         ret = i915_gem_object_get_fence(obj);
2247         if (ret)
2248                 goto err_unpin;
2249
2250         i915_gem_object_pin_fence(obj);
2251
2252         dev_priv->mm.interruptible = true;
2253         return 0;
2254
2255 err_unpin:
2256         i915_gem_object_unpin_from_display_plane(obj);
2257 err_interruptible:
2258         dev_priv->mm.interruptible = true;
2259         return ret;
2260 }
2261
2262 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2263 {
2264         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2265
2266         i915_gem_object_unpin_fence(obj);
2267         i915_gem_object_unpin_from_display_plane(obj);
2268 }
2269
2270 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2271  * is assumed to be a power-of-two. */
2272 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2273                                              unsigned int tiling_mode,
2274                                              unsigned int cpp,
2275                                              unsigned int pitch)
2276 {
2277         if (tiling_mode != I915_TILING_NONE) {
2278                 unsigned int tile_rows, tiles;
2279
2280                 tile_rows = *y / 8;
2281                 *y %= 8;
2282
2283                 tiles = *x / (512/cpp);
2284                 *x %= 512/cpp;
2285
2286                 return tile_rows * pitch * 8 + tiles * 4096;
2287         } else {
2288                 unsigned int offset;
2289
2290                 offset = *y * pitch + *x * cpp;
2291                 *y = 0;
2292                 *x = (offset & 4095) / cpp;
2293                 return offset & -4096;
2294         }
2295 }
2296
2297 int intel_format_to_fourcc(int format)
2298 {
2299         switch (format) {
2300         case DISPPLANE_8BPP:
2301                 return DRM_FORMAT_C8;
2302         case DISPPLANE_BGRX555:
2303                 return DRM_FORMAT_XRGB1555;
2304         case DISPPLANE_BGRX565:
2305                 return DRM_FORMAT_RGB565;
2306         default:
2307         case DISPPLANE_BGRX888:
2308                 return DRM_FORMAT_XRGB8888;
2309         case DISPPLANE_RGBX888:
2310                 return DRM_FORMAT_XBGR8888;
2311         case DISPPLANE_BGRX101010:
2312                 return DRM_FORMAT_XRGB2101010;
2313         case DISPPLANE_RGBX101010:
2314                 return DRM_FORMAT_XBGR2101010;
2315         }
2316 }
2317
2318 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2319                                   struct intel_plane_config *plane_config)
2320 {
2321         struct drm_device *dev = crtc->base.dev;
2322         struct drm_i915_gem_object *obj = NULL;
2323         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2324         u32 base = plane_config->base;
2325
2326         if (plane_config->size == 0)
2327                 return false;
2328
2329         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2330                                                              plane_config->size);
2331         if (!obj)
2332                 return false;
2333
2334         if (plane_config->tiled) {
2335                 obj->tiling_mode = I915_TILING_X;
2336                 obj->stride = crtc->base.primary->fb->pitches[0];
2337         }
2338
2339         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2340         mode_cmd.width = crtc->base.primary->fb->width;
2341         mode_cmd.height = crtc->base.primary->fb->height;
2342         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2343
2344         mutex_lock(&dev->struct_mutex);
2345
2346         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2347                                    &mode_cmd, obj)) {
2348                 DRM_DEBUG_KMS("intel fb init failed\n");
2349                 goto out_unref_obj;
2350         }
2351
2352         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2353         mutex_unlock(&dev->struct_mutex);
2354
2355         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2356         return true;
2357
2358 out_unref_obj:
2359         drm_gem_object_unreference(&obj->base);
2360         mutex_unlock(&dev->struct_mutex);
2361         return false;
2362 }
2363
2364 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2365                                  struct intel_plane_config *plane_config)
2366 {
2367         struct drm_device *dev = intel_crtc->base.dev;
2368         struct drm_crtc *c;
2369         struct intel_crtc *i;
2370         struct drm_i915_gem_object *obj;
2371
2372         if (!intel_crtc->base.primary->fb)
2373                 return;
2374
2375         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2376                 return;
2377
2378         kfree(intel_crtc->base.primary->fb);
2379         intel_crtc->base.primary->fb = NULL;
2380
2381         /*
2382          * Failed to alloc the obj, check to see if we should share
2383          * an fb with another CRTC instead
2384          */
2385         for_each_crtc(dev, c) {
2386                 i = to_intel_crtc(c);
2387
2388                 if (c == &intel_crtc->base)
2389                         continue;
2390
2391                 if (!i->active)
2392                         continue;
2393
2394                 obj = intel_fb_obj(c->primary->fb);
2395                 if (obj == NULL)
2396                         continue;
2397
2398                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2399                         drm_framebuffer_reference(c->primary->fb);
2400                         intel_crtc->base.primary->fb = c->primary->fb;
2401                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2402                         break;
2403                 }
2404         }
2405 }
2406
2407 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2408                                       struct drm_framebuffer *fb,
2409                                       int x, int y)
2410 {
2411         struct drm_device *dev = crtc->dev;
2412         struct drm_i915_private *dev_priv = dev->dev_private;
2413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2415         int plane = intel_crtc->plane;
2416         unsigned long linear_offset;
2417         u32 dspcntr;
2418         u32 reg;
2419
2420         reg = DSPCNTR(plane);
2421         dspcntr = I915_READ(reg);
2422         /* Mask out pixel format bits in case we change it */
2423         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2424         switch (fb->pixel_format) {
2425         case DRM_FORMAT_C8:
2426                 dspcntr |= DISPPLANE_8BPP;
2427                 break;
2428         case DRM_FORMAT_XRGB1555:
2429         case DRM_FORMAT_ARGB1555:
2430                 dspcntr |= DISPPLANE_BGRX555;
2431                 break;
2432         case DRM_FORMAT_RGB565:
2433                 dspcntr |= DISPPLANE_BGRX565;
2434                 break;
2435         case DRM_FORMAT_XRGB8888:
2436         case DRM_FORMAT_ARGB8888:
2437                 dspcntr |= DISPPLANE_BGRX888;
2438                 break;
2439         case DRM_FORMAT_XBGR8888:
2440         case DRM_FORMAT_ABGR8888:
2441                 dspcntr |= DISPPLANE_RGBX888;
2442                 break;
2443         case DRM_FORMAT_XRGB2101010:
2444         case DRM_FORMAT_ARGB2101010:
2445                 dspcntr |= DISPPLANE_BGRX101010;
2446                 break;
2447         case DRM_FORMAT_XBGR2101010:
2448         case DRM_FORMAT_ABGR2101010:
2449                 dspcntr |= DISPPLANE_RGBX101010;
2450                 break;
2451         default:
2452                 BUG();
2453         }
2454
2455         if (INTEL_INFO(dev)->gen >= 4) {
2456                 if (obj->tiling_mode != I915_TILING_NONE)
2457                         dspcntr |= DISPPLANE_TILED;
2458                 else
2459                         dspcntr &= ~DISPPLANE_TILED;
2460         }
2461
2462         if (IS_G4X(dev))
2463                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2464
2465         I915_WRITE(reg, dspcntr);
2466
2467         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2468
2469         if (INTEL_INFO(dev)->gen >= 4) {
2470                 intel_crtc->dspaddr_offset =
2471                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2472                                                        fb->bits_per_pixel / 8,
2473                                                        fb->pitches[0]);
2474                 linear_offset -= intel_crtc->dspaddr_offset;
2475         } else {
2476                 intel_crtc->dspaddr_offset = linear_offset;
2477         }
2478
2479         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2480                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2481                       fb->pitches[0]);
2482         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2483         if (INTEL_INFO(dev)->gen >= 4) {
2484                 I915_WRITE(DSPSURF(plane),
2485                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2486                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2487                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2488         } else
2489                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2490         POSTING_READ(reg);
2491 }
2492
2493 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2494                                           struct drm_framebuffer *fb,
2495                                           int x, int y)
2496 {
2497         struct drm_device *dev = crtc->dev;
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2500         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2501         int plane = intel_crtc->plane;
2502         unsigned long linear_offset;
2503         u32 dspcntr;
2504         u32 reg;
2505
2506         reg = DSPCNTR(plane);
2507         dspcntr = I915_READ(reg);
2508         /* Mask out pixel format bits in case we change it */
2509         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2510         switch (fb->pixel_format) {
2511         case DRM_FORMAT_C8:
2512                 dspcntr |= DISPPLANE_8BPP;
2513                 break;
2514         case DRM_FORMAT_RGB565:
2515                 dspcntr |= DISPPLANE_BGRX565;
2516                 break;
2517         case DRM_FORMAT_XRGB8888:
2518         case DRM_FORMAT_ARGB8888:
2519                 dspcntr |= DISPPLANE_BGRX888;
2520                 break;
2521         case DRM_FORMAT_XBGR8888:
2522         case DRM_FORMAT_ABGR8888:
2523                 dspcntr |= DISPPLANE_RGBX888;
2524                 break;
2525         case DRM_FORMAT_XRGB2101010:
2526         case DRM_FORMAT_ARGB2101010:
2527                 dspcntr |= DISPPLANE_BGRX101010;
2528                 break;
2529         case DRM_FORMAT_XBGR2101010:
2530         case DRM_FORMAT_ABGR2101010:
2531                 dspcntr |= DISPPLANE_RGBX101010;
2532                 break;
2533         default:
2534                 BUG();
2535         }
2536
2537         if (obj->tiling_mode != I915_TILING_NONE)
2538                 dspcntr |= DISPPLANE_TILED;
2539         else
2540                 dspcntr &= ~DISPPLANE_TILED;
2541
2542         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2543                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2544         else
2545                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2546
2547         I915_WRITE(reg, dspcntr);
2548
2549         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2550         intel_crtc->dspaddr_offset =
2551                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2552                                                fb->bits_per_pixel / 8,
2553                                                fb->pitches[0]);
2554         linear_offset -= intel_crtc->dspaddr_offset;
2555
2556         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2557                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2558                       fb->pitches[0]);
2559         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2560         I915_WRITE(DSPSURF(plane),
2561                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2562         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2563                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2564         } else {
2565                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2566                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2567         }
2568         POSTING_READ(reg);
2569 }
2570
2571 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2572 static int
2573 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2574                            int x, int y, enum mode_set_atomic state)
2575 {
2576         struct drm_device *dev = crtc->dev;
2577         struct drm_i915_private *dev_priv = dev->dev_private;
2578
2579         if (dev_priv->display.disable_fbc)
2580                 dev_priv->display.disable_fbc(dev);
2581         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2582
2583         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2584
2585         return 0;
2586 }
2587
2588 void intel_display_handle_reset(struct drm_device *dev)
2589 {
2590         struct drm_i915_private *dev_priv = dev->dev_private;
2591         struct drm_crtc *crtc;
2592
2593         /*
2594          * Flips in the rings have been nuked by the reset,
2595          * so complete all pending flips so that user space
2596          * will get its events and not get stuck.
2597          *
2598          * Also update the base address of all primary
2599          * planes to the the last fb to make sure we're
2600          * showing the correct fb after a reset.
2601          *
2602          * Need to make two loops over the crtcs so that we
2603          * don't try to grab a crtc mutex before the
2604          * pending_flip_queue really got woken up.
2605          */
2606
2607         for_each_crtc(dev, crtc) {
2608                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609                 enum plane plane = intel_crtc->plane;
2610
2611                 intel_prepare_page_flip(dev, plane);
2612                 intel_finish_page_flip_plane(dev, plane);
2613         }
2614
2615         for_each_crtc(dev, crtc) {
2616                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2617
2618                 drm_modeset_lock(&crtc->mutex, NULL);
2619                 /*
2620                  * FIXME: Once we have proper support for primary planes (and
2621                  * disabling them without disabling the entire crtc) allow again
2622                  * a NULL crtc->primary->fb.
2623                  */
2624                 if (intel_crtc->active && crtc->primary->fb)
2625                         dev_priv->display.update_primary_plane(crtc,
2626                                                                crtc->primary->fb,
2627                                                                crtc->x,
2628                                                                crtc->y);
2629                 drm_modeset_unlock(&crtc->mutex);
2630         }
2631 }
2632
2633 static int
2634 intel_finish_fb(struct drm_framebuffer *old_fb)
2635 {
2636         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2637         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2638         bool was_interruptible = dev_priv->mm.interruptible;
2639         int ret;
2640
2641         /* Big Hammer, we also need to ensure that any pending
2642          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2643          * current scanout is retired before unpinning the old
2644          * framebuffer.
2645          *
2646          * This should only fail upon a hung GPU, in which case we
2647          * can safely continue.
2648          */
2649         dev_priv->mm.interruptible = false;
2650         ret = i915_gem_object_finish_gpu(obj);
2651         dev_priv->mm.interruptible = was_interruptible;
2652
2653         return ret;
2654 }
2655
2656 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2657 {
2658         struct drm_device *dev = crtc->dev;
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2661         unsigned long flags;
2662         bool pending;
2663
2664         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2665             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2666                 return false;
2667
2668         spin_lock_irqsave(&dev->event_lock, flags);
2669         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2670         spin_unlock_irqrestore(&dev->event_lock, flags);
2671
2672         return pending;
2673 }
2674
2675 static int
2676 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2677                     struct drm_framebuffer *fb)
2678 {
2679         struct drm_device *dev = crtc->dev;
2680         struct drm_i915_private *dev_priv = dev->dev_private;
2681         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682         enum pipe pipe = intel_crtc->pipe;
2683         struct drm_framebuffer *old_fb = crtc->primary->fb;
2684         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2685         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2686         int ret;
2687
2688         if (intel_crtc_has_pending_flip(crtc)) {
2689                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2690                 return -EBUSY;
2691         }
2692
2693         /* no fb bound */
2694         if (!fb) {
2695                 DRM_ERROR("No FB bound\n");
2696                 return 0;
2697         }
2698
2699         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2700                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2701                           plane_name(intel_crtc->plane),
2702                           INTEL_INFO(dev)->num_pipes);
2703                 return -EINVAL;
2704         }
2705
2706         mutex_lock(&dev->struct_mutex);
2707         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2708         if (ret == 0)
2709                 i915_gem_track_fb(old_obj, obj,
2710                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2711         mutex_unlock(&dev->struct_mutex);
2712         if (ret != 0) {
2713                 DRM_ERROR("pin & fence failed\n");
2714                 return ret;
2715         }
2716
2717         /*
2718          * Update pipe size and adjust fitter if needed: the reason for this is
2719          * that in compute_mode_changes we check the native mode (not the pfit
2720          * mode) to see if we can flip rather than do a full mode set. In the
2721          * fastboot case, we'll flip, but if we don't update the pipesrc and
2722          * pfit state, we'll end up with a big fb scanned out into the wrong
2723          * sized surface.
2724          *
2725          * To fix this properly, we need to hoist the checks up into
2726          * compute_mode_changes (or above), check the actual pfit state and
2727          * whether the platform allows pfit disable with pipe active, and only
2728          * then update the pipesrc and pfit state, even on the flip path.
2729          */
2730         if (i915.fastboot) {
2731                 const struct drm_display_mode *adjusted_mode =
2732                         &intel_crtc->config.adjusted_mode;
2733
2734                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2735                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2736                            (adjusted_mode->crtc_vdisplay - 1));
2737                 if (!intel_crtc->config.pch_pfit.enabled &&
2738                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2739                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2740                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2741                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2742                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2743                 }
2744                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2745                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2746         }
2747
2748         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2749
2750         if (intel_crtc->active)
2751                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2752
2753         crtc->primary->fb = fb;
2754         crtc->x = x;
2755         crtc->y = y;
2756
2757         if (old_fb) {
2758                 if (intel_crtc->active && old_fb != fb)
2759                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2760                 mutex_lock(&dev->struct_mutex);
2761                 intel_unpin_fb_obj(old_obj);
2762                 mutex_unlock(&dev->struct_mutex);
2763         }
2764
2765         mutex_lock(&dev->struct_mutex);
2766         intel_update_fbc(dev);
2767         mutex_unlock(&dev->struct_mutex);
2768
2769         return 0;
2770 }
2771
2772 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2773 {
2774         struct drm_device *dev = crtc->dev;
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777         int pipe = intel_crtc->pipe;
2778         u32 reg, temp;
2779
2780         /* enable normal train */
2781         reg = FDI_TX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         if (IS_IVYBRIDGE(dev)) {
2784                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2785                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2786         } else {
2787                 temp &= ~FDI_LINK_TRAIN_NONE;
2788                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2789         }
2790         I915_WRITE(reg, temp);
2791
2792         reg = FDI_RX_CTL(pipe);
2793         temp = I915_READ(reg);
2794         if (HAS_PCH_CPT(dev)) {
2795                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2796                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2797         } else {
2798                 temp &= ~FDI_LINK_TRAIN_NONE;
2799                 temp |= FDI_LINK_TRAIN_NONE;
2800         }
2801         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2802
2803         /* wait one idle pattern time */
2804         POSTING_READ(reg);
2805         udelay(1000);
2806
2807         /* IVB wants error correction enabled */
2808         if (IS_IVYBRIDGE(dev))
2809                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2810                            FDI_FE_ERRC_ENABLE);
2811 }
2812
2813 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2814 {
2815         return crtc->base.enabled && crtc->active &&
2816                 crtc->config.has_pch_encoder;
2817 }
2818
2819 static void ivb_modeset_global_resources(struct drm_device *dev)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         struct intel_crtc *pipe_B_crtc =
2823                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2824         struct intel_crtc *pipe_C_crtc =
2825                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2826         uint32_t temp;
2827
2828         /*
2829          * When everything is off disable fdi C so that we could enable fdi B
2830          * with all lanes. Note that we don't care about enabled pipes without
2831          * an enabled pch encoder.
2832          */
2833         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2834             !pipe_has_enabled_pch(pipe_C_crtc)) {
2835                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2836                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2837
2838                 temp = I915_READ(SOUTH_CHICKEN1);
2839                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2840                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2841                 I915_WRITE(SOUTH_CHICKEN1, temp);
2842         }
2843 }
2844
2845 /* The FDI link training functions for ILK/Ibexpeak. */
2846 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2847 {
2848         struct drm_device *dev = crtc->dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp, tries;
2853
2854         /* FDI needs bits from pipe first */
2855         assert_pipe_enabled(dev_priv, pipe);
2856
2857         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2858            for train result */
2859         reg = FDI_RX_IMR(pipe);
2860         temp = I915_READ(reg);
2861         temp &= ~FDI_RX_SYMBOL_LOCK;
2862         temp &= ~FDI_RX_BIT_LOCK;
2863         I915_WRITE(reg, temp);
2864         I915_READ(reg);
2865         udelay(150);
2866
2867         /* enable CPU FDI TX and PCH FDI RX */
2868         reg = FDI_TX_CTL(pipe);
2869         temp = I915_READ(reg);
2870         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2871         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2872         temp &= ~FDI_LINK_TRAIN_NONE;
2873         temp |= FDI_LINK_TRAIN_PATTERN_1;
2874         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2875
2876         reg = FDI_RX_CTL(pipe);
2877         temp = I915_READ(reg);
2878         temp &= ~FDI_LINK_TRAIN_NONE;
2879         temp |= FDI_LINK_TRAIN_PATTERN_1;
2880         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2881
2882         POSTING_READ(reg);
2883         udelay(150);
2884
2885         /* Ironlake workaround, enable clock pointer after FDI enable*/
2886         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2887         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2888                    FDI_RX_PHASE_SYNC_POINTER_EN);
2889
2890         reg = FDI_RX_IIR(pipe);
2891         for (tries = 0; tries < 5; tries++) {
2892                 temp = I915_READ(reg);
2893                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2894
2895                 if ((temp & FDI_RX_BIT_LOCK)) {
2896                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2897                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2898                         break;
2899                 }
2900         }
2901         if (tries == 5)
2902                 DRM_ERROR("FDI train 1 fail!\n");
2903
2904         /* Train 2 */
2905         reg = FDI_TX_CTL(pipe);
2906         temp = I915_READ(reg);
2907         temp &= ~FDI_LINK_TRAIN_NONE;
2908         temp |= FDI_LINK_TRAIN_PATTERN_2;
2909         I915_WRITE(reg, temp);
2910
2911         reg = FDI_RX_CTL(pipe);
2912         temp = I915_READ(reg);
2913         temp &= ~FDI_LINK_TRAIN_NONE;
2914         temp |= FDI_LINK_TRAIN_PATTERN_2;
2915         I915_WRITE(reg, temp);
2916
2917         POSTING_READ(reg);
2918         udelay(150);
2919
2920         reg = FDI_RX_IIR(pipe);
2921         for (tries = 0; tries < 5; tries++) {
2922                 temp = I915_READ(reg);
2923                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2924
2925                 if (temp & FDI_RX_SYMBOL_LOCK) {
2926                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2927                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2928                         break;
2929                 }
2930         }
2931         if (tries == 5)
2932                 DRM_ERROR("FDI train 2 fail!\n");
2933
2934         DRM_DEBUG_KMS("FDI train done\n");
2935
2936 }
2937
2938 static const int snb_b_fdi_train_param[] = {
2939         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2940         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2941         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2942         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2943 };
2944
2945 /* The FDI link training functions for SNB/Cougarpoint. */
2946 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2947 {
2948         struct drm_device *dev = crtc->dev;
2949         struct drm_i915_private *dev_priv = dev->dev_private;
2950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2951         int pipe = intel_crtc->pipe;
2952         u32 reg, temp, i, retry;
2953
2954         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2955            for train result */
2956         reg = FDI_RX_IMR(pipe);
2957         temp = I915_READ(reg);
2958         temp &= ~FDI_RX_SYMBOL_LOCK;
2959         temp &= ~FDI_RX_BIT_LOCK;
2960         I915_WRITE(reg, temp);
2961
2962         POSTING_READ(reg);
2963         udelay(150);
2964
2965         /* enable CPU FDI TX and PCH FDI RX */
2966         reg = FDI_TX_CTL(pipe);
2967         temp = I915_READ(reg);
2968         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2969         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2970         temp &= ~FDI_LINK_TRAIN_NONE;
2971         temp |= FDI_LINK_TRAIN_PATTERN_1;
2972         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2973         /* SNB-B */
2974         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2975         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2976
2977         I915_WRITE(FDI_RX_MISC(pipe),
2978                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2979
2980         reg = FDI_RX_CTL(pipe);
2981         temp = I915_READ(reg);
2982         if (HAS_PCH_CPT(dev)) {
2983                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2985         } else {
2986                 temp &= ~FDI_LINK_TRAIN_NONE;
2987                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2988         }
2989         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2990
2991         POSTING_READ(reg);
2992         udelay(150);
2993
2994         for (i = 0; i < 4; i++) {
2995                 reg = FDI_TX_CTL(pipe);
2996                 temp = I915_READ(reg);
2997                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2998                 temp |= snb_b_fdi_train_param[i];
2999                 I915_WRITE(reg, temp);
3000
3001                 POSTING_READ(reg);
3002                 udelay(500);
3003
3004                 for (retry = 0; retry < 5; retry++) {
3005                         reg = FDI_RX_IIR(pipe);
3006                         temp = I915_READ(reg);
3007                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3008                         if (temp & FDI_RX_BIT_LOCK) {
3009                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3010                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3011                                 break;
3012                         }
3013                         udelay(50);
3014                 }
3015                 if (retry < 5)
3016                         break;
3017         }
3018         if (i == 4)
3019                 DRM_ERROR("FDI train 1 fail!\n");
3020
3021         /* Train 2 */
3022         reg = FDI_TX_CTL(pipe);
3023         temp = I915_READ(reg);
3024         temp &= ~FDI_LINK_TRAIN_NONE;
3025         temp |= FDI_LINK_TRAIN_PATTERN_2;
3026         if (IS_GEN6(dev)) {
3027                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3028                 /* SNB-B */
3029                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3030         }
3031         I915_WRITE(reg, temp);
3032
3033         reg = FDI_RX_CTL(pipe);
3034         temp = I915_READ(reg);
3035         if (HAS_PCH_CPT(dev)) {
3036                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3037                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3038         } else {
3039                 temp &= ~FDI_LINK_TRAIN_NONE;
3040                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3041         }
3042         I915_WRITE(reg, temp);
3043
3044         POSTING_READ(reg);
3045         udelay(150);
3046
3047         for (i = 0; i < 4; i++) {
3048                 reg = FDI_TX_CTL(pipe);
3049                 temp = I915_READ(reg);
3050                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3051                 temp |= snb_b_fdi_train_param[i];
3052                 I915_WRITE(reg, temp);
3053
3054                 POSTING_READ(reg);
3055                 udelay(500);
3056
3057                 for (retry = 0; retry < 5; retry++) {
3058                         reg = FDI_RX_IIR(pipe);
3059                         temp = I915_READ(reg);
3060                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3061                         if (temp & FDI_RX_SYMBOL_LOCK) {
3062                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3063                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3064                                 break;
3065                         }
3066                         udelay(50);
3067                 }
3068                 if (retry < 5)
3069                         break;
3070         }
3071         if (i == 4)
3072                 DRM_ERROR("FDI train 2 fail!\n");
3073
3074         DRM_DEBUG_KMS("FDI train done.\n");
3075 }
3076
3077 /* Manual link training for Ivy Bridge A0 parts */
3078 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3079 {
3080         struct drm_device *dev = crtc->dev;
3081         struct drm_i915_private *dev_priv = dev->dev_private;
3082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3083         int pipe = intel_crtc->pipe;
3084         u32 reg, temp, i, j;
3085
3086         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3087            for train result */
3088         reg = FDI_RX_IMR(pipe);
3089         temp = I915_READ(reg);
3090         temp &= ~FDI_RX_SYMBOL_LOCK;
3091         temp &= ~FDI_RX_BIT_LOCK;
3092         I915_WRITE(reg, temp);
3093
3094         POSTING_READ(reg);
3095         udelay(150);
3096
3097         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3098                       I915_READ(FDI_RX_IIR(pipe)));
3099
3100         /* Try each vswing and preemphasis setting twice before moving on */
3101         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3102                 /* disable first in case we need to retry */
3103                 reg = FDI_TX_CTL(pipe);
3104                 temp = I915_READ(reg);
3105                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3106                 temp &= ~FDI_TX_ENABLE;
3107                 I915_WRITE(reg, temp);
3108
3109                 reg = FDI_RX_CTL(pipe);
3110                 temp = I915_READ(reg);
3111                 temp &= ~FDI_LINK_TRAIN_AUTO;
3112                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3113                 temp &= ~FDI_RX_ENABLE;
3114                 I915_WRITE(reg, temp);
3115
3116                 /* enable CPU FDI TX and PCH FDI RX */
3117                 reg = FDI_TX_CTL(pipe);
3118                 temp = I915_READ(reg);
3119                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3120                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3121                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3122                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3123                 temp |= snb_b_fdi_train_param[j/2];
3124                 temp |= FDI_COMPOSITE_SYNC;
3125                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3126
3127                 I915_WRITE(FDI_RX_MISC(pipe),
3128                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3129
3130                 reg = FDI_RX_CTL(pipe);
3131                 temp = I915_READ(reg);
3132                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3133                 temp |= FDI_COMPOSITE_SYNC;
3134                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3135
3136                 POSTING_READ(reg);
3137                 udelay(1); /* should be 0.5us */
3138
3139                 for (i = 0; i < 4; i++) {
3140                         reg = FDI_RX_IIR(pipe);
3141                         temp = I915_READ(reg);
3142                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3143
3144                         if (temp & FDI_RX_BIT_LOCK ||
3145                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3146                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3147                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3148                                               i);
3149                                 break;
3150                         }
3151                         udelay(1); /* should be 0.5us */
3152                 }
3153                 if (i == 4) {
3154                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3155                         continue;
3156                 }
3157
3158                 /* Train 2 */
3159                 reg = FDI_TX_CTL(pipe);
3160                 temp = I915_READ(reg);
3161                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3162                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3163                 I915_WRITE(reg, temp);
3164
3165                 reg = FDI_RX_CTL(pipe);
3166                 temp = I915_READ(reg);
3167                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3168                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3169                 I915_WRITE(reg, temp);
3170
3171                 POSTING_READ(reg);
3172                 udelay(2); /* should be 1.5us */
3173
3174                 for (i = 0; i < 4; i++) {
3175                         reg = FDI_RX_IIR(pipe);
3176                         temp = I915_READ(reg);
3177                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178
3179                         if (temp & FDI_RX_SYMBOL_LOCK ||
3180                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3181                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3182                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3183                                               i);
3184                                 goto train_done;
3185                         }
3186                         udelay(2); /* should be 1.5us */
3187                 }
3188                 if (i == 4)
3189                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3190         }
3191
3192 train_done:
3193         DRM_DEBUG_KMS("FDI train done.\n");
3194 }
3195
3196 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3197 {
3198         struct drm_device *dev = intel_crtc->base.dev;
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         int pipe = intel_crtc->pipe;
3201         u32 reg, temp;
3202
3203
3204         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3205         reg = FDI_RX_CTL(pipe);
3206         temp = I915_READ(reg);
3207         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3208         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3209         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3210         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3211
3212         POSTING_READ(reg);
3213         udelay(200);
3214
3215         /* Switch from Rawclk to PCDclk */
3216         temp = I915_READ(reg);
3217         I915_WRITE(reg, temp | FDI_PCDCLK);
3218
3219         POSTING_READ(reg);
3220         udelay(200);
3221
3222         /* Enable CPU FDI TX PLL, always on for Ironlake */
3223         reg = FDI_TX_CTL(pipe);
3224         temp = I915_READ(reg);
3225         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3226                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3227
3228                 POSTING_READ(reg);
3229                 udelay(100);
3230         }
3231 }
3232
3233 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3234 {
3235         struct drm_device *dev = intel_crtc->base.dev;
3236         struct drm_i915_private *dev_priv = dev->dev_private;
3237         int pipe = intel_crtc->pipe;
3238         u32 reg, temp;
3239
3240         /* Switch from PCDclk to Rawclk */
3241         reg = FDI_RX_CTL(pipe);
3242         temp = I915_READ(reg);
3243         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3244
3245         /* Disable CPU FDI TX PLL */
3246         reg = FDI_TX_CTL(pipe);
3247         temp = I915_READ(reg);
3248         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3249
3250         POSTING_READ(reg);
3251         udelay(100);
3252
3253         reg = FDI_RX_CTL(pipe);
3254         temp = I915_READ(reg);
3255         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3256
3257         /* Wait for the clocks to turn off. */
3258         POSTING_READ(reg);
3259         udelay(100);
3260 }
3261
3262 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3263 {
3264         struct drm_device *dev = crtc->dev;
3265         struct drm_i915_private *dev_priv = dev->dev_private;
3266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3267         int pipe = intel_crtc->pipe;
3268         u32 reg, temp;
3269
3270         /* disable CPU FDI tx and PCH FDI rx */
3271         reg = FDI_TX_CTL(pipe);
3272         temp = I915_READ(reg);
3273         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3274         POSTING_READ(reg);
3275
3276         reg = FDI_RX_CTL(pipe);
3277         temp = I915_READ(reg);
3278         temp &= ~(0x7 << 16);
3279         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3280         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3281
3282         POSTING_READ(reg);
3283         udelay(100);
3284
3285         /* Ironlake workaround, disable clock pointer after downing FDI */
3286         if (HAS_PCH_IBX(dev))
3287                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3288
3289         /* still set train pattern 1 */
3290         reg = FDI_TX_CTL(pipe);
3291         temp = I915_READ(reg);
3292         temp &= ~FDI_LINK_TRAIN_NONE;
3293         temp |= FDI_LINK_TRAIN_PATTERN_1;
3294         I915_WRITE(reg, temp);
3295
3296         reg = FDI_RX_CTL(pipe);
3297         temp = I915_READ(reg);
3298         if (HAS_PCH_CPT(dev)) {
3299                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3301         } else {
3302                 temp &= ~FDI_LINK_TRAIN_NONE;
3303                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3304         }
3305         /* BPC in FDI rx is consistent with that in PIPECONF */
3306         temp &= ~(0x07 << 16);
3307         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3308         I915_WRITE(reg, temp);
3309
3310         POSTING_READ(reg);
3311         udelay(100);
3312 }
3313
3314 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3315 {
3316         struct intel_crtc *crtc;
3317
3318         /* Note that we don't need to be called with mode_config.lock here
3319          * as our list of CRTC objects is static for the lifetime of the
3320          * device and so cannot disappear as we iterate. Similarly, we can
3321          * happily treat the predicates as racy, atomic checks as userspace
3322          * cannot claim and pin a new fb without at least acquring the
3323          * struct_mutex and so serialising with us.
3324          */
3325         for_each_intel_crtc(dev, crtc) {
3326                 if (atomic_read(&crtc->unpin_work_count) == 0)
3327                         continue;
3328
3329                 if (crtc->unpin_work)
3330                         intel_wait_for_vblank(dev, crtc->pipe);
3331
3332                 return true;
3333         }
3334
3335         return false;
3336 }
3337
3338 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3339 {
3340         struct drm_device *dev = crtc->dev;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342
3343         if (crtc->primary->fb == NULL)
3344                 return;
3345
3346         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3347
3348         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3349                                    !intel_crtc_has_pending_flip(crtc),
3350                                    60*HZ) == 0);
3351
3352         mutex_lock(&dev->struct_mutex);
3353         intel_finish_fb(crtc->primary->fb);
3354         mutex_unlock(&dev->struct_mutex);
3355 }
3356
3357 /* Program iCLKIP clock to the desired frequency */
3358 static void lpt_program_iclkip(struct drm_crtc *crtc)
3359 {
3360         struct drm_device *dev = crtc->dev;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3363         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3364         u32 temp;
3365
3366         mutex_lock(&dev_priv->dpio_lock);
3367
3368         /* It is necessary to ungate the pixclk gate prior to programming
3369          * the divisors, and gate it back when it is done.
3370          */
3371         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3372
3373         /* Disable SSCCTL */
3374         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3375                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3376                                 SBI_SSCCTL_DISABLE,
3377                         SBI_ICLK);
3378
3379         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3380         if (clock == 20000) {
3381                 auxdiv = 1;
3382                 divsel = 0x41;
3383                 phaseinc = 0x20;
3384         } else {
3385                 /* The iCLK virtual clock root frequency is in MHz,
3386                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3387                  * divisors, it is necessary to divide one by another, so we
3388                  * convert the virtual clock precision to KHz here for higher
3389                  * precision.
3390                  */
3391                 u32 iclk_virtual_root_freq = 172800 * 1000;
3392                 u32 iclk_pi_range = 64;
3393                 u32 desired_divisor, msb_divisor_value, pi_value;
3394
3395                 desired_divisor = (iclk_virtual_root_freq / clock);
3396                 msb_divisor_value = desired_divisor / iclk_pi_range;
3397                 pi_value = desired_divisor % iclk_pi_range;
3398
3399                 auxdiv = 0;
3400                 divsel = msb_divisor_value - 2;
3401                 phaseinc = pi_value;
3402         }
3403
3404         /* This should not happen with any sane values */
3405         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3406                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3407         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3408                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3409
3410         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3411                         clock,
3412                         auxdiv,
3413                         divsel,
3414                         phasedir,
3415                         phaseinc);
3416
3417         /* Program SSCDIVINTPHASE6 */
3418         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3419         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3420         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3421         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3422         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3423         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3424         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3425         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3426
3427         /* Program SSCAUXDIV */
3428         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3429         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3430         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3431         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3432
3433         /* Enable modulator and associated divider */
3434         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3435         temp &= ~SBI_SSCCTL_DISABLE;
3436         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3437
3438         /* Wait for initialization time */
3439         udelay(24);
3440
3441         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3442
3443         mutex_unlock(&dev_priv->dpio_lock);
3444 }
3445
3446 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3447                                                 enum pipe pch_transcoder)
3448 {
3449         struct drm_device *dev = crtc->base.dev;
3450         struct drm_i915_private *dev_priv = dev->dev_private;
3451         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3452
3453         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3454                    I915_READ(HTOTAL(cpu_transcoder)));
3455         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3456                    I915_READ(HBLANK(cpu_transcoder)));
3457         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3458                    I915_READ(HSYNC(cpu_transcoder)));
3459
3460         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3461                    I915_READ(VTOTAL(cpu_transcoder)));
3462         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3463                    I915_READ(VBLANK(cpu_transcoder)));
3464         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3465                    I915_READ(VSYNC(cpu_transcoder)));
3466         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3467                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3468 }
3469
3470 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3471 {
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473         uint32_t temp;
3474
3475         temp = I915_READ(SOUTH_CHICKEN1);
3476         if (temp & FDI_BC_BIFURCATION_SELECT)
3477                 return;
3478
3479         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3480         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3481
3482         temp |= FDI_BC_BIFURCATION_SELECT;
3483         DRM_DEBUG_KMS("enabling fdi C rx\n");
3484         I915_WRITE(SOUTH_CHICKEN1, temp);
3485         POSTING_READ(SOUTH_CHICKEN1);
3486 }
3487
3488 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3489 {
3490         struct drm_device *dev = intel_crtc->base.dev;
3491         struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493         switch (intel_crtc->pipe) {
3494         case PIPE_A:
3495                 break;
3496         case PIPE_B:
3497                 if (intel_crtc->config.fdi_lanes > 2)
3498                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3499                 else
3500                         cpt_enable_fdi_bc_bifurcation(dev);
3501
3502                 break;
3503         case PIPE_C:
3504                 cpt_enable_fdi_bc_bifurcation(dev);
3505
3506                 break;
3507         default:
3508                 BUG();
3509         }
3510 }
3511
3512 /*
3513  * Enable PCH resources required for PCH ports:
3514  *   - PCH PLLs
3515  *   - FDI training & RX/TX
3516  *   - update transcoder timings
3517  *   - DP transcoding bits
3518  *   - transcoder
3519  */
3520 static void ironlake_pch_enable(struct drm_crtc *crtc)
3521 {
3522         struct drm_device *dev = crtc->dev;
3523         struct drm_i915_private *dev_priv = dev->dev_private;
3524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3525         int pipe = intel_crtc->pipe;
3526         u32 reg, temp;
3527
3528         assert_pch_transcoder_disabled(dev_priv, pipe);
3529
3530         if (IS_IVYBRIDGE(dev))
3531                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3532
3533         /* Write the TU size bits before fdi link training, so that error
3534          * detection works. */
3535         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3536                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3537
3538         /* For PCH output, training FDI link */
3539         dev_priv->display.fdi_link_train(crtc);
3540
3541         /* We need to program the right clock selection before writing the pixel
3542          * mutliplier into the DPLL. */
3543         if (HAS_PCH_CPT(dev)) {
3544                 u32 sel;
3545
3546                 temp = I915_READ(PCH_DPLL_SEL);
3547                 temp |= TRANS_DPLL_ENABLE(pipe);
3548                 sel = TRANS_DPLLB_SEL(pipe);
3549                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3550                         temp |= sel;
3551                 else
3552                         temp &= ~sel;
3553                 I915_WRITE(PCH_DPLL_SEL, temp);
3554         }
3555
3556         /* XXX: pch pll's can be enabled any time before we enable the PCH
3557          * transcoder, and we actually should do this to not upset any PCH
3558          * transcoder that already use the clock when we share it.
3559          *
3560          * Note that enable_shared_dpll tries to do the right thing, but
3561          * get_shared_dpll unconditionally resets the pll - we need that to have
3562          * the right LVDS enable sequence. */
3563         intel_enable_shared_dpll(intel_crtc);
3564
3565         /* set transcoder timing, panel must allow it */
3566         assert_panel_unlocked(dev_priv, pipe);
3567         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3568
3569         intel_fdi_normal_train(crtc);
3570
3571         /* For PCH DP, enable TRANS_DP_CTL */
3572         if (HAS_PCH_CPT(dev) &&
3573             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3574              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3575                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3576                 reg = TRANS_DP_CTL(pipe);
3577                 temp = I915_READ(reg);
3578                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3579                           TRANS_DP_SYNC_MASK |
3580                           TRANS_DP_BPC_MASK);
3581                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3582                          TRANS_DP_ENH_FRAMING);
3583                 temp |= bpc << 9; /* same format but at 11:9 */
3584
3585                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3586                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3587                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3588                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3589
3590                 switch (intel_trans_dp_port_sel(crtc)) {
3591                 case PCH_DP_B:
3592                         temp |= TRANS_DP_PORT_SEL_B;
3593                         break;
3594                 case PCH_DP_C:
3595                         temp |= TRANS_DP_PORT_SEL_C;
3596                         break;
3597                 case PCH_DP_D:
3598                         temp |= TRANS_DP_PORT_SEL_D;
3599                         break;
3600                 default:
3601                         BUG();
3602                 }
3603
3604                 I915_WRITE(reg, temp);
3605         }
3606
3607         ironlake_enable_pch_transcoder(dev_priv, pipe);
3608 }
3609
3610 static void lpt_pch_enable(struct drm_crtc *crtc)
3611 {
3612         struct drm_device *dev = crtc->dev;
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3616
3617         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3618
3619         lpt_program_iclkip(crtc);
3620
3621         /* Set transcoder timing. */
3622         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3623
3624         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3625 }
3626
3627 void intel_put_shared_dpll(struct intel_crtc *crtc)
3628 {
3629         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3630
3631         if (pll == NULL)
3632                 return;
3633
3634         if (pll->refcount == 0) {
3635                 WARN(1, "bad %s refcount\n", pll->name);
3636                 return;
3637         }
3638
3639         if (--pll->refcount == 0) {
3640                 WARN_ON(pll->on);
3641                 WARN_ON(pll->active);
3642         }
3643
3644         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3645 }
3646
3647 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3648 {
3649         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3650         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3651         enum intel_dpll_id i;
3652
3653         if (pll) {
3654                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3655                               crtc->base.base.id, pll->name);
3656                 intel_put_shared_dpll(crtc);
3657         }
3658
3659         if (HAS_PCH_IBX(dev_priv->dev)) {
3660                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3661                 i = (enum intel_dpll_id) crtc->pipe;
3662                 pll = &dev_priv->shared_dplls[i];
3663
3664                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3665                               crtc->base.base.id, pll->name);
3666
3667                 WARN_ON(pll->refcount);
3668
3669                 goto found;
3670         }
3671
3672         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3673                 pll = &dev_priv->shared_dplls[i];
3674
3675                 /* Only want to check enabled timings first */
3676                 if (pll->refcount == 0)
3677                         continue;
3678
3679                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3680                            sizeof(pll->hw_state)) == 0) {
3681                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3682                                       crtc->base.base.id,
3683                                       pll->name, pll->refcount, pll->active);
3684
3685                         goto found;
3686                 }
3687         }
3688
3689         /* Ok no matching timings, maybe there's a free one? */
3690         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3691                 pll = &dev_priv->shared_dplls[i];
3692                 if (pll->refcount == 0) {
3693                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3694                                       crtc->base.base.id, pll->name);
3695                         goto found;
3696                 }
3697         }
3698
3699         return NULL;
3700
3701 found:
3702         if (pll->refcount == 0)
3703                 pll->hw_state = crtc->config.dpll_hw_state;
3704
3705         crtc->config.shared_dpll = i;
3706         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3707                          pipe_name(crtc->pipe));
3708
3709         pll->refcount++;
3710
3711         return pll;
3712 }
3713
3714 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3715 {
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717         int dslreg = PIPEDSL(pipe);
3718         u32 temp;
3719
3720         temp = I915_READ(dslreg);
3721         udelay(500);
3722         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3723                 if (wait_for(I915_READ(dslreg) != temp, 5))
3724                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3725         }
3726 }
3727
3728 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3729 {
3730         struct drm_device *dev = crtc->base.dev;
3731         struct drm_i915_private *dev_priv = dev->dev_private;
3732         int pipe = crtc->pipe;
3733
3734         if (crtc->config.pch_pfit.enabled) {
3735                 /* Force use of hard-coded filter coefficients
3736                  * as some pre-programmed values are broken,
3737                  * e.g. x201.
3738                  */
3739                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3740                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3741                                                  PF_PIPE_SEL_IVB(pipe));
3742                 else
3743                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3744                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3745                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3746         }
3747 }
3748
3749 static void intel_enable_planes(struct drm_crtc *crtc)
3750 {
3751         struct drm_device *dev = crtc->dev;
3752         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3753         struct drm_plane *plane;
3754         struct intel_plane *intel_plane;
3755
3756         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3757                 intel_plane = to_intel_plane(plane);
3758                 if (intel_plane->pipe == pipe)
3759                         intel_plane_restore(&intel_plane->base);
3760         }
3761 }
3762
3763 static void intel_disable_planes(struct drm_crtc *crtc)
3764 {
3765         struct drm_device *dev = crtc->dev;
3766         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3767         struct drm_plane *plane;
3768         struct intel_plane *intel_plane;
3769
3770         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3771                 intel_plane = to_intel_plane(plane);
3772                 if (intel_plane->pipe == pipe)
3773                         intel_plane_disable(&intel_plane->base);
3774         }
3775 }
3776
3777 void hsw_enable_ips(struct intel_crtc *crtc)
3778 {
3779         struct drm_device *dev = crtc->base.dev;
3780         struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782         if (!crtc->config.ips_enabled)
3783                 return;
3784
3785         /* We can only enable IPS after we enable a plane and wait for a vblank */
3786         intel_wait_for_vblank(dev, crtc->pipe);
3787
3788         assert_plane_enabled(dev_priv, crtc->plane);
3789         if (IS_BROADWELL(dev)) {
3790                 mutex_lock(&dev_priv->rps.hw_lock);
3791                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3792                 mutex_unlock(&dev_priv->rps.hw_lock);
3793                 /* Quoting Art Runyan: "its not safe to expect any particular
3794                  * value in IPS_CTL bit 31 after enabling IPS through the
3795                  * mailbox." Moreover, the mailbox may return a bogus state,
3796                  * so we need to just enable it and continue on.
3797                  */
3798         } else {
3799                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3800                 /* The bit only becomes 1 in the next vblank, so this wait here
3801                  * is essentially intel_wait_for_vblank. If we don't have this
3802                  * and don't wait for vblanks until the end of crtc_enable, then
3803                  * the HW state readout code will complain that the expected
3804                  * IPS_CTL value is not the one we read. */
3805                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3806                         DRM_ERROR("Timed out waiting for IPS enable\n");
3807         }
3808 }
3809
3810 void hsw_disable_ips(struct intel_crtc *crtc)
3811 {
3812         struct drm_device *dev = crtc->base.dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814
3815         if (!crtc->config.ips_enabled)
3816                 return;
3817
3818         assert_plane_enabled(dev_priv, crtc->plane);
3819         if (IS_BROADWELL(dev)) {
3820                 mutex_lock(&dev_priv->rps.hw_lock);
3821                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3822                 mutex_unlock(&dev_priv->rps.hw_lock);
3823                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3824                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3825                         DRM_ERROR("Timed out waiting for IPS disable\n");
3826         } else {
3827                 I915_WRITE(IPS_CTL, 0);
3828                 POSTING_READ(IPS_CTL);
3829         }
3830
3831         /* We need to wait for a vblank before we can disable the plane. */
3832         intel_wait_for_vblank(dev, crtc->pipe);
3833 }
3834
3835 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3836 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3837 {
3838         struct drm_device *dev = crtc->dev;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841         enum pipe pipe = intel_crtc->pipe;
3842         int palreg = PALETTE(pipe);
3843         int i;
3844         bool reenable_ips = false;
3845
3846         /* The clocks have to be on to load the palette. */
3847         if (!crtc->enabled || !intel_crtc->active)
3848                 return;
3849
3850         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3851                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3852                         assert_dsi_pll_enabled(dev_priv);
3853                 else
3854                         assert_pll_enabled(dev_priv, pipe);
3855         }
3856
3857         /* use legacy palette for Ironlake */
3858         if (!HAS_GMCH_DISPLAY(dev))
3859                 palreg = LGC_PALETTE(pipe);
3860
3861         /* Workaround : Do not read or write the pipe palette/gamma data while
3862          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3863          */
3864         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3865             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3866              GAMMA_MODE_MODE_SPLIT)) {
3867                 hsw_disable_ips(intel_crtc);
3868                 reenable_ips = true;
3869         }
3870
3871         for (i = 0; i < 256; i++) {
3872                 I915_WRITE(palreg + 4 * i,
3873                            (intel_crtc->lut_r[i] << 16) |
3874                            (intel_crtc->lut_g[i] << 8) |
3875                            intel_crtc->lut_b[i]);
3876         }
3877
3878         if (reenable_ips)
3879                 hsw_enable_ips(intel_crtc);
3880 }
3881
3882 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3883 {
3884         if (!enable && intel_crtc->overlay) {
3885                 struct drm_device *dev = intel_crtc->base.dev;
3886                 struct drm_i915_private *dev_priv = dev->dev_private;
3887
3888                 mutex_lock(&dev->struct_mutex);
3889                 dev_priv->mm.interruptible = false;
3890                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3891                 dev_priv->mm.interruptible = true;
3892                 mutex_unlock(&dev->struct_mutex);
3893         }
3894
3895         /* Let userspace switch the overlay on again. In most cases userspace
3896          * has to recompute where to put it anyway.
3897          */
3898 }
3899
3900 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3901 {
3902         struct drm_device *dev = crtc->dev;
3903         struct drm_i915_private *dev_priv = dev->dev_private;
3904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3905         int pipe = intel_crtc->pipe;
3906         int plane = intel_crtc->plane;
3907
3908         drm_vblank_on(dev, pipe);
3909
3910         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3911         intel_enable_planes(crtc);
3912         intel_crtc_update_cursor(crtc, true);
3913         intel_crtc_dpms_overlay(intel_crtc, true);
3914
3915         hsw_enable_ips(intel_crtc);
3916
3917         mutex_lock(&dev->struct_mutex);
3918         intel_update_fbc(dev);
3919         mutex_unlock(&dev->struct_mutex);
3920
3921         /*
3922          * FIXME: Once we grow proper nuclear flip support out of this we need
3923          * to compute the mask of flip planes precisely. For the time being
3924          * consider this a flip from a NULL plane.
3925          */
3926         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3927 }
3928
3929 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3930 {
3931         struct drm_device *dev = crtc->dev;
3932         struct drm_i915_private *dev_priv = dev->dev_private;
3933         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3934         int pipe = intel_crtc->pipe;
3935         int plane = intel_crtc->plane;
3936
3937         intel_crtc_wait_for_pending_flips(crtc);
3938
3939         if (dev_priv->fbc.plane == plane)
3940                 intel_disable_fbc(dev);
3941
3942         hsw_disable_ips(intel_crtc);
3943
3944         intel_crtc_dpms_overlay(intel_crtc, false);
3945         intel_crtc_update_cursor(crtc, false);
3946         intel_disable_planes(crtc);
3947         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3948
3949         /*
3950          * FIXME: Once we grow proper nuclear flip support out of this we need
3951          * to compute the mask of flip planes precisely. For the time being
3952          * consider this a flip to a NULL plane.
3953          */
3954         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3955
3956         drm_vblank_off(dev, pipe);
3957 }
3958
3959 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964         struct intel_encoder *encoder;
3965         int pipe = intel_crtc->pipe;
3966         enum plane plane = intel_crtc->plane;
3967
3968         WARN_ON(!crtc->enabled);
3969
3970         if (intel_crtc->active)
3971                 return;
3972
3973         if (intel_crtc->config.has_pch_encoder)
3974                 intel_prepare_shared_dpll(intel_crtc);
3975
3976         if (intel_crtc->config.has_dp_encoder)
3977                 intel_dp_set_m_n(intel_crtc);
3978
3979         intel_set_pipe_timings(intel_crtc);
3980
3981         if (intel_crtc->config.has_pch_encoder) {
3982                 intel_cpu_transcoder_set_m_n(intel_crtc,
3983                                              &intel_crtc->config.fdi_m_n);
3984         }
3985
3986         ironlake_set_pipeconf(crtc);
3987
3988         /* Set up the display plane register */
3989         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3990         POSTING_READ(DSPCNTR(plane));
3991
3992         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3993                                                crtc->x, crtc->y);
3994
3995         intel_crtc->active = true;
3996
3997         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3998         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3999
4000         for_each_encoder_on_crtc(dev, crtc, encoder)
4001                 if (encoder->pre_enable)
4002                         encoder->pre_enable(encoder);
4003
4004         if (intel_crtc->config.has_pch_encoder) {
4005                 /* Note: FDI PLL enabling _must_ be done before we enable the
4006                  * cpu pipes, hence this is separate from all the other fdi/pch
4007                  * enabling. */
4008                 ironlake_fdi_pll_enable(intel_crtc);
4009         } else {
4010                 assert_fdi_tx_disabled(dev_priv, pipe);
4011                 assert_fdi_rx_disabled(dev_priv, pipe);
4012         }
4013
4014         ironlake_pfit_enable(intel_crtc);
4015
4016         /*
4017          * On ILK+ LUT must be loaded before the pipe is running but with
4018          * clocks enabled
4019          */
4020         intel_crtc_load_lut(crtc);
4021
4022         intel_update_watermarks(crtc);
4023         intel_enable_pipe(intel_crtc);
4024
4025         if (intel_crtc->config.has_pch_encoder)
4026                 ironlake_pch_enable(crtc);
4027
4028         for_each_encoder_on_crtc(dev, crtc, encoder)
4029                 encoder->enable(encoder);
4030
4031         if (HAS_PCH_CPT(dev))
4032                 cpt_verify_modeset(dev, intel_crtc->pipe);
4033
4034         intel_crtc_enable_planes(crtc);
4035 }
4036
4037 /* IPS only exists on ULT machines and is tied to pipe A. */
4038 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4039 {
4040         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4041 }
4042
4043 /*
4044  * This implements the workaround described in the "notes" section of the mode
4045  * set sequence documentation. When going from no pipes or single pipe to
4046  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4047  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4048  */
4049 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4050 {
4051         struct drm_device *dev = crtc->base.dev;
4052         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4053
4054         /* We want to get the other_active_crtc only if there's only 1 other
4055          * active crtc. */
4056         for_each_intel_crtc(dev, crtc_it) {
4057                 if (!crtc_it->active || crtc_it == crtc)
4058                         continue;
4059
4060                 if (other_active_crtc)
4061                         return;
4062
4063                 other_active_crtc = crtc_it;
4064         }
4065         if (!other_active_crtc)
4066                 return;
4067
4068         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4069         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4070 }
4071
4072 static void haswell_crtc_enable(struct drm_crtc *crtc)
4073 {
4074         struct drm_device *dev = crtc->dev;
4075         struct drm_i915_private *dev_priv = dev->dev_private;
4076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4077         struct intel_encoder *encoder;
4078         int pipe = intel_crtc->pipe;
4079         enum plane plane = intel_crtc->plane;
4080
4081         WARN_ON(!crtc->enabled);
4082
4083         if (intel_crtc->active)
4084                 return;
4085
4086         if (intel_crtc_to_shared_dpll(intel_crtc))
4087                 intel_enable_shared_dpll(intel_crtc);
4088
4089         if (intel_crtc->config.has_dp_encoder)
4090                 intel_dp_set_m_n(intel_crtc);
4091
4092         intel_set_pipe_timings(intel_crtc);
4093
4094         if (intel_crtc->config.has_pch_encoder) {
4095                 intel_cpu_transcoder_set_m_n(intel_crtc,
4096                                              &intel_crtc->config.fdi_m_n);
4097         }
4098
4099         haswell_set_pipeconf(crtc);
4100
4101         intel_set_pipe_csc(crtc);
4102
4103         /* Set up the display plane register */
4104         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4105         POSTING_READ(DSPCNTR(plane));
4106
4107         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4108                                                crtc->x, crtc->y);
4109
4110         intel_crtc->active = true;
4111
4112         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4113         for_each_encoder_on_crtc(dev, crtc, encoder)
4114                 if (encoder->pre_enable)
4115                         encoder->pre_enable(encoder);
4116
4117         if (intel_crtc->config.has_pch_encoder) {
4118                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4119                 dev_priv->display.fdi_link_train(crtc);
4120         }
4121
4122         intel_ddi_enable_pipe_clock(intel_crtc);
4123
4124         ironlake_pfit_enable(intel_crtc);
4125
4126         /*
4127          * On ILK+ LUT must be loaded before the pipe is running but with
4128          * clocks enabled
4129          */
4130         intel_crtc_load_lut(crtc);
4131
4132         intel_ddi_set_pipe_settings(crtc);
4133         intel_ddi_enable_transcoder_func(crtc);
4134
4135         intel_update_watermarks(crtc);
4136         intel_enable_pipe(intel_crtc);
4137
4138         if (intel_crtc->config.has_pch_encoder)
4139                 lpt_pch_enable(crtc);
4140
4141         if (intel_crtc->config.dp_encoder_is_mst)
4142                 intel_ddi_set_vc_payload_alloc(crtc, true);
4143
4144         for_each_encoder_on_crtc(dev, crtc, encoder) {
4145                 encoder->enable(encoder);
4146                 intel_opregion_notify_encoder(encoder, true);
4147         }
4148
4149         /* If we change the relative order between pipe/planes enabling, we need
4150          * to change the workaround. */
4151         haswell_mode_set_planes_workaround(intel_crtc);
4152         intel_crtc_enable_planes(crtc);
4153 }
4154
4155 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4156 {
4157         struct drm_device *dev = crtc->base.dev;
4158         struct drm_i915_private *dev_priv = dev->dev_private;
4159         int pipe = crtc->pipe;
4160
4161         /* To avoid upsetting the power well on haswell only disable the pfit if
4162          * it's in use. The hw state code will make sure we get this right. */
4163         if (crtc->config.pch_pfit.enabled) {
4164                 I915_WRITE(PF_CTL(pipe), 0);
4165                 I915_WRITE(PF_WIN_POS(pipe), 0);
4166                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4167         }
4168 }
4169
4170 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4171 {
4172         struct drm_device *dev = crtc->dev;
4173         struct drm_i915_private *dev_priv = dev->dev_private;
4174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175         struct intel_encoder *encoder;
4176         int pipe = intel_crtc->pipe;
4177         u32 reg, temp;
4178
4179         if (!intel_crtc->active)
4180                 return;
4181
4182         intel_crtc_disable_planes(crtc);
4183
4184         for_each_encoder_on_crtc(dev, crtc, encoder)
4185                 encoder->disable(encoder);
4186
4187         if (intel_crtc->config.has_pch_encoder)
4188                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4189
4190         intel_disable_pipe(dev_priv, pipe);
4191
4192         if (intel_crtc->config.dp_encoder_is_mst)
4193                 intel_ddi_set_vc_payload_alloc(crtc, false);
4194
4195         ironlake_pfit_disable(intel_crtc);
4196
4197         for_each_encoder_on_crtc(dev, crtc, encoder)
4198                 if (encoder->post_disable)
4199                         encoder->post_disable(encoder);
4200
4201         if (intel_crtc->config.has_pch_encoder) {
4202                 ironlake_fdi_disable(crtc);
4203
4204                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4205                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4206
4207                 if (HAS_PCH_CPT(dev)) {
4208                         /* disable TRANS_DP_CTL */
4209                         reg = TRANS_DP_CTL(pipe);
4210                         temp = I915_READ(reg);
4211                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4212                                   TRANS_DP_PORT_SEL_MASK);
4213                         temp |= TRANS_DP_PORT_SEL_NONE;
4214                         I915_WRITE(reg, temp);
4215
4216                         /* disable DPLL_SEL */
4217                         temp = I915_READ(PCH_DPLL_SEL);
4218                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4219                         I915_WRITE(PCH_DPLL_SEL, temp);
4220                 }
4221
4222                 /* disable PCH DPLL */
4223                 intel_disable_shared_dpll(intel_crtc);
4224
4225                 ironlake_fdi_pll_disable(intel_crtc);
4226         }
4227
4228         intel_crtc->active = false;
4229         intel_update_watermarks(crtc);
4230
4231         mutex_lock(&dev->struct_mutex);
4232         intel_update_fbc(dev);
4233         mutex_unlock(&dev->struct_mutex);
4234 }
4235
4236 static void haswell_crtc_disable(struct drm_crtc *crtc)
4237 {
4238         struct drm_device *dev = crtc->dev;
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4241         struct intel_encoder *encoder;
4242         int pipe = intel_crtc->pipe;
4243         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4244
4245         if (!intel_crtc->active)
4246                 return;
4247
4248         intel_crtc_disable_planes(crtc);
4249
4250         for_each_encoder_on_crtc(dev, crtc, encoder) {
4251                 intel_opregion_notify_encoder(encoder, false);
4252                 encoder->disable(encoder);
4253         }
4254
4255         if (intel_crtc->config.has_pch_encoder)
4256                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4257         intel_disable_pipe(dev_priv, pipe);
4258
4259         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4260
4261         ironlake_pfit_disable(intel_crtc);
4262
4263         intel_ddi_disable_pipe_clock(intel_crtc);
4264
4265         if (intel_crtc->config.has_pch_encoder) {
4266                 lpt_disable_pch_transcoder(dev_priv);
4267                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4268                 intel_ddi_fdi_disable(crtc);
4269         }
4270
4271         for_each_encoder_on_crtc(dev, crtc, encoder)
4272                 if (encoder->post_disable)
4273                         encoder->post_disable(encoder);
4274
4275         intel_crtc->active = false;
4276         intel_update_watermarks(crtc);
4277
4278         mutex_lock(&dev->struct_mutex);
4279         intel_update_fbc(dev);
4280         mutex_unlock(&dev->struct_mutex);
4281
4282         if (intel_crtc_to_shared_dpll(intel_crtc))
4283                 intel_disable_shared_dpll(intel_crtc);
4284 }
4285
4286 static void ironlake_crtc_off(struct drm_crtc *crtc)
4287 {
4288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4289         intel_put_shared_dpll(intel_crtc);
4290 }
4291
4292
4293 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4294 {
4295         struct drm_device *dev = crtc->base.dev;
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         struct intel_crtc_config *pipe_config = &crtc->config;
4298
4299         if (!crtc->config.gmch_pfit.control)
4300                 return;
4301
4302         /*
4303          * The panel fitter should only be adjusted whilst the pipe is disabled,
4304          * according to register description and PRM.
4305          */
4306         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4307         assert_pipe_disabled(dev_priv, crtc->pipe);
4308
4309         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4310         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4311
4312         /* Border color in case we don't scale up to the full screen. Black by
4313          * default, change to something else for debugging. */
4314         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4315 }
4316
4317 static enum intel_display_power_domain port_to_power_domain(enum port port)
4318 {
4319         switch (port) {
4320         case PORT_A:
4321                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4322         case PORT_B:
4323                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4324         case PORT_C:
4325                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4326         case PORT_D:
4327                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4328         default:
4329                 WARN_ON_ONCE(1);
4330                 return POWER_DOMAIN_PORT_OTHER;
4331         }
4332 }
4333
4334 #define for_each_power_domain(domain, mask)                             \
4335         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4336                 if ((1 << (domain)) & (mask))
4337
4338 enum intel_display_power_domain
4339 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4340 {
4341         struct drm_device *dev = intel_encoder->base.dev;
4342         struct intel_digital_port *intel_dig_port;
4343
4344         switch (intel_encoder->type) {
4345         case INTEL_OUTPUT_UNKNOWN:
4346                 /* Only DDI platforms should ever use this output type */
4347                 WARN_ON_ONCE(!HAS_DDI(dev));
4348         case INTEL_OUTPUT_DISPLAYPORT:
4349         case INTEL_OUTPUT_HDMI:
4350         case INTEL_OUTPUT_EDP:
4351                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4352                 return port_to_power_domain(intel_dig_port->port);
4353         case INTEL_OUTPUT_DP_MST:
4354                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4355                 return port_to_power_domain(intel_dig_port->port);
4356         case INTEL_OUTPUT_ANALOG:
4357                 return POWER_DOMAIN_PORT_CRT;
4358         case INTEL_OUTPUT_DSI:
4359                 return POWER_DOMAIN_PORT_DSI;
4360         default:
4361                 return POWER_DOMAIN_PORT_OTHER;
4362         }
4363 }
4364
4365 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4366 {
4367         struct drm_device *dev = crtc->dev;
4368         struct intel_encoder *intel_encoder;
4369         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370         enum pipe pipe = intel_crtc->pipe;
4371         unsigned long mask;
4372         enum transcoder transcoder;
4373
4374         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4375
4376         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4377         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4378         if (intel_crtc->config.pch_pfit.enabled ||
4379             intel_crtc->config.pch_pfit.force_thru)
4380                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4381
4382         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4383                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4384
4385         return mask;
4386 }
4387
4388 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4389                                   bool enable)
4390 {
4391         if (dev_priv->power_domains.init_power_on == enable)
4392                 return;
4393
4394         if (enable)
4395                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4396         else
4397                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4398
4399         dev_priv->power_domains.init_power_on = enable;
4400 }
4401
4402 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4403 {
4404         struct drm_i915_private *dev_priv = dev->dev_private;
4405         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4406         struct intel_crtc *crtc;
4407
4408         /*
4409          * First get all needed power domains, then put all unneeded, to avoid
4410          * any unnecessary toggling of the power wells.
4411          */
4412         for_each_intel_crtc(dev, crtc) {
4413                 enum intel_display_power_domain domain;
4414
4415                 if (!crtc->base.enabled)
4416                         continue;
4417
4418                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4419
4420                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4421                         intel_display_power_get(dev_priv, domain);
4422         }
4423
4424         for_each_intel_crtc(dev, crtc) {
4425                 enum intel_display_power_domain domain;
4426
4427                 for_each_power_domain(domain, crtc->enabled_power_domains)
4428                         intel_display_power_put(dev_priv, domain);
4429
4430                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4431         }
4432
4433         intel_display_set_init_power(dev_priv, false);
4434 }
4435
4436 /* returns HPLL frequency in kHz */
4437 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4438 {
4439         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4440
4441         /* Obtain SKU information */
4442         mutex_lock(&dev_priv->dpio_lock);
4443         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4444                 CCK_FUSE_HPLL_FREQ_MASK;
4445         mutex_unlock(&dev_priv->dpio_lock);
4446
4447         return vco_freq[hpll_freq] * 1000;
4448 }
4449
4450 static void vlv_update_cdclk(struct drm_device *dev)
4451 {
4452         struct drm_i915_private *dev_priv = dev->dev_private;
4453
4454         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4455         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4456                          dev_priv->vlv_cdclk_freq);
4457
4458         /*
4459          * Program the gmbus_freq based on the cdclk frequency.
4460          * BSpec erroneously claims we should aim for 4MHz, but
4461          * in fact 1MHz is the correct frequency.
4462          */
4463         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4464 }
4465
4466 /* Adjust CDclk dividers to allow high res or save power if possible */
4467 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4468 {
4469         struct drm_i915_private *dev_priv = dev->dev_private;
4470         u32 val, cmd;
4471
4472         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4473
4474         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4475                 cmd = 2;
4476         else if (cdclk == 266667)
4477                 cmd = 1;
4478         else
4479                 cmd = 0;
4480
4481         mutex_lock(&dev_priv->rps.hw_lock);
4482         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4483         val &= ~DSPFREQGUAR_MASK;
4484         val |= (cmd << DSPFREQGUAR_SHIFT);
4485         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4486         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4487                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4488                      50)) {
4489                 DRM_ERROR("timed out waiting for CDclk change\n");
4490         }
4491         mutex_unlock(&dev_priv->rps.hw_lock);
4492
4493         if (cdclk == 400000) {
4494                 u32 divider, vco;
4495
4496                 vco = valleyview_get_vco(dev_priv);
4497                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4498
4499                 mutex_lock(&dev_priv->dpio_lock);
4500                 /* adjust cdclk divider */
4501                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4502                 val &= ~DISPLAY_FREQUENCY_VALUES;
4503                 val |= divider;
4504                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4505
4506                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4507                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4508                              50))
4509                         DRM_ERROR("timed out waiting for CDclk change\n");
4510                 mutex_unlock(&dev_priv->dpio_lock);
4511         }
4512
4513         mutex_lock(&dev_priv->dpio_lock);
4514         /* adjust self-refresh exit latency value */
4515         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4516         val &= ~0x7f;
4517
4518         /*
4519          * For high bandwidth configs, we set a higher latency in the bunit
4520          * so that the core display fetch happens in time to avoid underruns.
4521          */
4522         if (cdclk == 400000)
4523                 val |= 4500 / 250; /* 4.5 usec */
4524         else
4525                 val |= 3000 / 250; /* 3.0 usec */
4526         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4527         mutex_unlock(&dev_priv->dpio_lock);
4528
4529         vlv_update_cdclk(dev);
4530 }
4531
4532 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4533                                  int max_pixclk)
4534 {
4535         int vco = valleyview_get_vco(dev_priv);
4536         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4537
4538         /*
4539          * Really only a few cases to deal with, as only 4 CDclks are supported:
4540          *   200MHz
4541          *   267MHz
4542          *   320/333MHz (depends on HPLL freq)
4543          *   400MHz
4544          * So we check to see whether we're above 90% of the lower bin and
4545          * adjust if needed.
4546          *
4547          * We seem to get an unstable or solid color picture at 200MHz.
4548          * Not sure what's wrong. For now use 200MHz only when all pipes
4549          * are off.
4550          */
4551         if (max_pixclk > freq_320*9/10)
4552                 return 400000;
4553         else if (max_pixclk > 266667*9/10)
4554                 return freq_320;
4555         else if (max_pixclk > 0)
4556                 return 266667;
4557         else
4558                 return 200000;
4559 }
4560
4561 /* compute the max pixel clock for new configuration */
4562 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4563 {
4564         struct drm_device *dev = dev_priv->dev;
4565         struct intel_crtc *intel_crtc;
4566         int max_pixclk = 0;
4567
4568         for_each_intel_crtc(dev, intel_crtc) {
4569                 if (intel_crtc->new_enabled)
4570                         max_pixclk = max(max_pixclk,
4571                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4572         }
4573
4574         return max_pixclk;
4575 }
4576
4577 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4578                                             unsigned *prepare_pipes)
4579 {
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc;
4582         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4583
4584         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4585             dev_priv->vlv_cdclk_freq)
4586                 return;
4587
4588         /* disable/enable all currently active pipes while we change cdclk */
4589         for_each_intel_crtc(dev, intel_crtc)
4590                 if (intel_crtc->base.enabled)
4591                         *prepare_pipes |= (1 << intel_crtc->pipe);
4592 }
4593
4594 static void valleyview_modeset_global_resources(struct drm_device *dev)
4595 {
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4598         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4599
4600         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4601                 valleyview_set_cdclk(dev, req_cdclk);
4602         modeset_update_crtc_power_domains(dev);
4603 }
4604
4605 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4606 {
4607         struct drm_device *dev = crtc->dev;
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4610         struct intel_encoder *encoder;
4611         int pipe = intel_crtc->pipe;
4612         int plane = intel_crtc->plane;
4613         bool is_dsi;
4614         u32 dspcntr;
4615
4616         WARN_ON(!crtc->enabled);
4617
4618         if (intel_crtc->active)
4619                 return;
4620
4621         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4622
4623         if (!is_dsi && !IS_CHERRYVIEW(dev))
4624                 vlv_prepare_pll(intel_crtc);
4625
4626         /* Set up the display plane register */
4627         dspcntr = DISPPLANE_GAMMA_ENABLE;
4628
4629         if (intel_crtc->config.has_dp_encoder)
4630                 intel_dp_set_m_n(intel_crtc);
4631
4632         intel_set_pipe_timings(intel_crtc);
4633
4634         /* pipesrc and dspsize control the size that is scaled from,
4635          * which should always be the user's requested size.
4636          */
4637         I915_WRITE(DSPSIZE(plane),
4638                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4639                    (intel_crtc->config.pipe_src_w - 1));
4640         I915_WRITE(DSPPOS(plane), 0);
4641
4642         i9xx_set_pipeconf(intel_crtc);
4643
4644         I915_WRITE(DSPCNTR(plane), dspcntr);
4645         POSTING_READ(DSPCNTR(plane));
4646
4647         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4648                                                crtc->x, crtc->y);
4649
4650         intel_crtc->active = true;
4651
4652         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4653
4654         for_each_encoder_on_crtc(dev, crtc, encoder)
4655                 if (encoder->pre_pll_enable)
4656                         encoder->pre_pll_enable(encoder);
4657
4658         if (!is_dsi) {
4659                 if (IS_CHERRYVIEW(dev))
4660                         chv_enable_pll(intel_crtc);
4661                 else
4662                         vlv_enable_pll(intel_crtc);
4663         }
4664
4665         for_each_encoder_on_crtc(dev, crtc, encoder)
4666                 if (encoder->pre_enable)
4667                         encoder->pre_enable(encoder);
4668
4669         i9xx_pfit_enable(intel_crtc);
4670
4671         intel_crtc_load_lut(crtc);
4672
4673         intel_update_watermarks(crtc);
4674         intel_enable_pipe(intel_crtc);
4675
4676         for_each_encoder_on_crtc(dev, crtc, encoder)
4677                 encoder->enable(encoder);
4678
4679         intel_crtc_enable_planes(crtc);
4680
4681         /* Underruns don't raise interrupts, so check manually. */
4682         i9xx_check_fifo_underruns(dev);
4683 }
4684
4685 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4686 {
4687         struct drm_device *dev = crtc->base.dev;
4688         struct drm_i915_private *dev_priv = dev->dev_private;
4689
4690         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4691         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4692 }
4693
4694 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4695 {
4696         struct drm_device *dev = crtc->dev;
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4699         struct intel_encoder *encoder;
4700         int pipe = intel_crtc->pipe;
4701         int plane = intel_crtc->plane;
4702         u32 dspcntr;
4703
4704         WARN_ON(!crtc->enabled);
4705
4706         if (intel_crtc->active)
4707                 return;
4708
4709         i9xx_set_pll_dividers(intel_crtc);
4710
4711         /* Set up the display plane register */
4712         dspcntr = DISPPLANE_GAMMA_ENABLE;
4713
4714         if (pipe == 0)
4715                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4716         else
4717                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4718
4719         if (intel_crtc->config.has_dp_encoder)
4720                 intel_dp_set_m_n(intel_crtc);
4721
4722         intel_set_pipe_timings(intel_crtc);
4723
4724         /* pipesrc and dspsize control the size that is scaled from,
4725          * which should always be the user's requested size.
4726          */
4727         I915_WRITE(DSPSIZE(plane),
4728                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4729                    (intel_crtc->config.pipe_src_w - 1));
4730         I915_WRITE(DSPPOS(plane), 0);
4731
4732         i9xx_set_pipeconf(intel_crtc);
4733
4734         I915_WRITE(DSPCNTR(plane), dspcntr);
4735         POSTING_READ(DSPCNTR(plane));
4736
4737         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4738                                                crtc->x, crtc->y);
4739
4740         intel_crtc->active = true;
4741
4742         if (!IS_GEN2(dev))
4743                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4744
4745         for_each_encoder_on_crtc(dev, crtc, encoder)
4746                 if (encoder->pre_enable)
4747                         encoder->pre_enable(encoder);
4748
4749         i9xx_enable_pll(intel_crtc);
4750
4751         i9xx_pfit_enable(intel_crtc);
4752
4753         intel_crtc_load_lut(crtc);
4754
4755         intel_update_watermarks(crtc);
4756         intel_enable_pipe(intel_crtc);
4757
4758         for_each_encoder_on_crtc(dev, crtc, encoder)
4759                 encoder->enable(encoder);
4760
4761         intel_crtc_enable_planes(crtc);
4762
4763         /*
4764          * Gen2 reports pipe underruns whenever all planes are disabled.
4765          * So don't enable underrun reporting before at least some planes
4766          * are enabled.
4767          * FIXME: Need to fix the logic to work when we turn off all planes
4768          * but leave the pipe running.
4769          */
4770         if (IS_GEN2(dev))
4771                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4772
4773         /* Underruns don't raise interrupts, so check manually. */
4774         i9xx_check_fifo_underruns(dev);
4775 }
4776
4777 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4778 {
4779         struct drm_device *dev = crtc->base.dev;
4780         struct drm_i915_private *dev_priv = dev->dev_private;
4781
4782         if (!crtc->config.gmch_pfit.control)
4783                 return;
4784
4785         assert_pipe_disabled(dev_priv, crtc->pipe);
4786
4787         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4788                          I915_READ(PFIT_CONTROL));
4789         I915_WRITE(PFIT_CONTROL, 0);
4790 }
4791
4792 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4793 {
4794         struct drm_device *dev = crtc->dev;
4795         struct drm_i915_private *dev_priv = dev->dev_private;
4796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4797         struct intel_encoder *encoder;
4798         int pipe = intel_crtc->pipe;
4799
4800         if (!intel_crtc->active)
4801                 return;
4802
4803         /*
4804          * Gen2 reports pipe underruns whenever all planes are disabled.
4805          * So diasble underrun reporting before all the planes get disabled.
4806          * FIXME: Need to fix the logic to work when we turn off all planes
4807          * but leave the pipe running.
4808          */
4809         if (IS_GEN2(dev))
4810                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4811
4812         /*
4813          * Vblank time updates from the shadow to live plane control register
4814          * are blocked if the memory self-refresh mode is active at that
4815          * moment. So to make sure the plane gets truly disabled, disable
4816          * first the self-refresh mode. The self-refresh enable bit in turn
4817          * will be checked/applied by the HW only at the next frame start
4818          * event which is after the vblank start event, so we need to have a
4819          * wait-for-vblank between disabling the plane and the pipe.
4820          */
4821         intel_set_memory_cxsr(dev_priv, false);
4822         intel_crtc_disable_planes(crtc);
4823
4824         for_each_encoder_on_crtc(dev, crtc, encoder)
4825                 encoder->disable(encoder);
4826
4827         /*
4828          * On gen2 planes are double buffered but the pipe isn't, so we must
4829          * wait for planes to fully turn off before disabling the pipe.
4830          * We also need to wait on all gmch platforms because of the
4831          * self-refresh mode constraint explained above.
4832          */
4833         intel_wait_for_vblank(dev, pipe);
4834
4835         intel_disable_pipe(dev_priv, pipe);
4836
4837         i9xx_pfit_disable(intel_crtc);
4838
4839         for_each_encoder_on_crtc(dev, crtc, encoder)
4840                 if (encoder->post_disable)
4841                         encoder->post_disable(encoder);
4842
4843         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4844                 if (IS_CHERRYVIEW(dev))
4845                         chv_disable_pll(dev_priv, pipe);
4846                 else if (IS_VALLEYVIEW(dev))
4847                         vlv_disable_pll(dev_priv, pipe);
4848                 else
4849                         i9xx_disable_pll(dev_priv, pipe);
4850         }
4851
4852         if (!IS_GEN2(dev))
4853                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4854
4855         intel_crtc->active = false;
4856         intel_update_watermarks(crtc);
4857
4858         mutex_lock(&dev->struct_mutex);
4859         intel_update_fbc(dev);
4860         mutex_unlock(&dev->struct_mutex);
4861 }
4862
4863 static void i9xx_crtc_off(struct drm_crtc *crtc)
4864 {
4865 }
4866
4867 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4868                                     bool enabled)
4869 {
4870         struct drm_device *dev = crtc->dev;
4871         struct drm_i915_master_private *master_priv;
4872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4873         int pipe = intel_crtc->pipe;
4874
4875         if (!dev->primary->master)
4876                 return;
4877
4878         master_priv = dev->primary->master->driver_priv;
4879         if (!master_priv->sarea_priv)
4880                 return;
4881
4882         switch (pipe) {
4883         case 0:
4884                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4885                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4886                 break;
4887         case 1:
4888                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4889                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4890                 break;
4891         default:
4892                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4893                 break;
4894         }
4895 }
4896
4897 /* Master function to enable/disable CRTC and corresponding power wells */
4898 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4899 {
4900         struct drm_device *dev = crtc->dev;
4901         struct drm_i915_private *dev_priv = dev->dev_private;
4902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4903         enum intel_display_power_domain domain;
4904         unsigned long domains;
4905
4906         if (enable) {
4907                 if (!intel_crtc->active) {
4908                         domains = get_crtc_power_domains(crtc);
4909                         for_each_power_domain(domain, domains)
4910                                 intel_display_power_get(dev_priv, domain);
4911                         intel_crtc->enabled_power_domains = domains;
4912
4913                         dev_priv->display.crtc_enable(crtc);
4914                 }
4915         } else {
4916                 if (intel_crtc->active) {
4917                         dev_priv->display.crtc_disable(crtc);
4918
4919                         domains = intel_crtc->enabled_power_domains;
4920                         for_each_power_domain(domain, domains)
4921                                 intel_display_power_put(dev_priv, domain);
4922                         intel_crtc->enabled_power_domains = 0;
4923                 }
4924         }
4925 }
4926
4927 /**
4928  * Sets the power management mode of the pipe and plane.
4929  */
4930 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4931 {
4932         struct drm_device *dev = crtc->dev;
4933         struct intel_encoder *intel_encoder;
4934         bool enable = false;
4935
4936         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4937                 enable |= intel_encoder->connectors_active;
4938
4939         intel_crtc_control(crtc, enable);
4940
4941         intel_crtc_update_sarea(crtc, enable);
4942 }
4943
4944 static void intel_crtc_disable(struct drm_crtc *crtc)
4945 {
4946         struct drm_device *dev = crtc->dev;
4947         struct drm_connector *connector;
4948         struct drm_i915_private *dev_priv = dev->dev_private;
4949         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4950         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4951
4952         /* crtc should still be enabled when we disable it. */
4953         WARN_ON(!crtc->enabled);
4954
4955         dev_priv->display.crtc_disable(crtc);
4956         intel_crtc_update_sarea(crtc, false);
4957         dev_priv->display.off(crtc);
4958
4959         if (crtc->primary->fb) {
4960                 mutex_lock(&dev->struct_mutex);
4961                 intel_unpin_fb_obj(old_obj);
4962                 i915_gem_track_fb(old_obj, NULL,
4963                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
4964                 mutex_unlock(&dev->struct_mutex);
4965                 crtc->primary->fb = NULL;
4966         }
4967
4968         /* Update computed state. */
4969         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4970                 if (!connector->encoder || !connector->encoder->crtc)
4971                         continue;
4972
4973                 if (connector->encoder->crtc != crtc)
4974                         continue;
4975
4976                 connector->dpms = DRM_MODE_DPMS_OFF;
4977                 to_intel_encoder(connector->encoder)->connectors_active = false;
4978         }
4979 }
4980
4981 void intel_encoder_destroy(struct drm_encoder *encoder)
4982 {
4983         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4984
4985         drm_encoder_cleanup(encoder);
4986         kfree(intel_encoder);
4987 }
4988
4989 /* Simple dpms helper for encoders with just one connector, no cloning and only
4990  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4991  * state of the entire output pipe. */
4992 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4993 {
4994         if (mode == DRM_MODE_DPMS_ON) {
4995                 encoder->connectors_active = true;
4996
4997                 intel_crtc_update_dpms(encoder->base.crtc);
4998         } else {
4999                 encoder->connectors_active = false;
5000
5001                 intel_crtc_update_dpms(encoder->base.crtc);
5002         }
5003 }
5004
5005 /* Cross check the actual hw state with our own modeset state tracking (and it's
5006  * internal consistency). */
5007 static void intel_connector_check_state(struct intel_connector *connector)
5008 {
5009         if (connector->get_hw_state(connector)) {
5010                 struct intel_encoder *encoder = connector->encoder;
5011                 struct drm_crtc *crtc;
5012                 bool encoder_enabled;
5013                 enum pipe pipe;
5014
5015                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5016                               connector->base.base.id,
5017                               connector->base.name);
5018
5019                 /* there is no real hw state for MST connectors */
5020                 if (connector->mst_port)
5021                         return;
5022
5023                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5024                      "wrong connector dpms state\n");
5025                 WARN(connector->base.encoder != &encoder->base,
5026                      "active connector not linked to encoder\n");
5027
5028                 if (encoder) {
5029                         WARN(!encoder->connectors_active,
5030                              "encoder->connectors_active not set\n");
5031
5032                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5033                         WARN(!encoder_enabled, "encoder not enabled\n");
5034                         if (WARN_ON(!encoder->base.crtc))
5035                                 return;
5036
5037                         crtc = encoder->base.crtc;
5038
5039                         WARN(!crtc->enabled, "crtc not enabled\n");
5040                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5041                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5042                              "encoder active on the wrong pipe\n");
5043                 }
5044         }
5045 }
5046
5047 /* Even simpler default implementation, if there's really no special case to
5048  * consider. */
5049 void intel_connector_dpms(struct drm_connector *connector, int mode)
5050 {
5051         /* All the simple cases only support two dpms states. */
5052         if (mode != DRM_MODE_DPMS_ON)
5053                 mode = DRM_MODE_DPMS_OFF;
5054
5055         if (mode == connector->dpms)
5056                 return;
5057
5058         connector->dpms = mode;
5059
5060         /* Only need to change hw state when actually enabled */
5061         if (connector->encoder)
5062                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5063
5064         intel_modeset_check_state(connector->dev);
5065 }
5066
5067 /* Simple connector->get_hw_state implementation for encoders that support only
5068  * one connector and no cloning and hence the encoder state determines the state
5069  * of the connector. */
5070 bool intel_connector_get_hw_state(struct intel_connector *connector)
5071 {
5072         enum pipe pipe = 0;
5073         struct intel_encoder *encoder = connector->encoder;
5074
5075         return encoder->get_hw_state(encoder, &pipe);
5076 }
5077
5078 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5079                                      struct intel_crtc_config *pipe_config)
5080 {
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         struct intel_crtc *pipe_B_crtc =
5083                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5084
5085         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5086                       pipe_name(pipe), pipe_config->fdi_lanes);
5087         if (pipe_config->fdi_lanes > 4) {
5088                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5089                               pipe_name(pipe), pipe_config->fdi_lanes);
5090                 return false;
5091         }
5092
5093         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5094                 if (pipe_config->fdi_lanes > 2) {
5095                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5096                                       pipe_config->fdi_lanes);
5097                         return false;
5098                 } else {
5099                         return true;
5100                 }
5101         }
5102
5103         if (INTEL_INFO(dev)->num_pipes == 2)
5104                 return true;
5105
5106         /* Ivybridge 3 pipe is really complicated */
5107         switch (pipe) {
5108         case PIPE_A:
5109                 return true;
5110         case PIPE_B:
5111                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5112                     pipe_config->fdi_lanes > 2) {
5113                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5114                                       pipe_name(pipe), pipe_config->fdi_lanes);
5115                         return false;
5116                 }
5117                 return true;
5118         case PIPE_C:
5119                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5120                     pipe_B_crtc->config.fdi_lanes <= 2) {
5121                         if (pipe_config->fdi_lanes > 2) {
5122                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5123                                               pipe_name(pipe), pipe_config->fdi_lanes);
5124                                 return false;
5125                         }
5126                 } else {
5127                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5128                         return false;
5129                 }
5130                 return true;
5131         default:
5132                 BUG();
5133         }
5134 }
5135
5136 #define RETRY 1
5137 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5138                                        struct intel_crtc_config *pipe_config)
5139 {
5140         struct drm_device *dev = intel_crtc->base.dev;
5141         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5142         int lane, link_bw, fdi_dotclock;
5143         bool setup_ok, needs_recompute = false;
5144
5145 retry:
5146         /* FDI is a binary signal running at ~2.7GHz, encoding
5147          * each output octet as 10 bits. The actual frequency
5148          * is stored as a divider into a 100MHz clock, and the
5149          * mode pixel clock is stored in units of 1KHz.
5150          * Hence the bw of each lane in terms of the mode signal
5151          * is:
5152          */
5153         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5154
5155         fdi_dotclock = adjusted_mode->crtc_clock;
5156
5157         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5158                                            pipe_config->pipe_bpp);
5159
5160         pipe_config->fdi_lanes = lane;
5161
5162         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5163                                link_bw, &pipe_config->fdi_m_n);
5164
5165         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5166                                             intel_crtc->pipe, pipe_config);
5167         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5168                 pipe_config->pipe_bpp -= 2*3;
5169                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5170                               pipe_config->pipe_bpp);
5171                 needs_recompute = true;
5172                 pipe_config->bw_constrained = true;
5173
5174                 goto retry;
5175         }
5176
5177         if (needs_recompute)
5178                 return RETRY;
5179
5180         return setup_ok ? 0 : -EINVAL;
5181 }
5182
5183 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5184                                    struct intel_crtc_config *pipe_config)
5185 {
5186         pipe_config->ips_enabled = i915.enable_ips &&
5187                                    hsw_crtc_supports_ips(crtc) &&
5188                                    pipe_config->pipe_bpp <= 24;
5189 }
5190
5191 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5192                                      struct intel_crtc_config *pipe_config)
5193 {
5194         struct drm_device *dev = crtc->base.dev;
5195         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5196
5197         /* FIXME should check pixel clock limits on all platforms */
5198         if (INTEL_INFO(dev)->gen < 4) {
5199                 struct drm_i915_private *dev_priv = dev->dev_private;
5200                 int clock_limit =
5201                         dev_priv->display.get_display_clock_speed(dev);
5202
5203                 /*
5204                  * Enable pixel doubling when the dot clock
5205                  * is > 90% of the (display) core speed.
5206                  *
5207                  * GDG double wide on either pipe,
5208                  * otherwise pipe A only.
5209                  */
5210                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5211                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5212                         clock_limit *= 2;
5213                         pipe_config->double_wide = true;
5214                 }
5215
5216                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5217                         return -EINVAL;
5218         }
5219
5220         /*
5221          * Pipe horizontal size must be even in:
5222          * - DVO ganged mode
5223          * - LVDS dual channel mode
5224          * - Double wide pipe
5225          */
5226         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5227              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5228                 pipe_config->pipe_src_w &= ~1;
5229
5230         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5231          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5232          */
5233         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5234                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5235                 return -EINVAL;
5236
5237         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5238                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5239         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5240                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5241                  * for lvds. */
5242                 pipe_config->pipe_bpp = 8*3;
5243         }
5244
5245         if (HAS_IPS(dev))
5246                 hsw_compute_ips_config(crtc, pipe_config);
5247
5248         /*
5249          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5250          * old clock survives for now.
5251          */
5252         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5253                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5254
5255         if (pipe_config->has_pch_encoder)
5256                 return ironlake_fdi_compute_config(crtc, pipe_config);
5257
5258         return 0;
5259 }
5260
5261 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5262 {
5263         struct drm_i915_private *dev_priv = dev->dev_private;
5264         int vco = valleyview_get_vco(dev_priv);
5265         u32 val;
5266         int divider;
5267
5268         mutex_lock(&dev_priv->dpio_lock);
5269         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5270         mutex_unlock(&dev_priv->dpio_lock);
5271
5272         divider = val & DISPLAY_FREQUENCY_VALUES;
5273
5274         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5275              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5276              "cdclk change in progress\n");
5277
5278         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5279 }
5280
5281 static int i945_get_display_clock_speed(struct drm_device *dev)
5282 {
5283         return 400000;
5284 }
5285
5286 static int i915_get_display_clock_speed(struct drm_device *dev)
5287 {
5288         return 333000;
5289 }
5290
5291 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5292 {
5293         return 200000;
5294 }
5295
5296 static int pnv_get_display_clock_speed(struct drm_device *dev)
5297 {
5298         u16 gcfgc = 0;
5299
5300         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5301
5302         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5303         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5304                 return 267000;
5305         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5306                 return 333000;
5307         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5308                 return 444000;
5309         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5310                 return 200000;
5311         default:
5312                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5313         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5314                 return 133000;
5315         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5316                 return 167000;
5317         }
5318 }
5319
5320 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5321 {
5322         u16 gcfgc = 0;
5323
5324         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5325
5326         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5327                 return 133000;
5328         else {
5329                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5330                 case GC_DISPLAY_CLOCK_333_MHZ:
5331                         return 333000;
5332                 default:
5333                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5334                         return 190000;
5335                 }
5336         }
5337 }
5338
5339 static int i865_get_display_clock_speed(struct drm_device *dev)
5340 {
5341         return 266000;
5342 }
5343
5344 static int i855_get_display_clock_speed(struct drm_device *dev)
5345 {
5346         u16 hpllcc = 0;
5347         /* Assume that the hardware is in the high speed state.  This
5348          * should be the default.
5349          */
5350         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5351         case GC_CLOCK_133_200:
5352         case GC_CLOCK_100_200:
5353                 return 200000;
5354         case GC_CLOCK_166_250:
5355                 return 250000;
5356         case GC_CLOCK_100_133:
5357                 return 133000;
5358         }
5359
5360         /* Shouldn't happen */
5361         return 0;
5362 }
5363
5364 static int i830_get_display_clock_speed(struct drm_device *dev)
5365 {
5366         return 133000;
5367 }
5368
5369 static void
5370 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5371 {
5372         while (*num > DATA_LINK_M_N_MASK ||
5373                *den > DATA_LINK_M_N_MASK) {
5374                 *num >>= 1;
5375                 *den >>= 1;
5376         }
5377 }
5378
5379 static void compute_m_n(unsigned int m, unsigned int n,
5380                         uint32_t *ret_m, uint32_t *ret_n)
5381 {
5382         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5383         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5384         intel_reduce_m_n_ratio(ret_m, ret_n);
5385 }
5386
5387 void
5388 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5389                        int pixel_clock, int link_clock,
5390                        struct intel_link_m_n *m_n)
5391 {
5392         m_n->tu = 64;
5393
5394         compute_m_n(bits_per_pixel * pixel_clock,
5395                     link_clock * nlanes * 8,
5396                     &m_n->gmch_m, &m_n->gmch_n);
5397
5398         compute_m_n(pixel_clock, link_clock,
5399                     &m_n->link_m, &m_n->link_n);
5400 }
5401
5402 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5403 {
5404         if (i915.panel_use_ssc >= 0)
5405                 return i915.panel_use_ssc != 0;
5406         return dev_priv->vbt.lvds_use_ssc
5407                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5408 }
5409
5410 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5411 {
5412         struct drm_device *dev = crtc->dev;
5413         struct drm_i915_private *dev_priv = dev->dev_private;
5414         int refclk;
5415
5416         if (IS_VALLEYVIEW(dev)) {
5417                 refclk = 100000;
5418         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5419             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5420                 refclk = dev_priv->vbt.lvds_ssc_freq;
5421                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5422         } else if (!IS_GEN2(dev)) {
5423                 refclk = 96000;
5424         } else {
5425                 refclk = 48000;
5426         }
5427
5428         return refclk;
5429 }
5430
5431 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5432 {
5433         return (1 << dpll->n) << 16 | dpll->m2;
5434 }
5435
5436 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5437 {
5438         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5439 }
5440
5441 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5442                                      intel_clock_t *reduced_clock)
5443 {
5444         struct drm_device *dev = crtc->base.dev;
5445         u32 fp, fp2 = 0;
5446
5447         if (IS_PINEVIEW(dev)) {
5448                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5449                 if (reduced_clock)
5450                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5451         } else {
5452                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5453                 if (reduced_clock)
5454                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5455         }
5456
5457         crtc->config.dpll_hw_state.fp0 = fp;
5458
5459         crtc->lowfreq_avail = false;
5460         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5461             reduced_clock && i915.powersave) {
5462                 crtc->config.dpll_hw_state.fp1 = fp2;
5463                 crtc->lowfreq_avail = true;
5464         } else {
5465                 crtc->config.dpll_hw_state.fp1 = fp;
5466         }
5467 }
5468
5469 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5470                 pipe)
5471 {
5472         u32 reg_val;
5473
5474         /*
5475          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5476          * and set it to a reasonable value instead.
5477          */
5478         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5479         reg_val &= 0xffffff00;
5480         reg_val |= 0x00000030;
5481         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5482
5483         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5484         reg_val &= 0x8cffffff;
5485         reg_val = 0x8c000000;
5486         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5487
5488         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5489         reg_val &= 0xffffff00;
5490         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5491
5492         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5493         reg_val &= 0x00ffffff;
5494         reg_val |= 0xb0000000;
5495         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5496 }
5497
5498 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5499                                          struct intel_link_m_n *m_n)
5500 {
5501         struct drm_device *dev = crtc->base.dev;
5502         struct drm_i915_private *dev_priv = dev->dev_private;
5503         int pipe = crtc->pipe;
5504
5505         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5506         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5507         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5508         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5509 }
5510
5511 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5512                                          struct intel_link_m_n *m_n)
5513 {
5514         struct drm_device *dev = crtc->base.dev;
5515         struct drm_i915_private *dev_priv = dev->dev_private;
5516         int pipe = crtc->pipe;
5517         enum transcoder transcoder = crtc->config.cpu_transcoder;
5518
5519         if (INTEL_INFO(dev)->gen >= 5) {
5520                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5521                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5522                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5523                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5524         } else {
5525                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5526                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5527                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5528                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5529         }
5530 }
5531
5532 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5533 {
5534         if (crtc->config.has_pch_encoder)
5535                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5536         else
5537                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5538 }
5539
5540 static void vlv_update_pll(struct intel_crtc *crtc)
5541 {
5542         u32 dpll, dpll_md;
5543
5544         /*
5545          * Enable DPIO clock input. We should never disable the reference
5546          * clock for pipe B, since VGA hotplug / manual detection depends
5547          * on it.
5548          */
5549         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5550                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5551         /* We should never disable this, set it here for state tracking */
5552         if (crtc->pipe == PIPE_B)
5553                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5554         dpll |= DPLL_VCO_ENABLE;
5555         crtc->config.dpll_hw_state.dpll = dpll;
5556
5557         dpll_md = (crtc->config.pixel_multiplier - 1)
5558                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5559         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5560 }
5561
5562 static void vlv_prepare_pll(struct intel_crtc *crtc)
5563 {
5564         struct drm_device *dev = crtc->base.dev;
5565         struct drm_i915_private *dev_priv = dev->dev_private;
5566         int pipe = crtc->pipe;
5567         u32 mdiv;
5568         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5569         u32 coreclk, reg_val;
5570
5571         mutex_lock(&dev_priv->dpio_lock);
5572
5573         bestn = crtc->config.dpll.n;
5574         bestm1 = crtc->config.dpll.m1;
5575         bestm2 = crtc->config.dpll.m2;
5576         bestp1 = crtc->config.dpll.p1;
5577         bestp2 = crtc->config.dpll.p2;
5578
5579         /* See eDP HDMI DPIO driver vbios notes doc */
5580
5581         /* PLL B needs special handling */
5582         if (pipe == PIPE_B)
5583                 vlv_pllb_recal_opamp(dev_priv, pipe);
5584
5585         /* Set up Tx target for periodic Rcomp update */
5586         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5587
5588         /* Disable target IRef on PLL */
5589         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5590         reg_val &= 0x00ffffff;
5591         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5592
5593         /* Disable fast lock */
5594         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5595
5596         /* Set idtafcrecal before PLL is enabled */
5597         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5598         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5599         mdiv |= ((bestn << DPIO_N_SHIFT));
5600         mdiv |= (1 << DPIO_K_SHIFT);
5601
5602         /*
5603          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5604          * but we don't support that).
5605          * Note: don't use the DAC post divider as it seems unstable.
5606          */
5607         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5608         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5609
5610         mdiv |= DPIO_ENABLE_CALIBRATION;
5611         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5612
5613         /* Set HBR and RBR LPF coefficients */
5614         if (crtc->config.port_clock == 162000 ||
5615             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5616             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5617                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5618                                  0x009f0003);
5619         else
5620                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5621                                  0x00d0000f);
5622
5623         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5624             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5625                 /* Use SSC source */
5626                 if (pipe == PIPE_A)
5627                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5628                                          0x0df40000);
5629                 else
5630                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5631                                          0x0df70000);
5632         } else { /* HDMI or VGA */
5633                 /* Use bend source */
5634                 if (pipe == PIPE_A)
5635                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5636                                          0x0df70000);
5637                 else
5638                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5639                                          0x0df40000);
5640         }
5641
5642         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5643         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5644         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5645             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5646                 coreclk |= 0x01000000;
5647         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5648
5649         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5650         mutex_unlock(&dev_priv->dpio_lock);
5651 }
5652
5653 static void chv_update_pll(struct intel_crtc *crtc)
5654 {
5655         struct drm_device *dev = crtc->base.dev;
5656         struct drm_i915_private *dev_priv = dev->dev_private;
5657         int pipe = crtc->pipe;
5658         int dpll_reg = DPLL(crtc->pipe);
5659         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5660         u32 loopfilter, intcoeff;
5661         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5662         int refclk;
5663
5664         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5665                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5666                 DPLL_VCO_ENABLE;
5667         if (pipe != PIPE_A)
5668                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5669
5670         crtc->config.dpll_hw_state.dpll_md =
5671                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5672
5673         bestn = crtc->config.dpll.n;
5674         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5675         bestm1 = crtc->config.dpll.m1;
5676         bestm2 = crtc->config.dpll.m2 >> 22;
5677         bestp1 = crtc->config.dpll.p1;
5678         bestp2 = crtc->config.dpll.p2;
5679
5680         /*
5681          * Enable Refclk and SSC
5682          */
5683         I915_WRITE(dpll_reg,
5684                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5685
5686         mutex_lock(&dev_priv->dpio_lock);
5687
5688         /* p1 and p2 divider */
5689         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5690                         5 << DPIO_CHV_S1_DIV_SHIFT |
5691                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5692                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5693                         1 << DPIO_CHV_K_DIV_SHIFT);
5694
5695         /* Feedback post-divider - m2 */
5696         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5697
5698         /* Feedback refclk divider - n and m1 */
5699         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5700                         DPIO_CHV_M1_DIV_BY_2 |
5701                         1 << DPIO_CHV_N_DIV_SHIFT);
5702
5703         /* M2 fraction division */
5704         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5705
5706         /* M2 fraction division enable */
5707         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5708                        DPIO_CHV_FRAC_DIV_EN |
5709                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5710
5711         /* Loop filter */
5712         refclk = i9xx_get_refclk(&crtc->base, 0);
5713         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5714                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5715         if (refclk == 100000)
5716                 intcoeff = 11;
5717         else if (refclk == 38400)
5718                 intcoeff = 10;
5719         else
5720                 intcoeff = 9;
5721         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5722         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5723
5724         /* AFC Recal */
5725         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5726                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5727                         DPIO_AFC_RECAL);
5728
5729         mutex_unlock(&dev_priv->dpio_lock);
5730 }
5731
5732 static void i9xx_update_pll(struct intel_crtc *crtc,
5733                             intel_clock_t *reduced_clock,
5734                             int num_connectors)
5735 {
5736         struct drm_device *dev = crtc->base.dev;
5737         struct drm_i915_private *dev_priv = dev->dev_private;
5738         u32 dpll;
5739         bool is_sdvo;
5740         struct dpll *clock = &crtc->config.dpll;
5741
5742         i9xx_update_pll_dividers(crtc, reduced_clock);
5743
5744         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5745                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5746
5747         dpll = DPLL_VGA_MODE_DIS;
5748
5749         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5750                 dpll |= DPLLB_MODE_LVDS;
5751         else
5752                 dpll |= DPLLB_MODE_DAC_SERIAL;
5753
5754         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5755                 dpll |= (crtc->config.pixel_multiplier - 1)
5756                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5757         }
5758
5759         if (is_sdvo)
5760                 dpll |= DPLL_SDVO_HIGH_SPEED;
5761
5762         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5763                 dpll |= DPLL_SDVO_HIGH_SPEED;
5764
5765         /* compute bitmask from p1 value */
5766         if (IS_PINEVIEW(dev))
5767                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5768         else {
5769                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5770                 if (IS_G4X(dev) && reduced_clock)
5771                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5772         }
5773         switch (clock->p2) {
5774         case 5:
5775                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5776                 break;
5777         case 7:
5778                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5779                 break;
5780         case 10:
5781                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5782                 break;
5783         case 14:
5784                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5785                 break;
5786         }
5787         if (INTEL_INFO(dev)->gen >= 4)
5788                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5789
5790         if (crtc->config.sdvo_tv_clock)
5791                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5792         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5793                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5794                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5795         else
5796                 dpll |= PLL_REF_INPUT_DREFCLK;
5797
5798         dpll |= DPLL_VCO_ENABLE;
5799         crtc->config.dpll_hw_state.dpll = dpll;
5800
5801         if (INTEL_INFO(dev)->gen >= 4) {
5802                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5803                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5804                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5805         }
5806 }
5807
5808 static void i8xx_update_pll(struct intel_crtc *crtc,
5809                             intel_clock_t *reduced_clock,
5810                             int num_connectors)
5811 {
5812         struct drm_device *dev = crtc->base.dev;
5813         struct drm_i915_private *dev_priv = dev->dev_private;
5814         u32 dpll;
5815         struct dpll *clock = &crtc->config.dpll;
5816
5817         i9xx_update_pll_dividers(crtc, reduced_clock);
5818
5819         dpll = DPLL_VGA_MODE_DIS;
5820
5821         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5822                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5823         } else {
5824                 if (clock->p1 == 2)
5825                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5826                 else
5827                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5828                 if (clock->p2 == 4)
5829                         dpll |= PLL_P2_DIVIDE_BY_4;
5830         }
5831
5832         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5833                 dpll |= DPLL_DVO_2X_MODE;
5834
5835         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5836                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5837                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5838         else
5839                 dpll |= PLL_REF_INPUT_DREFCLK;
5840
5841         dpll |= DPLL_VCO_ENABLE;
5842         crtc->config.dpll_hw_state.dpll = dpll;
5843 }
5844
5845 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5846 {
5847         struct drm_device *dev = intel_crtc->base.dev;
5848         struct drm_i915_private *dev_priv = dev->dev_private;
5849         enum pipe pipe = intel_crtc->pipe;
5850         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5851         struct drm_display_mode *adjusted_mode =
5852                 &intel_crtc->config.adjusted_mode;
5853         uint32_t crtc_vtotal, crtc_vblank_end;
5854         int vsyncshift = 0;
5855
5856         /* We need to be careful not to changed the adjusted mode, for otherwise
5857          * the hw state checker will get angry at the mismatch. */
5858         crtc_vtotal = adjusted_mode->crtc_vtotal;
5859         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5860
5861         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5862                 /* the chip adds 2 halflines automatically */
5863                 crtc_vtotal -= 1;
5864                 crtc_vblank_end -= 1;
5865
5866                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5867                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5868                 else
5869                         vsyncshift = adjusted_mode->crtc_hsync_start -
5870                                 adjusted_mode->crtc_htotal / 2;
5871                 if (vsyncshift < 0)
5872                         vsyncshift += adjusted_mode->crtc_htotal;
5873         }
5874
5875         if (INTEL_INFO(dev)->gen > 3)
5876                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5877
5878         I915_WRITE(HTOTAL(cpu_transcoder),
5879                    (adjusted_mode->crtc_hdisplay - 1) |
5880                    ((adjusted_mode->crtc_htotal - 1) << 16));
5881         I915_WRITE(HBLANK(cpu_transcoder),
5882                    (adjusted_mode->crtc_hblank_start - 1) |
5883                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5884         I915_WRITE(HSYNC(cpu_transcoder),
5885                    (adjusted_mode->crtc_hsync_start - 1) |
5886                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5887
5888         I915_WRITE(VTOTAL(cpu_transcoder),
5889                    (adjusted_mode->crtc_vdisplay - 1) |
5890                    ((crtc_vtotal - 1) << 16));
5891         I915_WRITE(VBLANK(cpu_transcoder),
5892                    (adjusted_mode->crtc_vblank_start - 1) |
5893                    ((crtc_vblank_end - 1) << 16));
5894         I915_WRITE(VSYNC(cpu_transcoder),
5895                    (adjusted_mode->crtc_vsync_start - 1) |
5896                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5897
5898         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5899          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5900          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5901          * bits. */
5902         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5903             (pipe == PIPE_B || pipe == PIPE_C))
5904                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5905
5906         /* pipesrc controls the size that is scaled from, which should
5907          * always be the user's requested size.
5908          */
5909         I915_WRITE(PIPESRC(pipe),
5910                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5911                    (intel_crtc->config.pipe_src_h - 1));
5912 }
5913
5914 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5915                                    struct intel_crtc_config *pipe_config)
5916 {
5917         struct drm_device *dev = crtc->base.dev;
5918         struct drm_i915_private *dev_priv = dev->dev_private;
5919         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5920         uint32_t tmp;
5921
5922         tmp = I915_READ(HTOTAL(cpu_transcoder));
5923         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5924         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5925         tmp = I915_READ(HBLANK(cpu_transcoder));
5926         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5927         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5928         tmp = I915_READ(HSYNC(cpu_transcoder));
5929         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5930         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5931
5932         tmp = I915_READ(VTOTAL(cpu_transcoder));
5933         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5934         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5935         tmp = I915_READ(VBLANK(cpu_transcoder));
5936         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5937         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5938         tmp = I915_READ(VSYNC(cpu_transcoder));
5939         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5940         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5943                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5944                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5945                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5946         }
5947
5948         tmp = I915_READ(PIPESRC(crtc->pipe));
5949         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5950         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5951
5952         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5953         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5954 }
5955
5956 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5957                                  struct intel_crtc_config *pipe_config)
5958 {
5959         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5960         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5961         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5962         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5963
5964         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5965         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5966         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5967         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5968
5969         mode->flags = pipe_config->adjusted_mode.flags;
5970
5971         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5972         mode->flags |= pipe_config->adjusted_mode.flags;
5973 }
5974
5975 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5976 {
5977         struct drm_device *dev = intel_crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         uint32_t pipeconf;
5980
5981         pipeconf = 0;
5982
5983         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5984             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5985                 pipeconf |= PIPECONF_ENABLE;
5986
5987         if (intel_crtc->config.double_wide)
5988                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5989
5990         /* only g4x and later have fancy bpc/dither controls */
5991         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5992                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5993                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5994                         pipeconf |= PIPECONF_DITHER_EN |
5995                                     PIPECONF_DITHER_TYPE_SP;
5996
5997                 switch (intel_crtc->config.pipe_bpp) {
5998                 case 18:
5999                         pipeconf |= PIPECONF_6BPC;
6000                         break;
6001                 case 24:
6002                         pipeconf |= PIPECONF_8BPC;
6003                         break;
6004                 case 30:
6005                         pipeconf |= PIPECONF_10BPC;
6006                         break;
6007                 default:
6008                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6009                         BUG();
6010                 }
6011         }
6012
6013         if (HAS_PIPE_CXSR(dev)) {
6014                 if (intel_crtc->lowfreq_avail) {
6015                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6016                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6017                 } else {
6018                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6019                 }
6020         }
6021
6022         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6023                 if (INTEL_INFO(dev)->gen < 4 ||
6024                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6025                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6026                 else
6027                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6028         } else
6029                 pipeconf |= PIPECONF_PROGRESSIVE;
6030
6031         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6032                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6033
6034         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6035         POSTING_READ(PIPECONF(intel_crtc->pipe));
6036 }
6037
6038 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6039                               int x, int y,
6040                               struct drm_framebuffer *fb)
6041 {
6042         struct drm_device *dev = crtc->dev;
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045         int refclk, num_connectors = 0;
6046         intel_clock_t clock, reduced_clock;
6047         bool ok, has_reduced_clock = false;
6048         bool is_lvds = false, is_dsi = false;
6049         struct intel_encoder *encoder;
6050         const intel_limit_t *limit;
6051
6052         for_each_encoder_on_crtc(dev, crtc, encoder) {
6053                 switch (encoder->type) {
6054                 case INTEL_OUTPUT_LVDS:
6055                         is_lvds = true;
6056                         break;
6057                 case INTEL_OUTPUT_DSI:
6058                         is_dsi = true;
6059                         break;
6060                 }
6061
6062                 num_connectors++;
6063         }
6064
6065         if (is_dsi)
6066                 return 0;
6067
6068         if (!intel_crtc->config.clock_set) {
6069                 refclk = i9xx_get_refclk(crtc, num_connectors);
6070
6071                 /*
6072                  * Returns a set of divisors for the desired target clock with
6073                  * the given refclk, or FALSE.  The returned values represent
6074                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6075                  * 2) / p1 / p2.
6076                  */
6077                 limit = intel_limit(crtc, refclk);
6078                 ok = dev_priv->display.find_dpll(limit, crtc,
6079                                                  intel_crtc->config.port_clock,
6080                                                  refclk, NULL, &clock);
6081                 if (!ok) {
6082                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6083                         return -EINVAL;
6084                 }
6085
6086                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6087                         /*
6088                          * Ensure we match the reduced clock's P to the target
6089                          * clock.  If the clocks don't match, we can't switch
6090                          * the display clock by using the FP0/FP1. In such case
6091                          * we will disable the LVDS downclock feature.
6092                          */
6093                         has_reduced_clock =
6094                                 dev_priv->display.find_dpll(limit, crtc,
6095                                                             dev_priv->lvds_downclock,
6096                                                             refclk, &clock,
6097                                                             &reduced_clock);
6098                 }
6099                 /* Compat-code for transition, will disappear. */
6100                 intel_crtc->config.dpll.n = clock.n;
6101                 intel_crtc->config.dpll.m1 = clock.m1;
6102                 intel_crtc->config.dpll.m2 = clock.m2;
6103                 intel_crtc->config.dpll.p1 = clock.p1;
6104                 intel_crtc->config.dpll.p2 = clock.p2;
6105         }
6106
6107         if (IS_GEN2(dev)) {
6108                 i8xx_update_pll(intel_crtc,
6109                                 has_reduced_clock ? &reduced_clock : NULL,
6110                                 num_connectors);
6111         } else if (IS_CHERRYVIEW(dev)) {
6112                 chv_update_pll(intel_crtc);
6113         } else if (IS_VALLEYVIEW(dev)) {
6114                 vlv_update_pll(intel_crtc);
6115         } else {
6116                 i9xx_update_pll(intel_crtc,
6117                                 has_reduced_clock ? &reduced_clock : NULL,
6118                                 num_connectors);
6119         }
6120
6121         return 0;
6122 }
6123
6124 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6125                                  struct intel_crtc_config *pipe_config)
6126 {
6127         struct drm_device *dev = crtc->base.dev;
6128         struct drm_i915_private *dev_priv = dev->dev_private;
6129         uint32_t tmp;
6130
6131         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6132                 return;
6133
6134         tmp = I915_READ(PFIT_CONTROL);
6135         if (!(tmp & PFIT_ENABLE))
6136                 return;
6137
6138         /* Check whether the pfit is attached to our pipe. */
6139         if (INTEL_INFO(dev)->gen < 4) {
6140                 if (crtc->pipe != PIPE_B)
6141                         return;
6142         } else {
6143                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6144                         return;
6145         }
6146
6147         pipe_config->gmch_pfit.control = tmp;
6148         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6149         if (INTEL_INFO(dev)->gen < 5)
6150                 pipe_config->gmch_pfit.lvds_border_bits =
6151                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6152 }
6153
6154 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6155                                struct intel_crtc_config *pipe_config)
6156 {
6157         struct drm_device *dev = crtc->base.dev;
6158         struct drm_i915_private *dev_priv = dev->dev_private;
6159         int pipe = pipe_config->cpu_transcoder;
6160         intel_clock_t clock;
6161         u32 mdiv;
6162         int refclk = 100000;
6163
6164         /* In case of MIPI DPLL will not even be used */
6165         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6166                 return;
6167
6168         mutex_lock(&dev_priv->dpio_lock);
6169         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6170         mutex_unlock(&dev_priv->dpio_lock);
6171
6172         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6173         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6174         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6175         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6176         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6177
6178         vlv_clock(refclk, &clock);
6179
6180         /* clock.dot is the fast clock */
6181         pipe_config->port_clock = clock.dot / 5;
6182 }
6183
6184 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6185                                   struct intel_plane_config *plane_config)
6186 {
6187         struct drm_device *dev = crtc->base.dev;
6188         struct drm_i915_private *dev_priv = dev->dev_private;
6189         u32 val, base, offset;
6190         int pipe = crtc->pipe, plane = crtc->plane;
6191         int fourcc, pixel_format;
6192         int aligned_height;
6193
6194         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6195         if (!crtc->base.primary->fb) {
6196                 DRM_DEBUG_KMS("failed to alloc fb\n");
6197                 return;
6198         }
6199
6200         val = I915_READ(DSPCNTR(plane));
6201
6202         if (INTEL_INFO(dev)->gen >= 4)
6203                 if (val & DISPPLANE_TILED)
6204                         plane_config->tiled = true;
6205
6206         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6207         fourcc = intel_format_to_fourcc(pixel_format);
6208         crtc->base.primary->fb->pixel_format = fourcc;
6209         crtc->base.primary->fb->bits_per_pixel =
6210                 drm_format_plane_cpp(fourcc, 0) * 8;
6211
6212         if (INTEL_INFO(dev)->gen >= 4) {
6213                 if (plane_config->tiled)
6214                         offset = I915_READ(DSPTILEOFF(plane));
6215                 else
6216                         offset = I915_READ(DSPLINOFF(plane));
6217                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6218         } else {
6219                 base = I915_READ(DSPADDR(plane));
6220         }
6221         plane_config->base = base;
6222
6223         val = I915_READ(PIPESRC(pipe));
6224         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6225         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6226
6227         val = I915_READ(DSPSTRIDE(pipe));
6228         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6229
6230         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6231                                             plane_config->tiled);
6232
6233         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6234                                         aligned_height);
6235
6236         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6237                       pipe, plane, crtc->base.primary->fb->width,
6238                       crtc->base.primary->fb->height,
6239                       crtc->base.primary->fb->bits_per_pixel, base,
6240                       crtc->base.primary->fb->pitches[0],
6241                       plane_config->size);
6242
6243 }
6244
6245 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6246                                struct intel_crtc_config *pipe_config)
6247 {
6248         struct drm_device *dev = crtc->base.dev;
6249         struct drm_i915_private *dev_priv = dev->dev_private;
6250         int pipe = pipe_config->cpu_transcoder;
6251         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6252         intel_clock_t clock;
6253         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6254         int refclk = 100000;
6255
6256         mutex_lock(&dev_priv->dpio_lock);
6257         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6258         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6259         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6260         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6261         mutex_unlock(&dev_priv->dpio_lock);
6262
6263         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6264         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6265         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6266         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6267         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6268
6269         chv_clock(refclk, &clock);
6270
6271         /* clock.dot is the fast clock */
6272         pipe_config->port_clock = clock.dot / 5;
6273 }
6274
6275 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6276                                  struct intel_crtc_config *pipe_config)
6277 {
6278         struct drm_device *dev = crtc->base.dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280         uint32_t tmp;
6281
6282         if (!intel_display_power_enabled(dev_priv,
6283                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6284                 return false;
6285
6286         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6287         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6288
6289         tmp = I915_READ(PIPECONF(crtc->pipe));
6290         if (!(tmp & PIPECONF_ENABLE))
6291                 return false;
6292
6293         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6294                 switch (tmp & PIPECONF_BPC_MASK) {
6295                 case PIPECONF_6BPC:
6296                         pipe_config->pipe_bpp = 18;
6297                         break;
6298                 case PIPECONF_8BPC:
6299                         pipe_config->pipe_bpp = 24;
6300                         break;
6301                 case PIPECONF_10BPC:
6302                         pipe_config->pipe_bpp = 30;
6303                         break;
6304                 default:
6305                         break;
6306                 }
6307         }
6308
6309         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6310                 pipe_config->limited_color_range = true;
6311
6312         if (INTEL_INFO(dev)->gen < 4)
6313                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6314
6315         intel_get_pipe_timings(crtc, pipe_config);
6316
6317         i9xx_get_pfit_config(crtc, pipe_config);
6318
6319         if (INTEL_INFO(dev)->gen >= 4) {
6320                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6321                 pipe_config->pixel_multiplier =
6322                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6323                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6324                 pipe_config->dpll_hw_state.dpll_md = tmp;
6325         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6326                 tmp = I915_READ(DPLL(crtc->pipe));
6327                 pipe_config->pixel_multiplier =
6328                         ((tmp & SDVO_MULTIPLIER_MASK)
6329                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6330         } else {
6331                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6332                  * port and will be fixed up in the encoder->get_config
6333                  * function. */
6334                 pipe_config->pixel_multiplier = 1;
6335         }
6336         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6337         if (!IS_VALLEYVIEW(dev)) {
6338                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6339                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6340         } else {
6341                 /* Mask out read-only status bits. */
6342                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6343                                                      DPLL_PORTC_READY_MASK |
6344                                                      DPLL_PORTB_READY_MASK);
6345         }
6346
6347         if (IS_CHERRYVIEW(dev))
6348                 chv_crtc_clock_get(crtc, pipe_config);
6349         else if (IS_VALLEYVIEW(dev))
6350                 vlv_crtc_clock_get(crtc, pipe_config);
6351         else
6352                 i9xx_crtc_clock_get(crtc, pipe_config);
6353
6354         return true;
6355 }
6356
6357 static void ironlake_init_pch_refclk(struct drm_device *dev)
6358 {
6359         struct drm_i915_private *dev_priv = dev->dev_private;
6360         struct drm_mode_config *mode_config = &dev->mode_config;
6361         struct intel_encoder *encoder;
6362         u32 val, final;
6363         bool has_lvds = false;
6364         bool has_cpu_edp = false;
6365         bool has_panel = false;
6366         bool has_ck505 = false;
6367         bool can_ssc = false;
6368
6369         /* We need to take the global config into account */
6370         list_for_each_entry(encoder, &mode_config->encoder_list,
6371                             base.head) {
6372                 switch (encoder->type) {
6373                 case INTEL_OUTPUT_LVDS:
6374                         has_panel = true;
6375                         has_lvds = true;
6376                         break;
6377                 case INTEL_OUTPUT_EDP:
6378                         has_panel = true;
6379                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6380                                 has_cpu_edp = true;
6381                         break;
6382                 }
6383         }
6384
6385         if (HAS_PCH_IBX(dev)) {
6386                 has_ck505 = dev_priv->vbt.display_clock_mode;
6387                 can_ssc = has_ck505;
6388         } else {
6389                 has_ck505 = false;
6390                 can_ssc = true;
6391         }
6392
6393         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6394                       has_panel, has_lvds, has_ck505);
6395
6396         /* Ironlake: try to setup display ref clock before DPLL
6397          * enabling. This is only under driver's control after
6398          * PCH B stepping, previous chipset stepping should be
6399          * ignoring this setting.
6400          */
6401         val = I915_READ(PCH_DREF_CONTROL);
6402
6403         /* As we must carefully and slowly disable/enable each source in turn,
6404          * compute the final state we want first and check if we need to
6405          * make any changes at all.
6406          */
6407         final = val;
6408         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6409         if (has_ck505)
6410                 final |= DREF_NONSPREAD_CK505_ENABLE;
6411         else
6412                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6413
6414         final &= ~DREF_SSC_SOURCE_MASK;
6415         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6416         final &= ~DREF_SSC1_ENABLE;
6417
6418         if (has_panel) {
6419                 final |= DREF_SSC_SOURCE_ENABLE;
6420
6421                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6422                         final |= DREF_SSC1_ENABLE;
6423
6424                 if (has_cpu_edp) {
6425                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6426                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6427                         else
6428                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6429                 } else
6430                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6431         } else {
6432                 final |= DREF_SSC_SOURCE_DISABLE;
6433                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6434         }
6435
6436         if (final == val)
6437                 return;
6438
6439         /* Always enable nonspread source */
6440         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6441
6442         if (has_ck505)
6443                 val |= DREF_NONSPREAD_CK505_ENABLE;
6444         else
6445                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6446
6447         if (has_panel) {
6448                 val &= ~DREF_SSC_SOURCE_MASK;
6449                 val |= DREF_SSC_SOURCE_ENABLE;
6450
6451                 /* SSC must be turned on before enabling the CPU output  */
6452                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6453                         DRM_DEBUG_KMS("Using SSC on panel\n");
6454                         val |= DREF_SSC1_ENABLE;
6455                 } else
6456                         val &= ~DREF_SSC1_ENABLE;
6457
6458                 /* Get SSC going before enabling the outputs */
6459                 I915_WRITE(PCH_DREF_CONTROL, val);
6460                 POSTING_READ(PCH_DREF_CONTROL);
6461                 udelay(200);
6462
6463                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6464
6465                 /* Enable CPU source on CPU attached eDP */
6466                 if (has_cpu_edp) {
6467                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6468                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6469                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6470                         } else
6471                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6472                 } else
6473                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6474
6475                 I915_WRITE(PCH_DREF_CONTROL, val);
6476                 POSTING_READ(PCH_DREF_CONTROL);
6477                 udelay(200);
6478         } else {
6479                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6480
6481                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6482
6483                 /* Turn off CPU output */
6484                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6485
6486                 I915_WRITE(PCH_DREF_CONTROL, val);
6487                 POSTING_READ(PCH_DREF_CONTROL);
6488                 udelay(200);
6489
6490                 /* Turn off the SSC source */
6491                 val &= ~DREF_SSC_SOURCE_MASK;
6492                 val |= DREF_SSC_SOURCE_DISABLE;
6493
6494                 /* Turn off SSC1 */
6495                 val &= ~DREF_SSC1_ENABLE;
6496
6497                 I915_WRITE(PCH_DREF_CONTROL, val);
6498                 POSTING_READ(PCH_DREF_CONTROL);
6499                 udelay(200);
6500         }
6501
6502         BUG_ON(val != final);
6503 }
6504
6505 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6506 {
6507         uint32_t tmp;
6508
6509         tmp = I915_READ(SOUTH_CHICKEN2);
6510         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6511         I915_WRITE(SOUTH_CHICKEN2, tmp);
6512
6513         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6514                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6515                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6516
6517         tmp = I915_READ(SOUTH_CHICKEN2);
6518         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6519         I915_WRITE(SOUTH_CHICKEN2, tmp);
6520
6521         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6522                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6523                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6524 }
6525
6526 /* WaMPhyProgramming:hsw */
6527 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6528 {
6529         uint32_t tmp;
6530
6531         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6532         tmp &= ~(0xFF << 24);
6533         tmp |= (0x12 << 24);
6534         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6535
6536         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6537         tmp |= (1 << 11);
6538         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6539
6540         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6541         tmp |= (1 << 11);
6542         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6543
6544         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6545         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6546         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6547
6548         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6549         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6550         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6551
6552         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6553         tmp &= ~(7 << 13);
6554         tmp |= (5 << 13);
6555         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6556
6557         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6558         tmp &= ~(7 << 13);
6559         tmp |= (5 << 13);
6560         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6561
6562         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6563         tmp &= ~0xFF;
6564         tmp |= 0x1C;
6565         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6566
6567         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6568         tmp &= ~0xFF;
6569         tmp |= 0x1C;
6570         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6571
6572         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6573         tmp &= ~(0xFF << 16);
6574         tmp |= (0x1C << 16);
6575         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6576
6577         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6578         tmp &= ~(0xFF << 16);
6579         tmp |= (0x1C << 16);
6580         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6581
6582         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6583         tmp |= (1 << 27);
6584         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6585
6586         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6587         tmp |= (1 << 27);
6588         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6589
6590         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6591         tmp &= ~(0xF << 28);
6592         tmp |= (4 << 28);
6593         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6594
6595         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6596         tmp &= ~(0xF << 28);
6597         tmp |= (4 << 28);
6598         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6599 }
6600
6601 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6602  * Programming" based on the parameters passed:
6603  * - Sequence to enable CLKOUT_DP
6604  * - Sequence to enable CLKOUT_DP without spread
6605  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6606  */
6607 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6608                                  bool with_fdi)
6609 {
6610         struct drm_i915_private *dev_priv = dev->dev_private;
6611         uint32_t reg, tmp;
6612
6613         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6614                 with_spread = true;
6615         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6616                  with_fdi, "LP PCH doesn't have FDI\n"))
6617                 with_fdi = false;
6618
6619         mutex_lock(&dev_priv->dpio_lock);
6620
6621         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6622         tmp &= ~SBI_SSCCTL_DISABLE;
6623         tmp |= SBI_SSCCTL_PATHALT;
6624         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6625
6626         udelay(24);
6627
6628         if (with_spread) {
6629                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6630                 tmp &= ~SBI_SSCCTL_PATHALT;
6631                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6632
6633                 if (with_fdi) {
6634                         lpt_reset_fdi_mphy(dev_priv);
6635                         lpt_program_fdi_mphy(dev_priv);
6636                 }
6637         }
6638
6639         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6640                SBI_GEN0 : SBI_DBUFF0;
6641         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6642         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6643         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6644
6645         mutex_unlock(&dev_priv->dpio_lock);
6646 }
6647
6648 /* Sequence to disable CLKOUT_DP */
6649 static void lpt_disable_clkout_dp(struct drm_device *dev)
6650 {
6651         struct drm_i915_private *dev_priv = dev->dev_private;
6652         uint32_t reg, tmp;
6653
6654         mutex_lock(&dev_priv->dpio_lock);
6655
6656         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6657                SBI_GEN0 : SBI_DBUFF0;
6658         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6659         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6660         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6661
6662         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6663         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6664                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6665                         tmp |= SBI_SSCCTL_PATHALT;
6666                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6667                         udelay(32);
6668                 }
6669                 tmp |= SBI_SSCCTL_DISABLE;
6670                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6671         }
6672
6673         mutex_unlock(&dev_priv->dpio_lock);
6674 }
6675
6676 static void lpt_init_pch_refclk(struct drm_device *dev)
6677 {
6678         struct drm_mode_config *mode_config = &dev->mode_config;
6679         struct intel_encoder *encoder;
6680         bool has_vga = false;
6681
6682         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6683                 switch (encoder->type) {
6684                 case INTEL_OUTPUT_ANALOG:
6685                         has_vga = true;
6686                         break;
6687                 }
6688         }
6689
6690         if (has_vga)
6691                 lpt_enable_clkout_dp(dev, true, true);
6692         else
6693                 lpt_disable_clkout_dp(dev);
6694 }
6695
6696 /*
6697  * Initialize reference clocks when the driver loads
6698  */
6699 void intel_init_pch_refclk(struct drm_device *dev)
6700 {
6701         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6702                 ironlake_init_pch_refclk(dev);
6703         else if (HAS_PCH_LPT(dev))
6704                 lpt_init_pch_refclk(dev);
6705 }
6706
6707 static int ironlake_get_refclk(struct drm_crtc *crtc)
6708 {
6709         struct drm_device *dev = crtc->dev;
6710         struct drm_i915_private *dev_priv = dev->dev_private;
6711         struct intel_encoder *encoder;
6712         int num_connectors = 0;
6713         bool is_lvds = false;
6714
6715         for_each_encoder_on_crtc(dev, crtc, encoder) {
6716                 switch (encoder->type) {
6717                 case INTEL_OUTPUT_LVDS:
6718                         is_lvds = true;
6719                         break;
6720                 }
6721                 num_connectors++;
6722         }
6723
6724         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6725                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6726                               dev_priv->vbt.lvds_ssc_freq);
6727                 return dev_priv->vbt.lvds_ssc_freq;
6728         }
6729
6730         return 120000;
6731 }
6732
6733 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6734 {
6735         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6736         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6737         int pipe = intel_crtc->pipe;
6738         uint32_t val;
6739
6740         val = 0;
6741
6742         switch (intel_crtc->config.pipe_bpp) {
6743         case 18:
6744                 val |= PIPECONF_6BPC;
6745                 break;
6746         case 24:
6747                 val |= PIPECONF_8BPC;
6748                 break;
6749         case 30:
6750                 val |= PIPECONF_10BPC;
6751                 break;
6752         case 36:
6753                 val |= PIPECONF_12BPC;
6754                 break;
6755         default:
6756                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6757                 BUG();
6758         }
6759
6760         if (intel_crtc->config.dither)
6761                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6762
6763         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6764                 val |= PIPECONF_INTERLACED_ILK;
6765         else
6766                 val |= PIPECONF_PROGRESSIVE;
6767
6768         if (intel_crtc->config.limited_color_range)
6769                 val |= PIPECONF_COLOR_RANGE_SELECT;
6770
6771         I915_WRITE(PIPECONF(pipe), val);
6772         POSTING_READ(PIPECONF(pipe));
6773 }
6774
6775 /*
6776  * Set up the pipe CSC unit.
6777  *
6778  * Currently only full range RGB to limited range RGB conversion
6779  * is supported, but eventually this should handle various
6780  * RGB<->YCbCr scenarios as well.
6781  */
6782 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6783 {
6784         struct drm_device *dev = crtc->dev;
6785         struct drm_i915_private *dev_priv = dev->dev_private;
6786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6787         int pipe = intel_crtc->pipe;
6788         uint16_t coeff = 0x7800; /* 1.0 */
6789
6790         /*
6791          * TODO: Check what kind of values actually come out of the pipe
6792          * with these coeff/postoff values and adjust to get the best
6793          * accuracy. Perhaps we even need to take the bpc value into
6794          * consideration.
6795          */
6796
6797         if (intel_crtc->config.limited_color_range)
6798                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6799
6800         /*
6801          * GY/GU and RY/RU should be the other way around according
6802          * to BSpec, but reality doesn't agree. Just set them up in
6803          * a way that results in the correct picture.
6804          */
6805         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6806         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6807
6808         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6809         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6810
6811         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6812         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6813
6814         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6815         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6816         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6817
6818         if (INTEL_INFO(dev)->gen > 6) {
6819                 uint16_t postoff = 0;
6820
6821                 if (intel_crtc->config.limited_color_range)
6822                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6823
6824                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6825                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6826                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6827
6828                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6829         } else {
6830                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6831
6832                 if (intel_crtc->config.limited_color_range)
6833                         mode |= CSC_BLACK_SCREEN_OFFSET;
6834
6835                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6836         }
6837 }
6838
6839 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6840 {
6841         struct drm_device *dev = crtc->dev;
6842         struct drm_i915_private *dev_priv = dev->dev_private;
6843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844         enum pipe pipe = intel_crtc->pipe;
6845         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6846         uint32_t val;
6847
6848         val = 0;
6849
6850         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6851                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6852
6853         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6854                 val |= PIPECONF_INTERLACED_ILK;
6855         else
6856                 val |= PIPECONF_PROGRESSIVE;
6857
6858         I915_WRITE(PIPECONF(cpu_transcoder), val);
6859         POSTING_READ(PIPECONF(cpu_transcoder));
6860
6861         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6862         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6863
6864         if (IS_BROADWELL(dev)) {
6865                 val = 0;
6866
6867                 switch (intel_crtc->config.pipe_bpp) {
6868                 case 18:
6869                         val |= PIPEMISC_DITHER_6_BPC;
6870                         break;
6871                 case 24:
6872                         val |= PIPEMISC_DITHER_8_BPC;
6873                         break;
6874                 case 30:
6875                         val |= PIPEMISC_DITHER_10_BPC;
6876                         break;
6877                 case 36:
6878                         val |= PIPEMISC_DITHER_12_BPC;
6879                         break;
6880                 default:
6881                         /* Case prevented by pipe_config_set_bpp. */
6882                         BUG();
6883                 }
6884
6885                 if (intel_crtc->config.dither)
6886                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6887
6888                 I915_WRITE(PIPEMISC(pipe), val);
6889         }
6890 }
6891
6892 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6893                                     intel_clock_t *clock,
6894                                     bool *has_reduced_clock,
6895                                     intel_clock_t *reduced_clock)
6896 {
6897         struct drm_device *dev = crtc->dev;
6898         struct drm_i915_private *dev_priv = dev->dev_private;
6899         struct intel_encoder *intel_encoder;
6900         int refclk;
6901         const intel_limit_t *limit;
6902         bool ret, is_lvds = false;
6903
6904         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6905                 switch (intel_encoder->type) {
6906                 case INTEL_OUTPUT_LVDS:
6907                         is_lvds = true;
6908                         break;
6909                 }
6910         }
6911
6912         refclk = ironlake_get_refclk(crtc);
6913
6914         /*
6915          * Returns a set of divisors for the desired target clock with the given
6916          * refclk, or FALSE.  The returned values represent the clock equation:
6917          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6918          */
6919         limit = intel_limit(crtc, refclk);
6920         ret = dev_priv->display.find_dpll(limit, crtc,
6921                                           to_intel_crtc(crtc)->config.port_clock,
6922                                           refclk, NULL, clock);
6923         if (!ret)
6924                 return false;
6925
6926         if (is_lvds && dev_priv->lvds_downclock_avail) {
6927                 /*
6928                  * Ensure we match the reduced clock's P to the target clock.
6929                  * If the clocks don't match, we can't switch the display clock
6930                  * by using the FP0/FP1. In such case we will disable the LVDS
6931                  * downclock feature.
6932                 */
6933                 *has_reduced_clock =
6934                         dev_priv->display.find_dpll(limit, crtc,
6935                                                     dev_priv->lvds_downclock,
6936                                                     refclk, clock,
6937                                                     reduced_clock);
6938         }
6939
6940         return true;
6941 }
6942
6943 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6944 {
6945         /*
6946          * Account for spread spectrum to avoid
6947          * oversubscribing the link. Max center spread
6948          * is 2.5%; use 5% for safety's sake.
6949          */
6950         u32 bps = target_clock * bpp * 21 / 20;
6951         return DIV_ROUND_UP(bps, link_bw * 8);
6952 }
6953
6954 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6955 {
6956         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6957 }
6958
6959 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6960                                       u32 *fp,
6961                                       intel_clock_t *reduced_clock, u32 *fp2)
6962 {
6963         struct drm_crtc *crtc = &intel_crtc->base;
6964         struct drm_device *dev = crtc->dev;
6965         struct drm_i915_private *dev_priv = dev->dev_private;
6966         struct intel_encoder *intel_encoder;
6967         uint32_t dpll;
6968         int factor, num_connectors = 0;
6969         bool is_lvds = false, is_sdvo = false;
6970
6971         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6972                 switch (intel_encoder->type) {
6973                 case INTEL_OUTPUT_LVDS:
6974                         is_lvds = true;
6975                         break;
6976                 case INTEL_OUTPUT_SDVO:
6977                 case INTEL_OUTPUT_HDMI:
6978                         is_sdvo = true;
6979                         break;
6980                 }
6981
6982                 num_connectors++;
6983         }
6984
6985         /* Enable autotuning of the PLL clock (if permissible) */
6986         factor = 21;
6987         if (is_lvds) {
6988                 if ((intel_panel_use_ssc(dev_priv) &&
6989                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6990                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6991                         factor = 25;
6992         } else if (intel_crtc->config.sdvo_tv_clock)
6993                 factor = 20;
6994
6995         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6996                 *fp |= FP_CB_TUNE;
6997
6998         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6999                 *fp2 |= FP_CB_TUNE;
7000
7001         dpll = 0;
7002
7003         if (is_lvds)
7004                 dpll |= DPLLB_MODE_LVDS;
7005         else
7006                 dpll |= DPLLB_MODE_DAC_SERIAL;
7007
7008         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7009                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7010
7011         if (is_sdvo)
7012                 dpll |= DPLL_SDVO_HIGH_SPEED;
7013         if (intel_crtc->config.has_dp_encoder)
7014                 dpll |= DPLL_SDVO_HIGH_SPEED;
7015
7016         /* compute bitmask from p1 value */
7017         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7018         /* also FPA1 */
7019         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7020
7021         switch (intel_crtc->config.dpll.p2) {
7022         case 5:
7023                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7024                 break;
7025         case 7:
7026                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7027                 break;
7028         case 10:
7029                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7030                 break;
7031         case 14:
7032                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7033                 break;
7034         }
7035
7036         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7037                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7038         else
7039                 dpll |= PLL_REF_INPUT_DREFCLK;
7040
7041         return dpll | DPLL_VCO_ENABLE;
7042 }
7043
7044 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7045                                   int x, int y,
7046                                   struct drm_framebuffer *fb)
7047 {
7048         struct drm_device *dev = crtc->dev;
7049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7050         int num_connectors = 0;
7051         intel_clock_t clock, reduced_clock;
7052         u32 dpll = 0, fp = 0, fp2 = 0;
7053         bool ok, has_reduced_clock = false;
7054         bool is_lvds = false;
7055         struct intel_encoder *encoder;
7056         struct intel_shared_dpll *pll;
7057
7058         for_each_encoder_on_crtc(dev, crtc, encoder) {
7059                 switch (encoder->type) {
7060                 case INTEL_OUTPUT_LVDS:
7061                         is_lvds = true;
7062                         break;
7063                 }
7064
7065                 num_connectors++;
7066         }
7067
7068         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7069              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7070
7071         ok = ironlake_compute_clocks(crtc, &clock,
7072                                      &has_reduced_clock, &reduced_clock);
7073         if (!ok && !intel_crtc->config.clock_set) {
7074                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7075                 return -EINVAL;
7076         }
7077         /* Compat-code for transition, will disappear. */
7078         if (!intel_crtc->config.clock_set) {
7079                 intel_crtc->config.dpll.n = clock.n;
7080                 intel_crtc->config.dpll.m1 = clock.m1;
7081                 intel_crtc->config.dpll.m2 = clock.m2;
7082                 intel_crtc->config.dpll.p1 = clock.p1;
7083                 intel_crtc->config.dpll.p2 = clock.p2;
7084         }
7085
7086         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7087         if (intel_crtc->config.has_pch_encoder) {
7088                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7089                 if (has_reduced_clock)
7090                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7091
7092                 dpll = ironlake_compute_dpll(intel_crtc,
7093                                              &fp, &reduced_clock,
7094                                              has_reduced_clock ? &fp2 : NULL);
7095
7096                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7097                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7098                 if (has_reduced_clock)
7099                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7100                 else
7101                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7102
7103                 pll = intel_get_shared_dpll(intel_crtc);
7104                 if (pll == NULL) {
7105                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7106                                          pipe_name(intel_crtc->pipe));
7107                         return -EINVAL;
7108                 }
7109         } else
7110                 intel_put_shared_dpll(intel_crtc);
7111
7112         if (is_lvds && has_reduced_clock && i915.powersave)
7113                 intel_crtc->lowfreq_avail = true;
7114         else
7115                 intel_crtc->lowfreq_avail = false;
7116
7117         return 0;
7118 }
7119
7120 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7121                                          struct intel_link_m_n *m_n)
7122 {
7123         struct drm_device *dev = crtc->base.dev;
7124         struct drm_i915_private *dev_priv = dev->dev_private;
7125         enum pipe pipe = crtc->pipe;
7126
7127         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7128         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7129         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7130                 & ~TU_SIZE_MASK;
7131         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7132         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7133                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7134 }
7135
7136 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7137                                          enum transcoder transcoder,
7138                                          struct intel_link_m_n *m_n)
7139 {
7140         struct drm_device *dev = crtc->base.dev;
7141         struct drm_i915_private *dev_priv = dev->dev_private;
7142         enum pipe pipe = crtc->pipe;
7143
7144         if (INTEL_INFO(dev)->gen >= 5) {
7145                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7146                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7147                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7148                         & ~TU_SIZE_MASK;
7149                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7150                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7151                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7152         } else {
7153                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7154                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7155                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7156                         & ~TU_SIZE_MASK;
7157                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7158                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7159                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7160         }
7161 }
7162
7163 void intel_dp_get_m_n(struct intel_crtc *crtc,
7164                       struct intel_crtc_config *pipe_config)
7165 {
7166         if (crtc->config.has_pch_encoder)
7167                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7168         else
7169                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7170                                              &pipe_config->dp_m_n);
7171 }
7172
7173 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7174                                         struct intel_crtc_config *pipe_config)
7175 {
7176         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7177                                      &pipe_config->fdi_m_n);
7178 }
7179
7180 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7181                                      struct intel_crtc_config *pipe_config)
7182 {
7183         struct drm_device *dev = crtc->base.dev;
7184         struct drm_i915_private *dev_priv = dev->dev_private;
7185         uint32_t tmp;
7186
7187         tmp = I915_READ(PF_CTL(crtc->pipe));
7188
7189         if (tmp & PF_ENABLE) {
7190                 pipe_config->pch_pfit.enabled = true;
7191                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7192                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7193
7194                 /* We currently do not free assignements of panel fitters on
7195                  * ivb/hsw (since we don't use the higher upscaling modes which
7196                  * differentiates them) so just WARN about this case for now. */
7197                 if (IS_GEN7(dev)) {
7198                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7199                                 PF_PIPE_SEL_IVB(crtc->pipe));
7200                 }
7201         }
7202 }
7203
7204 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7205                                       struct intel_plane_config *plane_config)
7206 {
7207         struct drm_device *dev = crtc->base.dev;
7208         struct drm_i915_private *dev_priv = dev->dev_private;
7209         u32 val, base, offset;
7210         int pipe = crtc->pipe, plane = crtc->plane;
7211         int fourcc, pixel_format;
7212         int aligned_height;
7213
7214         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7215         if (!crtc->base.primary->fb) {
7216                 DRM_DEBUG_KMS("failed to alloc fb\n");
7217                 return;
7218         }
7219
7220         val = I915_READ(DSPCNTR(plane));
7221
7222         if (INTEL_INFO(dev)->gen >= 4)
7223                 if (val & DISPPLANE_TILED)
7224                         plane_config->tiled = true;
7225
7226         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7227         fourcc = intel_format_to_fourcc(pixel_format);
7228         crtc->base.primary->fb->pixel_format = fourcc;
7229         crtc->base.primary->fb->bits_per_pixel =
7230                 drm_format_plane_cpp(fourcc, 0) * 8;
7231
7232         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7233         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7234                 offset = I915_READ(DSPOFFSET(plane));
7235         } else {
7236                 if (plane_config->tiled)
7237                         offset = I915_READ(DSPTILEOFF(plane));
7238                 else
7239                         offset = I915_READ(DSPLINOFF(plane));
7240         }
7241         plane_config->base = base;
7242
7243         val = I915_READ(PIPESRC(pipe));
7244         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7245         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7246
7247         val = I915_READ(DSPSTRIDE(pipe));
7248         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7249
7250         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7251                                             plane_config->tiled);
7252
7253         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7254                                         aligned_height);
7255
7256         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7257                       pipe, plane, crtc->base.primary->fb->width,
7258                       crtc->base.primary->fb->height,
7259                       crtc->base.primary->fb->bits_per_pixel, base,
7260                       crtc->base.primary->fb->pitches[0],
7261                       plane_config->size);
7262 }
7263
7264 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7265                                      struct intel_crtc_config *pipe_config)
7266 {
7267         struct drm_device *dev = crtc->base.dev;
7268         struct drm_i915_private *dev_priv = dev->dev_private;
7269         uint32_t tmp;
7270
7271         if (!intel_display_power_enabled(dev_priv,
7272                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7273                 return false;
7274
7275         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7276         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7277
7278         tmp = I915_READ(PIPECONF(crtc->pipe));
7279         if (!(tmp & PIPECONF_ENABLE))
7280                 return false;
7281
7282         switch (tmp & PIPECONF_BPC_MASK) {
7283         case PIPECONF_6BPC:
7284                 pipe_config->pipe_bpp = 18;
7285                 break;
7286         case PIPECONF_8BPC:
7287                 pipe_config->pipe_bpp = 24;
7288                 break;
7289         case PIPECONF_10BPC:
7290                 pipe_config->pipe_bpp = 30;
7291                 break;
7292         case PIPECONF_12BPC:
7293                 pipe_config->pipe_bpp = 36;
7294                 break;
7295         default:
7296                 break;
7297         }
7298
7299         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7300                 pipe_config->limited_color_range = true;
7301
7302         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7303                 struct intel_shared_dpll *pll;
7304
7305                 pipe_config->has_pch_encoder = true;
7306
7307                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7308                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7309                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7310
7311                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7312
7313                 if (HAS_PCH_IBX(dev_priv->dev)) {
7314                         pipe_config->shared_dpll =
7315                                 (enum intel_dpll_id) crtc->pipe;
7316                 } else {
7317                         tmp = I915_READ(PCH_DPLL_SEL);
7318                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7319                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7320                         else
7321                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7322                 }
7323
7324                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7325
7326                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7327                                            &pipe_config->dpll_hw_state));
7328
7329                 tmp = pipe_config->dpll_hw_state.dpll;
7330                 pipe_config->pixel_multiplier =
7331                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7332                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7333
7334                 ironlake_pch_clock_get(crtc, pipe_config);
7335         } else {
7336                 pipe_config->pixel_multiplier = 1;
7337         }
7338
7339         intel_get_pipe_timings(crtc, pipe_config);
7340
7341         ironlake_get_pfit_config(crtc, pipe_config);
7342
7343         return true;
7344 }
7345
7346 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7347 {
7348         struct drm_device *dev = dev_priv->dev;
7349         struct intel_crtc *crtc;
7350
7351         for_each_intel_crtc(dev, crtc)
7352                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7353                      pipe_name(crtc->pipe));
7354
7355         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7356         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7357         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7358         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7359         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7360         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7361              "CPU PWM1 enabled\n");
7362         if (IS_HASWELL(dev))
7363                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7364                      "CPU PWM2 enabled\n");
7365         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7366              "PCH PWM1 enabled\n");
7367         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7368              "Utility pin enabled\n");
7369         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7370
7371         /*
7372          * In theory we can still leave IRQs enabled, as long as only the HPD
7373          * interrupts remain enabled. We used to check for that, but since it's
7374          * gen-specific and since we only disable LCPLL after we fully disable
7375          * the interrupts, the check below should be enough.
7376          */
7377         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7378 }
7379
7380 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7381 {
7382         struct drm_device *dev = dev_priv->dev;
7383
7384         if (IS_HASWELL(dev))
7385                 return I915_READ(D_COMP_HSW);
7386         else
7387                 return I915_READ(D_COMP_BDW);
7388 }
7389
7390 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7391 {
7392         struct drm_device *dev = dev_priv->dev;
7393
7394         if (IS_HASWELL(dev)) {
7395                 mutex_lock(&dev_priv->rps.hw_lock);
7396                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7397                                             val))
7398                         DRM_ERROR("Failed to write to D_COMP\n");
7399                 mutex_unlock(&dev_priv->rps.hw_lock);
7400         } else {
7401                 I915_WRITE(D_COMP_BDW, val);
7402                 POSTING_READ(D_COMP_BDW);
7403         }
7404 }
7405
7406 /*
7407  * This function implements pieces of two sequences from BSpec:
7408  * - Sequence for display software to disable LCPLL
7409  * - Sequence for display software to allow package C8+
7410  * The steps implemented here are just the steps that actually touch the LCPLL
7411  * register. Callers should take care of disabling all the display engine
7412  * functions, doing the mode unset, fixing interrupts, etc.
7413  */
7414 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7415                               bool switch_to_fclk, bool allow_power_down)
7416 {
7417         uint32_t val;
7418
7419         assert_can_disable_lcpll(dev_priv);
7420
7421         val = I915_READ(LCPLL_CTL);
7422
7423         if (switch_to_fclk) {
7424                 val |= LCPLL_CD_SOURCE_FCLK;
7425                 I915_WRITE(LCPLL_CTL, val);
7426
7427                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7428                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7429                         DRM_ERROR("Switching to FCLK failed\n");
7430
7431                 val = I915_READ(LCPLL_CTL);
7432         }
7433
7434         val |= LCPLL_PLL_DISABLE;
7435         I915_WRITE(LCPLL_CTL, val);
7436         POSTING_READ(LCPLL_CTL);
7437
7438         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7439                 DRM_ERROR("LCPLL still locked\n");
7440
7441         val = hsw_read_dcomp(dev_priv);
7442         val |= D_COMP_COMP_DISABLE;
7443         hsw_write_dcomp(dev_priv, val);
7444         ndelay(100);
7445
7446         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7447                      1))
7448                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7449
7450         if (allow_power_down) {
7451                 val = I915_READ(LCPLL_CTL);
7452                 val |= LCPLL_POWER_DOWN_ALLOW;
7453                 I915_WRITE(LCPLL_CTL, val);
7454                 POSTING_READ(LCPLL_CTL);
7455         }
7456 }
7457
7458 /*
7459  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7460  * source.
7461  */
7462 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7463 {
7464         uint32_t val;
7465         unsigned long irqflags;
7466
7467         val = I915_READ(LCPLL_CTL);
7468
7469         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7470                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7471                 return;
7472
7473         /*
7474          * Make sure we're not on PC8 state before disabling PC8, otherwise
7475          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7476          *
7477          * The other problem is that hsw_restore_lcpll() is called as part of
7478          * the runtime PM resume sequence, so we can't just call
7479          * gen6_gt_force_wake_get() because that function calls
7480          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7481          * while we are on the resume sequence. So to solve this problem we have
7482          * to call special forcewake code that doesn't touch runtime PM and
7483          * doesn't enable the forcewake delayed work.
7484          */
7485         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7486         if (dev_priv->uncore.forcewake_count++ == 0)
7487                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7488         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7489
7490         if (val & LCPLL_POWER_DOWN_ALLOW) {
7491                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7492                 I915_WRITE(LCPLL_CTL, val);
7493                 POSTING_READ(LCPLL_CTL);
7494         }
7495
7496         val = hsw_read_dcomp(dev_priv);
7497         val |= D_COMP_COMP_FORCE;
7498         val &= ~D_COMP_COMP_DISABLE;
7499         hsw_write_dcomp(dev_priv, val);
7500
7501         val = I915_READ(LCPLL_CTL);
7502         val &= ~LCPLL_PLL_DISABLE;
7503         I915_WRITE(LCPLL_CTL, val);
7504
7505         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7506                 DRM_ERROR("LCPLL not locked yet\n");
7507
7508         if (val & LCPLL_CD_SOURCE_FCLK) {
7509                 val = I915_READ(LCPLL_CTL);
7510                 val &= ~LCPLL_CD_SOURCE_FCLK;
7511                 I915_WRITE(LCPLL_CTL, val);
7512
7513                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7514                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7515                         DRM_ERROR("Switching back to LCPLL failed\n");
7516         }
7517
7518         /* See the big comment above. */
7519         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7520         if (--dev_priv->uncore.forcewake_count == 0)
7521                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7522         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7523 }
7524
7525 /*
7526  * Package states C8 and deeper are really deep PC states that can only be
7527  * reached when all the devices on the system allow it, so even if the graphics
7528  * device allows PC8+, it doesn't mean the system will actually get to these
7529  * states. Our driver only allows PC8+ when going into runtime PM.
7530  *
7531  * The requirements for PC8+ are that all the outputs are disabled, the power
7532  * well is disabled and most interrupts are disabled, and these are also
7533  * requirements for runtime PM. When these conditions are met, we manually do
7534  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7535  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7536  * hang the machine.
7537  *
7538  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7539  * the state of some registers, so when we come back from PC8+ we need to
7540  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7541  * need to take care of the registers kept by RC6. Notice that this happens even
7542  * if we don't put the device in PCI D3 state (which is what currently happens
7543  * because of the runtime PM support).
7544  *
7545  * For more, read "Display Sequences for Package C8" on the hardware
7546  * documentation.
7547  */
7548 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7549 {
7550         struct drm_device *dev = dev_priv->dev;
7551         uint32_t val;
7552
7553         DRM_DEBUG_KMS("Enabling package C8+\n");
7554
7555         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7556                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7557                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7558                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7559         }
7560
7561         lpt_disable_clkout_dp(dev);
7562         hsw_disable_lcpll(dev_priv, true, true);
7563 }
7564
7565 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7566 {
7567         struct drm_device *dev = dev_priv->dev;
7568         uint32_t val;
7569
7570         DRM_DEBUG_KMS("Disabling package C8+\n");
7571
7572         hsw_restore_lcpll(dev_priv);
7573         lpt_init_pch_refclk(dev);
7574
7575         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7576                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7577                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7578                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7579         }
7580
7581         intel_prepare_ddi(dev);
7582 }
7583
7584 static void snb_modeset_global_resources(struct drm_device *dev)
7585 {
7586         modeset_update_crtc_power_domains(dev);
7587 }
7588
7589 static void haswell_modeset_global_resources(struct drm_device *dev)
7590 {
7591         modeset_update_crtc_power_domains(dev);
7592 }
7593
7594 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7595                                  int x, int y,
7596                                  struct drm_framebuffer *fb)
7597 {
7598         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7599
7600         if (!intel_ddi_pll_select(intel_crtc))
7601                 return -EINVAL;
7602
7603         intel_crtc->lowfreq_avail = false;
7604
7605         return 0;
7606 }
7607
7608 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7609                                        struct intel_crtc_config *pipe_config)
7610 {
7611         struct drm_device *dev = crtc->base.dev;
7612         struct drm_i915_private *dev_priv = dev->dev_private;
7613         struct intel_shared_dpll *pll;
7614         enum port port;
7615         uint32_t tmp;
7616
7617         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7618
7619         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7620
7621         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7622
7623         switch (pipe_config->ddi_pll_sel) {
7624         case PORT_CLK_SEL_WRPLL1:
7625                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7626                 break;
7627         case PORT_CLK_SEL_WRPLL2:
7628                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7629                 break;
7630         }
7631
7632         if (pipe_config->shared_dpll >= 0) {
7633                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7634
7635                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7636                                            &pipe_config->dpll_hw_state));
7637         }
7638
7639         /*
7640          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7641          * DDI E. So just check whether this pipe is wired to DDI E and whether
7642          * the PCH transcoder is on.
7643          */
7644         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7645                 pipe_config->has_pch_encoder = true;
7646
7647                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7648                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7649                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7650
7651                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7652         }
7653 }
7654
7655 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7656                                     struct intel_crtc_config *pipe_config)
7657 {
7658         struct drm_device *dev = crtc->base.dev;
7659         struct drm_i915_private *dev_priv = dev->dev_private;
7660         enum intel_display_power_domain pfit_domain;
7661         uint32_t tmp;
7662
7663         if (!intel_display_power_enabled(dev_priv,
7664                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7665                 return false;
7666
7667         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7668         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7669
7670         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7671         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7672                 enum pipe trans_edp_pipe;
7673                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7674                 default:
7675                         WARN(1, "unknown pipe linked to edp transcoder\n");
7676                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7677                 case TRANS_DDI_EDP_INPUT_A_ON:
7678                         trans_edp_pipe = PIPE_A;
7679                         break;
7680                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7681                         trans_edp_pipe = PIPE_B;
7682                         break;
7683                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7684                         trans_edp_pipe = PIPE_C;
7685                         break;
7686                 }
7687
7688                 if (trans_edp_pipe == crtc->pipe)
7689                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7690         }
7691
7692         if (!intel_display_power_enabled(dev_priv,
7693                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7694                 return false;
7695
7696         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7697         if (!(tmp & PIPECONF_ENABLE))
7698                 return false;
7699
7700         haswell_get_ddi_port_state(crtc, pipe_config);
7701
7702         intel_get_pipe_timings(crtc, pipe_config);
7703
7704         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7705         if (intel_display_power_enabled(dev_priv, pfit_domain))
7706                 ironlake_get_pfit_config(crtc, pipe_config);
7707
7708         if (IS_HASWELL(dev))
7709                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7710                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7711
7712         pipe_config->pixel_multiplier = 1;
7713
7714         return true;
7715 }
7716
7717 static struct {
7718         int clock;
7719         u32 config;
7720 } hdmi_audio_clock[] = {
7721         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7722         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7723         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7724         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7725         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7726         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7727         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7728         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7729         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7730         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7731 };
7732
7733 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7734 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7735 {
7736         int i;
7737
7738         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7739                 if (mode->clock == hdmi_audio_clock[i].clock)
7740                         break;
7741         }
7742
7743         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7744                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7745                 i = 1;
7746         }
7747
7748         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7749                       hdmi_audio_clock[i].clock,
7750                       hdmi_audio_clock[i].config);
7751
7752         return hdmi_audio_clock[i].config;
7753 }
7754
7755 static bool intel_eld_uptodate(struct drm_connector *connector,
7756                                int reg_eldv, uint32_t bits_eldv,
7757                                int reg_elda, uint32_t bits_elda,
7758                                int reg_edid)
7759 {
7760         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7761         uint8_t *eld = connector->eld;
7762         uint32_t i;
7763
7764         i = I915_READ(reg_eldv);
7765         i &= bits_eldv;
7766
7767         if (!eld[0])
7768                 return !i;
7769
7770         if (!i)
7771                 return false;
7772
7773         i = I915_READ(reg_elda);
7774         i &= ~bits_elda;
7775         I915_WRITE(reg_elda, i);
7776
7777         for (i = 0; i < eld[2]; i++)
7778                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7779                         return false;
7780
7781         return true;
7782 }
7783
7784 static void g4x_write_eld(struct drm_connector *connector,
7785                           struct drm_crtc *crtc,
7786                           struct drm_display_mode *mode)
7787 {
7788         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7789         uint8_t *eld = connector->eld;
7790         uint32_t eldv;
7791         uint32_t len;
7792         uint32_t i;
7793
7794         i = I915_READ(G4X_AUD_VID_DID);
7795
7796         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7797                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7798         else
7799                 eldv = G4X_ELDV_DEVCTG;
7800
7801         if (intel_eld_uptodate(connector,
7802                                G4X_AUD_CNTL_ST, eldv,
7803                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7804                                G4X_HDMIW_HDMIEDID))
7805                 return;
7806
7807         i = I915_READ(G4X_AUD_CNTL_ST);
7808         i &= ~(eldv | G4X_ELD_ADDR);
7809         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7810         I915_WRITE(G4X_AUD_CNTL_ST, i);
7811
7812         if (!eld[0])
7813                 return;
7814
7815         len = min_t(uint8_t, eld[2], len);
7816         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7817         for (i = 0; i < len; i++)
7818                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7819
7820         i = I915_READ(G4X_AUD_CNTL_ST);
7821         i |= eldv;
7822         I915_WRITE(G4X_AUD_CNTL_ST, i);
7823 }
7824
7825 static void haswell_write_eld(struct drm_connector *connector,
7826                               struct drm_crtc *crtc,
7827                               struct drm_display_mode *mode)
7828 {
7829         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7830         uint8_t *eld = connector->eld;
7831         uint32_t eldv;
7832         uint32_t i;
7833         int len;
7834         int pipe = to_intel_crtc(crtc)->pipe;
7835         int tmp;
7836
7837         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7838         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7839         int aud_config = HSW_AUD_CFG(pipe);
7840         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7841
7842         /* Audio output enable */
7843         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7844         tmp = I915_READ(aud_cntrl_st2);
7845         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7846         I915_WRITE(aud_cntrl_st2, tmp);
7847         POSTING_READ(aud_cntrl_st2);
7848
7849         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7850
7851         /* Set ELD valid state */
7852         tmp = I915_READ(aud_cntrl_st2);
7853         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7854         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7855         I915_WRITE(aud_cntrl_st2, tmp);
7856         tmp = I915_READ(aud_cntrl_st2);
7857         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7858
7859         /* Enable HDMI mode */
7860         tmp = I915_READ(aud_config);
7861         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7862         /* clear N_programing_enable and N_value_index */
7863         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7864         I915_WRITE(aud_config, tmp);
7865
7866         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7867
7868         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7869
7870         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7871                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7872                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7873                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7874         } else {
7875                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7876         }
7877
7878         if (intel_eld_uptodate(connector,
7879                                aud_cntrl_st2, eldv,
7880                                aud_cntl_st, IBX_ELD_ADDRESS,
7881                                hdmiw_hdmiedid))
7882                 return;
7883
7884         i = I915_READ(aud_cntrl_st2);
7885         i &= ~eldv;
7886         I915_WRITE(aud_cntrl_st2, i);
7887
7888         if (!eld[0])
7889                 return;
7890
7891         i = I915_READ(aud_cntl_st);
7892         i &= ~IBX_ELD_ADDRESS;
7893         I915_WRITE(aud_cntl_st, i);
7894         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7895         DRM_DEBUG_DRIVER("port num:%d\n", i);
7896
7897         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7898         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7899         for (i = 0; i < len; i++)
7900                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7901
7902         i = I915_READ(aud_cntrl_st2);
7903         i |= eldv;
7904         I915_WRITE(aud_cntrl_st2, i);
7905
7906 }
7907
7908 static void ironlake_write_eld(struct drm_connector *connector,
7909                                struct drm_crtc *crtc,
7910                                struct drm_display_mode *mode)
7911 {
7912         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7913         uint8_t *eld = connector->eld;
7914         uint32_t eldv;
7915         uint32_t i;
7916         int len;
7917         int hdmiw_hdmiedid;
7918         int aud_config;
7919         int aud_cntl_st;
7920         int aud_cntrl_st2;
7921         int pipe = to_intel_crtc(crtc)->pipe;
7922
7923         if (HAS_PCH_IBX(connector->dev)) {
7924                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7925                 aud_config = IBX_AUD_CFG(pipe);
7926                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7927                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7928         } else if (IS_VALLEYVIEW(connector->dev)) {
7929                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7930                 aud_config = VLV_AUD_CFG(pipe);
7931                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7932                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7933         } else {
7934                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7935                 aud_config = CPT_AUD_CFG(pipe);
7936                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7937                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7938         }
7939
7940         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7941
7942         if (IS_VALLEYVIEW(connector->dev))  {
7943                 struct intel_encoder *intel_encoder;
7944                 struct intel_digital_port *intel_dig_port;
7945
7946                 intel_encoder = intel_attached_encoder(connector);
7947                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7948                 i = intel_dig_port->port;
7949         } else {
7950                 i = I915_READ(aud_cntl_st);
7951                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7952                 /* DIP_Port_Select, 0x1 = PortB */
7953         }
7954
7955         if (!i) {
7956                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7957                 /* operate blindly on all ports */
7958                 eldv = IBX_ELD_VALIDB;
7959                 eldv |= IBX_ELD_VALIDB << 4;
7960                 eldv |= IBX_ELD_VALIDB << 8;
7961         } else {
7962                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7963                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7964         }
7965
7966         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7967                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7968                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7969                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7970         } else {
7971                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7972         }
7973
7974         if (intel_eld_uptodate(connector,
7975                                aud_cntrl_st2, eldv,
7976                                aud_cntl_st, IBX_ELD_ADDRESS,
7977                                hdmiw_hdmiedid))
7978                 return;
7979
7980         i = I915_READ(aud_cntrl_st2);
7981         i &= ~eldv;
7982         I915_WRITE(aud_cntrl_st2, i);
7983
7984         if (!eld[0])
7985                 return;
7986
7987         i = I915_READ(aud_cntl_st);
7988         i &= ~IBX_ELD_ADDRESS;
7989         I915_WRITE(aud_cntl_st, i);
7990
7991         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7992         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7993         for (i = 0; i < len; i++)
7994                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7995
7996         i = I915_READ(aud_cntrl_st2);
7997         i |= eldv;
7998         I915_WRITE(aud_cntrl_st2, i);
7999 }
8000
8001 void intel_write_eld(struct drm_encoder *encoder,
8002                      struct drm_display_mode *mode)
8003 {
8004         struct drm_crtc *crtc = encoder->crtc;
8005         struct drm_connector *connector;
8006         struct drm_device *dev = encoder->dev;
8007         struct drm_i915_private *dev_priv = dev->dev_private;
8008
8009         connector = drm_select_eld(encoder, mode);
8010         if (!connector)
8011                 return;
8012
8013         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8014                          connector->base.id,
8015                          connector->name,
8016                          connector->encoder->base.id,
8017                          connector->encoder->name);
8018
8019         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8020
8021         if (dev_priv->display.write_eld)
8022                 dev_priv->display.write_eld(connector, crtc, mode);
8023 }
8024
8025 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8026 {
8027         struct drm_device *dev = crtc->dev;
8028         struct drm_i915_private *dev_priv = dev->dev_private;
8029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8030         uint32_t cntl;
8031
8032         if (base != intel_crtc->cursor_base) {
8033                 /* On these chipsets we can only modify the base whilst
8034                  * the cursor is disabled.
8035                  */
8036                 if (intel_crtc->cursor_cntl) {
8037                         I915_WRITE(_CURACNTR, 0);
8038                         POSTING_READ(_CURACNTR);
8039                         intel_crtc->cursor_cntl = 0;
8040                 }
8041
8042                 I915_WRITE(_CURABASE, base);
8043                 POSTING_READ(_CURABASE);
8044         }
8045
8046         /* XXX width must be 64, stride 256 => 0x00 << 28 */
8047         cntl = 0;
8048         if (base)
8049                 cntl = (CURSOR_ENABLE |
8050                         CURSOR_GAMMA_ENABLE |
8051                         CURSOR_FORMAT_ARGB);
8052         if (intel_crtc->cursor_cntl != cntl) {
8053                 I915_WRITE(_CURACNTR, cntl);
8054                 POSTING_READ(_CURACNTR);
8055                 intel_crtc->cursor_cntl = cntl;
8056         }
8057 }
8058
8059 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8060 {
8061         struct drm_device *dev = crtc->dev;
8062         struct drm_i915_private *dev_priv = dev->dev_private;
8063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8064         int pipe = intel_crtc->pipe;
8065         uint32_t cntl;
8066
8067         cntl = 0;
8068         if (base) {
8069                 cntl = MCURSOR_GAMMA_ENABLE;
8070                 switch (intel_crtc->cursor_width) {
8071                         case 64:
8072                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8073                                 break;
8074                         case 128:
8075                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8076                                 break;
8077                         case 256:
8078                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8079                                 break;
8080                         default:
8081                                 WARN_ON(1);
8082                                 return;
8083                 }
8084                 cntl |= pipe << 28; /* Connect to correct pipe */
8085         }
8086         if (intel_crtc->cursor_cntl != cntl) {
8087                 I915_WRITE(CURCNTR(pipe), cntl);
8088                 POSTING_READ(CURCNTR(pipe));
8089                 intel_crtc->cursor_cntl = cntl;
8090         }
8091
8092         /* and commit changes on next vblank */
8093         I915_WRITE(CURBASE(pipe), base);
8094         POSTING_READ(CURBASE(pipe));
8095 }
8096
8097 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8098 {
8099         struct drm_device *dev = crtc->dev;
8100         struct drm_i915_private *dev_priv = dev->dev_private;
8101         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8102         int pipe = intel_crtc->pipe;
8103         uint32_t cntl;
8104
8105         cntl = 0;
8106         if (base) {
8107                 cntl = MCURSOR_GAMMA_ENABLE;
8108                 switch (intel_crtc->cursor_width) {
8109                         case 64:
8110                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8111                                 break;
8112                         case 128:
8113                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8114                                 break;
8115                         case 256:
8116                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8117                                 break;
8118                         default:
8119                                 WARN_ON(1);
8120                                 return;
8121                 }
8122         }
8123         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8124                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8125
8126         if (intel_crtc->cursor_cntl != cntl) {
8127                 I915_WRITE(CURCNTR(pipe), cntl);
8128                 POSTING_READ(CURCNTR(pipe));
8129                 intel_crtc->cursor_cntl = cntl;
8130         }
8131
8132         /* and commit changes on next vblank */
8133         I915_WRITE(CURBASE(pipe), base);
8134         POSTING_READ(CURBASE(pipe));
8135 }
8136
8137 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8138 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8139                                      bool on)
8140 {
8141         struct drm_device *dev = crtc->dev;
8142         struct drm_i915_private *dev_priv = dev->dev_private;
8143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8144         int pipe = intel_crtc->pipe;
8145         int x = crtc->cursor_x;
8146         int y = crtc->cursor_y;
8147         u32 base = 0, pos = 0;
8148
8149         if (on)
8150                 base = intel_crtc->cursor_addr;
8151
8152         if (x >= intel_crtc->config.pipe_src_w)
8153                 base = 0;
8154
8155         if (y >= intel_crtc->config.pipe_src_h)
8156                 base = 0;
8157
8158         if (x < 0) {
8159                 if (x + intel_crtc->cursor_width <= 0)
8160                         base = 0;
8161
8162                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8163                 x = -x;
8164         }
8165         pos |= x << CURSOR_X_SHIFT;
8166
8167         if (y < 0) {
8168                 if (y + intel_crtc->cursor_height <= 0)
8169                         base = 0;
8170
8171                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8172                 y = -y;
8173         }
8174         pos |= y << CURSOR_Y_SHIFT;
8175
8176         if (base == 0 && intel_crtc->cursor_base == 0)
8177                 return;
8178
8179         I915_WRITE(CURPOS(pipe), pos);
8180
8181         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8182                 ivb_update_cursor(crtc, base);
8183         else if (IS_845G(dev) || IS_I865G(dev))
8184                 i845_update_cursor(crtc, base);
8185         else
8186                 i9xx_update_cursor(crtc, base);
8187         intel_crtc->cursor_base = base;
8188 }
8189
8190 /*
8191  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8192  *
8193  * Note that the object's reference will be consumed if the update fails.  If
8194  * the update succeeds, the reference of the old object (if any) will be
8195  * consumed.
8196  */
8197 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8198                                      struct drm_i915_gem_object *obj,
8199                                      uint32_t width, uint32_t height)
8200 {
8201         struct drm_device *dev = crtc->dev;
8202         struct drm_i915_private *dev_priv = dev->dev_private;
8203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8204         enum pipe pipe = intel_crtc->pipe;
8205         unsigned old_width;
8206         uint32_t addr;
8207         int ret;
8208
8209         /* if we want to turn off the cursor ignore width and height */
8210         if (!obj) {
8211                 DRM_DEBUG_KMS("cursor off\n");
8212                 addr = 0;
8213                 obj = NULL;
8214                 mutex_lock(&dev->struct_mutex);
8215                 goto finish;
8216         }
8217
8218         /* Check for which cursor types we support */
8219         if (!((width == 64 && height == 64) ||
8220                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8221                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8222                 DRM_DEBUG("Cursor dimension not supported\n");
8223                 return -EINVAL;
8224         }
8225
8226         if (obj->base.size < width * height * 4) {
8227                 DRM_DEBUG_KMS("buffer is too small\n");
8228                 ret = -ENOMEM;
8229                 goto fail;
8230         }
8231
8232         /* we only need to pin inside GTT if cursor is non-phy */
8233         mutex_lock(&dev->struct_mutex);
8234         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8235                 unsigned alignment;
8236
8237                 if (obj->tiling_mode) {
8238                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8239                         ret = -EINVAL;
8240                         goto fail_locked;
8241                 }
8242
8243                 /* Note that the w/a also requires 2 PTE of padding following
8244                  * the bo. We currently fill all unused PTE with the shadow
8245                  * page and so we should always have valid PTE following the
8246                  * cursor preventing the VT-d warning.
8247                  */
8248                 alignment = 0;
8249                 if (need_vtd_wa(dev))
8250                         alignment = 64*1024;
8251
8252                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8253                 if (ret) {
8254                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8255                         goto fail_locked;
8256                 }
8257
8258                 ret = i915_gem_object_put_fence(obj);
8259                 if (ret) {
8260                         DRM_DEBUG_KMS("failed to release fence for cursor");
8261                         goto fail_unpin;
8262                 }
8263
8264                 addr = i915_gem_obj_ggtt_offset(obj);
8265         } else {
8266                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8267                 ret = i915_gem_object_attach_phys(obj, align);
8268                 if (ret) {
8269                         DRM_DEBUG_KMS("failed to attach phys object\n");
8270                         goto fail_locked;
8271                 }
8272                 addr = obj->phys_handle->busaddr;
8273         }
8274
8275         if (IS_GEN2(dev))
8276                 I915_WRITE(CURSIZE, (height << 12) | width);
8277
8278  finish:
8279         if (intel_crtc->cursor_bo) {
8280                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8281                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8282         }
8283
8284         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8285                           INTEL_FRONTBUFFER_CURSOR(pipe));
8286         mutex_unlock(&dev->struct_mutex);
8287
8288         old_width = intel_crtc->cursor_width;
8289
8290         intel_crtc->cursor_addr = addr;
8291         intel_crtc->cursor_bo = obj;
8292         intel_crtc->cursor_width = width;
8293         intel_crtc->cursor_height = height;
8294
8295         if (intel_crtc->active) {
8296                 if (old_width != width)
8297                         intel_update_watermarks(crtc);
8298                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8299         }
8300
8301         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8302
8303         return 0;
8304 fail_unpin:
8305         i915_gem_object_unpin_from_display_plane(obj);
8306 fail_locked:
8307         mutex_unlock(&dev->struct_mutex);
8308 fail:
8309         drm_gem_object_unreference_unlocked(&obj->base);
8310         return ret;
8311 }
8312
8313 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8314                                  u16 *blue, uint32_t start, uint32_t size)
8315 {
8316         int end = (start + size > 256) ? 256 : start + size, i;
8317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8318
8319         for (i = start; i < end; i++) {
8320                 intel_crtc->lut_r[i] = red[i] >> 8;
8321                 intel_crtc->lut_g[i] = green[i] >> 8;
8322                 intel_crtc->lut_b[i] = blue[i] >> 8;
8323         }
8324
8325         intel_crtc_load_lut(crtc);
8326 }
8327
8328 /* VESA 640x480x72Hz mode to set on the pipe */
8329 static struct drm_display_mode load_detect_mode = {
8330         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8331                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8332 };
8333
8334 struct drm_framebuffer *
8335 __intel_framebuffer_create(struct drm_device *dev,
8336                            struct drm_mode_fb_cmd2 *mode_cmd,
8337                            struct drm_i915_gem_object *obj)
8338 {
8339         struct intel_framebuffer *intel_fb;
8340         int ret;
8341
8342         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8343         if (!intel_fb) {
8344                 drm_gem_object_unreference_unlocked(&obj->base);
8345                 return ERR_PTR(-ENOMEM);
8346         }
8347
8348         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8349         if (ret)
8350                 goto err;
8351
8352         return &intel_fb->base;
8353 err:
8354         drm_gem_object_unreference_unlocked(&obj->base);
8355         kfree(intel_fb);
8356
8357         return ERR_PTR(ret);
8358 }
8359
8360 static struct drm_framebuffer *
8361 intel_framebuffer_create(struct drm_device *dev,
8362                          struct drm_mode_fb_cmd2 *mode_cmd,
8363                          struct drm_i915_gem_object *obj)
8364 {
8365         struct drm_framebuffer *fb;
8366         int ret;
8367
8368         ret = i915_mutex_lock_interruptible(dev);
8369         if (ret)
8370                 return ERR_PTR(ret);
8371         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8372         mutex_unlock(&dev->struct_mutex);
8373
8374         return fb;
8375 }
8376
8377 static u32
8378 intel_framebuffer_pitch_for_width(int width, int bpp)
8379 {
8380         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8381         return ALIGN(pitch, 64);
8382 }
8383
8384 static u32
8385 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8386 {
8387         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8388         return PAGE_ALIGN(pitch * mode->vdisplay);
8389 }
8390
8391 static struct drm_framebuffer *
8392 intel_framebuffer_create_for_mode(struct drm_device *dev,
8393                                   struct drm_display_mode *mode,
8394                                   int depth, int bpp)
8395 {
8396         struct drm_i915_gem_object *obj;
8397         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8398
8399         obj = i915_gem_alloc_object(dev,
8400                                     intel_framebuffer_size_for_mode(mode, bpp));
8401         if (obj == NULL)
8402                 return ERR_PTR(-ENOMEM);
8403
8404         mode_cmd.width = mode->hdisplay;
8405         mode_cmd.height = mode->vdisplay;
8406         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8407                                                                 bpp);
8408         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8409
8410         return intel_framebuffer_create(dev, &mode_cmd, obj);
8411 }
8412
8413 static struct drm_framebuffer *
8414 mode_fits_in_fbdev(struct drm_device *dev,
8415                    struct drm_display_mode *mode)
8416 {
8417 #ifdef CONFIG_DRM_I915_FBDEV
8418         struct drm_i915_private *dev_priv = dev->dev_private;
8419         struct drm_i915_gem_object *obj;
8420         struct drm_framebuffer *fb;
8421
8422         if (!dev_priv->fbdev)
8423                 return NULL;
8424
8425         if (!dev_priv->fbdev->fb)
8426                 return NULL;
8427
8428         obj = dev_priv->fbdev->fb->obj;
8429         BUG_ON(!obj);
8430
8431         fb = &dev_priv->fbdev->fb->base;
8432         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8433                                                                fb->bits_per_pixel))
8434                 return NULL;
8435
8436         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8437                 return NULL;
8438
8439         return fb;
8440 #else
8441         return NULL;
8442 #endif
8443 }
8444
8445 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8446                                 struct drm_display_mode *mode,
8447                                 struct intel_load_detect_pipe *old,
8448                                 struct drm_modeset_acquire_ctx *ctx)
8449 {
8450         struct intel_crtc *intel_crtc;
8451         struct intel_encoder *intel_encoder =
8452                 intel_attached_encoder(connector);
8453         struct drm_crtc *possible_crtc;
8454         struct drm_encoder *encoder = &intel_encoder->base;
8455         struct drm_crtc *crtc = NULL;
8456         struct drm_device *dev = encoder->dev;
8457         struct drm_framebuffer *fb;
8458         struct drm_mode_config *config = &dev->mode_config;
8459         int ret, i = -1;
8460
8461         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8462                       connector->base.id, connector->name,
8463                       encoder->base.id, encoder->name);
8464
8465 retry:
8466         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8467         if (ret)
8468                 goto fail_unlock;
8469
8470         /*
8471          * Algorithm gets a little messy:
8472          *
8473          *   - if the connector already has an assigned crtc, use it (but make
8474          *     sure it's on first)
8475          *
8476          *   - try to find the first unused crtc that can drive this connector,
8477          *     and use that if we find one
8478          */
8479
8480         /* See if we already have a CRTC for this connector */
8481         if (encoder->crtc) {
8482                 crtc = encoder->crtc;
8483
8484                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8485                 if (ret)
8486                         goto fail_unlock;
8487
8488                 old->dpms_mode = connector->dpms;
8489                 old->load_detect_temp = false;
8490
8491                 /* Make sure the crtc and connector are running */
8492                 if (connector->dpms != DRM_MODE_DPMS_ON)
8493                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8494
8495                 return true;
8496         }
8497
8498         /* Find an unused one (if possible) */
8499         for_each_crtc(dev, possible_crtc) {
8500                 i++;
8501                 if (!(encoder->possible_crtcs & (1 << i)))
8502                         continue;
8503                 if (possible_crtc->enabled)
8504                         continue;
8505                 /* This can occur when applying the pipe A quirk on resume. */
8506                 if (to_intel_crtc(possible_crtc)->new_enabled)
8507                         continue;
8508
8509                 crtc = possible_crtc;
8510                 break;
8511         }
8512
8513         /*
8514          * If we didn't find an unused CRTC, don't use any.
8515          */
8516         if (!crtc) {
8517                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8518                 goto fail_unlock;
8519         }
8520
8521         ret = drm_modeset_lock(&crtc->mutex, ctx);
8522         if (ret)
8523                 goto fail_unlock;
8524         intel_encoder->new_crtc = to_intel_crtc(crtc);
8525         to_intel_connector(connector)->new_encoder = intel_encoder;
8526
8527         intel_crtc = to_intel_crtc(crtc);
8528         intel_crtc->new_enabled = true;
8529         intel_crtc->new_config = &intel_crtc->config;
8530         old->dpms_mode = connector->dpms;
8531         old->load_detect_temp = true;
8532         old->release_fb = NULL;
8533
8534         if (!mode)
8535                 mode = &load_detect_mode;
8536
8537         /* We need a framebuffer large enough to accommodate all accesses
8538          * that the plane may generate whilst we perform load detection.
8539          * We can not rely on the fbcon either being present (we get called
8540          * during its initialisation to detect all boot displays, or it may
8541          * not even exist) or that it is large enough to satisfy the
8542          * requested mode.
8543          */
8544         fb = mode_fits_in_fbdev(dev, mode);
8545         if (fb == NULL) {
8546                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8547                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8548                 old->release_fb = fb;
8549         } else
8550                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8551         if (IS_ERR(fb)) {
8552                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8553                 goto fail;
8554         }
8555
8556         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8557                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8558                 if (old->release_fb)
8559                         old->release_fb->funcs->destroy(old->release_fb);
8560                 goto fail;
8561         }
8562
8563         /* let the connector get through one full cycle before testing */
8564         intel_wait_for_vblank(dev, intel_crtc->pipe);
8565         return true;
8566
8567  fail:
8568         intel_crtc->new_enabled = crtc->enabled;
8569         if (intel_crtc->new_enabled)
8570                 intel_crtc->new_config = &intel_crtc->config;
8571         else
8572                 intel_crtc->new_config = NULL;
8573 fail_unlock:
8574         if (ret == -EDEADLK) {
8575                 drm_modeset_backoff(ctx);
8576                 goto retry;
8577         }
8578
8579         return false;
8580 }
8581
8582 void intel_release_load_detect_pipe(struct drm_connector *connector,
8583                                     struct intel_load_detect_pipe *old)
8584 {
8585         struct intel_encoder *intel_encoder =
8586                 intel_attached_encoder(connector);
8587         struct drm_encoder *encoder = &intel_encoder->base;
8588         struct drm_crtc *crtc = encoder->crtc;
8589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8590
8591         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8592                       connector->base.id, connector->name,
8593                       encoder->base.id, encoder->name);
8594
8595         if (old->load_detect_temp) {
8596                 to_intel_connector(connector)->new_encoder = NULL;
8597                 intel_encoder->new_crtc = NULL;
8598                 intel_crtc->new_enabled = false;
8599                 intel_crtc->new_config = NULL;
8600                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8601
8602                 if (old->release_fb) {
8603                         drm_framebuffer_unregister_private(old->release_fb);
8604                         drm_framebuffer_unreference(old->release_fb);
8605                 }
8606
8607                 return;
8608         }
8609
8610         /* Switch crtc and encoder back off if necessary */
8611         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8612                 connector->funcs->dpms(connector, old->dpms_mode);
8613 }
8614
8615 static int i9xx_pll_refclk(struct drm_device *dev,
8616                            const struct intel_crtc_config *pipe_config)
8617 {
8618         struct drm_i915_private *dev_priv = dev->dev_private;
8619         u32 dpll = pipe_config->dpll_hw_state.dpll;
8620
8621         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8622                 return dev_priv->vbt.lvds_ssc_freq;
8623         else if (HAS_PCH_SPLIT(dev))
8624                 return 120000;
8625         else if (!IS_GEN2(dev))
8626                 return 96000;
8627         else
8628                 return 48000;
8629 }
8630
8631 /* Returns the clock of the currently programmed mode of the given pipe. */
8632 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8633                                 struct intel_crtc_config *pipe_config)
8634 {
8635         struct drm_device *dev = crtc->base.dev;
8636         struct drm_i915_private *dev_priv = dev->dev_private;
8637         int pipe = pipe_config->cpu_transcoder;
8638         u32 dpll = pipe_config->dpll_hw_state.dpll;
8639         u32 fp;
8640         intel_clock_t clock;
8641         int refclk = i9xx_pll_refclk(dev, pipe_config);
8642
8643         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8644                 fp = pipe_config->dpll_hw_state.fp0;
8645         else
8646                 fp = pipe_config->dpll_hw_state.fp1;
8647
8648         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8649         if (IS_PINEVIEW(dev)) {
8650                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8651                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8652         } else {
8653                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8654                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8655         }
8656
8657         if (!IS_GEN2(dev)) {
8658                 if (IS_PINEVIEW(dev))
8659                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8660                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8661                 else
8662                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8663                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8664
8665                 switch (dpll & DPLL_MODE_MASK) {
8666                 case DPLLB_MODE_DAC_SERIAL:
8667                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8668                                 5 : 10;
8669                         break;
8670                 case DPLLB_MODE_LVDS:
8671                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8672                                 7 : 14;
8673                         break;
8674                 default:
8675                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8676                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8677                         return;
8678                 }
8679
8680                 if (IS_PINEVIEW(dev))
8681                         pineview_clock(refclk, &clock);
8682                 else
8683                         i9xx_clock(refclk, &clock);
8684         } else {
8685                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8686                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8687
8688                 if (is_lvds) {
8689                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8690                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8691
8692                         if (lvds & LVDS_CLKB_POWER_UP)
8693                                 clock.p2 = 7;
8694                         else
8695                                 clock.p2 = 14;
8696                 } else {
8697                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8698                                 clock.p1 = 2;
8699                         else {
8700                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8701                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8702                         }
8703                         if (dpll & PLL_P2_DIVIDE_BY_4)
8704                                 clock.p2 = 4;
8705                         else
8706                                 clock.p2 = 2;
8707                 }
8708
8709                 i9xx_clock(refclk, &clock);
8710         }
8711
8712         /*
8713          * This value includes pixel_multiplier. We will use
8714          * port_clock to compute adjusted_mode.crtc_clock in the
8715          * encoder's get_config() function.
8716          */
8717         pipe_config->port_clock = clock.dot;
8718 }
8719
8720 int intel_dotclock_calculate(int link_freq,
8721                              const struct intel_link_m_n *m_n)
8722 {
8723         /*
8724          * The calculation for the data clock is:
8725          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8726          * But we want to avoid losing precison if possible, so:
8727          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8728          *
8729          * and the link clock is simpler:
8730          * link_clock = (m * link_clock) / n
8731          */
8732
8733         if (!m_n->link_n)
8734                 return 0;
8735
8736         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8737 }
8738
8739 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8740                                    struct intel_crtc_config *pipe_config)
8741 {
8742         struct drm_device *dev = crtc->base.dev;
8743
8744         /* read out port_clock from the DPLL */
8745         i9xx_crtc_clock_get(crtc, pipe_config);
8746
8747         /*
8748          * This value does not include pixel_multiplier.
8749          * We will check that port_clock and adjusted_mode.crtc_clock
8750          * agree once we know their relationship in the encoder's
8751          * get_config() function.
8752          */
8753         pipe_config->adjusted_mode.crtc_clock =
8754                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8755                                          &pipe_config->fdi_m_n);
8756 }
8757
8758 /** Returns the currently programmed mode of the given pipe. */
8759 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8760                                              struct drm_crtc *crtc)
8761 {
8762         struct drm_i915_private *dev_priv = dev->dev_private;
8763         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8764         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8765         struct drm_display_mode *mode;
8766         struct intel_crtc_config pipe_config;
8767         int htot = I915_READ(HTOTAL(cpu_transcoder));
8768         int hsync = I915_READ(HSYNC(cpu_transcoder));
8769         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8770         int vsync = I915_READ(VSYNC(cpu_transcoder));
8771         enum pipe pipe = intel_crtc->pipe;
8772
8773         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8774         if (!mode)
8775                 return NULL;
8776
8777         /*
8778          * Construct a pipe_config sufficient for getting the clock info
8779          * back out of crtc_clock_get.
8780          *
8781          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8782          * to use a real value here instead.
8783          */
8784         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8785         pipe_config.pixel_multiplier = 1;
8786         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8787         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8788         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8789         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8790
8791         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8792         mode->hdisplay = (htot & 0xffff) + 1;
8793         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8794         mode->hsync_start = (hsync & 0xffff) + 1;
8795         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8796         mode->vdisplay = (vtot & 0xffff) + 1;
8797         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8798         mode->vsync_start = (vsync & 0xffff) + 1;
8799         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8800
8801         drm_mode_set_name(mode);
8802
8803         return mode;
8804 }
8805
8806 static void intel_increase_pllclock(struct drm_device *dev,
8807                                     enum pipe pipe)
8808 {
8809         struct drm_i915_private *dev_priv = dev->dev_private;
8810         int dpll_reg = DPLL(pipe);
8811         int dpll;
8812
8813         if (!HAS_GMCH_DISPLAY(dev))
8814                 return;
8815
8816         if (!dev_priv->lvds_downclock_avail)
8817                 return;
8818
8819         dpll = I915_READ(dpll_reg);
8820         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8821                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8822
8823                 assert_panel_unlocked(dev_priv, pipe);
8824
8825                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8826                 I915_WRITE(dpll_reg, dpll);
8827                 intel_wait_for_vblank(dev, pipe);
8828
8829                 dpll = I915_READ(dpll_reg);
8830                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8831                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8832         }
8833 }
8834
8835 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8836 {
8837         struct drm_device *dev = crtc->dev;
8838         struct drm_i915_private *dev_priv = dev->dev_private;
8839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8840
8841         if (!HAS_GMCH_DISPLAY(dev))
8842                 return;
8843
8844         if (!dev_priv->lvds_downclock_avail)
8845                 return;
8846
8847         /*
8848          * Since this is called by a timer, we should never get here in
8849          * the manual case.
8850          */
8851         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8852                 int pipe = intel_crtc->pipe;
8853                 int dpll_reg = DPLL(pipe);
8854                 int dpll;
8855
8856                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8857
8858                 assert_panel_unlocked(dev_priv, pipe);
8859
8860                 dpll = I915_READ(dpll_reg);
8861                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8862                 I915_WRITE(dpll_reg, dpll);
8863                 intel_wait_for_vblank(dev, pipe);
8864                 dpll = I915_READ(dpll_reg);
8865                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8866                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8867         }
8868
8869 }
8870
8871 void intel_mark_busy(struct drm_device *dev)
8872 {
8873         struct drm_i915_private *dev_priv = dev->dev_private;
8874
8875         if (dev_priv->mm.busy)
8876                 return;
8877
8878         intel_runtime_pm_get(dev_priv);
8879         i915_update_gfx_val(dev_priv);
8880         dev_priv->mm.busy = true;
8881 }
8882
8883 void intel_mark_idle(struct drm_device *dev)
8884 {
8885         struct drm_i915_private *dev_priv = dev->dev_private;
8886         struct drm_crtc *crtc;
8887
8888         if (!dev_priv->mm.busy)
8889                 return;
8890
8891         dev_priv->mm.busy = false;
8892
8893         if (!i915.powersave)
8894                 goto out;
8895
8896         for_each_crtc(dev, crtc) {
8897                 if (!crtc->primary->fb)
8898                         continue;
8899
8900                 intel_decrease_pllclock(crtc);
8901         }
8902
8903         if (INTEL_INFO(dev)->gen >= 6)
8904                 gen6_rps_idle(dev->dev_private);
8905
8906 out:
8907         intel_runtime_pm_put(dev_priv);
8908 }
8909
8910
8911 /**
8912  * intel_mark_fb_busy - mark given planes as busy
8913  * @dev: DRM device
8914  * @frontbuffer_bits: bits for the affected planes
8915  * @ring: optional ring for asynchronous commands
8916  *
8917  * This function gets called every time the screen contents change. It can be
8918  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8919  */
8920 static void intel_mark_fb_busy(struct drm_device *dev,
8921                                unsigned frontbuffer_bits,
8922                                struct intel_engine_cs *ring)
8923 {
8924         enum pipe pipe;
8925
8926         if (!i915.powersave)
8927                 return;
8928
8929         for_each_pipe(pipe) {
8930                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8931                         continue;
8932
8933                 intel_increase_pllclock(dev, pipe);
8934                 if (ring && intel_fbc_enabled(dev))
8935                         ring->fbc_dirty = true;
8936         }
8937 }
8938
8939 /**
8940  * intel_fb_obj_invalidate - invalidate frontbuffer object
8941  * @obj: GEM object to invalidate
8942  * @ring: set for asynchronous rendering
8943  *
8944  * This function gets called every time rendering on the given object starts and
8945  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8946  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8947  * until the rendering completes or a flip on this frontbuffer plane is
8948  * scheduled.
8949  */
8950 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8951                              struct intel_engine_cs *ring)
8952 {
8953         struct drm_device *dev = obj->base.dev;
8954         struct drm_i915_private *dev_priv = dev->dev_private;
8955
8956         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8957
8958         if (!obj->frontbuffer_bits)
8959                 return;
8960
8961         if (ring) {
8962                 mutex_lock(&dev_priv->fb_tracking.lock);
8963                 dev_priv->fb_tracking.busy_bits
8964                         |= obj->frontbuffer_bits;
8965                 dev_priv->fb_tracking.flip_bits
8966                         &= ~obj->frontbuffer_bits;
8967                 mutex_unlock(&dev_priv->fb_tracking.lock);
8968         }
8969
8970         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8971
8972         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
8973 }
8974
8975 /**
8976  * intel_frontbuffer_flush - flush frontbuffer
8977  * @dev: DRM device
8978  * @frontbuffer_bits: frontbuffer plane tracking bits
8979  *
8980  * This function gets called every time rendering on the given planes has
8981  * completed and frontbuffer caching can be started again. Flushes will get
8982  * delayed if they're blocked by some oustanding asynchronous rendering.
8983  *
8984  * Can be called without any locks held.
8985  */
8986 void intel_frontbuffer_flush(struct drm_device *dev,
8987                              unsigned frontbuffer_bits)
8988 {
8989         struct drm_i915_private *dev_priv = dev->dev_private;
8990
8991         /* Delay flushing when rings are still busy.*/
8992         mutex_lock(&dev_priv->fb_tracking.lock);
8993         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8994         mutex_unlock(&dev_priv->fb_tracking.lock);
8995
8996         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8997
8998         intel_edp_psr_flush(dev, frontbuffer_bits);
8999 }
9000
9001 /**
9002  * intel_fb_obj_flush - flush frontbuffer object
9003  * @obj: GEM object to flush
9004  * @retire: set when retiring asynchronous rendering
9005  *
9006  * This function gets called every time rendering on the given object has
9007  * completed and frontbuffer caching can be started again. If @retire is true
9008  * then any delayed flushes will be unblocked.
9009  */
9010 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9011                         bool retire)
9012 {
9013         struct drm_device *dev = obj->base.dev;
9014         struct drm_i915_private *dev_priv = dev->dev_private;
9015         unsigned frontbuffer_bits;
9016
9017         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9018
9019         if (!obj->frontbuffer_bits)
9020                 return;
9021
9022         frontbuffer_bits = obj->frontbuffer_bits;
9023
9024         if (retire) {
9025                 mutex_lock(&dev_priv->fb_tracking.lock);
9026                 /* Filter out new bits since rendering started. */
9027                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9028
9029                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9030                 mutex_unlock(&dev_priv->fb_tracking.lock);
9031         }
9032
9033         intel_frontbuffer_flush(dev, frontbuffer_bits);
9034 }
9035
9036 /**
9037  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9038  * @dev: DRM device
9039  * @frontbuffer_bits: frontbuffer plane tracking bits
9040  *
9041  * This function gets called after scheduling a flip on @obj. The actual
9042  * frontbuffer flushing will be delayed until completion is signalled with
9043  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9044  * flush will be cancelled.
9045  *
9046  * Can be called without any locks held.
9047  */
9048 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9049                                     unsigned frontbuffer_bits)
9050 {
9051         struct drm_i915_private *dev_priv = dev->dev_private;
9052
9053         mutex_lock(&dev_priv->fb_tracking.lock);
9054         dev_priv->fb_tracking.flip_bits
9055                 |= frontbuffer_bits;
9056         mutex_unlock(&dev_priv->fb_tracking.lock);
9057 }
9058
9059 /**
9060  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9061  * @dev: DRM device
9062  * @frontbuffer_bits: frontbuffer plane tracking bits
9063  *
9064  * This function gets called after the flip has been latched and will complete
9065  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9066  *
9067  * Can be called without any locks held.
9068  */
9069 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9070                                      unsigned frontbuffer_bits)
9071 {
9072         struct drm_i915_private *dev_priv = dev->dev_private;
9073
9074         mutex_lock(&dev_priv->fb_tracking.lock);
9075         /* Mask any cancelled flips. */
9076         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9077         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9078         mutex_unlock(&dev_priv->fb_tracking.lock);
9079
9080         intel_frontbuffer_flush(dev, frontbuffer_bits);
9081 }
9082
9083 static void intel_crtc_destroy(struct drm_crtc *crtc)
9084 {
9085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9086         struct drm_device *dev = crtc->dev;
9087         struct intel_unpin_work *work;
9088         unsigned long flags;
9089
9090         spin_lock_irqsave(&dev->event_lock, flags);
9091         work = intel_crtc->unpin_work;
9092         intel_crtc->unpin_work = NULL;
9093         spin_unlock_irqrestore(&dev->event_lock, flags);
9094
9095         if (work) {
9096                 cancel_work_sync(&work->work);
9097                 kfree(work);
9098         }
9099
9100         drm_crtc_cleanup(crtc);
9101
9102         kfree(intel_crtc);
9103 }
9104
9105 static void intel_unpin_work_fn(struct work_struct *__work)
9106 {
9107         struct intel_unpin_work *work =
9108                 container_of(__work, struct intel_unpin_work, work);
9109         struct drm_device *dev = work->crtc->dev;
9110         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9111
9112         mutex_lock(&dev->struct_mutex);
9113         intel_unpin_fb_obj(work->old_fb_obj);
9114         drm_gem_object_unreference(&work->pending_flip_obj->base);
9115         drm_gem_object_unreference(&work->old_fb_obj->base);
9116
9117         intel_update_fbc(dev);
9118         mutex_unlock(&dev->struct_mutex);
9119
9120         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9121
9122         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9123         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9124
9125         kfree(work);
9126 }
9127
9128 static void do_intel_finish_page_flip(struct drm_device *dev,
9129                                       struct drm_crtc *crtc)
9130 {
9131         struct drm_i915_private *dev_priv = dev->dev_private;
9132         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9133         struct intel_unpin_work *work;
9134         unsigned long flags;
9135
9136         /* Ignore early vblank irqs */
9137         if (intel_crtc == NULL)
9138                 return;
9139
9140         spin_lock_irqsave(&dev->event_lock, flags);
9141         work = intel_crtc->unpin_work;
9142
9143         /* Ensure we don't miss a work->pending update ... */
9144         smp_rmb();
9145
9146         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9147                 spin_unlock_irqrestore(&dev->event_lock, flags);
9148                 return;
9149         }
9150
9151         /* and that the unpin work is consistent wrt ->pending. */
9152         smp_rmb();
9153
9154         intel_crtc->unpin_work = NULL;
9155
9156         if (work->event)
9157                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9158
9159         drm_crtc_vblank_put(crtc);
9160
9161         spin_unlock_irqrestore(&dev->event_lock, flags);
9162
9163         wake_up_all(&dev_priv->pending_flip_queue);
9164
9165         queue_work(dev_priv->wq, &work->work);
9166
9167         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9168 }
9169
9170 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9171 {
9172         struct drm_i915_private *dev_priv = dev->dev_private;
9173         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9174
9175         do_intel_finish_page_flip(dev, crtc);
9176 }
9177
9178 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9179 {
9180         struct drm_i915_private *dev_priv = dev->dev_private;
9181         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9182
9183         do_intel_finish_page_flip(dev, crtc);
9184 }
9185
9186 /* Is 'a' after or equal to 'b'? */
9187 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9188 {
9189         return !((a - b) & 0x80000000);
9190 }
9191
9192 static bool page_flip_finished(struct intel_crtc *crtc)
9193 {
9194         struct drm_device *dev = crtc->base.dev;
9195         struct drm_i915_private *dev_priv = dev->dev_private;
9196
9197         /*
9198          * The relevant registers doen't exist on pre-ctg.
9199          * As the flip done interrupt doesn't trigger for mmio
9200          * flips on gmch platforms, a flip count check isn't
9201          * really needed there. But since ctg has the registers,
9202          * include it in the check anyway.
9203          */
9204         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9205                 return true;
9206
9207         /*
9208          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9209          * used the same base address. In that case the mmio flip might
9210          * have completed, but the CS hasn't even executed the flip yet.
9211          *
9212          * A flip count check isn't enough as the CS might have updated
9213          * the base address just after start of vblank, but before we
9214          * managed to process the interrupt. This means we'd complete the
9215          * CS flip too soon.
9216          *
9217          * Combining both checks should get us a good enough result. It may
9218          * still happen that the CS flip has been executed, but has not
9219          * yet actually completed. But in case the base address is the same
9220          * anyway, we don't really care.
9221          */
9222         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9223                 crtc->unpin_work->gtt_offset &&
9224                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9225                                     crtc->unpin_work->flip_count);
9226 }
9227
9228 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9229 {
9230         struct drm_i915_private *dev_priv = dev->dev_private;
9231         struct intel_crtc *intel_crtc =
9232                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9233         unsigned long flags;
9234
9235         /* NB: An MMIO update of the plane base pointer will also
9236          * generate a page-flip completion irq, i.e. every modeset
9237          * is also accompanied by a spurious intel_prepare_page_flip().
9238          */
9239         spin_lock_irqsave(&dev->event_lock, flags);
9240         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9241                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9242         spin_unlock_irqrestore(&dev->event_lock, flags);
9243 }
9244
9245 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9246 {
9247         /* Ensure that the work item is consistent when activating it ... */
9248         smp_wmb();
9249         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9250         /* and that it is marked active as soon as the irq could fire. */
9251         smp_wmb();
9252 }
9253
9254 static int intel_gen2_queue_flip(struct drm_device *dev,
9255                                  struct drm_crtc *crtc,
9256                                  struct drm_framebuffer *fb,
9257                                  struct drm_i915_gem_object *obj,
9258                                  struct intel_engine_cs *ring,
9259                                  uint32_t flags)
9260 {
9261         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9262         u32 flip_mask;
9263         int ret;
9264
9265         ret = intel_ring_begin(ring, 6);
9266         if (ret)
9267                 return ret;
9268
9269         /* Can't queue multiple flips, so wait for the previous
9270          * one to finish before executing the next.
9271          */
9272         if (intel_crtc->plane)
9273                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9274         else
9275                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9276         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9277         intel_ring_emit(ring, MI_NOOP);
9278         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9279                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9280         intel_ring_emit(ring, fb->pitches[0]);
9281         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9282         intel_ring_emit(ring, 0); /* aux display base address, unused */
9283
9284         intel_mark_page_flip_active(intel_crtc);
9285         __intel_ring_advance(ring);
9286         return 0;
9287 }
9288
9289 static int intel_gen3_queue_flip(struct drm_device *dev,
9290                                  struct drm_crtc *crtc,
9291                                  struct drm_framebuffer *fb,
9292                                  struct drm_i915_gem_object *obj,
9293                                  struct intel_engine_cs *ring,
9294                                  uint32_t flags)
9295 {
9296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9297         u32 flip_mask;
9298         int ret;
9299
9300         ret = intel_ring_begin(ring, 6);
9301         if (ret)
9302                 return ret;
9303
9304         if (intel_crtc->plane)
9305                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9306         else
9307                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9308         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9309         intel_ring_emit(ring, MI_NOOP);
9310         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9311                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9312         intel_ring_emit(ring, fb->pitches[0]);
9313         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9314         intel_ring_emit(ring, MI_NOOP);
9315
9316         intel_mark_page_flip_active(intel_crtc);
9317         __intel_ring_advance(ring);
9318         return 0;
9319 }
9320
9321 static int intel_gen4_queue_flip(struct drm_device *dev,
9322                                  struct drm_crtc *crtc,
9323                                  struct drm_framebuffer *fb,
9324                                  struct drm_i915_gem_object *obj,
9325                                  struct intel_engine_cs *ring,
9326                                  uint32_t flags)
9327 {
9328         struct drm_i915_private *dev_priv = dev->dev_private;
9329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9330         uint32_t pf, pipesrc;
9331         int ret;
9332
9333         ret = intel_ring_begin(ring, 4);
9334         if (ret)
9335                 return ret;
9336
9337         /* i965+ uses the linear or tiled offsets from the
9338          * Display Registers (which do not change across a page-flip)
9339          * so we need only reprogram the base address.
9340          */
9341         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9342                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9343         intel_ring_emit(ring, fb->pitches[0]);
9344         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9345                         obj->tiling_mode);
9346
9347         /* XXX Enabling the panel-fitter across page-flip is so far
9348          * untested on non-native modes, so ignore it for now.
9349          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9350          */
9351         pf = 0;
9352         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9353         intel_ring_emit(ring, pf | pipesrc);
9354
9355         intel_mark_page_flip_active(intel_crtc);
9356         __intel_ring_advance(ring);
9357         return 0;
9358 }
9359
9360 static int intel_gen6_queue_flip(struct drm_device *dev,
9361                                  struct drm_crtc *crtc,
9362                                  struct drm_framebuffer *fb,
9363                                  struct drm_i915_gem_object *obj,
9364                                  struct intel_engine_cs *ring,
9365                                  uint32_t flags)
9366 {
9367         struct drm_i915_private *dev_priv = dev->dev_private;
9368         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9369         uint32_t pf, pipesrc;
9370         int ret;
9371
9372         ret = intel_ring_begin(ring, 4);
9373         if (ret)
9374                 return ret;
9375
9376         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9377                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9378         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9379         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9380
9381         /* Contrary to the suggestions in the documentation,
9382          * "Enable Panel Fitter" does not seem to be required when page
9383          * flipping with a non-native mode, and worse causes a normal
9384          * modeset to fail.
9385          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9386          */
9387         pf = 0;
9388         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9389         intel_ring_emit(ring, pf | pipesrc);
9390
9391         intel_mark_page_flip_active(intel_crtc);
9392         __intel_ring_advance(ring);
9393         return 0;
9394 }
9395
9396 static int intel_gen7_queue_flip(struct drm_device *dev,
9397                                  struct drm_crtc *crtc,
9398                                  struct drm_framebuffer *fb,
9399                                  struct drm_i915_gem_object *obj,
9400                                  struct intel_engine_cs *ring,
9401                                  uint32_t flags)
9402 {
9403         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9404         uint32_t plane_bit = 0;
9405         int len, ret;
9406
9407         switch (intel_crtc->plane) {
9408         case PLANE_A:
9409                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9410                 break;
9411         case PLANE_B:
9412                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9413                 break;
9414         case PLANE_C:
9415                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9416                 break;
9417         default:
9418                 WARN_ONCE(1, "unknown plane in flip command\n");
9419                 return -ENODEV;
9420         }
9421
9422         len = 4;
9423         if (ring->id == RCS) {
9424                 len += 6;
9425                 /*
9426                  * On Gen 8, SRM is now taking an extra dword to accommodate
9427                  * 48bits addresses, and we need a NOOP for the batch size to
9428                  * stay even.
9429                  */
9430                 if (IS_GEN8(dev))
9431                         len += 2;
9432         }
9433
9434         /*
9435          * BSpec MI_DISPLAY_FLIP for IVB:
9436          * "The full packet must be contained within the same cache line."
9437          *
9438          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9439          * cacheline, if we ever start emitting more commands before
9440          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9441          * then do the cacheline alignment, and finally emit the
9442          * MI_DISPLAY_FLIP.
9443          */
9444         ret = intel_ring_cacheline_align(ring);
9445         if (ret)
9446                 return ret;
9447
9448         ret = intel_ring_begin(ring, len);
9449         if (ret)
9450                 return ret;
9451
9452         /* Unmask the flip-done completion message. Note that the bspec says that
9453          * we should do this for both the BCS and RCS, and that we must not unmask
9454          * more than one flip event at any time (or ensure that one flip message
9455          * can be sent by waiting for flip-done prior to queueing new flips).
9456          * Experimentation says that BCS works despite DERRMR masking all
9457          * flip-done completion events and that unmasking all planes at once
9458          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9459          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9460          */
9461         if (ring->id == RCS) {
9462                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9463                 intel_ring_emit(ring, DERRMR);
9464                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9465                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9466                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9467                 if (IS_GEN8(dev))
9468                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9469                                               MI_SRM_LRM_GLOBAL_GTT);
9470                 else
9471                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9472                                               MI_SRM_LRM_GLOBAL_GTT);
9473                 intel_ring_emit(ring, DERRMR);
9474                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9475                 if (IS_GEN8(dev)) {
9476                         intel_ring_emit(ring, 0);
9477                         intel_ring_emit(ring, MI_NOOP);
9478                 }
9479         }
9480
9481         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9482         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9483         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9484         intel_ring_emit(ring, (MI_NOOP));
9485
9486         intel_mark_page_flip_active(intel_crtc);
9487         __intel_ring_advance(ring);
9488         return 0;
9489 }
9490
9491 static bool use_mmio_flip(struct intel_engine_cs *ring,
9492                           struct drm_i915_gem_object *obj)
9493 {
9494         /*
9495          * This is not being used for older platforms, because
9496          * non-availability of flip done interrupt forces us to use
9497          * CS flips. Older platforms derive flip done using some clever
9498          * tricks involving the flip_pending status bits and vblank irqs.
9499          * So using MMIO flips there would disrupt this mechanism.
9500          */
9501
9502         if (ring == NULL)
9503                 return true;
9504
9505         if (INTEL_INFO(ring->dev)->gen < 5)
9506                 return false;
9507
9508         if (i915.use_mmio_flip < 0)
9509                 return false;
9510         else if (i915.use_mmio_flip > 0)
9511                 return true;
9512         else
9513                 return ring != obj->ring;
9514 }
9515
9516 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9517 {
9518         struct drm_device *dev = intel_crtc->base.dev;
9519         struct drm_i915_private *dev_priv = dev->dev_private;
9520         struct intel_framebuffer *intel_fb =
9521                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9522         struct drm_i915_gem_object *obj = intel_fb->obj;
9523         u32 dspcntr;
9524         u32 reg;
9525
9526         intel_mark_page_flip_active(intel_crtc);
9527
9528         reg = DSPCNTR(intel_crtc->plane);
9529         dspcntr = I915_READ(reg);
9530
9531         if (INTEL_INFO(dev)->gen >= 4) {
9532                 if (obj->tiling_mode != I915_TILING_NONE)
9533                         dspcntr |= DISPPLANE_TILED;
9534                 else
9535                         dspcntr &= ~DISPPLANE_TILED;
9536         }
9537         I915_WRITE(reg, dspcntr);
9538
9539         I915_WRITE(DSPSURF(intel_crtc->plane),
9540                    intel_crtc->unpin_work->gtt_offset);
9541         POSTING_READ(DSPSURF(intel_crtc->plane));
9542 }
9543
9544 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9545 {
9546         struct intel_engine_cs *ring;
9547         int ret;
9548
9549         lockdep_assert_held(&obj->base.dev->struct_mutex);
9550
9551         if (!obj->last_write_seqno)
9552                 return 0;
9553
9554         ring = obj->ring;
9555
9556         if (i915_seqno_passed(ring->get_seqno(ring, true),
9557                               obj->last_write_seqno))
9558                 return 0;
9559
9560         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9561         if (ret)
9562                 return ret;
9563
9564         if (WARN_ON(!ring->irq_get(ring)))
9565                 return 0;
9566
9567         return 1;
9568 }
9569
9570 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9571 {
9572         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9573         struct intel_crtc *intel_crtc;
9574         unsigned long irq_flags;
9575         u32 seqno;
9576
9577         seqno = ring->get_seqno(ring, false);
9578
9579         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9580         for_each_intel_crtc(ring->dev, intel_crtc) {
9581                 struct intel_mmio_flip *mmio_flip;
9582
9583                 mmio_flip = &intel_crtc->mmio_flip;
9584                 if (mmio_flip->seqno == 0)
9585                         continue;
9586
9587                 if (ring->id != mmio_flip->ring_id)
9588                         continue;
9589
9590                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9591                         intel_do_mmio_flip(intel_crtc);
9592                         mmio_flip->seqno = 0;
9593                         ring->irq_put(ring);
9594                 }
9595         }
9596         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9597 }
9598
9599 static int intel_queue_mmio_flip(struct drm_device *dev,
9600                                  struct drm_crtc *crtc,
9601                                  struct drm_framebuffer *fb,
9602                                  struct drm_i915_gem_object *obj,
9603                                  struct intel_engine_cs *ring,
9604                                  uint32_t flags)
9605 {
9606         struct drm_i915_private *dev_priv = dev->dev_private;
9607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9608         unsigned long irq_flags;
9609         int ret;
9610
9611         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9612                 return -EBUSY;
9613
9614         ret = intel_postpone_flip(obj);
9615         if (ret < 0)
9616                 return ret;
9617         if (ret == 0) {
9618                 intel_do_mmio_flip(intel_crtc);
9619                 return 0;
9620         }
9621
9622         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9623         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9624         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9625         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9626
9627         /*
9628          * Double check to catch cases where irq fired before
9629          * mmio flip data was ready
9630          */
9631         intel_notify_mmio_flip(obj->ring);
9632         return 0;
9633 }
9634
9635 static int intel_default_queue_flip(struct drm_device *dev,
9636                                     struct drm_crtc *crtc,
9637                                     struct drm_framebuffer *fb,
9638                                     struct drm_i915_gem_object *obj,
9639                                     struct intel_engine_cs *ring,
9640                                     uint32_t flags)
9641 {
9642         return -ENODEV;
9643 }
9644
9645 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9646                                 struct drm_framebuffer *fb,
9647                                 struct drm_pending_vblank_event *event,
9648                                 uint32_t page_flip_flags)
9649 {
9650         struct drm_device *dev = crtc->dev;
9651         struct drm_i915_private *dev_priv = dev->dev_private;
9652         struct drm_framebuffer *old_fb = crtc->primary->fb;
9653         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9655         enum pipe pipe = intel_crtc->pipe;
9656         struct intel_unpin_work *work;
9657         struct intel_engine_cs *ring;
9658         unsigned long flags;
9659         int ret;
9660
9661         /*
9662          * drm_mode_page_flip_ioctl() should already catch this, but double
9663          * check to be safe.  In the future we may enable pageflipping from
9664          * a disabled primary plane.
9665          */
9666         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9667                 return -EBUSY;
9668
9669         /* Can't change pixel format via MI display flips. */
9670         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9671                 return -EINVAL;
9672
9673         /*
9674          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9675          * Note that pitch changes could also affect these register.
9676          */
9677         if (INTEL_INFO(dev)->gen > 3 &&
9678             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9679              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9680                 return -EINVAL;
9681
9682         if (i915_terminally_wedged(&dev_priv->gpu_error))
9683                 goto out_hang;
9684
9685         work = kzalloc(sizeof(*work), GFP_KERNEL);
9686         if (work == NULL)
9687                 return -ENOMEM;
9688
9689         work->event = event;
9690         work->crtc = crtc;
9691         work->old_fb_obj = intel_fb_obj(old_fb);
9692         INIT_WORK(&work->work, intel_unpin_work_fn);
9693
9694         ret = drm_crtc_vblank_get(crtc);
9695         if (ret)
9696                 goto free_work;
9697
9698         /* We borrow the event spin lock for protecting unpin_work */
9699         spin_lock_irqsave(&dev->event_lock, flags);
9700         if (intel_crtc->unpin_work) {
9701                 spin_unlock_irqrestore(&dev->event_lock, flags);
9702                 kfree(work);
9703                 drm_crtc_vblank_put(crtc);
9704
9705                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9706                 return -EBUSY;
9707         }
9708         intel_crtc->unpin_work = work;
9709         spin_unlock_irqrestore(&dev->event_lock, flags);
9710
9711         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9712                 flush_workqueue(dev_priv->wq);
9713
9714         ret = i915_mutex_lock_interruptible(dev);
9715         if (ret)
9716                 goto cleanup;
9717
9718         /* Reference the objects for the scheduled work. */
9719         drm_gem_object_reference(&work->old_fb_obj->base);
9720         drm_gem_object_reference(&obj->base);
9721
9722         crtc->primary->fb = fb;
9723
9724         work->pending_flip_obj = obj;
9725
9726         work->enable_stall_check = true;
9727
9728         atomic_inc(&intel_crtc->unpin_work_count);
9729         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9730
9731         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9732                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9733
9734         if (IS_VALLEYVIEW(dev)) {
9735                 ring = &dev_priv->ring[BCS];
9736                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9737                         /* vlv: DISPLAY_FLIP fails to change tiling */
9738                         ring = NULL;
9739         } else if (IS_IVYBRIDGE(dev)) {
9740                 ring = &dev_priv->ring[BCS];
9741         } else if (INTEL_INFO(dev)->gen >= 7) {
9742                 ring = obj->ring;
9743                 if (ring == NULL || ring->id != RCS)
9744                         ring = &dev_priv->ring[BCS];
9745         } else {
9746                 ring = &dev_priv->ring[RCS];
9747         }
9748
9749         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9750         if (ret)
9751                 goto cleanup_pending;
9752
9753         work->gtt_offset =
9754                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9755
9756         if (use_mmio_flip(ring, obj))
9757                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9758                                             page_flip_flags);
9759         else
9760                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9761                                 page_flip_flags);
9762         if (ret)
9763                 goto cleanup_unpin;
9764
9765         i915_gem_track_fb(work->old_fb_obj, obj,
9766                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9767
9768         intel_disable_fbc(dev);
9769         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9770         mutex_unlock(&dev->struct_mutex);
9771
9772         trace_i915_flip_request(intel_crtc->plane, obj);
9773
9774         return 0;
9775
9776 cleanup_unpin:
9777         intel_unpin_fb_obj(obj);
9778 cleanup_pending:
9779         atomic_dec(&intel_crtc->unpin_work_count);
9780         crtc->primary->fb = old_fb;
9781         drm_gem_object_unreference(&work->old_fb_obj->base);
9782         drm_gem_object_unreference(&obj->base);
9783         mutex_unlock(&dev->struct_mutex);
9784
9785 cleanup:
9786         spin_lock_irqsave(&dev->event_lock, flags);
9787         intel_crtc->unpin_work = NULL;
9788         spin_unlock_irqrestore(&dev->event_lock, flags);
9789
9790         drm_crtc_vblank_put(crtc);
9791 free_work:
9792         kfree(work);
9793
9794         if (ret == -EIO) {
9795 out_hang:
9796                 intel_crtc_wait_for_pending_flips(crtc);
9797                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9798                 if (ret == 0 && event)
9799                         drm_send_vblank_event(dev, pipe, event);
9800         }
9801         return ret;
9802 }
9803
9804 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9805         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9806         .load_lut = intel_crtc_load_lut,
9807 };
9808
9809 /**
9810  * intel_modeset_update_staged_output_state
9811  *
9812  * Updates the staged output configuration state, e.g. after we've read out the
9813  * current hw state.
9814  */
9815 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9816 {
9817         struct intel_crtc *crtc;
9818         struct intel_encoder *encoder;
9819         struct intel_connector *connector;
9820
9821         list_for_each_entry(connector, &dev->mode_config.connector_list,
9822                             base.head) {
9823                 connector->new_encoder =
9824                         to_intel_encoder(connector->base.encoder);
9825         }
9826
9827         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9828                             base.head) {
9829                 encoder->new_crtc =
9830                         to_intel_crtc(encoder->base.crtc);
9831         }
9832
9833         for_each_intel_crtc(dev, crtc) {
9834                 crtc->new_enabled = crtc->base.enabled;
9835
9836                 if (crtc->new_enabled)
9837                         crtc->new_config = &crtc->config;
9838                 else
9839                         crtc->new_config = NULL;
9840         }
9841 }
9842
9843 /**
9844  * intel_modeset_commit_output_state
9845  *
9846  * This function copies the stage display pipe configuration to the real one.
9847  */
9848 static void intel_modeset_commit_output_state(struct drm_device *dev)
9849 {
9850         struct intel_crtc *crtc;
9851         struct intel_encoder *encoder;
9852         struct intel_connector *connector;
9853
9854         list_for_each_entry(connector, &dev->mode_config.connector_list,
9855                             base.head) {
9856                 connector->base.encoder = &connector->new_encoder->base;
9857         }
9858
9859         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9860                             base.head) {
9861                 encoder->base.crtc = &encoder->new_crtc->base;
9862         }
9863
9864         for_each_intel_crtc(dev, crtc) {
9865                 crtc->base.enabled = crtc->new_enabled;
9866         }
9867 }
9868
9869 static void
9870 connected_sink_compute_bpp(struct intel_connector *connector,
9871                            struct intel_crtc_config *pipe_config)
9872 {
9873         int bpp = pipe_config->pipe_bpp;
9874
9875         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9876                 connector->base.base.id,
9877                 connector->base.name);
9878
9879         /* Don't use an invalid EDID bpc value */
9880         if (connector->base.display_info.bpc &&
9881             connector->base.display_info.bpc * 3 < bpp) {
9882                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9883                               bpp, connector->base.display_info.bpc*3);
9884                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9885         }
9886
9887         /* Clamp bpp to 8 on screens without EDID 1.4 */
9888         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9889                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9890                               bpp);
9891                 pipe_config->pipe_bpp = 24;
9892         }
9893 }
9894
9895 static int
9896 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9897                           struct drm_framebuffer *fb,
9898                           struct intel_crtc_config *pipe_config)
9899 {
9900         struct drm_device *dev = crtc->base.dev;
9901         struct intel_connector *connector;
9902         int bpp;
9903
9904         switch (fb->pixel_format) {
9905         case DRM_FORMAT_C8:
9906                 bpp = 8*3; /* since we go through a colormap */
9907                 break;
9908         case DRM_FORMAT_XRGB1555:
9909         case DRM_FORMAT_ARGB1555:
9910                 /* checked in intel_framebuffer_init already */
9911                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9912                         return -EINVAL;
9913         case DRM_FORMAT_RGB565:
9914                 bpp = 6*3; /* min is 18bpp */
9915                 break;
9916         case DRM_FORMAT_XBGR8888:
9917         case DRM_FORMAT_ABGR8888:
9918                 /* checked in intel_framebuffer_init already */
9919                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9920                         return -EINVAL;
9921         case DRM_FORMAT_XRGB8888:
9922         case DRM_FORMAT_ARGB8888:
9923                 bpp = 8*3;
9924                 break;
9925         case DRM_FORMAT_XRGB2101010:
9926         case DRM_FORMAT_ARGB2101010:
9927         case DRM_FORMAT_XBGR2101010:
9928         case DRM_FORMAT_ABGR2101010:
9929                 /* checked in intel_framebuffer_init already */
9930                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9931                         return -EINVAL;
9932                 bpp = 10*3;
9933                 break;
9934         /* TODO: gen4+ supports 16 bpc floating point, too. */
9935         default:
9936                 DRM_DEBUG_KMS("unsupported depth\n");
9937                 return -EINVAL;
9938         }
9939
9940         pipe_config->pipe_bpp = bpp;
9941
9942         /* Clamp display bpp to EDID value */
9943         list_for_each_entry(connector, &dev->mode_config.connector_list,
9944                             base.head) {
9945                 if (!connector->new_encoder ||
9946                     connector->new_encoder->new_crtc != crtc)
9947                         continue;
9948
9949                 connected_sink_compute_bpp(connector, pipe_config);
9950         }
9951
9952         return bpp;
9953 }
9954
9955 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9956 {
9957         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9958                         "type: 0x%x flags: 0x%x\n",
9959                 mode->crtc_clock,
9960                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9961                 mode->crtc_hsync_end, mode->crtc_htotal,
9962                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9963                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9964 }
9965
9966 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9967                                    struct intel_crtc_config *pipe_config,
9968                                    const char *context)
9969 {
9970         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9971                       context, pipe_name(crtc->pipe));
9972
9973         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9974         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9975                       pipe_config->pipe_bpp, pipe_config->dither);
9976         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9977                       pipe_config->has_pch_encoder,
9978                       pipe_config->fdi_lanes,
9979                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9980                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9981                       pipe_config->fdi_m_n.tu);
9982         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9983                       pipe_config->has_dp_encoder,
9984                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9985                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9986                       pipe_config->dp_m_n.tu);
9987         DRM_DEBUG_KMS("requested mode:\n");
9988         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9989         DRM_DEBUG_KMS("adjusted mode:\n");
9990         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9991         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9992         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9993         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9994                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9995         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9996                       pipe_config->gmch_pfit.control,
9997                       pipe_config->gmch_pfit.pgm_ratios,
9998                       pipe_config->gmch_pfit.lvds_border_bits);
9999         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10000                       pipe_config->pch_pfit.pos,
10001                       pipe_config->pch_pfit.size,
10002                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10003         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10004         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10005 }
10006
10007 static bool encoders_cloneable(const struct intel_encoder *a,
10008                                const struct intel_encoder *b)
10009 {
10010         /* masks could be asymmetric, so check both ways */
10011         return a == b || (a->cloneable & (1 << b->type) &&
10012                           b->cloneable & (1 << a->type));
10013 }
10014
10015 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10016                                          struct intel_encoder *encoder)
10017 {
10018         struct drm_device *dev = crtc->base.dev;
10019         struct intel_encoder *source_encoder;
10020
10021         list_for_each_entry(source_encoder,
10022                             &dev->mode_config.encoder_list, base.head) {
10023                 if (source_encoder->new_crtc != crtc)
10024                         continue;
10025
10026                 if (!encoders_cloneable(encoder, source_encoder))
10027                         return false;
10028         }
10029
10030         return true;
10031 }
10032
10033 static bool check_encoder_cloning(struct intel_crtc *crtc)
10034 {
10035         struct drm_device *dev = crtc->base.dev;
10036         struct intel_encoder *encoder;
10037
10038         list_for_each_entry(encoder,
10039                             &dev->mode_config.encoder_list, base.head) {
10040                 if (encoder->new_crtc != crtc)
10041                         continue;
10042
10043                 if (!check_single_encoder_cloning(crtc, encoder))
10044                         return false;
10045         }
10046
10047         return true;
10048 }
10049
10050 static struct intel_crtc_config *
10051 intel_modeset_pipe_config(struct drm_crtc *crtc,
10052                           struct drm_framebuffer *fb,
10053                           struct drm_display_mode *mode)
10054 {
10055         struct drm_device *dev = crtc->dev;
10056         struct intel_encoder *encoder;
10057         struct intel_crtc_config *pipe_config;
10058         int plane_bpp, ret = -EINVAL;
10059         bool retry = true;
10060
10061         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10062                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10063                 return ERR_PTR(-EINVAL);
10064         }
10065
10066         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10067         if (!pipe_config)
10068                 return ERR_PTR(-ENOMEM);
10069
10070         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10071         drm_mode_copy(&pipe_config->requested_mode, mode);
10072
10073         pipe_config->cpu_transcoder =
10074                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10075         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10076
10077         /*
10078          * Sanitize sync polarity flags based on requested ones. If neither
10079          * positive or negative polarity is requested, treat this as meaning
10080          * negative polarity.
10081          */
10082         if (!(pipe_config->adjusted_mode.flags &
10083               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10084                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10085
10086         if (!(pipe_config->adjusted_mode.flags &
10087               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10088                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10089
10090         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10091          * plane pixel format and any sink constraints into account. Returns the
10092          * source plane bpp so that dithering can be selected on mismatches
10093          * after encoders and crtc also have had their say. */
10094         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10095                                               fb, pipe_config);
10096         if (plane_bpp < 0)
10097                 goto fail;
10098
10099         /*
10100          * Determine the real pipe dimensions. Note that stereo modes can
10101          * increase the actual pipe size due to the frame doubling and
10102          * insertion of additional space for blanks between the frame. This
10103          * is stored in the crtc timings. We use the requested mode to do this
10104          * computation to clearly distinguish it from the adjusted mode, which
10105          * can be changed by the connectors in the below retry loop.
10106          */
10107         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10108         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10109         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10110
10111 encoder_retry:
10112         /* Ensure the port clock defaults are reset when retrying. */
10113         pipe_config->port_clock = 0;
10114         pipe_config->pixel_multiplier = 1;
10115
10116         /* Fill in default crtc timings, allow encoders to overwrite them. */
10117         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10118
10119         /* Pass our mode to the connectors and the CRTC to give them a chance to
10120          * adjust it according to limitations or connector properties, and also
10121          * a chance to reject the mode entirely.
10122          */
10123         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10124                             base.head) {
10125
10126                 if (&encoder->new_crtc->base != crtc)
10127                         continue;
10128
10129                 if (!(encoder->compute_config(encoder, pipe_config))) {
10130                         DRM_DEBUG_KMS("Encoder config failure\n");
10131                         goto fail;
10132                 }
10133         }
10134
10135         /* Set default port clock if not overwritten by the encoder. Needs to be
10136          * done afterwards in case the encoder adjusts the mode. */
10137         if (!pipe_config->port_clock)
10138                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10139                         * pipe_config->pixel_multiplier;
10140
10141         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10142         if (ret < 0) {
10143                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10144                 goto fail;
10145         }
10146
10147         if (ret == RETRY) {
10148                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10149                         ret = -EINVAL;
10150                         goto fail;
10151                 }
10152
10153                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10154                 retry = false;
10155                 goto encoder_retry;
10156         }
10157
10158         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10159         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10160                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10161
10162         return pipe_config;
10163 fail:
10164         kfree(pipe_config);
10165         return ERR_PTR(ret);
10166 }
10167
10168 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10169  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10170 static void
10171 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10172                              unsigned *prepare_pipes, unsigned *disable_pipes)
10173 {
10174         struct intel_crtc *intel_crtc;
10175         struct drm_device *dev = crtc->dev;
10176         struct intel_encoder *encoder;
10177         struct intel_connector *connector;
10178         struct drm_crtc *tmp_crtc;
10179
10180         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10181
10182         /* Check which crtcs have changed outputs connected to them, these need
10183          * to be part of the prepare_pipes mask. We don't (yet) support global
10184          * modeset across multiple crtcs, so modeset_pipes will only have one
10185          * bit set at most. */
10186         list_for_each_entry(connector, &dev->mode_config.connector_list,
10187                             base.head) {
10188                 if (connector->base.encoder == &connector->new_encoder->base)
10189                         continue;
10190
10191                 if (connector->base.encoder) {
10192                         tmp_crtc = connector->base.encoder->crtc;
10193
10194                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10195                 }
10196
10197                 if (connector->new_encoder)
10198                         *prepare_pipes |=
10199                                 1 << connector->new_encoder->new_crtc->pipe;
10200         }
10201
10202         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10203                             base.head) {
10204                 if (encoder->base.crtc == &encoder->new_crtc->base)
10205                         continue;
10206
10207                 if (encoder->base.crtc) {
10208                         tmp_crtc = encoder->base.crtc;
10209
10210                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10211                 }
10212
10213                 if (encoder->new_crtc)
10214                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10215         }
10216
10217         /* Check for pipes that will be enabled/disabled ... */
10218         for_each_intel_crtc(dev, intel_crtc) {
10219                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10220                         continue;
10221
10222                 if (!intel_crtc->new_enabled)
10223                         *disable_pipes |= 1 << intel_crtc->pipe;
10224                 else
10225                         *prepare_pipes |= 1 << intel_crtc->pipe;
10226         }
10227
10228
10229         /* set_mode is also used to update properties on life display pipes. */
10230         intel_crtc = to_intel_crtc(crtc);
10231         if (intel_crtc->new_enabled)
10232                 *prepare_pipes |= 1 << intel_crtc->pipe;
10233
10234         /*
10235          * For simplicity do a full modeset on any pipe where the output routing
10236          * changed. We could be more clever, but that would require us to be
10237          * more careful with calling the relevant encoder->mode_set functions.
10238          */
10239         if (*prepare_pipes)
10240                 *modeset_pipes = *prepare_pipes;
10241
10242         /* ... and mask these out. */
10243         *modeset_pipes &= ~(*disable_pipes);
10244         *prepare_pipes &= ~(*disable_pipes);
10245
10246         /*
10247          * HACK: We don't (yet) fully support global modesets. intel_set_config
10248          * obies this rule, but the modeset restore mode of
10249          * intel_modeset_setup_hw_state does not.
10250          */
10251         *modeset_pipes &= 1 << intel_crtc->pipe;
10252         *prepare_pipes &= 1 << intel_crtc->pipe;
10253
10254         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10255                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10256 }
10257
10258 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10259 {
10260         struct drm_encoder *encoder;
10261         struct drm_device *dev = crtc->dev;
10262
10263         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10264                 if (encoder->crtc == crtc)
10265                         return true;
10266
10267         return false;
10268 }
10269
10270 static void
10271 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10272 {
10273         struct intel_encoder *intel_encoder;
10274         struct intel_crtc *intel_crtc;
10275         struct drm_connector *connector;
10276
10277         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10278                             base.head) {
10279                 if (!intel_encoder->base.crtc)
10280                         continue;
10281
10282                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10283
10284                 if (prepare_pipes & (1 << intel_crtc->pipe))
10285                         intel_encoder->connectors_active = false;
10286         }
10287
10288         intel_modeset_commit_output_state(dev);
10289
10290         /* Double check state. */
10291         for_each_intel_crtc(dev, intel_crtc) {
10292                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10293                 WARN_ON(intel_crtc->new_config &&
10294                         intel_crtc->new_config != &intel_crtc->config);
10295                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10296         }
10297
10298         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10299                 if (!connector->encoder || !connector->encoder->crtc)
10300                         continue;
10301
10302                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10303
10304                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10305                         struct drm_property *dpms_property =
10306                                 dev->mode_config.dpms_property;
10307
10308                         connector->dpms = DRM_MODE_DPMS_ON;
10309                         drm_object_property_set_value(&connector->base,
10310                                                          dpms_property,
10311                                                          DRM_MODE_DPMS_ON);
10312
10313                         intel_encoder = to_intel_encoder(connector->encoder);
10314                         intel_encoder->connectors_active = true;
10315                 }
10316         }
10317
10318 }
10319
10320 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10321 {
10322         int diff;
10323
10324         if (clock1 == clock2)
10325                 return true;
10326
10327         if (!clock1 || !clock2)
10328                 return false;
10329
10330         diff = abs(clock1 - clock2);
10331
10332         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10333                 return true;
10334
10335         return false;
10336 }
10337
10338 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10339         list_for_each_entry((intel_crtc), \
10340                             &(dev)->mode_config.crtc_list, \
10341                             base.head) \
10342                 if (mask & (1 <<(intel_crtc)->pipe))
10343
10344 static bool
10345 intel_pipe_config_compare(struct drm_device *dev,
10346                           struct intel_crtc_config *current_config,
10347                           struct intel_crtc_config *pipe_config)
10348 {
10349 #define PIPE_CONF_CHECK_X(name) \
10350         if (current_config->name != pipe_config->name) { \
10351                 DRM_ERROR("mismatch in " #name " " \
10352                           "(expected 0x%08x, found 0x%08x)\n", \
10353                           current_config->name, \
10354                           pipe_config->name); \
10355                 return false; \
10356         }
10357
10358 #define PIPE_CONF_CHECK_I(name) \
10359         if (current_config->name != pipe_config->name) { \
10360                 DRM_ERROR("mismatch in " #name " " \
10361                           "(expected %i, found %i)\n", \
10362                           current_config->name, \
10363                           pipe_config->name); \
10364                 return false; \
10365         }
10366
10367 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10368         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10369                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10370                           "(expected %i, found %i)\n", \
10371                           current_config->name & (mask), \
10372                           pipe_config->name & (mask)); \
10373                 return false; \
10374         }
10375
10376 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10377         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10378                 DRM_ERROR("mismatch in " #name " " \
10379                           "(expected %i, found %i)\n", \
10380                           current_config->name, \
10381                           pipe_config->name); \
10382                 return false; \
10383         }
10384
10385 #define PIPE_CONF_QUIRK(quirk)  \
10386         ((current_config->quirks | pipe_config->quirks) & (quirk))
10387
10388         PIPE_CONF_CHECK_I(cpu_transcoder);
10389
10390         PIPE_CONF_CHECK_I(has_pch_encoder);
10391         PIPE_CONF_CHECK_I(fdi_lanes);
10392         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10393         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10394         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10395         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10396         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10397
10398         PIPE_CONF_CHECK_I(has_dp_encoder);
10399         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10400         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10401         PIPE_CONF_CHECK_I(dp_m_n.link_m);
10402         PIPE_CONF_CHECK_I(dp_m_n.link_n);
10403         PIPE_CONF_CHECK_I(dp_m_n.tu);
10404
10405         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10406         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10407         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10408         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10409         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10410         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10411
10412         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10413         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10414         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10415         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10416         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10417         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10418
10419         PIPE_CONF_CHECK_I(pixel_multiplier);
10420         PIPE_CONF_CHECK_I(has_hdmi_sink);
10421         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10422             IS_VALLEYVIEW(dev))
10423                 PIPE_CONF_CHECK_I(limited_color_range);
10424
10425         PIPE_CONF_CHECK_I(has_audio);
10426
10427         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10428                               DRM_MODE_FLAG_INTERLACE);
10429
10430         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10431                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10432                                       DRM_MODE_FLAG_PHSYNC);
10433                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10434                                       DRM_MODE_FLAG_NHSYNC);
10435                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10436                                       DRM_MODE_FLAG_PVSYNC);
10437                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10438                                       DRM_MODE_FLAG_NVSYNC);
10439         }
10440
10441         PIPE_CONF_CHECK_I(pipe_src_w);
10442         PIPE_CONF_CHECK_I(pipe_src_h);
10443
10444         /*
10445          * FIXME: BIOS likes to set up a cloned config with lvds+external
10446          * screen. Since we don't yet re-compute the pipe config when moving
10447          * just the lvds port away to another pipe the sw tracking won't match.
10448          *
10449          * Proper atomic modesets with recomputed global state will fix this.
10450          * Until then just don't check gmch state for inherited modes.
10451          */
10452         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10453                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10454                 /* pfit ratios are autocomputed by the hw on gen4+ */
10455                 if (INTEL_INFO(dev)->gen < 4)
10456                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10457                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10458         }
10459
10460         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10461         if (current_config->pch_pfit.enabled) {
10462                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10463                 PIPE_CONF_CHECK_I(pch_pfit.size);
10464         }
10465
10466         /* BDW+ don't expose a synchronous way to read the state */
10467         if (IS_HASWELL(dev))
10468                 PIPE_CONF_CHECK_I(ips_enabled);
10469
10470         PIPE_CONF_CHECK_I(double_wide);
10471
10472         PIPE_CONF_CHECK_X(ddi_pll_sel);
10473
10474         PIPE_CONF_CHECK_I(shared_dpll);
10475         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10476         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10477         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10478         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10479         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10480
10481         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10482                 PIPE_CONF_CHECK_I(pipe_bpp);
10483
10484         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10485         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10486
10487 #undef PIPE_CONF_CHECK_X
10488 #undef PIPE_CONF_CHECK_I
10489 #undef PIPE_CONF_CHECK_FLAGS
10490 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10491 #undef PIPE_CONF_QUIRK
10492
10493         return true;
10494 }
10495
10496 static void
10497 check_connector_state(struct drm_device *dev)
10498 {
10499         struct intel_connector *connector;
10500
10501         list_for_each_entry(connector, &dev->mode_config.connector_list,
10502                             base.head) {
10503                 /* This also checks the encoder/connector hw state with the
10504                  * ->get_hw_state callbacks. */
10505                 intel_connector_check_state(connector);
10506
10507                 WARN(&connector->new_encoder->base != connector->base.encoder,
10508                      "connector's staged encoder doesn't match current encoder\n");
10509         }
10510 }
10511
10512 static void
10513 check_encoder_state(struct drm_device *dev)
10514 {
10515         struct intel_encoder *encoder;
10516         struct intel_connector *connector;
10517
10518         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10519                             base.head) {
10520                 bool enabled = false;
10521                 bool active = false;
10522                 enum pipe pipe, tracked_pipe;
10523
10524                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10525                               encoder->base.base.id,
10526                               encoder->base.name);
10527
10528                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10529                      "encoder's stage crtc doesn't match current crtc\n");
10530                 WARN(encoder->connectors_active && !encoder->base.crtc,
10531                      "encoder's active_connectors set, but no crtc\n");
10532
10533                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10534                                     base.head) {
10535                         if (connector->base.encoder != &encoder->base)
10536                                 continue;
10537                         enabled = true;
10538                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10539                                 active = true;
10540                 }
10541                 /*
10542                  * for MST connectors if we unplug the connector is gone
10543                  * away but the encoder is still connected to a crtc
10544                  * until a modeset happens in response to the hotplug.
10545                  */
10546                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10547                         continue;
10548
10549                 WARN(!!encoder->base.crtc != enabled,
10550                      "encoder's enabled state mismatch "
10551                      "(expected %i, found %i)\n",
10552                      !!encoder->base.crtc, enabled);
10553                 WARN(active && !encoder->base.crtc,
10554                      "active encoder with no crtc\n");
10555
10556                 WARN(encoder->connectors_active != active,
10557                      "encoder's computed active state doesn't match tracked active state "
10558                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10559
10560                 active = encoder->get_hw_state(encoder, &pipe);
10561                 WARN(active != encoder->connectors_active,
10562                      "encoder's hw state doesn't match sw tracking "
10563                      "(expected %i, found %i)\n",
10564                      encoder->connectors_active, active);
10565
10566                 if (!encoder->base.crtc)
10567                         continue;
10568
10569                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10570                 WARN(active && pipe != tracked_pipe,
10571                      "active encoder's pipe doesn't match"
10572                      "(expected %i, found %i)\n",
10573                      tracked_pipe, pipe);
10574
10575         }
10576 }
10577
10578 static void
10579 check_crtc_state(struct drm_device *dev)
10580 {
10581         struct drm_i915_private *dev_priv = dev->dev_private;
10582         struct intel_crtc *crtc;
10583         struct intel_encoder *encoder;
10584         struct intel_crtc_config pipe_config;
10585
10586         for_each_intel_crtc(dev, crtc) {
10587                 bool enabled = false;
10588                 bool active = false;
10589
10590                 memset(&pipe_config, 0, sizeof(pipe_config));
10591
10592                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10593                               crtc->base.base.id);
10594
10595                 WARN(crtc->active && !crtc->base.enabled,
10596                      "active crtc, but not enabled in sw tracking\n");
10597
10598                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10599                                     base.head) {
10600                         if (encoder->base.crtc != &crtc->base)
10601                                 continue;
10602                         enabled = true;
10603                         if (encoder->connectors_active)
10604                                 active = true;
10605                 }
10606
10607                 WARN(active != crtc->active,
10608                      "crtc's computed active state doesn't match tracked active state "
10609                      "(expected %i, found %i)\n", active, crtc->active);
10610                 WARN(enabled != crtc->base.enabled,
10611                      "crtc's computed enabled state doesn't match tracked enabled state "
10612                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10613
10614                 active = dev_priv->display.get_pipe_config(crtc,
10615                                                            &pipe_config);
10616
10617                 /* hw state is inconsistent with the pipe A quirk */
10618                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10619                         active = crtc->active;
10620
10621                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10622                                     base.head) {
10623                         enum pipe pipe;
10624                         if (encoder->base.crtc != &crtc->base)
10625                                 continue;
10626                         if (encoder->get_hw_state(encoder, &pipe))
10627                                 encoder->get_config(encoder, &pipe_config);
10628                 }
10629
10630                 WARN(crtc->active != active,
10631                      "crtc active state doesn't match with hw state "
10632                      "(expected %i, found %i)\n", crtc->active, active);
10633
10634                 if (active &&
10635                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10636                         WARN(1, "pipe state doesn't match!\n");
10637                         intel_dump_pipe_config(crtc, &pipe_config,
10638                                                "[hw state]");
10639                         intel_dump_pipe_config(crtc, &crtc->config,
10640                                                "[sw state]");
10641                 }
10642         }
10643 }
10644
10645 static void
10646 check_shared_dpll_state(struct drm_device *dev)
10647 {
10648         struct drm_i915_private *dev_priv = dev->dev_private;
10649         struct intel_crtc *crtc;
10650         struct intel_dpll_hw_state dpll_hw_state;
10651         int i;
10652
10653         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10654                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10655                 int enabled_crtcs = 0, active_crtcs = 0;
10656                 bool active;
10657
10658                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10659
10660                 DRM_DEBUG_KMS("%s\n", pll->name);
10661
10662                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10663
10664                 WARN(pll->active > pll->refcount,
10665                      "more active pll users than references: %i vs %i\n",
10666                      pll->active, pll->refcount);
10667                 WARN(pll->active && !pll->on,
10668                      "pll in active use but not on in sw tracking\n");
10669                 WARN(pll->on && !pll->active,
10670                      "pll in on but not on in use in sw tracking\n");
10671                 WARN(pll->on != active,
10672                      "pll on state mismatch (expected %i, found %i)\n",
10673                      pll->on, active);
10674
10675                 for_each_intel_crtc(dev, crtc) {
10676                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10677                                 enabled_crtcs++;
10678                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10679                                 active_crtcs++;
10680                 }
10681                 WARN(pll->active != active_crtcs,
10682                      "pll active crtcs mismatch (expected %i, found %i)\n",
10683                      pll->active, active_crtcs);
10684                 WARN(pll->refcount != enabled_crtcs,
10685                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10686                      pll->refcount, enabled_crtcs);
10687
10688                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10689                                        sizeof(dpll_hw_state)),
10690                      "pll hw state mismatch\n");
10691         }
10692 }
10693
10694 void
10695 intel_modeset_check_state(struct drm_device *dev)
10696 {
10697         check_connector_state(dev);
10698         check_encoder_state(dev);
10699         check_crtc_state(dev);
10700         check_shared_dpll_state(dev);
10701 }
10702
10703 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10704                                      int dotclock)
10705 {
10706         /*
10707          * FDI already provided one idea for the dotclock.
10708          * Yell if the encoder disagrees.
10709          */
10710         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10711              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10712              pipe_config->adjusted_mode.crtc_clock, dotclock);
10713 }
10714
10715 static void update_scanline_offset(struct intel_crtc *crtc)
10716 {
10717         struct drm_device *dev = crtc->base.dev;
10718
10719         /*
10720          * The scanline counter increments at the leading edge of hsync.
10721          *
10722          * On most platforms it starts counting from vtotal-1 on the
10723          * first active line. That means the scanline counter value is
10724          * always one less than what we would expect. Ie. just after
10725          * start of vblank, which also occurs at start of hsync (on the
10726          * last active line), the scanline counter will read vblank_start-1.
10727          *
10728          * On gen2 the scanline counter starts counting from 1 instead
10729          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10730          * to keep the value positive), instead of adding one.
10731          *
10732          * On HSW+ the behaviour of the scanline counter depends on the output
10733          * type. For DP ports it behaves like most other platforms, but on HDMI
10734          * there's an extra 1 line difference. So we need to add two instead of
10735          * one to the value.
10736          */
10737         if (IS_GEN2(dev)) {
10738                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10739                 int vtotal;
10740
10741                 vtotal = mode->crtc_vtotal;
10742                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10743                         vtotal /= 2;
10744
10745                 crtc->scanline_offset = vtotal - 1;
10746         } else if (HAS_DDI(dev) &&
10747                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10748                 crtc->scanline_offset = 2;
10749         } else
10750                 crtc->scanline_offset = 1;
10751 }
10752
10753 static int __intel_set_mode(struct drm_crtc *crtc,
10754                             struct drm_display_mode *mode,
10755                             int x, int y, struct drm_framebuffer *fb)
10756 {
10757         struct drm_device *dev = crtc->dev;
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         struct drm_display_mode *saved_mode;
10760         struct intel_crtc_config *pipe_config = NULL;
10761         struct intel_crtc *intel_crtc;
10762         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10763         int ret = 0;
10764
10765         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10766         if (!saved_mode)
10767                 return -ENOMEM;
10768
10769         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10770                                      &prepare_pipes, &disable_pipes);
10771
10772         *saved_mode = crtc->mode;
10773
10774         /* Hack: Because we don't (yet) support global modeset on multiple
10775          * crtcs, we don't keep track of the new mode for more than one crtc.
10776          * Hence simply check whether any bit is set in modeset_pipes in all the
10777          * pieces of code that are not yet converted to deal with mutliple crtcs
10778          * changing their mode at the same time. */
10779         if (modeset_pipes) {
10780                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10781                 if (IS_ERR(pipe_config)) {
10782                         ret = PTR_ERR(pipe_config);
10783                         pipe_config = NULL;
10784
10785                         goto out;
10786                 }
10787                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10788                                        "[modeset]");
10789                 to_intel_crtc(crtc)->new_config = pipe_config;
10790         }
10791
10792         /*
10793          * See if the config requires any additional preparation, e.g.
10794          * to adjust global state with pipes off.  We need to do this
10795          * here so we can get the modeset_pipe updated config for the new
10796          * mode set on this crtc.  For other crtcs we need to use the
10797          * adjusted_mode bits in the crtc directly.
10798          */
10799         if (IS_VALLEYVIEW(dev)) {
10800                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10801
10802                 /* may have added more to prepare_pipes than we should */
10803                 prepare_pipes &= ~disable_pipes;
10804         }
10805
10806         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10807                 intel_crtc_disable(&intel_crtc->base);
10808
10809         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10810                 if (intel_crtc->base.enabled)
10811                         dev_priv->display.crtc_disable(&intel_crtc->base);
10812         }
10813
10814         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10815          * to set it here already despite that we pass it down the callchain.
10816          */
10817         if (modeset_pipes) {
10818                 crtc->mode = *mode;
10819                 /* mode_set/enable/disable functions rely on a correct pipe
10820                  * config. */
10821                 to_intel_crtc(crtc)->config = *pipe_config;
10822                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10823
10824                 /*
10825                  * Calculate and store various constants which
10826                  * are later needed by vblank and swap-completion
10827                  * timestamping. They are derived from true hwmode.
10828                  */
10829                 drm_calc_timestamping_constants(crtc,
10830                                                 &pipe_config->adjusted_mode);
10831         }
10832
10833         /* Only after disabling all output pipelines that will be changed can we
10834          * update the the output configuration. */
10835         intel_modeset_update_state(dev, prepare_pipes);
10836
10837         if (dev_priv->display.modeset_global_resources)
10838                 dev_priv->display.modeset_global_resources(dev);
10839
10840         /* Set up the DPLL and any encoders state that needs to adjust or depend
10841          * on the DPLL.
10842          */
10843         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10844                 struct drm_framebuffer *old_fb = crtc->primary->fb;
10845                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10846                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10847
10848                 mutex_lock(&dev->struct_mutex);
10849                 ret = intel_pin_and_fence_fb_obj(dev,
10850                                                  obj,
10851                                                  NULL);
10852                 if (ret != 0) {
10853                         DRM_ERROR("pin & fence failed\n");
10854                         mutex_unlock(&dev->struct_mutex);
10855                         goto done;
10856                 }
10857                 if (old_fb)
10858                         intel_unpin_fb_obj(old_obj);
10859                 i915_gem_track_fb(old_obj, obj,
10860                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10861                 mutex_unlock(&dev->struct_mutex);
10862
10863                 crtc->primary->fb = fb;
10864                 crtc->x = x;
10865                 crtc->y = y;
10866
10867                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10868                                                       x, y, fb);
10869                 if (ret)
10870                         goto done;
10871         }
10872
10873         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10874         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10875                 update_scanline_offset(intel_crtc);
10876
10877                 dev_priv->display.crtc_enable(&intel_crtc->base);
10878         }
10879
10880         /* FIXME: add subpixel order */
10881 done:
10882         if (ret && crtc->enabled)
10883                 crtc->mode = *saved_mode;
10884
10885 out:
10886         kfree(pipe_config);
10887         kfree(saved_mode);
10888         return ret;
10889 }
10890
10891 static int intel_set_mode(struct drm_crtc *crtc,
10892                           struct drm_display_mode *mode,
10893                           int x, int y, struct drm_framebuffer *fb)
10894 {
10895         int ret;
10896
10897         ret = __intel_set_mode(crtc, mode, x, y, fb);
10898
10899         if (ret == 0)
10900                 intel_modeset_check_state(crtc->dev);
10901
10902         return ret;
10903 }
10904
10905 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10906 {
10907         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10908 }
10909
10910 #undef for_each_intel_crtc_masked
10911
10912 static void intel_set_config_free(struct intel_set_config *config)
10913 {
10914         if (!config)
10915                 return;
10916
10917         kfree(config->save_connector_encoders);
10918         kfree(config->save_encoder_crtcs);
10919         kfree(config->save_crtc_enabled);
10920         kfree(config);
10921 }
10922
10923 static int intel_set_config_save_state(struct drm_device *dev,
10924                                        struct intel_set_config *config)
10925 {
10926         struct drm_crtc *crtc;
10927         struct drm_encoder *encoder;
10928         struct drm_connector *connector;
10929         int count;
10930
10931         config->save_crtc_enabled =
10932                 kcalloc(dev->mode_config.num_crtc,
10933                         sizeof(bool), GFP_KERNEL);
10934         if (!config->save_crtc_enabled)
10935                 return -ENOMEM;
10936
10937         config->save_encoder_crtcs =
10938                 kcalloc(dev->mode_config.num_encoder,
10939                         sizeof(struct drm_crtc *), GFP_KERNEL);
10940         if (!config->save_encoder_crtcs)
10941                 return -ENOMEM;
10942
10943         config->save_connector_encoders =
10944                 kcalloc(dev->mode_config.num_connector,
10945                         sizeof(struct drm_encoder *), GFP_KERNEL);
10946         if (!config->save_connector_encoders)
10947                 return -ENOMEM;
10948
10949         /* Copy data. Note that driver private data is not affected.
10950          * Should anything bad happen only the expected state is
10951          * restored, not the drivers personal bookkeeping.
10952          */
10953         count = 0;
10954         for_each_crtc(dev, crtc) {
10955                 config->save_crtc_enabled[count++] = crtc->enabled;
10956         }
10957
10958         count = 0;
10959         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10960                 config->save_encoder_crtcs[count++] = encoder->crtc;
10961         }
10962
10963         count = 0;
10964         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10965                 config->save_connector_encoders[count++] = connector->encoder;
10966         }
10967
10968         return 0;
10969 }
10970
10971 static void intel_set_config_restore_state(struct drm_device *dev,
10972                                            struct intel_set_config *config)
10973 {
10974         struct intel_crtc *crtc;
10975         struct intel_encoder *encoder;
10976         struct intel_connector *connector;
10977         int count;
10978
10979         count = 0;
10980         for_each_intel_crtc(dev, crtc) {
10981                 crtc->new_enabled = config->save_crtc_enabled[count++];
10982
10983                 if (crtc->new_enabled)
10984                         crtc->new_config = &crtc->config;
10985                 else
10986                         crtc->new_config = NULL;
10987         }
10988
10989         count = 0;
10990         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10991                 encoder->new_crtc =
10992                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10993         }
10994
10995         count = 0;
10996         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10997                 connector->new_encoder =
10998                         to_intel_encoder(config->save_connector_encoders[count++]);
10999         }
11000 }
11001
11002 static bool
11003 is_crtc_connector_off(struct drm_mode_set *set)
11004 {
11005         int i;
11006
11007         if (set->num_connectors == 0)
11008                 return false;
11009
11010         if (WARN_ON(set->connectors == NULL))
11011                 return false;
11012
11013         for (i = 0; i < set->num_connectors; i++)
11014                 if (set->connectors[i]->encoder &&
11015                     set->connectors[i]->encoder->crtc == set->crtc &&
11016                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11017                         return true;
11018
11019         return false;
11020 }
11021
11022 static void
11023 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11024                                       struct intel_set_config *config)
11025 {
11026
11027         /* We should be able to check here if the fb has the same properties
11028          * and then just flip_or_move it */
11029         if (is_crtc_connector_off(set)) {
11030                 config->mode_changed = true;
11031         } else if (set->crtc->primary->fb != set->fb) {
11032                 /*
11033                  * If we have no fb, we can only flip as long as the crtc is
11034                  * active, otherwise we need a full mode set.  The crtc may
11035                  * be active if we've only disabled the primary plane, or
11036                  * in fastboot situations.
11037                  */
11038                 if (set->crtc->primary->fb == NULL) {
11039                         struct intel_crtc *intel_crtc =
11040                                 to_intel_crtc(set->crtc);
11041
11042                         if (intel_crtc->active) {
11043                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11044                                 config->fb_changed = true;
11045                         } else {
11046                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11047                                 config->mode_changed = true;
11048                         }
11049                 } else if (set->fb == NULL) {
11050                         config->mode_changed = true;
11051                 } else if (set->fb->pixel_format !=
11052                            set->crtc->primary->fb->pixel_format) {
11053                         config->mode_changed = true;
11054                 } else {
11055                         config->fb_changed = true;
11056                 }
11057         }
11058
11059         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11060                 config->fb_changed = true;
11061
11062         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11063                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11064                 drm_mode_debug_printmodeline(&set->crtc->mode);
11065                 drm_mode_debug_printmodeline(set->mode);
11066                 config->mode_changed = true;
11067         }
11068
11069         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11070                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11071 }
11072
11073 static int
11074 intel_modeset_stage_output_state(struct drm_device *dev,
11075                                  struct drm_mode_set *set,
11076                                  struct intel_set_config *config)
11077 {
11078         struct intel_connector *connector;
11079         struct intel_encoder *encoder;
11080         struct intel_crtc *crtc;
11081         int ro;
11082
11083         /* The upper layers ensure that we either disable a crtc or have a list
11084          * of connectors. For paranoia, double-check this. */
11085         WARN_ON(!set->fb && (set->num_connectors != 0));
11086         WARN_ON(set->fb && (set->num_connectors == 0));
11087
11088         list_for_each_entry(connector, &dev->mode_config.connector_list,
11089                             base.head) {
11090                 /* Otherwise traverse passed in connector list and get encoders
11091                  * for them. */
11092                 for (ro = 0; ro < set->num_connectors; ro++) {
11093                         if (set->connectors[ro] == &connector->base) {
11094                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11095                                 break;
11096                         }
11097                 }
11098
11099                 /* If we disable the crtc, disable all its connectors. Also, if
11100                  * the connector is on the changing crtc but not on the new
11101                  * connector list, disable it. */
11102                 if ((!set->fb || ro == set->num_connectors) &&
11103                     connector->base.encoder &&
11104                     connector->base.encoder->crtc == set->crtc) {
11105                         connector->new_encoder = NULL;
11106
11107                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11108                                 connector->base.base.id,
11109                                 connector->base.name);
11110                 }
11111
11112
11113                 if (&connector->new_encoder->base != connector->base.encoder) {
11114                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11115                         config->mode_changed = true;
11116                 }
11117         }
11118         /* connector->new_encoder is now updated for all connectors. */
11119
11120         /* Update crtc of enabled connectors. */
11121         list_for_each_entry(connector, &dev->mode_config.connector_list,
11122                             base.head) {
11123                 struct drm_crtc *new_crtc;
11124
11125                 if (!connector->new_encoder)
11126                         continue;
11127
11128                 new_crtc = connector->new_encoder->base.crtc;
11129
11130                 for (ro = 0; ro < set->num_connectors; ro++) {
11131                         if (set->connectors[ro] == &connector->base)
11132                                 new_crtc = set->crtc;
11133                 }
11134
11135                 /* Make sure the new CRTC will work with the encoder */
11136                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11137                                          new_crtc)) {
11138                         return -EINVAL;
11139                 }
11140                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11141
11142                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11143                         connector->base.base.id,
11144                         connector->base.name,
11145                         new_crtc->base.id);
11146         }
11147
11148         /* Check for any encoders that needs to be disabled. */
11149         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11150                             base.head) {
11151                 int num_connectors = 0;
11152                 list_for_each_entry(connector,
11153                                     &dev->mode_config.connector_list,
11154                                     base.head) {
11155                         if (connector->new_encoder == encoder) {
11156                                 WARN_ON(!connector->new_encoder->new_crtc);
11157                                 num_connectors++;
11158                         }
11159                 }
11160
11161                 if (num_connectors == 0)
11162                         encoder->new_crtc = NULL;
11163                 else if (num_connectors > 1)
11164                         return -EINVAL;
11165
11166                 /* Only now check for crtc changes so we don't miss encoders
11167                  * that will be disabled. */
11168                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11169                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11170                         config->mode_changed = true;
11171                 }
11172         }
11173         /* Now we've also updated encoder->new_crtc for all encoders. */
11174         list_for_each_entry(connector, &dev->mode_config.connector_list,
11175                             base.head) {
11176                 if (connector->new_encoder)
11177                         if (connector->new_encoder != connector->encoder)
11178                                 connector->encoder = connector->new_encoder;
11179         }
11180         for_each_intel_crtc(dev, crtc) {
11181                 crtc->new_enabled = false;
11182
11183                 list_for_each_entry(encoder,
11184                                     &dev->mode_config.encoder_list,
11185                                     base.head) {
11186                         if (encoder->new_crtc == crtc) {
11187                                 crtc->new_enabled = true;
11188                                 break;
11189                         }
11190                 }
11191
11192                 if (crtc->new_enabled != crtc->base.enabled) {
11193                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11194                                       crtc->new_enabled ? "en" : "dis");
11195                         config->mode_changed = true;
11196                 }
11197
11198                 if (crtc->new_enabled)
11199                         crtc->new_config = &crtc->config;
11200                 else
11201                         crtc->new_config = NULL;
11202         }
11203
11204         return 0;
11205 }
11206
11207 static void disable_crtc_nofb(struct intel_crtc *crtc)
11208 {
11209         struct drm_device *dev = crtc->base.dev;
11210         struct intel_encoder *encoder;
11211         struct intel_connector *connector;
11212
11213         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11214                       pipe_name(crtc->pipe));
11215
11216         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11217                 if (connector->new_encoder &&
11218                     connector->new_encoder->new_crtc == crtc)
11219                         connector->new_encoder = NULL;
11220         }
11221
11222         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11223                 if (encoder->new_crtc == crtc)
11224                         encoder->new_crtc = NULL;
11225         }
11226
11227         crtc->new_enabled = false;
11228         crtc->new_config = NULL;
11229 }
11230
11231 static int intel_crtc_set_config(struct drm_mode_set *set)
11232 {
11233         struct drm_device *dev;
11234         struct drm_mode_set save_set;
11235         struct intel_set_config *config;
11236         int ret;
11237
11238         BUG_ON(!set);
11239         BUG_ON(!set->crtc);
11240         BUG_ON(!set->crtc->helper_private);
11241
11242         /* Enforce sane interface api - has been abused by the fb helper. */
11243         BUG_ON(!set->mode && set->fb);
11244         BUG_ON(set->fb && set->num_connectors == 0);
11245
11246         if (set->fb) {
11247                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11248                                 set->crtc->base.id, set->fb->base.id,
11249                                 (int)set->num_connectors, set->x, set->y);
11250         } else {
11251                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11252         }
11253
11254         dev = set->crtc->dev;
11255
11256         ret = -ENOMEM;
11257         config = kzalloc(sizeof(*config), GFP_KERNEL);
11258         if (!config)
11259                 goto out_config;
11260
11261         ret = intel_set_config_save_state(dev, config);
11262         if (ret)
11263                 goto out_config;
11264
11265         save_set.crtc = set->crtc;
11266         save_set.mode = &set->crtc->mode;
11267         save_set.x = set->crtc->x;
11268         save_set.y = set->crtc->y;
11269         save_set.fb = set->crtc->primary->fb;
11270
11271         /* Compute whether we need a full modeset, only an fb base update or no
11272          * change at all. In the future we might also check whether only the
11273          * mode changed, e.g. for LVDS where we only change the panel fitter in
11274          * such cases. */
11275         intel_set_config_compute_mode_changes(set, config);
11276
11277         ret = intel_modeset_stage_output_state(dev, set, config);
11278         if (ret)
11279                 goto fail;
11280
11281         if (config->mode_changed) {
11282                 ret = intel_set_mode(set->crtc, set->mode,
11283                                      set->x, set->y, set->fb);
11284         } else if (config->fb_changed) {
11285                 struct drm_i915_private *dev_priv = dev->dev_private;
11286                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11287
11288                 intel_crtc_wait_for_pending_flips(set->crtc);
11289
11290                 ret = intel_pipe_set_base(set->crtc,
11291                                           set->x, set->y, set->fb);
11292
11293                 /*
11294                  * We need to make sure the primary plane is re-enabled if it
11295                  * has previously been turned off.
11296                  */
11297                 if (!intel_crtc->primary_enabled && ret == 0) {
11298                         WARN_ON(!intel_crtc->active);
11299                         intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11300                                                       intel_crtc->pipe);
11301                 }
11302
11303                 /*
11304                  * In the fastboot case this may be our only check of the
11305                  * state after boot.  It would be better to only do it on
11306                  * the first update, but we don't have a nice way of doing that
11307                  * (and really, set_config isn't used much for high freq page
11308                  * flipping, so increasing its cost here shouldn't be a big
11309                  * deal).
11310                  */
11311                 if (i915.fastboot && ret == 0)
11312                         intel_modeset_check_state(set->crtc->dev);
11313         }
11314
11315         if (ret) {
11316                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11317                               set->crtc->base.id, ret);
11318 fail:
11319                 intel_set_config_restore_state(dev, config);
11320
11321                 /*
11322                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11323                  * force the pipe off to avoid oopsing in the modeset code
11324                  * due to fb==NULL. This should only happen during boot since
11325                  * we don't yet reconstruct the FB from the hardware state.
11326                  */
11327                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11328                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11329
11330                 /* Try to restore the config */
11331                 if (config->mode_changed &&
11332                     intel_set_mode(save_set.crtc, save_set.mode,
11333                                    save_set.x, save_set.y, save_set.fb))
11334                         DRM_ERROR("failed to restore config after modeset failure\n");
11335         }
11336
11337 out_config:
11338         intel_set_config_free(config);
11339         return ret;
11340 }
11341
11342 static const struct drm_crtc_funcs intel_crtc_funcs = {
11343         .gamma_set = intel_crtc_gamma_set,
11344         .set_config = intel_crtc_set_config,
11345         .destroy = intel_crtc_destroy,
11346         .page_flip = intel_crtc_page_flip,
11347 };
11348
11349 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11350                                       struct intel_shared_dpll *pll,
11351                                       struct intel_dpll_hw_state *hw_state)
11352 {
11353         uint32_t val;
11354
11355         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11356                 return false;
11357
11358         val = I915_READ(PCH_DPLL(pll->id));
11359         hw_state->dpll = val;
11360         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11361         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11362
11363         return val & DPLL_VCO_ENABLE;
11364 }
11365
11366 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11367                                   struct intel_shared_dpll *pll)
11368 {
11369         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11370         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11371 }
11372
11373 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11374                                 struct intel_shared_dpll *pll)
11375 {
11376         /* PCH refclock must be enabled first */
11377         ibx_assert_pch_refclk_enabled(dev_priv);
11378
11379         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11380
11381         /* Wait for the clocks to stabilize. */
11382         POSTING_READ(PCH_DPLL(pll->id));
11383         udelay(150);
11384
11385         /* The pixel multiplier can only be updated once the
11386          * DPLL is enabled and the clocks are stable.
11387          *
11388          * So write it again.
11389          */
11390         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11391         POSTING_READ(PCH_DPLL(pll->id));
11392         udelay(200);
11393 }
11394
11395 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11396                                  struct intel_shared_dpll *pll)
11397 {
11398         struct drm_device *dev = dev_priv->dev;
11399         struct intel_crtc *crtc;
11400
11401         /* Make sure no transcoder isn't still depending on us. */
11402         for_each_intel_crtc(dev, crtc) {
11403                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11404                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11405         }
11406
11407         I915_WRITE(PCH_DPLL(pll->id), 0);
11408         POSTING_READ(PCH_DPLL(pll->id));
11409         udelay(200);
11410 }
11411
11412 static char *ibx_pch_dpll_names[] = {
11413         "PCH DPLL A",
11414         "PCH DPLL B",
11415 };
11416
11417 static void ibx_pch_dpll_init(struct drm_device *dev)
11418 {
11419         struct drm_i915_private *dev_priv = dev->dev_private;
11420         int i;
11421
11422         dev_priv->num_shared_dpll = 2;
11423
11424         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11425                 dev_priv->shared_dplls[i].id = i;
11426                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11427                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11428                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11429                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11430                 dev_priv->shared_dplls[i].get_hw_state =
11431                         ibx_pch_dpll_get_hw_state;
11432         }
11433 }
11434
11435 static void intel_shared_dpll_init(struct drm_device *dev)
11436 {
11437         struct drm_i915_private *dev_priv = dev->dev_private;
11438
11439         if (HAS_DDI(dev))
11440                 intel_ddi_pll_init(dev);
11441         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11442                 ibx_pch_dpll_init(dev);
11443         else
11444                 dev_priv->num_shared_dpll = 0;
11445
11446         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11447 }
11448
11449 static int
11450 intel_primary_plane_disable(struct drm_plane *plane)
11451 {
11452         struct drm_device *dev = plane->dev;
11453         struct drm_i915_private *dev_priv = dev->dev_private;
11454         struct intel_plane *intel_plane = to_intel_plane(plane);
11455         struct intel_crtc *intel_crtc;
11456
11457         if (!plane->fb)
11458                 return 0;
11459
11460         BUG_ON(!plane->crtc);
11461
11462         intel_crtc = to_intel_crtc(plane->crtc);
11463
11464         /*
11465          * Even though we checked plane->fb above, it's still possible that
11466          * the primary plane has been implicitly disabled because the crtc
11467          * coordinates given weren't visible, or because we detected
11468          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11469          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11470          * In either case, we need to unpin the FB and let the fb pointer get
11471          * updated, but otherwise we don't need to touch the hardware.
11472          */
11473         if (!intel_crtc->primary_enabled)
11474                 goto disable_unpin;
11475
11476         intel_crtc_wait_for_pending_flips(plane->crtc);
11477         intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11478                                        intel_plane->pipe);
11479 disable_unpin:
11480         mutex_lock(&dev->struct_mutex);
11481         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11482                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11483         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11484         mutex_unlock(&dev->struct_mutex);
11485         plane->fb = NULL;
11486
11487         return 0;
11488 }
11489
11490 static int
11491 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11492                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11493                              unsigned int crtc_w, unsigned int crtc_h,
11494                              uint32_t src_x, uint32_t src_y,
11495                              uint32_t src_w, uint32_t src_h)
11496 {
11497         struct drm_device *dev = crtc->dev;
11498         struct drm_i915_private *dev_priv = dev->dev_private;
11499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11500         struct intel_plane *intel_plane = to_intel_plane(plane);
11501         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11502         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11503         struct drm_rect dest = {
11504                 /* integer pixels */
11505                 .x1 = crtc_x,
11506                 .y1 = crtc_y,
11507                 .x2 = crtc_x + crtc_w,
11508                 .y2 = crtc_y + crtc_h,
11509         };
11510         struct drm_rect src = {
11511                 /* 16.16 fixed point */
11512                 .x1 = src_x,
11513                 .y1 = src_y,
11514                 .x2 = src_x + src_w,
11515                 .y2 = src_y + src_h,
11516         };
11517         const struct drm_rect clip = {
11518                 /* integer pixels */
11519                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11520                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11521         };
11522         bool visible;
11523         int ret;
11524
11525         ret = drm_plane_helper_check_update(plane, crtc, fb,
11526                                             &src, &dest, &clip,
11527                                             DRM_PLANE_HELPER_NO_SCALING,
11528                                             DRM_PLANE_HELPER_NO_SCALING,
11529                                             false, true, &visible);
11530
11531         if (ret)
11532                 return ret;
11533
11534         /*
11535          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11536          * updating the fb pointer, and returning without touching the
11537          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11538          * turn on the display with all planes setup as desired.
11539          */
11540         if (!crtc->enabled) {
11541                 mutex_lock(&dev->struct_mutex);
11542
11543                 /*
11544                  * If we already called setplane while the crtc was disabled,
11545                  * we may have an fb pinned; unpin it.
11546                  */
11547                 if (plane->fb)
11548                         intel_unpin_fb_obj(old_obj);
11549
11550                 i915_gem_track_fb(old_obj, obj,
11551                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11552
11553                 /* Pin and return without programming hardware */
11554                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11555                 mutex_unlock(&dev->struct_mutex);
11556
11557                 return ret;
11558         }
11559
11560         intel_crtc_wait_for_pending_flips(crtc);
11561
11562         /*
11563          * If clipping results in a non-visible primary plane, we'll disable
11564          * the primary plane.  Note that this is a bit different than what
11565          * happens if userspace explicitly disables the plane by passing fb=0
11566          * because plane->fb still gets set and pinned.
11567          */
11568         if (!visible) {
11569                 mutex_lock(&dev->struct_mutex);
11570
11571                 /*
11572                  * Try to pin the new fb first so that we can bail out if we
11573                  * fail.
11574                  */
11575                 if (plane->fb != fb) {
11576                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11577                         if (ret) {
11578                                 mutex_unlock(&dev->struct_mutex);
11579                                 return ret;
11580                         }
11581                 }
11582
11583                 i915_gem_track_fb(old_obj, obj,
11584                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11585
11586                 if (intel_crtc->primary_enabled)
11587                         intel_disable_primary_hw_plane(dev_priv,
11588                                                        intel_plane->plane,
11589                                                        intel_plane->pipe);
11590
11591
11592                 if (plane->fb != fb)
11593                         if (plane->fb)
11594                                 intel_unpin_fb_obj(old_obj);
11595
11596                 mutex_unlock(&dev->struct_mutex);
11597
11598                 return 0;
11599         }
11600
11601         ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11602         if (ret)
11603                 return ret;
11604
11605         if (!intel_crtc->primary_enabled)
11606                 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11607                                               intel_crtc->pipe);
11608
11609         return 0;
11610 }
11611
11612 /* Common destruction function for both primary and cursor planes */
11613 static void intel_plane_destroy(struct drm_plane *plane)
11614 {
11615         struct intel_plane *intel_plane = to_intel_plane(plane);
11616         drm_plane_cleanup(plane);
11617         kfree(intel_plane);
11618 }
11619
11620 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11621         .update_plane = intel_primary_plane_setplane,
11622         .disable_plane = intel_primary_plane_disable,
11623         .destroy = intel_plane_destroy,
11624 };
11625
11626 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11627                                                     int pipe)
11628 {
11629         struct intel_plane *primary;
11630         const uint32_t *intel_primary_formats;
11631         int num_formats;
11632
11633         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11634         if (primary == NULL)
11635                 return NULL;
11636
11637         primary->can_scale = false;
11638         primary->max_downscale = 1;
11639         primary->pipe = pipe;
11640         primary->plane = pipe;
11641         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11642                 primary->plane = !pipe;
11643
11644         if (INTEL_INFO(dev)->gen <= 3) {
11645                 intel_primary_formats = intel_primary_formats_gen2;
11646                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11647         } else {
11648                 intel_primary_formats = intel_primary_formats_gen4;
11649                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11650         }
11651
11652         drm_universal_plane_init(dev, &primary->base, 0,
11653                                  &intel_primary_plane_funcs,
11654                                  intel_primary_formats, num_formats,
11655                                  DRM_PLANE_TYPE_PRIMARY);
11656         return &primary->base;
11657 }
11658
11659 static int
11660 intel_cursor_plane_disable(struct drm_plane *plane)
11661 {
11662         if (!plane->fb)
11663                 return 0;
11664
11665         BUG_ON(!plane->crtc);
11666
11667         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11668 }
11669
11670 static int
11671 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11672                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11673                           unsigned int crtc_w, unsigned int crtc_h,
11674                           uint32_t src_x, uint32_t src_y,
11675                           uint32_t src_w, uint32_t src_h)
11676 {
11677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11678         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11679         struct drm_i915_gem_object *obj = intel_fb->obj;
11680         struct drm_rect dest = {
11681                 /* integer pixels */
11682                 .x1 = crtc_x,
11683                 .y1 = crtc_y,
11684                 .x2 = crtc_x + crtc_w,
11685                 .y2 = crtc_y + crtc_h,
11686         };
11687         struct drm_rect src = {
11688                 /* 16.16 fixed point */
11689                 .x1 = src_x,
11690                 .y1 = src_y,
11691                 .x2 = src_x + src_w,
11692                 .y2 = src_y + src_h,
11693         };
11694         const struct drm_rect clip = {
11695                 /* integer pixels */
11696                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11697                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11698         };
11699         bool visible;
11700         int ret;
11701
11702         ret = drm_plane_helper_check_update(plane, crtc, fb,
11703                                             &src, &dest, &clip,
11704                                             DRM_PLANE_HELPER_NO_SCALING,
11705                                             DRM_PLANE_HELPER_NO_SCALING,
11706                                             true, true, &visible);
11707         if (ret)
11708                 return ret;
11709
11710         crtc->cursor_x = crtc_x;
11711         crtc->cursor_y = crtc_y;
11712         if (fb != crtc->cursor->fb) {
11713                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11714         } else {
11715                 intel_crtc_update_cursor(crtc, visible);
11716                 return 0;
11717         }
11718 }
11719 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11720         .update_plane = intel_cursor_plane_update,
11721         .disable_plane = intel_cursor_plane_disable,
11722         .destroy = intel_plane_destroy,
11723 };
11724
11725 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11726                                                    int pipe)
11727 {
11728         struct intel_plane *cursor;
11729
11730         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11731         if (cursor == NULL)
11732                 return NULL;
11733
11734         cursor->can_scale = false;
11735         cursor->max_downscale = 1;
11736         cursor->pipe = pipe;
11737         cursor->plane = pipe;
11738
11739         drm_universal_plane_init(dev, &cursor->base, 0,
11740                                  &intel_cursor_plane_funcs,
11741                                  intel_cursor_formats,
11742                                  ARRAY_SIZE(intel_cursor_formats),
11743                                  DRM_PLANE_TYPE_CURSOR);
11744         return &cursor->base;
11745 }
11746
11747 static void intel_crtc_init(struct drm_device *dev, int pipe)
11748 {
11749         struct drm_i915_private *dev_priv = dev->dev_private;
11750         struct intel_crtc *intel_crtc;
11751         struct drm_plane *primary = NULL;
11752         struct drm_plane *cursor = NULL;
11753         int i, ret;
11754
11755         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11756         if (intel_crtc == NULL)
11757                 return;
11758
11759         primary = intel_primary_plane_create(dev, pipe);
11760         if (!primary)
11761                 goto fail;
11762
11763         cursor = intel_cursor_plane_create(dev, pipe);
11764         if (!cursor)
11765                 goto fail;
11766
11767         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11768                                         cursor, &intel_crtc_funcs);
11769         if (ret)
11770                 goto fail;
11771
11772         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11773         for (i = 0; i < 256; i++) {
11774                 intel_crtc->lut_r[i] = i;
11775                 intel_crtc->lut_g[i] = i;
11776                 intel_crtc->lut_b[i] = i;
11777         }
11778
11779         /*
11780          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11781          * is hooked to pipe B. Hence we want plane A feeding pipe B.
11782          */
11783         intel_crtc->pipe = pipe;
11784         intel_crtc->plane = pipe;
11785         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11786                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11787                 intel_crtc->plane = !pipe;
11788         }
11789
11790         intel_crtc->cursor_base = ~0;
11791         intel_crtc->cursor_cntl = ~0;
11792
11793         init_waitqueue_head(&intel_crtc->vbl_wait);
11794
11795         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11796                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11797         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11798         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11799
11800         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11801
11802         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11803         return;
11804
11805 fail:
11806         if (primary)
11807                 drm_plane_cleanup(primary);
11808         if (cursor)
11809                 drm_plane_cleanup(cursor);
11810         kfree(intel_crtc);
11811 }
11812
11813 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11814 {
11815         struct drm_encoder *encoder = connector->base.encoder;
11816         struct drm_device *dev = connector->base.dev;
11817
11818         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11819
11820         if (!encoder)
11821                 return INVALID_PIPE;
11822
11823         return to_intel_crtc(encoder->crtc)->pipe;
11824 }
11825
11826 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11827                                 struct drm_file *file)
11828 {
11829         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11830         struct drm_crtc *drmmode_crtc;
11831         struct intel_crtc *crtc;
11832
11833         if (!drm_core_check_feature(dev, DRIVER_MODESET))
11834                 return -ENODEV;
11835
11836         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
11837
11838         if (!drmmode_crtc) {
11839                 DRM_ERROR("no such CRTC id\n");
11840                 return -ENOENT;
11841         }
11842
11843         crtc = to_intel_crtc(drmmode_crtc);
11844         pipe_from_crtc_id->pipe = crtc->pipe;
11845
11846         return 0;
11847 }
11848
11849 static int intel_encoder_clones(struct intel_encoder *encoder)
11850 {
11851         struct drm_device *dev = encoder->base.dev;
11852         struct intel_encoder *source_encoder;
11853         int index_mask = 0;
11854         int entry = 0;
11855
11856         list_for_each_entry(source_encoder,
11857                             &dev->mode_config.encoder_list, base.head) {
11858                 if (encoders_cloneable(encoder, source_encoder))
11859                         index_mask |= (1 << entry);
11860
11861                 entry++;
11862         }
11863
11864         return index_mask;
11865 }
11866
11867 static bool has_edp_a(struct drm_device *dev)
11868 {
11869         struct drm_i915_private *dev_priv = dev->dev_private;
11870
11871         if (!IS_MOBILE(dev))
11872                 return false;
11873
11874         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11875                 return false;
11876
11877         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11878                 return false;
11879
11880         return true;
11881 }
11882
11883 const char *intel_output_name(int output)
11884 {
11885         static const char *names[] = {
11886                 [INTEL_OUTPUT_UNUSED] = "Unused",
11887                 [INTEL_OUTPUT_ANALOG] = "Analog",
11888                 [INTEL_OUTPUT_DVO] = "DVO",
11889                 [INTEL_OUTPUT_SDVO] = "SDVO",
11890                 [INTEL_OUTPUT_LVDS] = "LVDS",
11891                 [INTEL_OUTPUT_TVOUT] = "TV",
11892                 [INTEL_OUTPUT_HDMI] = "HDMI",
11893                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11894                 [INTEL_OUTPUT_EDP] = "eDP",
11895                 [INTEL_OUTPUT_DSI] = "DSI",
11896                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11897         };
11898
11899         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11900                 return "Invalid";
11901
11902         return names[output];
11903 }
11904
11905 static bool intel_crt_present(struct drm_device *dev)
11906 {
11907         struct drm_i915_private *dev_priv = dev->dev_private;
11908
11909         if (IS_ULT(dev))
11910                 return false;
11911
11912         if (IS_CHERRYVIEW(dev))
11913                 return false;
11914
11915         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11916                 return false;
11917
11918         return true;
11919 }
11920
11921 static void intel_setup_outputs(struct drm_device *dev)
11922 {
11923         struct drm_i915_private *dev_priv = dev->dev_private;
11924         struct intel_encoder *encoder;
11925         bool dpd_is_edp = false;
11926
11927         intel_lvds_init(dev);
11928
11929         if (intel_crt_present(dev))
11930                 intel_crt_init(dev);
11931
11932         if (HAS_DDI(dev)) {
11933                 int found;
11934
11935                 /* Haswell uses DDI functions to detect digital outputs */
11936                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11937                 /* DDI A only supports eDP */
11938                 if (found)
11939                         intel_ddi_init(dev, PORT_A);
11940
11941                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11942                  * register */
11943                 found = I915_READ(SFUSE_STRAP);
11944
11945                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11946                         intel_ddi_init(dev, PORT_B);
11947                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11948                         intel_ddi_init(dev, PORT_C);
11949                 if (found & SFUSE_STRAP_DDID_DETECTED)
11950                         intel_ddi_init(dev, PORT_D);
11951         } else if (HAS_PCH_SPLIT(dev)) {
11952                 int found;
11953                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11954
11955                 if (has_edp_a(dev))
11956                         intel_dp_init(dev, DP_A, PORT_A);
11957
11958                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11959                         /* PCH SDVOB multiplex with HDMIB */
11960                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11961                         if (!found)
11962                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11963                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11964                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11965                 }
11966
11967                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11968                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11969
11970                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11971                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11972
11973                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11974                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11975
11976                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11977                         intel_dp_init(dev, PCH_DP_D, PORT_D);
11978         } else if (IS_VALLEYVIEW(dev)) {
11979                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11980                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11981                                         PORT_B);
11982                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11983                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11984                 }
11985
11986                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11987                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11988                                         PORT_C);
11989                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11990                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11991                 }
11992
11993                 if (IS_CHERRYVIEW(dev)) {
11994                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11995                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11996                                                 PORT_D);
11997                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11998                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11999                         }
12000                 }
12001
12002                 intel_dsi_init(dev);
12003         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12004                 bool found = false;
12005
12006                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12007                         DRM_DEBUG_KMS("probing SDVOB\n");
12008                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12009                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12010                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12011                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12012                         }
12013
12014                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12015                                 intel_dp_init(dev, DP_B, PORT_B);
12016                 }
12017
12018                 /* Before G4X SDVOC doesn't have its own detect register */
12019
12020                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12021                         DRM_DEBUG_KMS("probing SDVOC\n");
12022                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12023                 }
12024
12025                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12026
12027                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12028                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12029                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12030                         }
12031                         if (SUPPORTS_INTEGRATED_DP(dev))
12032                                 intel_dp_init(dev, DP_C, PORT_C);
12033                 }
12034
12035                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12036                     (I915_READ(DP_D) & DP_DETECTED))
12037                         intel_dp_init(dev, DP_D, PORT_D);
12038         } else if (IS_GEN2(dev))
12039                 intel_dvo_init(dev);
12040
12041         if (SUPPORTS_TV(dev))
12042                 intel_tv_init(dev);
12043
12044         intel_edp_psr_init(dev);
12045
12046         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12047                 encoder->base.possible_crtcs = encoder->crtc_mask;
12048                 encoder->base.possible_clones =
12049                         intel_encoder_clones(encoder);
12050         }
12051
12052         intel_init_pch_refclk(dev);
12053
12054         drm_helper_move_panel_connectors_to_head(dev);
12055 }
12056
12057 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12058 {
12059         struct drm_device *dev = fb->dev;
12060         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12061
12062         drm_framebuffer_cleanup(fb);
12063         mutex_lock(&dev->struct_mutex);
12064         WARN_ON(!intel_fb->obj->framebuffer_references--);
12065         drm_gem_object_unreference(&intel_fb->obj->base);
12066         mutex_unlock(&dev->struct_mutex);
12067         kfree(intel_fb);
12068 }
12069
12070 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12071                                                 struct drm_file *file,
12072                                                 unsigned int *handle)
12073 {
12074         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12075         struct drm_i915_gem_object *obj = intel_fb->obj;
12076
12077         return drm_gem_handle_create(file, &obj->base, handle);
12078 }
12079
12080 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12081         .destroy = intel_user_framebuffer_destroy,
12082         .create_handle = intel_user_framebuffer_create_handle,
12083 };
12084
12085 static int intel_framebuffer_init(struct drm_device *dev,
12086                                   struct intel_framebuffer *intel_fb,
12087                                   struct drm_mode_fb_cmd2 *mode_cmd,
12088                                   struct drm_i915_gem_object *obj)
12089 {
12090         int aligned_height;
12091         int pitch_limit;
12092         int ret;
12093
12094         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12095
12096         if (obj->tiling_mode == I915_TILING_Y) {
12097                 DRM_DEBUG("hardware does not support tiling Y\n");
12098                 return -EINVAL;
12099         }
12100
12101         if (mode_cmd->pitches[0] & 63) {
12102                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12103                           mode_cmd->pitches[0]);
12104                 return -EINVAL;
12105         }
12106
12107         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12108                 pitch_limit = 32*1024;
12109         } else if (INTEL_INFO(dev)->gen >= 4) {
12110                 if (obj->tiling_mode)
12111                         pitch_limit = 16*1024;
12112                 else
12113                         pitch_limit = 32*1024;
12114         } else if (INTEL_INFO(dev)->gen >= 3) {
12115                 if (obj->tiling_mode)
12116                         pitch_limit = 8*1024;
12117                 else
12118                         pitch_limit = 16*1024;
12119         } else
12120                 /* XXX DSPC is limited to 4k tiled */
12121                 pitch_limit = 8*1024;
12122
12123         if (mode_cmd->pitches[0] > pitch_limit) {
12124                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12125                           obj->tiling_mode ? "tiled" : "linear",
12126                           mode_cmd->pitches[0], pitch_limit);
12127                 return -EINVAL;
12128         }
12129
12130         if (obj->tiling_mode != I915_TILING_NONE &&
12131             mode_cmd->pitches[0] != obj->stride) {
12132                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12133                           mode_cmd->pitches[0], obj->stride);
12134                 return -EINVAL;
12135         }
12136
12137         /* Reject formats not supported by any plane early. */
12138         switch (mode_cmd->pixel_format) {
12139         case DRM_FORMAT_C8:
12140         case DRM_FORMAT_RGB565:
12141         case DRM_FORMAT_XRGB8888:
12142         case DRM_FORMAT_ARGB8888:
12143                 break;
12144         case DRM_FORMAT_XRGB1555:
12145         case DRM_FORMAT_ARGB1555:
12146                 if (INTEL_INFO(dev)->gen > 3) {
12147                         DRM_DEBUG("unsupported pixel format: %s\n",
12148                                   drm_get_format_name(mode_cmd->pixel_format));
12149                         return -EINVAL;
12150                 }
12151                 break;
12152         case DRM_FORMAT_XBGR8888:
12153         case DRM_FORMAT_ABGR8888:
12154         case DRM_FORMAT_XRGB2101010:
12155         case DRM_FORMAT_ARGB2101010:
12156         case DRM_FORMAT_XBGR2101010:
12157         case DRM_FORMAT_ABGR2101010:
12158                 if (INTEL_INFO(dev)->gen < 4) {
12159                         DRM_DEBUG("unsupported pixel format: %s\n",
12160                                   drm_get_format_name(mode_cmd->pixel_format));
12161                         return -EINVAL;
12162                 }
12163                 break;
12164         case DRM_FORMAT_YUYV:
12165         case DRM_FORMAT_UYVY:
12166         case DRM_FORMAT_YVYU:
12167         case DRM_FORMAT_VYUY:
12168                 if (INTEL_INFO(dev)->gen < 5) {
12169                         DRM_DEBUG("unsupported pixel format: %s\n",
12170                                   drm_get_format_name(mode_cmd->pixel_format));
12171                         return -EINVAL;
12172                 }
12173                 break;
12174         default:
12175                 DRM_DEBUG("unsupported pixel format: %s\n",
12176                           drm_get_format_name(mode_cmd->pixel_format));
12177                 return -EINVAL;
12178         }
12179
12180         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12181         if (mode_cmd->offsets[0] != 0)
12182                 return -EINVAL;
12183
12184         aligned_height = intel_align_height(dev, mode_cmd->height,
12185                                             obj->tiling_mode);
12186         /* FIXME drm helper for size checks (especially planar formats)? */
12187         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12188                 return -EINVAL;
12189
12190         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12191         intel_fb->obj = obj;
12192         intel_fb->obj->framebuffer_references++;
12193
12194         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12195         if (ret) {
12196                 DRM_ERROR("framebuffer init failed %d\n", ret);
12197                 return ret;
12198         }
12199
12200         return 0;
12201 }
12202
12203 static struct drm_framebuffer *
12204 intel_user_framebuffer_create(struct drm_device *dev,
12205                               struct drm_file *filp,
12206                               struct drm_mode_fb_cmd2 *mode_cmd)
12207 {
12208         struct drm_i915_gem_object *obj;
12209
12210         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12211                                                 mode_cmd->handles[0]));
12212         if (&obj->base == NULL)
12213                 return ERR_PTR(-ENOENT);
12214
12215         return intel_framebuffer_create(dev, mode_cmd, obj);
12216 }
12217
12218 #ifndef CONFIG_DRM_I915_FBDEV
12219 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12220 {
12221 }
12222 #endif
12223
12224 static const struct drm_mode_config_funcs intel_mode_funcs = {
12225         .fb_create = intel_user_framebuffer_create,
12226         .output_poll_changed = intel_fbdev_output_poll_changed,
12227 };
12228
12229 /* Set up chip specific display functions */
12230 static void intel_init_display(struct drm_device *dev)
12231 {
12232         struct drm_i915_private *dev_priv = dev->dev_private;
12233
12234         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12235                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12236         else if (IS_CHERRYVIEW(dev))
12237                 dev_priv->display.find_dpll = chv_find_best_dpll;
12238         else if (IS_VALLEYVIEW(dev))
12239                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12240         else if (IS_PINEVIEW(dev))
12241                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12242         else
12243                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12244
12245         if (HAS_DDI(dev)) {
12246                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12247                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12248                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12249                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12250                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12251                 dev_priv->display.off = ironlake_crtc_off;
12252                 dev_priv->display.update_primary_plane =
12253                         ironlake_update_primary_plane;
12254         } else if (HAS_PCH_SPLIT(dev)) {
12255                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12256                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12257                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12258                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12259                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12260                 dev_priv->display.off = ironlake_crtc_off;
12261                 dev_priv->display.update_primary_plane =
12262                         ironlake_update_primary_plane;
12263         } else if (IS_VALLEYVIEW(dev)) {
12264                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12265                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12266                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12267                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12268                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12269                 dev_priv->display.off = i9xx_crtc_off;
12270                 dev_priv->display.update_primary_plane =
12271                         i9xx_update_primary_plane;
12272         } else {
12273                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12274                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12275                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12276                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12277                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12278                 dev_priv->display.off = i9xx_crtc_off;
12279                 dev_priv->display.update_primary_plane =
12280                         i9xx_update_primary_plane;
12281         }
12282
12283         /* Returns the core display clock speed */
12284         if (IS_VALLEYVIEW(dev))
12285                 dev_priv->display.get_display_clock_speed =
12286                         valleyview_get_display_clock_speed;
12287         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12288                 dev_priv->display.get_display_clock_speed =
12289                         i945_get_display_clock_speed;
12290         else if (IS_I915G(dev))
12291                 dev_priv->display.get_display_clock_speed =
12292                         i915_get_display_clock_speed;
12293         else if (IS_I945GM(dev) || IS_845G(dev))
12294                 dev_priv->display.get_display_clock_speed =
12295                         i9xx_misc_get_display_clock_speed;
12296         else if (IS_PINEVIEW(dev))
12297                 dev_priv->display.get_display_clock_speed =
12298                         pnv_get_display_clock_speed;
12299         else if (IS_I915GM(dev))
12300                 dev_priv->display.get_display_clock_speed =
12301                         i915gm_get_display_clock_speed;
12302         else if (IS_I865G(dev))
12303                 dev_priv->display.get_display_clock_speed =
12304                         i865_get_display_clock_speed;
12305         else if (IS_I85X(dev))
12306                 dev_priv->display.get_display_clock_speed =
12307                         i855_get_display_clock_speed;
12308         else /* 852, 830 */
12309                 dev_priv->display.get_display_clock_speed =
12310                         i830_get_display_clock_speed;
12311
12312         if (HAS_PCH_SPLIT(dev)) {
12313                 if (IS_GEN5(dev)) {
12314                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12315                         dev_priv->display.write_eld = ironlake_write_eld;
12316                 } else if (IS_GEN6(dev)) {
12317                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12318                         dev_priv->display.write_eld = ironlake_write_eld;
12319                         dev_priv->display.modeset_global_resources =
12320                                 snb_modeset_global_resources;
12321                 } else if (IS_IVYBRIDGE(dev)) {
12322                         /* FIXME: detect B0+ stepping and use auto training */
12323                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12324                         dev_priv->display.write_eld = ironlake_write_eld;
12325                         dev_priv->display.modeset_global_resources =
12326                                 ivb_modeset_global_resources;
12327                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12328                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12329                         dev_priv->display.write_eld = haswell_write_eld;
12330                         dev_priv->display.modeset_global_resources =
12331                                 haswell_modeset_global_resources;
12332                 }
12333         } else if (IS_G4X(dev)) {
12334                 dev_priv->display.write_eld = g4x_write_eld;
12335         } else if (IS_VALLEYVIEW(dev)) {
12336                 dev_priv->display.modeset_global_resources =
12337                         valleyview_modeset_global_resources;
12338                 dev_priv->display.write_eld = ironlake_write_eld;
12339         }
12340
12341         /* Default just returns -ENODEV to indicate unsupported */
12342         dev_priv->display.queue_flip = intel_default_queue_flip;
12343
12344         switch (INTEL_INFO(dev)->gen) {
12345         case 2:
12346                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12347                 break;
12348
12349         case 3:
12350                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12351                 break;
12352
12353         case 4:
12354         case 5:
12355                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12356                 break;
12357
12358         case 6:
12359                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12360                 break;
12361         case 7:
12362         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12363                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12364                 break;
12365         }
12366
12367         intel_panel_init_backlight_funcs(dev);
12368 }
12369
12370 /*
12371  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12372  * resume, or other times.  This quirk makes sure that's the case for
12373  * affected systems.
12374  */
12375 static void quirk_pipea_force(struct drm_device *dev)
12376 {
12377         struct drm_i915_private *dev_priv = dev->dev_private;
12378
12379         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12380         DRM_INFO("applying pipe a force quirk\n");
12381 }
12382
12383 /*
12384  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12385  */
12386 static void quirk_ssc_force_disable(struct drm_device *dev)
12387 {
12388         struct drm_i915_private *dev_priv = dev->dev_private;
12389         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12390         DRM_INFO("applying lvds SSC disable quirk\n");
12391 }
12392
12393 /*
12394  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12395  * brightness value
12396  */
12397 static void quirk_invert_brightness(struct drm_device *dev)
12398 {
12399         struct drm_i915_private *dev_priv = dev->dev_private;
12400         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12401         DRM_INFO("applying inverted panel brightness quirk\n");
12402 }
12403
12404 /* Some VBT's incorrectly indicate no backlight is present */
12405 static void quirk_backlight_present(struct drm_device *dev)
12406 {
12407         struct drm_i915_private *dev_priv = dev->dev_private;
12408         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12409         DRM_INFO("applying backlight present quirk\n");
12410 }
12411
12412 struct intel_quirk {
12413         int device;
12414         int subsystem_vendor;
12415         int subsystem_device;
12416         void (*hook)(struct drm_device *dev);
12417 };
12418
12419 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12420 struct intel_dmi_quirk {
12421         void (*hook)(struct drm_device *dev);
12422         const struct dmi_system_id (*dmi_id_list)[];
12423 };
12424
12425 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12426 {
12427         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12428         return 1;
12429 }
12430
12431 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12432         {
12433                 .dmi_id_list = &(const struct dmi_system_id[]) {
12434                         {
12435                                 .callback = intel_dmi_reverse_brightness,
12436                                 .ident = "NCR Corporation",
12437                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12438                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12439                                 },
12440                         },
12441                         { }  /* terminating entry */
12442                 },
12443                 .hook = quirk_invert_brightness,
12444         },
12445 };
12446
12447 static struct intel_quirk intel_quirks[] = {
12448         /* HP Mini needs pipe A force quirk (LP: #322104) */
12449         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12450
12451         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12452         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12453
12454         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12455         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12456
12457         /* Lenovo U160 cannot use SSC on LVDS */
12458         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12459
12460         /* Sony Vaio Y cannot use SSC on LVDS */
12461         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12462
12463         /* Acer Aspire 5734Z must invert backlight brightness */
12464         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12465
12466         /* Acer/eMachines G725 */
12467         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12468
12469         /* Acer/eMachines e725 */
12470         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12471
12472         /* Acer/Packard Bell NCL20 */
12473         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12474
12475         /* Acer Aspire 4736Z */
12476         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12477
12478         /* Acer Aspire 5336 */
12479         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12480
12481         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12482         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12483
12484         /* Acer C720 Chromebook (Core i3 4005U) */
12485         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12486
12487         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12488         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12489
12490         /* HP Chromebook 14 (Celeron 2955U) */
12491         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12492 };
12493
12494 static void intel_init_quirks(struct drm_device *dev)
12495 {
12496         struct pci_dev *d = dev->pdev;
12497         int i;
12498
12499         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12500                 struct intel_quirk *q = &intel_quirks[i];
12501
12502                 if (d->device == q->device &&
12503                     (d->subsystem_vendor == q->subsystem_vendor ||
12504                      q->subsystem_vendor == PCI_ANY_ID) &&
12505                     (d->subsystem_device == q->subsystem_device ||
12506                      q->subsystem_device == PCI_ANY_ID))
12507                         q->hook(dev);
12508         }
12509         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12510                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12511                         intel_dmi_quirks[i].hook(dev);
12512         }
12513 }
12514
12515 /* Disable the VGA plane that we never use */
12516 static void i915_disable_vga(struct drm_device *dev)
12517 {
12518         struct drm_i915_private *dev_priv = dev->dev_private;
12519         u8 sr1;
12520         u32 vga_reg = i915_vgacntrl_reg(dev);
12521
12522         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12523         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12524         outb(SR01, VGA_SR_INDEX);
12525         sr1 = inb(VGA_SR_DATA);
12526         outb(sr1 | 1<<5, VGA_SR_DATA);
12527         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12528         udelay(300);
12529
12530         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12531         POSTING_READ(vga_reg);
12532 }
12533
12534 void intel_modeset_init_hw(struct drm_device *dev)
12535 {
12536         intel_prepare_ddi(dev);
12537
12538         if (IS_VALLEYVIEW(dev))
12539                 vlv_update_cdclk(dev);
12540
12541         intel_init_clock_gating(dev);
12542
12543         intel_reset_dpio(dev);
12544
12545         intel_enable_gt_powersave(dev);
12546 }
12547
12548 void intel_modeset_suspend_hw(struct drm_device *dev)
12549 {
12550         intel_suspend_hw(dev);
12551 }
12552
12553 void intel_modeset_init(struct drm_device *dev)
12554 {
12555         struct drm_i915_private *dev_priv = dev->dev_private;
12556         int sprite, ret;
12557         enum pipe pipe;
12558         struct intel_crtc *crtc;
12559
12560         drm_mode_config_init(dev);
12561
12562         dev->mode_config.min_width = 0;
12563         dev->mode_config.min_height = 0;
12564
12565         dev->mode_config.preferred_depth = 24;
12566         dev->mode_config.prefer_shadow = 1;
12567
12568         dev->mode_config.funcs = &intel_mode_funcs;
12569
12570         intel_init_quirks(dev);
12571
12572         intel_init_pm(dev);
12573
12574         if (INTEL_INFO(dev)->num_pipes == 0)
12575                 return;
12576
12577         intel_init_display(dev);
12578
12579         if (IS_GEN2(dev)) {
12580                 dev->mode_config.max_width = 2048;
12581                 dev->mode_config.max_height = 2048;
12582         } else if (IS_GEN3(dev)) {
12583                 dev->mode_config.max_width = 4096;
12584                 dev->mode_config.max_height = 4096;
12585         } else {
12586                 dev->mode_config.max_width = 8192;
12587                 dev->mode_config.max_height = 8192;
12588         }
12589
12590         if (IS_GEN2(dev)) {
12591                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12592                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12593         } else {
12594                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12595                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12596         }
12597
12598         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12599
12600         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12601                       INTEL_INFO(dev)->num_pipes,
12602                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12603
12604         for_each_pipe(pipe) {
12605                 intel_crtc_init(dev, pipe);
12606                 for_each_sprite(pipe, sprite) {
12607                         ret = intel_plane_init(dev, pipe, sprite);
12608                         if (ret)
12609                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12610                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
12611                 }
12612         }
12613
12614         intel_init_dpio(dev);
12615         intel_reset_dpio(dev);
12616
12617         intel_shared_dpll_init(dev);
12618
12619         /* Just disable it once at startup */
12620         i915_disable_vga(dev);
12621         intel_setup_outputs(dev);
12622
12623         /* Just in case the BIOS is doing something questionable. */
12624         intel_disable_fbc(dev);
12625
12626         drm_modeset_lock_all(dev);
12627         intel_modeset_setup_hw_state(dev, false);
12628         drm_modeset_unlock_all(dev);
12629
12630         for_each_intel_crtc(dev, crtc) {
12631                 if (!crtc->active)
12632                         continue;
12633
12634                 /*
12635                  * Note that reserving the BIOS fb up front prevents us
12636                  * from stuffing other stolen allocations like the ring
12637                  * on top.  This prevents some ugliness at boot time, and
12638                  * can even allow for smooth boot transitions if the BIOS
12639                  * fb is large enough for the active pipe configuration.
12640                  */
12641                 if (dev_priv->display.get_plane_config) {
12642                         dev_priv->display.get_plane_config(crtc,
12643                                                            &crtc->plane_config);
12644                         /*
12645                          * If the fb is shared between multiple heads, we'll
12646                          * just get the first one.
12647                          */
12648                         intel_find_plane_obj(crtc, &crtc->plane_config);
12649                 }
12650         }
12651 }
12652
12653 static void intel_enable_pipe_a(struct drm_device *dev)
12654 {
12655         struct intel_connector *connector;
12656         struct drm_connector *crt = NULL;
12657         struct intel_load_detect_pipe load_detect_temp;
12658         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12659
12660         /* We can't just switch on the pipe A, we need to set things up with a
12661          * proper mode and output configuration. As a gross hack, enable pipe A
12662          * by enabling the load detect pipe once. */
12663         list_for_each_entry(connector,
12664                             &dev->mode_config.connector_list,
12665                             base.head) {
12666                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12667                         crt = &connector->base;
12668                         break;
12669                 }
12670         }
12671
12672         if (!crt)
12673                 return;
12674
12675         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12676                 intel_release_load_detect_pipe(crt, &load_detect_temp);
12677 }
12678
12679 static bool
12680 intel_check_plane_mapping(struct intel_crtc *crtc)
12681 {
12682         struct drm_device *dev = crtc->base.dev;
12683         struct drm_i915_private *dev_priv = dev->dev_private;
12684         u32 reg, val;
12685
12686         if (INTEL_INFO(dev)->num_pipes == 1)
12687                 return true;
12688
12689         reg = DSPCNTR(!crtc->plane);
12690         val = I915_READ(reg);
12691
12692         if ((val & DISPLAY_PLANE_ENABLE) &&
12693             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12694                 return false;
12695
12696         return true;
12697 }
12698
12699 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12700 {
12701         struct drm_device *dev = crtc->base.dev;
12702         struct drm_i915_private *dev_priv = dev->dev_private;
12703         u32 reg;
12704
12705         /* Clear any frame start delays used for debugging left by the BIOS */
12706         reg = PIPECONF(crtc->config.cpu_transcoder);
12707         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12708
12709         /* restore vblank interrupts to correct state */
12710         if (crtc->active)
12711                 drm_vblank_on(dev, crtc->pipe);
12712         else
12713                 drm_vblank_off(dev, crtc->pipe);
12714
12715         /* We need to sanitize the plane -> pipe mapping first because this will
12716          * disable the crtc (and hence change the state) if it is wrong. Note
12717          * that gen4+ has a fixed plane -> pipe mapping.  */
12718         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12719                 struct intel_connector *connector;
12720                 bool plane;
12721
12722                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12723                               crtc->base.base.id);
12724
12725                 /* Pipe has the wrong plane attached and the plane is active.
12726                  * Temporarily change the plane mapping and disable everything
12727                  * ...  */
12728                 plane = crtc->plane;
12729                 crtc->plane = !plane;
12730                 crtc->primary_enabled = true;
12731                 dev_priv->display.crtc_disable(&crtc->base);
12732                 crtc->plane = plane;
12733
12734                 /* ... and break all links. */
12735                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12736                                     base.head) {
12737                         if (connector->encoder->base.crtc != &crtc->base)
12738                                 continue;
12739
12740                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12741                         connector->base.encoder = NULL;
12742                 }
12743                 /* multiple connectors may have the same encoder:
12744                  *  handle them and break crtc link separately */
12745                 list_for_each_entry(connector, &dev->mode_config.connector_list,
12746                                     base.head)
12747                         if (connector->encoder->base.crtc == &crtc->base) {
12748                                 connector->encoder->base.crtc = NULL;
12749                                 connector->encoder->connectors_active = false;
12750                         }
12751
12752                 WARN_ON(crtc->active);
12753                 crtc->base.enabled = false;
12754         }
12755
12756         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12757             crtc->pipe == PIPE_A && !crtc->active) {
12758                 /* BIOS forgot to enable pipe A, this mostly happens after
12759                  * resume. Force-enable the pipe to fix this, the update_dpms
12760                  * call below we restore the pipe to the right state, but leave
12761                  * the required bits on. */
12762                 intel_enable_pipe_a(dev);
12763         }
12764
12765         /* Adjust the state of the output pipe according to whether we
12766          * have active connectors/encoders. */
12767         intel_crtc_update_dpms(&crtc->base);
12768
12769         if (crtc->active != crtc->base.enabled) {
12770                 struct intel_encoder *encoder;
12771
12772                 /* This can happen either due to bugs in the get_hw_state
12773                  * functions or because the pipe is force-enabled due to the
12774                  * pipe A quirk. */
12775                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12776                               crtc->base.base.id,
12777                               crtc->base.enabled ? "enabled" : "disabled",
12778                               crtc->active ? "enabled" : "disabled");
12779
12780                 crtc->base.enabled = crtc->active;
12781
12782                 /* Because we only establish the connector -> encoder ->
12783                  * crtc links if something is active, this means the
12784                  * crtc is now deactivated. Break the links. connector
12785                  * -> encoder links are only establish when things are
12786                  *  actually up, hence no need to break them. */
12787                 WARN_ON(crtc->active);
12788
12789                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12790                         WARN_ON(encoder->connectors_active);
12791                         encoder->base.crtc = NULL;
12792                 }
12793         }
12794
12795         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12796                 /*
12797                  * We start out with underrun reporting disabled to avoid races.
12798                  * For correct bookkeeping mark this on active crtcs.
12799                  *
12800                  * Also on gmch platforms we dont have any hardware bits to
12801                  * disable the underrun reporting. Which means we need to start
12802                  * out with underrun reporting disabled also on inactive pipes,
12803                  * since otherwise we'll complain about the garbage we read when
12804                  * e.g. coming up after runtime pm.
12805                  *
12806                  * No protection against concurrent access is required - at
12807                  * worst a fifo underrun happens which also sets this to false.
12808                  */
12809                 crtc->cpu_fifo_underrun_disabled = true;
12810                 crtc->pch_fifo_underrun_disabled = true;
12811
12812                 update_scanline_offset(crtc);
12813         }
12814 }
12815
12816 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12817 {
12818         struct intel_connector *connector;
12819         struct drm_device *dev = encoder->base.dev;
12820
12821         /* We need to check both for a crtc link (meaning that the
12822          * encoder is active and trying to read from a pipe) and the
12823          * pipe itself being active. */
12824         bool has_active_crtc = encoder->base.crtc &&
12825                 to_intel_crtc(encoder->base.crtc)->active;
12826
12827         if (encoder->connectors_active && !has_active_crtc) {
12828                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12829                               encoder->base.base.id,
12830                               encoder->base.name);
12831
12832                 /* Connector is active, but has no active pipe. This is
12833                  * fallout from our resume register restoring. Disable
12834                  * the encoder manually again. */
12835                 if (encoder->base.crtc) {
12836                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12837                                       encoder->base.base.id,
12838                                       encoder->base.name);
12839                         encoder->disable(encoder);
12840                         if (encoder->post_disable)
12841                                 encoder->post_disable(encoder);
12842                 }
12843                 encoder->base.crtc = NULL;
12844                 encoder->connectors_active = false;
12845
12846                 /* Inconsistent output/port/pipe state happens presumably due to
12847                  * a bug in one of the get_hw_state functions. Or someplace else
12848                  * in our code, like the register restore mess on resume. Clamp
12849                  * things to off as a safer default. */
12850                 list_for_each_entry(connector,
12851                                     &dev->mode_config.connector_list,
12852                                     base.head) {
12853                         if (connector->encoder != encoder)
12854                                 continue;
12855                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12856                         connector->base.encoder = NULL;
12857                 }
12858         }
12859         /* Enabled encoders without active connectors will be fixed in
12860          * the crtc fixup. */
12861 }
12862
12863 void i915_redisable_vga_power_on(struct drm_device *dev)
12864 {
12865         struct drm_i915_private *dev_priv = dev->dev_private;
12866         u32 vga_reg = i915_vgacntrl_reg(dev);
12867
12868         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12869                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12870                 i915_disable_vga(dev);
12871         }
12872 }
12873
12874 void i915_redisable_vga(struct drm_device *dev)
12875 {
12876         struct drm_i915_private *dev_priv = dev->dev_private;
12877
12878         /* This function can be called both from intel_modeset_setup_hw_state or
12879          * at a very early point in our resume sequence, where the power well
12880          * structures are not yet restored. Since this function is at a very
12881          * paranoid "someone might have enabled VGA while we were not looking"
12882          * level, just check if the power well is enabled instead of trying to
12883          * follow the "don't touch the power well if we don't need it" policy
12884          * the rest of the driver uses. */
12885         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12886                 return;
12887
12888         i915_redisable_vga_power_on(dev);
12889 }
12890
12891 static bool primary_get_hw_state(struct intel_crtc *crtc)
12892 {
12893         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12894
12895         if (!crtc->active)
12896                 return false;
12897
12898         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12899 }
12900
12901 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12902 {
12903         struct drm_i915_private *dev_priv = dev->dev_private;
12904         enum pipe pipe;
12905         struct intel_crtc *crtc;
12906         struct intel_encoder *encoder;
12907         struct intel_connector *connector;
12908         int i;
12909
12910         for_each_intel_crtc(dev, crtc) {
12911                 memset(&crtc->config, 0, sizeof(crtc->config));
12912
12913                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12914
12915                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12916                                                                  &crtc->config);
12917
12918                 crtc->base.enabled = crtc->active;
12919                 crtc->primary_enabled = primary_get_hw_state(crtc);
12920
12921                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12922                               crtc->base.base.id,
12923                               crtc->active ? "enabled" : "disabled");
12924         }
12925
12926         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12927                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12928
12929                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12930                 pll->active = 0;
12931                 for_each_intel_crtc(dev, crtc) {
12932                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12933                                 pll->active++;
12934                 }
12935                 pll->refcount = pll->active;
12936
12937                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12938                               pll->name, pll->refcount, pll->on);
12939
12940                 if (pll->refcount)
12941                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
12942         }
12943
12944         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12945                             base.head) {
12946                 pipe = 0;
12947
12948                 if (encoder->get_hw_state(encoder, &pipe)) {
12949                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12950                         encoder->base.crtc = &crtc->base;
12951                         encoder->get_config(encoder, &crtc->config);
12952                 } else {
12953                         encoder->base.crtc = NULL;
12954                 }
12955
12956                 encoder->connectors_active = false;
12957                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12958                               encoder->base.base.id,
12959                               encoder->base.name,
12960                               encoder->base.crtc ? "enabled" : "disabled",
12961                               pipe_name(pipe));
12962         }
12963
12964         list_for_each_entry(connector, &dev->mode_config.connector_list,
12965                             base.head) {
12966                 if (connector->get_hw_state(connector)) {
12967                         connector->base.dpms = DRM_MODE_DPMS_ON;
12968                         connector->encoder->connectors_active = true;
12969                         connector->base.encoder = &connector->encoder->base;
12970                 } else {
12971                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12972                         connector->base.encoder = NULL;
12973                 }
12974                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12975                               connector->base.base.id,
12976                               connector->base.name,
12977                               connector->base.encoder ? "enabled" : "disabled");
12978         }
12979 }
12980
12981 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12982  * and i915 state tracking structures. */
12983 void intel_modeset_setup_hw_state(struct drm_device *dev,
12984                                   bool force_restore)
12985 {
12986         struct drm_i915_private *dev_priv = dev->dev_private;
12987         enum pipe pipe;
12988         struct intel_crtc *crtc;
12989         struct intel_encoder *encoder;
12990         int i;
12991
12992         intel_modeset_readout_hw_state(dev);
12993
12994         /*
12995          * Now that we have the config, copy it to each CRTC struct
12996          * Note that this could go away if we move to using crtc_config
12997          * checking everywhere.
12998          */
12999         for_each_intel_crtc(dev, crtc) {
13000                 if (crtc->active && i915.fastboot) {
13001                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13002                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13003                                       crtc->base.base.id);
13004                         drm_mode_debug_printmodeline(&crtc->base.mode);
13005                 }
13006         }
13007
13008         /* HW state is read out, now we need to sanitize this mess. */
13009         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13010                             base.head) {
13011                 intel_sanitize_encoder(encoder);
13012         }
13013
13014         for_each_pipe(pipe) {
13015                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13016                 intel_sanitize_crtc(crtc);
13017                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13018         }
13019
13020         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13021                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13022
13023                 if (!pll->on || pll->active)
13024                         continue;
13025
13026                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13027
13028                 pll->disable(dev_priv, pll);
13029                 pll->on = false;
13030         }
13031
13032         if (HAS_PCH_SPLIT(dev))
13033                 ilk_wm_get_hw_state(dev);
13034
13035         if (force_restore) {
13036                 i915_redisable_vga(dev);
13037
13038                 /*
13039                  * We need to use raw interfaces for restoring state to avoid
13040                  * checking (bogus) intermediate states.
13041                  */
13042                 for_each_pipe(pipe) {
13043                         struct drm_crtc *crtc =
13044                                 dev_priv->pipe_to_crtc_mapping[pipe];
13045
13046                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13047                                          crtc->primary->fb);
13048                 }
13049         } else {
13050                 intel_modeset_update_staged_output_state(dev);
13051         }
13052
13053         intel_modeset_check_state(dev);
13054 }
13055
13056 void intel_modeset_gem_init(struct drm_device *dev)
13057 {
13058         struct drm_crtc *c;
13059         struct drm_i915_gem_object *obj;
13060
13061         mutex_lock(&dev->struct_mutex);
13062         intel_init_gt_powersave(dev);
13063         mutex_unlock(&dev->struct_mutex);
13064
13065         intel_modeset_init_hw(dev);
13066
13067         intel_setup_overlay(dev);
13068
13069         /*
13070          * Make sure any fbs we allocated at startup are properly
13071          * pinned & fenced.  When we do the allocation it's too early
13072          * for this.
13073          */
13074         mutex_lock(&dev->struct_mutex);
13075         for_each_crtc(dev, c) {
13076                 obj = intel_fb_obj(c->primary->fb);
13077                 if (obj == NULL)
13078                         continue;
13079
13080                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13081                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13082                                   to_intel_crtc(c)->pipe);
13083                         drm_framebuffer_unreference(c->primary->fb);
13084                         c->primary->fb = NULL;
13085                 }
13086         }
13087         mutex_unlock(&dev->struct_mutex);
13088 }
13089
13090 void intel_connector_unregister(struct intel_connector *intel_connector)
13091 {
13092         struct drm_connector *connector = &intel_connector->base;
13093
13094         intel_panel_destroy_backlight(connector);
13095         drm_connector_unregister(connector);
13096 }
13097
13098 void intel_modeset_cleanup(struct drm_device *dev)
13099 {
13100         struct drm_i915_private *dev_priv = dev->dev_private;
13101         struct drm_connector *connector;
13102
13103         /*
13104          * Interrupts and polling as the first thing to avoid creating havoc.
13105          * Too much stuff here (turning of rps, connectors, ...) would
13106          * experience fancy races otherwise.
13107          */
13108         drm_irq_uninstall(dev);
13109         intel_hpd_cancel_work(dev_priv);
13110         dev_priv->pm._irqs_disabled = true;
13111
13112         /*
13113          * Due to the hpd irq storm handling the hotplug work can re-arm the
13114          * poll handlers. Hence disable polling after hpd handling is shut down.
13115          */
13116         drm_kms_helper_poll_fini(dev);
13117
13118         mutex_lock(&dev->struct_mutex);
13119
13120         intel_unregister_dsm_handler();
13121
13122         intel_disable_fbc(dev);
13123
13124         intel_disable_gt_powersave(dev);
13125
13126         ironlake_teardown_rc6(dev);
13127
13128         mutex_unlock(&dev->struct_mutex);
13129
13130         /* flush any delayed tasks or pending work */
13131         flush_scheduled_work();
13132
13133         /* destroy the backlight and sysfs files before encoders/connectors */
13134         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13135                 struct intel_connector *intel_connector;
13136
13137                 intel_connector = to_intel_connector(connector);
13138                 intel_connector->unregister(intel_connector);
13139         }
13140
13141         drm_mode_config_cleanup(dev);
13142
13143         intel_cleanup_overlay(dev);
13144
13145         mutex_lock(&dev->struct_mutex);
13146         intel_cleanup_gt_powersave(dev);
13147         mutex_unlock(&dev->struct_mutex);
13148 }
13149
13150 /*
13151  * Return which encoder is currently attached for connector.
13152  */
13153 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13154 {
13155         return &intel_attached_encoder(connector)->base;
13156 }
13157
13158 void intel_connector_attach_encoder(struct intel_connector *connector,
13159                                     struct intel_encoder *encoder)
13160 {
13161         connector->encoder = encoder;
13162         drm_mode_connector_attach_encoder(&connector->base,
13163                                           &encoder->base);
13164 }
13165
13166 /*
13167  * set vga decode state - true == enable VGA decode
13168  */
13169 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13170 {
13171         struct drm_i915_private *dev_priv = dev->dev_private;
13172         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13173         u16 gmch_ctrl;
13174
13175         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13176                 DRM_ERROR("failed to read control word\n");
13177                 return -EIO;
13178         }
13179
13180         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13181                 return 0;
13182
13183         if (state)
13184                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13185         else
13186                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13187
13188         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13189                 DRM_ERROR("failed to write control word\n");
13190                 return -EIO;
13191         }
13192
13193         return 0;
13194 }
13195
13196 struct intel_display_error_state {
13197
13198         u32 power_well_driver;
13199
13200         int num_transcoders;
13201
13202         struct intel_cursor_error_state {
13203                 u32 control;
13204                 u32 position;
13205                 u32 base;
13206                 u32 size;
13207         } cursor[I915_MAX_PIPES];
13208
13209         struct intel_pipe_error_state {
13210                 bool power_domain_on;
13211                 u32 source;
13212                 u32 stat;
13213         } pipe[I915_MAX_PIPES];
13214
13215         struct intel_plane_error_state {
13216                 u32 control;
13217                 u32 stride;
13218                 u32 size;
13219                 u32 pos;
13220                 u32 addr;
13221                 u32 surface;
13222                 u32 tile_offset;
13223         } plane[I915_MAX_PIPES];
13224
13225         struct intel_transcoder_error_state {
13226                 bool power_domain_on;
13227                 enum transcoder cpu_transcoder;
13228
13229                 u32 conf;
13230
13231                 u32 htotal;
13232                 u32 hblank;
13233                 u32 hsync;
13234                 u32 vtotal;
13235                 u32 vblank;
13236                 u32 vsync;
13237         } transcoder[4];
13238 };
13239
13240 struct intel_display_error_state *
13241 intel_display_capture_error_state(struct drm_device *dev)
13242 {
13243         struct drm_i915_private *dev_priv = dev->dev_private;
13244         struct intel_display_error_state *error;
13245         int transcoders[] = {
13246                 TRANSCODER_A,
13247                 TRANSCODER_B,
13248                 TRANSCODER_C,
13249                 TRANSCODER_EDP,
13250         };
13251         int i;
13252
13253         if (INTEL_INFO(dev)->num_pipes == 0)
13254                 return NULL;
13255
13256         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13257         if (error == NULL)
13258                 return NULL;
13259
13260         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13261                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13262
13263         for_each_pipe(i) {
13264                 error->pipe[i].power_domain_on =
13265                         intel_display_power_enabled_unlocked(dev_priv,
13266                                                            POWER_DOMAIN_PIPE(i));
13267                 if (!error->pipe[i].power_domain_on)
13268                         continue;
13269
13270                 error->cursor[i].control = I915_READ(CURCNTR(i));
13271                 error->cursor[i].position = I915_READ(CURPOS(i));
13272                 error->cursor[i].base = I915_READ(CURBASE(i));
13273
13274                 error->plane[i].control = I915_READ(DSPCNTR(i));
13275                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13276                 if (INTEL_INFO(dev)->gen <= 3) {
13277                         error->plane[i].size = I915_READ(DSPSIZE(i));
13278                         error->plane[i].pos = I915_READ(DSPPOS(i));
13279                 }
13280                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13281                         error->plane[i].addr = I915_READ(DSPADDR(i));
13282                 if (INTEL_INFO(dev)->gen >= 4) {
13283                         error->plane[i].surface = I915_READ(DSPSURF(i));
13284                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13285                 }
13286
13287                 error->pipe[i].source = I915_READ(PIPESRC(i));
13288
13289                 if (HAS_GMCH_DISPLAY(dev))
13290                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13291         }
13292
13293         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13294         if (HAS_DDI(dev_priv->dev))
13295                 error->num_transcoders++; /* Account for eDP. */
13296
13297         for (i = 0; i < error->num_transcoders; i++) {
13298                 enum transcoder cpu_transcoder = transcoders[i];
13299
13300                 error->transcoder[i].power_domain_on =
13301                         intel_display_power_enabled_unlocked(dev_priv,
13302                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13303                 if (!error->transcoder[i].power_domain_on)
13304                         continue;
13305
13306                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13307
13308                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13309                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13310                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13311                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13312                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13313                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13314                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13315         }
13316
13317         return error;
13318 }
13319
13320 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13321
13322 void
13323 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13324                                 struct drm_device *dev,
13325                                 struct intel_display_error_state *error)
13326 {
13327         int i;
13328
13329         if (!error)
13330                 return;
13331
13332         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13333         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13334                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13335                            error->power_well_driver);
13336         for_each_pipe(i) {
13337                 err_printf(m, "Pipe [%d]:\n", i);
13338                 err_printf(m, "  Power: %s\n",
13339                            error->pipe[i].power_domain_on ? "on" : "off");
13340                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13341                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13342
13343                 err_printf(m, "Plane [%d]:\n", i);
13344                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13345                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13346                 if (INTEL_INFO(dev)->gen <= 3) {
13347                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13348                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13349                 }
13350                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13351                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13352                 if (INTEL_INFO(dev)->gen >= 4) {
13353                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13354                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13355                 }
13356
13357                 err_printf(m, "Cursor [%d]:\n", i);
13358                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13359                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13360                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13361         }
13362
13363         for (i = 0; i < error->num_transcoders; i++) {
13364                 err_printf(m, "CPU transcoder: %c\n",
13365                            transcoder_name(error->transcoder[i].cpu_transcoder));
13366                 err_printf(m, "  Power: %s\n",
13367                            error->transcoder[i].power_domain_on ? "on" : "off");
13368                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13369                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13370                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13371                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13372                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13373                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13374                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13375         }
13376 }