drm/atomic: Update legacy DPMS state during modesets, v3.
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90                                   struct intel_framebuffer *ifb,
91                                   struct drm_mode_fb_cmd2 *mode_cmd,
92                                   struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96                                          struct intel_link_m_n *m_n,
97                                          struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104                             const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108         struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110                            int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4800000, .max = 6480000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402         /* FIXME: find real dot limits */
403         .dot = { .min = 0, .max = INT_MAX },
404         .vco = { .min = 4800000, .max = 6700000 },
405         .n = { .min = 1, .max = 1 },
406         .m1 = { .min = 2, .max = 2 },
407         /* FIXME: find real m2 limits */
408         .m2 = { .min = 2 << 22, .max = 255 << 22 },
409         .p1 = { .min = 2, .max = 4 },
410         .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416         return drm_atomic_crtc_needs_modeset(state);
417 }
418
419 /**
420  * Returns whether any output on the specified pipe is of the specified type
421  */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424         struct drm_device *dev = crtc->base.dev;
425         struct intel_encoder *encoder;
426
427         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428                 if (encoder->type == type)
429                         return true;
430
431         return false;
432 }
433
434 /**
435  * Returns whether any output on the specified pipe will have the specified
436  * type after a staged modeset is complete, i.e., the same as
437  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438  * encoder->crtc.
439  */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441                                       int type)
442 {
443         struct drm_atomic_state *state = crtc_state->base.state;
444         struct drm_connector *connector;
445         struct drm_connector_state *connector_state;
446         struct intel_encoder *encoder;
447         int i, num_connectors = 0;
448
449         for_each_connector_in_state(state, connector, connector_state, i) {
450                 if (connector_state->crtc != crtc_state->base.crtc)
451                         continue;
452
453                 num_connectors++;
454
455                 encoder = to_intel_encoder(connector_state->best_encoder);
456                 if (encoder->type == type)
457                         return true;
458         }
459
460         WARN_ON(num_connectors == 0);
461
462         return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468         struct drm_device *dev = crtc_state->base.crtc->dev;
469         const intel_limit_t *limit;
470
471         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472                 if (intel_is_dual_link_lvds(dev)) {
473                         if (refclk == 100000)
474                                 limit = &intel_limits_ironlake_dual_lvds_100m;
475                         else
476                                 limit = &intel_limits_ironlake_dual_lvds;
477                 } else {
478                         if (refclk == 100000)
479                                 limit = &intel_limits_ironlake_single_lvds_100m;
480                         else
481                                 limit = &intel_limits_ironlake_single_lvds;
482                 }
483         } else
484                 limit = &intel_limits_ironlake_dac;
485
486         return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492         struct drm_device *dev = crtc_state->base.crtc->dev;
493         const intel_limit_t *limit;
494
495         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496                 if (intel_is_dual_link_lvds(dev))
497                         limit = &intel_limits_g4x_dual_channel_lvds;
498                 else
499                         limit = &intel_limits_g4x_single_channel_lvds;
500         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502                 limit = &intel_limits_g4x_hdmi;
503         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504                 limit = &intel_limits_g4x_sdvo;
505         } else /* The option is for other outputs */
506                 limit = &intel_limits_i9xx_sdvo;
507
508         return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514         struct drm_device *dev = crtc_state->base.crtc->dev;
515         const intel_limit_t *limit;
516
517         if (IS_BROXTON(dev))
518                 limit = &intel_limits_bxt;
519         else if (HAS_PCH_SPLIT(dev))
520                 limit = intel_ironlake_limit(crtc_state, refclk);
521         else if (IS_G4X(dev)) {
522                 limit = intel_g4x_limit(crtc_state);
523         } else if (IS_PINEVIEW(dev)) {
524                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525                         limit = &intel_limits_pineview_lvds;
526                 else
527                         limit = &intel_limits_pineview_sdvo;
528         } else if (IS_CHERRYVIEW(dev)) {
529                 limit = &intel_limits_chv;
530         } else if (IS_VALLEYVIEW(dev)) {
531                 limit = &intel_limits_vlv;
532         } else if (!IS_GEN2(dev)) {
533                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534                         limit = &intel_limits_i9xx_lvds;
535                 else
536                         limit = &intel_limits_i9xx_sdvo;
537         } else {
538                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539                         limit = &intel_limits_i8xx_lvds;
540                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541                         limit = &intel_limits_i8xx_dvo;
542                 else
543                         limit = &intel_limits_i8xx_dac;
544         }
545         return limit;
546 }
547
548 /*
549  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552  * The helpers' return value is the rate of the clock that is fed to the
553  * display engine's pipe which can be the above fast dot clock rate or a
554  * divided-down version of it.
555  */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559         clock->m = clock->m2 + 2;
560         clock->p = clock->p1 * clock->p2;
561         if (WARN_ON(clock->n == 0 || clock->p == 0))
562                 return 0;
563         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566         return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576         clock->m = i9xx_dpll_compute_m(clock);
577         clock->p = clock->p1 * clock->p2;
578         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579                 return 0;
580         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583         return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588         clock->m = clock->m1 * clock->m2;
589         clock->p = clock->p1 * clock->p2;
590         if (WARN_ON(clock->n == 0 || clock->p == 0))
591                 return 0;
592         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595         return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600         clock->m = clock->m1 * clock->m2;
601         clock->p = clock->p1 * clock->p2;
602         if (WARN_ON(clock->n == 0 || clock->p == 0))
603                 return 0;
604         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605                         clock->n << 22);
606         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608         return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613  * Returns whether the given set of divisors are valid for a given refclk with
614  * the given connectors.
615  */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618                                const intel_limit_t *limit,
619                                const intel_clock_t *clock)
620 {
621         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
622                 INTELPllInvalid("n out of range\n");
623         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
624                 INTELPllInvalid("p1 out of range\n");
625         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
626                 INTELPllInvalid("m2 out of range\n");
627         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
628                 INTELPllInvalid("m1 out of range\n");
629
630         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631                 if (clock->m1 <= clock->m2)
632                         INTELPllInvalid("m1 <= m2\n");
633
634         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635                 if (clock->p < limit->p.min || limit->p.max < clock->p)
636                         INTELPllInvalid("p out of range\n");
637                 if (clock->m < limit->m.min || limit->m.max < clock->m)
638                         INTELPllInvalid("m out of range\n");
639         }
640
641         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642                 INTELPllInvalid("vco out of range\n");
643         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644          * connector, etc., rather than just a single range.
645          */
646         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647                 INTELPllInvalid("dot out of range\n");
648
649         return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654                    const struct intel_crtc_state *crtc_state,
655                    int target)
656 {
657         struct drm_device *dev = crtc_state->base.crtc->dev;
658
659         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660                 /*
661                  * For LVDS just rely on its current settings for dual-channel.
662                  * We haven't figured out how to reliably set up different
663                  * single/dual channel state, if we even can.
664                  */
665                 if (intel_is_dual_link_lvds(dev))
666                         return limit->p2.p2_fast;
667                 else
668                         return limit->p2.p2_slow;
669         } else {
670                 if (target < limit->p2.dot_limit)
671                         return limit->p2.p2_slow;
672                 else
673                         return limit->p2.p2_fast;
674         }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679                     struct intel_crtc_state *crtc_state,
680                     int target, int refclk, intel_clock_t *match_clock,
681                     intel_clock_t *best_clock)
682 {
683         struct drm_device *dev = crtc_state->base.crtc->dev;
684         intel_clock_t clock;
685         int err = target;
686
687         memset(best_clock, 0, sizeof(*best_clock));
688
689         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692              clock.m1++) {
693                 for (clock.m2 = limit->m2.min;
694                      clock.m2 <= limit->m2.max; clock.m2++) {
695                         if (clock.m2 >= clock.m1)
696                                 break;
697                         for (clock.n = limit->n.min;
698                              clock.n <= limit->n.max; clock.n++) {
699                                 for (clock.p1 = limit->p1.min;
700                                         clock.p1 <= limit->p1.max; clock.p1++) {
701                                         int this_err;
702
703                                         i9xx_calc_dpll_params(refclk, &clock);
704                                         if (!intel_PLL_is_valid(dev, limit,
705                                                                 &clock))
706                                                 continue;
707                                         if (match_clock &&
708                                             clock.p != match_clock->p)
709                                                 continue;
710
711                                         this_err = abs(clock.dot - target);
712                                         if (this_err < err) {
713                                                 *best_clock = clock;
714                                                 err = this_err;
715                                         }
716                                 }
717                         }
718                 }
719         }
720
721         return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726                    struct intel_crtc_state *crtc_state,
727                    int target, int refclk, intel_clock_t *match_clock,
728                    intel_clock_t *best_clock)
729 {
730         struct drm_device *dev = crtc_state->base.crtc->dev;
731         intel_clock_t clock;
732         int err = target;
733
734         memset(best_clock, 0, sizeof(*best_clock));
735
736         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739              clock.m1++) {
740                 for (clock.m2 = limit->m2.min;
741                      clock.m2 <= limit->m2.max; clock.m2++) {
742                         for (clock.n = limit->n.min;
743                              clock.n <= limit->n.max; clock.n++) {
744                                 for (clock.p1 = limit->p1.min;
745                                         clock.p1 <= limit->p1.max; clock.p1++) {
746                                         int this_err;
747
748                                         pnv_calc_dpll_params(refclk, &clock);
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752                                         if (match_clock &&
753                                             clock.p != match_clock->p)
754                                                 continue;
755
756                                         this_err = abs(clock.dot - target);
757                                         if (this_err < err) {
758                                                 *best_clock = clock;
759                                                 err = this_err;
760                                         }
761                                 }
762                         }
763                 }
764         }
765
766         return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771                    struct intel_crtc_state *crtc_state,
772                    int target, int refclk, intel_clock_t *match_clock,
773                    intel_clock_t *best_clock)
774 {
775         struct drm_device *dev = crtc_state->base.crtc->dev;
776         intel_clock_t clock;
777         int max_n;
778         bool found = false;
779         /* approximately equals target * 0.00585 */
780         int err_most = (target >> 8) + (target >> 9);
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         max_n = limit->n.max;
787         /* based on hardware requirement, prefer smaller n to precision */
788         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789                 /* based on hardware requirement, prefere larger m1,m2 */
790                 for (clock.m1 = limit->m1.max;
791                      clock.m1 >= limit->m1.min; clock.m1--) {
792                         for (clock.m2 = limit->m2.max;
793                              clock.m2 >= limit->m2.min; clock.m2--) {
794                                 for (clock.p1 = limit->p1.max;
795                                      clock.p1 >= limit->p1.min; clock.p1--) {
796                                         int this_err;
797
798                                         i9xx_calc_dpll_params(refclk, &clock);
799                                         if (!intel_PLL_is_valid(dev, limit,
800                                                                 &clock))
801                                                 continue;
802
803                                         this_err = abs(clock.dot - target);
804                                         if (this_err < err_most) {
805                                                 *best_clock = clock;
806                                                 err_most = this_err;
807                                                 max_n = clock.n;
808                                                 found = true;
809                                         }
810                                 }
811                         }
812                 }
813         }
814         return found;
815 }
816
817 /*
818  * Check if the calculated PLL configuration is more optimal compared to the
819  * best configuration and error found so far. Return the calculated error.
820  */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822                                const intel_clock_t *calculated_clock,
823                                const intel_clock_t *best_clock,
824                                unsigned int best_error_ppm,
825                                unsigned int *error_ppm)
826 {
827         /*
828          * For CHV ignore the error and consider only the P value.
829          * Prefer a bigger P value based on HW requirements.
830          */
831         if (IS_CHERRYVIEW(dev)) {
832                 *error_ppm = 0;
833
834                 return calculated_clock->p > best_clock->p;
835         }
836
837         if (WARN_ON_ONCE(!target_freq))
838                 return false;
839
840         *error_ppm = div_u64(1000000ULL *
841                                 abs(target_freq - calculated_clock->dot),
842                              target_freq);
843         /*
844          * Prefer a better P value over a better (smaller) error if the error
845          * is small. Ensure this preference for future configurations too by
846          * setting the error to 0.
847          */
848         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849                 *error_ppm = 0;
850
851                 return true;
852         }
853
854         return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859                    struct intel_crtc_state *crtc_state,
860                    int target, int refclk, intel_clock_t *match_clock,
861                    intel_clock_t *best_clock)
862 {
863         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864         struct drm_device *dev = crtc->base.dev;
865         intel_clock_t clock;
866         unsigned int bestppm = 1000000;
867         /* min update 19.2 MHz */
868         int max_n = min(limit->n.max, refclk / 19200);
869         bool found = false;
870
871         target *= 5; /* fast clock */
872
873         memset(best_clock, 0, sizeof(*best_clock));
874
875         /* based on hardware requirement, prefer smaller n to precision */
876         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880                                 clock.p = clock.p1 * clock.p2;
881                                 /* based on hardware requirement, prefer bigger m1,m2 values */
882                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883                                         unsigned int ppm;
884
885                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886                                                                      refclk * clock.m1);
887
888                                         vlv_calc_dpll_params(refclk, &clock);
889
890                                         if (!intel_PLL_is_valid(dev, limit,
891                                                                 &clock))
892                                                 continue;
893
894                                         if (!vlv_PLL_is_optimal(dev, target,
895                                                                 &clock,
896                                                                 best_clock,
897                                                                 bestppm, &ppm))
898                                                 continue;
899
900                                         *best_clock = clock;
901                                         bestppm = ppm;
902                                         found = true;
903                                 }
904                         }
905                 }
906         }
907
908         return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913                    struct intel_crtc_state *crtc_state,
914                    int target, int refclk, intel_clock_t *match_clock,
915                    intel_clock_t *best_clock)
916 {
917         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918         struct drm_device *dev = crtc->base.dev;
919         unsigned int best_error_ppm;
920         intel_clock_t clock;
921         uint64_t m2;
922         int found = false;
923
924         memset(best_clock, 0, sizeof(*best_clock));
925         best_error_ppm = 1000000;
926
927         /*
928          * Based on hardware doc, the n always set to 1, and m1 always
929          * set to 2.  If requires to support 200Mhz refclk, we need to
930          * revisit this because n may not 1 anymore.
931          */
932         clock.n = 1, clock.m1 = 2;
933         target *= 5;    /* fast clock */
934
935         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936                 for (clock.p2 = limit->p2.p2_fast;
937                                 clock.p2 >= limit->p2.p2_slow;
938                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939                         unsigned int error_ppm;
940
941                         clock.p = clock.p1 * clock.p2;
942
943                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944                                         clock.n) << 22, refclk * clock.m1);
945
946                         if (m2 > INT_MAX/clock.m1)
947                                 continue;
948
949                         clock.m2 = m2;
950
951                         chv_calc_dpll_params(refclk, &clock);
952
953                         if (!intel_PLL_is_valid(dev, limit, &clock))
954                                 continue;
955
956                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957                                                 best_error_ppm, &error_ppm))
958                                 continue;
959
960                         *best_clock = clock;
961                         best_error_ppm = error_ppm;
962                         found = true;
963                 }
964         }
965
966         return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970                         intel_clock_t *best_clock)
971 {
972         int refclk = i9xx_get_refclk(crtc_state, 0);
973
974         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975                                   target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982         /* Be paranoid as we can arrive here with only partial
983          * state retrieved from the hardware during setup.
984          *
985          * We can ditch the adjusted_mode.crtc_clock check as soon
986          * as Haswell has gained clock readout/fastboot support.
987          *
988          * We can ditch the crtc->primary->fb check as soon as we can
989          * properly reconstruct framebuffers.
990          *
991          * FIXME: The intel_crtc->active here should be switched to
992          * crtc->state->active once we have proper CRTC states wired up
993          * for atomic.
994          */
995         return intel_crtc->active && crtc->primary->state->fb &&
996                 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000                                              enum pipe pipe)
1001 {
1002         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005         return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 reg = PIPEDSL(pipe);
1012         u32 line1, line2;
1013         u32 line_mask;
1014
1015         if (IS_GEN2(dev))
1016                 line_mask = DSL_LINEMASK_GEN2;
1017         else
1018                 line_mask = DSL_LINEMASK_GEN3;
1019
1020         line1 = I915_READ(reg) & line_mask;
1021         msleep(5);
1022         line2 = I915_READ(reg) & line_mask;
1023
1024         return line1 == line2;
1025 }
1026
1027 /*
1028  * intel_wait_for_pipe_off - wait for pipe to turn off
1029  * @crtc: crtc whose pipe to wait for
1030  *
1031  * After disabling a pipe, we can't wait for vblank in the usual way,
1032  * spinning on the vblank interrupt status bit, since we won't actually
1033  * see an interrupt when the pipe is disabled.
1034  *
1035  * On Gen4 and above:
1036  *   wait for the pipe register state bit to turn off
1037  *
1038  * Otherwise:
1039  *   wait for the display line value to settle (it usually
1040  *   ends up stopping at the start of the next frame).
1041  *
1042  */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045         struct drm_device *dev = crtc->base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048         enum pipe pipe = crtc->pipe;
1049
1050         if (INTEL_INFO(dev)->gen >= 4) {
1051                 int reg = PIPECONF(cpu_transcoder);
1052
1053                 /* Wait for the Pipe State to go off */
1054                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055                              100))
1056                         WARN(1, "pipe_off wait timed out\n");
1057         } else {
1058                 /* Wait for the display line to settle */
1059                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060                         WARN(1, "pipe_off wait timed out\n");
1061         }
1062 }
1063
1064 /*
1065  * ibx_digital_port_connected - is the specified port connected?
1066  * @dev_priv: i915 private structure
1067  * @port: the port to test
1068  *
1069  * Returns true if @port is connected, false otherwise.
1070  */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072                                 struct intel_digital_port *port)
1073 {
1074         u32 bit;
1075
1076         if (HAS_PCH_IBX(dev_priv->dev)) {
1077                 switch (port->port) {
1078                 case PORT_B:
1079                         bit = SDE_PORTB_HOTPLUG;
1080                         break;
1081                 case PORT_C:
1082                         bit = SDE_PORTC_HOTPLUG;
1083                         break;
1084                 case PORT_D:
1085                         bit = SDE_PORTD_HOTPLUG;
1086                         break;
1087                 default:
1088                         return true;
1089                 }
1090         } else {
1091                 switch (port->port) {
1092                 case PORT_B:
1093                         bit = SDE_PORTB_HOTPLUG_CPT;
1094                         break;
1095                 case PORT_C:
1096                         bit = SDE_PORTC_HOTPLUG_CPT;
1097                         break;
1098                 case PORT_D:
1099                         bit = SDE_PORTD_HOTPLUG_CPT;
1100                         break;
1101                 default:
1102                         return true;
1103                 }
1104         }
1105
1106         return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111         return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116                 enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121
1122         reg = DPLL(pipe);
1123         val = I915_READ(reg);
1124         cur_state = !!(val & DPLL_VCO_ENABLE);
1125         I915_STATE_WARN(cur_state != state,
1126              "PLL state assertion failure (expected %s, current %s)\n",
1127              state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133         u32 val;
1134         bool cur_state;
1135
1136         mutex_lock(&dev_priv->sb_lock);
1137         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138         mutex_unlock(&dev_priv->sb_lock);
1139
1140         cur_state = val & DSI_PLL_VCO_EN;
1141         I915_STATE_WARN(cur_state != state,
1142              "DSI PLL state assertion failure (expected %s, current %s)\n",
1143              state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153         if (crtc->config->shared_dpll < 0)
1154                 return NULL;
1155
1156         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161                         struct intel_shared_dpll *pll,
1162                         bool state)
1163 {
1164         bool cur_state;
1165         struct intel_dpll_hw_state hw_state;
1166
1167         if (WARN (!pll,
1168                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1169                 return;
1170
1171         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172         I915_STATE_WARN(cur_state != state,
1173              "%s assertion failure (expected %s, current %s)\n",
1174              pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178                           enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184                                                                       pipe);
1185
1186         if (HAS_DDI(dev_priv->dev)) {
1187                 /* DDI does not have a specific FDI_TX register */
1188                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189                 val = I915_READ(reg);
1190                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191         } else {
1192                 reg = FDI_TX_CTL(pipe);
1193                 val = I915_READ(reg);
1194                 cur_state = !!(val & FDI_TX_ENABLE);
1195         }
1196         I915_STATE_WARN(cur_state != state,
1197              "FDI TX state assertion failure (expected %s, current %s)\n",
1198              state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204                           enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209
1210         reg = FDI_RX_CTL(pipe);
1211         val = I915_READ(reg);
1212         cur_state = !!(val & FDI_RX_ENABLE);
1213         I915_STATE_WARN(cur_state != state,
1214              "FDI RX state assertion failure (expected %s, current %s)\n",
1215              state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221                                       enum pipe pipe)
1222 {
1223         int reg;
1224         u32 val;
1225
1226         /* ILK FDI PLL is always enabled */
1227         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228                 return;
1229
1230         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231         if (HAS_DDI(dev_priv->dev))
1232                 return;
1233
1234         reg = FDI_TX_CTL(pipe);
1235         val = I915_READ(reg);
1236         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240                        enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245
1246         reg = FDI_RX_CTL(pipe);
1247         val = I915_READ(reg);
1248         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249         I915_STATE_WARN(cur_state != state,
1250              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251              state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255                            enum pipe pipe)
1256 {
1257         struct drm_device *dev = dev_priv->dev;
1258         int pp_reg;
1259         u32 val;
1260         enum pipe panel_pipe = PIPE_A;
1261         bool locked = true;
1262
1263         if (WARN_ON(HAS_DDI(dev)))
1264                 return;
1265
1266         if (HAS_PCH_SPLIT(dev)) {
1267                 u32 port_sel;
1268
1269                 pp_reg = PCH_PP_CONTROL;
1270                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274                         panel_pipe = PIPE_B;
1275                 /* XXX: else fix for eDP */
1276         } else if (IS_VALLEYVIEW(dev)) {
1277                 /* presumably write lock depends on pipe, not port select */
1278                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279                 panel_pipe = pipe;
1280         } else {
1281                 pp_reg = PP_CONTROL;
1282                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283                         panel_pipe = PIPE_B;
1284         }
1285
1286         val = I915_READ(pp_reg);
1287         if (!(val & PANEL_POWER_ON) ||
1288             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289                 locked = false;
1290
1291         I915_STATE_WARN(panel_pipe == pipe && locked,
1292              "panel assertion failure, pipe %c regs locked\n",
1293              pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297                           enum pipe pipe, bool state)
1298 {
1299         struct drm_device *dev = dev_priv->dev;
1300         bool cur_state;
1301
1302         if (IS_845G(dev) || IS_I865G(dev))
1303                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304         else
1305                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307         I915_STATE_WARN(cur_state != state,
1308              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309              pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315                  enum pipe pipe, bool state)
1316 {
1317         int reg;
1318         u32 val;
1319         bool cur_state;
1320         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321                                                                       pipe);
1322
1323         /* if we need the pipe quirk it must be always on */
1324         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326                 state = true;
1327
1328         if (!intel_display_power_is_enabled(dev_priv,
1329                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330                 cur_state = false;
1331         } else {
1332                 reg = PIPECONF(cpu_transcoder);
1333                 val = I915_READ(reg);
1334                 cur_state = !!(val & PIPECONF_ENABLE);
1335         }
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343                          enum plane plane, bool state)
1344 {
1345         int reg;
1346         u32 val;
1347         bool cur_state;
1348
1349         reg = DSPCNTR(plane);
1350         val = I915_READ(reg);
1351         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352         I915_STATE_WARN(cur_state != state,
1353              "plane %c assertion failure (expected %s, current %s)\n",
1354              plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361                                    enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int reg, i;
1365         u32 val;
1366         int cur_pipe;
1367
1368         /* Primary planes are fixed to pipes on gen4+ */
1369         if (INTEL_INFO(dev)->gen >= 4) {
1370                 reg = DSPCNTR(pipe);
1371                 val = I915_READ(reg);
1372                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373                      "plane %c assertion failure, should be disabled but not\n",
1374                      plane_name(pipe));
1375                 return;
1376         }
1377
1378         /* Need to check both planes against the pipe */
1379         for_each_pipe(dev_priv, i) {
1380                 reg = DSPCNTR(i);
1381                 val = I915_READ(reg);
1382                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383                         DISPPLANE_SEL_PIPE_SHIFT;
1384                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386                      plane_name(i), pipe_name(pipe));
1387         }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391                                     enum pipe pipe)
1392 {
1393         struct drm_device *dev = dev_priv->dev;
1394         int reg, sprite;
1395         u32 val;
1396
1397         if (INTEL_INFO(dev)->gen >= 9) {
1398                 for_each_sprite(dev_priv, pipe, sprite) {
1399                         val = I915_READ(PLANE_CTL(pipe, sprite));
1400                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402                              sprite, pipe_name(pipe));
1403                 }
1404         } else if (IS_VALLEYVIEW(dev)) {
1405                 for_each_sprite(dev_priv, pipe, sprite) {
1406                         reg = SPCNTR(pipe, sprite);
1407                         val = I915_READ(reg);
1408                         I915_STATE_WARN(val & SP_ENABLE,
1409                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite_name(pipe, sprite), pipe_name(pipe));
1411                 }
1412         } else if (INTEL_INFO(dev)->gen >= 7) {
1413                 reg = SPRCTL(pipe);
1414                 val = I915_READ(reg);
1415                 I915_STATE_WARN(val & SPRITE_ENABLE,
1416                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417                      plane_name(pipe), pipe_name(pipe));
1418         } else if (INTEL_INFO(dev)->gen >= 5) {
1419                 reg = DVSCNTR(pipe);
1420                 val = I915_READ(reg);
1421                 I915_STATE_WARN(val & DVS_ENABLE,
1422                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423                      plane_name(pipe), pipe_name(pipe));
1424         }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430                 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435         u32 val;
1436         bool enabled;
1437
1438         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440         val = I915_READ(PCH_DREF_CONTROL);
1441         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442                             DREF_SUPERSPREAD_SOURCE_MASK));
1443         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447                                            enum pipe pipe)
1448 {
1449         int reg;
1450         u32 val;
1451         bool enabled;
1452
1453         reg = PCH_TRANSCONF(pipe);
1454         val = I915_READ(reg);
1455         enabled = !!(val & TRANS_ENABLE);
1456         I915_STATE_WARN(enabled,
1457              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458              pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462                             enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464         if ((val & DP_PORT_EN) == 0)
1465                 return false;
1466
1467         if (HAS_PCH_CPT(dev_priv->dev)) {
1468                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471                         return false;
1472         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483                               enum pipe pipe, u32 val)
1484 {
1485         if ((val & SDVO_ENABLE) == 0)
1486                 return false;
1487
1488         if (HAS_PCH_CPT(dev_priv->dev)) {
1489                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490                         return false;
1491         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493                         return false;
1494         } else {
1495                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496                         return false;
1497         }
1498         return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502                               enum pipe pipe, u32 val)
1503 {
1504         if ((val & LVDS_PORT_EN) == 0)
1505                 return false;
1506
1507         if (HAS_PCH_CPT(dev_priv->dev)) {
1508                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509                         return false;
1510         } else {
1511                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512                         return false;
1513         }
1514         return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518                               enum pipe pipe, u32 val)
1519 {
1520         if ((val & ADPA_DAC_ENABLE) == 0)
1521                 return false;
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533                                    enum pipe pipe, int reg, u32 port_sel)
1534 {
1535         u32 val = I915_READ(reg);
1536         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538              reg, pipe_name(pipe));
1539
1540         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541              && (val & DP_PIPEB_SELECT),
1542              "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546                                      enum pipe pipe, int reg)
1547 {
1548         u32 val = I915_READ(reg);
1549         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551              reg, pipe_name(pipe));
1552
1553         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554              && (val & SDVO_PIPE_B_SELECT),
1555              "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559                                       enum pipe pipe)
1560 {
1561         int reg;
1562         u32 val;
1563
1564         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568         reg = PCH_ADPA;
1569         val = I915_READ(reg);
1570         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571              "PCH VGA enabled on transcoder %c, should be disabled\n",
1572              pipe_name(pipe));
1573
1574         reg = PCH_LVDS;
1575         val = I915_READ(reg);
1576         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578              pipe_name(pipe));
1579
1580         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         if (!IS_VALLEYVIEW(dev))
1590                 return;
1591
1592         /*
1593          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594          * CHV x1 PHY (DP/HDMI D)
1595          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596          */
1597         if (IS_CHERRYVIEW(dev)) {
1598                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600         } else {
1601                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602         }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606                            const struct intel_crtc_state *pipe_config)
1607 {
1608         struct drm_device *dev = crtc->base.dev;
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610         int reg = DPLL(crtc->pipe);
1611         u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613         assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615         /* No really, not for ILK+ */
1616         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618         /* PLL is protected by panel, make sure we can write it */
1619         if (IS_MOBILE(dev_priv->dev))
1620                 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622         I915_WRITE(reg, dpll);
1623         POSTING_READ(reg);
1624         udelay(150);
1625
1626         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630         POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632         /* We do this three times for luck */
1633         I915_WRITE(reg, dpll);
1634         POSTING_READ(reg);
1635         udelay(150); /* wait for warmup */
1636         I915_WRITE(reg, dpll);
1637         POSTING_READ(reg);
1638         udelay(150); /* wait for warmup */
1639         I915_WRITE(reg, dpll);
1640         POSTING_READ(reg);
1641         udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645                            const struct intel_crtc_state *pipe_config)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         int pipe = crtc->pipe;
1650         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651         u32 tmp;
1652
1653         assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657         mutex_lock(&dev_priv->sb_lock);
1658
1659         /* Enable back the 10bit clock to display controller */
1660         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661         tmp |= DPIO_DCLKP_EN;
1662         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664         mutex_unlock(&dev_priv->sb_lock);
1665
1666         /*
1667          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668          */
1669         udelay(1);
1670
1671         /* Enable PLL */
1672         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674         /* Check PLL is locked */
1675         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678         /* not sure when this should be written */
1679         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680         POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685         struct intel_crtc *crtc;
1686         int count = 0;
1687
1688         for_each_intel_crtc(dev, crtc)
1689                 count += crtc->base.state->active &&
1690                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692         return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697         struct drm_device *dev = crtc->base.dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         int reg = DPLL(crtc->pipe);
1700         u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702         assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704         /* No really, not for ILK+ */
1705         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707         /* PLL is protected by panel, make sure we can write it */
1708         if (IS_MOBILE(dev) && !IS_I830(dev))
1709                 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711         /* Enable DVO 2x clock on both PLLs if necessary */
1712         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713                 /*
1714                  * It appears to be important that we don't enable this
1715                  * for the current pipe before otherwise configuring the
1716                  * PLL. No idea how this should be handled if multiple
1717                  * DVO outputs are enabled simultaneosly.
1718                  */
1719                 dpll |= DPLL_DVO_2X_MODE;
1720                 I915_WRITE(DPLL(!crtc->pipe),
1721                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722         }
1723
1724         /* Wait for the clocks to stabilize. */
1725         POSTING_READ(reg);
1726         udelay(150);
1727
1728         if (INTEL_INFO(dev)->gen >= 4) {
1729                 I915_WRITE(DPLL_MD(crtc->pipe),
1730                            crtc->config->dpll_hw_state.dpll_md);
1731         } else {
1732                 /* The pixel multiplier can only be updated once the
1733                  * DPLL is enabled and the clocks are stable.
1734                  *
1735                  * So write it again.
1736                  */
1737                 I915_WRITE(reg, dpll);
1738         }
1739
1740         /* We do this three times for luck */
1741         I915_WRITE(reg, dpll);
1742         POSTING_READ(reg);
1743         udelay(150); /* wait for warmup */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753  * i9xx_disable_pll - disable a PLL
1754  * @dev_priv: i915 private structure
1755  * @pipe: pipe PLL to disable
1756  *
1757  * Disable the PLL for @pipe, making sure the pipe is off first.
1758  *
1759  * Note!  This is for pre-ILK only.
1760  */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763         struct drm_device *dev = crtc->base.dev;
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         enum pipe pipe = crtc->pipe;
1766
1767         /* Disable DVO 2x clock on both PLLs if necessary */
1768         if (IS_I830(dev) &&
1769             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770             !intel_num_dvo_pipes(dev)) {
1771                 I915_WRITE(DPLL(PIPE_B),
1772                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773                 I915_WRITE(DPLL(PIPE_A),
1774                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775         }
1776
1777         /* Don't disable pipe or pipe PLLs if needed */
1778         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780                 return;
1781
1782         /* Make sure the pipe isn't still relying on us */
1783         assert_pipe_disabled(dev_priv, pipe);
1784
1785         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786         POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791         u32 val;
1792
1793         /* Make sure the pipe isn't still relying on us */
1794         assert_pipe_disabled(dev_priv, pipe);
1795
1796         /*
1797          * Leave integrated clock source and reference clock enabled for pipe B.
1798          * The latter is needed for VGA hotplug / manual detection.
1799          */
1800         val = DPLL_VGA_MODE_DIS;
1801         if (pipe == PIPE_B)
1802                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803         I915_WRITE(DPLL(pipe), val);
1804         POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811         u32 val;
1812
1813         /* Make sure the pipe isn't still relying on us */
1814         assert_pipe_disabled(dev_priv, pipe);
1815
1816         /* Set PLL en = 0 */
1817         val = DPLL_SSC_REF_CLK_CHV |
1818                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819         if (pipe != PIPE_A)
1820                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821         I915_WRITE(DPLL(pipe), val);
1822         POSTING_READ(DPLL(pipe));
1823
1824         mutex_lock(&dev_priv->sb_lock);
1825
1826         /* Disable 10bit clock to display controller */
1827         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828         val &= ~DPIO_DCLKP_EN;
1829         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831         /* disable left/right clock distribution */
1832         if (pipe != PIPE_B) {
1833                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836         } else {
1837                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840         }
1841
1842         mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846                          struct intel_digital_port *dport,
1847                          unsigned int expected_mask)
1848 {
1849         u32 port_mask;
1850         int dpll_reg;
1851
1852         switch (dport->port) {
1853         case PORT_B:
1854                 port_mask = DPLL_PORTB_READY_MASK;
1855                 dpll_reg = DPLL(0);
1856                 break;
1857         case PORT_C:
1858                 port_mask = DPLL_PORTC_READY_MASK;
1859                 dpll_reg = DPLL(0);
1860                 expected_mask <<= 4;
1861                 break;
1862         case PORT_D:
1863                 port_mask = DPLL_PORTD_READY_MASK;
1864                 dpll_reg = DPIO_PHY_STATUS;
1865                 break;
1866         default:
1867                 BUG();
1868         }
1869
1870         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->base.dev;
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881         if (WARN_ON(pll == NULL))
1882                 return;
1883
1884         WARN_ON(!pll->config.crtc_mask);
1885         if (pll->active == 0) {
1886                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887                 WARN_ON(pll->on);
1888                 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890                 pll->mode_set(dev_priv, pll);
1891         }
1892 }
1893
1894 /**
1895  * intel_enable_shared_dpll - enable PCH PLL
1896  * @dev_priv: i915 private structure
1897  * @pipe: pipe PLL to enable
1898  *
1899  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900  * drives the transcoder clock.
1901  */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904         struct drm_device *dev = crtc->base.dev;
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908         if (WARN_ON(pll == NULL))
1909                 return;
1910
1911         if (WARN_ON(pll->config.crtc_mask == 0))
1912                 return;
1913
1914         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915                       pll->name, pll->active, pll->on,
1916                       crtc->base.base.id);
1917
1918         if (pll->active++) {
1919                 WARN_ON(!pll->on);
1920                 assert_shared_dpll_enabled(dev_priv, pll);
1921                 return;
1922         }
1923         WARN_ON(pll->on);
1924
1925         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928         pll->enable(dev_priv, pll);
1929         pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934         struct drm_device *dev = crtc->base.dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938         /* PCH only available on ILK+ */
1939         BUG_ON(INTEL_INFO(dev)->gen < 5);
1940         if (pll == NULL)
1941                 return;
1942
1943         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1944                 return;
1945
1946         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1947                       pll->name, pll->active, pll->on,
1948                       crtc->base.base.id);
1949
1950         if (WARN_ON(pll->active == 0)) {
1951                 assert_shared_dpll_disabled(dev_priv, pll);
1952                 return;
1953         }
1954
1955         assert_shared_dpll_enabled(dev_priv, pll);
1956         WARN_ON(!pll->on);
1957         if (--pll->active)
1958                 return;
1959
1960         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1961         pll->disable(dev_priv, pll);
1962         pll->on = false;
1963
1964         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1965 }
1966
1967 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1968                                            enum pipe pipe)
1969 {
1970         struct drm_device *dev = dev_priv->dev;
1971         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1973         uint32_t reg, val, pipeconf_val;
1974
1975         /* PCH only available on ILK+ */
1976         BUG_ON(!HAS_PCH_SPLIT(dev));
1977
1978         /* Make sure PCH DPLL is enabled */
1979         assert_shared_dpll_enabled(dev_priv,
1980                                    intel_crtc_to_shared_dpll(intel_crtc));
1981
1982         /* FDI must be feeding us bits for PCH ports */
1983         assert_fdi_tx_enabled(dev_priv, pipe);
1984         assert_fdi_rx_enabled(dev_priv, pipe);
1985
1986         if (HAS_PCH_CPT(dev)) {
1987                 /* Workaround: Set the timing override bit before enabling the
1988                  * pch transcoder. */
1989                 reg = TRANS_CHICKEN2(pipe);
1990                 val = I915_READ(reg);
1991                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1992                 I915_WRITE(reg, val);
1993         }
1994
1995         reg = PCH_TRANSCONF(pipe);
1996         val = I915_READ(reg);
1997         pipeconf_val = I915_READ(PIPECONF(pipe));
1998
1999         if (HAS_PCH_IBX(dev_priv->dev)) {
2000                 /*
2001                  * Make the BPC in transcoder be consistent with
2002                  * that in pipeconf reg. For HDMI we must use 8bpc
2003                  * here for both 8bpc and 12bpc.
2004                  */
2005                 val &= ~PIPECONF_BPC_MASK;
2006                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2007                         val |= PIPECONF_8BPC;
2008                 else
2009                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2010         }
2011
2012         val &= ~TRANS_INTERLACE_MASK;
2013         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2014                 if (HAS_PCH_IBX(dev_priv->dev) &&
2015                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2016                         val |= TRANS_LEGACY_INTERLACED_ILK;
2017                 else
2018                         val |= TRANS_INTERLACED;
2019         else
2020                 val |= TRANS_PROGRESSIVE;
2021
2022         I915_WRITE(reg, val | TRANS_ENABLE);
2023         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2024                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2025 }
2026
2027 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2028                                       enum transcoder cpu_transcoder)
2029 {
2030         u32 val, pipeconf_val;
2031
2032         /* PCH only available on ILK+ */
2033         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2034
2035         /* FDI must be feeding us bits for PCH ports */
2036         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2037         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2038
2039         /* Workaround: set timing override bit. */
2040         val = I915_READ(_TRANSA_CHICKEN2);
2041         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2042         I915_WRITE(_TRANSA_CHICKEN2, val);
2043
2044         val = TRANS_ENABLE;
2045         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2046
2047         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2048             PIPECONF_INTERLACED_ILK)
2049                 val |= TRANS_INTERLACED;
2050         else
2051                 val |= TRANS_PROGRESSIVE;
2052
2053         I915_WRITE(LPT_TRANSCONF, val);
2054         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2055                 DRM_ERROR("Failed to enable PCH transcoder\n");
2056 }
2057
2058 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2059                                             enum pipe pipe)
2060 {
2061         struct drm_device *dev = dev_priv->dev;
2062         uint32_t reg, val;
2063
2064         /* FDI relies on the transcoder */
2065         assert_fdi_tx_disabled(dev_priv, pipe);
2066         assert_fdi_rx_disabled(dev_priv, pipe);
2067
2068         /* Ports must be off as well */
2069         assert_pch_ports_disabled(dev_priv, pipe);
2070
2071         reg = PCH_TRANSCONF(pipe);
2072         val = I915_READ(reg);
2073         val &= ~TRANS_ENABLE;
2074         I915_WRITE(reg, val);
2075         /* wait for PCH transcoder off, transcoder state */
2076         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2077                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2078
2079         if (!HAS_PCH_IBX(dev)) {
2080                 /* Workaround: Clear the timing override chicken bit again. */
2081                 reg = TRANS_CHICKEN2(pipe);
2082                 val = I915_READ(reg);
2083                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2084                 I915_WRITE(reg, val);
2085         }
2086 }
2087
2088 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2089 {
2090         u32 val;
2091
2092         val = I915_READ(LPT_TRANSCONF);
2093         val &= ~TRANS_ENABLE;
2094         I915_WRITE(LPT_TRANSCONF, val);
2095         /* wait for PCH transcoder off, transcoder state */
2096         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2097                 DRM_ERROR("Failed to disable PCH transcoder\n");
2098
2099         /* Workaround: clear timing override bit. */
2100         val = I915_READ(_TRANSA_CHICKEN2);
2101         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2102         I915_WRITE(_TRANSA_CHICKEN2, val);
2103 }
2104
2105 /**
2106  * intel_enable_pipe - enable a pipe, asserting requirements
2107  * @crtc: crtc responsible for the pipe
2108  *
2109  * Enable @crtc's pipe, making sure that various hardware specific requirements
2110  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2111  */
2112 static void intel_enable_pipe(struct intel_crtc *crtc)
2113 {
2114         struct drm_device *dev = crtc->base.dev;
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116         enum pipe pipe = crtc->pipe;
2117         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2118                                                                       pipe);
2119         enum pipe pch_transcoder;
2120         int reg;
2121         u32 val;
2122
2123         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2124
2125         assert_planes_disabled(dev_priv, pipe);
2126         assert_cursor_disabled(dev_priv, pipe);
2127         assert_sprites_disabled(dev_priv, pipe);
2128
2129         if (HAS_PCH_LPT(dev_priv->dev))
2130                 pch_transcoder = TRANSCODER_A;
2131         else
2132                 pch_transcoder = pipe;
2133
2134         /*
2135          * A pipe without a PLL won't actually be able to drive bits from
2136          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2137          * need the check.
2138          */
2139         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141                         assert_dsi_pll_enabled(dev_priv);
2142                 else
2143                         assert_pll_enabled(dev_priv, pipe);
2144         else {
2145                 if (crtc->config->has_pch_encoder) {
2146                         /* if driving the PCH, we need FDI enabled */
2147                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148                         assert_fdi_tx_pll_enabled(dev_priv,
2149                                                   (enum pipe) cpu_transcoder);
2150                 }
2151                 /* FIXME: assert CPU port conditions for SNB+ */
2152         }
2153
2154         reg = PIPECONF(cpu_transcoder);
2155         val = I915_READ(reg);
2156         if (val & PIPECONF_ENABLE) {
2157                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159                 return;
2160         }
2161
2162         I915_WRITE(reg, val | PIPECONF_ENABLE);
2163         POSTING_READ(reg);
2164 }
2165
2166 /**
2167  * intel_disable_pipe - disable a pipe, asserting requirements
2168  * @crtc: crtc whose pipes is to be disabled
2169  *
2170  * Disable the pipe of @crtc, making sure that various hardware
2171  * specific requirements are met, if applicable, e.g. plane
2172  * disabled, panel fitter off, etc.
2173  *
2174  * Will wait until the pipe has shut down before returning.
2175  */
2176 static void intel_disable_pipe(struct intel_crtc *crtc)
2177 {
2178         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180         enum pipe pipe = crtc->pipe;
2181         int reg;
2182         u32 val;
2183
2184         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2185
2186         /*
2187          * Make sure planes won't keep trying to pump pixels to us,
2188          * or we might hang the display.
2189          */
2190         assert_planes_disabled(dev_priv, pipe);
2191         assert_cursor_disabled(dev_priv, pipe);
2192         assert_sprites_disabled(dev_priv, pipe);
2193
2194         reg = PIPECONF(cpu_transcoder);
2195         val = I915_READ(reg);
2196         if ((val & PIPECONF_ENABLE) == 0)
2197                 return;
2198
2199         /*
2200          * Double wide has implications for planes
2201          * so best keep it disabled when not needed.
2202          */
2203         if (crtc->config->double_wide)
2204                 val &= ~PIPECONF_DOUBLE_WIDE;
2205
2206         /* Don't disable pipe or pipe PLLs if needed */
2207         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2208             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2209                 val &= ~PIPECONF_ENABLE;
2210
2211         I915_WRITE(reg, val);
2212         if ((val & PIPECONF_ENABLE) == 0)
2213                 intel_wait_for_pipe_off(crtc);
2214 }
2215
2216 static bool need_vtd_wa(struct drm_device *dev)
2217 {
2218 #ifdef CONFIG_INTEL_IOMMU
2219         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2220                 return true;
2221 #endif
2222         return false;
2223 }
2224
2225 unsigned int
2226 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2227                   uint64_t fb_format_modifier)
2228 {
2229         unsigned int tile_height;
2230         uint32_t pixel_bytes;
2231
2232         switch (fb_format_modifier) {
2233         case DRM_FORMAT_MOD_NONE:
2234                 tile_height = 1;
2235                 break;
2236         case I915_FORMAT_MOD_X_TILED:
2237                 tile_height = IS_GEN2(dev) ? 16 : 8;
2238                 break;
2239         case I915_FORMAT_MOD_Y_TILED:
2240                 tile_height = 32;
2241                 break;
2242         case I915_FORMAT_MOD_Yf_TILED:
2243                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2244                 switch (pixel_bytes) {
2245                 default:
2246                 case 1:
2247                         tile_height = 64;
2248                         break;
2249                 case 2:
2250                 case 4:
2251                         tile_height = 32;
2252                         break;
2253                 case 8:
2254                         tile_height = 16;
2255                         break;
2256                 case 16:
2257                         WARN_ONCE(1,
2258                                   "128-bit pixels are not supported for display!");
2259                         tile_height = 16;
2260                         break;
2261                 }
2262                 break;
2263         default:
2264                 MISSING_CASE(fb_format_modifier);
2265                 tile_height = 1;
2266                 break;
2267         }
2268
2269         return tile_height;
2270 }
2271
2272 unsigned int
2273 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2274                       uint32_t pixel_format, uint64_t fb_format_modifier)
2275 {
2276         return ALIGN(height, intel_tile_height(dev, pixel_format,
2277                                                fb_format_modifier));
2278 }
2279
2280 static int
2281 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2282                         const struct drm_plane_state *plane_state)
2283 {
2284         struct intel_rotation_info *info = &view->rotation_info;
2285         unsigned int tile_height, tile_pitch;
2286
2287         *view = i915_ggtt_view_normal;
2288
2289         if (!plane_state)
2290                 return 0;
2291
2292         if (!intel_rotation_90_or_270(plane_state->rotation))
2293                 return 0;
2294
2295         *view = i915_ggtt_view_rotated;
2296
2297         info->height = fb->height;
2298         info->pixel_format = fb->pixel_format;
2299         info->pitch = fb->pitches[0];
2300         info->fb_modifier = fb->modifier[0];
2301
2302         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2303                                         fb->modifier[0]);
2304         tile_pitch = PAGE_SIZE / tile_height;
2305         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2306         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2307         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2308
2309         return 0;
2310 }
2311
2312 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2313 {
2314         if (INTEL_INFO(dev_priv)->gen >= 9)
2315                 return 256 * 1024;
2316         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2317                  IS_VALLEYVIEW(dev_priv))
2318                 return 128 * 1024;
2319         else if (INTEL_INFO(dev_priv)->gen >= 4)
2320                 return 4 * 1024;
2321         else
2322                 return 0;
2323 }
2324
2325 int
2326 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327                            struct drm_framebuffer *fb,
2328                            const struct drm_plane_state *plane_state,
2329                            struct intel_engine_cs *pipelined,
2330                            struct drm_i915_gem_request **pipelined_request)
2331 {
2332         struct drm_device *dev = fb->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2335         struct i915_ggtt_view view;
2336         u32 alignment;
2337         int ret;
2338
2339         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2340
2341         switch (fb->modifier[0]) {
2342         case DRM_FORMAT_MOD_NONE:
2343                 alignment = intel_linear_alignment(dev_priv);
2344                 break;
2345         case I915_FORMAT_MOD_X_TILED:
2346                 if (INTEL_INFO(dev)->gen >= 9)
2347                         alignment = 256 * 1024;
2348                 else {
2349                         /* pin() will align the object as required by fence */
2350                         alignment = 0;
2351                 }
2352                 break;
2353         case I915_FORMAT_MOD_Y_TILED:
2354         case I915_FORMAT_MOD_Yf_TILED:
2355                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2356                           "Y tiling bo slipped through, driver bug!\n"))
2357                         return -EINVAL;
2358                 alignment = 1 * 1024 * 1024;
2359                 break;
2360         default:
2361                 MISSING_CASE(fb->modifier[0]);
2362                 return -EINVAL;
2363         }
2364
2365         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2366         if (ret)
2367                 return ret;
2368
2369         /* Note that the w/a also requires 64 PTE of padding following the
2370          * bo. We currently fill all unused PTE with the shadow page and so
2371          * we should always have valid PTE following the scanout preventing
2372          * the VT-d warning.
2373          */
2374         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2375                 alignment = 256 * 1024;
2376
2377         /*
2378          * Global gtt pte registers are special registers which actually forward
2379          * writes to a chunk of system memory. Which means that there is no risk
2380          * that the register values disappear as soon as we call
2381          * intel_runtime_pm_put(), so it is correct to wrap only the
2382          * pin/unpin/fence and not more.
2383          */
2384         intel_runtime_pm_get(dev_priv);
2385
2386         dev_priv->mm.interruptible = false;
2387         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2388                                                    pipelined_request, &view);
2389         if (ret)
2390                 goto err_interruptible;
2391
2392         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393          * fence, whereas 965+ only requires a fence if using
2394          * framebuffer compression.  For simplicity, we always install
2395          * a fence as the cost is not that onerous.
2396          */
2397         ret = i915_gem_object_get_fence(obj);
2398         if (ret)
2399                 goto err_unpin;
2400
2401         i915_gem_object_pin_fence(obj);
2402
2403         dev_priv->mm.interruptible = true;
2404         intel_runtime_pm_put(dev_priv);
2405         return 0;
2406
2407 err_unpin:
2408         i915_gem_object_unpin_from_display_plane(obj, &view);
2409 err_interruptible:
2410         dev_priv->mm.interruptible = true;
2411         intel_runtime_pm_put(dev_priv);
2412         return ret;
2413 }
2414
2415 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2416                                const struct drm_plane_state *plane_state)
2417 {
2418         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2419         struct i915_ggtt_view view;
2420         int ret;
2421
2422         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2423
2424         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2425         WARN_ONCE(ret, "Couldn't get view from plane state!");
2426
2427         i915_gem_object_unpin_fence(obj);
2428         i915_gem_object_unpin_from_display_plane(obj, &view);
2429 }
2430
2431 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2432  * is assumed to be a power-of-two. */
2433 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2434                                              int *x, int *y,
2435                                              unsigned int tiling_mode,
2436                                              unsigned int cpp,
2437                                              unsigned int pitch)
2438 {
2439         if (tiling_mode != I915_TILING_NONE) {
2440                 unsigned int tile_rows, tiles;
2441
2442                 tile_rows = *y / 8;
2443                 *y %= 8;
2444
2445                 tiles = *x / (512/cpp);
2446                 *x %= 512/cpp;
2447
2448                 return tile_rows * pitch * 8 + tiles * 4096;
2449         } else {
2450                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2451                 unsigned int offset;
2452
2453                 offset = *y * pitch + *x * cpp;
2454                 *y = (offset & alignment) / pitch;
2455                 *x = ((offset & alignment) - *y * pitch) / cpp;
2456                 return offset & ~alignment;
2457         }
2458 }
2459
2460 static int i9xx_format_to_fourcc(int format)
2461 {
2462         switch (format) {
2463         case DISPPLANE_8BPP:
2464                 return DRM_FORMAT_C8;
2465         case DISPPLANE_BGRX555:
2466                 return DRM_FORMAT_XRGB1555;
2467         case DISPPLANE_BGRX565:
2468                 return DRM_FORMAT_RGB565;
2469         default:
2470         case DISPPLANE_BGRX888:
2471                 return DRM_FORMAT_XRGB8888;
2472         case DISPPLANE_RGBX888:
2473                 return DRM_FORMAT_XBGR8888;
2474         case DISPPLANE_BGRX101010:
2475                 return DRM_FORMAT_XRGB2101010;
2476         case DISPPLANE_RGBX101010:
2477                 return DRM_FORMAT_XBGR2101010;
2478         }
2479 }
2480
2481 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2482 {
2483         switch (format) {
2484         case PLANE_CTL_FORMAT_RGB_565:
2485                 return DRM_FORMAT_RGB565;
2486         default:
2487         case PLANE_CTL_FORMAT_XRGB_8888:
2488                 if (rgb_order) {
2489                         if (alpha)
2490                                 return DRM_FORMAT_ABGR8888;
2491                         else
2492                                 return DRM_FORMAT_XBGR8888;
2493                 } else {
2494                         if (alpha)
2495                                 return DRM_FORMAT_ARGB8888;
2496                         else
2497                                 return DRM_FORMAT_XRGB8888;
2498                 }
2499         case PLANE_CTL_FORMAT_XRGB_2101010:
2500                 if (rgb_order)
2501                         return DRM_FORMAT_XBGR2101010;
2502                 else
2503                         return DRM_FORMAT_XRGB2101010;
2504         }
2505 }
2506
2507 static bool
2508 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2509                               struct intel_initial_plane_config *plane_config)
2510 {
2511         struct drm_device *dev = crtc->base.dev;
2512         struct drm_i915_gem_object *obj = NULL;
2513         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2514         struct drm_framebuffer *fb = &plane_config->fb->base;
2515         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2516         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2517                                     PAGE_SIZE);
2518
2519         size_aligned -= base_aligned;
2520
2521         if (plane_config->size == 0)
2522                 return false;
2523
2524         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2525                                                              base_aligned,
2526                                                              base_aligned,
2527                                                              size_aligned);
2528         if (!obj)
2529                 return false;
2530
2531         obj->tiling_mode = plane_config->tiling;
2532         if (obj->tiling_mode == I915_TILING_X)
2533                 obj->stride = fb->pitches[0];
2534
2535         mode_cmd.pixel_format = fb->pixel_format;
2536         mode_cmd.width = fb->width;
2537         mode_cmd.height = fb->height;
2538         mode_cmd.pitches[0] = fb->pitches[0];
2539         mode_cmd.modifier[0] = fb->modifier[0];
2540         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2541
2542         mutex_lock(&dev->struct_mutex);
2543         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2544                                    &mode_cmd, obj)) {
2545                 DRM_DEBUG_KMS("intel fb init failed\n");
2546                 goto out_unref_obj;
2547         }
2548         mutex_unlock(&dev->struct_mutex);
2549
2550         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2551         return true;
2552
2553 out_unref_obj:
2554         drm_gem_object_unreference(&obj->base);
2555         mutex_unlock(&dev->struct_mutex);
2556         return false;
2557 }
2558
2559 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2560 static void
2561 update_state_fb(struct drm_plane *plane)
2562 {
2563         if (plane->fb == plane->state->fb)
2564                 return;
2565
2566         if (plane->state->fb)
2567                 drm_framebuffer_unreference(plane->state->fb);
2568         plane->state->fb = plane->fb;
2569         if (plane->state->fb)
2570                 drm_framebuffer_reference(plane->state->fb);
2571 }
2572
2573 static void
2574 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2575                              struct intel_initial_plane_config *plane_config)
2576 {
2577         struct drm_device *dev = intel_crtc->base.dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct drm_crtc *c;
2580         struct intel_crtc *i;
2581         struct drm_i915_gem_object *obj;
2582         struct drm_plane *primary = intel_crtc->base.primary;
2583         struct drm_plane_state *plane_state = primary->state;
2584         struct drm_framebuffer *fb;
2585
2586         if (!plane_config->fb)
2587                 return;
2588
2589         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2590                 fb = &plane_config->fb->base;
2591                 goto valid_fb;
2592         }
2593
2594         kfree(plane_config->fb);
2595
2596         /*
2597          * Failed to alloc the obj, check to see if we should share
2598          * an fb with another CRTC instead
2599          */
2600         for_each_crtc(dev, c) {
2601                 i = to_intel_crtc(c);
2602
2603                 if (c == &intel_crtc->base)
2604                         continue;
2605
2606                 if (!i->active)
2607                         continue;
2608
2609                 fb = c->primary->fb;
2610                 if (!fb)
2611                         continue;
2612
2613                 obj = intel_fb_obj(fb);
2614                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2615                         drm_framebuffer_reference(fb);
2616                         goto valid_fb;
2617                 }
2618         }
2619
2620         return;
2621
2622 valid_fb:
2623         plane_state->src_x = plane_state->src_y = 0;
2624         plane_state->src_w = fb->width << 16;
2625         plane_state->src_h = fb->height << 16;
2626
2627         plane_state->crtc_x = plane_state->src_y = 0;
2628         plane_state->crtc_w = fb->width;
2629         plane_state->crtc_h = fb->height;
2630
2631         obj = intel_fb_obj(fb);
2632         if (obj->tiling_mode != I915_TILING_NONE)
2633                 dev_priv->preserve_bios_swizzle = true;
2634
2635         drm_framebuffer_reference(fb);
2636         primary->fb = primary->state->fb = fb;
2637         primary->crtc = primary->state->crtc = &intel_crtc->base;
2638         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2639         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2640 }
2641
2642 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2643                                       struct drm_framebuffer *fb,
2644                                       int x, int y)
2645 {
2646         struct drm_device *dev = crtc->dev;
2647         struct drm_i915_private *dev_priv = dev->dev_private;
2648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2649         struct drm_plane *primary = crtc->primary;
2650         bool visible = to_intel_plane_state(primary->state)->visible;
2651         struct drm_i915_gem_object *obj;
2652         int plane = intel_crtc->plane;
2653         unsigned long linear_offset;
2654         u32 dspcntr;
2655         u32 reg = DSPCNTR(plane);
2656         int pixel_size;
2657
2658         if (!visible || !fb) {
2659                 I915_WRITE(reg, 0);
2660                 if (INTEL_INFO(dev)->gen >= 4)
2661                         I915_WRITE(DSPSURF(plane), 0);
2662                 else
2663                         I915_WRITE(DSPADDR(plane), 0);
2664                 POSTING_READ(reg);
2665                 return;
2666         }
2667
2668         obj = intel_fb_obj(fb);
2669         if (WARN_ON(obj == NULL))
2670                 return;
2671
2672         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2673
2674         dspcntr = DISPPLANE_GAMMA_ENABLE;
2675
2676         dspcntr |= DISPLAY_PLANE_ENABLE;
2677
2678         if (INTEL_INFO(dev)->gen < 4) {
2679                 if (intel_crtc->pipe == PIPE_B)
2680                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2681
2682                 /* pipesrc and dspsize control the size that is scaled from,
2683                  * which should always be the user's requested size.
2684                  */
2685                 I915_WRITE(DSPSIZE(plane),
2686                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2687                            (intel_crtc->config->pipe_src_w - 1));
2688                 I915_WRITE(DSPPOS(plane), 0);
2689         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2690                 I915_WRITE(PRIMSIZE(plane),
2691                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2692                            (intel_crtc->config->pipe_src_w - 1));
2693                 I915_WRITE(PRIMPOS(plane), 0);
2694                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2695         }
2696
2697         switch (fb->pixel_format) {
2698         case DRM_FORMAT_C8:
2699                 dspcntr |= DISPPLANE_8BPP;
2700                 break;
2701         case DRM_FORMAT_XRGB1555:
2702                 dspcntr |= DISPPLANE_BGRX555;
2703                 break;
2704         case DRM_FORMAT_RGB565:
2705                 dspcntr |= DISPPLANE_BGRX565;
2706                 break;
2707         case DRM_FORMAT_XRGB8888:
2708                 dspcntr |= DISPPLANE_BGRX888;
2709                 break;
2710         case DRM_FORMAT_XBGR8888:
2711                 dspcntr |= DISPPLANE_RGBX888;
2712                 break;
2713         case DRM_FORMAT_XRGB2101010:
2714                 dspcntr |= DISPPLANE_BGRX101010;
2715                 break;
2716         case DRM_FORMAT_XBGR2101010:
2717                 dspcntr |= DISPPLANE_RGBX101010;
2718                 break;
2719         default:
2720                 BUG();
2721         }
2722
2723         if (INTEL_INFO(dev)->gen >= 4 &&
2724             obj->tiling_mode != I915_TILING_NONE)
2725                 dspcntr |= DISPPLANE_TILED;
2726
2727         if (IS_G4X(dev))
2728                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2729
2730         linear_offset = y * fb->pitches[0] + x * pixel_size;
2731
2732         if (INTEL_INFO(dev)->gen >= 4) {
2733                 intel_crtc->dspaddr_offset =
2734                         intel_gen4_compute_page_offset(dev_priv,
2735                                                        &x, &y, obj->tiling_mode,
2736                                                        pixel_size,
2737                                                        fb->pitches[0]);
2738                 linear_offset -= intel_crtc->dspaddr_offset;
2739         } else {
2740                 intel_crtc->dspaddr_offset = linear_offset;
2741         }
2742
2743         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2744                 dspcntr |= DISPPLANE_ROTATE_180;
2745
2746                 x += (intel_crtc->config->pipe_src_w - 1);
2747                 y += (intel_crtc->config->pipe_src_h - 1);
2748
2749                 /* Finding the last pixel of the last line of the display
2750                 data and adding to linear_offset*/
2751                 linear_offset +=
2752                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2753                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2754         }
2755
2756         I915_WRITE(reg, dspcntr);
2757
2758         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2759         if (INTEL_INFO(dev)->gen >= 4) {
2760                 I915_WRITE(DSPSURF(plane),
2761                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2762                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2763                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2764         } else
2765                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2766         POSTING_READ(reg);
2767 }
2768
2769 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2770                                           struct drm_framebuffer *fb,
2771                                           int x, int y)
2772 {
2773         struct drm_device *dev = crtc->dev;
2774         struct drm_i915_private *dev_priv = dev->dev_private;
2775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2776         struct drm_plane *primary = crtc->primary;
2777         bool visible = to_intel_plane_state(primary->state)->visible;
2778         struct drm_i915_gem_object *obj;
2779         int plane = intel_crtc->plane;
2780         unsigned long linear_offset;
2781         u32 dspcntr;
2782         u32 reg = DSPCNTR(plane);
2783         int pixel_size;
2784
2785         if (!visible || !fb) {
2786                 I915_WRITE(reg, 0);
2787                 I915_WRITE(DSPSURF(plane), 0);
2788                 POSTING_READ(reg);
2789                 return;
2790         }
2791
2792         obj = intel_fb_obj(fb);
2793         if (WARN_ON(obj == NULL))
2794                 return;
2795
2796         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2797
2798         dspcntr = DISPPLANE_GAMMA_ENABLE;
2799
2800         dspcntr |= DISPLAY_PLANE_ENABLE;
2801
2802         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2803                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2804
2805         switch (fb->pixel_format) {
2806         case DRM_FORMAT_C8:
2807                 dspcntr |= DISPPLANE_8BPP;
2808                 break;
2809         case DRM_FORMAT_RGB565:
2810                 dspcntr |= DISPPLANE_BGRX565;
2811                 break;
2812         case DRM_FORMAT_XRGB8888:
2813                 dspcntr |= DISPPLANE_BGRX888;
2814                 break;
2815         case DRM_FORMAT_XBGR8888:
2816                 dspcntr |= DISPPLANE_RGBX888;
2817                 break;
2818         case DRM_FORMAT_XRGB2101010:
2819                 dspcntr |= DISPPLANE_BGRX101010;
2820                 break;
2821         case DRM_FORMAT_XBGR2101010:
2822                 dspcntr |= DISPPLANE_RGBX101010;
2823                 break;
2824         default:
2825                 BUG();
2826         }
2827
2828         if (obj->tiling_mode != I915_TILING_NONE)
2829                 dspcntr |= DISPPLANE_TILED;
2830
2831         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2832                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2833
2834         linear_offset = y * fb->pitches[0] + x * pixel_size;
2835         intel_crtc->dspaddr_offset =
2836                 intel_gen4_compute_page_offset(dev_priv,
2837                                                &x, &y, obj->tiling_mode,
2838                                                pixel_size,
2839                                                fb->pitches[0]);
2840         linear_offset -= intel_crtc->dspaddr_offset;
2841         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2842                 dspcntr |= DISPPLANE_ROTATE_180;
2843
2844                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2845                         x += (intel_crtc->config->pipe_src_w - 1);
2846                         y += (intel_crtc->config->pipe_src_h - 1);
2847
2848                         /* Finding the last pixel of the last line of the display
2849                         data and adding to linear_offset*/
2850                         linear_offset +=
2851                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2852                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2853                 }
2854         }
2855
2856         I915_WRITE(reg, dspcntr);
2857
2858         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2859         I915_WRITE(DSPSURF(plane),
2860                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2861         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2862                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2863         } else {
2864                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2865                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2866         }
2867         POSTING_READ(reg);
2868 }
2869
2870 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2871                               uint32_t pixel_format)
2872 {
2873         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2874
2875         /*
2876          * The stride is either expressed as a multiple of 64 bytes
2877          * chunks for linear buffers or in number of tiles for tiled
2878          * buffers.
2879          */
2880         switch (fb_modifier) {
2881         case DRM_FORMAT_MOD_NONE:
2882                 return 64;
2883         case I915_FORMAT_MOD_X_TILED:
2884                 if (INTEL_INFO(dev)->gen == 2)
2885                         return 128;
2886                 return 512;
2887         case I915_FORMAT_MOD_Y_TILED:
2888                 /* No need to check for old gens and Y tiling since this is
2889                  * about the display engine and those will be blocked before
2890                  * we get here.
2891                  */
2892                 return 128;
2893         case I915_FORMAT_MOD_Yf_TILED:
2894                 if (bits_per_pixel == 8)
2895                         return 64;
2896                 else
2897                         return 128;
2898         default:
2899                 MISSING_CASE(fb_modifier);
2900                 return 64;
2901         }
2902 }
2903
2904 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2905                                      struct drm_i915_gem_object *obj)
2906 {
2907         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2908
2909         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2910                 view = &i915_ggtt_view_rotated;
2911
2912         return i915_gem_obj_ggtt_offset_view(obj, view);
2913 }
2914
2915 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2916 {
2917         struct drm_device *dev = intel_crtc->base.dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919
2920         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2921         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2922         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2923         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2924                 intel_crtc->base.base.id, intel_crtc->pipe, id);
2925 }
2926
2927 /*
2928  * This function detaches (aka. unbinds) unused scalers in hardware
2929  */
2930 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2931 {
2932         struct intel_crtc_scaler_state *scaler_state;
2933         int i;
2934
2935         scaler_state = &intel_crtc->config->scaler_state;
2936
2937         /* loop through and disable scalers that aren't in use */
2938         for (i = 0; i < intel_crtc->num_scalers; i++) {
2939                 if (!scaler_state->scalers[i].in_use)
2940                         skl_detach_scaler(intel_crtc, i);
2941         }
2942 }
2943
2944 u32 skl_plane_ctl_format(uint32_t pixel_format)
2945 {
2946         switch (pixel_format) {
2947         case DRM_FORMAT_C8:
2948                 return PLANE_CTL_FORMAT_INDEXED;
2949         case DRM_FORMAT_RGB565:
2950                 return PLANE_CTL_FORMAT_RGB_565;
2951         case DRM_FORMAT_XBGR8888:
2952                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2953         case DRM_FORMAT_XRGB8888:
2954                 return PLANE_CTL_FORMAT_XRGB_8888;
2955         /*
2956          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2957          * to be already pre-multiplied. We need to add a knob (or a different
2958          * DRM_FORMAT) for user-space to configure that.
2959          */
2960         case DRM_FORMAT_ABGR8888:
2961                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2962                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2963         case DRM_FORMAT_ARGB8888:
2964                 return PLANE_CTL_FORMAT_XRGB_8888 |
2965                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2966         case DRM_FORMAT_XRGB2101010:
2967                 return PLANE_CTL_FORMAT_XRGB_2101010;
2968         case DRM_FORMAT_XBGR2101010:
2969                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2970         case DRM_FORMAT_YUYV:
2971                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2972         case DRM_FORMAT_YVYU:
2973                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2974         case DRM_FORMAT_UYVY:
2975                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2976         case DRM_FORMAT_VYUY:
2977                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2978         default:
2979                 MISSING_CASE(pixel_format);
2980         }
2981
2982         return 0;
2983 }
2984
2985 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2986 {
2987         switch (fb_modifier) {
2988         case DRM_FORMAT_MOD_NONE:
2989                 break;
2990         case I915_FORMAT_MOD_X_TILED:
2991                 return PLANE_CTL_TILED_X;
2992         case I915_FORMAT_MOD_Y_TILED:
2993                 return PLANE_CTL_TILED_Y;
2994         case I915_FORMAT_MOD_Yf_TILED:
2995                 return PLANE_CTL_TILED_YF;
2996         default:
2997                 MISSING_CASE(fb_modifier);
2998         }
2999
3000         return 0;
3001 }
3002
3003 u32 skl_plane_ctl_rotation(unsigned int rotation)
3004 {
3005         switch (rotation) {
3006         case BIT(DRM_ROTATE_0):
3007                 break;
3008         /*
3009          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3010          * while i915 HW rotation is clockwise, thats why this swapping.
3011          */
3012         case BIT(DRM_ROTATE_90):
3013                 return PLANE_CTL_ROTATE_270;
3014         case BIT(DRM_ROTATE_180):
3015                 return PLANE_CTL_ROTATE_180;
3016         case BIT(DRM_ROTATE_270):
3017                 return PLANE_CTL_ROTATE_90;
3018         default:
3019                 MISSING_CASE(rotation);
3020         }
3021
3022         return 0;
3023 }
3024
3025 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3026                                          struct drm_framebuffer *fb,
3027                                          int x, int y)
3028 {
3029         struct drm_device *dev = crtc->dev;
3030         struct drm_i915_private *dev_priv = dev->dev_private;
3031         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3032         struct drm_plane *plane = crtc->primary;
3033         bool visible = to_intel_plane_state(plane->state)->visible;
3034         struct drm_i915_gem_object *obj;
3035         int pipe = intel_crtc->pipe;
3036         u32 plane_ctl, stride_div, stride;
3037         u32 tile_height, plane_offset, plane_size;
3038         unsigned int rotation;
3039         int x_offset, y_offset;
3040         unsigned long surf_addr;
3041         struct intel_crtc_state *crtc_state = intel_crtc->config;
3042         struct intel_plane_state *plane_state;
3043         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3044         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3045         int scaler_id = -1;
3046
3047         plane_state = to_intel_plane_state(plane->state);
3048
3049         if (!visible || !fb) {
3050                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3051                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3052                 POSTING_READ(PLANE_CTL(pipe, 0));
3053                 return;
3054         }
3055
3056         plane_ctl = PLANE_CTL_ENABLE |
3057                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3058                     PLANE_CTL_PIPE_CSC_ENABLE;
3059
3060         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3061         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3062         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3063
3064         rotation = plane->state->rotation;
3065         plane_ctl |= skl_plane_ctl_rotation(rotation);
3066
3067         obj = intel_fb_obj(fb);
3068         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3069                                                fb->pixel_format);
3070         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3071
3072         /*
3073          * FIXME: intel_plane_state->src, dst aren't set when transitional
3074          * update_plane helpers are called from legacy paths.
3075          * Once full atomic crtc is available, below check can be avoided.
3076          */
3077         if (drm_rect_width(&plane_state->src)) {
3078                 scaler_id = plane_state->scaler_id;
3079                 src_x = plane_state->src.x1 >> 16;
3080                 src_y = plane_state->src.y1 >> 16;
3081                 src_w = drm_rect_width(&plane_state->src) >> 16;
3082                 src_h = drm_rect_height(&plane_state->src) >> 16;
3083                 dst_x = plane_state->dst.x1;
3084                 dst_y = plane_state->dst.y1;
3085                 dst_w = drm_rect_width(&plane_state->dst);
3086                 dst_h = drm_rect_height(&plane_state->dst);
3087
3088                 WARN_ON(x != src_x || y != src_y);
3089         } else {
3090                 src_w = intel_crtc->config->pipe_src_w;
3091                 src_h = intel_crtc->config->pipe_src_h;
3092         }
3093
3094         if (intel_rotation_90_or_270(rotation)) {
3095                 /* stride = Surface height in tiles */
3096                 tile_height = intel_tile_height(dev, fb->pixel_format,
3097                                                 fb->modifier[0]);
3098                 stride = DIV_ROUND_UP(fb->height, tile_height);
3099                 x_offset = stride * tile_height - y - src_h;
3100                 y_offset = x;
3101                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3102         } else {
3103                 stride = fb->pitches[0] / stride_div;
3104                 x_offset = x;
3105                 y_offset = y;
3106                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3107         }
3108         plane_offset = y_offset << 16 | x_offset;
3109
3110         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3111         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3112         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3113         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3114
3115         if (scaler_id >= 0) {
3116                 uint32_t ps_ctrl = 0;
3117
3118                 WARN_ON(!dst_w || !dst_h);
3119                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3120                         crtc_state->scaler_state.scalers[scaler_id].mode;
3121                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3122                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3123                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3124                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3125                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3126         } else {
3127                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3128         }
3129
3130         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3131
3132         POSTING_READ(PLANE_SURF(pipe, 0));
3133 }
3134
3135 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3136 static int
3137 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3138                            int x, int y, enum mode_set_atomic state)
3139 {
3140         struct drm_device *dev = crtc->dev;
3141         struct drm_i915_private *dev_priv = dev->dev_private;
3142
3143         if (dev_priv->fbc.disable_fbc)
3144                 dev_priv->fbc.disable_fbc(dev_priv);
3145
3146         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3147
3148         return 0;
3149 }
3150
3151 static void intel_complete_page_flips(struct drm_device *dev)
3152 {
3153         struct drm_crtc *crtc;
3154
3155         for_each_crtc(dev, crtc) {
3156                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157                 enum plane plane = intel_crtc->plane;
3158
3159                 intel_prepare_page_flip(dev, plane);
3160                 intel_finish_page_flip_plane(dev, plane);
3161         }
3162 }
3163
3164 static void intel_update_primary_planes(struct drm_device *dev)
3165 {
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         struct drm_crtc *crtc;
3168
3169         for_each_crtc(dev, crtc) {
3170                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3171
3172                 drm_modeset_lock(&crtc->mutex, NULL);
3173                 /*
3174                  * FIXME: Once we have proper support for primary planes (and
3175                  * disabling them without disabling the entire crtc) allow again
3176                  * a NULL crtc->primary->fb.
3177                  */
3178                 if (intel_crtc->active && crtc->primary->fb)
3179                         dev_priv->display.update_primary_plane(crtc,
3180                                                                crtc->primary->fb,
3181                                                                crtc->x,
3182                                                                crtc->y);
3183                 drm_modeset_unlock(&crtc->mutex);
3184         }
3185 }
3186
3187 void intel_prepare_reset(struct drm_device *dev)
3188 {
3189         /* no reset support for gen2 */
3190         if (IS_GEN2(dev))
3191                 return;
3192
3193         /* reset doesn't touch the display */
3194         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3195                 return;
3196
3197         drm_modeset_lock_all(dev);
3198         /*
3199          * Disabling the crtcs gracefully seems nicer. Also the
3200          * g33 docs say we should at least disable all the planes.
3201          */
3202         intel_display_suspend(dev);
3203 }
3204
3205 void intel_finish_reset(struct drm_device *dev)
3206 {
3207         struct drm_i915_private *dev_priv = to_i915(dev);
3208
3209         /*
3210          * Flips in the rings will be nuked by the reset,
3211          * so complete all pending flips so that user space
3212          * will get its events and not get stuck.
3213          */
3214         intel_complete_page_flips(dev);
3215
3216         /* no reset support for gen2 */
3217         if (IS_GEN2(dev))
3218                 return;
3219
3220         /* reset doesn't touch the display */
3221         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3222                 /*
3223                  * Flips in the rings have been nuked by the reset,
3224                  * so update the base address of all primary
3225                  * planes to the the last fb to make sure we're
3226                  * showing the correct fb after a reset.
3227                  */
3228                 intel_update_primary_planes(dev);
3229                 return;
3230         }
3231
3232         /*
3233          * The display has been reset as well,
3234          * so need a full re-initialization.
3235          */
3236         intel_runtime_pm_disable_interrupts(dev_priv);
3237         intel_runtime_pm_enable_interrupts(dev_priv);
3238
3239         intel_modeset_init_hw(dev);
3240
3241         spin_lock_irq(&dev_priv->irq_lock);
3242         if (dev_priv->display.hpd_irq_setup)
3243                 dev_priv->display.hpd_irq_setup(dev);
3244         spin_unlock_irq(&dev_priv->irq_lock);
3245
3246         intel_display_resume(dev);
3247
3248         intel_hpd_init(dev_priv);
3249
3250         drm_modeset_unlock_all(dev);
3251 }
3252
3253 static void
3254 intel_finish_fb(struct drm_framebuffer *old_fb)
3255 {
3256         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3257         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3258         bool was_interruptible = dev_priv->mm.interruptible;
3259         int ret;
3260
3261         /* Big Hammer, we also need to ensure that any pending
3262          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3263          * current scanout is retired before unpinning the old
3264          * framebuffer. Note that we rely on userspace rendering
3265          * into the buffer attached to the pipe they are waiting
3266          * on. If not, userspace generates a GPU hang with IPEHR
3267          * point to the MI_WAIT_FOR_EVENT.
3268          *
3269          * This should only fail upon a hung GPU, in which case we
3270          * can safely continue.
3271          */
3272         dev_priv->mm.interruptible = false;
3273         ret = i915_gem_object_wait_rendering(obj, true);
3274         dev_priv->mm.interruptible = was_interruptible;
3275
3276         WARN_ON(ret);
3277 }
3278
3279 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3280 {
3281         struct drm_device *dev = crtc->dev;
3282         struct drm_i915_private *dev_priv = dev->dev_private;
3283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284         bool pending;
3285
3286         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3287             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3288                 return false;
3289
3290         spin_lock_irq(&dev->event_lock);
3291         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3292         spin_unlock_irq(&dev->event_lock);
3293
3294         return pending;
3295 }
3296
3297 static void intel_update_pipe_size(struct intel_crtc *crtc)
3298 {
3299         struct drm_device *dev = crtc->base.dev;
3300         struct drm_i915_private *dev_priv = dev->dev_private;
3301         const struct drm_display_mode *adjusted_mode;
3302
3303         if (!i915.fastboot)
3304                 return;
3305
3306         /*
3307          * Update pipe size and adjust fitter if needed: the reason for this is
3308          * that in compute_mode_changes we check the native mode (not the pfit
3309          * mode) to see if we can flip rather than do a full mode set. In the
3310          * fastboot case, we'll flip, but if we don't update the pipesrc and
3311          * pfit state, we'll end up with a big fb scanned out into the wrong
3312          * sized surface.
3313          *
3314          * To fix this properly, we need to hoist the checks up into
3315          * compute_mode_changes (or above), check the actual pfit state and
3316          * whether the platform allows pfit disable with pipe active, and only
3317          * then update the pipesrc and pfit state, even on the flip path.
3318          */
3319
3320         adjusted_mode = &crtc->config->base.adjusted_mode;
3321
3322         I915_WRITE(PIPESRC(crtc->pipe),
3323                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3324                    (adjusted_mode->crtc_vdisplay - 1));
3325         if (!crtc->config->pch_pfit.enabled &&
3326             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3327              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3328                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3329                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3330                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3331         }
3332         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3333         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3334 }
3335
3336 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3337 {
3338         struct drm_device *dev = crtc->dev;
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3341         int pipe = intel_crtc->pipe;
3342         u32 reg, temp;
3343
3344         /* enable normal train */
3345         reg = FDI_TX_CTL(pipe);
3346         temp = I915_READ(reg);
3347         if (IS_IVYBRIDGE(dev)) {
3348                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3349                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3350         } else {
3351                 temp &= ~FDI_LINK_TRAIN_NONE;
3352                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3353         }
3354         I915_WRITE(reg, temp);
3355
3356         reg = FDI_RX_CTL(pipe);
3357         temp = I915_READ(reg);
3358         if (HAS_PCH_CPT(dev)) {
3359                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3360                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3361         } else {
3362                 temp &= ~FDI_LINK_TRAIN_NONE;
3363                 temp |= FDI_LINK_TRAIN_NONE;
3364         }
3365         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3366
3367         /* wait one idle pattern time */
3368         POSTING_READ(reg);
3369         udelay(1000);
3370
3371         /* IVB wants error correction enabled */
3372         if (IS_IVYBRIDGE(dev))
3373                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3374                            FDI_FE_ERRC_ENABLE);
3375 }
3376
3377 /* The FDI link training functions for ILK/Ibexpeak. */
3378 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3379 {
3380         struct drm_device *dev = crtc->dev;
3381         struct drm_i915_private *dev_priv = dev->dev_private;
3382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3383         int pipe = intel_crtc->pipe;
3384         u32 reg, temp, tries;
3385
3386         /* FDI needs bits from pipe first */
3387         assert_pipe_enabled(dev_priv, pipe);
3388
3389         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3390            for train result */
3391         reg = FDI_RX_IMR(pipe);
3392         temp = I915_READ(reg);
3393         temp &= ~FDI_RX_SYMBOL_LOCK;
3394         temp &= ~FDI_RX_BIT_LOCK;
3395         I915_WRITE(reg, temp);
3396         I915_READ(reg);
3397         udelay(150);
3398
3399         /* enable CPU FDI TX and PCH FDI RX */
3400         reg = FDI_TX_CTL(pipe);
3401         temp = I915_READ(reg);
3402         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3403         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3404         temp &= ~FDI_LINK_TRAIN_NONE;
3405         temp |= FDI_LINK_TRAIN_PATTERN_1;
3406         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408         reg = FDI_RX_CTL(pipe);
3409         temp = I915_READ(reg);
3410         temp &= ~FDI_LINK_TRAIN_NONE;
3411         temp |= FDI_LINK_TRAIN_PATTERN_1;
3412         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3413
3414         POSTING_READ(reg);
3415         udelay(150);
3416
3417         /* Ironlake workaround, enable clock pointer after FDI enable*/
3418         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3419         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3420                    FDI_RX_PHASE_SYNC_POINTER_EN);
3421
3422         reg = FDI_RX_IIR(pipe);
3423         for (tries = 0; tries < 5; tries++) {
3424                 temp = I915_READ(reg);
3425                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3426
3427                 if ((temp & FDI_RX_BIT_LOCK)) {
3428                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3429                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3430                         break;
3431                 }
3432         }
3433         if (tries == 5)
3434                 DRM_ERROR("FDI train 1 fail!\n");
3435
3436         /* Train 2 */
3437         reg = FDI_TX_CTL(pipe);
3438         temp = I915_READ(reg);
3439         temp &= ~FDI_LINK_TRAIN_NONE;
3440         temp |= FDI_LINK_TRAIN_PATTERN_2;
3441         I915_WRITE(reg, temp);
3442
3443         reg = FDI_RX_CTL(pipe);
3444         temp = I915_READ(reg);
3445         temp &= ~FDI_LINK_TRAIN_NONE;
3446         temp |= FDI_LINK_TRAIN_PATTERN_2;
3447         I915_WRITE(reg, temp);
3448
3449         POSTING_READ(reg);
3450         udelay(150);
3451
3452         reg = FDI_RX_IIR(pipe);
3453         for (tries = 0; tries < 5; tries++) {
3454                 temp = I915_READ(reg);
3455                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3456
3457                 if (temp & FDI_RX_SYMBOL_LOCK) {
3458                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3459                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3460                         break;
3461                 }
3462         }
3463         if (tries == 5)
3464                 DRM_ERROR("FDI train 2 fail!\n");
3465
3466         DRM_DEBUG_KMS("FDI train done\n");
3467
3468 }
3469
3470 static const int snb_b_fdi_train_param[] = {
3471         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3472         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3473         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3474         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3475 };
3476
3477 /* The FDI link training functions for SNB/Cougarpoint. */
3478 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3479 {
3480         struct drm_device *dev = crtc->dev;
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483         int pipe = intel_crtc->pipe;
3484         u32 reg, temp, i, retry;
3485
3486         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3487            for train result */
3488         reg = FDI_RX_IMR(pipe);
3489         temp = I915_READ(reg);
3490         temp &= ~FDI_RX_SYMBOL_LOCK;
3491         temp &= ~FDI_RX_BIT_LOCK;
3492         I915_WRITE(reg, temp);
3493
3494         POSTING_READ(reg);
3495         udelay(150);
3496
3497         /* enable CPU FDI TX and PCH FDI RX */
3498         reg = FDI_TX_CTL(pipe);
3499         temp = I915_READ(reg);
3500         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3501         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3502         temp &= ~FDI_LINK_TRAIN_NONE;
3503         temp |= FDI_LINK_TRAIN_PATTERN_1;
3504         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3505         /* SNB-B */
3506         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3507         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3508
3509         I915_WRITE(FDI_RX_MISC(pipe),
3510                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3511
3512         reg = FDI_RX_CTL(pipe);
3513         temp = I915_READ(reg);
3514         if (HAS_PCH_CPT(dev)) {
3515                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3516                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3517         } else {
3518                 temp &= ~FDI_LINK_TRAIN_NONE;
3519                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520         }
3521         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3522
3523         POSTING_READ(reg);
3524         udelay(150);
3525
3526         for (i = 0; i < 4; i++) {
3527                 reg = FDI_TX_CTL(pipe);
3528                 temp = I915_READ(reg);
3529                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3530                 temp |= snb_b_fdi_train_param[i];
3531                 I915_WRITE(reg, temp);
3532
3533                 POSTING_READ(reg);
3534                 udelay(500);
3535
3536                 for (retry = 0; retry < 5; retry++) {
3537                         reg = FDI_RX_IIR(pipe);
3538                         temp = I915_READ(reg);
3539                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3540                         if (temp & FDI_RX_BIT_LOCK) {
3541                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3542                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3543                                 break;
3544                         }
3545                         udelay(50);
3546                 }
3547                 if (retry < 5)
3548                         break;
3549         }
3550         if (i == 4)
3551                 DRM_ERROR("FDI train 1 fail!\n");
3552
3553         /* Train 2 */
3554         reg = FDI_TX_CTL(pipe);
3555         temp = I915_READ(reg);
3556         temp &= ~FDI_LINK_TRAIN_NONE;
3557         temp |= FDI_LINK_TRAIN_PATTERN_2;
3558         if (IS_GEN6(dev)) {
3559                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3560                 /* SNB-B */
3561                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3562         }
3563         I915_WRITE(reg, temp);
3564
3565         reg = FDI_RX_CTL(pipe);
3566         temp = I915_READ(reg);
3567         if (HAS_PCH_CPT(dev)) {
3568                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3569                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3570         } else {
3571                 temp &= ~FDI_LINK_TRAIN_NONE;
3572                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573         }
3574         I915_WRITE(reg, temp);
3575
3576         POSTING_READ(reg);
3577         udelay(150);
3578
3579         for (i = 0; i < 4; i++) {
3580                 reg = FDI_TX_CTL(pipe);
3581                 temp = I915_READ(reg);
3582                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3583                 temp |= snb_b_fdi_train_param[i];
3584                 I915_WRITE(reg, temp);
3585
3586                 POSTING_READ(reg);
3587                 udelay(500);
3588
3589                 for (retry = 0; retry < 5; retry++) {
3590                         reg = FDI_RX_IIR(pipe);
3591                         temp = I915_READ(reg);
3592                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3593                         if (temp & FDI_RX_SYMBOL_LOCK) {
3594                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3595                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3596                                 break;
3597                         }
3598                         udelay(50);
3599                 }
3600                 if (retry < 5)
3601                         break;
3602         }
3603         if (i == 4)
3604                 DRM_ERROR("FDI train 2 fail!\n");
3605
3606         DRM_DEBUG_KMS("FDI train done.\n");
3607 }
3608
3609 /* Manual link training for Ivy Bridge A0 parts */
3610 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3611 {
3612         struct drm_device *dev = crtc->dev;
3613         struct drm_i915_private *dev_priv = dev->dev_private;
3614         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3615         int pipe = intel_crtc->pipe;
3616         u32 reg, temp, i, j;
3617
3618         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3619            for train result */
3620         reg = FDI_RX_IMR(pipe);
3621         temp = I915_READ(reg);
3622         temp &= ~FDI_RX_SYMBOL_LOCK;
3623         temp &= ~FDI_RX_BIT_LOCK;
3624         I915_WRITE(reg, temp);
3625
3626         POSTING_READ(reg);
3627         udelay(150);
3628
3629         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3630                       I915_READ(FDI_RX_IIR(pipe)));
3631
3632         /* Try each vswing and preemphasis setting twice before moving on */
3633         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3634                 /* disable first in case we need to retry */
3635                 reg = FDI_TX_CTL(pipe);
3636                 temp = I915_READ(reg);
3637                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3638                 temp &= ~FDI_TX_ENABLE;
3639                 I915_WRITE(reg, temp);
3640
3641                 reg = FDI_RX_CTL(pipe);
3642                 temp = I915_READ(reg);
3643                 temp &= ~FDI_LINK_TRAIN_AUTO;
3644                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3645                 temp &= ~FDI_RX_ENABLE;
3646                 I915_WRITE(reg, temp);
3647
3648                 /* enable CPU FDI TX and PCH FDI RX */
3649                 reg = FDI_TX_CTL(pipe);
3650                 temp = I915_READ(reg);
3651                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3652                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3653                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3654                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3655                 temp |= snb_b_fdi_train_param[j/2];
3656                 temp |= FDI_COMPOSITE_SYNC;
3657                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3658
3659                 I915_WRITE(FDI_RX_MISC(pipe),
3660                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3661
3662                 reg = FDI_RX_CTL(pipe);
3663                 temp = I915_READ(reg);
3664                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3665                 temp |= FDI_COMPOSITE_SYNC;
3666                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3667
3668                 POSTING_READ(reg);
3669                 udelay(1); /* should be 0.5us */
3670
3671                 for (i = 0; i < 4; i++) {
3672                         reg = FDI_RX_IIR(pipe);
3673                         temp = I915_READ(reg);
3674                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3675
3676                         if (temp & FDI_RX_BIT_LOCK ||
3677                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3678                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3679                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3680                                               i);
3681                                 break;
3682                         }
3683                         udelay(1); /* should be 0.5us */
3684                 }
3685                 if (i == 4) {
3686                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3687                         continue;
3688                 }
3689
3690                 /* Train 2 */
3691                 reg = FDI_TX_CTL(pipe);
3692                 temp = I915_READ(reg);
3693                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3694                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3695                 I915_WRITE(reg, temp);
3696
3697                 reg = FDI_RX_CTL(pipe);
3698                 temp = I915_READ(reg);
3699                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3700                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3701                 I915_WRITE(reg, temp);
3702
3703                 POSTING_READ(reg);
3704                 udelay(2); /* should be 1.5us */
3705
3706                 for (i = 0; i < 4; i++) {
3707                         reg = FDI_RX_IIR(pipe);
3708                         temp = I915_READ(reg);
3709                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3710
3711                         if (temp & FDI_RX_SYMBOL_LOCK ||
3712                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3713                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3714                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3715                                               i);
3716                                 goto train_done;
3717                         }
3718                         udelay(2); /* should be 1.5us */
3719                 }
3720                 if (i == 4)
3721                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3722         }
3723
3724 train_done:
3725         DRM_DEBUG_KMS("FDI train done.\n");
3726 }
3727
3728 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3729 {
3730         struct drm_device *dev = intel_crtc->base.dev;
3731         struct drm_i915_private *dev_priv = dev->dev_private;
3732         int pipe = intel_crtc->pipe;
3733         u32 reg, temp;
3734
3735
3736         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3737         reg = FDI_RX_CTL(pipe);
3738         temp = I915_READ(reg);
3739         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3740         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3741         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3742         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3743
3744         POSTING_READ(reg);
3745         udelay(200);
3746
3747         /* Switch from Rawclk to PCDclk */
3748         temp = I915_READ(reg);
3749         I915_WRITE(reg, temp | FDI_PCDCLK);
3750
3751         POSTING_READ(reg);
3752         udelay(200);
3753
3754         /* Enable CPU FDI TX PLL, always on for Ironlake */
3755         reg = FDI_TX_CTL(pipe);
3756         temp = I915_READ(reg);
3757         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3758                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3759
3760                 POSTING_READ(reg);
3761                 udelay(100);
3762         }
3763 }
3764
3765 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3766 {
3767         struct drm_device *dev = intel_crtc->base.dev;
3768         struct drm_i915_private *dev_priv = dev->dev_private;
3769         int pipe = intel_crtc->pipe;
3770         u32 reg, temp;
3771
3772         /* Switch from PCDclk to Rawclk */
3773         reg = FDI_RX_CTL(pipe);
3774         temp = I915_READ(reg);
3775         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3776
3777         /* Disable CPU FDI TX PLL */
3778         reg = FDI_TX_CTL(pipe);
3779         temp = I915_READ(reg);
3780         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3781
3782         POSTING_READ(reg);
3783         udelay(100);
3784
3785         reg = FDI_RX_CTL(pipe);
3786         temp = I915_READ(reg);
3787         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3788
3789         /* Wait for the clocks to turn off. */
3790         POSTING_READ(reg);
3791         udelay(100);
3792 }
3793
3794 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3795 {
3796         struct drm_device *dev = crtc->dev;
3797         struct drm_i915_private *dev_priv = dev->dev_private;
3798         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3799         int pipe = intel_crtc->pipe;
3800         u32 reg, temp;
3801
3802         /* disable CPU FDI tx and PCH FDI rx */
3803         reg = FDI_TX_CTL(pipe);
3804         temp = I915_READ(reg);
3805         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3806         POSTING_READ(reg);
3807
3808         reg = FDI_RX_CTL(pipe);
3809         temp = I915_READ(reg);
3810         temp &= ~(0x7 << 16);
3811         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3812         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3813
3814         POSTING_READ(reg);
3815         udelay(100);
3816
3817         /* Ironlake workaround, disable clock pointer after downing FDI */
3818         if (HAS_PCH_IBX(dev))
3819                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3820
3821         /* still set train pattern 1 */
3822         reg = FDI_TX_CTL(pipe);
3823         temp = I915_READ(reg);
3824         temp &= ~FDI_LINK_TRAIN_NONE;
3825         temp |= FDI_LINK_TRAIN_PATTERN_1;
3826         I915_WRITE(reg, temp);
3827
3828         reg = FDI_RX_CTL(pipe);
3829         temp = I915_READ(reg);
3830         if (HAS_PCH_CPT(dev)) {
3831                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3832                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3833         } else {
3834                 temp &= ~FDI_LINK_TRAIN_NONE;
3835                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3836         }
3837         /* BPC in FDI rx is consistent with that in PIPECONF */
3838         temp &= ~(0x07 << 16);
3839         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3840         I915_WRITE(reg, temp);
3841
3842         POSTING_READ(reg);
3843         udelay(100);
3844 }
3845
3846 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3847 {
3848         struct intel_crtc *crtc;
3849
3850         /* Note that we don't need to be called with mode_config.lock here
3851          * as our list of CRTC objects is static for the lifetime of the
3852          * device and so cannot disappear as we iterate. Similarly, we can
3853          * happily treat the predicates as racy, atomic checks as userspace
3854          * cannot claim and pin a new fb without at least acquring the
3855          * struct_mutex and so serialising with us.
3856          */
3857         for_each_intel_crtc(dev, crtc) {
3858                 if (atomic_read(&crtc->unpin_work_count) == 0)
3859                         continue;
3860
3861                 if (crtc->unpin_work)
3862                         intel_wait_for_vblank(dev, crtc->pipe);
3863
3864                 return true;
3865         }
3866
3867         return false;
3868 }
3869
3870 static void page_flip_completed(struct intel_crtc *intel_crtc)
3871 {
3872         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3873         struct intel_unpin_work *work = intel_crtc->unpin_work;
3874
3875         /* ensure that the unpin work is consistent wrt ->pending. */
3876         smp_rmb();
3877         intel_crtc->unpin_work = NULL;
3878
3879         if (work->event)
3880                 drm_send_vblank_event(intel_crtc->base.dev,
3881                                       intel_crtc->pipe,
3882                                       work->event);
3883
3884         drm_crtc_vblank_put(&intel_crtc->base);
3885
3886         wake_up_all(&dev_priv->pending_flip_queue);
3887         queue_work(dev_priv->wq, &work->work);
3888
3889         trace_i915_flip_complete(intel_crtc->plane,
3890                                  work->pending_flip_obj);
3891 }
3892
3893 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3894 {
3895         struct drm_device *dev = crtc->dev;
3896         struct drm_i915_private *dev_priv = dev->dev_private;
3897
3898         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3899         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3900                                        !intel_crtc_has_pending_flip(crtc),
3901                                        60*HZ) == 0)) {
3902                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3903
3904                 spin_lock_irq(&dev->event_lock);
3905                 if (intel_crtc->unpin_work) {
3906                         WARN_ONCE(1, "Removing stuck page flip\n");
3907                         page_flip_completed(intel_crtc);
3908                 }
3909                 spin_unlock_irq(&dev->event_lock);
3910         }
3911
3912         if (crtc->primary->fb) {
3913                 mutex_lock(&dev->struct_mutex);
3914                 intel_finish_fb(crtc->primary->fb);
3915                 mutex_unlock(&dev->struct_mutex);
3916         }
3917 }
3918
3919 /* Program iCLKIP clock to the desired frequency */
3920 static void lpt_program_iclkip(struct drm_crtc *crtc)
3921 {
3922         struct drm_device *dev = crtc->dev;
3923         struct drm_i915_private *dev_priv = dev->dev_private;
3924         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3925         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3926         u32 temp;
3927
3928         mutex_lock(&dev_priv->sb_lock);
3929
3930         /* It is necessary to ungate the pixclk gate prior to programming
3931          * the divisors, and gate it back when it is done.
3932          */
3933         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3934
3935         /* Disable SSCCTL */
3936         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3937                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3938                                 SBI_SSCCTL_DISABLE,
3939                         SBI_ICLK);
3940
3941         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3942         if (clock == 20000) {
3943                 auxdiv = 1;
3944                 divsel = 0x41;
3945                 phaseinc = 0x20;
3946         } else {
3947                 /* The iCLK virtual clock root frequency is in MHz,
3948                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3949                  * divisors, it is necessary to divide one by another, so we
3950                  * convert the virtual clock precision to KHz here for higher
3951                  * precision.
3952                  */
3953                 u32 iclk_virtual_root_freq = 172800 * 1000;
3954                 u32 iclk_pi_range = 64;
3955                 u32 desired_divisor, msb_divisor_value, pi_value;
3956
3957                 desired_divisor = (iclk_virtual_root_freq / clock);
3958                 msb_divisor_value = desired_divisor / iclk_pi_range;
3959                 pi_value = desired_divisor % iclk_pi_range;
3960
3961                 auxdiv = 0;
3962                 divsel = msb_divisor_value - 2;
3963                 phaseinc = pi_value;
3964         }
3965
3966         /* This should not happen with any sane values */
3967         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3968                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3969         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3970                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3971
3972         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3973                         clock,
3974                         auxdiv,
3975                         divsel,
3976                         phasedir,
3977                         phaseinc);
3978
3979         /* Program SSCDIVINTPHASE6 */
3980         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3981         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3982         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3983         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3984         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3985         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3986         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3987         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3988
3989         /* Program SSCAUXDIV */
3990         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3991         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3992         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3993         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3994
3995         /* Enable modulator and associated divider */
3996         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3997         temp &= ~SBI_SSCCTL_DISABLE;
3998         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3999
4000         /* Wait for initialization time */
4001         udelay(24);
4002
4003         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4004
4005         mutex_unlock(&dev_priv->sb_lock);
4006 }
4007
4008 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4009                                                 enum pipe pch_transcoder)
4010 {
4011         struct drm_device *dev = crtc->base.dev;
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4014
4015         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4016                    I915_READ(HTOTAL(cpu_transcoder)));
4017         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4018                    I915_READ(HBLANK(cpu_transcoder)));
4019         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4020                    I915_READ(HSYNC(cpu_transcoder)));
4021
4022         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4023                    I915_READ(VTOTAL(cpu_transcoder)));
4024         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4025                    I915_READ(VBLANK(cpu_transcoder)));
4026         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4027                    I915_READ(VSYNC(cpu_transcoder)));
4028         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4029                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4030 }
4031
4032 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4033 {
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         uint32_t temp;
4036
4037         temp = I915_READ(SOUTH_CHICKEN1);
4038         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4039                 return;
4040
4041         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4042         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4043
4044         temp &= ~FDI_BC_BIFURCATION_SELECT;
4045         if (enable)
4046                 temp |= FDI_BC_BIFURCATION_SELECT;
4047
4048         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4049         I915_WRITE(SOUTH_CHICKEN1, temp);
4050         POSTING_READ(SOUTH_CHICKEN1);
4051 }
4052
4053 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4054 {
4055         struct drm_device *dev = intel_crtc->base.dev;
4056
4057         switch (intel_crtc->pipe) {
4058         case PIPE_A:
4059                 break;
4060         case PIPE_B:
4061                 if (intel_crtc->config->fdi_lanes > 2)
4062                         cpt_set_fdi_bc_bifurcation(dev, false);
4063                 else
4064                         cpt_set_fdi_bc_bifurcation(dev, true);
4065
4066                 break;
4067         case PIPE_C:
4068                 cpt_set_fdi_bc_bifurcation(dev, true);
4069
4070                 break;
4071         default:
4072                 BUG();
4073         }
4074 }
4075
4076 /*
4077  * Enable PCH resources required for PCH ports:
4078  *   - PCH PLLs
4079  *   - FDI training & RX/TX
4080  *   - update transcoder timings
4081  *   - DP transcoding bits
4082  *   - transcoder
4083  */
4084 static void ironlake_pch_enable(struct drm_crtc *crtc)
4085 {
4086         struct drm_device *dev = crtc->dev;
4087         struct drm_i915_private *dev_priv = dev->dev_private;
4088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089         int pipe = intel_crtc->pipe;
4090         u32 reg, temp;
4091
4092         assert_pch_transcoder_disabled(dev_priv, pipe);
4093
4094         if (IS_IVYBRIDGE(dev))
4095                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4096
4097         /* Write the TU size bits before fdi link training, so that error
4098          * detection works. */
4099         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4100                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4101
4102         /* For PCH output, training FDI link */
4103         dev_priv->display.fdi_link_train(crtc);
4104
4105         /* We need to program the right clock selection before writing the pixel
4106          * mutliplier into the DPLL. */
4107         if (HAS_PCH_CPT(dev)) {
4108                 u32 sel;
4109
4110                 temp = I915_READ(PCH_DPLL_SEL);
4111                 temp |= TRANS_DPLL_ENABLE(pipe);
4112                 sel = TRANS_DPLLB_SEL(pipe);
4113                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4114                         temp |= sel;
4115                 else
4116                         temp &= ~sel;
4117                 I915_WRITE(PCH_DPLL_SEL, temp);
4118         }
4119
4120         /* XXX: pch pll's can be enabled any time before we enable the PCH
4121          * transcoder, and we actually should do this to not upset any PCH
4122          * transcoder that already use the clock when we share it.
4123          *
4124          * Note that enable_shared_dpll tries to do the right thing, but
4125          * get_shared_dpll unconditionally resets the pll - we need that to have
4126          * the right LVDS enable sequence. */
4127         intel_enable_shared_dpll(intel_crtc);
4128
4129         /* set transcoder timing, panel must allow it */
4130         assert_panel_unlocked(dev_priv, pipe);
4131         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4132
4133         intel_fdi_normal_train(crtc);
4134
4135         /* For PCH DP, enable TRANS_DP_CTL */
4136         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4137                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4138                 reg = TRANS_DP_CTL(pipe);
4139                 temp = I915_READ(reg);
4140                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4141                           TRANS_DP_SYNC_MASK |
4142                           TRANS_DP_BPC_MASK);
4143                 temp |= TRANS_DP_OUTPUT_ENABLE;
4144                 temp |= bpc << 9; /* same format but at 11:9 */
4145
4146                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4147                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4148                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4149                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4150
4151                 switch (intel_trans_dp_port_sel(crtc)) {
4152                 case PCH_DP_B:
4153                         temp |= TRANS_DP_PORT_SEL_B;
4154                         break;
4155                 case PCH_DP_C:
4156                         temp |= TRANS_DP_PORT_SEL_C;
4157                         break;
4158                 case PCH_DP_D:
4159                         temp |= TRANS_DP_PORT_SEL_D;
4160                         break;
4161                 default:
4162                         BUG();
4163                 }
4164
4165                 I915_WRITE(reg, temp);
4166         }
4167
4168         ironlake_enable_pch_transcoder(dev_priv, pipe);
4169 }
4170
4171 static void lpt_pch_enable(struct drm_crtc *crtc)
4172 {
4173         struct drm_device *dev = crtc->dev;
4174         struct drm_i915_private *dev_priv = dev->dev_private;
4175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4176         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4177
4178         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4179
4180         lpt_program_iclkip(crtc);
4181
4182         /* Set transcoder timing. */
4183         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4184
4185         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4186 }
4187
4188 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4189                                                 struct intel_crtc_state *crtc_state)
4190 {
4191         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4192         struct intel_shared_dpll *pll;
4193         struct intel_shared_dpll_config *shared_dpll;
4194         enum intel_dpll_id i;
4195
4196         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4197
4198         if (HAS_PCH_IBX(dev_priv->dev)) {
4199                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4200                 i = (enum intel_dpll_id) crtc->pipe;
4201                 pll = &dev_priv->shared_dplls[i];
4202
4203                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4204                               crtc->base.base.id, pll->name);
4205
4206                 WARN_ON(shared_dpll[i].crtc_mask);
4207
4208                 goto found;
4209         }
4210
4211         if (IS_BROXTON(dev_priv->dev)) {
4212                 /* PLL is attached to port in bxt */
4213                 struct intel_encoder *encoder;
4214                 struct intel_digital_port *intel_dig_port;
4215
4216                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4217                 if (WARN_ON(!encoder))
4218                         return NULL;
4219
4220                 intel_dig_port = enc_to_dig_port(&encoder->base);
4221                 /* 1:1 mapping between ports and PLLs */
4222                 i = (enum intel_dpll_id)intel_dig_port->port;
4223                 pll = &dev_priv->shared_dplls[i];
4224                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4225                         crtc->base.base.id, pll->name);
4226                 WARN_ON(shared_dpll[i].crtc_mask);
4227
4228                 goto found;
4229         }
4230
4231         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4232                 pll = &dev_priv->shared_dplls[i];
4233
4234                 /* Only want to check enabled timings first */
4235                 if (shared_dpll[i].crtc_mask == 0)
4236                         continue;
4237
4238                 if (memcmp(&crtc_state->dpll_hw_state,
4239                            &shared_dpll[i].hw_state,
4240                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4241                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4242                                       crtc->base.base.id, pll->name,
4243                                       shared_dpll[i].crtc_mask,
4244                                       pll->active);
4245                         goto found;
4246                 }
4247         }
4248
4249         /* Ok no matching timings, maybe there's a free one? */
4250         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4251                 pll = &dev_priv->shared_dplls[i];
4252                 if (shared_dpll[i].crtc_mask == 0) {
4253                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4254                                       crtc->base.base.id, pll->name);
4255                         goto found;
4256                 }
4257         }
4258
4259         return NULL;
4260
4261 found:
4262         if (shared_dpll[i].crtc_mask == 0)
4263                 shared_dpll[i].hw_state =
4264                         crtc_state->dpll_hw_state;
4265
4266         crtc_state->shared_dpll = i;
4267         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4268                          pipe_name(crtc->pipe));
4269
4270         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4271
4272         return pll;
4273 }
4274
4275 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4276 {
4277         struct drm_i915_private *dev_priv = to_i915(state->dev);
4278         struct intel_shared_dpll_config *shared_dpll;
4279         struct intel_shared_dpll *pll;
4280         enum intel_dpll_id i;
4281
4282         if (!to_intel_atomic_state(state)->dpll_set)
4283                 return;
4284
4285         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4286         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4287                 pll = &dev_priv->shared_dplls[i];
4288                 pll->config = shared_dpll[i];
4289         }
4290 }
4291
4292 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4293 {
4294         struct drm_i915_private *dev_priv = dev->dev_private;
4295         int dslreg = PIPEDSL(pipe);
4296         u32 temp;
4297
4298         temp = I915_READ(dslreg);
4299         udelay(500);
4300         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4301                 if (wait_for(I915_READ(dslreg) != temp, 5))
4302                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4303         }
4304 }
4305
4306 static int
4307 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4308                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4309                   int src_w, int src_h, int dst_w, int dst_h)
4310 {
4311         struct intel_crtc_scaler_state *scaler_state =
4312                 &crtc_state->scaler_state;
4313         struct intel_crtc *intel_crtc =
4314                 to_intel_crtc(crtc_state->base.crtc);
4315         int need_scaling;
4316
4317         need_scaling = intel_rotation_90_or_270(rotation) ?
4318                 (src_h != dst_w || src_w != dst_h):
4319                 (src_w != dst_w || src_h != dst_h);
4320
4321         /*
4322          * if plane is being disabled or scaler is no more required or force detach
4323          *  - free scaler binded to this plane/crtc
4324          *  - in order to do this, update crtc->scaler_usage
4325          *
4326          * Here scaler state in crtc_state is set free so that
4327          * scaler can be assigned to other user. Actual register
4328          * update to free the scaler is done in plane/panel-fit programming.
4329          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4330          */
4331         if (force_detach || !need_scaling) {
4332                 if (*scaler_id >= 0) {
4333                         scaler_state->scaler_users &= ~(1 << scaler_user);
4334                         scaler_state->scalers[*scaler_id].in_use = 0;
4335
4336                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4337                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4338                                 intel_crtc->pipe, scaler_user, *scaler_id,
4339                                 scaler_state->scaler_users);
4340                         *scaler_id = -1;
4341                 }
4342                 return 0;
4343         }
4344
4345         /* range checks */
4346         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4347                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4348
4349                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4350                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4351                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4352                         "size is out of scaler range\n",
4353                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4354                 return -EINVAL;
4355         }
4356
4357         /* mark this plane as a scaler user in crtc_state */
4358         scaler_state->scaler_users |= (1 << scaler_user);
4359         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4360                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4361                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4362                 scaler_state->scaler_users);
4363
4364         return 0;
4365 }
4366
4367 /**
4368  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4369  *
4370  * @state: crtc's scaler state
4371  *
4372  * Return
4373  *     0 - scaler_usage updated successfully
4374  *    error - requested scaling cannot be supported or other error condition
4375  */
4376 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4377 {
4378         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4379         struct drm_display_mode *adjusted_mode =
4380                 &state->base.adjusted_mode;
4381
4382         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4383                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4384
4385         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4386                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4387                 state->pipe_src_w, state->pipe_src_h,
4388                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4389 }
4390
4391 /**
4392  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4393  *
4394  * @state: crtc's scaler state
4395  * @plane_state: atomic plane state to update
4396  *
4397  * Return
4398  *     0 - scaler_usage updated successfully
4399  *    error - requested scaling cannot be supported or other error condition
4400  */
4401 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4402                                    struct intel_plane_state *plane_state)
4403 {
4404
4405         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4406         struct intel_plane *intel_plane =
4407                 to_intel_plane(plane_state->base.plane);
4408         struct drm_framebuffer *fb = plane_state->base.fb;
4409         int ret;
4410
4411         bool force_detach = !fb || !plane_state->visible;
4412
4413         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4414                       intel_plane->base.base.id, intel_crtc->pipe,
4415                       drm_plane_index(&intel_plane->base));
4416
4417         ret = skl_update_scaler(crtc_state, force_detach,
4418                                 drm_plane_index(&intel_plane->base),
4419                                 &plane_state->scaler_id,
4420                                 plane_state->base.rotation,
4421                                 drm_rect_width(&plane_state->src) >> 16,
4422                                 drm_rect_height(&plane_state->src) >> 16,
4423                                 drm_rect_width(&plane_state->dst),
4424                                 drm_rect_height(&plane_state->dst));
4425
4426         if (ret || plane_state->scaler_id < 0)
4427                 return ret;
4428
4429         /* check colorkey */
4430         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4431                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4432                               intel_plane->base.base.id);
4433                 return -EINVAL;
4434         }
4435
4436         /* Check src format */
4437         switch (fb->pixel_format) {
4438         case DRM_FORMAT_RGB565:
4439         case DRM_FORMAT_XBGR8888:
4440         case DRM_FORMAT_XRGB8888:
4441         case DRM_FORMAT_ABGR8888:
4442         case DRM_FORMAT_ARGB8888:
4443         case DRM_FORMAT_XRGB2101010:
4444         case DRM_FORMAT_XBGR2101010:
4445         case DRM_FORMAT_YUYV:
4446         case DRM_FORMAT_YVYU:
4447         case DRM_FORMAT_UYVY:
4448         case DRM_FORMAT_VYUY:
4449                 break;
4450         default:
4451                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4452                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4453                 return -EINVAL;
4454         }
4455
4456         return 0;
4457 }
4458
4459 static void skylake_scaler_disable(struct intel_crtc *crtc)
4460 {
4461         int i;
4462
4463         for (i = 0; i < crtc->num_scalers; i++)
4464                 skl_detach_scaler(crtc, i);
4465 }
4466
4467 static void skylake_pfit_enable(struct intel_crtc *crtc)
4468 {
4469         struct drm_device *dev = crtc->base.dev;
4470         struct drm_i915_private *dev_priv = dev->dev_private;
4471         int pipe = crtc->pipe;
4472         struct intel_crtc_scaler_state *scaler_state =
4473                 &crtc->config->scaler_state;
4474
4475         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4476
4477         if (crtc->config->pch_pfit.enabled) {
4478                 int id;
4479
4480                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4481                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4482                         return;
4483                 }
4484
4485                 id = scaler_state->scaler_id;
4486                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4487                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4488                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4489                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4490
4491                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4492         }
4493 }
4494
4495 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4496 {
4497         struct drm_device *dev = crtc->base.dev;
4498         struct drm_i915_private *dev_priv = dev->dev_private;
4499         int pipe = crtc->pipe;
4500
4501         if (crtc->config->pch_pfit.enabled) {
4502                 /* Force use of hard-coded filter coefficients
4503                  * as some pre-programmed values are broken,
4504                  * e.g. x201.
4505                  */
4506                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4507                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4508                                                  PF_PIPE_SEL_IVB(pipe));
4509                 else
4510                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4511                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4512                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4513         }
4514 }
4515
4516 void hsw_enable_ips(struct intel_crtc *crtc)
4517 {
4518         struct drm_device *dev = crtc->base.dev;
4519         struct drm_i915_private *dev_priv = dev->dev_private;
4520
4521         if (!crtc->config->ips_enabled)
4522                 return;
4523
4524         /* We can only enable IPS after we enable a plane and wait for a vblank */
4525         intel_wait_for_vblank(dev, crtc->pipe);
4526
4527         assert_plane_enabled(dev_priv, crtc->plane);
4528         if (IS_BROADWELL(dev)) {
4529                 mutex_lock(&dev_priv->rps.hw_lock);
4530                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4531                 mutex_unlock(&dev_priv->rps.hw_lock);
4532                 /* Quoting Art Runyan: "its not safe to expect any particular
4533                  * value in IPS_CTL bit 31 after enabling IPS through the
4534                  * mailbox." Moreover, the mailbox may return a bogus state,
4535                  * so we need to just enable it and continue on.
4536                  */
4537         } else {
4538                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4539                 /* The bit only becomes 1 in the next vblank, so this wait here
4540                  * is essentially intel_wait_for_vblank. If we don't have this
4541                  * and don't wait for vblanks until the end of crtc_enable, then
4542                  * the HW state readout code will complain that the expected
4543                  * IPS_CTL value is not the one we read. */
4544                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4545                         DRM_ERROR("Timed out waiting for IPS enable\n");
4546         }
4547 }
4548
4549 void hsw_disable_ips(struct intel_crtc *crtc)
4550 {
4551         struct drm_device *dev = crtc->base.dev;
4552         struct drm_i915_private *dev_priv = dev->dev_private;
4553
4554         if (!crtc->config->ips_enabled)
4555                 return;
4556
4557         assert_plane_enabled(dev_priv, crtc->plane);
4558         if (IS_BROADWELL(dev)) {
4559                 mutex_lock(&dev_priv->rps.hw_lock);
4560                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4561                 mutex_unlock(&dev_priv->rps.hw_lock);
4562                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4563                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4564                         DRM_ERROR("Timed out waiting for IPS disable\n");
4565         } else {
4566                 I915_WRITE(IPS_CTL, 0);
4567                 POSTING_READ(IPS_CTL);
4568         }
4569
4570         /* We need to wait for a vblank before we can disable the plane. */
4571         intel_wait_for_vblank(dev, crtc->pipe);
4572 }
4573
4574 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4575 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4576 {
4577         struct drm_device *dev = crtc->dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580         enum pipe pipe = intel_crtc->pipe;
4581         int palreg = PALETTE(pipe);
4582         int i;
4583         bool reenable_ips = false;
4584
4585         /* The clocks have to be on to load the palette. */
4586         if (!crtc->state->active)
4587                 return;
4588
4589         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4590                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4591                         assert_dsi_pll_enabled(dev_priv);
4592                 else
4593                         assert_pll_enabled(dev_priv, pipe);
4594         }
4595
4596         /* use legacy palette for Ironlake */
4597         if (!HAS_GMCH_DISPLAY(dev))
4598                 palreg = LGC_PALETTE(pipe);
4599
4600         /* Workaround : Do not read or write the pipe palette/gamma data while
4601          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4602          */
4603         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4604             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4605              GAMMA_MODE_MODE_SPLIT)) {
4606                 hsw_disable_ips(intel_crtc);
4607                 reenable_ips = true;
4608         }
4609
4610         for (i = 0; i < 256; i++) {
4611                 I915_WRITE(palreg + 4 * i,
4612                            (intel_crtc->lut_r[i] << 16) |
4613                            (intel_crtc->lut_g[i] << 8) |
4614                            intel_crtc->lut_b[i]);
4615         }
4616
4617         if (reenable_ips)
4618                 hsw_enable_ips(intel_crtc);
4619 }
4620
4621 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4622 {
4623         if (intel_crtc->overlay) {
4624                 struct drm_device *dev = intel_crtc->base.dev;
4625                 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627                 mutex_lock(&dev->struct_mutex);
4628                 dev_priv->mm.interruptible = false;
4629                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4630                 dev_priv->mm.interruptible = true;
4631                 mutex_unlock(&dev->struct_mutex);
4632         }
4633
4634         /* Let userspace switch the overlay on again. In most cases userspace
4635          * has to recompute where to put it anyway.
4636          */
4637 }
4638
4639 /**
4640  * intel_post_enable_primary - Perform operations after enabling primary plane
4641  * @crtc: the CRTC whose primary plane was just enabled
4642  *
4643  * Performs potentially sleeping operations that must be done after the primary
4644  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4645  * called due to an explicit primary plane update, or due to an implicit
4646  * re-enable that is caused when a sprite plane is updated to no longer
4647  * completely hide the primary plane.
4648  */
4649 static void
4650 intel_post_enable_primary(struct drm_crtc *crtc)
4651 {
4652         struct drm_device *dev = crtc->dev;
4653         struct drm_i915_private *dev_priv = dev->dev_private;
4654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4655         int pipe = intel_crtc->pipe;
4656
4657         /*
4658          * BDW signals flip done immediately if the plane
4659          * is disabled, even if the plane enable is already
4660          * armed to occur at the next vblank :(
4661          */
4662         if (IS_BROADWELL(dev))
4663                 intel_wait_for_vblank(dev, pipe);
4664
4665         /*
4666          * FIXME IPS should be fine as long as one plane is
4667          * enabled, but in practice it seems to have problems
4668          * when going from primary only to sprite only and vice
4669          * versa.
4670          */
4671         hsw_enable_ips(intel_crtc);
4672
4673         /*
4674          * Gen2 reports pipe underruns whenever all planes are disabled.
4675          * So don't enable underrun reporting before at least some planes
4676          * are enabled.
4677          * FIXME: Need to fix the logic to work when we turn off all planes
4678          * but leave the pipe running.
4679          */
4680         if (IS_GEN2(dev))
4681                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4682
4683         /* Underruns don't raise interrupts, so check manually. */
4684         if (HAS_GMCH_DISPLAY(dev))
4685                 i9xx_check_fifo_underruns(dev_priv);
4686 }
4687
4688 /**
4689  * intel_pre_disable_primary - Perform operations before disabling primary plane
4690  * @crtc: the CRTC whose primary plane is to be disabled
4691  *
4692  * Performs potentially sleeping operations that must be done before the
4693  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4694  * be called due to an explicit primary plane update, or due to an implicit
4695  * disable that is caused when a sprite plane completely hides the primary
4696  * plane.
4697  */
4698 static void
4699 intel_pre_disable_primary(struct drm_crtc *crtc)
4700 {
4701         struct drm_device *dev = crtc->dev;
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4704         int pipe = intel_crtc->pipe;
4705
4706         /*
4707          * Gen2 reports pipe underruns whenever all planes are disabled.
4708          * So diasble underrun reporting before all the planes get disabled.
4709          * FIXME: Need to fix the logic to work when we turn off all planes
4710          * but leave the pipe running.
4711          */
4712         if (IS_GEN2(dev))
4713                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4714
4715         /*
4716          * Vblank time updates from the shadow to live plane control register
4717          * are blocked if the memory self-refresh mode is active at that
4718          * moment. So to make sure the plane gets truly disabled, disable
4719          * first the self-refresh mode. The self-refresh enable bit in turn
4720          * will be checked/applied by the HW only at the next frame start
4721          * event which is after the vblank start event, so we need to have a
4722          * wait-for-vblank between disabling the plane and the pipe.
4723          */
4724         if (HAS_GMCH_DISPLAY(dev)) {
4725                 intel_set_memory_cxsr(dev_priv, false);
4726                 dev_priv->wm.vlv.cxsr = false;
4727                 intel_wait_for_vblank(dev, pipe);
4728         }
4729
4730         /*
4731          * FIXME IPS should be fine as long as one plane is
4732          * enabled, but in practice it seems to have problems
4733          * when going from primary only to sprite only and vice
4734          * versa.
4735          */
4736         hsw_disable_ips(intel_crtc);
4737 }
4738
4739 static void intel_post_plane_update(struct intel_crtc *crtc)
4740 {
4741         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4742         struct drm_device *dev = crtc->base.dev;
4743         struct drm_i915_private *dev_priv = dev->dev_private;
4744         struct drm_plane *plane;
4745
4746         if (atomic->wait_vblank)
4747                 intel_wait_for_vblank(dev, crtc->pipe);
4748
4749         intel_frontbuffer_flip(dev, atomic->fb_bits);
4750
4751         if (atomic->disable_cxsr)
4752                 crtc->wm.cxsr_allowed = true;
4753
4754         if (crtc->atomic.update_wm_post)
4755                 intel_update_watermarks(&crtc->base);
4756
4757         if (atomic->update_fbc)
4758                 intel_fbc_update(dev_priv);
4759
4760         if (atomic->post_enable_primary)
4761                 intel_post_enable_primary(&crtc->base);
4762
4763         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4764                 intel_update_sprite_watermarks(plane, &crtc->base,
4765                                                0, 0, 0, false, false);
4766
4767         memset(atomic, 0, sizeof(*atomic));
4768 }
4769
4770 static void intel_pre_plane_update(struct intel_crtc *crtc)
4771 {
4772         struct drm_device *dev = crtc->base.dev;
4773         struct drm_i915_private *dev_priv = dev->dev_private;
4774         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4775         struct drm_plane *p;
4776
4777         /* Track fb's for any planes being disabled */
4778         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4779                 struct intel_plane *plane = to_intel_plane(p);
4780
4781                 mutex_lock(&dev->struct_mutex);
4782                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4783                                   plane->frontbuffer_bit);
4784                 mutex_unlock(&dev->struct_mutex);
4785         }
4786
4787         if (atomic->wait_for_flips)
4788                 intel_crtc_wait_for_pending_flips(&crtc->base);
4789
4790         if (atomic->disable_fbc)
4791                 intel_fbc_disable_crtc(crtc);
4792
4793         if (crtc->atomic.disable_ips)
4794                 hsw_disable_ips(crtc);
4795
4796         if (atomic->pre_disable_primary)
4797                 intel_pre_disable_primary(&crtc->base);
4798
4799         if (atomic->disable_cxsr) {
4800                 crtc->wm.cxsr_allowed = false;
4801                 intel_set_memory_cxsr(dev_priv, false);
4802         }
4803 }
4804
4805 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4806 {
4807         struct drm_device *dev = crtc->dev;
4808         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4809         struct drm_plane *p;
4810         int pipe = intel_crtc->pipe;
4811
4812         intel_crtc_dpms_overlay_disable(intel_crtc);
4813
4814         drm_for_each_plane_mask(p, dev, plane_mask)
4815                 to_intel_plane(p)->disable_plane(p, crtc);
4816
4817         /*
4818          * FIXME: Once we grow proper nuclear flip support out of this we need
4819          * to compute the mask of flip planes precisely. For the time being
4820          * consider this a flip to a NULL plane.
4821          */
4822         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4823 }
4824
4825 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4826 {
4827         struct drm_device *dev = crtc->dev;
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4830         struct intel_encoder *encoder;
4831         int pipe = intel_crtc->pipe;
4832
4833         if (WARN_ON(intel_crtc->active))
4834                 return;
4835
4836         if (intel_crtc->config->has_pch_encoder)
4837                 intel_prepare_shared_dpll(intel_crtc);
4838
4839         if (intel_crtc->config->has_dp_encoder)
4840                 intel_dp_set_m_n(intel_crtc, M1_N1);
4841
4842         intel_set_pipe_timings(intel_crtc);
4843
4844         if (intel_crtc->config->has_pch_encoder) {
4845                 intel_cpu_transcoder_set_m_n(intel_crtc,
4846                                      &intel_crtc->config->fdi_m_n, NULL);
4847         }
4848
4849         ironlake_set_pipeconf(crtc);
4850
4851         intel_crtc->active = true;
4852
4853         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4854         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4855
4856         for_each_encoder_on_crtc(dev, crtc, encoder)
4857                 if (encoder->pre_enable)
4858                         encoder->pre_enable(encoder);
4859
4860         if (intel_crtc->config->has_pch_encoder) {
4861                 /* Note: FDI PLL enabling _must_ be done before we enable the
4862                  * cpu pipes, hence this is separate from all the other fdi/pch
4863                  * enabling. */
4864                 ironlake_fdi_pll_enable(intel_crtc);
4865         } else {
4866                 assert_fdi_tx_disabled(dev_priv, pipe);
4867                 assert_fdi_rx_disabled(dev_priv, pipe);
4868         }
4869
4870         ironlake_pfit_enable(intel_crtc);
4871
4872         /*
4873          * On ILK+ LUT must be loaded before the pipe is running but with
4874          * clocks enabled
4875          */
4876         intel_crtc_load_lut(crtc);
4877
4878         intel_update_watermarks(crtc);
4879         intel_enable_pipe(intel_crtc);
4880
4881         if (intel_crtc->config->has_pch_encoder)
4882                 ironlake_pch_enable(crtc);
4883
4884         assert_vblank_disabled(crtc);
4885         drm_crtc_vblank_on(crtc);
4886
4887         for_each_encoder_on_crtc(dev, crtc, encoder)
4888                 encoder->enable(encoder);
4889
4890         if (HAS_PCH_CPT(dev))
4891                 cpt_verify_modeset(dev, intel_crtc->pipe);
4892 }
4893
4894 /* IPS only exists on ULT machines and is tied to pipe A. */
4895 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4896 {
4897         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4898 }
4899
4900 static void haswell_crtc_enable(struct drm_crtc *crtc)
4901 {
4902         struct drm_device *dev = crtc->dev;
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4905         struct intel_encoder *encoder;
4906         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4907         struct intel_crtc_state *pipe_config =
4908                 to_intel_crtc_state(crtc->state);
4909
4910         if (WARN_ON(intel_crtc->active))
4911                 return;
4912
4913         if (intel_crtc_to_shared_dpll(intel_crtc))
4914                 intel_enable_shared_dpll(intel_crtc);
4915
4916         if (intel_crtc->config->has_dp_encoder)
4917                 intel_dp_set_m_n(intel_crtc, M1_N1);
4918
4919         intel_set_pipe_timings(intel_crtc);
4920
4921         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4922                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4923                            intel_crtc->config->pixel_multiplier - 1);
4924         }
4925
4926         if (intel_crtc->config->has_pch_encoder) {
4927                 intel_cpu_transcoder_set_m_n(intel_crtc,
4928                                      &intel_crtc->config->fdi_m_n, NULL);
4929         }
4930
4931         haswell_set_pipeconf(crtc);
4932
4933         intel_set_pipe_csc(crtc);
4934
4935         intel_crtc->active = true;
4936
4937         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4938         for_each_encoder_on_crtc(dev, crtc, encoder)
4939                 if (encoder->pre_enable)
4940                         encoder->pre_enable(encoder);
4941
4942         if (intel_crtc->config->has_pch_encoder) {
4943                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4944                                                       true);
4945                 dev_priv->display.fdi_link_train(crtc);
4946         }
4947
4948         intel_ddi_enable_pipe_clock(intel_crtc);
4949
4950         if (INTEL_INFO(dev)->gen == 9)
4951                 skylake_pfit_enable(intel_crtc);
4952         else if (INTEL_INFO(dev)->gen < 9)
4953                 ironlake_pfit_enable(intel_crtc);
4954         else
4955                 MISSING_CASE(INTEL_INFO(dev)->gen);
4956
4957         /*
4958          * On ILK+ LUT must be loaded before the pipe is running but with
4959          * clocks enabled
4960          */
4961         intel_crtc_load_lut(crtc);
4962
4963         intel_ddi_set_pipe_settings(crtc);
4964         intel_ddi_enable_transcoder_func(crtc);
4965
4966         intel_update_watermarks(crtc);
4967         intel_enable_pipe(intel_crtc);
4968
4969         if (intel_crtc->config->has_pch_encoder)
4970                 lpt_pch_enable(crtc);
4971
4972         if (intel_crtc->config->dp_encoder_is_mst)
4973                 intel_ddi_set_vc_payload_alloc(crtc, true);
4974
4975         assert_vblank_disabled(crtc);
4976         drm_crtc_vblank_on(crtc);
4977
4978         for_each_encoder_on_crtc(dev, crtc, encoder) {
4979                 encoder->enable(encoder);
4980                 intel_opregion_notify_encoder(encoder, true);
4981         }
4982
4983         /* If we change the relative order between pipe/planes enabling, we need
4984          * to change the workaround. */
4985         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4986         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4987                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4988                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4989         }
4990 }
4991
4992 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4993 {
4994         struct drm_device *dev = crtc->base.dev;
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         int pipe = crtc->pipe;
4997
4998         /* To avoid upsetting the power well on haswell only disable the pfit if
4999          * it's in use. The hw state code will make sure we get this right. */
5000         if (crtc->config->pch_pfit.enabled) {
5001                 I915_WRITE(PF_CTL(pipe), 0);
5002                 I915_WRITE(PF_WIN_POS(pipe), 0);
5003                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5004         }
5005 }
5006
5007 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5008 {
5009         struct drm_device *dev = crtc->dev;
5010         struct drm_i915_private *dev_priv = dev->dev_private;
5011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5012         struct intel_encoder *encoder;
5013         int pipe = intel_crtc->pipe;
5014         u32 reg, temp;
5015
5016         for_each_encoder_on_crtc(dev, crtc, encoder)
5017                 encoder->disable(encoder);
5018
5019         drm_crtc_vblank_off(crtc);
5020         assert_vblank_disabled(crtc);
5021
5022         if (intel_crtc->config->has_pch_encoder)
5023                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5024
5025         intel_disable_pipe(intel_crtc);
5026
5027         ironlake_pfit_disable(intel_crtc);
5028
5029         if (intel_crtc->config->has_pch_encoder)
5030                 ironlake_fdi_disable(crtc);
5031
5032         for_each_encoder_on_crtc(dev, crtc, encoder)
5033                 if (encoder->post_disable)
5034                         encoder->post_disable(encoder);
5035
5036         if (intel_crtc->config->has_pch_encoder) {
5037                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5038
5039                 if (HAS_PCH_CPT(dev)) {
5040                         /* disable TRANS_DP_CTL */
5041                         reg = TRANS_DP_CTL(pipe);
5042                         temp = I915_READ(reg);
5043                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5044                                   TRANS_DP_PORT_SEL_MASK);
5045                         temp |= TRANS_DP_PORT_SEL_NONE;
5046                         I915_WRITE(reg, temp);
5047
5048                         /* disable DPLL_SEL */
5049                         temp = I915_READ(PCH_DPLL_SEL);
5050                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5051                         I915_WRITE(PCH_DPLL_SEL, temp);
5052                 }
5053
5054                 ironlake_fdi_pll_disable(intel_crtc);
5055         }
5056
5057         intel_crtc->active = false;
5058         intel_update_watermarks(crtc);
5059 }
5060
5061 static void haswell_crtc_disable(struct drm_crtc *crtc)
5062 {
5063         struct drm_device *dev = crtc->dev;
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5066         struct intel_encoder *encoder;
5067         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5068
5069         for_each_encoder_on_crtc(dev, crtc, encoder) {
5070                 intel_opregion_notify_encoder(encoder, false);
5071                 encoder->disable(encoder);
5072         }
5073
5074         drm_crtc_vblank_off(crtc);
5075         assert_vblank_disabled(crtc);
5076
5077         if (intel_crtc->config->has_pch_encoder)
5078                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5079                                                       false);
5080         intel_disable_pipe(intel_crtc);
5081
5082         if (intel_crtc->config->dp_encoder_is_mst)
5083                 intel_ddi_set_vc_payload_alloc(crtc, false);
5084
5085         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5086
5087         if (INTEL_INFO(dev)->gen == 9)
5088                 skylake_scaler_disable(intel_crtc);
5089         else if (INTEL_INFO(dev)->gen < 9)
5090                 ironlake_pfit_disable(intel_crtc);
5091         else
5092                 MISSING_CASE(INTEL_INFO(dev)->gen);
5093
5094         intel_ddi_disable_pipe_clock(intel_crtc);
5095
5096         if (intel_crtc->config->has_pch_encoder) {
5097                 lpt_disable_pch_transcoder(dev_priv);
5098                 intel_ddi_fdi_disable(crtc);
5099         }
5100
5101         for_each_encoder_on_crtc(dev, crtc, encoder)
5102                 if (encoder->post_disable)
5103                         encoder->post_disable(encoder);
5104
5105         intel_crtc->active = false;
5106         intel_update_watermarks(crtc);
5107 }
5108
5109 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5110 {
5111         struct drm_device *dev = crtc->base.dev;
5112         struct drm_i915_private *dev_priv = dev->dev_private;
5113         struct intel_crtc_state *pipe_config = crtc->config;
5114
5115         if (!pipe_config->gmch_pfit.control)
5116                 return;
5117
5118         /*
5119          * The panel fitter should only be adjusted whilst the pipe is disabled,
5120          * according to register description and PRM.
5121          */
5122         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5123         assert_pipe_disabled(dev_priv, crtc->pipe);
5124
5125         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5126         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5127
5128         /* Border color in case we don't scale up to the full screen. Black by
5129          * default, change to something else for debugging. */
5130         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5131 }
5132
5133 static enum intel_display_power_domain port_to_power_domain(enum port port)
5134 {
5135         switch (port) {
5136         case PORT_A:
5137                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5138         case PORT_B:
5139                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5140         case PORT_C:
5141                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5142         case PORT_D:
5143                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5144         default:
5145                 WARN_ON_ONCE(1);
5146                 return POWER_DOMAIN_PORT_OTHER;
5147         }
5148 }
5149
5150 #define for_each_power_domain(domain, mask)                             \
5151         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5152                 if ((1 << (domain)) & (mask))
5153
5154 enum intel_display_power_domain
5155 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5156 {
5157         struct drm_device *dev = intel_encoder->base.dev;
5158         struct intel_digital_port *intel_dig_port;
5159
5160         switch (intel_encoder->type) {
5161         case INTEL_OUTPUT_UNKNOWN:
5162                 /* Only DDI platforms should ever use this output type */
5163                 WARN_ON_ONCE(!HAS_DDI(dev));
5164         case INTEL_OUTPUT_DISPLAYPORT:
5165         case INTEL_OUTPUT_HDMI:
5166         case INTEL_OUTPUT_EDP:
5167                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5168                 return port_to_power_domain(intel_dig_port->port);
5169         case INTEL_OUTPUT_DP_MST:
5170                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5171                 return port_to_power_domain(intel_dig_port->port);
5172         case INTEL_OUTPUT_ANALOG:
5173                 return POWER_DOMAIN_PORT_CRT;
5174         case INTEL_OUTPUT_DSI:
5175                 return POWER_DOMAIN_PORT_DSI;
5176         default:
5177                 return POWER_DOMAIN_PORT_OTHER;
5178         }
5179 }
5180
5181 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5182 {
5183         struct drm_device *dev = crtc->dev;
5184         struct intel_encoder *intel_encoder;
5185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5186         enum pipe pipe = intel_crtc->pipe;
5187         unsigned long mask;
5188         enum transcoder transcoder;
5189
5190         if (!crtc->state->active)
5191                 return 0;
5192
5193         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5194
5195         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5196         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5197         if (intel_crtc->config->pch_pfit.enabled ||
5198             intel_crtc->config->pch_pfit.force_thru)
5199                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5200
5201         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5202                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5203
5204         return mask;
5205 }
5206
5207 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5208 {
5209         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5211         enum intel_display_power_domain domain;
5212         unsigned long domains, new_domains, old_domains;
5213
5214         old_domains = intel_crtc->enabled_power_domains;
5215         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5216
5217         domains = new_domains & ~old_domains;
5218
5219         for_each_power_domain(domain, domains)
5220                 intel_display_power_get(dev_priv, domain);
5221
5222         return old_domains & ~new_domains;
5223 }
5224
5225 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5226                                       unsigned long domains)
5227 {
5228         enum intel_display_power_domain domain;
5229
5230         for_each_power_domain(domain, domains)
5231                 intel_display_power_put(dev_priv, domain);
5232 }
5233
5234 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5235 {
5236         struct drm_device *dev = state->dev;
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         unsigned long put_domains[I915_MAX_PIPES] = {};
5239         struct drm_crtc_state *crtc_state;
5240         struct drm_crtc *crtc;
5241         int i;
5242
5243         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5244                 if (needs_modeset(crtc->state))
5245                         put_domains[to_intel_crtc(crtc)->pipe] =
5246                                 modeset_get_crtc_power_domains(crtc);
5247         }
5248
5249         if (dev_priv->display.modeset_commit_cdclk) {
5250                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5251
5252                 if (cdclk != dev_priv->cdclk_freq &&
5253                     !WARN_ON(!state->allow_modeset))
5254                         dev_priv->display.modeset_commit_cdclk(state);
5255         }
5256
5257         for (i = 0; i < I915_MAX_PIPES; i++)
5258                 if (put_domains[i])
5259                         modeset_put_power_domains(dev_priv, put_domains[i]);
5260 }
5261
5262 static void intel_update_max_cdclk(struct drm_device *dev)
5263 {
5264         struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266         if (IS_SKYLAKE(dev)) {
5267                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5268
5269                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5270                         dev_priv->max_cdclk_freq = 675000;
5271                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5272                         dev_priv->max_cdclk_freq = 540000;
5273                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5274                         dev_priv->max_cdclk_freq = 450000;
5275                 else
5276                         dev_priv->max_cdclk_freq = 337500;
5277         } else if (IS_BROADWELL(dev))  {
5278                 /*
5279                  * FIXME with extra cooling we can allow
5280                  * 540 MHz for ULX and 675 Mhz for ULT.
5281                  * How can we know if extra cooling is
5282                  * available? PCI ID, VTB, something else?
5283                  */
5284                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5285                         dev_priv->max_cdclk_freq = 450000;
5286                 else if (IS_BDW_ULX(dev))
5287                         dev_priv->max_cdclk_freq = 450000;
5288                 else if (IS_BDW_ULT(dev))
5289                         dev_priv->max_cdclk_freq = 540000;
5290                 else
5291                         dev_priv->max_cdclk_freq = 675000;
5292         } else if (IS_CHERRYVIEW(dev)) {
5293                 dev_priv->max_cdclk_freq = 320000;
5294         } else if (IS_VALLEYVIEW(dev)) {
5295                 dev_priv->max_cdclk_freq = 400000;
5296         } else {
5297                 /* otherwise assume cdclk is fixed */
5298                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5299         }
5300
5301         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5302                          dev_priv->max_cdclk_freq);
5303 }
5304
5305 static void intel_update_cdclk(struct drm_device *dev)
5306 {
5307         struct drm_i915_private *dev_priv = dev->dev_private;
5308
5309         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5310         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5311                          dev_priv->cdclk_freq);
5312
5313         /*
5314          * Program the gmbus_freq based on the cdclk frequency.
5315          * BSpec erroneously claims we should aim for 4MHz, but
5316          * in fact 1MHz is the correct frequency.
5317          */
5318         if (IS_VALLEYVIEW(dev)) {
5319                 /*
5320                  * Program the gmbus_freq based on the cdclk frequency.
5321                  * BSpec erroneously claims we should aim for 4MHz, but
5322                  * in fact 1MHz is the correct frequency.
5323                  */
5324                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5325         }
5326
5327         if (dev_priv->max_cdclk_freq == 0)
5328                 intel_update_max_cdclk(dev);
5329 }
5330
5331 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5332 {
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334         uint32_t divider;
5335         uint32_t ratio;
5336         uint32_t current_freq;
5337         int ret;
5338
5339         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5340         switch (frequency) {
5341         case 144000:
5342                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5343                 ratio = BXT_DE_PLL_RATIO(60);
5344                 break;
5345         case 288000:
5346                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5347                 ratio = BXT_DE_PLL_RATIO(60);
5348                 break;
5349         case 384000:
5350                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5351                 ratio = BXT_DE_PLL_RATIO(60);
5352                 break;
5353         case 576000:
5354                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5355                 ratio = BXT_DE_PLL_RATIO(60);
5356                 break;
5357         case 624000:
5358                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5359                 ratio = BXT_DE_PLL_RATIO(65);
5360                 break;
5361         case 19200:
5362                 /*
5363                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5364                  * to suppress GCC warning.
5365                  */
5366                 ratio = 0;
5367                 divider = 0;
5368                 break;
5369         default:
5370                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5371
5372                 return;
5373         }
5374
5375         mutex_lock(&dev_priv->rps.hw_lock);
5376         /* Inform power controller of upcoming frequency change */
5377         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5378                                       0x80000000);
5379         mutex_unlock(&dev_priv->rps.hw_lock);
5380
5381         if (ret) {
5382                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5383                           ret, frequency);
5384                 return;
5385         }
5386
5387         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5388         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5389         current_freq = current_freq * 500 + 1000;
5390
5391         /*
5392          * DE PLL has to be disabled when
5393          * - setting to 19.2MHz (bypass, PLL isn't used)
5394          * - before setting to 624MHz (PLL needs toggling)
5395          * - before setting to any frequency from 624MHz (PLL needs toggling)
5396          */
5397         if (frequency == 19200 || frequency == 624000 ||
5398             current_freq == 624000) {
5399                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5400                 /* Timeout 200us */
5401                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5402                              1))
5403                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5404         }
5405
5406         if (frequency != 19200) {
5407                 uint32_t val;
5408
5409                 val = I915_READ(BXT_DE_PLL_CTL);
5410                 val &= ~BXT_DE_PLL_RATIO_MASK;
5411                 val |= ratio;
5412                 I915_WRITE(BXT_DE_PLL_CTL, val);
5413
5414                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5415                 /* Timeout 200us */
5416                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5417                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5418
5419                 val = I915_READ(CDCLK_CTL);
5420                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5421                 val |= divider;
5422                 /*
5423                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5424                  * enable otherwise.
5425                  */
5426                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5427                 if (frequency >= 500000)
5428                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429
5430                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5431                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5432                 val |= (frequency - 1000) / 500;
5433                 I915_WRITE(CDCLK_CTL, val);
5434         }
5435
5436         mutex_lock(&dev_priv->rps.hw_lock);
5437         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5438                                       DIV_ROUND_UP(frequency, 25000));
5439         mutex_unlock(&dev_priv->rps.hw_lock);
5440
5441         if (ret) {
5442                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5443                           ret, frequency);
5444                 return;
5445         }
5446
5447         intel_update_cdclk(dev);
5448 }
5449
5450 void broxton_init_cdclk(struct drm_device *dev)
5451 {
5452         struct drm_i915_private *dev_priv = dev->dev_private;
5453         uint32_t val;
5454
5455         /*
5456          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5457          * or else the reset will hang because there is no PCH to respond.
5458          * Move the handshake programming to initialization sequence.
5459          * Previously was left up to BIOS.
5460          */
5461         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5462         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5463         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5464
5465         /* Enable PG1 for cdclk */
5466         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5467
5468         /* check if cd clock is enabled */
5469         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5470                 DRM_DEBUG_KMS("Display already initialized\n");
5471                 return;
5472         }
5473
5474         /*
5475          * FIXME:
5476          * - The initial CDCLK needs to be read from VBT.
5477          *   Need to make this change after VBT has changes for BXT.
5478          * - check if setting the max (or any) cdclk freq is really necessary
5479          *   here, it belongs to modeset time
5480          */
5481         broxton_set_cdclk(dev, 624000);
5482
5483         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5484         POSTING_READ(DBUF_CTL);
5485
5486         udelay(10);
5487
5488         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5489                 DRM_ERROR("DBuf power enable timeout!\n");
5490 }
5491
5492 void broxton_uninit_cdclk(struct drm_device *dev)
5493 {
5494         struct drm_i915_private *dev_priv = dev->dev_private;
5495
5496         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5497         POSTING_READ(DBUF_CTL);
5498
5499         udelay(10);
5500
5501         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5502                 DRM_ERROR("DBuf power disable timeout!\n");
5503
5504         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5505         broxton_set_cdclk(dev, 19200);
5506
5507         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5508 }
5509
5510 static const struct skl_cdclk_entry {
5511         unsigned int freq;
5512         unsigned int vco;
5513 } skl_cdclk_frequencies[] = {
5514         { .freq = 308570, .vco = 8640 },
5515         { .freq = 337500, .vco = 8100 },
5516         { .freq = 432000, .vco = 8640 },
5517         { .freq = 450000, .vco = 8100 },
5518         { .freq = 540000, .vco = 8100 },
5519         { .freq = 617140, .vco = 8640 },
5520         { .freq = 675000, .vco = 8100 },
5521 };
5522
5523 static unsigned int skl_cdclk_decimal(unsigned int freq)
5524 {
5525         return (freq - 1000) / 500;
5526 }
5527
5528 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5529 {
5530         unsigned int i;
5531
5532         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5533                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5534
5535                 if (e->freq == freq)
5536                         return e->vco;
5537         }
5538
5539         return 8100;
5540 }
5541
5542 static void
5543 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5544 {
5545         unsigned int min_freq;
5546         u32 val;
5547
5548         /* select the minimum CDCLK before enabling DPLL 0 */
5549         val = I915_READ(CDCLK_CTL);
5550         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5551         val |= CDCLK_FREQ_337_308;
5552
5553         if (required_vco == 8640)
5554                 min_freq = 308570;
5555         else
5556                 min_freq = 337500;
5557
5558         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5559
5560         I915_WRITE(CDCLK_CTL, val);
5561         POSTING_READ(CDCLK_CTL);
5562
5563         /*
5564          * We always enable DPLL0 with the lowest link rate possible, but still
5565          * taking into account the VCO required to operate the eDP panel at the
5566          * desired frequency. The usual DP link rates operate with a VCO of
5567          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5568          * The modeset code is responsible for the selection of the exact link
5569          * rate later on, with the constraint of choosing a frequency that
5570          * works with required_vco.
5571          */
5572         val = I915_READ(DPLL_CTRL1);
5573
5574         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5575                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5576         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5577         if (required_vco == 8640)
5578                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5579                                             SKL_DPLL0);
5580         else
5581                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5582                                             SKL_DPLL0);
5583
5584         I915_WRITE(DPLL_CTRL1, val);
5585         POSTING_READ(DPLL_CTRL1);
5586
5587         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5588
5589         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5590                 DRM_ERROR("DPLL0 not locked\n");
5591 }
5592
5593 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5594 {
5595         int ret;
5596         u32 val;
5597
5598         /* inform PCU we want to change CDCLK */
5599         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5600         mutex_lock(&dev_priv->rps.hw_lock);
5601         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5602         mutex_unlock(&dev_priv->rps.hw_lock);
5603
5604         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5605 }
5606
5607 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5608 {
5609         unsigned int i;
5610
5611         for (i = 0; i < 15; i++) {
5612                 if (skl_cdclk_pcu_ready(dev_priv))
5613                         return true;
5614                 udelay(10);
5615         }
5616
5617         return false;
5618 }
5619
5620 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5621 {
5622         struct drm_device *dev = dev_priv->dev;
5623         u32 freq_select, pcu_ack;
5624
5625         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5626
5627         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5628                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5629                 return;
5630         }
5631
5632         /* set CDCLK_CTL */
5633         switch(freq) {
5634         case 450000:
5635         case 432000:
5636                 freq_select = CDCLK_FREQ_450_432;
5637                 pcu_ack = 1;
5638                 break;
5639         case 540000:
5640                 freq_select = CDCLK_FREQ_540;
5641                 pcu_ack = 2;
5642                 break;
5643         case 308570:
5644         case 337500:
5645         default:
5646                 freq_select = CDCLK_FREQ_337_308;
5647                 pcu_ack = 0;
5648                 break;
5649         case 617140:
5650         case 675000:
5651                 freq_select = CDCLK_FREQ_675_617;
5652                 pcu_ack = 3;
5653                 break;
5654         }
5655
5656         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5657         POSTING_READ(CDCLK_CTL);
5658
5659         /* inform PCU of the change */
5660         mutex_lock(&dev_priv->rps.hw_lock);
5661         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5662         mutex_unlock(&dev_priv->rps.hw_lock);
5663
5664         intel_update_cdclk(dev);
5665 }
5666
5667 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5668 {
5669         /* disable DBUF power */
5670         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5671         POSTING_READ(DBUF_CTL);
5672
5673         udelay(10);
5674
5675         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5676                 DRM_ERROR("DBuf power disable timeout\n");
5677
5678         /* disable DPLL0 */
5679         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5680         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5681                 DRM_ERROR("Couldn't disable DPLL0\n");
5682
5683         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5684 }
5685
5686 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5687 {
5688         u32 val;
5689         unsigned int required_vco;
5690
5691         /* enable PCH reset handshake */
5692         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5693         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5694
5695         /* enable PG1 and Misc I/O */
5696         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5697
5698         /* DPLL0 already enabed !? */
5699         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5700                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5701                 return;
5702         }
5703
5704         /* enable DPLL0 */
5705         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5706         skl_dpll0_enable(dev_priv, required_vco);
5707
5708         /* set CDCLK to the frequency the BIOS chose */
5709         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5710
5711         /* enable DBUF power */
5712         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5713         POSTING_READ(DBUF_CTL);
5714
5715         udelay(10);
5716
5717         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5718                 DRM_ERROR("DBuf power enable timeout\n");
5719 }
5720
5721 /* returns HPLL frequency in kHz */
5722 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5723 {
5724         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5725
5726         /* Obtain SKU information */
5727         mutex_lock(&dev_priv->sb_lock);
5728         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5729                 CCK_FUSE_HPLL_FREQ_MASK;
5730         mutex_unlock(&dev_priv->sb_lock);
5731
5732         return vco_freq[hpll_freq] * 1000;
5733 }
5734
5735 /* Adjust CDclk dividers to allow high res or save power if possible */
5736 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5737 {
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         u32 val, cmd;
5740
5741         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5742                                         != dev_priv->cdclk_freq);
5743
5744         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5745                 cmd = 2;
5746         else if (cdclk == 266667)
5747                 cmd = 1;
5748         else
5749                 cmd = 0;
5750
5751         mutex_lock(&dev_priv->rps.hw_lock);
5752         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5753         val &= ~DSPFREQGUAR_MASK;
5754         val |= (cmd << DSPFREQGUAR_SHIFT);
5755         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5756         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5757                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5758                      50)) {
5759                 DRM_ERROR("timed out waiting for CDclk change\n");
5760         }
5761         mutex_unlock(&dev_priv->rps.hw_lock);
5762
5763         mutex_lock(&dev_priv->sb_lock);
5764
5765         if (cdclk == 400000) {
5766                 u32 divider;
5767
5768                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5769
5770                 /* adjust cdclk divider */
5771                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5772                 val &= ~DISPLAY_FREQUENCY_VALUES;
5773                 val |= divider;
5774                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5775
5776                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5777                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5778                              50))
5779                         DRM_ERROR("timed out waiting for CDclk change\n");
5780         }
5781
5782         /* adjust self-refresh exit latency value */
5783         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5784         val &= ~0x7f;
5785
5786         /*
5787          * For high bandwidth configs, we set a higher latency in the bunit
5788          * so that the core display fetch happens in time to avoid underruns.
5789          */
5790         if (cdclk == 400000)
5791                 val |= 4500 / 250; /* 4.5 usec */
5792         else
5793                 val |= 3000 / 250; /* 3.0 usec */
5794         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5795
5796         mutex_unlock(&dev_priv->sb_lock);
5797
5798         intel_update_cdclk(dev);
5799 }
5800
5801 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5802 {
5803         struct drm_i915_private *dev_priv = dev->dev_private;
5804         u32 val, cmd;
5805
5806         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5807                                                 != dev_priv->cdclk_freq);
5808
5809         switch (cdclk) {
5810         case 333333:
5811         case 320000:
5812         case 266667:
5813         case 200000:
5814                 break;
5815         default:
5816                 MISSING_CASE(cdclk);
5817                 return;
5818         }
5819
5820         /*
5821          * Specs are full of misinformation, but testing on actual
5822          * hardware has shown that we just need to write the desired
5823          * CCK divider into the Punit register.
5824          */
5825         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5826
5827         mutex_lock(&dev_priv->rps.hw_lock);
5828         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5829         val &= ~DSPFREQGUAR_MASK_CHV;
5830         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5831         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5832         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5833                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5834                      50)) {
5835                 DRM_ERROR("timed out waiting for CDclk change\n");
5836         }
5837         mutex_unlock(&dev_priv->rps.hw_lock);
5838
5839         intel_update_cdclk(dev);
5840 }
5841
5842 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5843                                  int max_pixclk)
5844 {
5845         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5846         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5847
5848         /*
5849          * Really only a few cases to deal with, as only 4 CDclks are supported:
5850          *   200MHz
5851          *   267MHz
5852          *   320/333MHz (depends on HPLL freq)
5853          *   400MHz (VLV only)
5854          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5855          * of the lower bin and adjust if needed.
5856          *
5857          * We seem to get an unstable or solid color picture at 200MHz.
5858          * Not sure what's wrong. For now use 200MHz only when all pipes
5859          * are off.
5860          */
5861         if (!IS_CHERRYVIEW(dev_priv) &&
5862             max_pixclk > freq_320*limit/100)
5863                 return 400000;
5864         else if (max_pixclk > 266667*limit/100)
5865                 return freq_320;
5866         else if (max_pixclk > 0)
5867                 return 266667;
5868         else
5869                 return 200000;
5870 }
5871
5872 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5873                               int max_pixclk)
5874 {
5875         /*
5876          * FIXME:
5877          * - remove the guardband, it's not needed on BXT
5878          * - set 19.2MHz bypass frequency if there are no active pipes
5879          */
5880         if (max_pixclk > 576000*9/10)
5881                 return 624000;
5882         else if (max_pixclk > 384000*9/10)
5883                 return 576000;
5884         else if (max_pixclk > 288000*9/10)
5885                 return 384000;
5886         else if (max_pixclk > 144000*9/10)
5887                 return 288000;
5888         else
5889                 return 144000;
5890 }
5891
5892 /* Compute the max pixel clock for new configuration. Uses atomic state if
5893  * that's non-NULL, look at current state otherwise. */
5894 static int intel_mode_max_pixclk(struct drm_device *dev,
5895                                  struct drm_atomic_state *state)
5896 {
5897         struct intel_crtc *intel_crtc;
5898         struct intel_crtc_state *crtc_state;
5899         int max_pixclk = 0;
5900
5901         for_each_intel_crtc(dev, intel_crtc) {
5902                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5903                 if (IS_ERR(crtc_state))
5904                         return PTR_ERR(crtc_state);
5905
5906                 if (!crtc_state->base.enable)
5907                         continue;
5908
5909                 max_pixclk = max(max_pixclk,
5910                                  crtc_state->base.adjusted_mode.crtc_clock);
5911         }
5912
5913         return max_pixclk;
5914 }
5915
5916 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5917 {
5918         struct drm_device *dev = state->dev;
5919         struct drm_i915_private *dev_priv = dev->dev_private;
5920         int max_pixclk = intel_mode_max_pixclk(dev, state);
5921
5922         if (max_pixclk < 0)
5923                 return max_pixclk;
5924
5925         to_intel_atomic_state(state)->cdclk =
5926                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5927
5928         return 0;
5929 }
5930
5931 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5932 {
5933         struct drm_device *dev = state->dev;
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         int max_pixclk = intel_mode_max_pixclk(dev, state);
5936
5937         if (max_pixclk < 0)
5938                 return max_pixclk;
5939
5940         to_intel_atomic_state(state)->cdclk =
5941                 broxton_calc_cdclk(dev_priv, max_pixclk);
5942
5943         return 0;
5944 }
5945
5946 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5947 {
5948         unsigned int credits, default_credits;
5949
5950         if (IS_CHERRYVIEW(dev_priv))
5951                 default_credits = PFI_CREDIT(12);
5952         else
5953                 default_credits = PFI_CREDIT(8);
5954
5955         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5956                 /* CHV suggested value is 31 or 63 */
5957                 if (IS_CHERRYVIEW(dev_priv))
5958                         credits = PFI_CREDIT_63;
5959                 else
5960                         credits = PFI_CREDIT(15);
5961         } else {
5962                 credits = default_credits;
5963         }
5964
5965         /*
5966          * WA - write default credits before re-programming
5967          * FIXME: should we also set the resend bit here?
5968          */
5969         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5970                    default_credits);
5971
5972         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5973                    credits | PFI_CREDIT_RESEND);
5974
5975         /*
5976          * FIXME is this guaranteed to clear
5977          * immediately or should we poll for it?
5978          */
5979         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5980 }
5981
5982 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5983 {
5984         struct drm_device *dev = old_state->dev;
5985         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5986         struct drm_i915_private *dev_priv = dev->dev_private;
5987
5988         /*
5989          * FIXME: We can end up here with all power domains off, yet
5990          * with a CDCLK frequency other than the minimum. To account
5991          * for this take the PIPE-A power domain, which covers the HW
5992          * blocks needed for the following programming. This can be
5993          * removed once it's guaranteed that we get here either with
5994          * the minimum CDCLK set, or the required power domains
5995          * enabled.
5996          */
5997         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5998
5999         if (IS_CHERRYVIEW(dev))
6000                 cherryview_set_cdclk(dev, req_cdclk);
6001         else
6002                 valleyview_set_cdclk(dev, req_cdclk);
6003
6004         vlv_program_pfi_credits(dev_priv);
6005
6006         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6007 }
6008
6009 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6010 {
6011         struct drm_device *dev = crtc->dev;
6012         struct drm_i915_private *dev_priv = to_i915(dev);
6013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6014         struct intel_encoder *encoder;
6015         int pipe = intel_crtc->pipe;
6016         bool is_dsi;
6017
6018         if (WARN_ON(intel_crtc->active))
6019                 return;
6020
6021         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6022
6023         if (!is_dsi) {
6024                 if (IS_CHERRYVIEW(dev))
6025                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6026                 else
6027                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6028         }
6029
6030         if (intel_crtc->config->has_dp_encoder)
6031                 intel_dp_set_m_n(intel_crtc, M1_N1);
6032
6033         intel_set_pipe_timings(intel_crtc);
6034
6035         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6036                 struct drm_i915_private *dev_priv = dev->dev_private;
6037
6038                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6039                 I915_WRITE(CHV_CANVAS(pipe), 0);
6040         }
6041
6042         i9xx_set_pipeconf(intel_crtc);
6043
6044         intel_crtc->active = true;
6045
6046         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6047
6048         for_each_encoder_on_crtc(dev, crtc, encoder)
6049                 if (encoder->pre_pll_enable)
6050                         encoder->pre_pll_enable(encoder);
6051
6052         if (!is_dsi) {
6053                 if (IS_CHERRYVIEW(dev))
6054                         chv_enable_pll(intel_crtc, intel_crtc->config);
6055                 else
6056                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6057         }
6058
6059         for_each_encoder_on_crtc(dev, crtc, encoder)
6060                 if (encoder->pre_enable)
6061                         encoder->pre_enable(encoder);
6062
6063         i9xx_pfit_enable(intel_crtc);
6064
6065         intel_crtc_load_lut(crtc);
6066
6067         intel_enable_pipe(intel_crtc);
6068
6069         assert_vblank_disabled(crtc);
6070         drm_crtc_vblank_on(crtc);
6071
6072         for_each_encoder_on_crtc(dev, crtc, encoder)
6073                 encoder->enable(encoder);
6074 }
6075
6076 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6077 {
6078         struct drm_device *dev = crtc->base.dev;
6079         struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6082         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6083 }
6084
6085 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6086 {
6087         struct drm_device *dev = crtc->dev;
6088         struct drm_i915_private *dev_priv = to_i915(dev);
6089         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6090         struct intel_encoder *encoder;
6091         int pipe = intel_crtc->pipe;
6092
6093         if (WARN_ON(intel_crtc->active))
6094                 return;
6095
6096         i9xx_set_pll_dividers(intel_crtc);
6097
6098         if (intel_crtc->config->has_dp_encoder)
6099                 intel_dp_set_m_n(intel_crtc, M1_N1);
6100
6101         intel_set_pipe_timings(intel_crtc);
6102
6103         i9xx_set_pipeconf(intel_crtc);
6104
6105         intel_crtc->active = true;
6106
6107         if (!IS_GEN2(dev))
6108                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6109
6110         for_each_encoder_on_crtc(dev, crtc, encoder)
6111                 if (encoder->pre_enable)
6112                         encoder->pre_enable(encoder);
6113
6114         i9xx_enable_pll(intel_crtc);
6115
6116         i9xx_pfit_enable(intel_crtc);
6117
6118         intel_crtc_load_lut(crtc);
6119
6120         intel_update_watermarks(crtc);
6121         intel_enable_pipe(intel_crtc);
6122
6123         assert_vblank_disabled(crtc);
6124         drm_crtc_vblank_on(crtc);
6125
6126         for_each_encoder_on_crtc(dev, crtc, encoder)
6127                 encoder->enable(encoder);
6128 }
6129
6130 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6131 {
6132         struct drm_device *dev = crtc->base.dev;
6133         struct drm_i915_private *dev_priv = dev->dev_private;
6134
6135         if (!crtc->config->gmch_pfit.control)
6136                 return;
6137
6138         assert_pipe_disabled(dev_priv, crtc->pipe);
6139
6140         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6141                          I915_READ(PFIT_CONTROL));
6142         I915_WRITE(PFIT_CONTROL, 0);
6143 }
6144
6145 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6146 {
6147         struct drm_device *dev = crtc->dev;
6148         struct drm_i915_private *dev_priv = dev->dev_private;
6149         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6150         struct intel_encoder *encoder;
6151         int pipe = intel_crtc->pipe;
6152
6153         /*
6154          * On gen2 planes are double buffered but the pipe isn't, so we must
6155          * wait for planes to fully turn off before disabling the pipe.
6156          * We also need to wait on all gmch platforms because of the
6157          * self-refresh mode constraint explained above.
6158          */
6159         intel_wait_for_vblank(dev, pipe);
6160
6161         for_each_encoder_on_crtc(dev, crtc, encoder)
6162                 encoder->disable(encoder);
6163
6164         drm_crtc_vblank_off(crtc);
6165         assert_vblank_disabled(crtc);
6166
6167         intel_disable_pipe(intel_crtc);
6168
6169         i9xx_pfit_disable(intel_crtc);
6170
6171         for_each_encoder_on_crtc(dev, crtc, encoder)
6172                 if (encoder->post_disable)
6173                         encoder->post_disable(encoder);
6174
6175         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6176                 if (IS_CHERRYVIEW(dev))
6177                         chv_disable_pll(dev_priv, pipe);
6178                 else if (IS_VALLEYVIEW(dev))
6179                         vlv_disable_pll(dev_priv, pipe);
6180                 else
6181                         i9xx_disable_pll(intel_crtc);
6182         }
6183
6184         if (!IS_GEN2(dev))
6185                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6186
6187         intel_crtc->active = false;
6188         intel_update_watermarks(crtc);
6189 }
6190
6191 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6192 {
6193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6194         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6195         enum intel_display_power_domain domain;
6196         unsigned long domains;
6197
6198         if (!intel_crtc->active)
6199                 return;
6200
6201         if (to_intel_plane_state(crtc->primary->state)->visible) {
6202                 intel_crtc_wait_for_pending_flips(crtc);
6203                 intel_pre_disable_primary(crtc);
6204         }
6205
6206         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6207         dev_priv->display.crtc_disable(crtc);
6208         intel_disable_shared_dpll(intel_crtc);
6209
6210         domains = intel_crtc->enabled_power_domains;
6211         for_each_power_domain(domain, domains)
6212                 intel_display_power_put(dev_priv, domain);
6213         intel_crtc->enabled_power_domains = 0;
6214 }
6215
6216 /*
6217  * turn all crtc's off, but do not adjust state
6218  * This has to be paired with a call to intel_modeset_setup_hw_state.
6219  */
6220 int intel_display_suspend(struct drm_device *dev)
6221 {
6222         struct drm_mode_config *config = &dev->mode_config;
6223         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6224         struct drm_atomic_state *state;
6225         struct drm_crtc *crtc;
6226         unsigned crtc_mask = 0;
6227         int ret = 0;
6228
6229         if (WARN_ON(!ctx))
6230                 return 0;
6231
6232         lockdep_assert_held(&ctx->ww_ctx);
6233         state = drm_atomic_state_alloc(dev);
6234         if (WARN_ON(!state))
6235                 return -ENOMEM;
6236
6237         state->acquire_ctx = ctx;
6238         state->allow_modeset = true;
6239
6240         for_each_crtc(dev, crtc) {
6241                 struct drm_crtc_state *crtc_state =
6242                         drm_atomic_get_crtc_state(state, crtc);
6243
6244                 ret = PTR_ERR_OR_ZERO(crtc_state);
6245                 if (ret)
6246                         goto free;
6247
6248                 if (!crtc_state->active)
6249                         continue;
6250
6251                 crtc_state->active = false;
6252                 crtc_mask |= 1 << drm_crtc_index(crtc);
6253         }
6254
6255         if (crtc_mask) {
6256                 ret = drm_atomic_commit(state);
6257
6258                 if (!ret) {
6259                         for_each_crtc(dev, crtc)
6260                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6261                                         crtc->state->active = true;
6262
6263                         return ret;
6264                 }
6265         }
6266
6267 free:
6268         if (ret)
6269                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6270         drm_atomic_state_free(state);
6271         return ret;
6272 }
6273
6274 /* Master function to enable/disable CRTC and corresponding power wells */
6275 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6276 {
6277         struct drm_device *dev = crtc->dev;
6278         struct drm_mode_config *config = &dev->mode_config;
6279         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281         struct intel_crtc_state *pipe_config;
6282         struct drm_atomic_state *state;
6283         int ret;
6284
6285         if (enable == intel_crtc->active)
6286                 return 0;
6287
6288         if (enable && !crtc->state->enable)
6289                 return 0;
6290
6291         /* this function should be called with drm_modeset_lock_all for now */
6292         if (WARN_ON(!ctx))
6293                 return -EIO;
6294         lockdep_assert_held(&ctx->ww_ctx);
6295
6296         state = drm_atomic_state_alloc(dev);
6297         if (WARN_ON(!state))
6298                 return -ENOMEM;
6299
6300         state->acquire_ctx = ctx;
6301         state->allow_modeset = true;
6302
6303         pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6304         if (IS_ERR(pipe_config)) {
6305                 ret = PTR_ERR(pipe_config);
6306                 goto err;
6307         }
6308         pipe_config->base.active = enable;
6309
6310         ret = drm_atomic_commit(state);
6311         if (!ret)
6312                 return ret;
6313
6314 err:
6315         DRM_ERROR("Updating crtc active failed with %i\n", ret);
6316         drm_atomic_state_free(state);
6317         return ret;
6318 }
6319
6320 /**
6321  * Sets the power management mode of the pipe and plane.
6322  */
6323 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6324 {
6325         struct drm_device *dev = crtc->dev;
6326         struct intel_encoder *intel_encoder;
6327         bool enable = false;
6328
6329         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6330                 enable |= intel_encoder->connectors_active;
6331
6332         intel_crtc_control(crtc, enable);
6333 }
6334
6335 void intel_encoder_destroy(struct drm_encoder *encoder)
6336 {
6337         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6338
6339         drm_encoder_cleanup(encoder);
6340         kfree(intel_encoder);
6341 }
6342
6343 /* Simple dpms helper for encoders with just one connector, no cloning and only
6344  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6345  * state of the entire output pipe. */
6346 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6347 {
6348         if (mode == DRM_MODE_DPMS_ON) {
6349                 encoder->connectors_active = true;
6350
6351                 intel_crtc_update_dpms(encoder->base.crtc);
6352         } else {
6353                 encoder->connectors_active = false;
6354
6355                 intel_crtc_update_dpms(encoder->base.crtc);
6356         }
6357 }
6358
6359 /* Cross check the actual hw state with our own modeset state tracking (and it's
6360  * internal consistency). */
6361 static void intel_connector_check_state(struct intel_connector *connector)
6362 {
6363         if (connector->get_hw_state(connector)) {
6364                 struct intel_encoder *encoder = connector->encoder;
6365                 struct drm_crtc *crtc;
6366                 bool encoder_enabled;
6367                 enum pipe pipe;
6368
6369                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6370                               connector->base.base.id,
6371                               connector->base.name);
6372
6373                 /* there is no real hw state for MST connectors */
6374                 if (connector->mst_port)
6375                         return;
6376
6377                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6378                      "wrong connector dpms state\n");
6379                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6380                      "active connector not linked to encoder\n");
6381
6382                 if (encoder) {
6383                         I915_STATE_WARN(!encoder->connectors_active,
6384                              "encoder->connectors_active not set\n");
6385
6386                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6387                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6388                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6389                                 return;
6390
6391                         crtc = encoder->base.crtc;
6392
6393                         I915_STATE_WARN(!crtc->state->enable,
6394                                         "crtc not enabled\n");
6395                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6396                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6397                              "encoder active on the wrong pipe\n");
6398                 }
6399         }
6400 }
6401
6402 int intel_connector_init(struct intel_connector *connector)
6403 {
6404         struct drm_connector_state *connector_state;
6405
6406         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6407         if (!connector_state)
6408                 return -ENOMEM;
6409
6410         connector->base.state = connector_state;
6411         return 0;
6412 }
6413
6414 struct intel_connector *intel_connector_alloc(void)
6415 {
6416         struct intel_connector *connector;
6417
6418         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6419         if (!connector)
6420                 return NULL;
6421
6422         if (intel_connector_init(connector) < 0) {
6423                 kfree(connector);
6424                 return NULL;
6425         }
6426
6427         return connector;
6428 }
6429
6430 /* Even simpler default implementation, if there's really no special case to
6431  * consider. */
6432 int intel_connector_dpms(struct drm_connector *connector, int mode)
6433 {
6434         /* All the simple cases only support two dpms states. */
6435         if (mode != DRM_MODE_DPMS_ON)
6436                 mode = DRM_MODE_DPMS_OFF;
6437
6438         if (mode == connector->dpms)
6439                 return 0;
6440
6441         connector->dpms = mode;
6442
6443         /* Only need to change hw state when actually enabled */
6444         if (connector->encoder)
6445                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6446
6447         intel_modeset_check_state(connector->dev);
6448
6449         return 0;
6450 }
6451
6452 /* Simple connector->get_hw_state implementation for encoders that support only
6453  * one connector and no cloning and hence the encoder state determines the state
6454  * of the connector. */
6455 bool intel_connector_get_hw_state(struct intel_connector *connector)
6456 {
6457         enum pipe pipe = 0;
6458         struct intel_encoder *encoder = connector->encoder;
6459
6460         return encoder->get_hw_state(encoder, &pipe);
6461 }
6462
6463 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6464 {
6465         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466                 return crtc_state->fdi_lanes;
6467
6468         return 0;
6469 }
6470
6471 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6472                                      struct intel_crtc_state *pipe_config)
6473 {
6474         struct drm_atomic_state *state = pipe_config->base.state;
6475         struct intel_crtc *other_crtc;
6476         struct intel_crtc_state *other_crtc_state;
6477
6478         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479                       pipe_name(pipe), pipe_config->fdi_lanes);
6480         if (pipe_config->fdi_lanes > 4) {
6481                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482                               pipe_name(pipe), pipe_config->fdi_lanes);
6483                 return -EINVAL;
6484         }
6485
6486         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6487                 if (pipe_config->fdi_lanes > 2) {
6488                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489                                       pipe_config->fdi_lanes);
6490                         return -EINVAL;
6491                 } else {
6492                         return 0;
6493                 }
6494         }
6495
6496         if (INTEL_INFO(dev)->num_pipes == 2)
6497                 return 0;
6498
6499         /* Ivybridge 3 pipe is really complicated */
6500         switch (pipe) {
6501         case PIPE_A:
6502                 return 0;
6503         case PIPE_B:
6504                 if (pipe_config->fdi_lanes <= 2)
6505                         return 0;
6506
6507                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508                 other_crtc_state =
6509                         intel_atomic_get_crtc_state(state, other_crtc);
6510                 if (IS_ERR(other_crtc_state))
6511                         return PTR_ERR(other_crtc_state);
6512
6513                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6514                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515                                       pipe_name(pipe), pipe_config->fdi_lanes);
6516                         return -EINVAL;
6517                 }
6518                 return 0;
6519         case PIPE_C:
6520                 if (pipe_config->fdi_lanes > 2) {
6521                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522                                       pipe_name(pipe), pipe_config->fdi_lanes);
6523                         return -EINVAL;
6524                 }
6525
6526                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527                 other_crtc_state =
6528                         intel_atomic_get_crtc_state(state, other_crtc);
6529                 if (IS_ERR(other_crtc_state))
6530                         return PTR_ERR(other_crtc_state);
6531
6532                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6533                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6534                         return -EINVAL;
6535                 }
6536                 return 0;
6537         default:
6538                 BUG();
6539         }
6540 }
6541
6542 #define RETRY 1
6543 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6544                                        struct intel_crtc_state *pipe_config)
6545 {
6546         struct drm_device *dev = intel_crtc->base.dev;
6547         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548         int lane, link_bw, fdi_dotclock, ret;
6549         bool needs_recompute = false;
6550
6551 retry:
6552         /* FDI is a binary signal running at ~2.7GHz, encoding
6553          * each output octet as 10 bits. The actual frequency
6554          * is stored as a divider into a 100MHz clock, and the
6555          * mode pixel clock is stored in units of 1KHz.
6556          * Hence the bw of each lane in terms of the mode signal
6557          * is:
6558          */
6559         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
6561         fdi_dotclock = adjusted_mode->crtc_clock;
6562
6563         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6564                                            pipe_config->pipe_bpp);
6565
6566         pipe_config->fdi_lanes = lane;
6567
6568         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6569                                link_bw, &pipe_config->fdi_m_n);
6570
6571         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572                                        intel_crtc->pipe, pipe_config);
6573         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6574                 pipe_config->pipe_bpp -= 2*3;
6575                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576                               pipe_config->pipe_bpp);
6577                 needs_recompute = true;
6578                 pipe_config->bw_constrained = true;
6579
6580                 goto retry;
6581         }
6582
6583         if (needs_recompute)
6584                 return RETRY;
6585
6586         return ret;
6587 }
6588
6589 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6590                                      struct intel_crtc_state *pipe_config)
6591 {
6592         if (pipe_config->pipe_bpp > 24)
6593                 return false;
6594
6595         /* HSW can handle pixel rate up to cdclk? */
6596         if (IS_HASWELL(dev_priv->dev))
6597                 return true;
6598
6599         /*
6600          * We compare against max which means we must take
6601          * the increased cdclk requirement into account when
6602          * calculating the new cdclk.
6603          *
6604          * Should measure whether using a lower cdclk w/o IPS
6605          */
6606         return ilk_pipe_pixel_rate(pipe_config) <=
6607                 dev_priv->max_cdclk_freq * 95 / 100;
6608 }
6609
6610 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6611                                    struct intel_crtc_state *pipe_config)
6612 {
6613         struct drm_device *dev = crtc->base.dev;
6614         struct drm_i915_private *dev_priv = dev->dev_private;
6615
6616         pipe_config->ips_enabled = i915.enable_ips &&
6617                 hsw_crtc_supports_ips(crtc) &&
6618                 pipe_config_supports_ips(dev_priv, pipe_config);
6619 }
6620
6621 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6622                                      struct intel_crtc_state *pipe_config)
6623 {
6624         struct drm_device *dev = crtc->base.dev;
6625         struct drm_i915_private *dev_priv = dev->dev_private;
6626         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6627
6628         /* FIXME should check pixel clock limits on all platforms */
6629         if (INTEL_INFO(dev)->gen < 4) {
6630                 int clock_limit = dev_priv->max_cdclk_freq;
6631
6632                 /*
6633                  * Enable pixel doubling when the dot clock
6634                  * is > 90% of the (display) core speed.
6635                  *
6636                  * GDG double wide on either pipe,
6637                  * otherwise pipe A only.
6638                  */
6639                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6640                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6641                         clock_limit *= 2;
6642                         pipe_config->double_wide = true;
6643                 }
6644
6645                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6646                         return -EINVAL;
6647         }
6648
6649         /*
6650          * Pipe horizontal size must be even in:
6651          * - DVO ganged mode
6652          * - LVDS dual channel mode
6653          * - Double wide pipe
6654          */
6655         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6656              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6657                 pipe_config->pipe_src_w &= ~1;
6658
6659         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6660          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6661          */
6662         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6663                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6664                 return -EINVAL;
6665
6666         if (HAS_IPS(dev))
6667                 hsw_compute_ips_config(crtc, pipe_config);
6668
6669         if (pipe_config->has_pch_encoder)
6670                 return ironlake_fdi_compute_config(crtc, pipe_config);
6671
6672         return 0;
6673 }
6674
6675 static int skylake_get_display_clock_speed(struct drm_device *dev)
6676 {
6677         struct drm_i915_private *dev_priv = to_i915(dev);
6678         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6679         uint32_t cdctl = I915_READ(CDCLK_CTL);
6680         uint32_t linkrate;
6681
6682         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6683                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6684
6685         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6686                 return 540000;
6687
6688         linkrate = (I915_READ(DPLL_CTRL1) &
6689                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6690
6691         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6692             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6693                 /* vco 8640 */
6694                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6695                 case CDCLK_FREQ_450_432:
6696                         return 432000;
6697                 case CDCLK_FREQ_337_308:
6698                         return 308570;
6699                 case CDCLK_FREQ_675_617:
6700                         return 617140;
6701                 default:
6702                         WARN(1, "Unknown cd freq selection\n");
6703                 }
6704         } else {
6705                 /* vco 8100 */
6706                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6707                 case CDCLK_FREQ_450_432:
6708                         return 450000;
6709                 case CDCLK_FREQ_337_308:
6710                         return 337500;
6711                 case CDCLK_FREQ_675_617:
6712                         return 675000;
6713                 default:
6714                         WARN(1, "Unknown cd freq selection\n");
6715                 }
6716         }
6717
6718         /* error case, do as if DPLL0 isn't enabled */
6719         return 24000;
6720 }
6721
6722 static int broxton_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         struct drm_i915_private *dev_priv = to_i915(dev);
6725         uint32_t cdctl = I915_READ(CDCLK_CTL);
6726         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6727         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6728         int cdclk;
6729
6730         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6731                 return 19200;
6732
6733         cdclk = 19200 * pll_ratio / 2;
6734
6735         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6736         case BXT_CDCLK_CD2X_DIV_SEL_1:
6737                 return cdclk;  /* 576MHz or 624MHz */
6738         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6739                 return cdclk * 2 / 3; /* 384MHz */
6740         case BXT_CDCLK_CD2X_DIV_SEL_2:
6741                 return cdclk / 2; /* 288MHz */
6742         case BXT_CDCLK_CD2X_DIV_SEL_4:
6743                 return cdclk / 4; /* 144MHz */
6744         }
6745
6746         /* error case, do as if DE PLL isn't enabled */
6747         return 19200;
6748 }
6749
6750 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6751 {
6752         struct drm_i915_private *dev_priv = dev->dev_private;
6753         uint32_t lcpll = I915_READ(LCPLL_CTL);
6754         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6755
6756         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6757                 return 800000;
6758         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6759                 return 450000;
6760         else if (freq == LCPLL_CLK_FREQ_450)
6761                 return 450000;
6762         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6763                 return 540000;
6764         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6765                 return 337500;
6766         else
6767                 return 675000;
6768 }
6769
6770 static int haswell_get_display_clock_speed(struct drm_device *dev)
6771 {
6772         struct drm_i915_private *dev_priv = dev->dev_private;
6773         uint32_t lcpll = I915_READ(LCPLL_CTL);
6774         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6775
6776         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6777                 return 800000;
6778         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6779                 return 450000;
6780         else if (freq == LCPLL_CLK_FREQ_450)
6781                 return 450000;
6782         else if (IS_HSW_ULT(dev))
6783                 return 337500;
6784         else
6785                 return 540000;
6786 }
6787
6788 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6789 {
6790         struct drm_i915_private *dev_priv = dev->dev_private;
6791         u32 val;
6792         int divider;
6793
6794         if (dev_priv->hpll_freq == 0)
6795                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6796
6797         mutex_lock(&dev_priv->sb_lock);
6798         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6799         mutex_unlock(&dev_priv->sb_lock);
6800
6801         divider = val & DISPLAY_FREQUENCY_VALUES;
6802
6803         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6804              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6805              "cdclk change in progress\n");
6806
6807         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6808 }
6809
6810 static int ilk_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         return 450000;
6813 }
6814
6815 static int i945_get_display_clock_speed(struct drm_device *dev)
6816 {
6817         return 400000;
6818 }
6819
6820 static int i915_get_display_clock_speed(struct drm_device *dev)
6821 {
6822         return 333333;
6823 }
6824
6825 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6826 {
6827         return 200000;
6828 }
6829
6830 static int pnv_get_display_clock_speed(struct drm_device *dev)
6831 {
6832         u16 gcfgc = 0;
6833
6834         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6835
6836         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6837         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6838                 return 266667;
6839         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6840                 return 333333;
6841         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6842                 return 444444;
6843         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6844                 return 200000;
6845         default:
6846                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6847         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6848                 return 133333;
6849         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6850                 return 166667;
6851         }
6852 }
6853
6854 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6855 {
6856         u16 gcfgc = 0;
6857
6858         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6859
6860         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6861                 return 133333;
6862         else {
6863                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6864                 case GC_DISPLAY_CLOCK_333_MHZ:
6865                         return 333333;
6866                 default:
6867                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6868                         return 190000;
6869                 }
6870         }
6871 }
6872
6873 static int i865_get_display_clock_speed(struct drm_device *dev)
6874 {
6875         return 266667;
6876 }
6877
6878 static int i85x_get_display_clock_speed(struct drm_device *dev)
6879 {
6880         u16 hpllcc = 0;
6881
6882         /*
6883          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6884          * encoding is different :(
6885          * FIXME is this the right way to detect 852GM/852GMV?
6886          */
6887         if (dev->pdev->revision == 0x1)
6888                 return 133333;
6889
6890         pci_bus_read_config_word(dev->pdev->bus,
6891                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6892
6893         /* Assume that the hardware is in the high speed state.  This
6894          * should be the default.
6895          */
6896         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6897         case GC_CLOCK_133_200:
6898         case GC_CLOCK_133_200_2:
6899         case GC_CLOCK_100_200:
6900                 return 200000;
6901         case GC_CLOCK_166_250:
6902                 return 250000;
6903         case GC_CLOCK_100_133:
6904                 return 133333;
6905         case GC_CLOCK_133_266:
6906         case GC_CLOCK_133_266_2:
6907         case GC_CLOCK_166_266:
6908                 return 266667;
6909         }
6910
6911         /* Shouldn't happen */
6912         return 0;
6913 }
6914
6915 static int i830_get_display_clock_speed(struct drm_device *dev)
6916 {
6917         return 133333;
6918 }
6919
6920 static unsigned int intel_hpll_vco(struct drm_device *dev)
6921 {
6922         struct drm_i915_private *dev_priv = dev->dev_private;
6923         static const unsigned int blb_vco[8] = {
6924                 [0] = 3200000,
6925                 [1] = 4000000,
6926                 [2] = 5333333,
6927                 [3] = 4800000,
6928                 [4] = 6400000,
6929         };
6930         static const unsigned int pnv_vco[8] = {
6931                 [0] = 3200000,
6932                 [1] = 4000000,
6933                 [2] = 5333333,
6934                 [3] = 4800000,
6935                 [4] = 2666667,
6936         };
6937         static const unsigned int cl_vco[8] = {
6938                 [0] = 3200000,
6939                 [1] = 4000000,
6940                 [2] = 5333333,
6941                 [3] = 6400000,
6942                 [4] = 3333333,
6943                 [5] = 3566667,
6944                 [6] = 4266667,
6945         };
6946         static const unsigned int elk_vco[8] = {
6947                 [0] = 3200000,
6948                 [1] = 4000000,
6949                 [2] = 5333333,
6950                 [3] = 4800000,
6951         };
6952         static const unsigned int ctg_vco[8] = {
6953                 [0] = 3200000,
6954                 [1] = 4000000,
6955                 [2] = 5333333,
6956                 [3] = 6400000,
6957                 [4] = 2666667,
6958                 [5] = 4266667,
6959         };
6960         const unsigned int *vco_table;
6961         unsigned int vco;
6962         uint8_t tmp = 0;
6963
6964         /* FIXME other chipsets? */
6965         if (IS_GM45(dev))
6966                 vco_table = ctg_vco;
6967         else if (IS_G4X(dev))
6968                 vco_table = elk_vco;
6969         else if (IS_CRESTLINE(dev))
6970                 vco_table = cl_vco;
6971         else if (IS_PINEVIEW(dev))
6972                 vco_table = pnv_vco;
6973         else if (IS_G33(dev))
6974                 vco_table = blb_vco;
6975         else
6976                 return 0;
6977
6978         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6979
6980         vco = vco_table[tmp & 0x7];
6981         if (vco == 0)
6982                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6983         else
6984                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6985
6986         return vco;
6987 }
6988
6989 static int gm45_get_display_clock_speed(struct drm_device *dev)
6990 {
6991         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6992         uint16_t tmp = 0;
6993
6994         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6995
6996         cdclk_sel = (tmp >> 12) & 0x1;
6997
6998         switch (vco) {
6999         case 2666667:
7000         case 4000000:
7001         case 5333333:
7002                 return cdclk_sel ? 333333 : 222222;
7003         case 3200000:
7004                 return cdclk_sel ? 320000 : 228571;
7005         default:
7006                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7007                 return 222222;
7008         }
7009 }
7010
7011 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7012 {
7013         static const uint8_t div_3200[] = { 16, 10,  8 };
7014         static const uint8_t div_4000[] = { 20, 12, 10 };
7015         static const uint8_t div_5333[] = { 24, 16, 14 };
7016         const uint8_t *div_table;
7017         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7018         uint16_t tmp = 0;
7019
7020         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7021
7022         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7023
7024         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7025                 goto fail;
7026
7027         switch (vco) {
7028         case 3200000:
7029                 div_table = div_3200;
7030                 break;
7031         case 4000000:
7032                 div_table = div_4000;
7033                 break;
7034         case 5333333:
7035                 div_table = div_5333;
7036                 break;
7037         default:
7038                 goto fail;
7039         }
7040
7041         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7042
7043 fail:
7044         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7045         return 200000;
7046 }
7047
7048 static int g33_get_display_clock_speed(struct drm_device *dev)
7049 {
7050         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7051         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7052         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7053         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7054         const uint8_t *div_table;
7055         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7056         uint16_t tmp = 0;
7057
7058         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7059
7060         cdclk_sel = (tmp >> 4) & 0x7;
7061
7062         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7063                 goto fail;
7064
7065         switch (vco) {
7066         case 3200000:
7067                 div_table = div_3200;
7068                 break;
7069         case 4000000:
7070                 div_table = div_4000;
7071                 break;
7072         case 4800000:
7073                 div_table = div_4800;
7074                 break;
7075         case 5333333:
7076                 div_table = div_5333;
7077                 break;
7078         default:
7079                 goto fail;
7080         }
7081
7082         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7083
7084 fail:
7085         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7086         return 190476;
7087 }
7088
7089 static void
7090 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7091 {
7092         while (*num > DATA_LINK_M_N_MASK ||
7093                *den > DATA_LINK_M_N_MASK) {
7094                 *num >>= 1;
7095                 *den >>= 1;
7096         }
7097 }
7098
7099 static void compute_m_n(unsigned int m, unsigned int n,
7100                         uint32_t *ret_m, uint32_t *ret_n)
7101 {
7102         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7103         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7104         intel_reduce_m_n_ratio(ret_m, ret_n);
7105 }
7106
7107 void
7108 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7109                        int pixel_clock, int link_clock,
7110                        struct intel_link_m_n *m_n)
7111 {
7112         m_n->tu = 64;
7113
7114         compute_m_n(bits_per_pixel * pixel_clock,
7115                     link_clock * nlanes * 8,
7116                     &m_n->gmch_m, &m_n->gmch_n);
7117
7118         compute_m_n(pixel_clock, link_clock,
7119                     &m_n->link_m, &m_n->link_n);
7120 }
7121
7122 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7123 {
7124         if (i915.panel_use_ssc >= 0)
7125                 return i915.panel_use_ssc != 0;
7126         return dev_priv->vbt.lvds_use_ssc
7127                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7128 }
7129
7130 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7131                            int num_connectors)
7132 {
7133         struct drm_device *dev = crtc_state->base.crtc->dev;
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         int refclk;
7136
7137         WARN_ON(!crtc_state->base.state);
7138
7139         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7140                 refclk = 100000;
7141         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7142             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7143                 refclk = dev_priv->vbt.lvds_ssc_freq;
7144                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7145         } else if (!IS_GEN2(dev)) {
7146                 refclk = 96000;
7147         } else {
7148                 refclk = 48000;
7149         }
7150
7151         return refclk;
7152 }
7153
7154 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7155 {
7156         return (1 << dpll->n) << 16 | dpll->m2;
7157 }
7158
7159 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7160 {
7161         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7162 }
7163
7164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7165                                      struct intel_crtc_state *crtc_state,
7166                                      intel_clock_t *reduced_clock)
7167 {
7168         struct drm_device *dev = crtc->base.dev;
7169         u32 fp, fp2 = 0;
7170
7171         if (IS_PINEVIEW(dev)) {
7172                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7173                 if (reduced_clock)
7174                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7175         } else {
7176                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7177                 if (reduced_clock)
7178                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7179         }
7180
7181         crtc_state->dpll_hw_state.fp0 = fp;
7182
7183         crtc->lowfreq_avail = false;
7184         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7185             reduced_clock) {
7186                 crtc_state->dpll_hw_state.fp1 = fp2;
7187                 crtc->lowfreq_avail = true;
7188         } else {
7189                 crtc_state->dpll_hw_state.fp1 = fp;
7190         }
7191 }
7192
7193 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7194                 pipe)
7195 {
7196         u32 reg_val;
7197
7198         /*
7199          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7200          * and set it to a reasonable value instead.
7201          */
7202         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7203         reg_val &= 0xffffff00;
7204         reg_val |= 0x00000030;
7205         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7206
7207         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7208         reg_val &= 0x8cffffff;
7209         reg_val = 0x8c000000;
7210         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7211
7212         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7213         reg_val &= 0xffffff00;
7214         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7215
7216         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7217         reg_val &= 0x00ffffff;
7218         reg_val |= 0xb0000000;
7219         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7220 }
7221
7222 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7223                                          struct intel_link_m_n *m_n)
7224 {
7225         struct drm_device *dev = crtc->base.dev;
7226         struct drm_i915_private *dev_priv = dev->dev_private;
7227         int pipe = crtc->pipe;
7228
7229         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7230         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7231         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7232         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7233 }
7234
7235 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7236                                          struct intel_link_m_n *m_n,
7237                                          struct intel_link_m_n *m2_n2)
7238 {
7239         struct drm_device *dev = crtc->base.dev;
7240         struct drm_i915_private *dev_priv = dev->dev_private;
7241         int pipe = crtc->pipe;
7242         enum transcoder transcoder = crtc->config->cpu_transcoder;
7243
7244         if (INTEL_INFO(dev)->gen >= 5) {
7245                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7246                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7247                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7248                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7249                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7250                  * for gen < 8) and if DRRS is supported (to make sure the
7251                  * registers are not unnecessarily accessed).
7252                  */
7253                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7254                         crtc->config->has_drrs) {
7255                         I915_WRITE(PIPE_DATA_M2(transcoder),
7256                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7257                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7258                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7259                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7260                 }
7261         } else {
7262                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7263                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7264                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7265                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7266         }
7267 }
7268
7269 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7270 {
7271         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7272
7273         if (m_n == M1_N1) {
7274                 dp_m_n = &crtc->config->dp_m_n;
7275                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7276         } else if (m_n == M2_N2) {
7277
7278                 /*
7279                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7280                  * needs to be programmed into M1_N1.
7281                  */
7282                 dp_m_n = &crtc->config->dp_m2_n2;
7283         } else {
7284                 DRM_ERROR("Unsupported divider value\n");
7285                 return;
7286         }
7287
7288         if (crtc->config->has_pch_encoder)
7289                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7290         else
7291                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7292 }
7293
7294 static void vlv_compute_dpll(struct intel_crtc *crtc,
7295                              struct intel_crtc_state *pipe_config)
7296 {
7297         u32 dpll, dpll_md;
7298
7299         /*
7300          * Enable DPIO clock input. We should never disable the reference
7301          * clock for pipe B, since VGA hotplug / manual detection depends
7302          * on it.
7303          */
7304         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7305                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7306         /* We should never disable this, set it here for state tracking */
7307         if (crtc->pipe == PIPE_B)
7308                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7309         dpll |= DPLL_VCO_ENABLE;
7310         pipe_config->dpll_hw_state.dpll = dpll;
7311
7312         dpll_md = (pipe_config->pixel_multiplier - 1)
7313                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7314         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7315 }
7316
7317 static void vlv_prepare_pll(struct intel_crtc *crtc,
7318                             const struct intel_crtc_state *pipe_config)
7319 {
7320         struct drm_device *dev = crtc->base.dev;
7321         struct drm_i915_private *dev_priv = dev->dev_private;
7322         int pipe = crtc->pipe;
7323         u32 mdiv;
7324         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7325         u32 coreclk, reg_val;
7326
7327         mutex_lock(&dev_priv->sb_lock);
7328
7329         bestn = pipe_config->dpll.n;
7330         bestm1 = pipe_config->dpll.m1;
7331         bestm2 = pipe_config->dpll.m2;
7332         bestp1 = pipe_config->dpll.p1;
7333         bestp2 = pipe_config->dpll.p2;
7334
7335         /* See eDP HDMI DPIO driver vbios notes doc */
7336
7337         /* PLL B needs special handling */
7338         if (pipe == PIPE_B)
7339                 vlv_pllb_recal_opamp(dev_priv, pipe);
7340
7341         /* Set up Tx target for periodic Rcomp update */
7342         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7343
7344         /* Disable target IRef on PLL */
7345         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7346         reg_val &= 0x00ffffff;
7347         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7348
7349         /* Disable fast lock */
7350         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7351
7352         /* Set idtafcrecal before PLL is enabled */
7353         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7354         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7355         mdiv |= ((bestn << DPIO_N_SHIFT));
7356         mdiv |= (1 << DPIO_K_SHIFT);
7357
7358         /*
7359          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7360          * but we don't support that).
7361          * Note: don't use the DAC post divider as it seems unstable.
7362          */
7363         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7364         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7365
7366         mdiv |= DPIO_ENABLE_CALIBRATION;
7367         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7368
7369         /* Set HBR and RBR LPF coefficients */
7370         if (pipe_config->port_clock == 162000 ||
7371             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7372             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7373                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7374                                  0x009f0003);
7375         else
7376                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7377                                  0x00d0000f);
7378
7379         if (pipe_config->has_dp_encoder) {
7380                 /* Use SSC source */
7381                 if (pipe == PIPE_A)
7382                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7383                                          0x0df40000);
7384                 else
7385                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7386                                          0x0df70000);
7387         } else { /* HDMI or VGA */
7388                 /* Use bend source */
7389                 if (pipe == PIPE_A)
7390                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391                                          0x0df70000);
7392                 else
7393                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394                                          0x0df40000);
7395         }
7396
7397         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7398         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7399         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7400             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7401                 coreclk |= 0x01000000;
7402         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7403
7404         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7405         mutex_unlock(&dev_priv->sb_lock);
7406 }
7407
7408 static void chv_compute_dpll(struct intel_crtc *crtc,
7409                              struct intel_crtc_state *pipe_config)
7410 {
7411         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7412                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7413                 DPLL_VCO_ENABLE;
7414         if (crtc->pipe != PIPE_A)
7415                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7416
7417         pipe_config->dpll_hw_state.dpll_md =
7418                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7419 }
7420
7421 static void chv_prepare_pll(struct intel_crtc *crtc,
7422                             const struct intel_crtc_state *pipe_config)
7423 {
7424         struct drm_device *dev = crtc->base.dev;
7425         struct drm_i915_private *dev_priv = dev->dev_private;
7426         int pipe = crtc->pipe;
7427         int dpll_reg = DPLL(crtc->pipe);
7428         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7429         u32 loopfilter, tribuf_calcntr;
7430         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7431         u32 dpio_val;
7432         int vco;
7433
7434         bestn = pipe_config->dpll.n;
7435         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7436         bestm1 = pipe_config->dpll.m1;
7437         bestm2 = pipe_config->dpll.m2 >> 22;
7438         bestp1 = pipe_config->dpll.p1;
7439         bestp2 = pipe_config->dpll.p2;
7440         vco = pipe_config->dpll.vco;
7441         dpio_val = 0;
7442         loopfilter = 0;
7443
7444         /*
7445          * Enable Refclk and SSC
7446          */
7447         I915_WRITE(dpll_reg,
7448                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7449
7450         mutex_lock(&dev_priv->sb_lock);
7451
7452         /* p1 and p2 divider */
7453         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7454                         5 << DPIO_CHV_S1_DIV_SHIFT |
7455                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7456                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7457                         1 << DPIO_CHV_K_DIV_SHIFT);
7458
7459         /* Feedback post-divider - m2 */
7460         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7461
7462         /* Feedback refclk divider - n and m1 */
7463         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7464                         DPIO_CHV_M1_DIV_BY_2 |
7465                         1 << DPIO_CHV_N_DIV_SHIFT);
7466
7467         /* M2 fraction division */
7468         if (bestm2_frac)
7469                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7470
7471         /* M2 fraction division enable */
7472         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7473         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7474         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7475         if (bestm2_frac)
7476                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7477         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7478
7479         /* Program digital lock detect threshold */
7480         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7481         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7482                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7483         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7484         if (!bestm2_frac)
7485                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7486         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7487
7488         /* Loop filter */
7489         if (vco == 5400000) {
7490                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7491                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7492                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7493                 tribuf_calcntr = 0x9;
7494         } else if (vco <= 6200000) {
7495                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7496                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7497                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498                 tribuf_calcntr = 0x9;
7499         } else if (vco <= 6480000) {
7500                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7501                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7502                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503                 tribuf_calcntr = 0x8;
7504         } else {
7505                 /* Not supported. Apply the same limits as in the max case */
7506                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7507                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7508                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7509                 tribuf_calcntr = 0;
7510         }
7511         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7512
7513         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7514         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7515         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7516         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7517
7518         /* AFC Recal */
7519         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7520                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7521                         DPIO_AFC_RECAL);
7522
7523         mutex_unlock(&dev_priv->sb_lock);
7524 }
7525
7526 /**
7527  * vlv_force_pll_on - forcibly enable just the PLL
7528  * @dev_priv: i915 private structure
7529  * @pipe: pipe PLL to enable
7530  * @dpll: PLL configuration
7531  *
7532  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7533  * in cases where we need the PLL enabled even when @pipe is not going to
7534  * be enabled.
7535  */
7536 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7537                       const struct dpll *dpll)
7538 {
7539         struct intel_crtc *crtc =
7540                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7541         struct intel_crtc_state pipe_config = {
7542                 .base.crtc = &crtc->base,
7543                 .pixel_multiplier = 1,
7544                 .dpll = *dpll,
7545         };
7546
7547         if (IS_CHERRYVIEW(dev)) {
7548                 chv_compute_dpll(crtc, &pipe_config);
7549                 chv_prepare_pll(crtc, &pipe_config);
7550                 chv_enable_pll(crtc, &pipe_config);
7551         } else {
7552                 vlv_compute_dpll(crtc, &pipe_config);
7553                 vlv_prepare_pll(crtc, &pipe_config);
7554                 vlv_enable_pll(crtc, &pipe_config);
7555         }
7556 }
7557
7558 /**
7559  * vlv_force_pll_off - forcibly disable just the PLL
7560  * @dev_priv: i915 private structure
7561  * @pipe: pipe PLL to disable
7562  *
7563  * Disable the PLL for @pipe. To be used in cases where we need
7564  * the PLL enabled even when @pipe is not going to be enabled.
7565  */
7566 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7567 {
7568         if (IS_CHERRYVIEW(dev))
7569                 chv_disable_pll(to_i915(dev), pipe);
7570         else
7571                 vlv_disable_pll(to_i915(dev), pipe);
7572 }
7573
7574 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7575                               struct intel_crtc_state *crtc_state,
7576                               intel_clock_t *reduced_clock,
7577                               int num_connectors)
7578 {
7579         struct drm_device *dev = crtc->base.dev;
7580         struct drm_i915_private *dev_priv = dev->dev_private;
7581         u32 dpll;
7582         bool is_sdvo;
7583         struct dpll *clock = &crtc_state->dpll;
7584
7585         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7586
7587         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7588                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7589
7590         dpll = DPLL_VGA_MODE_DIS;
7591
7592         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7593                 dpll |= DPLLB_MODE_LVDS;
7594         else
7595                 dpll |= DPLLB_MODE_DAC_SERIAL;
7596
7597         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7598                 dpll |= (crtc_state->pixel_multiplier - 1)
7599                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7600         }
7601
7602         if (is_sdvo)
7603                 dpll |= DPLL_SDVO_HIGH_SPEED;
7604
7605         if (crtc_state->has_dp_encoder)
7606                 dpll |= DPLL_SDVO_HIGH_SPEED;
7607
7608         /* compute bitmask from p1 value */
7609         if (IS_PINEVIEW(dev))
7610                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7611         else {
7612                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7613                 if (IS_G4X(dev) && reduced_clock)
7614                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7615         }
7616         switch (clock->p2) {
7617         case 5:
7618                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7619                 break;
7620         case 7:
7621                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7622                 break;
7623         case 10:
7624                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7625                 break;
7626         case 14:
7627                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7628                 break;
7629         }
7630         if (INTEL_INFO(dev)->gen >= 4)
7631                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7632
7633         if (crtc_state->sdvo_tv_clock)
7634                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7635         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7636                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7637                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7638         else
7639                 dpll |= PLL_REF_INPUT_DREFCLK;
7640
7641         dpll |= DPLL_VCO_ENABLE;
7642         crtc_state->dpll_hw_state.dpll = dpll;
7643
7644         if (INTEL_INFO(dev)->gen >= 4) {
7645                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7646                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7647                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7648         }
7649 }
7650
7651 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7652                               struct intel_crtc_state *crtc_state,
7653                               intel_clock_t *reduced_clock,
7654                               int num_connectors)
7655 {
7656         struct drm_device *dev = crtc->base.dev;
7657         struct drm_i915_private *dev_priv = dev->dev_private;
7658         u32 dpll;
7659         struct dpll *clock = &crtc_state->dpll;
7660
7661         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7662
7663         dpll = DPLL_VGA_MODE_DIS;
7664
7665         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7666                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7667         } else {
7668                 if (clock->p1 == 2)
7669                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7670                 else
7671                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7672                 if (clock->p2 == 4)
7673                         dpll |= PLL_P2_DIVIDE_BY_4;
7674         }
7675
7676         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7677                 dpll |= DPLL_DVO_2X_MODE;
7678
7679         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7680                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7681                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7682         else
7683                 dpll |= PLL_REF_INPUT_DREFCLK;
7684
7685         dpll |= DPLL_VCO_ENABLE;
7686         crtc_state->dpll_hw_state.dpll = dpll;
7687 }
7688
7689 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7690 {
7691         struct drm_device *dev = intel_crtc->base.dev;
7692         struct drm_i915_private *dev_priv = dev->dev_private;
7693         enum pipe pipe = intel_crtc->pipe;
7694         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7695         struct drm_display_mode *adjusted_mode =
7696                 &intel_crtc->config->base.adjusted_mode;
7697         uint32_t crtc_vtotal, crtc_vblank_end;
7698         int vsyncshift = 0;
7699
7700         /* We need to be careful not to changed the adjusted mode, for otherwise
7701          * the hw state checker will get angry at the mismatch. */
7702         crtc_vtotal = adjusted_mode->crtc_vtotal;
7703         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7704
7705         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7706                 /* the chip adds 2 halflines automatically */
7707                 crtc_vtotal -= 1;
7708                 crtc_vblank_end -= 1;
7709
7710                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7711                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7712                 else
7713                         vsyncshift = adjusted_mode->crtc_hsync_start -
7714                                 adjusted_mode->crtc_htotal / 2;
7715                 if (vsyncshift < 0)
7716                         vsyncshift += adjusted_mode->crtc_htotal;
7717         }
7718
7719         if (INTEL_INFO(dev)->gen > 3)
7720                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7721
7722         I915_WRITE(HTOTAL(cpu_transcoder),
7723                    (adjusted_mode->crtc_hdisplay - 1) |
7724                    ((adjusted_mode->crtc_htotal - 1) << 16));
7725         I915_WRITE(HBLANK(cpu_transcoder),
7726                    (adjusted_mode->crtc_hblank_start - 1) |
7727                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7728         I915_WRITE(HSYNC(cpu_transcoder),
7729                    (adjusted_mode->crtc_hsync_start - 1) |
7730                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7731
7732         I915_WRITE(VTOTAL(cpu_transcoder),
7733                    (adjusted_mode->crtc_vdisplay - 1) |
7734                    ((crtc_vtotal - 1) << 16));
7735         I915_WRITE(VBLANK(cpu_transcoder),
7736                    (adjusted_mode->crtc_vblank_start - 1) |
7737                    ((crtc_vblank_end - 1) << 16));
7738         I915_WRITE(VSYNC(cpu_transcoder),
7739                    (adjusted_mode->crtc_vsync_start - 1) |
7740                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7741
7742         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7743          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7744          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7745          * bits. */
7746         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7747             (pipe == PIPE_B || pipe == PIPE_C))
7748                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7749
7750         /* pipesrc controls the size that is scaled from, which should
7751          * always be the user's requested size.
7752          */
7753         I915_WRITE(PIPESRC(pipe),
7754                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7755                    (intel_crtc->config->pipe_src_h - 1));
7756 }
7757
7758 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7759                                    struct intel_crtc_state *pipe_config)
7760 {
7761         struct drm_device *dev = crtc->base.dev;
7762         struct drm_i915_private *dev_priv = dev->dev_private;
7763         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7764         uint32_t tmp;
7765
7766         tmp = I915_READ(HTOTAL(cpu_transcoder));
7767         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7768         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7769         tmp = I915_READ(HBLANK(cpu_transcoder));
7770         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7771         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7772         tmp = I915_READ(HSYNC(cpu_transcoder));
7773         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7774         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7775
7776         tmp = I915_READ(VTOTAL(cpu_transcoder));
7777         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7778         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7779         tmp = I915_READ(VBLANK(cpu_transcoder));
7780         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7781         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7782         tmp = I915_READ(VSYNC(cpu_transcoder));
7783         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7784         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7785
7786         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7787                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7788                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7789                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7790         }
7791
7792         tmp = I915_READ(PIPESRC(crtc->pipe));
7793         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7794         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7795
7796         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7797         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7798 }
7799
7800 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7801                                  struct intel_crtc_state *pipe_config)
7802 {
7803         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7804         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7805         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7806         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7807
7808         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7809         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7810         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7811         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7812
7813         mode->flags = pipe_config->base.adjusted_mode.flags;
7814         mode->type = DRM_MODE_TYPE_DRIVER;
7815
7816         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7817         mode->flags |= pipe_config->base.adjusted_mode.flags;
7818
7819         mode->hsync = drm_mode_hsync(mode);
7820         mode->vrefresh = drm_mode_vrefresh(mode);
7821         drm_mode_set_name(mode);
7822 }
7823
7824 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7825 {
7826         struct drm_device *dev = intel_crtc->base.dev;
7827         struct drm_i915_private *dev_priv = dev->dev_private;
7828         uint32_t pipeconf;
7829
7830         pipeconf = 0;
7831
7832         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7833             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7834                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7835
7836         if (intel_crtc->config->double_wide)
7837                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7838
7839         /* only g4x and later have fancy bpc/dither controls */
7840         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7841                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7842                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7843                         pipeconf |= PIPECONF_DITHER_EN |
7844                                     PIPECONF_DITHER_TYPE_SP;
7845
7846                 switch (intel_crtc->config->pipe_bpp) {
7847                 case 18:
7848                         pipeconf |= PIPECONF_6BPC;
7849                         break;
7850                 case 24:
7851                         pipeconf |= PIPECONF_8BPC;
7852                         break;
7853                 case 30:
7854                         pipeconf |= PIPECONF_10BPC;
7855                         break;
7856                 default:
7857                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7858                         BUG();
7859                 }
7860         }
7861
7862         if (HAS_PIPE_CXSR(dev)) {
7863                 if (intel_crtc->lowfreq_avail) {
7864                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7865                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7866                 } else {
7867                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7868                 }
7869         }
7870
7871         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7872                 if (INTEL_INFO(dev)->gen < 4 ||
7873                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7874                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7875                 else
7876                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7877         } else
7878                 pipeconf |= PIPECONF_PROGRESSIVE;
7879
7880         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7881                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7882
7883         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7884         POSTING_READ(PIPECONF(intel_crtc->pipe));
7885 }
7886
7887 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7888                                    struct intel_crtc_state *crtc_state)
7889 {
7890         struct drm_device *dev = crtc->base.dev;
7891         struct drm_i915_private *dev_priv = dev->dev_private;
7892         int refclk, num_connectors = 0;
7893         intel_clock_t clock;
7894         bool ok;
7895         bool is_dsi = false;
7896         struct intel_encoder *encoder;
7897         const intel_limit_t *limit;
7898         struct drm_atomic_state *state = crtc_state->base.state;
7899         struct drm_connector *connector;
7900         struct drm_connector_state *connector_state;
7901         int i;
7902
7903         memset(&crtc_state->dpll_hw_state, 0,
7904                sizeof(crtc_state->dpll_hw_state));
7905
7906         for_each_connector_in_state(state, connector, connector_state, i) {
7907                 if (connector_state->crtc != &crtc->base)
7908                         continue;
7909
7910                 encoder = to_intel_encoder(connector_state->best_encoder);
7911
7912                 switch (encoder->type) {
7913                 case INTEL_OUTPUT_DSI:
7914                         is_dsi = true;
7915                         break;
7916                 default:
7917                         break;
7918                 }
7919
7920                 num_connectors++;
7921         }
7922
7923         if (is_dsi)
7924                 return 0;
7925
7926         if (!crtc_state->clock_set) {
7927                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7928
7929                 /*
7930                  * Returns a set of divisors for the desired target clock with
7931                  * the given refclk, or FALSE.  The returned values represent
7932                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7933                  * 2) / p1 / p2.
7934                  */
7935                 limit = intel_limit(crtc_state, refclk);
7936                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7937                                                  crtc_state->port_clock,
7938                                                  refclk, NULL, &clock);
7939                 if (!ok) {
7940                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7941                         return -EINVAL;
7942                 }
7943
7944                 /* Compat-code for transition, will disappear. */
7945                 crtc_state->dpll.n = clock.n;
7946                 crtc_state->dpll.m1 = clock.m1;
7947                 crtc_state->dpll.m2 = clock.m2;
7948                 crtc_state->dpll.p1 = clock.p1;
7949                 crtc_state->dpll.p2 = clock.p2;
7950         }
7951
7952         if (IS_GEN2(dev)) {
7953                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7954                                   num_connectors);
7955         } else if (IS_CHERRYVIEW(dev)) {
7956                 chv_compute_dpll(crtc, crtc_state);
7957         } else if (IS_VALLEYVIEW(dev)) {
7958                 vlv_compute_dpll(crtc, crtc_state);
7959         } else {
7960                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7961                                   num_connectors);
7962         }
7963
7964         return 0;
7965 }
7966
7967 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7968                                  struct intel_crtc_state *pipe_config)
7969 {
7970         struct drm_device *dev = crtc->base.dev;
7971         struct drm_i915_private *dev_priv = dev->dev_private;
7972         uint32_t tmp;
7973
7974         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7975                 return;
7976
7977         tmp = I915_READ(PFIT_CONTROL);
7978         if (!(tmp & PFIT_ENABLE))
7979                 return;
7980
7981         /* Check whether the pfit is attached to our pipe. */
7982         if (INTEL_INFO(dev)->gen < 4) {
7983                 if (crtc->pipe != PIPE_B)
7984                         return;
7985         } else {
7986                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7987                         return;
7988         }
7989
7990         pipe_config->gmch_pfit.control = tmp;
7991         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7992         if (INTEL_INFO(dev)->gen < 5)
7993                 pipe_config->gmch_pfit.lvds_border_bits =
7994                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7995 }
7996
7997 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7998                                struct intel_crtc_state *pipe_config)
7999 {
8000         struct drm_device *dev = crtc->base.dev;
8001         struct drm_i915_private *dev_priv = dev->dev_private;
8002         int pipe = pipe_config->cpu_transcoder;
8003         intel_clock_t clock;
8004         u32 mdiv;
8005         int refclk = 100000;
8006
8007         /* In case of MIPI DPLL will not even be used */
8008         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8009                 return;
8010
8011         mutex_lock(&dev_priv->sb_lock);
8012         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8013         mutex_unlock(&dev_priv->sb_lock);
8014
8015         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8016         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8017         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8018         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8019         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8020
8021         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8022 }
8023
8024 static void
8025 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8026                               struct intel_initial_plane_config *plane_config)
8027 {
8028         struct drm_device *dev = crtc->base.dev;
8029         struct drm_i915_private *dev_priv = dev->dev_private;
8030         u32 val, base, offset;
8031         int pipe = crtc->pipe, plane = crtc->plane;
8032         int fourcc, pixel_format;
8033         unsigned int aligned_height;
8034         struct drm_framebuffer *fb;
8035         struct intel_framebuffer *intel_fb;
8036
8037         val = I915_READ(DSPCNTR(plane));
8038         if (!(val & DISPLAY_PLANE_ENABLE))
8039                 return;
8040
8041         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8042         if (!intel_fb) {
8043                 DRM_DEBUG_KMS("failed to alloc fb\n");
8044                 return;
8045         }
8046
8047         fb = &intel_fb->base;
8048
8049         if (INTEL_INFO(dev)->gen >= 4) {
8050                 if (val & DISPPLANE_TILED) {
8051                         plane_config->tiling = I915_TILING_X;
8052                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8053                 }
8054         }
8055
8056         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8057         fourcc = i9xx_format_to_fourcc(pixel_format);
8058         fb->pixel_format = fourcc;
8059         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8060
8061         if (INTEL_INFO(dev)->gen >= 4) {
8062                 if (plane_config->tiling)
8063                         offset = I915_READ(DSPTILEOFF(plane));
8064                 else
8065                         offset = I915_READ(DSPLINOFF(plane));
8066                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8067         } else {
8068                 base = I915_READ(DSPADDR(plane));
8069         }
8070         plane_config->base = base;
8071
8072         val = I915_READ(PIPESRC(pipe));
8073         fb->width = ((val >> 16) & 0xfff) + 1;
8074         fb->height = ((val >> 0) & 0xfff) + 1;
8075
8076         val = I915_READ(DSPSTRIDE(pipe));
8077         fb->pitches[0] = val & 0xffffffc0;
8078
8079         aligned_height = intel_fb_align_height(dev, fb->height,
8080                                                fb->pixel_format,
8081                                                fb->modifier[0]);
8082
8083         plane_config->size = fb->pitches[0] * aligned_height;
8084
8085         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8086                       pipe_name(pipe), plane, fb->width, fb->height,
8087                       fb->bits_per_pixel, base, fb->pitches[0],
8088                       plane_config->size);
8089
8090         plane_config->fb = intel_fb;
8091 }
8092
8093 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8094                                struct intel_crtc_state *pipe_config)
8095 {
8096         struct drm_device *dev = crtc->base.dev;
8097         struct drm_i915_private *dev_priv = dev->dev_private;
8098         int pipe = pipe_config->cpu_transcoder;
8099         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8100         intel_clock_t clock;
8101         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8102         int refclk = 100000;
8103
8104         mutex_lock(&dev_priv->sb_lock);
8105         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8106         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8107         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8108         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8109         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8110         mutex_unlock(&dev_priv->sb_lock);
8111
8112         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8113         clock.m2 = (pll_dw0 & 0xff) << 22;
8114         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8115                 clock.m2 |= pll_dw2 & 0x3fffff;
8116         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8117         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8118         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8119
8120         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8121 }
8122
8123 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8124                                  struct intel_crtc_state *pipe_config)
8125 {
8126         struct drm_device *dev = crtc->base.dev;
8127         struct drm_i915_private *dev_priv = dev->dev_private;
8128         uint32_t tmp;
8129
8130         if (!intel_display_power_is_enabled(dev_priv,
8131                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8132                 return false;
8133
8134         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8135         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8136
8137         tmp = I915_READ(PIPECONF(crtc->pipe));
8138         if (!(tmp & PIPECONF_ENABLE))
8139                 return false;
8140
8141         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8142                 switch (tmp & PIPECONF_BPC_MASK) {
8143                 case PIPECONF_6BPC:
8144                         pipe_config->pipe_bpp = 18;
8145                         break;
8146                 case PIPECONF_8BPC:
8147                         pipe_config->pipe_bpp = 24;
8148                         break;
8149                 case PIPECONF_10BPC:
8150                         pipe_config->pipe_bpp = 30;
8151                         break;
8152                 default:
8153                         break;
8154                 }
8155         }
8156
8157         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8158                 pipe_config->limited_color_range = true;
8159
8160         if (INTEL_INFO(dev)->gen < 4)
8161                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8162
8163         intel_get_pipe_timings(crtc, pipe_config);
8164
8165         i9xx_get_pfit_config(crtc, pipe_config);
8166
8167         if (INTEL_INFO(dev)->gen >= 4) {
8168                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8169                 pipe_config->pixel_multiplier =
8170                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8171                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8172                 pipe_config->dpll_hw_state.dpll_md = tmp;
8173         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8174                 tmp = I915_READ(DPLL(crtc->pipe));
8175                 pipe_config->pixel_multiplier =
8176                         ((tmp & SDVO_MULTIPLIER_MASK)
8177                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8178         } else {
8179                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8180                  * port and will be fixed up in the encoder->get_config
8181                  * function. */
8182                 pipe_config->pixel_multiplier = 1;
8183         }
8184         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8185         if (!IS_VALLEYVIEW(dev)) {
8186                 /*
8187                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8188                  * on 830. Filter it out here so that we don't
8189                  * report errors due to that.
8190                  */
8191                 if (IS_I830(dev))
8192                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8193
8194                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8195                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8196         } else {
8197                 /* Mask out read-only status bits. */
8198                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8199                                                      DPLL_PORTC_READY_MASK |
8200                                                      DPLL_PORTB_READY_MASK);
8201         }
8202
8203         if (IS_CHERRYVIEW(dev))
8204                 chv_crtc_clock_get(crtc, pipe_config);
8205         else if (IS_VALLEYVIEW(dev))
8206                 vlv_crtc_clock_get(crtc, pipe_config);
8207         else
8208                 i9xx_crtc_clock_get(crtc, pipe_config);
8209
8210         return true;
8211 }
8212
8213 static void ironlake_init_pch_refclk(struct drm_device *dev)
8214 {
8215         struct drm_i915_private *dev_priv = dev->dev_private;
8216         struct intel_encoder *encoder;
8217         u32 val, final;
8218         bool has_lvds = false;
8219         bool has_cpu_edp = false;
8220         bool has_panel = false;
8221         bool has_ck505 = false;
8222         bool can_ssc = false;
8223
8224         /* We need to take the global config into account */
8225         for_each_intel_encoder(dev, encoder) {
8226                 switch (encoder->type) {
8227                 case INTEL_OUTPUT_LVDS:
8228                         has_panel = true;
8229                         has_lvds = true;
8230                         break;
8231                 case INTEL_OUTPUT_EDP:
8232                         has_panel = true;
8233                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8234                                 has_cpu_edp = true;
8235                         break;
8236                 default:
8237                         break;
8238                 }
8239         }
8240
8241         if (HAS_PCH_IBX(dev)) {
8242                 has_ck505 = dev_priv->vbt.display_clock_mode;
8243                 can_ssc = has_ck505;
8244         } else {
8245                 has_ck505 = false;
8246                 can_ssc = true;
8247         }
8248
8249         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8250                       has_panel, has_lvds, has_ck505);
8251
8252         /* Ironlake: try to setup display ref clock before DPLL
8253          * enabling. This is only under driver's control after
8254          * PCH B stepping, previous chipset stepping should be
8255          * ignoring this setting.
8256          */
8257         val = I915_READ(PCH_DREF_CONTROL);
8258
8259         /* As we must carefully and slowly disable/enable each source in turn,
8260          * compute the final state we want first and check if we need to
8261          * make any changes at all.
8262          */
8263         final = val;
8264         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8265         if (has_ck505)
8266                 final |= DREF_NONSPREAD_CK505_ENABLE;
8267         else
8268                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8269
8270         final &= ~DREF_SSC_SOURCE_MASK;
8271         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8272         final &= ~DREF_SSC1_ENABLE;
8273
8274         if (has_panel) {
8275                 final |= DREF_SSC_SOURCE_ENABLE;
8276
8277                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8278                         final |= DREF_SSC1_ENABLE;
8279
8280                 if (has_cpu_edp) {
8281                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8282                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8283                         else
8284                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8285                 } else
8286                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8287         } else {
8288                 final |= DREF_SSC_SOURCE_DISABLE;
8289                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8290         }
8291
8292         if (final == val)
8293                 return;
8294
8295         /* Always enable nonspread source */
8296         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8297
8298         if (has_ck505)
8299                 val |= DREF_NONSPREAD_CK505_ENABLE;
8300         else
8301                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8302
8303         if (has_panel) {
8304                 val &= ~DREF_SSC_SOURCE_MASK;
8305                 val |= DREF_SSC_SOURCE_ENABLE;
8306
8307                 /* SSC must be turned on before enabling the CPU output  */
8308                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8309                         DRM_DEBUG_KMS("Using SSC on panel\n");
8310                         val |= DREF_SSC1_ENABLE;
8311                 } else
8312                         val &= ~DREF_SSC1_ENABLE;
8313
8314                 /* Get SSC going before enabling the outputs */
8315                 I915_WRITE(PCH_DREF_CONTROL, val);
8316                 POSTING_READ(PCH_DREF_CONTROL);
8317                 udelay(200);
8318
8319                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8320
8321                 /* Enable CPU source on CPU attached eDP */
8322                 if (has_cpu_edp) {
8323                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8324                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8325                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8326                         } else
8327                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8328                 } else
8329                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8330
8331                 I915_WRITE(PCH_DREF_CONTROL, val);
8332                 POSTING_READ(PCH_DREF_CONTROL);
8333                 udelay(200);
8334         } else {
8335                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8336
8337                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8338
8339                 /* Turn off CPU output */
8340                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8341
8342                 I915_WRITE(PCH_DREF_CONTROL, val);
8343                 POSTING_READ(PCH_DREF_CONTROL);
8344                 udelay(200);
8345
8346                 /* Turn off the SSC source */
8347                 val &= ~DREF_SSC_SOURCE_MASK;
8348                 val |= DREF_SSC_SOURCE_DISABLE;
8349
8350                 /* Turn off SSC1 */
8351                 val &= ~DREF_SSC1_ENABLE;
8352
8353                 I915_WRITE(PCH_DREF_CONTROL, val);
8354                 POSTING_READ(PCH_DREF_CONTROL);
8355                 udelay(200);
8356         }
8357
8358         BUG_ON(val != final);
8359 }
8360
8361 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8362 {
8363         uint32_t tmp;
8364
8365         tmp = I915_READ(SOUTH_CHICKEN2);
8366         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8367         I915_WRITE(SOUTH_CHICKEN2, tmp);
8368
8369         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8370                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8371                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8372
8373         tmp = I915_READ(SOUTH_CHICKEN2);
8374         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8375         I915_WRITE(SOUTH_CHICKEN2, tmp);
8376
8377         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8378                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8379                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8380 }
8381
8382 /* WaMPhyProgramming:hsw */
8383 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8384 {
8385         uint32_t tmp;
8386
8387         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8388         tmp &= ~(0xFF << 24);
8389         tmp |= (0x12 << 24);
8390         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8391
8392         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8393         tmp |= (1 << 11);
8394         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8395
8396         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8397         tmp |= (1 << 11);
8398         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8399
8400         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8401         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8402         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8403
8404         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8405         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8406         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8407
8408         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8409         tmp &= ~(7 << 13);
8410         tmp |= (5 << 13);
8411         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8412
8413         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8414         tmp &= ~(7 << 13);
8415         tmp |= (5 << 13);
8416         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8417
8418         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8419         tmp &= ~0xFF;
8420         tmp |= 0x1C;
8421         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8422
8423         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8424         tmp &= ~0xFF;
8425         tmp |= 0x1C;
8426         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8427
8428         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8429         tmp &= ~(0xFF << 16);
8430         tmp |= (0x1C << 16);
8431         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8432
8433         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8434         tmp &= ~(0xFF << 16);
8435         tmp |= (0x1C << 16);
8436         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8437
8438         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8439         tmp |= (1 << 27);
8440         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8441
8442         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8443         tmp |= (1 << 27);
8444         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8445
8446         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8447         tmp &= ~(0xF << 28);
8448         tmp |= (4 << 28);
8449         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8450
8451         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8452         tmp &= ~(0xF << 28);
8453         tmp |= (4 << 28);
8454         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8455 }
8456
8457 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8458  * Programming" based on the parameters passed:
8459  * - Sequence to enable CLKOUT_DP
8460  * - Sequence to enable CLKOUT_DP without spread
8461  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8462  */
8463 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8464                                  bool with_fdi)
8465 {
8466         struct drm_i915_private *dev_priv = dev->dev_private;
8467         uint32_t reg, tmp;
8468
8469         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8470                 with_spread = true;
8471         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8472                  with_fdi, "LP PCH doesn't have FDI\n"))
8473                 with_fdi = false;
8474
8475         mutex_lock(&dev_priv->sb_lock);
8476
8477         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8478         tmp &= ~SBI_SSCCTL_DISABLE;
8479         tmp |= SBI_SSCCTL_PATHALT;
8480         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8481
8482         udelay(24);
8483
8484         if (with_spread) {
8485                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8486                 tmp &= ~SBI_SSCCTL_PATHALT;
8487                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8488
8489                 if (with_fdi) {
8490                         lpt_reset_fdi_mphy(dev_priv);
8491                         lpt_program_fdi_mphy(dev_priv);
8492                 }
8493         }
8494
8495         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8496                SBI_GEN0 : SBI_DBUFF0;
8497         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8498         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8499         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8500
8501         mutex_unlock(&dev_priv->sb_lock);
8502 }
8503
8504 /* Sequence to disable CLKOUT_DP */
8505 static void lpt_disable_clkout_dp(struct drm_device *dev)
8506 {
8507         struct drm_i915_private *dev_priv = dev->dev_private;
8508         uint32_t reg, tmp;
8509
8510         mutex_lock(&dev_priv->sb_lock);
8511
8512         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8513                SBI_GEN0 : SBI_DBUFF0;
8514         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8515         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8516         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8517
8518         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8519         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8520                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8521                         tmp |= SBI_SSCCTL_PATHALT;
8522                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8523                         udelay(32);
8524                 }
8525                 tmp |= SBI_SSCCTL_DISABLE;
8526                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8527         }
8528
8529         mutex_unlock(&dev_priv->sb_lock);
8530 }
8531
8532 static void lpt_init_pch_refclk(struct drm_device *dev)
8533 {
8534         struct intel_encoder *encoder;
8535         bool has_vga = false;
8536
8537         for_each_intel_encoder(dev, encoder) {
8538                 switch (encoder->type) {
8539                 case INTEL_OUTPUT_ANALOG:
8540                         has_vga = true;
8541                         break;
8542                 default:
8543                         break;
8544                 }
8545         }
8546
8547         if (has_vga)
8548                 lpt_enable_clkout_dp(dev, true, true);
8549         else
8550                 lpt_disable_clkout_dp(dev);
8551 }
8552
8553 /*
8554  * Initialize reference clocks when the driver loads
8555  */
8556 void intel_init_pch_refclk(struct drm_device *dev)
8557 {
8558         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8559                 ironlake_init_pch_refclk(dev);
8560         else if (HAS_PCH_LPT(dev))
8561                 lpt_init_pch_refclk(dev);
8562 }
8563
8564 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8565 {
8566         struct drm_device *dev = crtc_state->base.crtc->dev;
8567         struct drm_i915_private *dev_priv = dev->dev_private;
8568         struct drm_atomic_state *state = crtc_state->base.state;
8569         struct drm_connector *connector;
8570         struct drm_connector_state *connector_state;
8571         struct intel_encoder *encoder;
8572         int num_connectors = 0, i;
8573         bool is_lvds = false;
8574
8575         for_each_connector_in_state(state, connector, connector_state, i) {
8576                 if (connector_state->crtc != crtc_state->base.crtc)
8577                         continue;
8578
8579                 encoder = to_intel_encoder(connector_state->best_encoder);
8580
8581                 switch (encoder->type) {
8582                 case INTEL_OUTPUT_LVDS:
8583                         is_lvds = true;
8584                         break;
8585                 default:
8586                         break;
8587                 }
8588                 num_connectors++;
8589         }
8590
8591         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8592                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8593                               dev_priv->vbt.lvds_ssc_freq);
8594                 return dev_priv->vbt.lvds_ssc_freq;
8595         }
8596
8597         return 120000;
8598 }
8599
8600 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8601 {
8602         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8604         int pipe = intel_crtc->pipe;
8605         uint32_t val;
8606
8607         val = 0;
8608
8609         switch (intel_crtc->config->pipe_bpp) {
8610         case 18:
8611                 val |= PIPECONF_6BPC;
8612                 break;
8613         case 24:
8614                 val |= PIPECONF_8BPC;
8615                 break;
8616         case 30:
8617                 val |= PIPECONF_10BPC;
8618                 break;
8619         case 36:
8620                 val |= PIPECONF_12BPC;
8621                 break;
8622         default:
8623                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8624                 BUG();
8625         }
8626
8627         if (intel_crtc->config->dither)
8628                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8629
8630         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8631                 val |= PIPECONF_INTERLACED_ILK;
8632         else
8633                 val |= PIPECONF_PROGRESSIVE;
8634
8635         if (intel_crtc->config->limited_color_range)
8636                 val |= PIPECONF_COLOR_RANGE_SELECT;
8637
8638         I915_WRITE(PIPECONF(pipe), val);
8639         POSTING_READ(PIPECONF(pipe));
8640 }
8641
8642 /*
8643  * Set up the pipe CSC unit.
8644  *
8645  * Currently only full range RGB to limited range RGB conversion
8646  * is supported, but eventually this should handle various
8647  * RGB<->YCbCr scenarios as well.
8648  */
8649 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8650 {
8651         struct drm_device *dev = crtc->dev;
8652         struct drm_i915_private *dev_priv = dev->dev_private;
8653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8654         int pipe = intel_crtc->pipe;
8655         uint16_t coeff = 0x7800; /* 1.0 */
8656
8657         /*
8658          * TODO: Check what kind of values actually come out of the pipe
8659          * with these coeff/postoff values and adjust to get the best
8660          * accuracy. Perhaps we even need to take the bpc value into
8661          * consideration.
8662          */
8663
8664         if (intel_crtc->config->limited_color_range)
8665                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8666
8667         /*
8668          * GY/GU and RY/RU should be the other way around according
8669          * to BSpec, but reality doesn't agree. Just set them up in
8670          * a way that results in the correct picture.
8671          */
8672         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8673         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8674
8675         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8676         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8677
8678         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8679         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8680
8681         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8682         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8683         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8684
8685         if (INTEL_INFO(dev)->gen > 6) {
8686                 uint16_t postoff = 0;
8687
8688                 if (intel_crtc->config->limited_color_range)
8689                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8690
8691                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8692                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8693                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8694
8695                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8696         } else {
8697                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8698
8699                 if (intel_crtc->config->limited_color_range)
8700                         mode |= CSC_BLACK_SCREEN_OFFSET;
8701
8702                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8703         }
8704 }
8705
8706 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8707 {
8708         struct drm_device *dev = crtc->dev;
8709         struct drm_i915_private *dev_priv = dev->dev_private;
8710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8711         enum pipe pipe = intel_crtc->pipe;
8712         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8713         uint32_t val;
8714
8715         val = 0;
8716
8717         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8718                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8719
8720         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8721                 val |= PIPECONF_INTERLACED_ILK;
8722         else
8723                 val |= PIPECONF_PROGRESSIVE;
8724
8725         I915_WRITE(PIPECONF(cpu_transcoder), val);
8726         POSTING_READ(PIPECONF(cpu_transcoder));
8727
8728         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8729         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8730
8731         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8732                 val = 0;
8733
8734                 switch (intel_crtc->config->pipe_bpp) {
8735                 case 18:
8736                         val |= PIPEMISC_DITHER_6_BPC;
8737                         break;
8738                 case 24:
8739                         val |= PIPEMISC_DITHER_8_BPC;
8740                         break;
8741                 case 30:
8742                         val |= PIPEMISC_DITHER_10_BPC;
8743                         break;
8744                 case 36:
8745                         val |= PIPEMISC_DITHER_12_BPC;
8746                         break;
8747                 default:
8748                         /* Case prevented by pipe_config_set_bpp. */
8749                         BUG();
8750                 }
8751
8752                 if (intel_crtc->config->dither)
8753                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8754
8755                 I915_WRITE(PIPEMISC(pipe), val);
8756         }
8757 }
8758
8759 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8760                                     struct intel_crtc_state *crtc_state,
8761                                     intel_clock_t *clock,
8762                                     bool *has_reduced_clock,
8763                                     intel_clock_t *reduced_clock)
8764 {
8765         struct drm_device *dev = crtc->dev;
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         int refclk;
8768         const intel_limit_t *limit;
8769         bool ret;
8770
8771         refclk = ironlake_get_refclk(crtc_state);
8772
8773         /*
8774          * Returns a set of divisors for the desired target clock with the given
8775          * refclk, or FALSE.  The returned values represent the clock equation:
8776          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8777          */
8778         limit = intel_limit(crtc_state, refclk);
8779         ret = dev_priv->display.find_dpll(limit, crtc_state,
8780                                           crtc_state->port_clock,
8781                                           refclk, NULL, clock);
8782         if (!ret)
8783                 return false;
8784
8785         return true;
8786 }
8787
8788 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8789 {
8790         /*
8791          * Account for spread spectrum to avoid
8792          * oversubscribing the link. Max center spread
8793          * is 2.5%; use 5% for safety's sake.
8794          */
8795         u32 bps = target_clock * bpp * 21 / 20;
8796         return DIV_ROUND_UP(bps, link_bw * 8);
8797 }
8798
8799 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8800 {
8801         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8802 }
8803
8804 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8805                                       struct intel_crtc_state *crtc_state,
8806                                       u32 *fp,
8807                                       intel_clock_t *reduced_clock, u32 *fp2)
8808 {
8809         struct drm_crtc *crtc = &intel_crtc->base;
8810         struct drm_device *dev = crtc->dev;
8811         struct drm_i915_private *dev_priv = dev->dev_private;
8812         struct drm_atomic_state *state = crtc_state->base.state;
8813         struct drm_connector *connector;
8814         struct drm_connector_state *connector_state;
8815         struct intel_encoder *encoder;
8816         uint32_t dpll;
8817         int factor, num_connectors = 0, i;
8818         bool is_lvds = false, is_sdvo = false;
8819
8820         for_each_connector_in_state(state, connector, connector_state, i) {
8821                 if (connector_state->crtc != crtc_state->base.crtc)
8822                         continue;
8823
8824                 encoder = to_intel_encoder(connector_state->best_encoder);
8825
8826                 switch (encoder->type) {
8827                 case INTEL_OUTPUT_LVDS:
8828                         is_lvds = true;
8829                         break;
8830                 case INTEL_OUTPUT_SDVO:
8831                 case INTEL_OUTPUT_HDMI:
8832                         is_sdvo = true;
8833                         break;
8834                 default:
8835                         break;
8836                 }
8837
8838                 num_connectors++;
8839         }
8840
8841         /* Enable autotuning of the PLL clock (if permissible) */
8842         factor = 21;
8843         if (is_lvds) {
8844                 if ((intel_panel_use_ssc(dev_priv) &&
8845                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8846                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8847                         factor = 25;
8848         } else if (crtc_state->sdvo_tv_clock)
8849                 factor = 20;
8850
8851         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8852                 *fp |= FP_CB_TUNE;
8853
8854         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8855                 *fp2 |= FP_CB_TUNE;
8856
8857         dpll = 0;
8858
8859         if (is_lvds)
8860                 dpll |= DPLLB_MODE_LVDS;
8861         else
8862                 dpll |= DPLLB_MODE_DAC_SERIAL;
8863
8864         dpll |= (crtc_state->pixel_multiplier - 1)
8865                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8866
8867         if (is_sdvo)
8868                 dpll |= DPLL_SDVO_HIGH_SPEED;
8869         if (crtc_state->has_dp_encoder)
8870                 dpll |= DPLL_SDVO_HIGH_SPEED;
8871
8872         /* compute bitmask from p1 value */
8873         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8874         /* also FPA1 */
8875         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8876
8877         switch (crtc_state->dpll.p2) {
8878         case 5:
8879                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8880                 break;
8881         case 7:
8882                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8883                 break;
8884         case 10:
8885                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8886                 break;
8887         case 14:
8888                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8889                 break;
8890         }
8891
8892         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8893                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8894         else
8895                 dpll |= PLL_REF_INPUT_DREFCLK;
8896
8897         return dpll | DPLL_VCO_ENABLE;
8898 }
8899
8900 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8901                                        struct intel_crtc_state *crtc_state)
8902 {
8903         struct drm_device *dev = crtc->base.dev;
8904         intel_clock_t clock, reduced_clock;
8905         u32 dpll = 0, fp = 0, fp2 = 0;
8906         bool ok, has_reduced_clock = false;
8907         bool is_lvds = false;
8908         struct intel_shared_dpll *pll;
8909
8910         memset(&crtc_state->dpll_hw_state, 0,
8911                sizeof(crtc_state->dpll_hw_state));
8912
8913         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8914
8915         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8916              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8917
8918         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8919                                      &has_reduced_clock, &reduced_clock);
8920         if (!ok && !crtc_state->clock_set) {
8921                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8922                 return -EINVAL;
8923         }
8924         /* Compat-code for transition, will disappear. */
8925         if (!crtc_state->clock_set) {
8926                 crtc_state->dpll.n = clock.n;
8927                 crtc_state->dpll.m1 = clock.m1;
8928                 crtc_state->dpll.m2 = clock.m2;
8929                 crtc_state->dpll.p1 = clock.p1;
8930                 crtc_state->dpll.p2 = clock.p2;
8931         }
8932
8933         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8934         if (crtc_state->has_pch_encoder) {
8935                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8936                 if (has_reduced_clock)
8937                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8938
8939                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8940                                              &fp, &reduced_clock,
8941                                              has_reduced_clock ? &fp2 : NULL);
8942
8943                 crtc_state->dpll_hw_state.dpll = dpll;
8944                 crtc_state->dpll_hw_state.fp0 = fp;
8945                 if (has_reduced_clock)
8946                         crtc_state->dpll_hw_state.fp1 = fp2;
8947                 else
8948                         crtc_state->dpll_hw_state.fp1 = fp;
8949
8950                 pll = intel_get_shared_dpll(crtc, crtc_state);
8951                 if (pll == NULL) {
8952                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8953                                          pipe_name(crtc->pipe));
8954                         return -EINVAL;
8955                 }
8956         }
8957
8958         if (is_lvds && has_reduced_clock)
8959                 crtc->lowfreq_avail = true;
8960         else
8961                 crtc->lowfreq_avail = false;
8962
8963         return 0;
8964 }
8965
8966 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8967                                          struct intel_link_m_n *m_n)
8968 {
8969         struct drm_device *dev = crtc->base.dev;
8970         struct drm_i915_private *dev_priv = dev->dev_private;
8971         enum pipe pipe = crtc->pipe;
8972
8973         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8974         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8975         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8976                 & ~TU_SIZE_MASK;
8977         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8978         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8979                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8980 }
8981
8982 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8983                                          enum transcoder transcoder,
8984                                          struct intel_link_m_n *m_n,
8985                                          struct intel_link_m_n *m2_n2)
8986 {
8987         struct drm_device *dev = crtc->base.dev;
8988         struct drm_i915_private *dev_priv = dev->dev_private;
8989         enum pipe pipe = crtc->pipe;
8990
8991         if (INTEL_INFO(dev)->gen >= 5) {
8992                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8993                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8994                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8995                         & ~TU_SIZE_MASK;
8996                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8997                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8998                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8999                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9000                  * gen < 8) and if DRRS is supported (to make sure the
9001                  * registers are not unnecessarily read).
9002                  */
9003                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9004                         crtc->config->has_drrs) {
9005                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9006                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9007                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9008                                         & ~TU_SIZE_MASK;
9009                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9010                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9011                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9012                 }
9013         } else {
9014                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9015                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9016                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9017                         & ~TU_SIZE_MASK;
9018                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9019                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9020                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9021         }
9022 }
9023
9024 void intel_dp_get_m_n(struct intel_crtc *crtc,
9025                       struct intel_crtc_state *pipe_config)
9026 {
9027         if (pipe_config->has_pch_encoder)
9028                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9029         else
9030                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9031                                              &pipe_config->dp_m_n,
9032                                              &pipe_config->dp_m2_n2);
9033 }
9034
9035 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9036                                         struct intel_crtc_state *pipe_config)
9037 {
9038         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9039                                      &pipe_config->fdi_m_n, NULL);
9040 }
9041
9042 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9043                                     struct intel_crtc_state *pipe_config)
9044 {
9045         struct drm_device *dev = crtc->base.dev;
9046         struct drm_i915_private *dev_priv = dev->dev_private;
9047         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9048         uint32_t ps_ctrl = 0;
9049         int id = -1;
9050         int i;
9051
9052         /* find scaler attached to this pipe */
9053         for (i = 0; i < crtc->num_scalers; i++) {
9054                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9055                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9056                         id = i;
9057                         pipe_config->pch_pfit.enabled = true;
9058                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9059                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9060                         break;
9061                 }
9062         }
9063
9064         scaler_state->scaler_id = id;
9065         if (id >= 0) {
9066                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9067         } else {
9068                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9069         }
9070 }
9071
9072 static void
9073 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9074                                  struct intel_initial_plane_config *plane_config)
9075 {
9076         struct drm_device *dev = crtc->base.dev;
9077         struct drm_i915_private *dev_priv = dev->dev_private;
9078         u32 val, base, offset, stride_mult, tiling;
9079         int pipe = crtc->pipe;
9080         int fourcc, pixel_format;
9081         unsigned int aligned_height;
9082         struct drm_framebuffer *fb;
9083         struct intel_framebuffer *intel_fb;
9084
9085         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9086         if (!intel_fb) {
9087                 DRM_DEBUG_KMS("failed to alloc fb\n");
9088                 return;
9089         }
9090
9091         fb = &intel_fb->base;
9092
9093         val = I915_READ(PLANE_CTL(pipe, 0));
9094         if (!(val & PLANE_CTL_ENABLE))
9095                 goto error;
9096
9097         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9098         fourcc = skl_format_to_fourcc(pixel_format,
9099                                       val & PLANE_CTL_ORDER_RGBX,
9100                                       val & PLANE_CTL_ALPHA_MASK);
9101         fb->pixel_format = fourcc;
9102         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9103
9104         tiling = val & PLANE_CTL_TILED_MASK;
9105         switch (tiling) {
9106         case PLANE_CTL_TILED_LINEAR:
9107                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9108                 break;
9109         case PLANE_CTL_TILED_X:
9110                 plane_config->tiling = I915_TILING_X;
9111                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9112                 break;
9113         case PLANE_CTL_TILED_Y:
9114                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9115                 break;
9116         case PLANE_CTL_TILED_YF:
9117                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9118                 break;
9119         default:
9120                 MISSING_CASE(tiling);
9121                 goto error;
9122         }
9123
9124         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9125         plane_config->base = base;
9126
9127         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9128
9129         val = I915_READ(PLANE_SIZE(pipe, 0));
9130         fb->height = ((val >> 16) & 0xfff) + 1;
9131         fb->width = ((val >> 0) & 0x1fff) + 1;
9132
9133         val = I915_READ(PLANE_STRIDE(pipe, 0));
9134         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9135                                                 fb->pixel_format);
9136         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9137
9138         aligned_height = intel_fb_align_height(dev, fb->height,
9139                                                fb->pixel_format,
9140                                                fb->modifier[0]);
9141
9142         plane_config->size = fb->pitches[0] * aligned_height;
9143
9144         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9145                       pipe_name(pipe), fb->width, fb->height,
9146                       fb->bits_per_pixel, base, fb->pitches[0],
9147                       plane_config->size);
9148
9149         plane_config->fb = intel_fb;
9150         return;
9151
9152 error:
9153         kfree(fb);
9154 }
9155
9156 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9157                                      struct intel_crtc_state *pipe_config)
9158 {
9159         struct drm_device *dev = crtc->base.dev;
9160         struct drm_i915_private *dev_priv = dev->dev_private;
9161         uint32_t tmp;
9162
9163         tmp = I915_READ(PF_CTL(crtc->pipe));
9164
9165         if (tmp & PF_ENABLE) {
9166                 pipe_config->pch_pfit.enabled = true;
9167                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9168                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9169
9170                 /* We currently do not free assignements of panel fitters on
9171                  * ivb/hsw (since we don't use the higher upscaling modes which
9172                  * differentiates them) so just WARN about this case for now. */
9173                 if (IS_GEN7(dev)) {
9174                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9175                                 PF_PIPE_SEL_IVB(crtc->pipe));
9176                 }
9177         }
9178 }
9179
9180 static void
9181 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9182                                   struct intel_initial_plane_config *plane_config)
9183 {
9184         struct drm_device *dev = crtc->base.dev;
9185         struct drm_i915_private *dev_priv = dev->dev_private;
9186         u32 val, base, offset;
9187         int pipe = crtc->pipe;
9188         int fourcc, pixel_format;
9189         unsigned int aligned_height;
9190         struct drm_framebuffer *fb;
9191         struct intel_framebuffer *intel_fb;
9192
9193         val = I915_READ(DSPCNTR(pipe));
9194         if (!(val & DISPLAY_PLANE_ENABLE))
9195                 return;
9196
9197         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9198         if (!intel_fb) {
9199                 DRM_DEBUG_KMS("failed to alloc fb\n");
9200                 return;
9201         }
9202
9203         fb = &intel_fb->base;
9204
9205         if (INTEL_INFO(dev)->gen >= 4) {
9206                 if (val & DISPPLANE_TILED) {
9207                         plane_config->tiling = I915_TILING_X;
9208                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9209                 }
9210         }
9211
9212         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9213         fourcc = i9xx_format_to_fourcc(pixel_format);
9214         fb->pixel_format = fourcc;
9215         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9216
9217         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9218         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9219                 offset = I915_READ(DSPOFFSET(pipe));
9220         } else {
9221                 if (plane_config->tiling)
9222                         offset = I915_READ(DSPTILEOFF(pipe));
9223                 else
9224                         offset = I915_READ(DSPLINOFF(pipe));
9225         }
9226         plane_config->base = base;
9227
9228         val = I915_READ(PIPESRC(pipe));
9229         fb->width = ((val >> 16) & 0xfff) + 1;
9230         fb->height = ((val >> 0) & 0xfff) + 1;
9231
9232         val = I915_READ(DSPSTRIDE(pipe));
9233         fb->pitches[0] = val & 0xffffffc0;
9234
9235         aligned_height = intel_fb_align_height(dev, fb->height,
9236                                                fb->pixel_format,
9237                                                fb->modifier[0]);
9238
9239         plane_config->size = fb->pitches[0] * aligned_height;
9240
9241         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9242                       pipe_name(pipe), fb->width, fb->height,
9243                       fb->bits_per_pixel, base, fb->pitches[0],
9244                       plane_config->size);
9245
9246         plane_config->fb = intel_fb;
9247 }
9248
9249 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9250                                      struct intel_crtc_state *pipe_config)
9251 {
9252         struct drm_device *dev = crtc->base.dev;
9253         struct drm_i915_private *dev_priv = dev->dev_private;
9254         uint32_t tmp;
9255
9256         if (!intel_display_power_is_enabled(dev_priv,
9257                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9258                 return false;
9259
9260         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9261         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9262
9263         tmp = I915_READ(PIPECONF(crtc->pipe));
9264         if (!(tmp & PIPECONF_ENABLE))
9265                 return false;
9266
9267         switch (tmp & PIPECONF_BPC_MASK) {
9268         case PIPECONF_6BPC:
9269                 pipe_config->pipe_bpp = 18;
9270                 break;
9271         case PIPECONF_8BPC:
9272                 pipe_config->pipe_bpp = 24;
9273                 break;
9274         case PIPECONF_10BPC:
9275                 pipe_config->pipe_bpp = 30;
9276                 break;
9277         case PIPECONF_12BPC:
9278                 pipe_config->pipe_bpp = 36;
9279                 break;
9280         default:
9281                 break;
9282         }
9283
9284         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9285                 pipe_config->limited_color_range = true;
9286
9287         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9288                 struct intel_shared_dpll *pll;
9289
9290                 pipe_config->has_pch_encoder = true;
9291
9292                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9293                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9294                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9295
9296                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9297
9298                 if (HAS_PCH_IBX(dev_priv->dev)) {
9299                         pipe_config->shared_dpll =
9300                                 (enum intel_dpll_id) crtc->pipe;
9301                 } else {
9302                         tmp = I915_READ(PCH_DPLL_SEL);
9303                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9304                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9305                         else
9306                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9307                 }
9308
9309                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9310
9311                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9312                                            &pipe_config->dpll_hw_state));
9313
9314                 tmp = pipe_config->dpll_hw_state.dpll;
9315                 pipe_config->pixel_multiplier =
9316                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9317                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9318
9319                 ironlake_pch_clock_get(crtc, pipe_config);
9320         } else {
9321                 pipe_config->pixel_multiplier = 1;
9322         }
9323
9324         intel_get_pipe_timings(crtc, pipe_config);
9325
9326         ironlake_get_pfit_config(crtc, pipe_config);
9327
9328         return true;
9329 }
9330
9331 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9332 {
9333         struct drm_device *dev = dev_priv->dev;
9334         struct intel_crtc *crtc;
9335
9336         for_each_intel_crtc(dev, crtc)
9337                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9338                      pipe_name(crtc->pipe));
9339
9340         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9341         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9342         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9343         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9344         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9345         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9346              "CPU PWM1 enabled\n");
9347         if (IS_HASWELL(dev))
9348                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9349                      "CPU PWM2 enabled\n");
9350         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9351              "PCH PWM1 enabled\n");
9352         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9353              "Utility pin enabled\n");
9354         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9355
9356         /*
9357          * In theory we can still leave IRQs enabled, as long as only the HPD
9358          * interrupts remain enabled. We used to check for that, but since it's
9359          * gen-specific and since we only disable LCPLL after we fully disable
9360          * the interrupts, the check below should be enough.
9361          */
9362         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9363 }
9364
9365 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9366 {
9367         struct drm_device *dev = dev_priv->dev;
9368
9369         if (IS_HASWELL(dev))
9370                 return I915_READ(D_COMP_HSW);
9371         else
9372                 return I915_READ(D_COMP_BDW);
9373 }
9374
9375 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9376 {
9377         struct drm_device *dev = dev_priv->dev;
9378
9379         if (IS_HASWELL(dev)) {
9380                 mutex_lock(&dev_priv->rps.hw_lock);
9381                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9382                                             val))
9383                         DRM_ERROR("Failed to write to D_COMP\n");
9384                 mutex_unlock(&dev_priv->rps.hw_lock);
9385         } else {
9386                 I915_WRITE(D_COMP_BDW, val);
9387                 POSTING_READ(D_COMP_BDW);
9388         }
9389 }
9390
9391 /*
9392  * This function implements pieces of two sequences from BSpec:
9393  * - Sequence for display software to disable LCPLL
9394  * - Sequence for display software to allow package C8+
9395  * The steps implemented here are just the steps that actually touch the LCPLL
9396  * register. Callers should take care of disabling all the display engine
9397  * functions, doing the mode unset, fixing interrupts, etc.
9398  */
9399 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9400                               bool switch_to_fclk, bool allow_power_down)
9401 {
9402         uint32_t val;
9403
9404         assert_can_disable_lcpll(dev_priv);
9405
9406         val = I915_READ(LCPLL_CTL);
9407
9408         if (switch_to_fclk) {
9409                 val |= LCPLL_CD_SOURCE_FCLK;
9410                 I915_WRITE(LCPLL_CTL, val);
9411
9412                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9413                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9414                         DRM_ERROR("Switching to FCLK failed\n");
9415
9416                 val = I915_READ(LCPLL_CTL);
9417         }
9418
9419         val |= LCPLL_PLL_DISABLE;
9420         I915_WRITE(LCPLL_CTL, val);
9421         POSTING_READ(LCPLL_CTL);
9422
9423         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9424                 DRM_ERROR("LCPLL still locked\n");
9425
9426         val = hsw_read_dcomp(dev_priv);
9427         val |= D_COMP_COMP_DISABLE;
9428         hsw_write_dcomp(dev_priv, val);
9429         ndelay(100);
9430
9431         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9432                      1))
9433                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9434
9435         if (allow_power_down) {
9436                 val = I915_READ(LCPLL_CTL);
9437                 val |= LCPLL_POWER_DOWN_ALLOW;
9438                 I915_WRITE(LCPLL_CTL, val);
9439                 POSTING_READ(LCPLL_CTL);
9440         }
9441 }
9442
9443 /*
9444  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9445  * source.
9446  */
9447 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9448 {
9449         uint32_t val;
9450
9451         val = I915_READ(LCPLL_CTL);
9452
9453         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9454                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9455                 return;
9456
9457         /*
9458          * Make sure we're not on PC8 state before disabling PC8, otherwise
9459          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9460          */
9461         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9462
9463         if (val & LCPLL_POWER_DOWN_ALLOW) {
9464                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9465                 I915_WRITE(LCPLL_CTL, val);
9466                 POSTING_READ(LCPLL_CTL);
9467         }
9468
9469         val = hsw_read_dcomp(dev_priv);
9470         val |= D_COMP_COMP_FORCE;
9471         val &= ~D_COMP_COMP_DISABLE;
9472         hsw_write_dcomp(dev_priv, val);
9473
9474         val = I915_READ(LCPLL_CTL);
9475         val &= ~LCPLL_PLL_DISABLE;
9476         I915_WRITE(LCPLL_CTL, val);
9477
9478         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9479                 DRM_ERROR("LCPLL not locked yet\n");
9480
9481         if (val & LCPLL_CD_SOURCE_FCLK) {
9482                 val = I915_READ(LCPLL_CTL);
9483                 val &= ~LCPLL_CD_SOURCE_FCLK;
9484                 I915_WRITE(LCPLL_CTL, val);
9485
9486                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9487                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9488                         DRM_ERROR("Switching back to LCPLL failed\n");
9489         }
9490
9491         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9492         intel_update_cdclk(dev_priv->dev);
9493 }
9494
9495 /*
9496  * Package states C8 and deeper are really deep PC states that can only be
9497  * reached when all the devices on the system allow it, so even if the graphics
9498  * device allows PC8+, it doesn't mean the system will actually get to these
9499  * states. Our driver only allows PC8+ when going into runtime PM.
9500  *
9501  * The requirements for PC8+ are that all the outputs are disabled, the power
9502  * well is disabled and most interrupts are disabled, and these are also
9503  * requirements for runtime PM. When these conditions are met, we manually do
9504  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9505  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9506  * hang the machine.
9507  *
9508  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9509  * the state of some registers, so when we come back from PC8+ we need to
9510  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9511  * need to take care of the registers kept by RC6. Notice that this happens even
9512  * if we don't put the device in PCI D3 state (which is what currently happens
9513  * because of the runtime PM support).
9514  *
9515  * For more, read "Display Sequences for Package C8" on the hardware
9516  * documentation.
9517  */
9518 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9519 {
9520         struct drm_device *dev = dev_priv->dev;
9521         uint32_t val;
9522
9523         DRM_DEBUG_KMS("Enabling package C8+\n");
9524
9525         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9526                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9527                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9528                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9529         }
9530
9531         lpt_disable_clkout_dp(dev);
9532         hsw_disable_lcpll(dev_priv, true, true);
9533 }
9534
9535 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9536 {
9537         struct drm_device *dev = dev_priv->dev;
9538         uint32_t val;
9539
9540         DRM_DEBUG_KMS("Disabling package C8+\n");
9541
9542         hsw_restore_lcpll(dev_priv);
9543         lpt_init_pch_refclk(dev);
9544
9545         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9546                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9547                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9548                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9549         }
9550
9551         intel_prepare_ddi(dev);
9552 }
9553
9554 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9555 {
9556         struct drm_device *dev = old_state->dev;
9557         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9558
9559         broxton_set_cdclk(dev, req_cdclk);
9560 }
9561
9562 /* compute the max rate for new configuration */
9563 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9564 {
9565         struct intel_crtc *intel_crtc;
9566         struct intel_crtc_state *crtc_state;
9567         int max_pixel_rate = 0;
9568
9569         for_each_intel_crtc(state->dev, intel_crtc) {
9570                 int pixel_rate;
9571
9572                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9573                 if (IS_ERR(crtc_state))
9574                         return PTR_ERR(crtc_state);
9575
9576                 if (!crtc_state->base.enable)
9577                         continue;
9578
9579                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9580
9581                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9582                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9583                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9584
9585                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9586         }
9587
9588         return max_pixel_rate;
9589 }
9590
9591 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9592 {
9593         struct drm_i915_private *dev_priv = dev->dev_private;
9594         uint32_t val, data;
9595         int ret;
9596
9597         if (WARN((I915_READ(LCPLL_CTL) &
9598                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9599                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9600                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9601                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9602                  "trying to change cdclk frequency with cdclk not enabled\n"))
9603                 return;
9604
9605         mutex_lock(&dev_priv->rps.hw_lock);
9606         ret = sandybridge_pcode_write(dev_priv,
9607                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9608         mutex_unlock(&dev_priv->rps.hw_lock);
9609         if (ret) {
9610                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9611                 return;
9612         }
9613
9614         val = I915_READ(LCPLL_CTL);
9615         val |= LCPLL_CD_SOURCE_FCLK;
9616         I915_WRITE(LCPLL_CTL, val);
9617
9618         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9619                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9620                 DRM_ERROR("Switching to FCLK failed\n");
9621
9622         val = I915_READ(LCPLL_CTL);
9623         val &= ~LCPLL_CLK_FREQ_MASK;
9624
9625         switch (cdclk) {
9626         case 450000:
9627                 val |= LCPLL_CLK_FREQ_450;
9628                 data = 0;
9629                 break;
9630         case 540000:
9631                 val |= LCPLL_CLK_FREQ_54O_BDW;
9632                 data = 1;
9633                 break;
9634         case 337500:
9635                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9636                 data = 2;
9637                 break;
9638         case 675000:
9639                 val |= LCPLL_CLK_FREQ_675_BDW;
9640                 data = 3;
9641                 break;
9642         default:
9643                 WARN(1, "invalid cdclk frequency\n");
9644                 return;
9645         }
9646
9647         I915_WRITE(LCPLL_CTL, val);
9648
9649         val = I915_READ(LCPLL_CTL);
9650         val &= ~LCPLL_CD_SOURCE_FCLK;
9651         I915_WRITE(LCPLL_CTL, val);
9652
9653         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9654                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9655                 DRM_ERROR("Switching back to LCPLL failed\n");
9656
9657         mutex_lock(&dev_priv->rps.hw_lock);
9658         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9659         mutex_unlock(&dev_priv->rps.hw_lock);
9660
9661         intel_update_cdclk(dev);
9662
9663         WARN(cdclk != dev_priv->cdclk_freq,
9664              "cdclk requested %d kHz but got %d kHz\n",
9665              cdclk, dev_priv->cdclk_freq);
9666 }
9667
9668 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9669 {
9670         struct drm_i915_private *dev_priv = to_i915(state->dev);
9671         int max_pixclk = ilk_max_pixel_rate(state);
9672         int cdclk;
9673
9674         /*
9675          * FIXME should also account for plane ratio
9676          * once 64bpp pixel formats are supported.
9677          */
9678         if (max_pixclk > 540000)
9679                 cdclk = 675000;
9680         else if (max_pixclk > 450000)
9681                 cdclk = 540000;
9682         else if (max_pixclk > 337500)
9683                 cdclk = 450000;
9684         else
9685                 cdclk = 337500;
9686
9687         /*
9688          * FIXME move the cdclk caclulation to
9689          * compute_config() so we can fail gracegully.
9690          */
9691         if (cdclk > dev_priv->max_cdclk_freq) {
9692                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9693                           cdclk, dev_priv->max_cdclk_freq);
9694                 cdclk = dev_priv->max_cdclk_freq;
9695         }
9696
9697         to_intel_atomic_state(state)->cdclk = cdclk;
9698
9699         return 0;
9700 }
9701
9702 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9703 {
9704         struct drm_device *dev = old_state->dev;
9705         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9706
9707         broadwell_set_cdclk(dev, req_cdclk);
9708 }
9709
9710 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9711                                       struct intel_crtc_state *crtc_state)
9712 {
9713         if (!intel_ddi_pll_select(crtc, crtc_state))
9714                 return -EINVAL;
9715
9716         crtc->lowfreq_avail = false;
9717
9718         return 0;
9719 }
9720
9721 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9722                                 enum port port,
9723                                 struct intel_crtc_state *pipe_config)
9724 {
9725         switch (port) {
9726         case PORT_A:
9727                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9728                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9729                 break;
9730         case PORT_B:
9731                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9732                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9733                 break;
9734         case PORT_C:
9735                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9736                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9737                 break;
9738         default:
9739                 DRM_ERROR("Incorrect port type\n");
9740         }
9741 }
9742
9743 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9744                                 enum port port,
9745                                 struct intel_crtc_state *pipe_config)
9746 {
9747         u32 temp, dpll_ctl1;
9748
9749         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9750         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9751
9752         switch (pipe_config->ddi_pll_sel) {
9753         case SKL_DPLL0:
9754                 /*
9755                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9756                  * of the shared DPLL framework and thus needs to be read out
9757                  * separately
9758                  */
9759                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9760                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9761                 break;
9762         case SKL_DPLL1:
9763                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9764                 break;
9765         case SKL_DPLL2:
9766                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9767                 break;
9768         case SKL_DPLL3:
9769                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9770                 break;
9771         }
9772 }
9773
9774 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9775                                 enum port port,
9776                                 struct intel_crtc_state *pipe_config)
9777 {
9778         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9779
9780         switch (pipe_config->ddi_pll_sel) {
9781         case PORT_CLK_SEL_WRPLL1:
9782                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9783                 break;
9784         case PORT_CLK_SEL_WRPLL2:
9785                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9786                 break;
9787         }
9788 }
9789
9790 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9791                                        struct intel_crtc_state *pipe_config)
9792 {
9793         struct drm_device *dev = crtc->base.dev;
9794         struct drm_i915_private *dev_priv = dev->dev_private;
9795         struct intel_shared_dpll *pll;
9796         enum port port;
9797         uint32_t tmp;
9798
9799         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9800
9801         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9802
9803         if (IS_SKYLAKE(dev))
9804                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9805         else if (IS_BROXTON(dev))
9806                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9807         else
9808                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9809
9810         if (pipe_config->shared_dpll >= 0) {
9811                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9812
9813                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9814                                            &pipe_config->dpll_hw_state));
9815         }
9816
9817         /*
9818          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9819          * DDI E. So just check whether this pipe is wired to DDI E and whether
9820          * the PCH transcoder is on.
9821          */
9822         if (INTEL_INFO(dev)->gen < 9 &&
9823             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9824                 pipe_config->has_pch_encoder = true;
9825
9826                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9827                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9828                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9829
9830                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9831         }
9832 }
9833
9834 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9835                                     struct intel_crtc_state *pipe_config)
9836 {
9837         struct drm_device *dev = crtc->base.dev;
9838         struct drm_i915_private *dev_priv = dev->dev_private;
9839         enum intel_display_power_domain pfit_domain;
9840         uint32_t tmp;
9841
9842         if (!intel_display_power_is_enabled(dev_priv,
9843                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9844                 return false;
9845
9846         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9847         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9848
9849         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9850         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9851                 enum pipe trans_edp_pipe;
9852                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9853                 default:
9854                         WARN(1, "unknown pipe linked to edp transcoder\n");
9855                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9856                 case TRANS_DDI_EDP_INPUT_A_ON:
9857                         trans_edp_pipe = PIPE_A;
9858                         break;
9859                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9860                         trans_edp_pipe = PIPE_B;
9861                         break;
9862                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9863                         trans_edp_pipe = PIPE_C;
9864                         break;
9865                 }
9866
9867                 if (trans_edp_pipe == crtc->pipe)
9868                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9869         }
9870
9871         if (!intel_display_power_is_enabled(dev_priv,
9872                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9873                 return false;
9874
9875         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9876         if (!(tmp & PIPECONF_ENABLE))
9877                 return false;
9878
9879         haswell_get_ddi_port_state(crtc, pipe_config);
9880
9881         intel_get_pipe_timings(crtc, pipe_config);
9882
9883         if (INTEL_INFO(dev)->gen >= 9) {
9884                 skl_init_scalers(dev, crtc, pipe_config);
9885         }
9886
9887         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9888
9889         if (INTEL_INFO(dev)->gen >= 9) {
9890                 pipe_config->scaler_state.scaler_id = -1;
9891                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9892         }
9893
9894         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9895                 if (INTEL_INFO(dev)->gen == 9)
9896                         skylake_get_pfit_config(crtc, pipe_config);
9897                 else if (INTEL_INFO(dev)->gen < 9)
9898                         ironlake_get_pfit_config(crtc, pipe_config);
9899                 else
9900                         MISSING_CASE(INTEL_INFO(dev)->gen);
9901         }
9902
9903         if (IS_HASWELL(dev))
9904                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9905                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9906
9907         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9908                 pipe_config->pixel_multiplier =
9909                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9910         } else {
9911                 pipe_config->pixel_multiplier = 1;
9912         }
9913
9914         return true;
9915 }
9916
9917 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9918 {
9919         struct drm_device *dev = crtc->dev;
9920         struct drm_i915_private *dev_priv = dev->dev_private;
9921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9922         uint32_t cntl = 0, size = 0;
9923
9924         if (base) {
9925                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9926                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9927                 unsigned int stride = roundup_pow_of_two(width) * 4;
9928
9929                 switch (stride) {
9930                 default:
9931                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9932                                   width, stride);
9933                         stride = 256;
9934                         /* fallthrough */
9935                 case 256:
9936                 case 512:
9937                 case 1024:
9938                 case 2048:
9939                         break;
9940                 }
9941
9942                 cntl |= CURSOR_ENABLE |
9943                         CURSOR_GAMMA_ENABLE |
9944                         CURSOR_FORMAT_ARGB |
9945                         CURSOR_STRIDE(stride);
9946
9947                 size = (height << 12) | width;
9948         }
9949
9950         if (intel_crtc->cursor_cntl != 0 &&
9951             (intel_crtc->cursor_base != base ||
9952              intel_crtc->cursor_size != size ||
9953              intel_crtc->cursor_cntl != cntl)) {
9954                 /* On these chipsets we can only modify the base/size/stride
9955                  * whilst the cursor is disabled.
9956                  */
9957                 I915_WRITE(_CURACNTR, 0);
9958                 POSTING_READ(_CURACNTR);
9959                 intel_crtc->cursor_cntl = 0;
9960         }
9961
9962         if (intel_crtc->cursor_base != base) {
9963                 I915_WRITE(_CURABASE, base);
9964                 intel_crtc->cursor_base = base;
9965         }
9966
9967         if (intel_crtc->cursor_size != size) {
9968                 I915_WRITE(CURSIZE, size);
9969                 intel_crtc->cursor_size = size;
9970         }
9971
9972         if (intel_crtc->cursor_cntl != cntl) {
9973                 I915_WRITE(_CURACNTR, cntl);
9974                 POSTING_READ(_CURACNTR);
9975                 intel_crtc->cursor_cntl = cntl;
9976         }
9977 }
9978
9979 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9980 {
9981         struct drm_device *dev = crtc->dev;
9982         struct drm_i915_private *dev_priv = dev->dev_private;
9983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9984         int pipe = intel_crtc->pipe;
9985         uint32_t cntl;
9986
9987         cntl = 0;
9988         if (base) {
9989                 cntl = MCURSOR_GAMMA_ENABLE;
9990                 switch (intel_crtc->base.cursor->state->crtc_w) {
9991                         case 64:
9992                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9993                                 break;
9994                         case 128:
9995                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9996                                 break;
9997                         case 256:
9998                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9999                                 break;
10000                         default:
10001                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10002                                 return;
10003                 }
10004                 cntl |= pipe << 28; /* Connect to correct pipe */
10005
10006                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10007                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10008         }
10009
10010         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10011                 cntl |= CURSOR_ROTATE_180;
10012
10013         if (intel_crtc->cursor_cntl != cntl) {
10014                 I915_WRITE(CURCNTR(pipe), cntl);
10015                 POSTING_READ(CURCNTR(pipe));
10016                 intel_crtc->cursor_cntl = cntl;
10017         }
10018
10019         /* and commit changes on next vblank */
10020         I915_WRITE(CURBASE(pipe), base);
10021         POSTING_READ(CURBASE(pipe));
10022
10023         intel_crtc->cursor_base = base;
10024 }
10025
10026 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10027 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10028                                      bool on)
10029 {
10030         struct drm_device *dev = crtc->dev;
10031         struct drm_i915_private *dev_priv = dev->dev_private;
10032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10033         int pipe = intel_crtc->pipe;
10034         int x = crtc->cursor_x;
10035         int y = crtc->cursor_y;
10036         u32 base = 0, pos = 0;
10037
10038         if (on)
10039                 base = intel_crtc->cursor_addr;
10040
10041         if (x >= intel_crtc->config->pipe_src_w)
10042                 base = 0;
10043
10044         if (y >= intel_crtc->config->pipe_src_h)
10045                 base = 0;
10046
10047         if (x < 0) {
10048                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10049                         base = 0;
10050
10051                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10052                 x = -x;
10053         }
10054         pos |= x << CURSOR_X_SHIFT;
10055
10056         if (y < 0) {
10057                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10058                         base = 0;
10059
10060                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10061                 y = -y;
10062         }
10063         pos |= y << CURSOR_Y_SHIFT;
10064
10065         if (base == 0 && intel_crtc->cursor_base == 0)
10066                 return;
10067
10068         I915_WRITE(CURPOS(pipe), pos);
10069
10070         /* ILK+ do this automagically */
10071         if (HAS_GMCH_DISPLAY(dev) &&
10072             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10073                 base += (intel_crtc->base.cursor->state->crtc_h *
10074                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10075         }
10076
10077         if (IS_845G(dev) || IS_I865G(dev))
10078                 i845_update_cursor(crtc, base);
10079         else
10080                 i9xx_update_cursor(crtc, base);
10081 }
10082
10083 static bool cursor_size_ok(struct drm_device *dev,
10084                            uint32_t width, uint32_t height)
10085 {
10086         if (width == 0 || height == 0)
10087                 return false;
10088
10089         /*
10090          * 845g/865g are special in that they are only limited by
10091          * the width of their cursors, the height is arbitrary up to
10092          * the precision of the register. Everything else requires
10093          * square cursors, limited to a few power-of-two sizes.
10094          */
10095         if (IS_845G(dev) || IS_I865G(dev)) {
10096                 if ((width & 63) != 0)
10097                         return false;
10098
10099                 if (width > (IS_845G(dev) ? 64 : 512))
10100                         return false;
10101
10102                 if (height > 1023)
10103                         return false;
10104         } else {
10105                 switch (width | height) {
10106                 case 256:
10107                 case 128:
10108                         if (IS_GEN2(dev))
10109                                 return false;
10110                 case 64:
10111                         break;
10112                 default:
10113                         return false;
10114                 }
10115         }
10116
10117         return true;
10118 }
10119
10120 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10121                                  u16 *blue, uint32_t start, uint32_t size)
10122 {
10123         int end = (start + size > 256) ? 256 : start + size, i;
10124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10125
10126         for (i = start; i < end; i++) {
10127                 intel_crtc->lut_r[i] = red[i] >> 8;
10128                 intel_crtc->lut_g[i] = green[i] >> 8;
10129                 intel_crtc->lut_b[i] = blue[i] >> 8;
10130         }
10131
10132         intel_crtc_load_lut(crtc);
10133 }
10134
10135 /* VESA 640x480x72Hz mode to set on the pipe */
10136 static struct drm_display_mode load_detect_mode = {
10137         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10138                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10139 };
10140
10141 struct drm_framebuffer *
10142 __intel_framebuffer_create(struct drm_device *dev,
10143                            struct drm_mode_fb_cmd2 *mode_cmd,
10144                            struct drm_i915_gem_object *obj)
10145 {
10146         struct intel_framebuffer *intel_fb;
10147         int ret;
10148
10149         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10150         if (!intel_fb) {
10151                 drm_gem_object_unreference(&obj->base);
10152                 return ERR_PTR(-ENOMEM);
10153         }
10154
10155         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10156         if (ret)
10157                 goto err;
10158
10159         return &intel_fb->base;
10160 err:
10161         drm_gem_object_unreference(&obj->base);
10162         kfree(intel_fb);
10163
10164         return ERR_PTR(ret);
10165 }
10166
10167 static struct drm_framebuffer *
10168 intel_framebuffer_create(struct drm_device *dev,
10169                          struct drm_mode_fb_cmd2 *mode_cmd,
10170                          struct drm_i915_gem_object *obj)
10171 {
10172         struct drm_framebuffer *fb;
10173         int ret;
10174
10175         ret = i915_mutex_lock_interruptible(dev);
10176         if (ret)
10177                 return ERR_PTR(ret);
10178         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10179         mutex_unlock(&dev->struct_mutex);
10180
10181         return fb;
10182 }
10183
10184 static u32
10185 intel_framebuffer_pitch_for_width(int width, int bpp)
10186 {
10187         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10188         return ALIGN(pitch, 64);
10189 }
10190
10191 static u32
10192 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10193 {
10194         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10195         return PAGE_ALIGN(pitch * mode->vdisplay);
10196 }
10197
10198 static struct drm_framebuffer *
10199 intel_framebuffer_create_for_mode(struct drm_device *dev,
10200                                   struct drm_display_mode *mode,
10201                                   int depth, int bpp)
10202 {
10203         struct drm_i915_gem_object *obj;
10204         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10205
10206         obj = i915_gem_alloc_object(dev,
10207                                     intel_framebuffer_size_for_mode(mode, bpp));
10208         if (obj == NULL)
10209                 return ERR_PTR(-ENOMEM);
10210
10211         mode_cmd.width = mode->hdisplay;
10212         mode_cmd.height = mode->vdisplay;
10213         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10214                                                                 bpp);
10215         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10216
10217         return intel_framebuffer_create(dev, &mode_cmd, obj);
10218 }
10219
10220 static struct drm_framebuffer *
10221 mode_fits_in_fbdev(struct drm_device *dev,
10222                    struct drm_display_mode *mode)
10223 {
10224 #ifdef CONFIG_DRM_I915_FBDEV
10225         struct drm_i915_private *dev_priv = dev->dev_private;
10226         struct drm_i915_gem_object *obj;
10227         struct drm_framebuffer *fb;
10228
10229         if (!dev_priv->fbdev)
10230                 return NULL;
10231
10232         if (!dev_priv->fbdev->fb)
10233                 return NULL;
10234
10235         obj = dev_priv->fbdev->fb->obj;
10236         BUG_ON(!obj);
10237
10238         fb = &dev_priv->fbdev->fb->base;
10239         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10240                                                                fb->bits_per_pixel))
10241                 return NULL;
10242
10243         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10244                 return NULL;
10245
10246         return fb;
10247 #else
10248         return NULL;
10249 #endif
10250 }
10251
10252 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10253                                            struct drm_crtc *crtc,
10254                                            struct drm_display_mode *mode,
10255                                            struct drm_framebuffer *fb,
10256                                            int x, int y)
10257 {
10258         struct drm_plane_state *plane_state;
10259         int hdisplay, vdisplay;
10260         int ret;
10261
10262         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10263         if (IS_ERR(plane_state))
10264                 return PTR_ERR(plane_state);
10265
10266         if (mode)
10267                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10268         else
10269                 hdisplay = vdisplay = 0;
10270
10271         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10272         if (ret)
10273                 return ret;
10274         drm_atomic_set_fb_for_plane(plane_state, fb);
10275         plane_state->crtc_x = 0;
10276         plane_state->crtc_y = 0;
10277         plane_state->crtc_w = hdisplay;
10278         plane_state->crtc_h = vdisplay;
10279         plane_state->src_x = x << 16;
10280         plane_state->src_y = y << 16;
10281         plane_state->src_w = hdisplay << 16;
10282         plane_state->src_h = vdisplay << 16;
10283
10284         return 0;
10285 }
10286
10287 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10288                                 struct drm_display_mode *mode,
10289                                 struct intel_load_detect_pipe *old,
10290                                 struct drm_modeset_acquire_ctx *ctx)
10291 {
10292         struct intel_crtc *intel_crtc;
10293         struct intel_encoder *intel_encoder =
10294                 intel_attached_encoder(connector);
10295         struct drm_crtc *possible_crtc;
10296         struct drm_encoder *encoder = &intel_encoder->base;
10297         struct drm_crtc *crtc = NULL;
10298         struct drm_device *dev = encoder->dev;
10299         struct drm_framebuffer *fb;
10300         struct drm_mode_config *config = &dev->mode_config;
10301         struct drm_atomic_state *state = NULL;
10302         struct drm_connector_state *connector_state;
10303         struct intel_crtc_state *crtc_state;
10304         int ret, i = -1;
10305
10306         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10307                       connector->base.id, connector->name,
10308                       encoder->base.id, encoder->name);
10309
10310 retry:
10311         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10312         if (ret)
10313                 goto fail;
10314
10315         /*
10316          * Algorithm gets a little messy:
10317          *
10318          *   - if the connector already has an assigned crtc, use it (but make
10319          *     sure it's on first)
10320          *
10321          *   - try to find the first unused crtc that can drive this connector,
10322          *     and use that if we find one
10323          */
10324
10325         /* See if we already have a CRTC for this connector */
10326         if (encoder->crtc) {
10327                 crtc = encoder->crtc;
10328
10329                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10330                 if (ret)
10331                         goto fail;
10332                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10333                 if (ret)
10334                         goto fail;
10335
10336                 old->dpms_mode = connector->dpms;
10337                 old->load_detect_temp = false;
10338
10339                 /* Make sure the crtc and connector are running */
10340                 if (connector->dpms != DRM_MODE_DPMS_ON)
10341                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10342
10343                 return true;
10344         }
10345
10346         /* Find an unused one (if possible) */
10347         for_each_crtc(dev, possible_crtc) {
10348                 i++;
10349                 if (!(encoder->possible_crtcs & (1 << i)))
10350                         continue;
10351                 if (possible_crtc->state->enable)
10352                         continue;
10353
10354                 crtc = possible_crtc;
10355                 break;
10356         }
10357
10358         /*
10359          * If we didn't find an unused CRTC, don't use any.
10360          */
10361         if (!crtc) {
10362                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10363                 goto fail;
10364         }
10365
10366         ret = drm_modeset_lock(&crtc->mutex, ctx);
10367         if (ret)
10368                 goto fail;
10369         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10370         if (ret)
10371                 goto fail;
10372
10373         intel_crtc = to_intel_crtc(crtc);
10374         old->dpms_mode = connector->dpms;
10375         old->load_detect_temp = true;
10376         old->release_fb = NULL;
10377
10378         state = drm_atomic_state_alloc(dev);
10379         if (!state)
10380                 return false;
10381
10382         state->acquire_ctx = ctx;
10383
10384         connector_state = drm_atomic_get_connector_state(state, connector);
10385         if (IS_ERR(connector_state)) {
10386                 ret = PTR_ERR(connector_state);
10387                 goto fail;
10388         }
10389
10390         connector_state->crtc = crtc;
10391         connector_state->best_encoder = &intel_encoder->base;
10392
10393         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10394         if (IS_ERR(crtc_state)) {
10395                 ret = PTR_ERR(crtc_state);
10396                 goto fail;
10397         }
10398
10399         crtc_state->base.active = crtc_state->base.enable = true;
10400
10401         if (!mode)
10402                 mode = &load_detect_mode;
10403
10404         /* We need a framebuffer large enough to accommodate all accesses
10405          * that the plane may generate whilst we perform load detection.
10406          * We can not rely on the fbcon either being present (we get called
10407          * during its initialisation to detect all boot displays, or it may
10408          * not even exist) or that it is large enough to satisfy the
10409          * requested mode.
10410          */
10411         fb = mode_fits_in_fbdev(dev, mode);
10412         if (fb == NULL) {
10413                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10414                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10415                 old->release_fb = fb;
10416         } else
10417                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10418         if (IS_ERR(fb)) {
10419                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10420                 goto fail;
10421         }
10422
10423         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10424         if (ret)
10425                 goto fail;
10426
10427         drm_mode_copy(&crtc_state->base.mode, mode);
10428
10429         if (drm_atomic_commit(state)) {
10430                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10431                 if (old->release_fb)
10432                         old->release_fb->funcs->destroy(old->release_fb);
10433                 goto fail;
10434         }
10435         crtc->primary->crtc = crtc;
10436
10437         /* let the connector get through one full cycle before testing */
10438         intel_wait_for_vblank(dev, intel_crtc->pipe);
10439         return true;
10440
10441 fail:
10442         drm_atomic_state_free(state);
10443         state = NULL;
10444
10445         if (ret == -EDEADLK) {
10446                 drm_modeset_backoff(ctx);
10447                 goto retry;
10448         }
10449
10450         return false;
10451 }
10452
10453 void intel_release_load_detect_pipe(struct drm_connector *connector,
10454                                     struct intel_load_detect_pipe *old,
10455                                     struct drm_modeset_acquire_ctx *ctx)
10456 {
10457         struct drm_device *dev = connector->dev;
10458         struct intel_encoder *intel_encoder =
10459                 intel_attached_encoder(connector);
10460         struct drm_encoder *encoder = &intel_encoder->base;
10461         struct drm_crtc *crtc = encoder->crtc;
10462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10463         struct drm_atomic_state *state;
10464         struct drm_connector_state *connector_state;
10465         struct intel_crtc_state *crtc_state;
10466         int ret;
10467
10468         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10469                       connector->base.id, connector->name,
10470                       encoder->base.id, encoder->name);
10471
10472         if (old->load_detect_temp) {
10473                 state = drm_atomic_state_alloc(dev);
10474                 if (!state)
10475                         goto fail;
10476
10477                 state->acquire_ctx = ctx;
10478
10479                 connector_state = drm_atomic_get_connector_state(state, connector);
10480                 if (IS_ERR(connector_state))
10481                         goto fail;
10482
10483                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10484                 if (IS_ERR(crtc_state))
10485                         goto fail;
10486
10487                 connector_state->best_encoder = NULL;
10488                 connector_state->crtc = NULL;
10489
10490                 crtc_state->base.enable = crtc_state->base.active = false;
10491
10492                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10493                                                       0, 0);
10494                 if (ret)
10495                         goto fail;
10496
10497                 ret = drm_atomic_commit(state);
10498                 if (ret)
10499                         goto fail;
10500
10501                 if (old->release_fb) {
10502                         drm_framebuffer_unregister_private(old->release_fb);
10503                         drm_framebuffer_unreference(old->release_fb);
10504                 }
10505
10506                 return;
10507         }
10508
10509         /* Switch crtc and encoder back off if necessary */
10510         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10511                 connector->funcs->dpms(connector, old->dpms_mode);
10512
10513         return;
10514 fail:
10515         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10516         drm_atomic_state_free(state);
10517 }
10518
10519 static int i9xx_pll_refclk(struct drm_device *dev,
10520                            const struct intel_crtc_state *pipe_config)
10521 {
10522         struct drm_i915_private *dev_priv = dev->dev_private;
10523         u32 dpll = pipe_config->dpll_hw_state.dpll;
10524
10525         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10526                 return dev_priv->vbt.lvds_ssc_freq;
10527         else if (HAS_PCH_SPLIT(dev))
10528                 return 120000;
10529         else if (!IS_GEN2(dev))
10530                 return 96000;
10531         else
10532                 return 48000;
10533 }
10534
10535 /* Returns the clock of the currently programmed mode of the given pipe. */
10536 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10537                                 struct intel_crtc_state *pipe_config)
10538 {
10539         struct drm_device *dev = crtc->base.dev;
10540         struct drm_i915_private *dev_priv = dev->dev_private;
10541         int pipe = pipe_config->cpu_transcoder;
10542         u32 dpll = pipe_config->dpll_hw_state.dpll;
10543         u32 fp;
10544         intel_clock_t clock;
10545         int port_clock;
10546         int refclk = i9xx_pll_refclk(dev, pipe_config);
10547
10548         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10549                 fp = pipe_config->dpll_hw_state.fp0;
10550         else
10551                 fp = pipe_config->dpll_hw_state.fp1;
10552
10553         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10554         if (IS_PINEVIEW(dev)) {
10555                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10556                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10557         } else {
10558                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10559                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10560         }
10561
10562         if (!IS_GEN2(dev)) {
10563                 if (IS_PINEVIEW(dev))
10564                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10565                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10566                 else
10567                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10568                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10569
10570                 switch (dpll & DPLL_MODE_MASK) {
10571                 case DPLLB_MODE_DAC_SERIAL:
10572                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10573                                 5 : 10;
10574                         break;
10575                 case DPLLB_MODE_LVDS:
10576                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10577                                 7 : 14;
10578                         break;
10579                 default:
10580                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10581                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10582                         return;
10583                 }
10584
10585                 if (IS_PINEVIEW(dev))
10586                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10587                 else
10588                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10589         } else {
10590                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10591                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10592
10593                 if (is_lvds) {
10594                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10595                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10596
10597                         if (lvds & LVDS_CLKB_POWER_UP)
10598                                 clock.p2 = 7;
10599                         else
10600                                 clock.p2 = 14;
10601                 } else {
10602                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10603                                 clock.p1 = 2;
10604                         else {
10605                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10606                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10607                         }
10608                         if (dpll & PLL_P2_DIVIDE_BY_4)
10609                                 clock.p2 = 4;
10610                         else
10611                                 clock.p2 = 2;
10612                 }
10613
10614                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10615         }
10616
10617         /*
10618          * This value includes pixel_multiplier. We will use
10619          * port_clock to compute adjusted_mode.crtc_clock in the
10620          * encoder's get_config() function.
10621          */
10622         pipe_config->port_clock = port_clock;
10623 }
10624
10625 int intel_dotclock_calculate(int link_freq,
10626                              const struct intel_link_m_n *m_n)
10627 {
10628         /*
10629          * The calculation for the data clock is:
10630          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10631          * But we want to avoid losing precison if possible, so:
10632          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10633          *
10634          * and the link clock is simpler:
10635          * link_clock = (m * link_clock) / n
10636          */
10637
10638         if (!m_n->link_n)
10639                 return 0;
10640
10641         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10642 }
10643
10644 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10645                                    struct intel_crtc_state *pipe_config)
10646 {
10647         struct drm_device *dev = crtc->base.dev;
10648
10649         /* read out port_clock from the DPLL */
10650         i9xx_crtc_clock_get(crtc, pipe_config);
10651
10652         /*
10653          * This value does not include pixel_multiplier.
10654          * We will check that port_clock and adjusted_mode.crtc_clock
10655          * agree once we know their relationship in the encoder's
10656          * get_config() function.
10657          */
10658         pipe_config->base.adjusted_mode.crtc_clock =
10659                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10660                                          &pipe_config->fdi_m_n);
10661 }
10662
10663 /** Returns the currently programmed mode of the given pipe. */
10664 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10665                                              struct drm_crtc *crtc)
10666 {
10667         struct drm_i915_private *dev_priv = dev->dev_private;
10668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10669         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10670         struct drm_display_mode *mode;
10671         struct intel_crtc_state pipe_config;
10672         int htot = I915_READ(HTOTAL(cpu_transcoder));
10673         int hsync = I915_READ(HSYNC(cpu_transcoder));
10674         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10675         int vsync = I915_READ(VSYNC(cpu_transcoder));
10676         enum pipe pipe = intel_crtc->pipe;
10677
10678         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10679         if (!mode)
10680                 return NULL;
10681
10682         /*
10683          * Construct a pipe_config sufficient for getting the clock info
10684          * back out of crtc_clock_get.
10685          *
10686          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10687          * to use a real value here instead.
10688          */
10689         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10690         pipe_config.pixel_multiplier = 1;
10691         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10692         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10693         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10694         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10695
10696         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10697         mode->hdisplay = (htot & 0xffff) + 1;
10698         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10699         mode->hsync_start = (hsync & 0xffff) + 1;
10700         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10701         mode->vdisplay = (vtot & 0xffff) + 1;
10702         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10703         mode->vsync_start = (vsync & 0xffff) + 1;
10704         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10705
10706         drm_mode_set_name(mode);
10707
10708         return mode;
10709 }
10710
10711 void intel_mark_busy(struct drm_device *dev)
10712 {
10713         struct drm_i915_private *dev_priv = dev->dev_private;
10714
10715         if (dev_priv->mm.busy)
10716                 return;
10717
10718         intel_runtime_pm_get(dev_priv);
10719         i915_update_gfx_val(dev_priv);
10720         if (INTEL_INFO(dev)->gen >= 6)
10721                 gen6_rps_busy(dev_priv);
10722         dev_priv->mm.busy = true;
10723 }
10724
10725 void intel_mark_idle(struct drm_device *dev)
10726 {
10727         struct drm_i915_private *dev_priv = dev->dev_private;
10728
10729         if (!dev_priv->mm.busy)
10730                 return;
10731
10732         dev_priv->mm.busy = false;
10733
10734         if (INTEL_INFO(dev)->gen >= 6)
10735                 gen6_rps_idle(dev->dev_private);
10736
10737         intel_runtime_pm_put(dev_priv);
10738 }
10739
10740 static void intel_crtc_destroy(struct drm_crtc *crtc)
10741 {
10742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10743         struct drm_device *dev = crtc->dev;
10744         struct intel_unpin_work *work;
10745
10746         spin_lock_irq(&dev->event_lock);
10747         work = intel_crtc->unpin_work;
10748         intel_crtc->unpin_work = NULL;
10749         spin_unlock_irq(&dev->event_lock);
10750
10751         if (work) {
10752                 cancel_work_sync(&work->work);
10753                 kfree(work);
10754         }
10755
10756         drm_crtc_cleanup(crtc);
10757
10758         kfree(intel_crtc);
10759 }
10760
10761 static void intel_unpin_work_fn(struct work_struct *__work)
10762 {
10763         struct intel_unpin_work *work =
10764                 container_of(__work, struct intel_unpin_work, work);
10765         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10766         struct drm_device *dev = crtc->base.dev;
10767         struct drm_i915_private *dev_priv = dev->dev_private;
10768         struct drm_plane *primary = crtc->base.primary;
10769
10770         mutex_lock(&dev->struct_mutex);
10771         intel_unpin_fb_obj(work->old_fb, primary->state);
10772         drm_gem_object_unreference(&work->pending_flip_obj->base);
10773
10774         intel_fbc_update(dev_priv);
10775
10776         if (work->flip_queued_req)
10777                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10778         mutex_unlock(&dev->struct_mutex);
10779
10780         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10781         drm_framebuffer_unreference(work->old_fb);
10782
10783         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10784         atomic_dec(&crtc->unpin_work_count);
10785
10786         kfree(work);
10787 }
10788
10789 static void do_intel_finish_page_flip(struct drm_device *dev,
10790                                       struct drm_crtc *crtc)
10791 {
10792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10793         struct intel_unpin_work *work;
10794         unsigned long flags;
10795
10796         /* Ignore early vblank irqs */
10797         if (intel_crtc == NULL)
10798                 return;
10799
10800         /*
10801          * This is called both by irq handlers and the reset code (to complete
10802          * lost pageflips) so needs the full irqsave spinlocks.
10803          */
10804         spin_lock_irqsave(&dev->event_lock, flags);
10805         work = intel_crtc->unpin_work;
10806
10807         /* Ensure we don't miss a work->pending update ... */
10808         smp_rmb();
10809
10810         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10811                 spin_unlock_irqrestore(&dev->event_lock, flags);
10812                 return;
10813         }
10814
10815         page_flip_completed(intel_crtc);
10816
10817         spin_unlock_irqrestore(&dev->event_lock, flags);
10818 }
10819
10820 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10821 {
10822         struct drm_i915_private *dev_priv = dev->dev_private;
10823         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10824
10825         do_intel_finish_page_flip(dev, crtc);
10826 }
10827
10828 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10829 {
10830         struct drm_i915_private *dev_priv = dev->dev_private;
10831         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10832
10833         do_intel_finish_page_flip(dev, crtc);
10834 }
10835
10836 /* Is 'a' after or equal to 'b'? */
10837 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10838 {
10839         return !((a - b) & 0x80000000);
10840 }
10841
10842 static bool page_flip_finished(struct intel_crtc *crtc)
10843 {
10844         struct drm_device *dev = crtc->base.dev;
10845         struct drm_i915_private *dev_priv = dev->dev_private;
10846
10847         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10848             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10849                 return true;
10850
10851         /*
10852          * The relevant registers doen't exist on pre-ctg.
10853          * As the flip done interrupt doesn't trigger for mmio
10854          * flips on gmch platforms, a flip count check isn't
10855          * really needed there. But since ctg has the registers,
10856          * include it in the check anyway.
10857          */
10858         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10859                 return true;
10860
10861         /*
10862          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10863          * used the same base address. In that case the mmio flip might
10864          * have completed, but the CS hasn't even executed the flip yet.
10865          *
10866          * A flip count check isn't enough as the CS might have updated
10867          * the base address just after start of vblank, but before we
10868          * managed to process the interrupt. This means we'd complete the
10869          * CS flip too soon.
10870          *
10871          * Combining both checks should get us a good enough result. It may
10872          * still happen that the CS flip has been executed, but has not
10873          * yet actually completed. But in case the base address is the same
10874          * anyway, we don't really care.
10875          */
10876         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10877                 crtc->unpin_work->gtt_offset &&
10878                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10879                                     crtc->unpin_work->flip_count);
10880 }
10881
10882 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10883 {
10884         struct drm_i915_private *dev_priv = dev->dev_private;
10885         struct intel_crtc *intel_crtc =
10886                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10887         unsigned long flags;
10888
10889
10890         /*
10891          * This is called both by irq handlers and the reset code (to complete
10892          * lost pageflips) so needs the full irqsave spinlocks.
10893          *
10894          * NB: An MMIO update of the plane base pointer will also
10895          * generate a page-flip completion irq, i.e. every modeset
10896          * is also accompanied by a spurious intel_prepare_page_flip().
10897          */
10898         spin_lock_irqsave(&dev->event_lock, flags);
10899         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10900                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10901         spin_unlock_irqrestore(&dev->event_lock, flags);
10902 }
10903
10904 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10905 {
10906         /* Ensure that the work item is consistent when activating it ... */
10907         smp_wmb();
10908         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10909         /* and that it is marked active as soon as the irq could fire. */
10910         smp_wmb();
10911 }
10912
10913 static int intel_gen2_queue_flip(struct drm_device *dev,
10914                                  struct drm_crtc *crtc,
10915                                  struct drm_framebuffer *fb,
10916                                  struct drm_i915_gem_object *obj,
10917                                  struct drm_i915_gem_request *req,
10918                                  uint32_t flags)
10919 {
10920         struct intel_engine_cs *ring = req->ring;
10921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10922         u32 flip_mask;
10923         int ret;
10924
10925         ret = intel_ring_begin(req, 6);
10926         if (ret)
10927                 return ret;
10928
10929         /* Can't queue multiple flips, so wait for the previous
10930          * one to finish before executing the next.
10931          */
10932         if (intel_crtc->plane)
10933                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10934         else
10935                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10936         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10937         intel_ring_emit(ring, MI_NOOP);
10938         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10939                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10940         intel_ring_emit(ring, fb->pitches[0]);
10941         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10942         intel_ring_emit(ring, 0); /* aux display base address, unused */
10943
10944         intel_mark_page_flip_active(intel_crtc);
10945         return 0;
10946 }
10947
10948 static int intel_gen3_queue_flip(struct drm_device *dev,
10949                                  struct drm_crtc *crtc,
10950                                  struct drm_framebuffer *fb,
10951                                  struct drm_i915_gem_object *obj,
10952                                  struct drm_i915_gem_request *req,
10953                                  uint32_t flags)
10954 {
10955         struct intel_engine_cs *ring = req->ring;
10956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10957         u32 flip_mask;
10958         int ret;
10959
10960         ret = intel_ring_begin(req, 6);
10961         if (ret)
10962                 return ret;
10963
10964         if (intel_crtc->plane)
10965                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10966         else
10967                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10968         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10969         intel_ring_emit(ring, MI_NOOP);
10970         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10971                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10972         intel_ring_emit(ring, fb->pitches[0]);
10973         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10974         intel_ring_emit(ring, MI_NOOP);
10975
10976         intel_mark_page_flip_active(intel_crtc);
10977         return 0;
10978 }
10979
10980 static int intel_gen4_queue_flip(struct drm_device *dev,
10981                                  struct drm_crtc *crtc,
10982                                  struct drm_framebuffer *fb,
10983                                  struct drm_i915_gem_object *obj,
10984                                  struct drm_i915_gem_request *req,
10985                                  uint32_t flags)
10986 {
10987         struct intel_engine_cs *ring = req->ring;
10988         struct drm_i915_private *dev_priv = dev->dev_private;
10989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10990         uint32_t pf, pipesrc;
10991         int ret;
10992
10993         ret = intel_ring_begin(req, 4);
10994         if (ret)
10995                 return ret;
10996
10997         /* i965+ uses the linear or tiled offsets from the
10998          * Display Registers (which do not change across a page-flip)
10999          * so we need only reprogram the base address.
11000          */
11001         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11002                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11003         intel_ring_emit(ring, fb->pitches[0]);
11004         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11005                         obj->tiling_mode);
11006
11007         /* XXX Enabling the panel-fitter across page-flip is so far
11008          * untested on non-native modes, so ignore it for now.
11009          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11010          */
11011         pf = 0;
11012         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11013         intel_ring_emit(ring, pf | pipesrc);
11014
11015         intel_mark_page_flip_active(intel_crtc);
11016         return 0;
11017 }
11018
11019 static int intel_gen6_queue_flip(struct drm_device *dev,
11020                                  struct drm_crtc *crtc,
11021                                  struct drm_framebuffer *fb,
11022                                  struct drm_i915_gem_object *obj,
11023                                  struct drm_i915_gem_request *req,
11024                                  uint32_t flags)
11025 {
11026         struct intel_engine_cs *ring = req->ring;
11027         struct drm_i915_private *dev_priv = dev->dev_private;
11028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11029         uint32_t pf, pipesrc;
11030         int ret;
11031
11032         ret = intel_ring_begin(req, 4);
11033         if (ret)
11034                 return ret;
11035
11036         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11037                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11038         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11039         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11040
11041         /* Contrary to the suggestions in the documentation,
11042          * "Enable Panel Fitter" does not seem to be required when page
11043          * flipping with a non-native mode, and worse causes a normal
11044          * modeset to fail.
11045          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11046          */
11047         pf = 0;
11048         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11049         intel_ring_emit(ring, pf | pipesrc);
11050
11051         intel_mark_page_flip_active(intel_crtc);
11052         return 0;
11053 }
11054
11055 static int intel_gen7_queue_flip(struct drm_device *dev,
11056                                  struct drm_crtc *crtc,
11057                                  struct drm_framebuffer *fb,
11058                                  struct drm_i915_gem_object *obj,
11059                                  struct drm_i915_gem_request *req,
11060                                  uint32_t flags)
11061 {
11062         struct intel_engine_cs *ring = req->ring;
11063         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11064         uint32_t plane_bit = 0;
11065         int len, ret;
11066
11067         switch (intel_crtc->plane) {
11068         case PLANE_A:
11069                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11070                 break;
11071         case PLANE_B:
11072                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11073                 break;
11074         case PLANE_C:
11075                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11076                 break;
11077         default:
11078                 WARN_ONCE(1, "unknown plane in flip command\n");
11079                 return -ENODEV;
11080         }
11081
11082         len = 4;
11083         if (ring->id == RCS) {
11084                 len += 6;
11085                 /*
11086                  * On Gen 8, SRM is now taking an extra dword to accommodate
11087                  * 48bits addresses, and we need a NOOP for the batch size to
11088                  * stay even.
11089                  */
11090                 if (IS_GEN8(dev))
11091                         len += 2;
11092         }
11093
11094         /*
11095          * BSpec MI_DISPLAY_FLIP for IVB:
11096          * "The full packet must be contained within the same cache line."
11097          *
11098          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11099          * cacheline, if we ever start emitting more commands before
11100          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11101          * then do the cacheline alignment, and finally emit the
11102          * MI_DISPLAY_FLIP.
11103          */
11104         ret = intel_ring_cacheline_align(req);
11105         if (ret)
11106                 return ret;
11107
11108         ret = intel_ring_begin(req, len);
11109         if (ret)
11110                 return ret;
11111
11112         /* Unmask the flip-done completion message. Note that the bspec says that
11113          * we should do this for both the BCS and RCS, and that we must not unmask
11114          * more than one flip event at any time (or ensure that one flip message
11115          * can be sent by waiting for flip-done prior to queueing new flips).
11116          * Experimentation says that BCS works despite DERRMR masking all
11117          * flip-done completion events and that unmasking all planes at once
11118          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11119          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11120          */
11121         if (ring->id == RCS) {
11122                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11123                 intel_ring_emit(ring, DERRMR);
11124                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11125                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11126                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11127                 if (IS_GEN8(dev))
11128                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11129                                               MI_SRM_LRM_GLOBAL_GTT);
11130                 else
11131                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11132                                               MI_SRM_LRM_GLOBAL_GTT);
11133                 intel_ring_emit(ring, DERRMR);
11134                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11135                 if (IS_GEN8(dev)) {
11136                         intel_ring_emit(ring, 0);
11137                         intel_ring_emit(ring, MI_NOOP);
11138                 }
11139         }
11140
11141         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11142         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11143         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11144         intel_ring_emit(ring, (MI_NOOP));
11145
11146         intel_mark_page_flip_active(intel_crtc);
11147         return 0;
11148 }
11149
11150 static bool use_mmio_flip(struct intel_engine_cs *ring,
11151                           struct drm_i915_gem_object *obj)
11152 {
11153         /*
11154          * This is not being used for older platforms, because
11155          * non-availability of flip done interrupt forces us to use
11156          * CS flips. Older platforms derive flip done using some clever
11157          * tricks involving the flip_pending status bits and vblank irqs.
11158          * So using MMIO flips there would disrupt this mechanism.
11159          */
11160
11161         if (ring == NULL)
11162                 return true;
11163
11164         if (INTEL_INFO(ring->dev)->gen < 5)
11165                 return false;
11166
11167         if (i915.use_mmio_flip < 0)
11168                 return false;
11169         else if (i915.use_mmio_flip > 0)
11170                 return true;
11171         else if (i915.enable_execlists)
11172                 return true;
11173         else
11174                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11175 }
11176
11177 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11178 {
11179         struct drm_device *dev = intel_crtc->base.dev;
11180         struct drm_i915_private *dev_priv = dev->dev_private;
11181         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11182         const enum pipe pipe = intel_crtc->pipe;
11183         u32 ctl, stride;
11184
11185         ctl = I915_READ(PLANE_CTL(pipe, 0));
11186         ctl &= ~PLANE_CTL_TILED_MASK;
11187         switch (fb->modifier[0]) {
11188         case DRM_FORMAT_MOD_NONE:
11189                 break;
11190         case I915_FORMAT_MOD_X_TILED:
11191                 ctl |= PLANE_CTL_TILED_X;
11192                 break;
11193         case I915_FORMAT_MOD_Y_TILED:
11194                 ctl |= PLANE_CTL_TILED_Y;
11195                 break;
11196         case I915_FORMAT_MOD_Yf_TILED:
11197                 ctl |= PLANE_CTL_TILED_YF;
11198                 break;
11199         default:
11200                 MISSING_CASE(fb->modifier[0]);
11201         }
11202
11203         /*
11204          * The stride is either expressed as a multiple of 64 bytes chunks for
11205          * linear buffers or in number of tiles for tiled buffers.
11206          */
11207         stride = fb->pitches[0] /
11208                  intel_fb_stride_alignment(dev, fb->modifier[0],
11209                                            fb->pixel_format);
11210
11211         /*
11212          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11213          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11214          */
11215         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11216         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11217
11218         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11219         POSTING_READ(PLANE_SURF(pipe, 0));
11220 }
11221
11222 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11223 {
11224         struct drm_device *dev = intel_crtc->base.dev;
11225         struct drm_i915_private *dev_priv = dev->dev_private;
11226         struct intel_framebuffer *intel_fb =
11227                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11228         struct drm_i915_gem_object *obj = intel_fb->obj;
11229         u32 dspcntr;
11230         u32 reg;
11231
11232         reg = DSPCNTR(intel_crtc->plane);
11233         dspcntr = I915_READ(reg);
11234
11235         if (obj->tiling_mode != I915_TILING_NONE)
11236                 dspcntr |= DISPPLANE_TILED;
11237         else
11238                 dspcntr &= ~DISPPLANE_TILED;
11239
11240         I915_WRITE(reg, dspcntr);
11241
11242         I915_WRITE(DSPSURF(intel_crtc->plane),
11243                    intel_crtc->unpin_work->gtt_offset);
11244         POSTING_READ(DSPSURF(intel_crtc->plane));
11245
11246 }
11247
11248 /*
11249  * XXX: This is the temporary way to update the plane registers until we get
11250  * around to using the usual plane update functions for MMIO flips
11251  */
11252 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11253 {
11254         struct drm_device *dev = intel_crtc->base.dev;
11255         u32 start_vbl_count;
11256
11257         intel_mark_page_flip_active(intel_crtc);
11258
11259         intel_pipe_update_start(intel_crtc, &start_vbl_count);
11260
11261         if (INTEL_INFO(dev)->gen >= 9)
11262                 skl_do_mmio_flip(intel_crtc);
11263         else
11264                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11265                 ilk_do_mmio_flip(intel_crtc);
11266
11267         intel_pipe_update_end(intel_crtc, start_vbl_count);
11268 }
11269
11270 static void intel_mmio_flip_work_func(struct work_struct *work)
11271 {
11272         struct intel_mmio_flip *mmio_flip =
11273                 container_of(work, struct intel_mmio_flip, work);
11274
11275         if (mmio_flip->req)
11276                 WARN_ON(__i915_wait_request(mmio_flip->req,
11277                                             mmio_flip->crtc->reset_counter,
11278                                             false, NULL,
11279                                             &mmio_flip->i915->rps.mmioflips));
11280
11281         intel_do_mmio_flip(mmio_flip->crtc);
11282
11283         i915_gem_request_unreference__unlocked(mmio_flip->req);
11284         kfree(mmio_flip);
11285 }
11286
11287 static int intel_queue_mmio_flip(struct drm_device *dev,
11288                                  struct drm_crtc *crtc,
11289                                  struct drm_framebuffer *fb,
11290                                  struct drm_i915_gem_object *obj,
11291                                  struct intel_engine_cs *ring,
11292                                  uint32_t flags)
11293 {
11294         struct intel_mmio_flip *mmio_flip;
11295
11296         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11297         if (mmio_flip == NULL)
11298                 return -ENOMEM;
11299
11300         mmio_flip->i915 = to_i915(dev);
11301         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11302         mmio_flip->crtc = to_intel_crtc(crtc);
11303
11304         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11305         schedule_work(&mmio_flip->work);
11306
11307         return 0;
11308 }
11309
11310 static int intel_default_queue_flip(struct drm_device *dev,
11311                                     struct drm_crtc *crtc,
11312                                     struct drm_framebuffer *fb,
11313                                     struct drm_i915_gem_object *obj,
11314                                     struct drm_i915_gem_request *req,
11315                                     uint32_t flags)
11316 {
11317         return -ENODEV;
11318 }
11319
11320 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11321                                          struct drm_crtc *crtc)
11322 {
11323         struct drm_i915_private *dev_priv = dev->dev_private;
11324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11325         struct intel_unpin_work *work = intel_crtc->unpin_work;
11326         u32 addr;
11327
11328         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11329                 return true;
11330
11331         if (!work->enable_stall_check)
11332                 return false;
11333
11334         if (work->flip_ready_vblank == 0) {
11335                 if (work->flip_queued_req &&
11336                     !i915_gem_request_completed(work->flip_queued_req, true))
11337                         return false;
11338
11339                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11340         }
11341
11342         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11343                 return false;
11344
11345         /* Potential stall - if we see that the flip has happened,
11346          * assume a missed interrupt. */
11347         if (INTEL_INFO(dev)->gen >= 4)
11348                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11349         else
11350                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11351
11352         /* There is a potential issue here with a false positive after a flip
11353          * to the same address. We could address this by checking for a
11354          * non-incrementing frame counter.
11355          */
11356         return addr == work->gtt_offset;
11357 }
11358
11359 void intel_check_page_flip(struct drm_device *dev, int pipe)
11360 {
11361         struct drm_i915_private *dev_priv = dev->dev_private;
11362         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11363         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11364         struct intel_unpin_work *work;
11365
11366         WARN_ON(!in_interrupt());
11367
11368         if (crtc == NULL)
11369                 return;
11370
11371         spin_lock(&dev->event_lock);
11372         work = intel_crtc->unpin_work;
11373         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11374                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11375                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11376                 page_flip_completed(intel_crtc);
11377                 work = NULL;
11378         }
11379         if (work != NULL &&
11380             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11381                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11382         spin_unlock(&dev->event_lock);
11383 }
11384
11385 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11386                                 struct drm_framebuffer *fb,
11387                                 struct drm_pending_vblank_event *event,
11388                                 uint32_t page_flip_flags)
11389 {
11390         struct drm_device *dev = crtc->dev;
11391         struct drm_i915_private *dev_priv = dev->dev_private;
11392         struct drm_framebuffer *old_fb = crtc->primary->fb;
11393         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11395         struct drm_plane *primary = crtc->primary;
11396         enum pipe pipe = intel_crtc->pipe;
11397         struct intel_unpin_work *work;
11398         struct intel_engine_cs *ring;
11399         bool mmio_flip;
11400         struct drm_i915_gem_request *request = NULL;
11401         int ret;
11402
11403         /*
11404          * drm_mode_page_flip_ioctl() should already catch this, but double
11405          * check to be safe.  In the future we may enable pageflipping from
11406          * a disabled primary plane.
11407          */
11408         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11409                 return -EBUSY;
11410
11411         /* Can't change pixel format via MI display flips. */
11412         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11413                 return -EINVAL;
11414
11415         /*
11416          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11417          * Note that pitch changes could also affect these register.
11418          */
11419         if (INTEL_INFO(dev)->gen > 3 &&
11420             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11421              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11422                 return -EINVAL;
11423
11424         if (i915_terminally_wedged(&dev_priv->gpu_error))
11425                 goto out_hang;
11426
11427         work = kzalloc(sizeof(*work), GFP_KERNEL);
11428         if (work == NULL)
11429                 return -ENOMEM;
11430
11431         work->event = event;
11432         work->crtc = crtc;
11433         work->old_fb = old_fb;
11434         INIT_WORK(&work->work, intel_unpin_work_fn);
11435
11436         ret = drm_crtc_vblank_get(crtc);
11437         if (ret)
11438                 goto free_work;
11439
11440         /* We borrow the event spin lock for protecting unpin_work */
11441         spin_lock_irq(&dev->event_lock);
11442         if (intel_crtc->unpin_work) {
11443                 /* Before declaring the flip queue wedged, check if
11444                  * the hardware completed the operation behind our backs.
11445                  */
11446                 if (__intel_pageflip_stall_check(dev, crtc)) {
11447                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11448                         page_flip_completed(intel_crtc);
11449                 } else {
11450                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11451                         spin_unlock_irq(&dev->event_lock);
11452
11453                         drm_crtc_vblank_put(crtc);
11454                         kfree(work);
11455                         return -EBUSY;
11456                 }
11457         }
11458         intel_crtc->unpin_work = work;
11459         spin_unlock_irq(&dev->event_lock);
11460
11461         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11462                 flush_workqueue(dev_priv->wq);
11463
11464         /* Reference the objects for the scheduled work. */
11465         drm_framebuffer_reference(work->old_fb);
11466         drm_gem_object_reference(&obj->base);
11467
11468         crtc->primary->fb = fb;
11469         update_state_fb(crtc->primary);
11470
11471         work->pending_flip_obj = obj;
11472
11473         ret = i915_mutex_lock_interruptible(dev);
11474         if (ret)
11475                 goto cleanup;
11476
11477         atomic_inc(&intel_crtc->unpin_work_count);
11478         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11479
11480         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11481                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11482
11483         if (IS_VALLEYVIEW(dev)) {
11484                 ring = &dev_priv->ring[BCS];
11485                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11486                         /* vlv: DISPLAY_FLIP fails to change tiling */
11487                         ring = NULL;
11488         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11489                 ring = &dev_priv->ring[BCS];
11490         } else if (INTEL_INFO(dev)->gen >= 7) {
11491                 ring = i915_gem_request_get_ring(obj->last_write_req);
11492                 if (ring == NULL || ring->id != RCS)
11493                         ring = &dev_priv->ring[BCS];
11494         } else {
11495                 ring = &dev_priv->ring[RCS];
11496         }
11497
11498         mmio_flip = use_mmio_flip(ring, obj);
11499
11500         /* When using CS flips, we want to emit semaphores between rings.
11501          * However, when using mmio flips we will create a task to do the
11502          * synchronisation, so all we want here is to pin the framebuffer
11503          * into the display plane and skip any waits.
11504          */
11505         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11506                                          crtc->primary->state,
11507                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11508         if (ret)
11509                 goto cleanup_pending;
11510
11511         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11512                                                   + intel_crtc->dspaddr_offset;
11513
11514         if (mmio_flip) {
11515                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11516                                             page_flip_flags);
11517                 if (ret)
11518                         goto cleanup_unpin;
11519
11520                 i915_gem_request_assign(&work->flip_queued_req,
11521                                         obj->last_write_req);
11522         } else {
11523                 if (!request) {
11524                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11525                         if (ret)
11526                                 goto cleanup_unpin;
11527                 }
11528
11529                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11530                                                    page_flip_flags);
11531                 if (ret)
11532                         goto cleanup_unpin;
11533
11534                 i915_gem_request_assign(&work->flip_queued_req, request);
11535         }
11536
11537         if (request)
11538                 i915_add_request_no_flush(request);
11539
11540         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11541         work->enable_stall_check = true;
11542
11543         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11544                           to_intel_plane(primary)->frontbuffer_bit);
11545         mutex_unlock(&dev->struct_mutex);
11546
11547         intel_fbc_disable(dev_priv);
11548         intel_frontbuffer_flip_prepare(dev,
11549                                        to_intel_plane(primary)->frontbuffer_bit);
11550
11551         trace_i915_flip_request(intel_crtc->plane, obj);
11552
11553         return 0;
11554
11555 cleanup_unpin:
11556         intel_unpin_fb_obj(fb, crtc->primary->state);
11557 cleanup_pending:
11558         if (request)
11559                 i915_gem_request_cancel(request);
11560         atomic_dec(&intel_crtc->unpin_work_count);
11561         mutex_unlock(&dev->struct_mutex);
11562 cleanup:
11563         crtc->primary->fb = old_fb;
11564         update_state_fb(crtc->primary);
11565
11566         drm_gem_object_unreference_unlocked(&obj->base);
11567         drm_framebuffer_unreference(work->old_fb);
11568
11569         spin_lock_irq(&dev->event_lock);
11570         intel_crtc->unpin_work = NULL;
11571         spin_unlock_irq(&dev->event_lock);
11572
11573         drm_crtc_vblank_put(crtc);
11574 free_work:
11575         kfree(work);
11576
11577         if (ret == -EIO) {
11578                 struct drm_atomic_state *state;
11579                 struct drm_plane_state *plane_state;
11580
11581 out_hang:
11582                 state = drm_atomic_state_alloc(dev);
11583                 if (!state)
11584                         return -ENOMEM;
11585                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11586
11587 retry:
11588                 plane_state = drm_atomic_get_plane_state(state, primary);
11589                 ret = PTR_ERR_OR_ZERO(plane_state);
11590                 if (!ret) {
11591                         drm_atomic_set_fb_for_plane(plane_state, fb);
11592
11593                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11594                         if (!ret)
11595                                 ret = drm_atomic_commit(state);
11596                 }
11597
11598                 if (ret == -EDEADLK) {
11599                         drm_modeset_backoff(state->acquire_ctx);
11600                         drm_atomic_state_clear(state);
11601                         goto retry;
11602                 }
11603
11604                 if (ret)
11605                         drm_atomic_state_free(state);
11606
11607                 if (ret == 0 && event) {
11608                         spin_lock_irq(&dev->event_lock);
11609                         drm_send_vblank_event(dev, pipe, event);
11610                         spin_unlock_irq(&dev->event_lock);
11611                 }
11612         }
11613         return ret;
11614 }
11615
11616
11617 /**
11618  * intel_wm_need_update - Check whether watermarks need updating
11619  * @plane: drm plane
11620  * @state: new plane state
11621  *
11622  * Check current plane state versus the new one to determine whether
11623  * watermarks need to be recalculated.
11624  *
11625  * Returns true or false.
11626  */
11627 static bool intel_wm_need_update(struct drm_plane *plane,
11628                                  struct drm_plane_state *state)
11629 {
11630         /* Update watermarks on tiling changes. */
11631         if (!plane->state->fb || !state->fb ||
11632             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11633             plane->state->rotation != state->rotation)
11634                 return true;
11635
11636         if (plane->state->crtc_w != state->crtc_w)
11637                 return true;
11638
11639         return false;
11640 }
11641
11642 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11643                                     struct drm_plane_state *plane_state)
11644 {
11645         struct drm_crtc *crtc = crtc_state->crtc;
11646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11647         struct drm_plane *plane = plane_state->plane;
11648         struct drm_device *dev = crtc->dev;
11649         struct drm_i915_private *dev_priv = dev->dev_private;
11650         struct intel_plane_state *old_plane_state =
11651                 to_intel_plane_state(plane->state);
11652         int idx = intel_crtc->base.base.id, ret;
11653         int i = drm_plane_index(plane);
11654         bool mode_changed = needs_modeset(crtc_state);
11655         bool was_crtc_enabled = crtc->state->active;
11656         bool is_crtc_enabled = crtc_state->active;
11657
11658         bool turn_off, turn_on, visible, was_visible;
11659         struct drm_framebuffer *fb = plane_state->fb;
11660
11661         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11662             plane->type != DRM_PLANE_TYPE_CURSOR) {
11663                 ret = skl_update_scaler_plane(
11664                         to_intel_crtc_state(crtc_state),
11665                         to_intel_plane_state(plane_state));
11666                 if (ret)
11667                         return ret;
11668         }
11669
11670         /*
11671          * Disabling a plane is always okay; we just need to update
11672          * fb tracking in a special way since cleanup_fb() won't
11673          * get called by the plane helpers.
11674          */
11675         if (old_plane_state->base.fb && !fb)
11676                 intel_crtc->atomic.disabled_planes |= 1 << i;
11677
11678         was_visible = old_plane_state->visible;
11679         visible = to_intel_plane_state(plane_state)->visible;
11680
11681         if (!was_crtc_enabled && WARN_ON(was_visible))
11682                 was_visible = false;
11683
11684         if (!is_crtc_enabled && WARN_ON(visible))
11685                 visible = false;
11686
11687         if (!was_visible && !visible)
11688                 return 0;
11689
11690         turn_off = was_visible && (!visible || mode_changed);
11691         turn_on = visible && (!was_visible || mode_changed);
11692
11693         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11694                          plane->base.id, fb ? fb->base.id : -1);
11695
11696         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11697                          plane->base.id, was_visible, visible,
11698                          turn_off, turn_on, mode_changed);
11699
11700         if (turn_on) {
11701                 intel_crtc->atomic.update_wm_pre = true;
11702                 /* must disable cxsr around plane enable/disable */
11703                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11704                         intel_crtc->atomic.disable_cxsr = true;
11705                         /* to potentially re-enable cxsr */
11706                         intel_crtc->atomic.wait_vblank = true;
11707                         intel_crtc->atomic.update_wm_post = true;
11708                 }
11709         } else if (turn_off) {
11710                 intel_crtc->atomic.update_wm_post = true;
11711                 /* must disable cxsr around plane enable/disable */
11712                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11713                         if (is_crtc_enabled)
11714                                 intel_crtc->atomic.wait_vblank = true;
11715                         intel_crtc->atomic.disable_cxsr = true;
11716                 }
11717         } else if (intel_wm_need_update(plane, plane_state)) {
11718                 intel_crtc->atomic.update_wm_pre = true;
11719         }
11720
11721         if (visible)
11722                 intel_crtc->atomic.fb_bits |=
11723                         to_intel_plane(plane)->frontbuffer_bit;
11724
11725         switch (plane->type) {
11726         case DRM_PLANE_TYPE_PRIMARY:
11727                 intel_crtc->atomic.wait_for_flips = true;
11728                 intel_crtc->atomic.pre_disable_primary = turn_off;
11729                 intel_crtc->atomic.post_enable_primary = turn_on;
11730
11731                 if (turn_off) {
11732                         /*
11733                          * FIXME: Actually if we will still have any other
11734                          * plane enabled on the pipe we could let IPS enabled
11735                          * still, but for now lets consider that when we make
11736                          * primary invisible by setting DSPCNTR to 0 on
11737                          * update_primary_plane function IPS needs to be
11738                          * disable.
11739                          */
11740                         intel_crtc->atomic.disable_ips = true;
11741
11742                         intel_crtc->atomic.disable_fbc = true;
11743                 }
11744
11745                 /*
11746                  * FBC does not work on some platforms for rotated
11747                  * planes, so disable it when rotation is not 0 and
11748                  * update it when rotation is set back to 0.
11749                  *
11750                  * FIXME: This is redundant with the fbc update done in
11751                  * the primary plane enable function except that that
11752                  * one is done too late. We eventually need to unify
11753                  * this.
11754                  */
11755
11756                 if (visible &&
11757                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11758                     dev_priv->fbc.crtc == intel_crtc &&
11759                     plane_state->rotation != BIT(DRM_ROTATE_0))
11760                         intel_crtc->atomic.disable_fbc = true;
11761
11762                 /*
11763                  * BDW signals flip done immediately if the plane
11764                  * is disabled, even if the plane enable is already
11765                  * armed to occur at the next vblank :(
11766                  */
11767                 if (turn_on && IS_BROADWELL(dev))
11768                         intel_crtc->atomic.wait_vblank = true;
11769
11770                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11771                 break;
11772         case DRM_PLANE_TYPE_CURSOR:
11773                 break;
11774         case DRM_PLANE_TYPE_OVERLAY:
11775                 if (turn_off && !mode_changed) {
11776                         intel_crtc->atomic.wait_vblank = true;
11777                         intel_crtc->atomic.update_sprite_watermarks |=
11778                                 1 << i;
11779                 }
11780         }
11781         return 0;
11782 }
11783
11784 static bool encoders_cloneable(const struct intel_encoder *a,
11785                                const struct intel_encoder *b)
11786 {
11787         /* masks could be asymmetric, so check both ways */
11788         return a == b || (a->cloneable & (1 << b->type) &&
11789                           b->cloneable & (1 << a->type));
11790 }
11791
11792 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11793                                          struct intel_crtc *crtc,
11794                                          struct intel_encoder *encoder)
11795 {
11796         struct intel_encoder *source_encoder;
11797         struct drm_connector *connector;
11798         struct drm_connector_state *connector_state;
11799         int i;
11800
11801         for_each_connector_in_state(state, connector, connector_state, i) {
11802                 if (connector_state->crtc != &crtc->base)
11803                         continue;
11804
11805                 source_encoder =
11806                         to_intel_encoder(connector_state->best_encoder);
11807                 if (!encoders_cloneable(encoder, source_encoder))
11808                         return false;
11809         }
11810
11811         return true;
11812 }
11813
11814 static bool check_encoder_cloning(struct drm_atomic_state *state,
11815                                   struct intel_crtc *crtc)
11816 {
11817         struct intel_encoder *encoder;
11818         struct drm_connector *connector;
11819         struct drm_connector_state *connector_state;
11820         int i;
11821
11822         for_each_connector_in_state(state, connector, connector_state, i) {
11823                 if (connector_state->crtc != &crtc->base)
11824                         continue;
11825
11826                 encoder = to_intel_encoder(connector_state->best_encoder);
11827                 if (!check_single_encoder_cloning(state, crtc, encoder))
11828                         return false;
11829         }
11830
11831         return true;
11832 }
11833
11834 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11835                                    struct drm_crtc_state *crtc_state)
11836 {
11837         struct drm_device *dev = crtc->dev;
11838         struct drm_i915_private *dev_priv = dev->dev_private;
11839         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11840         struct intel_crtc_state *pipe_config =
11841                 to_intel_crtc_state(crtc_state);
11842         struct drm_atomic_state *state = crtc_state->state;
11843         int ret, idx = crtc->base.id;
11844         bool mode_changed = needs_modeset(crtc_state);
11845
11846         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11847                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11848                 return -EINVAL;
11849         }
11850
11851         I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11852                 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11853                 idx, crtc->state->active, intel_crtc->active);
11854
11855         if (mode_changed && !crtc_state->active)
11856                 intel_crtc->atomic.update_wm_post = true;
11857
11858         if (mode_changed && crtc_state->enable &&
11859             dev_priv->display.crtc_compute_clock &&
11860             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11861                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11862                                                            pipe_config);
11863                 if (ret)
11864                         return ret;
11865         }
11866
11867         ret = 0;
11868         if (INTEL_INFO(dev)->gen >= 9) {
11869                 if (mode_changed)
11870                         ret = skl_update_scaler_crtc(pipe_config);
11871
11872                 if (!ret)
11873                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11874                                                          pipe_config);
11875         }
11876
11877         return ret;
11878 }
11879
11880 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11881         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11882         .load_lut = intel_crtc_load_lut,
11883         .atomic_begin = intel_begin_crtc_commit,
11884         .atomic_flush = intel_finish_crtc_commit,
11885         .atomic_check = intel_crtc_atomic_check,
11886 };
11887
11888 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11889 {
11890         struct intel_connector *connector;
11891
11892         for_each_intel_connector(dev, connector) {
11893                 if (connector->base.encoder) {
11894                         connector->base.state->best_encoder =
11895                                 connector->base.encoder;
11896                         connector->base.state->crtc =
11897                                 connector->base.encoder->crtc;
11898                 } else {
11899                         connector->base.state->best_encoder = NULL;
11900                         connector->base.state->crtc = NULL;
11901                 }
11902         }
11903 }
11904
11905 static void
11906 connected_sink_compute_bpp(struct intel_connector *connector,
11907                            struct intel_crtc_state *pipe_config)
11908 {
11909         int bpp = pipe_config->pipe_bpp;
11910
11911         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11912                 connector->base.base.id,
11913                 connector->base.name);
11914
11915         /* Don't use an invalid EDID bpc value */
11916         if (connector->base.display_info.bpc &&
11917             connector->base.display_info.bpc * 3 < bpp) {
11918                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11919                               bpp, connector->base.display_info.bpc*3);
11920                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11921         }
11922
11923         /* Clamp bpp to 8 on screens without EDID 1.4 */
11924         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11925                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11926                               bpp);
11927                 pipe_config->pipe_bpp = 24;
11928         }
11929 }
11930
11931 static int
11932 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11933                           struct intel_crtc_state *pipe_config)
11934 {
11935         struct drm_device *dev = crtc->base.dev;
11936         struct drm_atomic_state *state;
11937         struct drm_connector *connector;
11938         struct drm_connector_state *connector_state;
11939         int bpp, i;
11940
11941         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11942                 bpp = 10*3;
11943         else if (INTEL_INFO(dev)->gen >= 5)
11944                 bpp = 12*3;
11945         else
11946                 bpp = 8*3;
11947
11948
11949         pipe_config->pipe_bpp = bpp;
11950
11951         state = pipe_config->base.state;
11952
11953         /* Clamp display bpp to EDID value */
11954         for_each_connector_in_state(state, connector, connector_state, i) {
11955                 if (connector_state->crtc != &crtc->base)
11956                         continue;
11957
11958                 connected_sink_compute_bpp(to_intel_connector(connector),
11959                                            pipe_config);
11960         }
11961
11962         return bpp;
11963 }
11964
11965 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11966 {
11967         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11968                         "type: 0x%x flags: 0x%x\n",
11969                 mode->crtc_clock,
11970                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11971                 mode->crtc_hsync_end, mode->crtc_htotal,
11972                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11973                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11974 }
11975
11976 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11977                                    struct intel_crtc_state *pipe_config,
11978                                    const char *context)
11979 {
11980         struct drm_device *dev = crtc->base.dev;
11981         struct drm_plane *plane;
11982         struct intel_plane *intel_plane;
11983         struct intel_plane_state *state;
11984         struct drm_framebuffer *fb;
11985
11986         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11987                       context, pipe_config, pipe_name(crtc->pipe));
11988
11989         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11990         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11991                       pipe_config->pipe_bpp, pipe_config->dither);
11992         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11993                       pipe_config->has_pch_encoder,
11994                       pipe_config->fdi_lanes,
11995                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11996                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11997                       pipe_config->fdi_m_n.tu);
11998         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11999                       pipe_config->has_dp_encoder,
12000                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12001                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12002                       pipe_config->dp_m_n.tu);
12003
12004         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12005                       pipe_config->has_dp_encoder,
12006                       pipe_config->dp_m2_n2.gmch_m,
12007                       pipe_config->dp_m2_n2.gmch_n,
12008                       pipe_config->dp_m2_n2.link_m,
12009                       pipe_config->dp_m2_n2.link_n,
12010                       pipe_config->dp_m2_n2.tu);
12011
12012         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12013                       pipe_config->has_audio,
12014                       pipe_config->has_infoframe);
12015
12016         DRM_DEBUG_KMS("requested mode:\n");
12017         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12018         DRM_DEBUG_KMS("adjusted mode:\n");
12019         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12020         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12021         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12022         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12023                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12024         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12025                       crtc->num_scalers,
12026                       pipe_config->scaler_state.scaler_users,
12027                       pipe_config->scaler_state.scaler_id);
12028         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12029                       pipe_config->gmch_pfit.control,
12030                       pipe_config->gmch_pfit.pgm_ratios,
12031                       pipe_config->gmch_pfit.lvds_border_bits);
12032         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12033                       pipe_config->pch_pfit.pos,
12034                       pipe_config->pch_pfit.size,
12035                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12036         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12037         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12038
12039         if (IS_BROXTON(dev)) {
12040                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12041                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12042                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12043                               pipe_config->ddi_pll_sel,
12044                               pipe_config->dpll_hw_state.ebb0,
12045                               pipe_config->dpll_hw_state.ebb4,
12046                               pipe_config->dpll_hw_state.pll0,
12047                               pipe_config->dpll_hw_state.pll1,
12048                               pipe_config->dpll_hw_state.pll2,
12049                               pipe_config->dpll_hw_state.pll3,
12050                               pipe_config->dpll_hw_state.pll6,
12051                               pipe_config->dpll_hw_state.pll8,
12052                               pipe_config->dpll_hw_state.pll9,
12053                               pipe_config->dpll_hw_state.pll10,
12054                               pipe_config->dpll_hw_state.pcsdw12);
12055         } else if (IS_SKYLAKE(dev)) {
12056                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12057                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12058                               pipe_config->ddi_pll_sel,
12059                               pipe_config->dpll_hw_state.ctrl1,
12060                               pipe_config->dpll_hw_state.cfgcr1,
12061                               pipe_config->dpll_hw_state.cfgcr2);
12062         } else if (HAS_DDI(dev)) {
12063                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12064                               pipe_config->ddi_pll_sel,
12065                               pipe_config->dpll_hw_state.wrpll);
12066         } else {
12067                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12068                               "fp0: 0x%x, fp1: 0x%x\n",
12069                               pipe_config->dpll_hw_state.dpll,
12070                               pipe_config->dpll_hw_state.dpll_md,
12071                               pipe_config->dpll_hw_state.fp0,
12072                               pipe_config->dpll_hw_state.fp1);
12073         }
12074
12075         DRM_DEBUG_KMS("planes on this crtc\n");
12076         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12077                 intel_plane = to_intel_plane(plane);
12078                 if (intel_plane->pipe != crtc->pipe)
12079                         continue;
12080
12081                 state = to_intel_plane_state(plane->state);
12082                 fb = state->base.fb;
12083                 if (!fb) {
12084                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12085                                 "disabled, scaler_id = %d\n",
12086                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12087                                 plane->base.id, intel_plane->pipe,
12088                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12089                                 drm_plane_index(plane), state->scaler_id);
12090                         continue;
12091                 }
12092
12093                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12094                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12095                         plane->base.id, intel_plane->pipe,
12096                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12097                         drm_plane_index(plane));
12098                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12099                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12100                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12101                         state->scaler_id,
12102                         state->src.x1 >> 16, state->src.y1 >> 16,
12103                         drm_rect_width(&state->src) >> 16,
12104                         drm_rect_height(&state->src) >> 16,
12105                         state->dst.x1, state->dst.y1,
12106                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12107         }
12108 }
12109
12110 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12111 {
12112         struct drm_device *dev = state->dev;
12113         struct intel_encoder *encoder;
12114         struct drm_connector *connector;
12115         struct drm_connector_state *connector_state;
12116         unsigned int used_ports = 0;
12117         int i;
12118
12119         /*
12120          * Walk the connector list instead of the encoder
12121          * list to detect the problem on ddi platforms
12122          * where there's just one encoder per digital port.
12123          */
12124         for_each_connector_in_state(state, connector, connector_state, i) {
12125                 if (!connector_state->best_encoder)
12126                         continue;
12127
12128                 encoder = to_intel_encoder(connector_state->best_encoder);
12129
12130                 WARN_ON(!connector_state->crtc);
12131
12132                 switch (encoder->type) {
12133                         unsigned int port_mask;
12134                 case INTEL_OUTPUT_UNKNOWN:
12135                         if (WARN_ON(!HAS_DDI(dev)))
12136                                 break;
12137                 case INTEL_OUTPUT_DISPLAYPORT:
12138                 case INTEL_OUTPUT_HDMI:
12139                 case INTEL_OUTPUT_EDP:
12140                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12141
12142                         /* the same port mustn't appear more than once */
12143                         if (used_ports & port_mask)
12144                                 return false;
12145
12146                         used_ports |= port_mask;
12147                 default:
12148                         break;
12149                 }
12150         }
12151
12152         return true;
12153 }
12154
12155 static void
12156 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12157 {
12158         struct drm_crtc_state tmp_state;
12159         struct intel_crtc_scaler_state scaler_state;
12160         struct intel_dpll_hw_state dpll_hw_state;
12161         enum intel_dpll_id shared_dpll;
12162         uint32_t ddi_pll_sel;
12163
12164         /* FIXME: before the switch to atomic started, a new pipe_config was
12165          * kzalloc'd. Code that depends on any field being zero should be
12166          * fixed, so that the crtc_state can be safely duplicated. For now,
12167          * only fields that are know to not cause problems are preserved. */
12168
12169         tmp_state = crtc_state->base;
12170         scaler_state = crtc_state->scaler_state;
12171         shared_dpll = crtc_state->shared_dpll;
12172         dpll_hw_state = crtc_state->dpll_hw_state;
12173         ddi_pll_sel = crtc_state->ddi_pll_sel;
12174
12175         memset(crtc_state, 0, sizeof *crtc_state);
12176
12177         crtc_state->base = tmp_state;
12178         crtc_state->scaler_state = scaler_state;
12179         crtc_state->shared_dpll = shared_dpll;
12180         crtc_state->dpll_hw_state = dpll_hw_state;
12181         crtc_state->ddi_pll_sel = ddi_pll_sel;
12182 }
12183
12184 static int
12185 intel_modeset_pipe_config(struct drm_crtc *crtc,
12186                           struct intel_crtc_state *pipe_config)
12187 {
12188         struct drm_atomic_state *state = pipe_config->base.state;
12189         struct intel_encoder *encoder;
12190         struct drm_connector *connector;
12191         struct drm_connector_state *connector_state;
12192         int base_bpp, ret = -EINVAL;
12193         int i;
12194         bool retry = true;
12195
12196         clear_intel_crtc_state(pipe_config);
12197
12198         pipe_config->cpu_transcoder =
12199                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12200
12201         /*
12202          * Sanitize sync polarity flags based on requested ones. If neither
12203          * positive or negative polarity is requested, treat this as meaning
12204          * negative polarity.
12205          */
12206         if (!(pipe_config->base.adjusted_mode.flags &
12207               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12208                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12209
12210         if (!(pipe_config->base.adjusted_mode.flags &
12211               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12212                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12213
12214         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12215          * plane pixel format and any sink constraints into account. Returns the
12216          * source plane bpp so that dithering can be selected on mismatches
12217          * after encoders and crtc also have had their say. */
12218         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12219                                              pipe_config);
12220         if (base_bpp < 0)
12221                 goto fail;
12222
12223         /*
12224          * Determine the real pipe dimensions. Note that stereo modes can
12225          * increase the actual pipe size due to the frame doubling and
12226          * insertion of additional space for blanks between the frame. This
12227          * is stored in the crtc timings. We use the requested mode to do this
12228          * computation to clearly distinguish it from the adjusted mode, which
12229          * can be changed by the connectors in the below retry loop.
12230          */
12231         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12232                                &pipe_config->pipe_src_w,
12233                                &pipe_config->pipe_src_h);
12234
12235 encoder_retry:
12236         /* Ensure the port clock defaults are reset when retrying. */
12237         pipe_config->port_clock = 0;
12238         pipe_config->pixel_multiplier = 1;
12239
12240         /* Fill in default crtc timings, allow encoders to overwrite them. */
12241         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12242                               CRTC_STEREO_DOUBLE);
12243
12244         /* Pass our mode to the connectors and the CRTC to give them a chance to
12245          * adjust it according to limitations or connector properties, and also
12246          * a chance to reject the mode entirely.
12247          */
12248         for_each_connector_in_state(state, connector, connector_state, i) {
12249                 if (connector_state->crtc != crtc)
12250                         continue;
12251
12252                 encoder = to_intel_encoder(connector_state->best_encoder);
12253
12254                 if (!(encoder->compute_config(encoder, pipe_config))) {
12255                         DRM_DEBUG_KMS("Encoder config failure\n");
12256                         goto fail;
12257                 }
12258         }
12259
12260         /* Set default port clock if not overwritten by the encoder. Needs to be
12261          * done afterwards in case the encoder adjusts the mode. */
12262         if (!pipe_config->port_clock)
12263                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12264                         * pipe_config->pixel_multiplier;
12265
12266         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12267         if (ret < 0) {
12268                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12269                 goto fail;
12270         }
12271
12272         if (ret == RETRY) {
12273                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12274                         ret = -EINVAL;
12275                         goto fail;
12276                 }
12277
12278                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12279                 retry = false;
12280                 goto encoder_retry;
12281         }
12282
12283         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12284         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12285                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12286
12287 fail:
12288         return ret;
12289 }
12290
12291 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12292 {
12293         struct drm_encoder *encoder;
12294         struct drm_device *dev = crtc->dev;
12295
12296         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12297                 if (encoder->crtc == crtc)
12298                         return true;
12299
12300         return false;
12301 }
12302
12303 static void
12304 intel_modeset_update_state(struct drm_atomic_state *state)
12305 {
12306         struct drm_device *dev = state->dev;
12307         struct intel_encoder *intel_encoder;
12308         struct drm_crtc *crtc;
12309         struct drm_crtc_state *crtc_state;
12310         struct drm_connector *connector;
12311         int i;
12312
12313         intel_shared_dpll_commit(state);
12314
12315         for_each_intel_encoder(dev, intel_encoder) {
12316                 if (!intel_encoder->base.crtc)
12317                         continue;
12318
12319                 crtc = intel_encoder->base.crtc;
12320                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12321                 if (!crtc_state || !needs_modeset(crtc->state))
12322                         continue;
12323
12324                 intel_encoder->connectors_active = false;
12325         }
12326
12327         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12328
12329         /* Double check state. */
12330         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12331                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12332
12333                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12334
12335                 /* Update hwmode for vblank functions */
12336                 if (crtc->state->active)
12337                         crtc->hwmode = crtc->state->adjusted_mode;
12338                 else
12339                         crtc->hwmode.crtc_clock = 0;
12340         }
12341
12342         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12343                 if (!connector->encoder || !connector->encoder->crtc)
12344                         continue;
12345
12346                 crtc = connector->encoder->crtc;
12347                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12348                 if (!crtc_state || !needs_modeset(crtc->state))
12349                         continue;
12350
12351                 if (crtc->state->active) {
12352                         intel_encoder = to_intel_encoder(connector->encoder);
12353                         intel_encoder->connectors_active = true;
12354                 }
12355         }
12356 }
12357
12358 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12359 {
12360         int diff;
12361
12362         if (clock1 == clock2)
12363                 return true;
12364
12365         if (!clock1 || !clock2)
12366                 return false;
12367
12368         diff = abs(clock1 - clock2);
12369
12370         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12371                 return true;
12372
12373         return false;
12374 }
12375
12376 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12377         list_for_each_entry((intel_crtc), \
12378                             &(dev)->mode_config.crtc_list, \
12379                             base.head) \
12380                 if (mask & (1 <<(intel_crtc)->pipe))
12381
12382
12383 static bool
12384 intel_compare_m_n(unsigned int m, unsigned int n,
12385                   unsigned int m2, unsigned int n2,
12386                   bool exact)
12387 {
12388         if (m == m2 && n == n2)
12389                 return true;
12390
12391         if (exact || !m || !n || !m2 || !n2)
12392                 return false;
12393
12394         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12395
12396         if (m > m2) {
12397                 while (m > m2) {
12398                         m2 <<= 1;
12399                         n2 <<= 1;
12400                 }
12401         } else if (m < m2) {
12402                 while (m < m2) {
12403                         m <<= 1;
12404                         n <<= 1;
12405                 }
12406         }
12407
12408         return m == m2 && n == n2;
12409 }
12410
12411 static bool
12412 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12413                        struct intel_link_m_n *m2_n2,
12414                        bool adjust)
12415 {
12416         if (m_n->tu == m2_n2->tu &&
12417             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12418                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12419             intel_compare_m_n(m_n->link_m, m_n->link_n,
12420                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12421                 if (adjust)
12422                         *m2_n2 = *m_n;
12423
12424                 return true;
12425         }
12426
12427         return false;
12428 }
12429
12430 static bool
12431 intel_pipe_config_compare(struct drm_device *dev,
12432                           struct intel_crtc_state *current_config,
12433                           struct intel_crtc_state *pipe_config,
12434                           bool adjust)
12435 {
12436         bool ret = true;
12437
12438 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12439         do { \
12440                 if (!adjust) \
12441                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12442                 else \
12443                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12444         } while (0)
12445
12446 #define PIPE_CONF_CHECK_X(name) \
12447         if (current_config->name != pipe_config->name) { \
12448                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12449                           "(expected 0x%08x, found 0x%08x)\n", \
12450                           current_config->name, \
12451                           pipe_config->name); \
12452                 ret = false; \
12453         }
12454
12455 #define PIPE_CONF_CHECK_I(name) \
12456         if (current_config->name != pipe_config->name) { \
12457                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12458                           "(expected %i, found %i)\n", \
12459                           current_config->name, \
12460                           pipe_config->name); \
12461                 ret = false; \
12462         }
12463
12464 #define PIPE_CONF_CHECK_M_N(name) \
12465         if (!intel_compare_link_m_n(&current_config->name, \
12466                                     &pipe_config->name,\
12467                                     adjust)) { \
12468                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12469                           "(expected tu %i gmch %i/%i link %i/%i, " \
12470                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12471                           current_config->name.tu, \
12472                           current_config->name.gmch_m, \
12473                           current_config->name.gmch_n, \
12474                           current_config->name.link_m, \
12475                           current_config->name.link_n, \
12476                           pipe_config->name.tu, \
12477                           pipe_config->name.gmch_m, \
12478                           pipe_config->name.gmch_n, \
12479                           pipe_config->name.link_m, \
12480                           pipe_config->name.link_n); \
12481                 ret = false; \
12482         }
12483
12484 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12485         if (!intel_compare_link_m_n(&current_config->name, \
12486                                     &pipe_config->name, adjust) && \
12487             !intel_compare_link_m_n(&current_config->alt_name, \
12488                                     &pipe_config->name, adjust)) { \
12489                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12490                           "(expected tu %i gmch %i/%i link %i/%i, " \
12491                           "or tu %i gmch %i/%i link %i/%i, " \
12492                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12493                           current_config->name.tu, \
12494                           current_config->name.gmch_m, \
12495                           current_config->name.gmch_n, \
12496                           current_config->name.link_m, \
12497                           current_config->name.link_n, \
12498                           current_config->alt_name.tu, \
12499                           current_config->alt_name.gmch_m, \
12500                           current_config->alt_name.gmch_n, \
12501                           current_config->alt_name.link_m, \
12502                           current_config->alt_name.link_n, \
12503                           pipe_config->name.tu, \
12504                           pipe_config->name.gmch_m, \
12505                           pipe_config->name.gmch_n, \
12506                           pipe_config->name.link_m, \
12507                           pipe_config->name.link_n); \
12508                 ret = false; \
12509         }
12510
12511 /* This is required for BDW+ where there is only one set of registers for
12512  * switching between high and low RR.
12513  * This macro can be used whenever a comparison has to be made between one
12514  * hw state and multiple sw state variables.
12515  */
12516 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12517         if ((current_config->name != pipe_config->name) && \
12518                 (current_config->alt_name != pipe_config->name)) { \
12519                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12520                                   "(expected %i or %i, found %i)\n", \
12521                                   current_config->name, \
12522                                   current_config->alt_name, \
12523                                   pipe_config->name); \
12524                         ret = false; \
12525         }
12526
12527 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12528         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12529                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12530                           "(expected %i, found %i)\n", \
12531                           current_config->name & (mask), \
12532                           pipe_config->name & (mask)); \
12533                 ret = false; \
12534         }
12535
12536 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12537         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12538                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12539                           "(expected %i, found %i)\n", \
12540                           current_config->name, \
12541                           pipe_config->name); \
12542                 ret = false; \
12543         }
12544
12545 #define PIPE_CONF_QUIRK(quirk)  \
12546         ((current_config->quirks | pipe_config->quirks) & (quirk))
12547
12548         PIPE_CONF_CHECK_I(cpu_transcoder);
12549
12550         PIPE_CONF_CHECK_I(has_pch_encoder);
12551         PIPE_CONF_CHECK_I(fdi_lanes);
12552         PIPE_CONF_CHECK_M_N(fdi_m_n);
12553
12554         PIPE_CONF_CHECK_I(has_dp_encoder);
12555
12556         if (INTEL_INFO(dev)->gen < 8) {
12557                 PIPE_CONF_CHECK_M_N(dp_m_n);
12558
12559                 PIPE_CONF_CHECK_I(has_drrs);
12560                 if (current_config->has_drrs)
12561                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12562         } else
12563                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12564
12565         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12566         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12567         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12568         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12569         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12570         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12571
12572         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12573         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12574         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12575         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12576         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12577         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12578
12579         PIPE_CONF_CHECK_I(pixel_multiplier);
12580         PIPE_CONF_CHECK_I(has_hdmi_sink);
12581         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12582             IS_VALLEYVIEW(dev))
12583                 PIPE_CONF_CHECK_I(limited_color_range);
12584         PIPE_CONF_CHECK_I(has_infoframe);
12585
12586         PIPE_CONF_CHECK_I(has_audio);
12587
12588         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12589                               DRM_MODE_FLAG_INTERLACE);
12590
12591         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12592                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12593                                       DRM_MODE_FLAG_PHSYNC);
12594                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12595                                       DRM_MODE_FLAG_NHSYNC);
12596                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12597                                       DRM_MODE_FLAG_PVSYNC);
12598                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12599                                       DRM_MODE_FLAG_NVSYNC);
12600         }
12601
12602         PIPE_CONF_CHECK_I(pipe_src_w);
12603         PIPE_CONF_CHECK_I(pipe_src_h);
12604
12605         PIPE_CONF_CHECK_I(gmch_pfit.control);
12606         /* pfit ratios are autocomputed by the hw on gen4+ */
12607         if (INTEL_INFO(dev)->gen < 4)
12608                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12609         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12610
12611         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12612         if (current_config->pch_pfit.enabled) {
12613                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12614                 PIPE_CONF_CHECK_I(pch_pfit.size);
12615         }
12616
12617         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12618
12619         /* BDW+ don't expose a synchronous way to read the state */
12620         if (IS_HASWELL(dev))
12621                 PIPE_CONF_CHECK_I(ips_enabled);
12622
12623         PIPE_CONF_CHECK_I(double_wide);
12624
12625         PIPE_CONF_CHECK_X(ddi_pll_sel);
12626
12627         PIPE_CONF_CHECK_I(shared_dpll);
12628         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12629         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12630         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12631         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12632         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12633         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12634         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12635         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12636
12637         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12638                 PIPE_CONF_CHECK_I(pipe_bpp);
12639
12640         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12641         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12642
12643 #undef PIPE_CONF_CHECK_X
12644 #undef PIPE_CONF_CHECK_I
12645 #undef PIPE_CONF_CHECK_I_ALT
12646 #undef PIPE_CONF_CHECK_FLAGS
12647 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12648 #undef PIPE_CONF_QUIRK
12649 #undef INTEL_ERR_OR_DBG_KMS
12650
12651         return ret;
12652 }
12653
12654 static void check_wm_state(struct drm_device *dev)
12655 {
12656         struct drm_i915_private *dev_priv = dev->dev_private;
12657         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12658         struct intel_crtc *intel_crtc;
12659         int plane;
12660
12661         if (INTEL_INFO(dev)->gen < 9)
12662                 return;
12663
12664         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12665         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12666
12667         for_each_intel_crtc(dev, intel_crtc) {
12668                 struct skl_ddb_entry *hw_entry, *sw_entry;
12669                 const enum pipe pipe = intel_crtc->pipe;
12670
12671                 if (!intel_crtc->active)
12672                         continue;
12673
12674                 /* planes */
12675                 for_each_plane(dev_priv, pipe, plane) {
12676                         hw_entry = &hw_ddb.plane[pipe][plane];
12677                         sw_entry = &sw_ddb->plane[pipe][plane];
12678
12679                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12680                                 continue;
12681
12682                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12683                                   "(expected (%u,%u), found (%u,%u))\n",
12684                                   pipe_name(pipe), plane + 1,
12685                                   sw_entry->start, sw_entry->end,
12686                                   hw_entry->start, hw_entry->end);
12687                 }
12688
12689                 /* cursor */
12690                 hw_entry = &hw_ddb.cursor[pipe];
12691                 sw_entry = &sw_ddb->cursor[pipe];
12692
12693                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12694                         continue;
12695
12696                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12697                           "(expected (%u,%u), found (%u,%u))\n",
12698                           pipe_name(pipe),
12699                           sw_entry->start, sw_entry->end,
12700                           hw_entry->start, hw_entry->end);
12701         }
12702 }
12703
12704 static void
12705 check_connector_state(struct drm_device *dev)
12706 {
12707         struct intel_connector *connector;
12708
12709         for_each_intel_connector(dev, connector) {
12710                 struct drm_encoder *encoder = connector->base.encoder;
12711                 struct drm_connector_state *state = connector->base.state;
12712
12713                 /* This also checks the encoder/connector hw state with the
12714                  * ->get_hw_state callbacks. */
12715                 intel_connector_check_state(connector);
12716
12717                 I915_STATE_WARN(state->best_encoder != encoder,
12718                      "connector's staged encoder doesn't match current encoder\n");
12719         }
12720 }
12721
12722 static void
12723 check_encoder_state(struct drm_device *dev)
12724 {
12725         struct intel_encoder *encoder;
12726         struct intel_connector *connector;
12727
12728         for_each_intel_encoder(dev, encoder) {
12729                 bool enabled = false;
12730                 bool active = false;
12731                 enum pipe pipe, tracked_pipe;
12732
12733                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12734                               encoder->base.base.id,
12735                               encoder->base.name);
12736
12737                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12738                      "encoder's active_connectors set, but no crtc\n");
12739
12740                 for_each_intel_connector(dev, connector) {
12741                         if (connector->base.encoder != &encoder->base)
12742                                 continue;
12743                         enabled = true;
12744                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12745                                 active = true;
12746
12747                         I915_STATE_WARN(connector->base.state->crtc !=
12748                                         encoder->base.crtc,
12749                              "connector's crtc doesn't match encoder crtc\n");
12750                 }
12751                 /*
12752                  * for MST connectors if we unplug the connector is gone
12753                  * away but the encoder is still connected to a crtc
12754                  * until a modeset happens in response to the hotplug.
12755                  */
12756                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12757                         continue;
12758
12759                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12760                      "encoder's enabled state mismatch "
12761                      "(expected %i, found %i)\n",
12762                      !!encoder->base.crtc, enabled);
12763                 I915_STATE_WARN(active && !encoder->base.crtc,
12764                      "active encoder with no crtc\n");
12765
12766                 I915_STATE_WARN(encoder->connectors_active != active,
12767                      "encoder's computed active state doesn't match tracked active state "
12768                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12769
12770                 active = encoder->get_hw_state(encoder, &pipe);
12771                 I915_STATE_WARN(active != encoder->connectors_active,
12772                      "encoder's hw state doesn't match sw tracking "
12773                      "(expected %i, found %i)\n",
12774                      encoder->connectors_active, active);
12775
12776                 if (!encoder->base.crtc)
12777                         continue;
12778
12779                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12780                 I915_STATE_WARN(active && pipe != tracked_pipe,
12781                      "active encoder's pipe doesn't match"
12782                      "(expected %i, found %i)\n",
12783                      tracked_pipe, pipe);
12784
12785         }
12786 }
12787
12788 static void
12789 check_crtc_state(struct drm_device *dev)
12790 {
12791         struct drm_i915_private *dev_priv = dev->dev_private;
12792         struct intel_crtc *crtc;
12793         struct intel_encoder *encoder;
12794         struct intel_crtc_state pipe_config;
12795
12796         for_each_intel_crtc(dev, crtc) {
12797                 bool enabled = false;
12798                 bool active = false;
12799
12800                 memset(&pipe_config, 0, sizeof(pipe_config));
12801
12802                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12803                               crtc->base.base.id);
12804
12805                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12806                      "active crtc, but not enabled in sw tracking\n");
12807
12808                 for_each_intel_encoder(dev, encoder) {
12809                         if (encoder->base.crtc != &crtc->base)
12810                                 continue;
12811                         enabled = true;
12812                         if (encoder->connectors_active)
12813                                 active = true;
12814                 }
12815
12816                 I915_STATE_WARN(active != crtc->active,
12817                      "crtc's computed active state doesn't match tracked active state "
12818                      "(expected %i, found %i)\n", active, crtc->active);
12819                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12820                      "crtc's computed enabled state doesn't match tracked enabled state "
12821                      "(expected %i, found %i)\n", enabled,
12822                                 crtc->base.state->enable);
12823
12824                 active = dev_priv->display.get_pipe_config(crtc,
12825                                                            &pipe_config);
12826
12827                 /* hw state is inconsistent with the pipe quirk */
12828                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12829                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12830                         active = crtc->active;
12831
12832                 for_each_intel_encoder(dev, encoder) {
12833                         enum pipe pipe;
12834                         if (encoder->base.crtc != &crtc->base)
12835                                 continue;
12836                         if (encoder->get_hw_state(encoder, &pipe))
12837                                 encoder->get_config(encoder, &pipe_config);
12838                 }
12839
12840                 I915_STATE_WARN(crtc->active != active,
12841                      "crtc active state doesn't match with hw state "
12842                      "(expected %i, found %i)\n", crtc->active, active);
12843
12844                 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12845                      "transitional active state does not match atomic hw state "
12846                      "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12847
12848                 if (!active)
12849                         continue;
12850
12851                 if (!intel_pipe_config_compare(dev, crtc->config,
12852                                                &pipe_config, false)) {
12853                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12854                         intel_dump_pipe_config(crtc, &pipe_config,
12855                                                "[hw state]");
12856                         intel_dump_pipe_config(crtc, crtc->config,
12857                                                "[sw state]");
12858                 }
12859         }
12860 }
12861
12862 static void
12863 check_shared_dpll_state(struct drm_device *dev)
12864 {
12865         struct drm_i915_private *dev_priv = dev->dev_private;
12866         struct intel_crtc *crtc;
12867         struct intel_dpll_hw_state dpll_hw_state;
12868         int i;
12869
12870         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12871                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12872                 int enabled_crtcs = 0, active_crtcs = 0;
12873                 bool active;
12874
12875                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12876
12877                 DRM_DEBUG_KMS("%s\n", pll->name);
12878
12879                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12880
12881                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12882                      "more active pll users than references: %i vs %i\n",
12883                      pll->active, hweight32(pll->config.crtc_mask));
12884                 I915_STATE_WARN(pll->active && !pll->on,
12885                      "pll in active use but not on in sw tracking\n");
12886                 I915_STATE_WARN(pll->on && !pll->active,
12887                      "pll in on but not on in use in sw tracking\n");
12888                 I915_STATE_WARN(pll->on != active,
12889                      "pll on state mismatch (expected %i, found %i)\n",
12890                      pll->on, active);
12891
12892                 for_each_intel_crtc(dev, crtc) {
12893                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12894                                 enabled_crtcs++;
12895                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12896                                 active_crtcs++;
12897                 }
12898                 I915_STATE_WARN(pll->active != active_crtcs,
12899                      "pll active crtcs mismatch (expected %i, found %i)\n",
12900                      pll->active, active_crtcs);
12901                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12902                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12903                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12904
12905                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12906                                        sizeof(dpll_hw_state)),
12907                      "pll hw state mismatch\n");
12908         }
12909 }
12910
12911 void
12912 intel_modeset_check_state(struct drm_device *dev)
12913 {
12914         check_wm_state(dev);
12915         check_connector_state(dev);
12916         check_encoder_state(dev);
12917         check_crtc_state(dev);
12918         check_shared_dpll_state(dev);
12919 }
12920
12921 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12922                                      int dotclock)
12923 {
12924         /*
12925          * FDI already provided one idea for the dotclock.
12926          * Yell if the encoder disagrees.
12927          */
12928         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12929              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12930              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12931 }
12932
12933 static void update_scanline_offset(struct intel_crtc *crtc)
12934 {
12935         struct drm_device *dev = crtc->base.dev;
12936
12937         /*
12938          * The scanline counter increments at the leading edge of hsync.
12939          *
12940          * On most platforms it starts counting from vtotal-1 on the
12941          * first active line. That means the scanline counter value is
12942          * always one less than what we would expect. Ie. just after
12943          * start of vblank, which also occurs at start of hsync (on the
12944          * last active line), the scanline counter will read vblank_start-1.
12945          *
12946          * On gen2 the scanline counter starts counting from 1 instead
12947          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12948          * to keep the value positive), instead of adding one.
12949          *
12950          * On HSW+ the behaviour of the scanline counter depends on the output
12951          * type. For DP ports it behaves like most other platforms, but on HDMI
12952          * there's an extra 1 line difference. So we need to add two instead of
12953          * one to the value.
12954          */
12955         if (IS_GEN2(dev)) {
12956                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12957                 int vtotal;
12958
12959                 vtotal = mode->crtc_vtotal;
12960                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12961                         vtotal /= 2;
12962
12963                 crtc->scanline_offset = vtotal - 1;
12964         } else if (HAS_DDI(dev) &&
12965                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12966                 crtc->scanline_offset = 2;
12967         } else
12968                 crtc->scanline_offset = 1;
12969 }
12970
12971 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12972 {
12973         struct drm_device *dev = state->dev;
12974         struct drm_i915_private *dev_priv = to_i915(dev);
12975         struct intel_shared_dpll_config *shared_dpll = NULL;
12976         struct intel_crtc *intel_crtc;
12977         struct intel_crtc_state *intel_crtc_state;
12978         struct drm_crtc *crtc;
12979         struct drm_crtc_state *crtc_state;
12980         int i;
12981
12982         if (!dev_priv->display.crtc_compute_clock)
12983                 return;
12984
12985         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12986                 int dpll;
12987
12988                 intel_crtc = to_intel_crtc(crtc);
12989                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12990                 dpll = intel_crtc_state->shared_dpll;
12991
12992                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12993                         continue;
12994
12995                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12996
12997                 if (!shared_dpll)
12998                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12999
13000                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13001         }
13002 }
13003
13004 /*
13005  * This implements the workaround described in the "notes" section of the mode
13006  * set sequence documentation. When going from no pipes or single pipe to
13007  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13008  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13009  */
13010 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13011 {
13012         struct drm_crtc_state *crtc_state;
13013         struct intel_crtc *intel_crtc;
13014         struct drm_crtc *crtc;
13015         struct intel_crtc_state *first_crtc_state = NULL;
13016         struct intel_crtc_state *other_crtc_state = NULL;
13017         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13018         int i;
13019
13020         /* look at all crtc's that are going to be enabled in during modeset */
13021         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13022                 intel_crtc = to_intel_crtc(crtc);
13023
13024                 if (!crtc_state->active || !needs_modeset(crtc_state))
13025                         continue;
13026
13027                 if (first_crtc_state) {
13028                         other_crtc_state = to_intel_crtc_state(crtc_state);
13029                         break;
13030                 } else {
13031                         first_crtc_state = to_intel_crtc_state(crtc_state);
13032                         first_pipe = intel_crtc->pipe;
13033                 }
13034         }
13035
13036         /* No workaround needed? */
13037         if (!first_crtc_state)
13038                 return 0;
13039
13040         /* w/a possibly needed, check how many crtc's are already enabled. */
13041         for_each_intel_crtc(state->dev, intel_crtc) {
13042                 struct intel_crtc_state *pipe_config;
13043
13044                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13045                 if (IS_ERR(pipe_config))
13046                         return PTR_ERR(pipe_config);
13047
13048                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13049
13050                 if (!pipe_config->base.active ||
13051                     needs_modeset(&pipe_config->base))
13052                         continue;
13053
13054                 /* 2 or more enabled crtcs means no need for w/a */
13055                 if (enabled_pipe != INVALID_PIPE)
13056                         return 0;
13057
13058                 enabled_pipe = intel_crtc->pipe;
13059         }
13060
13061         if (enabled_pipe != INVALID_PIPE)
13062                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13063         else if (other_crtc_state)
13064                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13065
13066         return 0;
13067 }
13068
13069 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13070 {
13071         struct drm_crtc *crtc;
13072         struct drm_crtc_state *crtc_state;
13073         int ret = 0;
13074
13075         /* add all active pipes to the state */
13076         for_each_crtc(state->dev, crtc) {
13077                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13078                 if (IS_ERR(crtc_state))
13079                         return PTR_ERR(crtc_state);
13080
13081                 if (!crtc_state->active || needs_modeset(crtc_state))
13082                         continue;
13083
13084                 crtc_state->mode_changed = true;
13085
13086                 ret = drm_atomic_add_affected_connectors(state, crtc);
13087                 if (ret)
13088                         break;
13089
13090                 ret = drm_atomic_add_affected_planes(state, crtc);
13091                 if (ret)
13092                         break;
13093         }
13094
13095         return ret;
13096 }
13097
13098
13099 static int intel_modeset_checks(struct drm_atomic_state *state)
13100 {
13101         struct drm_device *dev = state->dev;
13102         struct drm_i915_private *dev_priv = dev->dev_private;
13103         int ret;
13104
13105         if (!check_digital_port_conflicts(state)) {
13106                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13107                 return -EINVAL;
13108         }
13109
13110         /*
13111          * See if the config requires any additional preparation, e.g.
13112          * to adjust global state with pipes off.  We need to do this
13113          * here so we can get the modeset_pipe updated config for the new
13114          * mode set on this crtc.  For other crtcs we need to use the
13115          * adjusted_mode bits in the crtc directly.
13116          */
13117         if (dev_priv->display.modeset_calc_cdclk) {
13118                 unsigned int cdclk;
13119
13120                 ret = dev_priv->display.modeset_calc_cdclk(state);
13121
13122                 cdclk = to_intel_atomic_state(state)->cdclk;
13123                 if (!ret && cdclk != dev_priv->cdclk_freq)
13124                         ret = intel_modeset_all_pipes(state);
13125
13126                 if (ret < 0)
13127                         return ret;
13128         } else
13129                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13130
13131         intel_modeset_clear_plls(state);
13132
13133         if (IS_HASWELL(dev))
13134                 return haswell_mode_set_planes_workaround(state);
13135
13136         return 0;
13137 }
13138
13139 /**
13140  * intel_atomic_check - validate state object
13141  * @dev: drm device
13142  * @state: state to validate
13143  */
13144 static int intel_atomic_check(struct drm_device *dev,
13145                               struct drm_atomic_state *state)
13146 {
13147         struct drm_crtc *crtc;
13148         struct drm_crtc_state *crtc_state;
13149         int ret, i;
13150         bool any_ms = false;
13151
13152         ret = drm_atomic_helper_check_modeset(dev, state);
13153         if (ret)
13154                 return ret;
13155
13156         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13157                 struct intel_crtc_state *pipe_config =
13158                         to_intel_crtc_state(crtc_state);
13159
13160                 /* Catch I915_MODE_FLAG_INHERITED */
13161                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13162                         crtc_state->mode_changed = true;
13163
13164                 if (!crtc_state->enable) {
13165                         if (needs_modeset(crtc_state))
13166                                 any_ms = true;
13167                         continue;
13168                 }
13169
13170                 if (!needs_modeset(crtc_state))
13171                         continue;
13172
13173                 /* FIXME: For only active_changed we shouldn't need to do any
13174                  * state recomputation at all. */
13175
13176                 ret = drm_atomic_add_affected_connectors(state, crtc);
13177                 if (ret)
13178                         return ret;
13179
13180                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13181                 if (ret)
13182                         return ret;
13183
13184                 if (i915.fastboot &&
13185                     intel_pipe_config_compare(state->dev,
13186                                         to_intel_crtc_state(crtc->state),
13187                                         pipe_config, true)) {
13188                         crtc_state->mode_changed = false;
13189                 }
13190
13191                 if (needs_modeset(crtc_state)) {
13192                         any_ms = true;
13193
13194                         ret = drm_atomic_add_affected_planes(state, crtc);
13195                         if (ret)
13196                                 return ret;
13197                 }
13198
13199                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13200                                        needs_modeset(crtc_state) ?
13201                                        "[modeset]" : "[fastset]");
13202         }
13203
13204         if (any_ms) {
13205                 ret = intel_modeset_checks(state);
13206
13207                 if (ret)
13208                         return ret;
13209         } else
13210                 to_intel_atomic_state(state)->cdclk =
13211                         to_i915(state->dev)->cdclk_freq;
13212
13213         return drm_atomic_helper_check_planes(state->dev, state);
13214 }
13215
13216 /**
13217  * intel_atomic_commit - commit validated state object
13218  * @dev: DRM device
13219  * @state: the top-level driver state object
13220  * @async: asynchronous commit
13221  *
13222  * This function commits a top-level state object that has been validated
13223  * with drm_atomic_helper_check().
13224  *
13225  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13226  * we can only handle plane-related operations and do not yet support
13227  * asynchronous commit.
13228  *
13229  * RETURNS
13230  * Zero for success or -errno.
13231  */
13232 static int intel_atomic_commit(struct drm_device *dev,
13233                                struct drm_atomic_state *state,
13234                                bool async)
13235 {
13236         struct drm_i915_private *dev_priv = dev->dev_private;
13237         struct drm_crtc *crtc;
13238         struct drm_crtc_state *crtc_state;
13239         int ret = 0;
13240         int i;
13241         bool any_ms = false;
13242
13243         if (async) {
13244                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13245                 return -EINVAL;
13246         }
13247
13248         ret = drm_atomic_helper_prepare_planes(dev, state);
13249         if (ret)
13250                 return ret;
13251
13252         drm_atomic_helper_swap_state(dev, state);
13253
13254         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13255                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13256
13257                 if (!needs_modeset(crtc->state))
13258                         continue;
13259
13260                 any_ms = true;
13261                 intel_pre_plane_update(intel_crtc);
13262
13263                 if (crtc_state->active) {
13264                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13265                         dev_priv->display.crtc_disable(crtc);
13266                         intel_crtc->active = false;
13267                         intel_disable_shared_dpll(intel_crtc);
13268                 }
13269         }
13270
13271         /* Only after disabling all output pipelines that will be changed can we
13272          * update the the output configuration. */
13273         intel_modeset_update_state(state);
13274
13275         /* The state has been swaped above, so state actually contains the
13276          * old state now. */
13277         if (any_ms)
13278                 modeset_update_crtc_power_domains(state);
13279
13280         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13281         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13282                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13283                 bool modeset = needs_modeset(crtc->state);
13284
13285                 if (modeset && crtc->state->active) {
13286                         update_scanline_offset(to_intel_crtc(crtc));
13287                         dev_priv->display.crtc_enable(crtc);
13288                 }
13289
13290                 if (!modeset)
13291                         intel_pre_plane_update(intel_crtc);
13292
13293                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13294                 intel_post_plane_update(intel_crtc);
13295         }
13296
13297         /* FIXME: add subpixel order */
13298
13299         drm_atomic_helper_wait_for_vblanks(dev, state);
13300         drm_atomic_helper_cleanup_planes(dev, state);
13301         drm_atomic_state_free(state);
13302
13303         if (any_ms)
13304                 intel_modeset_check_state(dev);
13305
13306         return 0;
13307 }
13308
13309 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13310 {
13311         struct drm_device *dev = crtc->dev;
13312         struct drm_atomic_state *state;
13313         struct drm_crtc_state *crtc_state;
13314         int ret;
13315
13316         state = drm_atomic_state_alloc(dev);
13317         if (!state) {
13318                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13319                               crtc->base.id);
13320                 return;
13321         }
13322
13323         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13324
13325 retry:
13326         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13327         ret = PTR_ERR_OR_ZERO(crtc_state);
13328         if (!ret) {
13329                 if (!crtc_state->active)
13330                         goto out;
13331
13332                 crtc_state->mode_changed = true;
13333                 ret = drm_atomic_commit(state);
13334         }
13335
13336         if (ret == -EDEADLK) {
13337                 drm_atomic_state_clear(state);
13338                 drm_modeset_backoff(state->acquire_ctx);
13339                 goto retry;
13340         }
13341
13342         if (ret)
13343 out:
13344                 drm_atomic_state_free(state);
13345 }
13346
13347 #undef for_each_intel_crtc_masked
13348
13349 static const struct drm_crtc_funcs intel_crtc_funcs = {
13350         .gamma_set = intel_crtc_gamma_set,
13351         .set_config = drm_atomic_helper_set_config,
13352         .destroy = intel_crtc_destroy,
13353         .page_flip = intel_crtc_page_flip,
13354         .atomic_duplicate_state = intel_crtc_duplicate_state,
13355         .atomic_destroy_state = intel_crtc_destroy_state,
13356 };
13357
13358 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13359                                       struct intel_shared_dpll *pll,
13360                                       struct intel_dpll_hw_state *hw_state)
13361 {
13362         uint32_t val;
13363
13364         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13365                 return false;
13366
13367         val = I915_READ(PCH_DPLL(pll->id));
13368         hw_state->dpll = val;
13369         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13370         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13371
13372         return val & DPLL_VCO_ENABLE;
13373 }
13374
13375 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13376                                   struct intel_shared_dpll *pll)
13377 {
13378         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13379         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13380 }
13381
13382 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13383                                 struct intel_shared_dpll *pll)
13384 {
13385         /* PCH refclock must be enabled first */
13386         ibx_assert_pch_refclk_enabled(dev_priv);
13387
13388         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13389
13390         /* Wait for the clocks to stabilize. */
13391         POSTING_READ(PCH_DPLL(pll->id));
13392         udelay(150);
13393
13394         /* The pixel multiplier can only be updated once the
13395          * DPLL is enabled and the clocks are stable.
13396          *
13397          * So write it again.
13398          */
13399         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13400         POSTING_READ(PCH_DPLL(pll->id));
13401         udelay(200);
13402 }
13403
13404 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13405                                  struct intel_shared_dpll *pll)
13406 {
13407         struct drm_device *dev = dev_priv->dev;
13408         struct intel_crtc *crtc;
13409
13410         /* Make sure no transcoder isn't still depending on us. */
13411         for_each_intel_crtc(dev, crtc) {
13412                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13413                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13414         }
13415
13416         I915_WRITE(PCH_DPLL(pll->id), 0);
13417         POSTING_READ(PCH_DPLL(pll->id));
13418         udelay(200);
13419 }
13420
13421 static char *ibx_pch_dpll_names[] = {
13422         "PCH DPLL A",
13423         "PCH DPLL B",
13424 };
13425
13426 static void ibx_pch_dpll_init(struct drm_device *dev)
13427 {
13428         struct drm_i915_private *dev_priv = dev->dev_private;
13429         int i;
13430
13431         dev_priv->num_shared_dpll = 2;
13432
13433         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13434                 dev_priv->shared_dplls[i].id = i;
13435                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13436                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13437                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13438                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13439                 dev_priv->shared_dplls[i].get_hw_state =
13440                         ibx_pch_dpll_get_hw_state;
13441         }
13442 }
13443
13444 static void intel_shared_dpll_init(struct drm_device *dev)
13445 {
13446         struct drm_i915_private *dev_priv = dev->dev_private;
13447
13448         intel_update_cdclk(dev);
13449
13450         if (HAS_DDI(dev))
13451                 intel_ddi_pll_init(dev);
13452         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13453                 ibx_pch_dpll_init(dev);
13454         else
13455                 dev_priv->num_shared_dpll = 0;
13456
13457         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13458 }
13459
13460 /**
13461  * intel_prepare_plane_fb - Prepare fb for usage on plane
13462  * @plane: drm plane to prepare for
13463  * @fb: framebuffer to prepare for presentation
13464  *
13465  * Prepares a framebuffer for usage on a display plane.  Generally this
13466  * involves pinning the underlying object and updating the frontbuffer tracking
13467  * bits.  Some older platforms need special physical address handling for
13468  * cursor planes.
13469  *
13470  * Returns 0 on success, negative error code on failure.
13471  */
13472 int
13473 intel_prepare_plane_fb(struct drm_plane *plane,
13474                        struct drm_framebuffer *fb,
13475                        const struct drm_plane_state *new_state)
13476 {
13477         struct drm_device *dev = plane->dev;
13478         struct intel_plane *intel_plane = to_intel_plane(plane);
13479         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13480         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13481         int ret = 0;
13482
13483         if (!obj)
13484                 return 0;
13485
13486         mutex_lock(&dev->struct_mutex);
13487
13488         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13489             INTEL_INFO(dev)->cursor_needs_physical) {
13490                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13491                 ret = i915_gem_object_attach_phys(obj, align);
13492                 if (ret)
13493                         DRM_DEBUG_KMS("failed to attach phys object\n");
13494         } else {
13495                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13496         }
13497
13498         if (ret == 0)
13499                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13500
13501         mutex_unlock(&dev->struct_mutex);
13502
13503         return ret;
13504 }
13505
13506 /**
13507  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13508  * @plane: drm plane to clean up for
13509  * @fb: old framebuffer that was on plane
13510  *
13511  * Cleans up a framebuffer that has just been removed from a plane.
13512  */
13513 void
13514 intel_cleanup_plane_fb(struct drm_plane *plane,
13515                        struct drm_framebuffer *fb,
13516                        const struct drm_plane_state *old_state)
13517 {
13518         struct drm_device *dev = plane->dev;
13519         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13520
13521         if (WARN_ON(!obj))
13522                 return;
13523
13524         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13525             !INTEL_INFO(dev)->cursor_needs_physical) {
13526                 mutex_lock(&dev->struct_mutex);
13527                 intel_unpin_fb_obj(fb, old_state);
13528                 mutex_unlock(&dev->struct_mutex);
13529         }
13530 }
13531
13532 int
13533 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13534 {
13535         int max_scale;
13536         struct drm_device *dev;
13537         struct drm_i915_private *dev_priv;
13538         int crtc_clock, cdclk;
13539
13540         if (!intel_crtc || !crtc_state)
13541                 return DRM_PLANE_HELPER_NO_SCALING;
13542
13543         dev = intel_crtc->base.dev;
13544         dev_priv = dev->dev_private;
13545         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13546         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13547
13548         if (!crtc_clock || !cdclk)
13549                 return DRM_PLANE_HELPER_NO_SCALING;
13550
13551         /*
13552          * skl max scale is lower of:
13553          *    close to 3 but not 3, -1 is for that purpose
13554          *            or
13555          *    cdclk/crtc_clock
13556          */
13557         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13558
13559         return max_scale;
13560 }
13561
13562 static int
13563 intel_check_primary_plane(struct drm_plane *plane,
13564                           struct intel_crtc_state *crtc_state,
13565                           struct intel_plane_state *state)
13566 {
13567         struct drm_crtc *crtc = state->base.crtc;
13568         struct drm_framebuffer *fb = state->base.fb;
13569         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13570         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13571         bool can_position = false;
13572
13573         /* use scaler when colorkey is not required */
13574         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13575             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13576                 min_scale = 1;
13577                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13578                 can_position = true;
13579         }
13580
13581         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13582                                              &state->dst, &state->clip,
13583                                              min_scale, max_scale,
13584                                              can_position, true,
13585                                              &state->visible);
13586 }
13587
13588 static void
13589 intel_commit_primary_plane(struct drm_plane *plane,
13590                            struct intel_plane_state *state)
13591 {
13592         struct drm_crtc *crtc = state->base.crtc;
13593         struct drm_framebuffer *fb = state->base.fb;
13594         struct drm_device *dev = plane->dev;
13595         struct drm_i915_private *dev_priv = dev->dev_private;
13596         struct intel_crtc *intel_crtc;
13597         struct drm_rect *src = &state->src;
13598
13599         crtc = crtc ? crtc : plane->crtc;
13600         intel_crtc = to_intel_crtc(crtc);
13601
13602         plane->fb = fb;
13603         crtc->x = src->x1 >> 16;
13604         crtc->y = src->y1 >> 16;
13605
13606         if (!crtc->state->active)
13607                 return;
13608
13609         if (state->visible)
13610                 /* FIXME: kill this fastboot hack */
13611                 intel_update_pipe_size(intel_crtc);
13612
13613         dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13614 }
13615
13616 static void
13617 intel_disable_primary_plane(struct drm_plane *plane,
13618                             struct drm_crtc *crtc)
13619 {
13620         struct drm_device *dev = plane->dev;
13621         struct drm_i915_private *dev_priv = dev->dev_private;
13622
13623         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13624 }
13625
13626 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13627                                     struct drm_crtc_state *old_crtc_state)
13628 {
13629         struct drm_device *dev = crtc->dev;
13630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13631
13632         if (intel_crtc->atomic.update_wm_pre)
13633                 intel_update_watermarks(crtc);
13634
13635         /* Perform vblank evasion around commit operation */
13636         if (crtc->state->active)
13637                 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13638
13639         if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13640                 skl_detach_scalers(intel_crtc);
13641 }
13642
13643 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13644                                      struct drm_crtc_state *old_crtc_state)
13645 {
13646         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13647
13648         if (crtc->state->active)
13649                 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13650 }
13651
13652 /**
13653  * intel_plane_destroy - destroy a plane
13654  * @plane: plane to destroy
13655  *
13656  * Common destruction function for all types of planes (primary, cursor,
13657  * sprite).
13658  */
13659 void intel_plane_destroy(struct drm_plane *plane)
13660 {
13661         struct intel_plane *intel_plane = to_intel_plane(plane);
13662         drm_plane_cleanup(plane);
13663         kfree(intel_plane);
13664 }
13665
13666 const struct drm_plane_funcs intel_plane_funcs = {
13667         .update_plane = drm_atomic_helper_update_plane,
13668         .disable_plane = drm_atomic_helper_disable_plane,
13669         .destroy = intel_plane_destroy,
13670         .set_property = drm_atomic_helper_plane_set_property,
13671         .atomic_get_property = intel_plane_atomic_get_property,
13672         .atomic_set_property = intel_plane_atomic_set_property,
13673         .atomic_duplicate_state = intel_plane_duplicate_state,
13674         .atomic_destroy_state = intel_plane_destroy_state,
13675
13676 };
13677
13678 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13679                                                     int pipe)
13680 {
13681         struct intel_plane *primary;
13682         struct intel_plane_state *state;
13683         const uint32_t *intel_primary_formats;
13684         int num_formats;
13685
13686         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13687         if (primary == NULL)
13688                 return NULL;
13689
13690         state = intel_create_plane_state(&primary->base);
13691         if (!state) {
13692                 kfree(primary);
13693                 return NULL;
13694         }
13695         primary->base.state = &state->base;
13696
13697         primary->can_scale = false;
13698         primary->max_downscale = 1;
13699         if (INTEL_INFO(dev)->gen >= 9) {
13700                 primary->can_scale = true;
13701                 state->scaler_id = -1;
13702         }
13703         primary->pipe = pipe;
13704         primary->plane = pipe;
13705         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13706         primary->check_plane = intel_check_primary_plane;
13707         primary->commit_plane = intel_commit_primary_plane;
13708         primary->disable_plane = intel_disable_primary_plane;
13709         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13710                 primary->plane = !pipe;
13711
13712         if (INTEL_INFO(dev)->gen >= 9) {
13713                 intel_primary_formats = skl_primary_formats;
13714                 num_formats = ARRAY_SIZE(skl_primary_formats);
13715         } else if (INTEL_INFO(dev)->gen >= 4) {
13716                 intel_primary_formats = i965_primary_formats;
13717                 num_formats = ARRAY_SIZE(i965_primary_formats);
13718         } else {
13719                 intel_primary_formats = i8xx_primary_formats;
13720                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13721         }
13722
13723         drm_universal_plane_init(dev, &primary->base, 0,
13724                                  &intel_plane_funcs,
13725                                  intel_primary_formats, num_formats,
13726                                  DRM_PLANE_TYPE_PRIMARY);
13727
13728         if (INTEL_INFO(dev)->gen >= 4)
13729                 intel_create_rotation_property(dev, primary);
13730
13731         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13732
13733         return &primary->base;
13734 }
13735
13736 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13737 {
13738         if (!dev->mode_config.rotation_property) {
13739                 unsigned long flags = BIT(DRM_ROTATE_0) |
13740                         BIT(DRM_ROTATE_180);
13741
13742                 if (INTEL_INFO(dev)->gen >= 9)
13743                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13744
13745                 dev->mode_config.rotation_property =
13746                         drm_mode_create_rotation_property(dev, flags);
13747         }
13748         if (dev->mode_config.rotation_property)
13749                 drm_object_attach_property(&plane->base.base,
13750                                 dev->mode_config.rotation_property,
13751                                 plane->base.state->rotation);
13752 }
13753
13754 static int
13755 intel_check_cursor_plane(struct drm_plane *plane,
13756                          struct intel_crtc_state *crtc_state,
13757                          struct intel_plane_state *state)
13758 {
13759         struct drm_crtc *crtc = crtc_state->base.crtc;
13760         struct drm_framebuffer *fb = state->base.fb;
13761         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13762         unsigned stride;
13763         int ret;
13764
13765         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13766                                             &state->dst, &state->clip,
13767                                             DRM_PLANE_HELPER_NO_SCALING,
13768                                             DRM_PLANE_HELPER_NO_SCALING,
13769                                             true, true, &state->visible);
13770         if (ret)
13771                 return ret;
13772
13773         /* if we want to turn off the cursor ignore width and height */
13774         if (!obj)
13775                 return 0;
13776
13777         /* Check for which cursor types we support */
13778         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13779                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13780                           state->base.crtc_w, state->base.crtc_h);
13781                 return -EINVAL;
13782         }
13783
13784         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13785         if (obj->base.size < stride * state->base.crtc_h) {
13786                 DRM_DEBUG_KMS("buffer is too small\n");
13787                 return -ENOMEM;
13788         }
13789
13790         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13791                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13792                 return -EINVAL;
13793         }
13794
13795         return 0;
13796 }
13797
13798 static void
13799 intel_disable_cursor_plane(struct drm_plane *plane,
13800                            struct drm_crtc *crtc)
13801 {
13802         intel_crtc_update_cursor(crtc, false);
13803 }
13804
13805 static void
13806 intel_commit_cursor_plane(struct drm_plane *plane,
13807                           struct intel_plane_state *state)
13808 {
13809         struct drm_crtc *crtc = state->base.crtc;
13810         struct drm_device *dev = plane->dev;
13811         struct intel_crtc *intel_crtc;
13812         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13813         uint32_t addr;
13814
13815         crtc = crtc ? crtc : plane->crtc;
13816         intel_crtc = to_intel_crtc(crtc);
13817
13818         plane->fb = state->base.fb;
13819         crtc->cursor_x = state->base.crtc_x;
13820         crtc->cursor_y = state->base.crtc_y;
13821
13822         if (intel_crtc->cursor_bo == obj)
13823                 goto update;
13824
13825         if (!obj)
13826                 addr = 0;
13827         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13828                 addr = i915_gem_obj_ggtt_offset(obj);
13829         else
13830                 addr = obj->phys_handle->busaddr;
13831
13832         intel_crtc->cursor_addr = addr;
13833         intel_crtc->cursor_bo = obj;
13834
13835 update:
13836         if (crtc->state->active)
13837                 intel_crtc_update_cursor(crtc, state->visible);
13838 }
13839
13840 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13841                                                    int pipe)
13842 {
13843         struct intel_plane *cursor;
13844         struct intel_plane_state *state;
13845
13846         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13847         if (cursor == NULL)
13848                 return NULL;
13849
13850         state = intel_create_plane_state(&cursor->base);
13851         if (!state) {
13852                 kfree(cursor);
13853                 return NULL;
13854         }
13855         cursor->base.state = &state->base;
13856
13857         cursor->can_scale = false;
13858         cursor->max_downscale = 1;
13859         cursor->pipe = pipe;
13860         cursor->plane = pipe;
13861         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13862         cursor->check_plane = intel_check_cursor_plane;
13863         cursor->commit_plane = intel_commit_cursor_plane;
13864         cursor->disable_plane = intel_disable_cursor_plane;
13865
13866         drm_universal_plane_init(dev, &cursor->base, 0,
13867                                  &intel_plane_funcs,
13868                                  intel_cursor_formats,
13869                                  ARRAY_SIZE(intel_cursor_formats),
13870                                  DRM_PLANE_TYPE_CURSOR);
13871
13872         if (INTEL_INFO(dev)->gen >= 4) {
13873                 if (!dev->mode_config.rotation_property)
13874                         dev->mode_config.rotation_property =
13875                                 drm_mode_create_rotation_property(dev,
13876                                                         BIT(DRM_ROTATE_0) |
13877                                                         BIT(DRM_ROTATE_180));
13878                 if (dev->mode_config.rotation_property)
13879                         drm_object_attach_property(&cursor->base.base,
13880                                 dev->mode_config.rotation_property,
13881                                 state->base.rotation);
13882         }
13883
13884         if (INTEL_INFO(dev)->gen >=9)
13885                 state->scaler_id = -1;
13886
13887         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13888
13889         return &cursor->base;
13890 }
13891
13892 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13893         struct intel_crtc_state *crtc_state)
13894 {
13895         int i;
13896         struct intel_scaler *intel_scaler;
13897         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13898
13899         for (i = 0; i < intel_crtc->num_scalers; i++) {
13900                 intel_scaler = &scaler_state->scalers[i];
13901                 intel_scaler->in_use = 0;
13902                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13903         }
13904
13905         scaler_state->scaler_id = -1;
13906 }
13907
13908 static void intel_crtc_init(struct drm_device *dev, int pipe)
13909 {
13910         struct drm_i915_private *dev_priv = dev->dev_private;
13911         struct intel_crtc *intel_crtc;
13912         struct intel_crtc_state *crtc_state = NULL;
13913         struct drm_plane *primary = NULL;
13914         struct drm_plane *cursor = NULL;
13915         int i, ret;
13916
13917         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13918         if (intel_crtc == NULL)
13919                 return;
13920
13921         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13922         if (!crtc_state)
13923                 goto fail;
13924         intel_crtc->config = crtc_state;
13925         intel_crtc->base.state = &crtc_state->base;
13926         crtc_state->base.crtc = &intel_crtc->base;
13927
13928         /* initialize shared scalers */
13929         if (INTEL_INFO(dev)->gen >= 9) {
13930                 if (pipe == PIPE_C)
13931                         intel_crtc->num_scalers = 1;
13932                 else
13933                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13934
13935                 skl_init_scalers(dev, intel_crtc, crtc_state);
13936         }
13937
13938         primary = intel_primary_plane_create(dev, pipe);
13939         if (!primary)
13940                 goto fail;
13941
13942         cursor = intel_cursor_plane_create(dev, pipe);
13943         if (!cursor)
13944                 goto fail;
13945
13946         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13947                                         cursor, &intel_crtc_funcs);
13948         if (ret)
13949                 goto fail;
13950
13951         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13952         for (i = 0; i < 256; i++) {
13953                 intel_crtc->lut_r[i] = i;
13954                 intel_crtc->lut_g[i] = i;
13955                 intel_crtc->lut_b[i] = i;
13956         }
13957
13958         /*
13959          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13960          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13961          */
13962         intel_crtc->pipe = pipe;
13963         intel_crtc->plane = pipe;
13964         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13965                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13966                 intel_crtc->plane = !pipe;
13967         }
13968
13969         intel_crtc->cursor_base = ~0;
13970         intel_crtc->cursor_cntl = ~0;
13971         intel_crtc->cursor_size = ~0;
13972
13973         intel_crtc->wm.cxsr_allowed = true;
13974
13975         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13976                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13977         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13978         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13979
13980         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13981
13982         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13983         return;
13984
13985 fail:
13986         if (primary)
13987                 drm_plane_cleanup(primary);
13988         if (cursor)
13989                 drm_plane_cleanup(cursor);
13990         kfree(crtc_state);
13991         kfree(intel_crtc);
13992 }
13993
13994 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13995 {
13996         struct drm_encoder *encoder = connector->base.encoder;
13997         struct drm_device *dev = connector->base.dev;
13998
13999         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14000
14001         if (!encoder || WARN_ON(!encoder->crtc))
14002                 return INVALID_PIPE;
14003
14004         return to_intel_crtc(encoder->crtc)->pipe;
14005 }
14006
14007 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14008                                 struct drm_file *file)
14009 {
14010         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14011         struct drm_crtc *drmmode_crtc;
14012         struct intel_crtc *crtc;
14013
14014         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14015
14016         if (!drmmode_crtc) {
14017                 DRM_ERROR("no such CRTC id\n");
14018                 return -ENOENT;
14019         }
14020
14021         crtc = to_intel_crtc(drmmode_crtc);
14022         pipe_from_crtc_id->pipe = crtc->pipe;
14023
14024         return 0;
14025 }
14026
14027 static int intel_encoder_clones(struct intel_encoder *encoder)
14028 {
14029         struct drm_device *dev = encoder->base.dev;
14030         struct intel_encoder *source_encoder;
14031         int index_mask = 0;
14032         int entry = 0;
14033
14034         for_each_intel_encoder(dev, source_encoder) {
14035                 if (encoders_cloneable(encoder, source_encoder))
14036                         index_mask |= (1 << entry);
14037
14038                 entry++;
14039         }
14040
14041         return index_mask;
14042 }
14043
14044 static bool has_edp_a(struct drm_device *dev)
14045 {
14046         struct drm_i915_private *dev_priv = dev->dev_private;
14047
14048         if (!IS_MOBILE(dev))
14049                 return false;
14050
14051         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14052                 return false;
14053
14054         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14055                 return false;
14056
14057         return true;
14058 }
14059
14060 static bool intel_crt_present(struct drm_device *dev)
14061 {
14062         struct drm_i915_private *dev_priv = dev->dev_private;
14063
14064         if (INTEL_INFO(dev)->gen >= 9)
14065                 return false;
14066
14067         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14068                 return false;
14069
14070         if (IS_CHERRYVIEW(dev))
14071                 return false;
14072
14073         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14074                 return false;
14075
14076         return true;
14077 }
14078
14079 static void intel_setup_outputs(struct drm_device *dev)
14080 {
14081         struct drm_i915_private *dev_priv = dev->dev_private;
14082         struct intel_encoder *encoder;
14083         bool dpd_is_edp = false;
14084
14085         intel_lvds_init(dev);
14086
14087         if (intel_crt_present(dev))
14088                 intel_crt_init(dev);
14089
14090         if (IS_BROXTON(dev)) {
14091                 /*
14092                  * FIXME: Broxton doesn't support port detection via the
14093                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14094                  * detect the ports.
14095                  */
14096                 intel_ddi_init(dev, PORT_A);
14097                 intel_ddi_init(dev, PORT_B);
14098                 intel_ddi_init(dev, PORT_C);
14099         } else if (HAS_DDI(dev)) {
14100                 int found;
14101
14102                 /*
14103                  * Haswell uses DDI functions to detect digital outputs.
14104                  * On SKL pre-D0 the strap isn't connected, so we assume
14105                  * it's there.
14106                  */
14107                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14108                 /* WaIgnoreDDIAStrap: skl */
14109                 if (found ||
14110                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14111                         intel_ddi_init(dev, PORT_A);
14112
14113                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14114                  * register */
14115                 found = I915_READ(SFUSE_STRAP);
14116
14117                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14118                         intel_ddi_init(dev, PORT_B);
14119                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14120                         intel_ddi_init(dev, PORT_C);
14121                 if (found & SFUSE_STRAP_DDID_DETECTED)
14122                         intel_ddi_init(dev, PORT_D);
14123         } else if (HAS_PCH_SPLIT(dev)) {
14124                 int found;
14125                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14126
14127                 if (has_edp_a(dev))
14128                         intel_dp_init(dev, DP_A, PORT_A);
14129
14130                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14131                         /* PCH SDVOB multiplex with HDMIB */
14132                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14133                         if (!found)
14134                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14135                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14136                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14137                 }
14138
14139                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14140                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14141
14142                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14143                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14144
14145                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14146                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14147
14148                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14149                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14150         } else if (IS_VALLEYVIEW(dev)) {
14151                 /*
14152                  * The DP_DETECTED bit is the latched state of the DDC
14153                  * SDA pin at boot. However since eDP doesn't require DDC
14154                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14155                  * eDP ports may have been muxed to an alternate function.
14156                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14157                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14158                  * detect eDP ports.
14159                  */
14160                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14161                     !intel_dp_is_edp(dev, PORT_B))
14162                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14163                                         PORT_B);
14164                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14165                     intel_dp_is_edp(dev, PORT_B))
14166                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14167
14168                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14169                     !intel_dp_is_edp(dev, PORT_C))
14170                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14171                                         PORT_C);
14172                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14173                     intel_dp_is_edp(dev, PORT_C))
14174                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14175
14176                 if (IS_CHERRYVIEW(dev)) {
14177                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14178                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14179                                                 PORT_D);
14180                         /* eDP not supported on port D, so don't check VBT */
14181                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14182                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14183                 }
14184
14185                 intel_dsi_init(dev);
14186         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14187                 bool found = false;
14188
14189                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14190                         DRM_DEBUG_KMS("probing SDVOB\n");
14191                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14192                         if (!found && IS_G4X(dev)) {
14193                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14194                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14195                         }
14196
14197                         if (!found && IS_G4X(dev))
14198                                 intel_dp_init(dev, DP_B, PORT_B);
14199                 }
14200
14201                 /* Before G4X SDVOC doesn't have its own detect register */
14202
14203                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14204                         DRM_DEBUG_KMS("probing SDVOC\n");
14205                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14206                 }
14207
14208                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14209
14210                         if (IS_G4X(dev)) {
14211                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14212                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14213                         }
14214                         if (IS_G4X(dev))
14215                                 intel_dp_init(dev, DP_C, PORT_C);
14216                 }
14217
14218                 if (IS_G4X(dev) &&
14219                     (I915_READ(DP_D) & DP_DETECTED))
14220                         intel_dp_init(dev, DP_D, PORT_D);
14221         } else if (IS_GEN2(dev))
14222                 intel_dvo_init(dev);
14223
14224         if (SUPPORTS_TV(dev))
14225                 intel_tv_init(dev);
14226
14227         intel_psr_init(dev);
14228
14229         for_each_intel_encoder(dev, encoder) {
14230                 encoder->base.possible_crtcs = encoder->crtc_mask;
14231                 encoder->base.possible_clones =
14232                         intel_encoder_clones(encoder);
14233         }
14234
14235         intel_init_pch_refclk(dev);
14236
14237         drm_helper_move_panel_connectors_to_head(dev);
14238 }
14239
14240 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14241 {
14242         struct drm_device *dev = fb->dev;
14243         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14244
14245         drm_framebuffer_cleanup(fb);
14246         mutex_lock(&dev->struct_mutex);
14247         WARN_ON(!intel_fb->obj->framebuffer_references--);
14248         drm_gem_object_unreference(&intel_fb->obj->base);
14249         mutex_unlock(&dev->struct_mutex);
14250         kfree(intel_fb);
14251 }
14252
14253 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14254                                                 struct drm_file *file,
14255                                                 unsigned int *handle)
14256 {
14257         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14258         struct drm_i915_gem_object *obj = intel_fb->obj;
14259
14260         return drm_gem_handle_create(file, &obj->base, handle);
14261 }
14262
14263 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14264                                         struct drm_file *file,
14265                                         unsigned flags, unsigned color,
14266                                         struct drm_clip_rect *clips,
14267                                         unsigned num_clips)
14268 {
14269         struct drm_device *dev = fb->dev;
14270         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14271         struct drm_i915_gem_object *obj = intel_fb->obj;
14272
14273         mutex_lock(&dev->struct_mutex);
14274         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
14275         mutex_unlock(&dev->struct_mutex);
14276
14277         return 0;
14278 }
14279
14280 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14281         .destroy = intel_user_framebuffer_destroy,
14282         .create_handle = intel_user_framebuffer_create_handle,
14283         .dirty = intel_user_framebuffer_dirty,
14284 };
14285
14286 static
14287 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14288                          uint32_t pixel_format)
14289 {
14290         u32 gen = INTEL_INFO(dev)->gen;
14291
14292         if (gen >= 9) {
14293                 /* "The stride in bytes must not exceed the of the size of 8K
14294                  *  pixels and 32K bytes."
14295                  */
14296                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14297         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14298                 return 32*1024;
14299         } else if (gen >= 4) {
14300                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14301                         return 16*1024;
14302                 else
14303                         return 32*1024;
14304         } else if (gen >= 3) {
14305                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14306                         return 8*1024;
14307                 else
14308                         return 16*1024;
14309         } else {
14310                 /* XXX DSPC is limited to 4k tiled */
14311                 return 8*1024;
14312         }
14313 }
14314
14315 static int intel_framebuffer_init(struct drm_device *dev,
14316                                   struct intel_framebuffer *intel_fb,
14317                                   struct drm_mode_fb_cmd2 *mode_cmd,
14318                                   struct drm_i915_gem_object *obj)
14319 {
14320         unsigned int aligned_height;
14321         int ret;
14322         u32 pitch_limit, stride_alignment;
14323
14324         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14325
14326         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14327                 /* Enforce that fb modifier and tiling mode match, but only for
14328                  * X-tiled. This is needed for FBC. */
14329                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14330                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14331                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14332                         return -EINVAL;
14333                 }
14334         } else {
14335                 if (obj->tiling_mode == I915_TILING_X)
14336                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14337                 else if (obj->tiling_mode == I915_TILING_Y) {
14338                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14339                         return -EINVAL;
14340                 }
14341         }
14342
14343         /* Passed in modifier sanity checking. */
14344         switch (mode_cmd->modifier[0]) {
14345         case I915_FORMAT_MOD_Y_TILED:
14346         case I915_FORMAT_MOD_Yf_TILED:
14347                 if (INTEL_INFO(dev)->gen < 9) {
14348                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14349                                   mode_cmd->modifier[0]);
14350                         return -EINVAL;
14351                 }
14352         case DRM_FORMAT_MOD_NONE:
14353         case I915_FORMAT_MOD_X_TILED:
14354                 break;
14355         default:
14356                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14357                           mode_cmd->modifier[0]);
14358                 return -EINVAL;
14359         }
14360
14361         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14362                                                      mode_cmd->pixel_format);
14363         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14364                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14365                           mode_cmd->pitches[0], stride_alignment);
14366                 return -EINVAL;
14367         }
14368
14369         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14370                                            mode_cmd->pixel_format);
14371         if (mode_cmd->pitches[0] > pitch_limit) {
14372                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14373                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14374                           "tiled" : "linear",
14375                           mode_cmd->pitches[0], pitch_limit);
14376                 return -EINVAL;
14377         }
14378
14379         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14380             mode_cmd->pitches[0] != obj->stride) {
14381                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14382                           mode_cmd->pitches[0], obj->stride);
14383                 return -EINVAL;
14384         }
14385
14386         /* Reject formats not supported by any plane early. */
14387         switch (mode_cmd->pixel_format) {
14388         case DRM_FORMAT_C8:
14389         case DRM_FORMAT_RGB565:
14390         case DRM_FORMAT_XRGB8888:
14391         case DRM_FORMAT_ARGB8888:
14392                 break;
14393         case DRM_FORMAT_XRGB1555:
14394                 if (INTEL_INFO(dev)->gen > 3) {
14395                         DRM_DEBUG("unsupported pixel format: %s\n",
14396                                   drm_get_format_name(mode_cmd->pixel_format));
14397                         return -EINVAL;
14398                 }
14399                 break;
14400         case DRM_FORMAT_ABGR8888:
14401                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14402                         DRM_DEBUG("unsupported pixel format: %s\n",
14403                                   drm_get_format_name(mode_cmd->pixel_format));
14404                         return -EINVAL;
14405                 }
14406                 break;
14407         case DRM_FORMAT_XBGR8888:
14408         case DRM_FORMAT_XRGB2101010:
14409         case DRM_FORMAT_XBGR2101010:
14410                 if (INTEL_INFO(dev)->gen < 4) {
14411                         DRM_DEBUG("unsupported pixel format: %s\n",
14412                                   drm_get_format_name(mode_cmd->pixel_format));
14413                         return -EINVAL;
14414                 }
14415                 break;
14416         case DRM_FORMAT_ABGR2101010:
14417                 if (!IS_VALLEYVIEW(dev)) {
14418                         DRM_DEBUG("unsupported pixel format: %s\n",
14419                                   drm_get_format_name(mode_cmd->pixel_format));
14420                         return -EINVAL;
14421                 }
14422                 break;
14423         case DRM_FORMAT_YUYV:
14424         case DRM_FORMAT_UYVY:
14425         case DRM_FORMAT_YVYU:
14426         case DRM_FORMAT_VYUY:
14427                 if (INTEL_INFO(dev)->gen < 5) {
14428                         DRM_DEBUG("unsupported pixel format: %s\n",
14429                                   drm_get_format_name(mode_cmd->pixel_format));
14430                         return -EINVAL;
14431                 }
14432                 break;
14433         default:
14434                 DRM_DEBUG("unsupported pixel format: %s\n",
14435                           drm_get_format_name(mode_cmd->pixel_format));
14436                 return -EINVAL;
14437         }
14438
14439         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14440         if (mode_cmd->offsets[0] != 0)
14441                 return -EINVAL;
14442
14443         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14444                                                mode_cmd->pixel_format,
14445                                                mode_cmd->modifier[0]);
14446         /* FIXME drm helper for size checks (especially planar formats)? */
14447         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14448                 return -EINVAL;
14449
14450         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14451         intel_fb->obj = obj;
14452         intel_fb->obj->framebuffer_references++;
14453
14454         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14455         if (ret) {
14456                 DRM_ERROR("framebuffer init failed %d\n", ret);
14457                 return ret;
14458         }
14459
14460         return 0;
14461 }
14462
14463 static struct drm_framebuffer *
14464 intel_user_framebuffer_create(struct drm_device *dev,
14465                               struct drm_file *filp,
14466                               struct drm_mode_fb_cmd2 *mode_cmd)
14467 {
14468         struct drm_i915_gem_object *obj;
14469
14470         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14471                                                 mode_cmd->handles[0]));
14472         if (&obj->base == NULL)
14473                 return ERR_PTR(-ENOENT);
14474
14475         return intel_framebuffer_create(dev, mode_cmd, obj);
14476 }
14477
14478 #ifndef CONFIG_DRM_I915_FBDEV
14479 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14480 {
14481 }
14482 #endif
14483
14484 static const struct drm_mode_config_funcs intel_mode_funcs = {
14485         .fb_create = intel_user_framebuffer_create,
14486         .output_poll_changed = intel_fbdev_output_poll_changed,
14487         .atomic_check = intel_atomic_check,
14488         .atomic_commit = intel_atomic_commit,
14489         .atomic_state_alloc = intel_atomic_state_alloc,
14490         .atomic_state_clear = intel_atomic_state_clear,
14491 };
14492
14493 /* Set up chip specific display functions */
14494 static void intel_init_display(struct drm_device *dev)
14495 {
14496         struct drm_i915_private *dev_priv = dev->dev_private;
14497
14498         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14499                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14500         else if (IS_CHERRYVIEW(dev))
14501                 dev_priv->display.find_dpll = chv_find_best_dpll;
14502         else if (IS_VALLEYVIEW(dev))
14503                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14504         else if (IS_PINEVIEW(dev))
14505                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14506         else
14507                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14508
14509         if (INTEL_INFO(dev)->gen >= 9) {
14510                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14511                 dev_priv->display.get_initial_plane_config =
14512                         skylake_get_initial_plane_config;
14513                 dev_priv->display.crtc_compute_clock =
14514                         haswell_crtc_compute_clock;
14515                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14516                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14517                 dev_priv->display.update_primary_plane =
14518                         skylake_update_primary_plane;
14519         } else if (HAS_DDI(dev)) {
14520                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14521                 dev_priv->display.get_initial_plane_config =
14522                         ironlake_get_initial_plane_config;
14523                 dev_priv->display.crtc_compute_clock =
14524                         haswell_crtc_compute_clock;
14525                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14526                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14527                 dev_priv->display.update_primary_plane =
14528                         ironlake_update_primary_plane;
14529         } else if (HAS_PCH_SPLIT(dev)) {
14530                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14531                 dev_priv->display.get_initial_plane_config =
14532                         ironlake_get_initial_plane_config;
14533                 dev_priv->display.crtc_compute_clock =
14534                         ironlake_crtc_compute_clock;
14535                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14536                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14537                 dev_priv->display.update_primary_plane =
14538                         ironlake_update_primary_plane;
14539         } else if (IS_VALLEYVIEW(dev)) {
14540                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14541                 dev_priv->display.get_initial_plane_config =
14542                         i9xx_get_initial_plane_config;
14543                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14544                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14545                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14546                 dev_priv->display.update_primary_plane =
14547                         i9xx_update_primary_plane;
14548         } else {
14549                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14550                 dev_priv->display.get_initial_plane_config =
14551                         i9xx_get_initial_plane_config;
14552                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14553                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14554                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14555                 dev_priv->display.update_primary_plane =
14556                         i9xx_update_primary_plane;
14557         }
14558
14559         /* Returns the core display clock speed */
14560         if (IS_SKYLAKE(dev))
14561                 dev_priv->display.get_display_clock_speed =
14562                         skylake_get_display_clock_speed;
14563         else if (IS_BROXTON(dev))
14564                 dev_priv->display.get_display_clock_speed =
14565                         broxton_get_display_clock_speed;
14566         else if (IS_BROADWELL(dev))
14567                 dev_priv->display.get_display_clock_speed =
14568                         broadwell_get_display_clock_speed;
14569         else if (IS_HASWELL(dev))
14570                 dev_priv->display.get_display_clock_speed =
14571                         haswell_get_display_clock_speed;
14572         else if (IS_VALLEYVIEW(dev))
14573                 dev_priv->display.get_display_clock_speed =
14574                         valleyview_get_display_clock_speed;
14575         else if (IS_GEN5(dev))
14576                 dev_priv->display.get_display_clock_speed =
14577                         ilk_get_display_clock_speed;
14578         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14579                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14580                 dev_priv->display.get_display_clock_speed =
14581                         i945_get_display_clock_speed;
14582         else if (IS_GM45(dev))
14583                 dev_priv->display.get_display_clock_speed =
14584                         gm45_get_display_clock_speed;
14585         else if (IS_CRESTLINE(dev))
14586                 dev_priv->display.get_display_clock_speed =
14587                         i965gm_get_display_clock_speed;
14588         else if (IS_PINEVIEW(dev))
14589                 dev_priv->display.get_display_clock_speed =
14590                         pnv_get_display_clock_speed;
14591         else if (IS_G33(dev) || IS_G4X(dev))
14592                 dev_priv->display.get_display_clock_speed =
14593                         g33_get_display_clock_speed;
14594         else if (IS_I915G(dev))
14595                 dev_priv->display.get_display_clock_speed =
14596                         i915_get_display_clock_speed;
14597         else if (IS_I945GM(dev) || IS_845G(dev))
14598                 dev_priv->display.get_display_clock_speed =
14599                         i9xx_misc_get_display_clock_speed;
14600         else if (IS_PINEVIEW(dev))
14601                 dev_priv->display.get_display_clock_speed =
14602                         pnv_get_display_clock_speed;
14603         else if (IS_I915GM(dev))
14604                 dev_priv->display.get_display_clock_speed =
14605                         i915gm_get_display_clock_speed;
14606         else if (IS_I865G(dev))
14607                 dev_priv->display.get_display_clock_speed =
14608                         i865_get_display_clock_speed;
14609         else if (IS_I85X(dev))
14610                 dev_priv->display.get_display_clock_speed =
14611                         i85x_get_display_clock_speed;
14612         else { /* 830 */
14613                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14614                 dev_priv->display.get_display_clock_speed =
14615                         i830_get_display_clock_speed;
14616         }
14617
14618         if (IS_GEN5(dev)) {
14619                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14620         } else if (IS_GEN6(dev)) {
14621                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14622         } else if (IS_IVYBRIDGE(dev)) {
14623                 /* FIXME: detect B0+ stepping and use auto training */
14624                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14625         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14626                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14627                 if (IS_BROADWELL(dev)) {
14628                         dev_priv->display.modeset_commit_cdclk =
14629                                 broadwell_modeset_commit_cdclk;
14630                         dev_priv->display.modeset_calc_cdclk =
14631                                 broadwell_modeset_calc_cdclk;
14632                 }
14633         } else if (IS_VALLEYVIEW(dev)) {
14634                 dev_priv->display.modeset_commit_cdclk =
14635                         valleyview_modeset_commit_cdclk;
14636                 dev_priv->display.modeset_calc_cdclk =
14637                         valleyview_modeset_calc_cdclk;
14638         } else if (IS_BROXTON(dev)) {
14639                 dev_priv->display.modeset_commit_cdclk =
14640                         broxton_modeset_commit_cdclk;
14641                 dev_priv->display.modeset_calc_cdclk =
14642                         broxton_modeset_calc_cdclk;
14643         }
14644
14645         switch (INTEL_INFO(dev)->gen) {
14646         case 2:
14647                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14648                 break;
14649
14650         case 3:
14651                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14652                 break;
14653
14654         case 4:
14655         case 5:
14656                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14657                 break;
14658
14659         case 6:
14660                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14661                 break;
14662         case 7:
14663         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14664                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14665                 break;
14666         case 9:
14667                 /* Drop through - unsupported since execlist only. */
14668         default:
14669                 /* Default just returns -ENODEV to indicate unsupported */
14670                 dev_priv->display.queue_flip = intel_default_queue_flip;
14671         }
14672
14673         intel_panel_init_backlight_funcs(dev);
14674
14675         mutex_init(&dev_priv->pps_mutex);
14676 }
14677
14678 /*
14679  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14680  * resume, or other times.  This quirk makes sure that's the case for
14681  * affected systems.
14682  */
14683 static void quirk_pipea_force(struct drm_device *dev)
14684 {
14685         struct drm_i915_private *dev_priv = dev->dev_private;
14686
14687         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14688         DRM_INFO("applying pipe a force quirk\n");
14689 }
14690
14691 static void quirk_pipeb_force(struct drm_device *dev)
14692 {
14693         struct drm_i915_private *dev_priv = dev->dev_private;
14694
14695         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14696         DRM_INFO("applying pipe b force quirk\n");
14697 }
14698
14699 /*
14700  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14701  */
14702 static void quirk_ssc_force_disable(struct drm_device *dev)
14703 {
14704         struct drm_i915_private *dev_priv = dev->dev_private;
14705         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14706         DRM_INFO("applying lvds SSC disable quirk\n");
14707 }
14708
14709 /*
14710  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14711  * brightness value
14712  */
14713 static void quirk_invert_brightness(struct drm_device *dev)
14714 {
14715         struct drm_i915_private *dev_priv = dev->dev_private;
14716         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14717         DRM_INFO("applying inverted panel brightness quirk\n");
14718 }
14719
14720 /* Some VBT's incorrectly indicate no backlight is present */
14721 static void quirk_backlight_present(struct drm_device *dev)
14722 {
14723         struct drm_i915_private *dev_priv = dev->dev_private;
14724         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14725         DRM_INFO("applying backlight present quirk\n");
14726 }
14727
14728 struct intel_quirk {
14729         int device;
14730         int subsystem_vendor;
14731         int subsystem_device;
14732         void (*hook)(struct drm_device *dev);
14733 };
14734
14735 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14736 struct intel_dmi_quirk {
14737         void (*hook)(struct drm_device *dev);
14738         const struct dmi_system_id (*dmi_id_list)[];
14739 };
14740
14741 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14742 {
14743         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14744         return 1;
14745 }
14746
14747 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14748         {
14749                 .dmi_id_list = &(const struct dmi_system_id[]) {
14750                         {
14751                                 .callback = intel_dmi_reverse_brightness,
14752                                 .ident = "NCR Corporation",
14753                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14754                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14755                                 },
14756                         },
14757                         { }  /* terminating entry */
14758                 },
14759                 .hook = quirk_invert_brightness,
14760         },
14761 };
14762
14763 static struct intel_quirk intel_quirks[] = {
14764         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14765         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14766
14767         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14768         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14769
14770         /* 830 needs to leave pipe A & dpll A up */
14771         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14772
14773         /* 830 needs to leave pipe B & dpll B up */
14774         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14775
14776         /* Lenovo U160 cannot use SSC on LVDS */
14777         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14778
14779         /* Sony Vaio Y cannot use SSC on LVDS */
14780         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14781
14782         /* Acer Aspire 5734Z must invert backlight brightness */
14783         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14784
14785         /* Acer/eMachines G725 */
14786         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14787
14788         /* Acer/eMachines e725 */
14789         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14790
14791         /* Acer/Packard Bell NCL20 */
14792         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14793
14794         /* Acer Aspire 4736Z */
14795         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14796
14797         /* Acer Aspire 5336 */
14798         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14799
14800         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14801         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14802
14803         /* Acer C720 Chromebook (Core i3 4005U) */
14804         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14805
14806         /* Apple Macbook 2,1 (Core 2 T7400) */
14807         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14808
14809         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14810         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14811
14812         /* HP Chromebook 14 (Celeron 2955U) */
14813         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14814
14815         /* Dell Chromebook 11 */
14816         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14817 };
14818
14819 static void intel_init_quirks(struct drm_device *dev)
14820 {
14821         struct pci_dev *d = dev->pdev;
14822         int i;
14823
14824         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14825                 struct intel_quirk *q = &intel_quirks[i];
14826
14827                 if (d->device == q->device &&
14828                     (d->subsystem_vendor == q->subsystem_vendor ||
14829                      q->subsystem_vendor == PCI_ANY_ID) &&
14830                     (d->subsystem_device == q->subsystem_device ||
14831                      q->subsystem_device == PCI_ANY_ID))
14832                         q->hook(dev);
14833         }
14834         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14835                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14836                         intel_dmi_quirks[i].hook(dev);
14837         }
14838 }
14839
14840 /* Disable the VGA plane that we never use */
14841 static void i915_disable_vga(struct drm_device *dev)
14842 {
14843         struct drm_i915_private *dev_priv = dev->dev_private;
14844         u8 sr1;
14845         u32 vga_reg = i915_vgacntrl_reg(dev);
14846
14847         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14848         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14849         outb(SR01, VGA_SR_INDEX);
14850         sr1 = inb(VGA_SR_DATA);
14851         outb(sr1 | 1<<5, VGA_SR_DATA);
14852         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14853         udelay(300);
14854
14855         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14856         POSTING_READ(vga_reg);
14857 }
14858
14859 void intel_modeset_init_hw(struct drm_device *dev)
14860 {
14861         intel_update_cdclk(dev);
14862         intel_prepare_ddi(dev);
14863         intel_init_clock_gating(dev);
14864         intel_enable_gt_powersave(dev);
14865 }
14866
14867 void intel_modeset_init(struct drm_device *dev)
14868 {
14869         struct drm_i915_private *dev_priv = dev->dev_private;
14870         int sprite, ret;
14871         enum pipe pipe;
14872         struct intel_crtc *crtc;
14873
14874         drm_mode_config_init(dev);
14875
14876         dev->mode_config.min_width = 0;
14877         dev->mode_config.min_height = 0;
14878
14879         dev->mode_config.preferred_depth = 24;
14880         dev->mode_config.prefer_shadow = 1;
14881
14882         dev->mode_config.allow_fb_modifiers = true;
14883
14884         dev->mode_config.funcs = &intel_mode_funcs;
14885
14886         intel_init_quirks(dev);
14887
14888         intel_init_pm(dev);
14889
14890         if (INTEL_INFO(dev)->num_pipes == 0)
14891                 return;
14892
14893         intel_init_display(dev);
14894         intel_init_audio(dev);
14895
14896         if (IS_GEN2(dev)) {
14897                 dev->mode_config.max_width = 2048;
14898                 dev->mode_config.max_height = 2048;
14899         } else if (IS_GEN3(dev)) {
14900                 dev->mode_config.max_width = 4096;
14901                 dev->mode_config.max_height = 4096;
14902         } else {
14903                 dev->mode_config.max_width = 8192;
14904                 dev->mode_config.max_height = 8192;
14905         }
14906
14907         if (IS_845G(dev) || IS_I865G(dev)) {
14908                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14909                 dev->mode_config.cursor_height = 1023;
14910         } else if (IS_GEN2(dev)) {
14911                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14912                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14913         } else {
14914                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14915                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14916         }
14917
14918         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14919
14920         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14921                       INTEL_INFO(dev)->num_pipes,
14922                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14923
14924         for_each_pipe(dev_priv, pipe) {
14925                 intel_crtc_init(dev, pipe);
14926                 for_each_sprite(dev_priv, pipe, sprite) {
14927                         ret = intel_plane_init(dev, pipe, sprite);
14928                         if (ret)
14929                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14930                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14931                 }
14932         }
14933
14934         intel_init_dpio(dev);
14935
14936         intel_shared_dpll_init(dev);
14937
14938         /* Just disable it once at startup */
14939         i915_disable_vga(dev);
14940         intel_setup_outputs(dev);
14941
14942         /* Just in case the BIOS is doing something questionable. */
14943         intel_fbc_disable(dev_priv);
14944
14945         drm_modeset_lock_all(dev);
14946         intel_modeset_setup_hw_state(dev);
14947         drm_modeset_unlock_all(dev);
14948
14949         for_each_intel_crtc(dev, crtc) {
14950                 struct intel_initial_plane_config plane_config = {};
14951
14952                 if (!crtc->active)
14953                         continue;
14954
14955                 /*
14956                  * Note that reserving the BIOS fb up front prevents us
14957                  * from stuffing other stolen allocations like the ring
14958                  * on top.  This prevents some ugliness at boot time, and
14959                  * can even allow for smooth boot transitions if the BIOS
14960                  * fb is large enough for the active pipe configuration.
14961                  */
14962                 dev_priv->display.get_initial_plane_config(crtc,
14963                                                            &plane_config);
14964
14965                 /*
14966                  * If the fb is shared between multiple heads, we'll
14967                  * just get the first one.
14968                  */
14969                 intel_find_initial_plane_obj(crtc, &plane_config);
14970         }
14971 }
14972
14973 static void intel_enable_pipe_a(struct drm_device *dev)
14974 {
14975         struct intel_connector *connector;
14976         struct drm_connector *crt = NULL;
14977         struct intel_load_detect_pipe load_detect_temp;
14978         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14979
14980         /* We can't just switch on the pipe A, we need to set things up with a
14981          * proper mode and output configuration. As a gross hack, enable pipe A
14982          * by enabling the load detect pipe once. */
14983         for_each_intel_connector(dev, connector) {
14984                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14985                         crt = &connector->base;
14986                         break;
14987                 }
14988         }
14989
14990         if (!crt)
14991                 return;
14992
14993         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14994                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14995 }
14996
14997 static bool
14998 intel_check_plane_mapping(struct intel_crtc *crtc)
14999 {
15000         struct drm_device *dev = crtc->base.dev;
15001         struct drm_i915_private *dev_priv = dev->dev_private;
15002         u32 reg, val;
15003
15004         if (INTEL_INFO(dev)->num_pipes == 1)
15005                 return true;
15006
15007         reg = DSPCNTR(!crtc->plane);
15008         val = I915_READ(reg);
15009
15010         if ((val & DISPLAY_PLANE_ENABLE) &&
15011             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15012                 return false;
15013
15014         return true;
15015 }
15016
15017 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15018 {
15019         struct drm_device *dev = crtc->base.dev;
15020         struct drm_i915_private *dev_priv = dev->dev_private;
15021         struct intel_encoder *encoder;
15022         u32 reg;
15023         bool enable;
15024
15025         /* Clear any frame start delays used for debugging left by the BIOS */
15026         reg = PIPECONF(crtc->config->cpu_transcoder);
15027         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15028
15029         /* restore vblank interrupts to correct state */
15030         drm_crtc_vblank_reset(&crtc->base);
15031         if (crtc->active) {
15032                 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15033                 update_scanline_offset(crtc);
15034                 drm_crtc_vblank_on(&crtc->base);
15035         }
15036
15037         /* We need to sanitize the plane -> pipe mapping first because this will
15038          * disable the crtc (and hence change the state) if it is wrong. Note
15039          * that gen4+ has a fixed plane -> pipe mapping.  */
15040         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15041                 bool plane;
15042
15043                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15044                               crtc->base.base.id);
15045
15046                 /* Pipe has the wrong plane attached and the plane is active.
15047                  * Temporarily change the plane mapping and disable everything
15048                  * ...  */
15049                 plane = crtc->plane;
15050                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15051                 crtc->plane = !plane;
15052                 intel_crtc_disable_noatomic(&crtc->base);
15053                 crtc->plane = plane;
15054         }
15055
15056         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15057             crtc->pipe == PIPE_A && !crtc->active) {
15058                 /* BIOS forgot to enable pipe A, this mostly happens after
15059                  * resume. Force-enable the pipe to fix this, the update_dpms
15060                  * call below we restore the pipe to the right state, but leave
15061                  * the required bits on. */
15062                 intel_enable_pipe_a(dev);
15063         }
15064
15065         /* Adjust the state of the output pipe according to whether we
15066          * have active connectors/encoders. */
15067         enable = false;
15068         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15069                 enable |= encoder->connectors_active;
15070
15071         if (!enable)
15072                 intel_crtc_disable_noatomic(&crtc->base);
15073
15074         if (crtc->active != crtc->base.state->active) {
15075
15076                 /* This can happen either due to bugs in the get_hw_state
15077                  * functions or because of calls to intel_crtc_disable_noatomic,
15078                  * or because the pipe is force-enabled due to the
15079                  * pipe A quirk. */
15080                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15081                               crtc->base.base.id,
15082                               crtc->base.state->enable ? "enabled" : "disabled",
15083                               crtc->active ? "enabled" : "disabled");
15084
15085                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15086                 crtc->base.state->active = crtc->active;
15087                 crtc->base.enabled = crtc->active;
15088
15089                 /* Because we only establish the connector -> encoder ->
15090                  * crtc links if something is active, this means the
15091                  * crtc is now deactivated. Break the links. connector
15092                  * -> encoder links are only establish when things are
15093                  *  actually up, hence no need to break them. */
15094                 WARN_ON(crtc->active);
15095
15096                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15097                         WARN_ON(encoder->connectors_active);
15098                         encoder->base.crtc = NULL;
15099                 }
15100         }
15101
15102         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15103                 /*
15104                  * We start out with underrun reporting disabled to avoid races.
15105                  * For correct bookkeeping mark this on active crtcs.
15106                  *
15107                  * Also on gmch platforms we dont have any hardware bits to
15108                  * disable the underrun reporting. Which means we need to start
15109                  * out with underrun reporting disabled also on inactive pipes,
15110                  * since otherwise we'll complain about the garbage we read when
15111                  * e.g. coming up after runtime pm.
15112                  *
15113                  * No protection against concurrent access is required - at
15114                  * worst a fifo underrun happens which also sets this to false.
15115                  */
15116                 crtc->cpu_fifo_underrun_disabled = true;
15117                 crtc->pch_fifo_underrun_disabled = true;
15118         }
15119 }
15120
15121 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15122 {
15123         struct intel_connector *connector;
15124         struct drm_device *dev = encoder->base.dev;
15125
15126         /* We need to check both for a crtc link (meaning that the
15127          * encoder is active and trying to read from a pipe) and the
15128          * pipe itself being active. */
15129         bool has_active_crtc = encoder->base.crtc &&
15130                 to_intel_crtc(encoder->base.crtc)->active;
15131
15132         if (encoder->connectors_active && !has_active_crtc) {
15133                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15134                               encoder->base.base.id,
15135                               encoder->base.name);
15136
15137                 /* Connector is active, but has no active pipe. This is
15138                  * fallout from our resume register restoring. Disable
15139                  * the encoder manually again. */
15140                 if (encoder->base.crtc) {
15141                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15142                                       encoder->base.base.id,
15143                                       encoder->base.name);
15144                         encoder->disable(encoder);
15145                         if (encoder->post_disable)
15146                                 encoder->post_disable(encoder);
15147                 }
15148                 encoder->base.crtc = NULL;
15149                 encoder->connectors_active = false;
15150
15151                 /* Inconsistent output/port/pipe state happens presumably due to
15152                  * a bug in one of the get_hw_state functions. Or someplace else
15153                  * in our code, like the register restore mess on resume. Clamp
15154                  * things to off as a safer default. */
15155                 for_each_intel_connector(dev, connector) {
15156                         if (connector->encoder != encoder)
15157                                 continue;
15158                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15159                         connector->base.encoder = NULL;
15160                 }
15161         }
15162         /* Enabled encoders without active connectors will be fixed in
15163          * the crtc fixup. */
15164 }
15165
15166 void i915_redisable_vga_power_on(struct drm_device *dev)
15167 {
15168         struct drm_i915_private *dev_priv = dev->dev_private;
15169         u32 vga_reg = i915_vgacntrl_reg(dev);
15170
15171         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15172                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15173                 i915_disable_vga(dev);
15174         }
15175 }
15176
15177 void i915_redisable_vga(struct drm_device *dev)
15178 {
15179         struct drm_i915_private *dev_priv = dev->dev_private;
15180
15181         /* This function can be called both from intel_modeset_setup_hw_state or
15182          * at a very early point in our resume sequence, where the power well
15183          * structures are not yet restored. Since this function is at a very
15184          * paranoid "someone might have enabled VGA while we were not looking"
15185          * level, just check if the power well is enabled instead of trying to
15186          * follow the "don't touch the power well if we don't need it" policy
15187          * the rest of the driver uses. */
15188         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15189                 return;
15190
15191         i915_redisable_vga_power_on(dev);
15192 }
15193
15194 static bool primary_get_hw_state(struct intel_crtc *crtc)
15195 {
15196         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15197
15198         return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15199 }
15200
15201 static void readout_plane_state(struct intel_crtc *crtc,
15202                                 struct intel_crtc_state *crtc_state)
15203 {
15204         struct intel_plane *p;
15205         struct intel_plane_state *plane_state;
15206         bool active = crtc_state->base.active;
15207
15208         for_each_intel_plane(crtc->base.dev, p) {
15209                 if (crtc->pipe != p->pipe)
15210                         continue;
15211
15212                 plane_state = to_intel_plane_state(p->base.state);
15213
15214                 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15215                         plane_state->visible = primary_get_hw_state(crtc);
15216                 else {
15217                         if (active)
15218                                 p->disable_plane(&p->base, &crtc->base);
15219
15220                         plane_state->visible = false;
15221                 }
15222         }
15223 }
15224
15225 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15226 {
15227         struct drm_i915_private *dev_priv = dev->dev_private;
15228         enum pipe pipe;
15229         struct intel_crtc *crtc;
15230         struct intel_encoder *encoder;
15231         struct intel_connector *connector;
15232         int i;
15233
15234         for_each_intel_crtc(dev, crtc) {
15235                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15236                 memset(crtc->config, 0, sizeof(*crtc->config));
15237                 crtc->config->base.crtc = &crtc->base;
15238
15239                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15240                                                                  crtc->config);
15241
15242                 crtc->base.state->active = crtc->active;
15243                 crtc->base.enabled = crtc->active;
15244
15245                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15246                 if (crtc->base.state->active) {
15247                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15248                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15249                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15250
15251                         /*
15252                          * The initial mode needs to be set in order to keep
15253                          * the atomic core happy. It wants a valid mode if the
15254                          * crtc's enabled, so we do the above call.
15255                          *
15256                          * At this point some state updated by the connectors
15257                          * in their ->detect() callback has not run yet, so
15258                          * no recalculation can be done yet.
15259                          *
15260                          * Even if we could do a recalculation and modeset
15261                          * right now it would cause a double modeset if
15262                          * fbdev or userspace chooses a different initial mode.
15263                          *
15264                          * If that happens, someone indicated they wanted a
15265                          * mode change, which means it's safe to do a full
15266                          * recalculation.
15267                          */
15268                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15269                 }
15270
15271                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15272                 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15273
15274                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15275                               crtc->base.base.id,
15276                               crtc->active ? "enabled" : "disabled");
15277         }
15278
15279         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15280                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15281
15282                 pll->on = pll->get_hw_state(dev_priv, pll,
15283                                             &pll->config.hw_state);
15284                 pll->active = 0;
15285                 pll->config.crtc_mask = 0;
15286                 for_each_intel_crtc(dev, crtc) {
15287                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15288                                 pll->active++;
15289                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15290                         }
15291                 }
15292
15293                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15294                               pll->name, pll->config.crtc_mask, pll->on);
15295
15296                 if (pll->config.crtc_mask)
15297                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15298         }
15299
15300         for_each_intel_encoder(dev, encoder) {
15301                 pipe = 0;
15302
15303                 if (encoder->get_hw_state(encoder, &pipe)) {
15304                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15305                         encoder->base.crtc = &crtc->base;
15306                         encoder->get_config(encoder, crtc->config);
15307                 } else {
15308                         encoder->base.crtc = NULL;
15309                 }
15310
15311                 encoder->connectors_active = false;
15312                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15313                               encoder->base.base.id,
15314                               encoder->base.name,
15315                               encoder->base.crtc ? "enabled" : "disabled",
15316                               pipe_name(pipe));
15317         }
15318
15319         for_each_intel_connector(dev, connector) {
15320                 if (connector->get_hw_state(connector)) {
15321                         connector->base.dpms = DRM_MODE_DPMS_ON;
15322                         connector->encoder->connectors_active = true;
15323                         connector->base.encoder = &connector->encoder->base;
15324                 } else {
15325                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15326                         connector->base.encoder = NULL;
15327                 }
15328                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15329                               connector->base.base.id,
15330                               connector->base.name,
15331                               connector->base.encoder ? "enabled" : "disabled");
15332         }
15333 }
15334
15335 /* Scan out the current hw modeset state,
15336  * and sanitizes it to the current state
15337  */
15338 static void
15339 intel_modeset_setup_hw_state(struct drm_device *dev)
15340 {
15341         struct drm_i915_private *dev_priv = dev->dev_private;
15342         enum pipe pipe;
15343         struct intel_crtc *crtc;
15344         struct intel_encoder *encoder;
15345         int i;
15346
15347         intel_modeset_readout_hw_state(dev);
15348
15349         /* HW state is read out, now we need to sanitize this mess. */
15350         for_each_intel_encoder(dev, encoder) {
15351                 intel_sanitize_encoder(encoder);
15352         }
15353
15354         for_each_pipe(dev_priv, pipe) {
15355                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15356                 intel_sanitize_crtc(crtc);
15357                 intel_dump_pipe_config(crtc, crtc->config,
15358                                        "[setup_hw_state]");
15359         }
15360
15361         intel_modeset_update_connector_atomic_state(dev);
15362
15363         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15364                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15365
15366                 if (!pll->on || pll->active)
15367                         continue;
15368
15369                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15370
15371                 pll->disable(dev_priv, pll);
15372                 pll->on = false;
15373         }
15374
15375         if (IS_VALLEYVIEW(dev))
15376                 vlv_wm_get_hw_state(dev);
15377         else if (IS_GEN9(dev))
15378                 skl_wm_get_hw_state(dev);
15379         else if (HAS_PCH_SPLIT(dev))
15380                 ilk_wm_get_hw_state(dev);
15381
15382         for_each_intel_crtc(dev, crtc) {
15383                 unsigned long put_domains;
15384
15385                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15386                 if (WARN_ON(put_domains))
15387                         modeset_put_power_domains(dev_priv, put_domains);
15388         }
15389         intel_display_set_init_power(dev_priv, false);
15390 }
15391
15392 void intel_display_resume(struct drm_device *dev)
15393 {
15394         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15395         struct intel_connector *conn;
15396         struct intel_plane *plane;
15397         struct drm_crtc *crtc;
15398         int ret;
15399
15400         if (!state)
15401                 return;
15402
15403         state->acquire_ctx = dev->mode_config.acquire_ctx;
15404
15405         /* preserve complete old state, including dpll */
15406         intel_atomic_get_shared_dpll_state(state);
15407
15408         for_each_crtc(dev, crtc) {
15409                 struct drm_crtc_state *crtc_state =
15410                         drm_atomic_get_crtc_state(state, crtc);
15411
15412                 ret = PTR_ERR_OR_ZERO(crtc_state);
15413                 if (ret)
15414                         goto err;
15415
15416                 /* force a restore */
15417                 crtc_state->mode_changed = true;
15418         }
15419
15420         for_each_intel_plane(dev, plane) {
15421                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15422                 if (ret)
15423                         goto err;
15424         }
15425
15426         for_each_intel_connector(dev, conn) {
15427                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15428                 if (ret)
15429                         goto err;
15430         }
15431
15432         intel_modeset_setup_hw_state(dev);
15433
15434         i915_redisable_vga(dev);
15435         ret = drm_atomic_commit(state);
15436         if (!ret)
15437                 return;
15438
15439 err:
15440         DRM_ERROR("Restoring old state failed with %i\n", ret);
15441         drm_atomic_state_free(state);
15442 }
15443
15444 void intel_modeset_gem_init(struct drm_device *dev)
15445 {
15446         struct drm_i915_private *dev_priv = dev->dev_private;
15447         struct drm_crtc *c;
15448         struct drm_i915_gem_object *obj;
15449         int ret;
15450
15451         mutex_lock(&dev->struct_mutex);
15452         intel_init_gt_powersave(dev);
15453         mutex_unlock(&dev->struct_mutex);
15454
15455         /*
15456          * There may be no VBT; and if the BIOS enabled SSC we can
15457          * just keep using it to avoid unnecessary flicker.  Whereas if the
15458          * BIOS isn't using it, don't assume it will work even if the VBT
15459          * indicates as much.
15460          */
15461         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15462                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15463                                                 DREF_SSC1_ENABLE);
15464
15465         intel_modeset_init_hw(dev);
15466
15467         intel_setup_overlay(dev);
15468
15469         /*
15470          * Make sure any fbs we allocated at startup are properly
15471          * pinned & fenced.  When we do the allocation it's too early
15472          * for this.
15473          */
15474         for_each_crtc(dev, c) {
15475                 obj = intel_fb_obj(c->primary->fb);
15476                 if (obj == NULL)
15477                         continue;
15478
15479                 mutex_lock(&dev->struct_mutex);
15480                 ret = intel_pin_and_fence_fb_obj(c->primary,
15481                                                  c->primary->fb,
15482                                                  c->primary->state,
15483                                                  NULL, NULL);
15484                 mutex_unlock(&dev->struct_mutex);
15485                 if (ret) {
15486                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15487                                   to_intel_crtc(c)->pipe);
15488                         drm_framebuffer_unreference(c->primary->fb);
15489                         c->primary->fb = NULL;
15490                         c->primary->crtc = c->primary->state->crtc = NULL;
15491                         update_state_fb(c->primary);
15492                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15493                 }
15494         }
15495
15496         intel_backlight_register(dev);
15497 }
15498
15499 void intel_connector_unregister(struct intel_connector *intel_connector)
15500 {
15501         struct drm_connector *connector = &intel_connector->base;
15502
15503         intel_panel_destroy_backlight(connector);
15504         drm_connector_unregister(connector);
15505 }
15506
15507 void intel_modeset_cleanup(struct drm_device *dev)
15508 {
15509         struct drm_i915_private *dev_priv = dev->dev_private;
15510         struct drm_connector *connector;
15511
15512         intel_disable_gt_powersave(dev);
15513
15514         intel_backlight_unregister(dev);
15515
15516         /*
15517          * Interrupts and polling as the first thing to avoid creating havoc.
15518          * Too much stuff here (turning of connectors, ...) would
15519          * experience fancy races otherwise.
15520          */
15521         intel_irq_uninstall(dev_priv);
15522
15523         /*
15524          * Due to the hpd irq storm handling the hotplug work can re-arm the
15525          * poll handlers. Hence disable polling after hpd handling is shut down.
15526          */
15527         drm_kms_helper_poll_fini(dev);
15528
15529         intel_unregister_dsm_handler();
15530
15531         intel_fbc_disable(dev_priv);
15532
15533         /* flush any delayed tasks or pending work */
15534         flush_scheduled_work();
15535
15536         /* destroy the backlight and sysfs files before encoders/connectors */
15537         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15538                 struct intel_connector *intel_connector;
15539
15540                 intel_connector = to_intel_connector(connector);
15541                 intel_connector->unregister(intel_connector);
15542         }
15543
15544         drm_mode_config_cleanup(dev);
15545
15546         intel_cleanup_overlay(dev);
15547
15548         mutex_lock(&dev->struct_mutex);
15549         intel_cleanup_gt_powersave(dev);
15550         mutex_unlock(&dev->struct_mutex);
15551 }
15552
15553 /*
15554  * Return which encoder is currently attached for connector.
15555  */
15556 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15557 {
15558         return &intel_attached_encoder(connector)->base;
15559 }
15560
15561 void intel_connector_attach_encoder(struct intel_connector *connector,
15562                                     struct intel_encoder *encoder)
15563 {
15564         connector->encoder = encoder;
15565         drm_mode_connector_attach_encoder(&connector->base,
15566                                           &encoder->base);
15567 }
15568
15569 /*
15570  * set vga decode state - true == enable VGA decode
15571  */
15572 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15573 {
15574         struct drm_i915_private *dev_priv = dev->dev_private;
15575         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15576         u16 gmch_ctrl;
15577
15578         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15579                 DRM_ERROR("failed to read control word\n");
15580                 return -EIO;
15581         }
15582
15583         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15584                 return 0;
15585
15586         if (state)
15587                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15588         else
15589                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15590
15591         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15592                 DRM_ERROR("failed to write control word\n");
15593                 return -EIO;
15594         }
15595
15596         return 0;
15597 }
15598
15599 struct intel_display_error_state {
15600
15601         u32 power_well_driver;
15602
15603         int num_transcoders;
15604
15605         struct intel_cursor_error_state {
15606                 u32 control;
15607                 u32 position;
15608                 u32 base;
15609                 u32 size;
15610         } cursor[I915_MAX_PIPES];
15611
15612         struct intel_pipe_error_state {
15613                 bool power_domain_on;
15614                 u32 source;
15615                 u32 stat;
15616         } pipe[I915_MAX_PIPES];
15617
15618         struct intel_plane_error_state {
15619                 u32 control;
15620                 u32 stride;
15621                 u32 size;
15622                 u32 pos;
15623                 u32 addr;
15624                 u32 surface;
15625                 u32 tile_offset;
15626         } plane[I915_MAX_PIPES];
15627
15628         struct intel_transcoder_error_state {
15629                 bool power_domain_on;
15630                 enum transcoder cpu_transcoder;
15631
15632                 u32 conf;
15633
15634                 u32 htotal;
15635                 u32 hblank;
15636                 u32 hsync;
15637                 u32 vtotal;
15638                 u32 vblank;
15639                 u32 vsync;
15640         } transcoder[4];
15641 };
15642
15643 struct intel_display_error_state *
15644 intel_display_capture_error_state(struct drm_device *dev)
15645 {
15646         struct drm_i915_private *dev_priv = dev->dev_private;
15647         struct intel_display_error_state *error;
15648         int transcoders[] = {
15649                 TRANSCODER_A,
15650                 TRANSCODER_B,
15651                 TRANSCODER_C,
15652                 TRANSCODER_EDP,
15653         };
15654         int i;
15655
15656         if (INTEL_INFO(dev)->num_pipes == 0)
15657                 return NULL;
15658
15659         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15660         if (error == NULL)
15661                 return NULL;
15662
15663         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15664                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15665
15666         for_each_pipe(dev_priv, i) {
15667                 error->pipe[i].power_domain_on =
15668                         __intel_display_power_is_enabled(dev_priv,
15669                                                          POWER_DOMAIN_PIPE(i));
15670                 if (!error->pipe[i].power_domain_on)
15671                         continue;
15672
15673                 error->cursor[i].control = I915_READ(CURCNTR(i));
15674                 error->cursor[i].position = I915_READ(CURPOS(i));
15675                 error->cursor[i].base = I915_READ(CURBASE(i));
15676
15677                 error->plane[i].control = I915_READ(DSPCNTR(i));
15678                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15679                 if (INTEL_INFO(dev)->gen <= 3) {
15680                         error->plane[i].size = I915_READ(DSPSIZE(i));
15681                         error->plane[i].pos = I915_READ(DSPPOS(i));
15682                 }
15683                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15684                         error->plane[i].addr = I915_READ(DSPADDR(i));
15685                 if (INTEL_INFO(dev)->gen >= 4) {
15686                         error->plane[i].surface = I915_READ(DSPSURF(i));
15687                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15688                 }
15689
15690                 error->pipe[i].source = I915_READ(PIPESRC(i));
15691
15692                 if (HAS_GMCH_DISPLAY(dev))
15693                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15694         }
15695
15696         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15697         if (HAS_DDI(dev_priv->dev))
15698                 error->num_transcoders++; /* Account for eDP. */
15699
15700         for (i = 0; i < error->num_transcoders; i++) {
15701                 enum transcoder cpu_transcoder = transcoders[i];
15702
15703                 error->transcoder[i].power_domain_on =
15704                         __intel_display_power_is_enabled(dev_priv,
15705                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15706                 if (!error->transcoder[i].power_domain_on)
15707                         continue;
15708
15709                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15710
15711                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15712                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15713                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15714                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15715                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15716                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15717                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15718         }
15719
15720         return error;
15721 }
15722
15723 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15724
15725 void
15726 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15727                                 struct drm_device *dev,
15728                                 struct intel_display_error_state *error)
15729 {
15730         struct drm_i915_private *dev_priv = dev->dev_private;
15731         int i;
15732
15733         if (!error)
15734                 return;
15735
15736         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15737         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15738                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15739                            error->power_well_driver);
15740         for_each_pipe(dev_priv, i) {
15741                 err_printf(m, "Pipe [%d]:\n", i);
15742                 err_printf(m, "  Power: %s\n",
15743                            error->pipe[i].power_domain_on ? "on" : "off");
15744                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15745                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15746
15747                 err_printf(m, "Plane [%d]:\n", i);
15748                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15749                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15750                 if (INTEL_INFO(dev)->gen <= 3) {
15751                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15752                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15753                 }
15754                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15755                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15756                 if (INTEL_INFO(dev)->gen >= 4) {
15757                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15758                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15759                 }
15760
15761                 err_printf(m, "Cursor [%d]:\n", i);
15762                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15763                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15764                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15765         }
15766
15767         for (i = 0; i < error->num_transcoders; i++) {
15768                 err_printf(m, "CPU transcoder: %c\n",
15769                            transcoder_name(error->transcoder[i].cpu_transcoder));
15770                 err_printf(m, "  Power: %s\n",
15771                            error->transcoder[i].power_domain_on ? "on" : "off");
15772                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15773                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15774                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15775                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15776                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15777                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15778                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15779         }
15780 }
15781
15782 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15783 {
15784         struct intel_crtc *crtc;
15785
15786         for_each_intel_crtc(dev, crtc) {
15787                 struct intel_unpin_work *work;
15788
15789                 spin_lock_irq(&dev->event_lock);
15790
15791                 work = crtc->unpin_work;
15792
15793                 if (work && work->event &&
15794                     work->event->base.file_priv == file) {
15795                         kfree(work->event);
15796                         work->event = NULL;
15797                 }
15798
15799                 spin_unlock_irq(&dev->event_lock);
15800         }
15801 }