Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32         u32 trans1;     /* balance leg enable, de-emph level */
33         u32 trans2;     /* vref sel, vswing */
34 };
35
36 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
37  * them for both DP and FDI transports, allowing those ports to
38  * automatically adapt to HDMI connections as well
39  */
40 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
41         { 0x00FFFFFF, 0x0006000E },
42         { 0x00D75FFF, 0x0005000A },
43         { 0x00C30FFF, 0x00040006 },
44         { 0x80AAAFFF, 0x000B0000 },
45         { 0x00FFFFFF, 0x0005000A },
46         { 0x00D75FFF, 0x000C0004 },
47         { 0x80C30FFF, 0x000B0000 },
48         { 0x00FFFFFF, 0x00040006 },
49         { 0x80D75FFF, 0x000B0000 },
50 };
51
52 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
53         { 0x00FFFFFF, 0x0007000E },
54         { 0x00D75FFF, 0x000F000A },
55         { 0x00C30FFF, 0x00060006 },
56         { 0x00AAAFFF, 0x001E0000 },
57         { 0x00FFFFFF, 0x000F000A },
58         { 0x00D75FFF, 0x00160004 },
59         { 0x00C30FFF, 0x001E0000 },
60         { 0x00FFFFFF, 0x00060006 },
61         { 0x00D75FFF, 0x001E0000 },
62 };
63
64 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
65                                         /* Idx  NT mV d T mV d  db      */
66         { 0x00FFFFFF, 0x0006000E },     /* 0:   400     400     0       */
67         { 0x00E79FFF, 0x000E000C },     /* 1:   400     500     2       */
68         { 0x00D75FFF, 0x0005000A },     /* 2:   400     600     3.5     */
69         { 0x00FFFFFF, 0x0005000A },     /* 3:   600     600     0       */
70         { 0x00E79FFF, 0x001D0007 },     /* 4:   600     750     2       */
71         { 0x00D75FFF, 0x000C0004 },     /* 5:   600     900     3.5     */
72         { 0x00FFFFFF, 0x00040006 },     /* 6:   800     800     0       */
73         { 0x80E79FFF, 0x00030002 },     /* 7:   800     1000    2       */
74         { 0x00FFFFFF, 0x00140005 },     /* 8:   850     850     0       */
75         { 0x00FFFFFF, 0x000C0004 },     /* 9:   900     900     0       */
76         { 0x00FFFFFF, 0x001C0003 },     /* 10:  950     950     0       */
77         { 0x80FFFFFF, 0x00030002 },     /* 11:  1000    1000    0       */
78 };
79
80 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
81         { 0x00FFFFFF, 0x00000012 },
82         { 0x00EBAFFF, 0x00020011 },
83         { 0x00C71FFF, 0x0006000F },
84         { 0x00AAAFFF, 0x000E000A },
85         { 0x00FFFFFF, 0x00020011 },
86         { 0x00DB6FFF, 0x0005000F },
87         { 0x00BEEFFF, 0x000A000C },
88         { 0x00FFFFFF, 0x0005000F },
89         { 0x00DB6FFF, 0x000A000C },
90 };
91
92 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
93         { 0x00FFFFFF, 0x0007000E },
94         { 0x00D75FFF, 0x000E000A },
95         { 0x00BEFFFF, 0x00140006 },
96         { 0x80B2CFFF, 0x001B0002 },
97         { 0x00FFFFFF, 0x000E000A },
98         { 0x00D75FFF, 0x00180004 },
99         { 0x80CB2FFF, 0x001B0002 },
100         { 0x00F7DFFF, 0x00180004 },
101         { 0x80D75FFF, 0x001B0002 },
102 };
103
104 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
105         { 0x00FFFFFF, 0x0001000E },
106         { 0x00D75FFF, 0x0004000A },
107         { 0x00C30FFF, 0x00070006 },
108         { 0x00AAAFFF, 0x000C0000 },
109         { 0x00FFFFFF, 0x0004000A },
110         { 0x00D75FFF, 0x00090004 },
111         { 0x00C30FFF, 0x000C0000 },
112         { 0x00FFFFFF, 0x00070006 },
113         { 0x00D75FFF, 0x000C0000 },
114 };
115
116 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
117                                         /* Idx  NT mV d T mV df db      */
118         { 0x00FFFFFF, 0x0007000E },     /* 0:   400     400     0       */
119         { 0x00D75FFF, 0x000E000A },     /* 1:   400     600     3.5     */
120         { 0x00BEFFFF, 0x00140006 },     /* 2:   400     800     6       */
121         { 0x00FFFFFF, 0x0009000D },     /* 3:   450     450     0       */
122         { 0x00FFFFFF, 0x000E000A },     /* 4:   600     600     0       */
123         { 0x00D7FFFF, 0x00140006 },     /* 5:   600     800     2.5     */
124         { 0x80CB2FFF, 0x001B0002 },     /* 6:   600     1000    4.5     */
125         { 0x00FFFFFF, 0x00140006 },     /* 7:   800     800     0       */
126         { 0x80E79FFF, 0x001B0002 },     /* 8:   800     1000    2       */
127         { 0x80FFFFFF, 0x001B0002 },     /* 9:   1000    1000    0       */
128 };
129
130 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
131 {
132         struct drm_encoder *encoder = &intel_encoder->base;
133         int type = intel_encoder->type;
134
135         if (type == INTEL_OUTPUT_DP_MST) {
136                 struct intel_digital_port *intel_dig_port = enc_to_mst(encoder)->primary;
137                 return intel_dig_port->port;
138         } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
139             type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
140                 struct intel_digital_port *intel_dig_port =
141                         enc_to_dig_port(encoder);
142                 return intel_dig_port->port;
143
144         } else if (type == INTEL_OUTPUT_ANALOG) {
145                 return PORT_E;
146
147         } else {
148                 DRM_ERROR("Invalid DDI encoder type %d\n", type);
149                 BUG();
150         }
151 }
152
153 /*
154  * Starting with Haswell, DDI port buffers must be programmed with correct
155  * values in advance. The buffer values are different for FDI and DP modes,
156  * but the HDMI/DVI fields are shared among those. So we program the DDI
157  * in either FDI or DP modes only, as HDMI connections will work with both
158  * of those
159  */
160 static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
161 {
162         struct drm_i915_private *dev_priv = dev->dev_private;
163         u32 reg;
164         int i, n_hdmi_entries, hdmi_800mV_0dB;
165         int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
166         const struct ddi_buf_trans *ddi_translations_fdi;
167         const struct ddi_buf_trans *ddi_translations_dp;
168         const struct ddi_buf_trans *ddi_translations_edp;
169         const struct ddi_buf_trans *ddi_translations_hdmi;
170         const struct ddi_buf_trans *ddi_translations;
171
172         if (IS_BROADWELL(dev)) {
173                 ddi_translations_fdi = bdw_ddi_translations_fdi;
174                 ddi_translations_dp = bdw_ddi_translations_dp;
175                 ddi_translations_edp = bdw_ddi_translations_edp;
176                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
177                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
178                 hdmi_800mV_0dB = 7;
179         } else if (IS_HASWELL(dev)) {
180                 ddi_translations_fdi = hsw_ddi_translations_fdi;
181                 ddi_translations_dp = hsw_ddi_translations_dp;
182                 ddi_translations_edp = hsw_ddi_translations_dp;
183                 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
184                 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
185                 hdmi_800mV_0dB = 6;
186         } else {
187                 WARN(1, "ddi translation table missing\n");
188                 ddi_translations_edp = bdw_ddi_translations_dp;
189                 ddi_translations_fdi = bdw_ddi_translations_fdi;
190                 ddi_translations_dp = bdw_ddi_translations_dp;
191                 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
192                 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
193                 hdmi_800mV_0dB = 7;
194         }
195
196         switch (port) {
197         case PORT_A:
198                 ddi_translations = ddi_translations_edp;
199                 break;
200         case PORT_B:
201         case PORT_C:
202                 ddi_translations = ddi_translations_dp;
203                 break;
204         case PORT_D:
205                 if (intel_dp_is_edp(dev, PORT_D))
206                         ddi_translations = ddi_translations_edp;
207                 else
208                         ddi_translations = ddi_translations_dp;
209                 break;
210         case PORT_E:
211                 ddi_translations = ddi_translations_fdi;
212                 break;
213         default:
214                 BUG();
215         }
216
217         for (i = 0, reg = DDI_BUF_TRANS(port);
218              i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
219                 I915_WRITE(reg, ddi_translations[i].trans1);
220                 reg += 4;
221                 I915_WRITE(reg, ddi_translations[i].trans2);
222                 reg += 4;
223         }
224
225         /* Choose a good default if VBT is badly populated */
226         if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
227             hdmi_level >= n_hdmi_entries)
228                 hdmi_level = hdmi_800mV_0dB;
229
230         /* Entry 9 is for HDMI: */
231         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1);
232         reg += 4;
233         I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
234         reg += 4;
235 }
236
237 /* Program DDI buffers translations for DP. By default, program ports A-D in DP
238  * mode and port E for FDI.
239  */
240 void intel_prepare_ddi(struct drm_device *dev)
241 {
242         int port;
243
244         if (!HAS_DDI(dev))
245                 return;
246
247         for (port = PORT_A; port <= PORT_E; port++)
248                 intel_prepare_ddi_buffers(dev, port);
249 }
250
251 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
252                                     enum port port)
253 {
254         uint32_t reg = DDI_BUF_CTL(port);
255         int i;
256
257         for (i = 0; i < 8; i++) {
258                 udelay(1);
259                 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
260                         return;
261         }
262         DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
263 }
264
265 /* Starting with Haswell, different DDI ports can work in FDI mode for
266  * connection to the PCH-located connectors. For this, it is necessary to train
267  * both the DDI port and PCH receiver for the desired DDI buffer settings.
268  *
269  * The recommended port to work in FDI mode is DDI E, which we use here. Also,
270  * please note that when FDI mode is active on DDI E, it shares 2 lines with
271  * DDI A (which is used for eDP)
272  */
273
274 void hsw_fdi_link_train(struct drm_crtc *crtc)
275 {
276         struct drm_device *dev = crtc->dev;
277         struct drm_i915_private *dev_priv = dev->dev_private;
278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
279         u32 temp, i, rx_ctl_val;
280
281         /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
282          * mode set "sequence for CRT port" document:
283          * - TP1 to TP2 time with the default value
284          * - FDI delay to 90h
285          *
286          * WaFDIAutoLinkSetTimingOverrride:hsw
287          */
288         I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
289                                   FDI_RX_PWRDN_LANE0_VAL(2) |
290                                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
291
292         /* Enable the PCH Receiver FDI PLL */
293         rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
294                      FDI_RX_PLL_ENABLE |
295                      FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
296         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
297         POSTING_READ(_FDI_RXA_CTL);
298         udelay(220);
299
300         /* Switch from Rawclk to PCDclk */
301         rx_ctl_val |= FDI_PCDCLK;
302         I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
303
304         /* Configure Port Clock Select */
305         I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config.ddi_pll_sel);
306         WARN_ON(intel_crtc->config.ddi_pll_sel != PORT_CLK_SEL_SPLL);
307
308         /* Start the training iterating through available voltages and emphasis,
309          * testing each value twice. */
310         for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
311                 /* Configure DP_TP_CTL with auto-training */
312                 I915_WRITE(DP_TP_CTL(PORT_E),
313                                         DP_TP_CTL_FDI_AUTOTRAIN |
314                                         DP_TP_CTL_ENHANCED_FRAME_ENABLE |
315                                         DP_TP_CTL_LINK_TRAIN_PAT1 |
316                                         DP_TP_CTL_ENABLE);
317
318                 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
319                  * DDI E does not support port reversal, the functionality is
320                  * achieved on the PCH side in FDI_RX_CTL, so no need to set the
321                  * port reversal bit */
322                 I915_WRITE(DDI_BUF_CTL(PORT_E),
323                            DDI_BUF_CTL_ENABLE |
324                            ((intel_crtc->config.fdi_lanes - 1) << 1) |
325                            DDI_BUF_TRANS_SELECT(i / 2));
326                 POSTING_READ(DDI_BUF_CTL(PORT_E));
327
328                 udelay(600);
329
330                 /* Program PCH FDI Receiver TU */
331                 I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
332
333                 /* Enable PCH FDI Receiver with auto-training */
334                 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
335                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
336                 POSTING_READ(_FDI_RXA_CTL);
337
338                 /* Wait for FDI receiver lane calibration */
339                 udelay(30);
340
341                 /* Unset FDI_RX_MISC pwrdn lanes */
342                 temp = I915_READ(_FDI_RXA_MISC);
343                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
344                 I915_WRITE(_FDI_RXA_MISC, temp);
345                 POSTING_READ(_FDI_RXA_MISC);
346
347                 /* Wait for FDI auto training time */
348                 udelay(5);
349
350                 temp = I915_READ(DP_TP_STATUS(PORT_E));
351                 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
352                         DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
353
354                         /* Enable normal pixel sending for FDI */
355                         I915_WRITE(DP_TP_CTL(PORT_E),
356                                    DP_TP_CTL_FDI_AUTOTRAIN |
357                                    DP_TP_CTL_LINK_TRAIN_NORMAL |
358                                    DP_TP_CTL_ENHANCED_FRAME_ENABLE |
359                                    DP_TP_CTL_ENABLE);
360
361                         return;
362                 }
363
364                 temp = I915_READ(DDI_BUF_CTL(PORT_E));
365                 temp &= ~DDI_BUF_CTL_ENABLE;
366                 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
367                 POSTING_READ(DDI_BUF_CTL(PORT_E));
368
369                 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
370                 temp = I915_READ(DP_TP_CTL(PORT_E));
371                 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
372                 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
373                 I915_WRITE(DP_TP_CTL(PORT_E), temp);
374                 POSTING_READ(DP_TP_CTL(PORT_E));
375
376                 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
377
378                 rx_ctl_val &= ~FDI_RX_ENABLE;
379                 I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
380                 POSTING_READ(_FDI_RXA_CTL);
381
382                 /* Reset FDI_RX_MISC pwrdn lanes */
383                 temp = I915_READ(_FDI_RXA_MISC);
384                 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
385                 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
386                 I915_WRITE(_FDI_RXA_MISC, temp);
387                 POSTING_READ(_FDI_RXA_MISC);
388         }
389
390         DRM_ERROR("FDI link training failed!\n");
391 }
392
393 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
394 {
395         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
396         struct intel_digital_port *intel_dig_port =
397                 enc_to_dig_port(&encoder->base);
398
399         intel_dp->DP = intel_dig_port->saved_port_bits |
400                 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
401         intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
402
403 }
404
405 static struct intel_encoder *
406 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
407 {
408         struct drm_device *dev = crtc->dev;
409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
410         struct intel_encoder *intel_encoder, *ret = NULL;
411         int num_encoders = 0;
412
413         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
414                 ret = intel_encoder;
415                 num_encoders++;
416         }
417
418         if (num_encoders != 1)
419                 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
420                      pipe_name(intel_crtc->pipe));
421
422         BUG_ON(ret == NULL);
423         return ret;
424 }
425
426 #define LC_FREQ 2700
427 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
428
429 #define P_MIN 2
430 #define P_MAX 64
431 #define P_INC 2
432
433 /* Constraints for PLL good behavior */
434 #define REF_MIN 48
435 #define REF_MAX 400
436 #define VCO_MIN 2400
437 #define VCO_MAX 4800
438
439 #define abs_diff(a, b) ({                       \
440         typeof(a) __a = (a);                    \
441         typeof(b) __b = (b);                    \
442         (void) (&__a == &__b);                  \
443         __a > __b ? (__a - __b) : (__b - __a); })
444
445 struct wrpll_rnp {
446         unsigned p, n2, r2;
447 };
448
449 static unsigned wrpll_get_budget_for_freq(int clock)
450 {
451         unsigned budget;
452
453         switch (clock) {
454         case 25175000:
455         case 25200000:
456         case 27000000:
457         case 27027000:
458         case 37762500:
459         case 37800000:
460         case 40500000:
461         case 40541000:
462         case 54000000:
463         case 54054000:
464         case 59341000:
465         case 59400000:
466         case 72000000:
467         case 74176000:
468         case 74250000:
469         case 81000000:
470         case 81081000:
471         case 89012000:
472         case 89100000:
473         case 108000000:
474         case 108108000:
475         case 111264000:
476         case 111375000:
477         case 148352000:
478         case 148500000:
479         case 162000000:
480         case 162162000:
481         case 222525000:
482         case 222750000:
483         case 296703000:
484         case 297000000:
485                 budget = 0;
486                 break;
487         case 233500000:
488         case 245250000:
489         case 247750000:
490         case 253250000:
491         case 298000000:
492                 budget = 1500;
493                 break;
494         case 169128000:
495         case 169500000:
496         case 179500000:
497         case 202000000:
498                 budget = 2000;
499                 break;
500         case 256250000:
501         case 262500000:
502         case 270000000:
503         case 272500000:
504         case 273750000:
505         case 280750000:
506         case 281250000:
507         case 286000000:
508         case 291750000:
509                 budget = 4000;
510                 break;
511         case 267250000:
512         case 268500000:
513                 budget = 5000;
514                 break;
515         default:
516                 budget = 1000;
517                 break;
518         }
519
520         return budget;
521 }
522
523 static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
524                              unsigned r2, unsigned n2, unsigned p,
525                              struct wrpll_rnp *best)
526 {
527         uint64_t a, b, c, d, diff, diff_best;
528
529         /* No best (r,n,p) yet */
530         if (best->p == 0) {
531                 best->p = p;
532                 best->n2 = n2;
533                 best->r2 = r2;
534                 return;
535         }
536
537         /*
538          * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
539          * freq2k.
540          *
541          * delta = 1e6 *
542          *         abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
543          *         freq2k;
544          *
545          * and we would like delta <= budget.
546          *
547          * If the discrepancy is above the PPM-based budget, always prefer to
548          * improve upon the previous solution.  However, if you're within the
549          * budget, try to maximize Ref * VCO, that is N / (P * R^2).
550          */
551         a = freq2k * budget * p * r2;
552         b = freq2k * budget * best->p * best->r2;
553         diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
554         diff_best = abs_diff(freq2k * best->p * best->r2,
555                              LC_FREQ_2K * best->n2);
556         c = 1000000 * diff;
557         d = 1000000 * diff_best;
558
559         if (a < c && b < d) {
560                 /* If both are above the budget, pick the closer */
561                 if (best->p * best->r2 * diff < p * r2 * diff_best) {
562                         best->p = p;
563                         best->n2 = n2;
564                         best->r2 = r2;
565                 }
566         } else if (a >= c && b < d) {
567                 /* If A is below the threshold but B is above it?  Update. */
568                 best->p = p;
569                 best->n2 = n2;
570                 best->r2 = r2;
571         } else if (a >= c && b >= d) {
572                 /* Both are below the limit, so pick the higher n2/(r2*r2) */
573                 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
574                         best->p = p;
575                         best->n2 = n2;
576                         best->r2 = r2;
577                 }
578         }
579         /* Otherwise a < c && b >= d, do nothing */
580 }
581
582 static int intel_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
583                                      int reg)
584 {
585         int refclk = LC_FREQ;
586         int n, p, r;
587         u32 wrpll;
588
589         wrpll = I915_READ(reg);
590         switch (wrpll & WRPLL_PLL_REF_MASK) {
591         case WRPLL_PLL_SSC:
592         case WRPLL_PLL_NON_SSC:
593                 /*
594                  * We could calculate spread here, but our checking
595                  * code only cares about 5% accuracy, and spread is a max of
596                  * 0.5% downspread.
597                  */
598                 refclk = 135;
599                 break;
600         case WRPLL_PLL_LCPLL:
601                 refclk = LC_FREQ;
602                 break;
603         default:
604                 WARN(1, "bad wrpll refclk\n");
605                 return 0;
606         }
607
608         r = wrpll & WRPLL_DIVIDER_REF_MASK;
609         p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
610         n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
611
612         /* Convert to KHz, p & r have a fixed point portion */
613         return (refclk * n * 100) / (p * r);
614 }
615
616 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
617                               struct intel_crtc_config *pipe_config)
618 {
619         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
620         int link_clock = 0;
621         u32 val, pll;
622
623         val = pipe_config->ddi_pll_sel;
624         switch (val & PORT_CLK_SEL_MASK) {
625         case PORT_CLK_SEL_LCPLL_810:
626                 link_clock = 81000;
627                 break;
628         case PORT_CLK_SEL_LCPLL_1350:
629                 link_clock = 135000;
630                 break;
631         case PORT_CLK_SEL_LCPLL_2700:
632                 link_clock = 270000;
633                 break;
634         case PORT_CLK_SEL_WRPLL1:
635                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
636                 break;
637         case PORT_CLK_SEL_WRPLL2:
638                 link_clock = intel_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
639                 break;
640         case PORT_CLK_SEL_SPLL:
641                 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
642                 if (pll == SPLL_PLL_FREQ_810MHz)
643                         link_clock = 81000;
644                 else if (pll == SPLL_PLL_FREQ_1350MHz)
645                         link_clock = 135000;
646                 else if (pll == SPLL_PLL_FREQ_2700MHz)
647                         link_clock = 270000;
648                 else {
649                         WARN(1, "bad spll freq\n");
650                         return;
651                 }
652                 break;
653         default:
654                 WARN(1, "bad port clock sel\n");
655                 return;
656         }
657
658         pipe_config->port_clock = link_clock * 2;
659
660         if (pipe_config->has_pch_encoder)
661                 pipe_config->adjusted_mode.crtc_clock =
662                         intel_dotclock_calculate(pipe_config->port_clock,
663                                                  &pipe_config->fdi_m_n);
664         else if (pipe_config->has_dp_encoder)
665                 pipe_config->adjusted_mode.crtc_clock =
666                         intel_dotclock_calculate(pipe_config->port_clock,
667                                                  &pipe_config->dp_m_n);
668         else
669                 pipe_config->adjusted_mode.crtc_clock = pipe_config->port_clock;
670 }
671
672 void intel_ddi_clock_get(struct intel_encoder *encoder,
673                          struct intel_crtc_config *pipe_config)
674 {
675         hsw_ddi_clock_get(encoder, pipe_config);
676 }
677
678 static void
679 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
680                         unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
681 {
682         uint64_t freq2k;
683         unsigned p, n2, r2;
684         struct wrpll_rnp best = { 0, 0, 0 };
685         unsigned budget;
686
687         freq2k = clock / 100;
688
689         budget = wrpll_get_budget_for_freq(clock);
690
691         /* Special case handling for 540 pixel clock: bypass WR PLL entirely
692          * and directly pass the LC PLL to it. */
693         if (freq2k == 5400000) {
694                 *n2_out = 2;
695                 *p_out = 1;
696                 *r2_out = 2;
697                 return;
698         }
699
700         /*
701          * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
702          * the WR PLL.
703          *
704          * We want R so that REF_MIN <= Ref <= REF_MAX.
705          * Injecting R2 = 2 * R gives:
706          *   REF_MAX * r2 > LC_FREQ * 2 and
707          *   REF_MIN * r2 < LC_FREQ * 2
708          *
709          * Which means the desired boundaries for r2 are:
710          *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
711          *
712          */
713         for (r2 = LC_FREQ * 2 / REF_MAX + 1;
714              r2 <= LC_FREQ * 2 / REF_MIN;
715              r2++) {
716
717                 /*
718                  * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
719                  *
720                  * Once again we want VCO_MIN <= VCO <= VCO_MAX.
721                  * Injecting R2 = 2 * R and N2 = 2 * N, we get:
722                  *   VCO_MAX * r2 > n2 * LC_FREQ and
723                  *   VCO_MIN * r2 < n2 * LC_FREQ)
724                  *
725                  * Which means the desired boundaries for n2 are:
726                  * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
727                  */
728                 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
729                      n2 <= VCO_MAX * r2 / LC_FREQ;
730                      n2++) {
731
732                         for (p = P_MIN; p <= P_MAX; p += P_INC)
733                                 wrpll_update_rnp(freq2k, budget,
734                                                  r2, n2, p, &best);
735                 }
736         }
737
738         *n2_out = best.n2;
739         *p_out = best.p;
740         *r2_out = best.r2;
741 }
742
743 static bool
744 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
745                    struct intel_encoder *intel_encoder,
746                    int clock)
747 {
748         if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
749                 struct intel_shared_dpll *pll;
750                 uint32_t val;
751                 unsigned p, n2, r2;
752
753                 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
754
755                 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
756                       WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
757                       WRPLL_DIVIDER_POST(p);
758
759                 intel_crtc->config.dpll_hw_state.wrpll = val;
760
761                 pll = intel_get_shared_dpll(intel_crtc);
762                 if (pll == NULL) {
763                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
764                                          pipe_name(intel_crtc->pipe));
765                         return false;
766                 }
767
768                 intel_crtc->config.ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
769         }
770
771         return true;
772 }
773
774
775 /*
776  * Tries to find a *shared* PLL for the CRTC and store it in
777  * intel_crtc->ddi_pll_sel.
778  *
779  * For private DPLLs, compute_config() should do the selection for us. This
780  * function should be folded into compute_config() eventually.
781  */
782 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
783 {
784         struct drm_crtc *crtc = &intel_crtc->base;
785         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
786         int clock = intel_crtc->config.port_clock;
787
788         intel_put_shared_dpll(intel_crtc);
789
790         return hsw_ddi_pll_select(intel_crtc, intel_encoder, clock);
791 }
792
793 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
794 {
795         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
797         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
798         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
799         int type = intel_encoder->type;
800         uint32_t temp;
801
802         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
803                 temp = TRANS_MSA_SYNC_CLK;
804                 switch (intel_crtc->config.pipe_bpp) {
805                 case 18:
806                         temp |= TRANS_MSA_6_BPC;
807                         break;
808                 case 24:
809                         temp |= TRANS_MSA_8_BPC;
810                         break;
811                 case 30:
812                         temp |= TRANS_MSA_10_BPC;
813                         break;
814                 case 36:
815                         temp |= TRANS_MSA_12_BPC;
816                         break;
817                 default:
818                         BUG();
819                 }
820                 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
821         }
822 }
823
824 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
825 {
826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
827         struct drm_device *dev = crtc->dev;
828         struct drm_i915_private *dev_priv = dev->dev_private;
829         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
830         uint32_t temp;
831         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
832         if (state == true)
833                 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
834         else
835                 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
836         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
837 }
838
839 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
840 {
841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
842         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
843         struct drm_encoder *encoder = &intel_encoder->base;
844         struct drm_device *dev = crtc->dev;
845         struct drm_i915_private *dev_priv = dev->dev_private;
846         enum pipe pipe = intel_crtc->pipe;
847         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
848         enum port port = intel_ddi_get_encoder_port(intel_encoder);
849         int type = intel_encoder->type;
850         uint32_t temp;
851
852         /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
853         temp = TRANS_DDI_FUNC_ENABLE;
854         temp |= TRANS_DDI_SELECT_PORT(port);
855
856         switch (intel_crtc->config.pipe_bpp) {
857         case 18:
858                 temp |= TRANS_DDI_BPC_6;
859                 break;
860         case 24:
861                 temp |= TRANS_DDI_BPC_8;
862                 break;
863         case 30:
864                 temp |= TRANS_DDI_BPC_10;
865                 break;
866         case 36:
867                 temp |= TRANS_DDI_BPC_12;
868                 break;
869         default:
870                 BUG();
871         }
872
873         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
874                 temp |= TRANS_DDI_PVSYNC;
875         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
876                 temp |= TRANS_DDI_PHSYNC;
877
878         if (cpu_transcoder == TRANSCODER_EDP) {
879                 switch (pipe) {
880                 case PIPE_A:
881                         /* On Haswell, can only use the always-on power well for
882                          * eDP when not using the panel fitter, and when not
883                          * using motion blur mitigation (which we don't
884                          * support). */
885                         if (IS_HASWELL(dev) &&
886                             (intel_crtc->config.pch_pfit.enabled ||
887                              intel_crtc->config.pch_pfit.force_thru))
888                                 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
889                         else
890                                 temp |= TRANS_DDI_EDP_INPUT_A_ON;
891                         break;
892                 case PIPE_B:
893                         temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
894                         break;
895                 case PIPE_C:
896                         temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
897                         break;
898                 default:
899                         BUG();
900                         break;
901                 }
902         }
903
904         if (type == INTEL_OUTPUT_HDMI) {
905                 if (intel_crtc->config.has_hdmi_sink)
906                         temp |= TRANS_DDI_MODE_SELECT_HDMI;
907                 else
908                         temp |= TRANS_DDI_MODE_SELECT_DVI;
909
910         } else if (type == INTEL_OUTPUT_ANALOG) {
911                 temp |= TRANS_DDI_MODE_SELECT_FDI;
912                 temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
913
914         } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
915                    type == INTEL_OUTPUT_EDP) {
916                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
917
918                 if (intel_dp->is_mst) {
919                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
920                 } else
921                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
922
923                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
924         } else if (type == INTEL_OUTPUT_DP_MST) {
925                 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
926
927                 if (intel_dp->is_mst) {
928                         temp |= TRANS_DDI_MODE_SELECT_DP_MST;
929                 } else
930                         temp |= TRANS_DDI_MODE_SELECT_DP_SST;
931
932                 temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
933         } else {
934                 WARN(1, "Invalid encoder type %d for pipe %c\n",
935                      intel_encoder->type, pipe_name(pipe));
936         }
937
938         I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
939 }
940
941 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
942                                        enum transcoder cpu_transcoder)
943 {
944         uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
945         uint32_t val = I915_READ(reg);
946
947         val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
948         val |= TRANS_DDI_PORT_NONE;
949         I915_WRITE(reg, val);
950 }
951
952 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
953 {
954         struct drm_device *dev = intel_connector->base.dev;
955         struct drm_i915_private *dev_priv = dev->dev_private;
956         struct intel_encoder *intel_encoder = intel_connector->encoder;
957         int type = intel_connector->base.connector_type;
958         enum port port = intel_ddi_get_encoder_port(intel_encoder);
959         enum pipe pipe = 0;
960         enum transcoder cpu_transcoder;
961         enum intel_display_power_domain power_domain;
962         uint32_t tmp;
963
964         power_domain = intel_display_port_power_domain(intel_encoder);
965         if (!intel_display_power_enabled(dev_priv, power_domain))
966                 return false;
967
968         if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
969                 return false;
970
971         if (port == PORT_A)
972                 cpu_transcoder = TRANSCODER_EDP;
973         else
974                 cpu_transcoder = (enum transcoder) pipe;
975
976         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
977
978         switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
979         case TRANS_DDI_MODE_SELECT_HDMI:
980         case TRANS_DDI_MODE_SELECT_DVI:
981                 return (type == DRM_MODE_CONNECTOR_HDMIA);
982
983         case TRANS_DDI_MODE_SELECT_DP_SST:
984                 if (type == DRM_MODE_CONNECTOR_eDP)
985                         return true;
986                 return (type == DRM_MODE_CONNECTOR_DisplayPort);
987         case TRANS_DDI_MODE_SELECT_DP_MST:
988                 /* if the transcoder is in MST state then
989                  * connector isn't connected */
990                 return false;
991
992         case TRANS_DDI_MODE_SELECT_FDI:
993                 return (type == DRM_MODE_CONNECTOR_VGA);
994
995         default:
996                 return false;
997         }
998 }
999
1000 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1001                             enum pipe *pipe)
1002 {
1003         struct drm_device *dev = encoder->base.dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         enum port port = intel_ddi_get_encoder_port(encoder);
1006         enum intel_display_power_domain power_domain;
1007         u32 tmp;
1008         int i;
1009
1010         power_domain = intel_display_port_power_domain(encoder);
1011         if (!intel_display_power_enabled(dev_priv, power_domain))
1012                 return false;
1013
1014         tmp = I915_READ(DDI_BUF_CTL(port));
1015
1016         if (!(tmp & DDI_BUF_CTL_ENABLE))
1017                 return false;
1018
1019         if (port == PORT_A) {
1020                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1021
1022                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
1023                 case TRANS_DDI_EDP_INPUT_A_ON:
1024                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
1025                         *pipe = PIPE_A;
1026                         break;
1027                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
1028                         *pipe = PIPE_B;
1029                         break;
1030                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
1031                         *pipe = PIPE_C;
1032                         break;
1033                 }
1034
1035                 return true;
1036         } else {
1037                 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
1038                         tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
1039
1040                         if ((tmp & TRANS_DDI_PORT_MASK)
1041                             == TRANS_DDI_SELECT_PORT(port)) {
1042                                 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
1043                                         return false;
1044
1045                                 *pipe = i;
1046                                 return true;
1047                         }
1048                 }
1049         }
1050
1051         DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
1052
1053         return false;
1054 }
1055
1056 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
1057 {
1058         struct drm_crtc *crtc = &intel_crtc->base;
1059         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1060         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1061         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1062         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1063
1064         if (cpu_transcoder != TRANSCODER_EDP)
1065                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1066                            TRANS_CLK_SEL_PORT(port));
1067 }
1068
1069 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
1070 {
1071         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1072         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1073
1074         if (cpu_transcoder != TRANSCODER_EDP)
1075                 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
1076                            TRANS_CLK_SEL_DISABLED);
1077 }
1078
1079 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
1080 {
1081         struct drm_encoder *encoder = &intel_encoder->base;
1082         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1083         struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
1084         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1085         int type = intel_encoder->type;
1086
1087         if (crtc->config.has_audio) {
1088                 DRM_DEBUG_DRIVER("Audio on pipe %c on DDI\n",
1089                                  pipe_name(crtc->pipe));
1090
1091                 /* write eld */
1092                 DRM_DEBUG_DRIVER("DDI audio: write eld information\n");
1093                 intel_write_eld(encoder, &crtc->config.adjusted_mode);
1094         }
1095
1096         if (type == INTEL_OUTPUT_EDP) {
1097                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1098                 intel_edp_panel_on(intel_dp);
1099         }
1100
1101         WARN_ON(crtc->config.ddi_pll_sel == PORT_CLK_SEL_NONE);
1102         I915_WRITE(PORT_CLK_SEL(port), crtc->config.ddi_pll_sel);
1103
1104         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1105                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1106
1107                 intel_ddi_init_dp_buf_reg(intel_encoder);
1108
1109                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1110                 intel_dp_start_link_train(intel_dp);
1111                 intel_dp_complete_link_train(intel_dp);
1112                 if (port != PORT_A)
1113                         intel_dp_stop_link_train(intel_dp);
1114         } else if (type == INTEL_OUTPUT_HDMI) {
1115                 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1116
1117                 intel_hdmi->set_infoframes(encoder,
1118                                            crtc->config.has_hdmi_sink,
1119                                            &crtc->config.adjusted_mode);
1120         }
1121 }
1122
1123 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
1124 {
1125         struct drm_encoder *encoder = &intel_encoder->base;
1126         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1127         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1128         int type = intel_encoder->type;
1129         uint32_t val;
1130         bool wait = false;
1131
1132         val = I915_READ(DDI_BUF_CTL(port));
1133         if (val & DDI_BUF_CTL_ENABLE) {
1134                 val &= ~DDI_BUF_CTL_ENABLE;
1135                 I915_WRITE(DDI_BUF_CTL(port), val);
1136                 wait = true;
1137         }
1138
1139         val = I915_READ(DP_TP_CTL(port));
1140         val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1141         val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1142         I915_WRITE(DP_TP_CTL(port), val);
1143
1144         if (wait)
1145                 intel_wait_ddi_buf_idle(dev_priv, port);
1146
1147         if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
1148                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1149                 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1150                 intel_edp_panel_vdd_on(intel_dp);
1151                 intel_edp_panel_off(intel_dp);
1152         }
1153
1154         I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
1155 }
1156
1157 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
1158 {
1159         struct drm_encoder *encoder = &intel_encoder->base;
1160         struct drm_crtc *crtc = encoder->crtc;
1161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1162         int pipe = intel_crtc->pipe;
1163         struct drm_device *dev = encoder->dev;
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         enum port port = intel_ddi_get_encoder_port(intel_encoder);
1166         int type = intel_encoder->type;
1167         uint32_t tmp;
1168
1169         if (type == INTEL_OUTPUT_HDMI) {
1170                 struct intel_digital_port *intel_dig_port =
1171                         enc_to_dig_port(encoder);
1172
1173                 /* In HDMI/DVI mode, the port width, and swing/emphasis values
1174                  * are ignored so nothing special needs to be done besides
1175                  * enabling the port.
1176                  */
1177                 I915_WRITE(DDI_BUF_CTL(port),
1178                            intel_dig_port->saved_port_bits |
1179                            DDI_BUF_CTL_ENABLE);
1180         } else if (type == INTEL_OUTPUT_EDP) {
1181                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1182
1183                 if (port == PORT_A)
1184                         intel_dp_stop_link_train(intel_dp);
1185
1186                 intel_edp_backlight_on(intel_dp);
1187                 intel_edp_psr_enable(intel_dp);
1188         }
1189
1190         if (intel_crtc->config.has_audio) {
1191                 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
1192                 tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
1193                 tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
1194                 I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
1195         }
1196 }
1197
1198 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
1199 {
1200         struct drm_encoder *encoder = &intel_encoder->base;
1201         struct drm_crtc *crtc = encoder->crtc;
1202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1203         int pipe = intel_crtc->pipe;
1204         int type = intel_encoder->type;
1205         struct drm_device *dev = encoder->dev;
1206         struct drm_i915_private *dev_priv = dev->dev_private;
1207         uint32_t tmp;
1208
1209         /* We can't touch HSW_AUD_PIN_ELD_CP_VLD uncionditionally because this
1210          * register is part of the power well on Haswell. */
1211         if (intel_crtc->config.has_audio) {
1212                 tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
1213                 tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
1214                          (pipe * 4));
1215                 I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
1216                 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
1217         }
1218
1219         if (type == INTEL_OUTPUT_EDP) {
1220                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1221
1222                 intel_edp_psr_disable(intel_dp);
1223                 intel_edp_backlight_off(intel_dp);
1224         }
1225 }
1226
1227 static int bdw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1228 {
1229         uint32_t lcpll = I915_READ(LCPLL_CTL);
1230         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1231
1232         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1233                 return 800000;
1234         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1235                 return 450000;
1236         else if (freq == LCPLL_CLK_FREQ_450)
1237                 return 450000;
1238         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
1239                 return 540000;
1240         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
1241                 return 337500;
1242         else
1243                 return 675000;
1244 }
1245
1246 static int hsw_get_cdclk_freq(struct drm_i915_private *dev_priv)
1247 {
1248         struct drm_device *dev = dev_priv->dev;
1249         uint32_t lcpll = I915_READ(LCPLL_CTL);
1250         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
1251
1252         if (lcpll & LCPLL_CD_SOURCE_FCLK)
1253                 return 800000;
1254         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
1255                 return 450000;
1256         else if (freq == LCPLL_CLK_FREQ_450)
1257                 return 450000;
1258         else if (IS_ULT(dev))
1259                 return 337500;
1260         else
1261                 return 540000;
1262 }
1263
1264 int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
1265 {
1266         struct drm_device *dev = dev_priv->dev;
1267
1268         if (IS_BROADWELL(dev))
1269                 return bdw_get_cdclk_freq(dev_priv);
1270
1271         /* Haswell */
1272         return hsw_get_cdclk_freq(dev_priv);
1273 }
1274
1275 static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
1276                                struct intel_shared_dpll *pll)
1277 {
1278         I915_WRITE(WRPLL_CTL(pll->id), pll->hw_state.wrpll);
1279         POSTING_READ(WRPLL_CTL(pll->id));
1280         udelay(20);
1281 }
1282
1283 static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
1284                                 struct intel_shared_dpll *pll)
1285 {
1286         uint32_t val;
1287
1288         val = I915_READ(WRPLL_CTL(pll->id));
1289         I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
1290         POSTING_READ(WRPLL_CTL(pll->id));
1291 }
1292
1293 static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1294                                      struct intel_shared_dpll *pll,
1295                                      struct intel_dpll_hw_state *hw_state)
1296 {
1297         uint32_t val;
1298
1299         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
1300                 return false;
1301
1302         val = I915_READ(WRPLL_CTL(pll->id));
1303         hw_state->wrpll = val;
1304
1305         return val & WRPLL_PLL_ENABLE;
1306 }
1307
1308 static const char * const hsw_ddi_pll_names[] = {
1309         "WRPLL 1",
1310         "WRPLL 2",
1311 };
1312
1313 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
1314 {
1315         int i;
1316
1317         dev_priv->num_shared_dpll = 2;
1318
1319         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
1320                 dev_priv->shared_dplls[i].id = i;
1321                 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
1322                 dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
1323                 dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
1324                 dev_priv->shared_dplls[i].get_hw_state =
1325                         hsw_ddi_pll_get_hw_state;
1326         }
1327 }
1328
1329 void intel_ddi_pll_init(struct drm_device *dev)
1330 {
1331         struct drm_i915_private *dev_priv = dev->dev_private;
1332         uint32_t val = I915_READ(LCPLL_CTL);
1333
1334         hsw_shared_dplls_init(dev_priv);
1335
1336         /* The LCPLL register should be turned on by the BIOS. For now let's
1337          * just check its state and print errors in case something is wrong.
1338          * Don't even try to turn it on.
1339          */
1340
1341         DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
1342                       intel_ddi_get_cdclk_freq(dev_priv));
1343
1344         if (val & LCPLL_CD_SOURCE_FCLK)
1345                 DRM_ERROR("CDCLK source is not LCPLL\n");
1346
1347         if (val & LCPLL_PLL_DISABLE)
1348                 DRM_ERROR("LCPLL is disabled\n");
1349 }
1350
1351 void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
1352 {
1353         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
1354         struct intel_dp *intel_dp = &intel_dig_port->dp;
1355         struct drm_i915_private *dev_priv = encoder->dev->dev_private;
1356         enum port port = intel_dig_port->port;
1357         uint32_t val;
1358         bool wait = false;
1359
1360         if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
1361                 val = I915_READ(DDI_BUF_CTL(port));
1362                 if (val & DDI_BUF_CTL_ENABLE) {
1363                         val &= ~DDI_BUF_CTL_ENABLE;
1364                         I915_WRITE(DDI_BUF_CTL(port), val);
1365                         wait = true;
1366                 }
1367
1368                 val = I915_READ(DP_TP_CTL(port));
1369                 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
1370                 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
1371                 I915_WRITE(DP_TP_CTL(port), val);
1372                 POSTING_READ(DP_TP_CTL(port));
1373
1374                 if (wait)
1375                         intel_wait_ddi_buf_idle(dev_priv, port);
1376         }
1377
1378         val = DP_TP_CTL_ENABLE |
1379               DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
1380         if (intel_dp->is_mst)
1381                 val |= DP_TP_CTL_MODE_MST;
1382         else {
1383                 val |= DP_TP_CTL_MODE_SST;
1384                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1385                         val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
1386         }
1387         I915_WRITE(DP_TP_CTL(port), val);
1388         POSTING_READ(DP_TP_CTL(port));
1389
1390         intel_dp->DP |= DDI_BUF_CTL_ENABLE;
1391         I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
1392         POSTING_READ(DDI_BUF_CTL(port));
1393
1394         udelay(600);
1395 }
1396
1397 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
1398 {
1399         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1400         struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1401         uint32_t val;
1402
1403         intel_ddi_post_disable(intel_encoder);
1404
1405         val = I915_READ(_FDI_RXA_CTL);
1406         val &= ~FDI_RX_ENABLE;
1407         I915_WRITE(_FDI_RXA_CTL, val);
1408
1409         val = I915_READ(_FDI_RXA_MISC);
1410         val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
1411         val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
1412         I915_WRITE(_FDI_RXA_MISC, val);
1413
1414         val = I915_READ(_FDI_RXA_CTL);
1415         val &= ~FDI_PCDCLK;
1416         I915_WRITE(_FDI_RXA_CTL, val);
1417
1418         val = I915_READ(_FDI_RXA_CTL);
1419         val &= ~FDI_RX_PLL_ENABLE;
1420         I915_WRITE(_FDI_RXA_CTL, val);
1421 }
1422
1423 static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
1424 {
1425         struct intel_digital_port *intel_dig_port = enc_to_dig_port(&intel_encoder->base);
1426         int type = intel_dig_port->base.type;
1427
1428         if (type != INTEL_OUTPUT_DISPLAYPORT &&
1429             type != INTEL_OUTPUT_EDP &&
1430             type != INTEL_OUTPUT_UNKNOWN) {
1431                 return;
1432         }
1433
1434         intel_dp_hot_plug(intel_encoder);
1435 }
1436
1437 void intel_ddi_get_config(struct intel_encoder *encoder,
1438                           struct intel_crtc_config *pipe_config)
1439 {
1440         struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1441         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1442         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1443         u32 temp, flags = 0;
1444
1445         temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1446         if (temp & TRANS_DDI_PHSYNC)
1447                 flags |= DRM_MODE_FLAG_PHSYNC;
1448         else
1449                 flags |= DRM_MODE_FLAG_NHSYNC;
1450         if (temp & TRANS_DDI_PVSYNC)
1451                 flags |= DRM_MODE_FLAG_PVSYNC;
1452         else
1453                 flags |= DRM_MODE_FLAG_NVSYNC;
1454
1455         pipe_config->adjusted_mode.flags |= flags;
1456
1457         switch (temp & TRANS_DDI_BPC_MASK) {
1458         case TRANS_DDI_BPC_6:
1459                 pipe_config->pipe_bpp = 18;
1460                 break;
1461         case TRANS_DDI_BPC_8:
1462                 pipe_config->pipe_bpp = 24;
1463                 break;
1464         case TRANS_DDI_BPC_10:
1465                 pipe_config->pipe_bpp = 30;
1466                 break;
1467         case TRANS_DDI_BPC_12:
1468                 pipe_config->pipe_bpp = 36;
1469                 break;
1470         default:
1471                 break;
1472         }
1473
1474         switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
1475         case TRANS_DDI_MODE_SELECT_HDMI:
1476                 pipe_config->has_hdmi_sink = true;
1477         case TRANS_DDI_MODE_SELECT_DVI:
1478         case TRANS_DDI_MODE_SELECT_FDI:
1479                 break;
1480         case TRANS_DDI_MODE_SELECT_DP_SST:
1481         case TRANS_DDI_MODE_SELECT_DP_MST:
1482                 pipe_config->has_dp_encoder = true;
1483                 intel_dp_get_m_n(intel_crtc, pipe_config);
1484                 break;
1485         default:
1486                 break;
1487         }
1488
1489         if (intel_display_power_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
1490                 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
1491                 if (temp & (AUDIO_OUTPUT_ENABLE_A << (intel_crtc->pipe * 4)))
1492                         pipe_config->has_audio = true;
1493         }
1494
1495         if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
1496             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1497                 /*
1498                  * This is a big fat ugly hack.
1499                  *
1500                  * Some machines in UEFI boot mode provide us a VBT that has 18
1501                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1502                  * unknown we fail to light up. Yet the same BIOS boots up with
1503                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1504                  * max, not what it tells us to use.
1505                  *
1506                  * Note: This will still be broken if the eDP panel is not lit
1507                  * up by the BIOS, and thus we can't get the mode at module
1508                  * load.
1509                  */
1510                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1511                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1512                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1513         }
1514
1515         hsw_ddi_clock_get(encoder, pipe_config);
1516 }
1517
1518 static void intel_ddi_destroy(struct drm_encoder *encoder)
1519 {
1520         /* HDMI has nothing special to destroy, so we can go with this. */
1521         intel_dp_encoder_destroy(encoder);
1522 }
1523
1524 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
1525                                      struct intel_crtc_config *pipe_config)
1526 {
1527         int type = encoder->type;
1528         int port = intel_ddi_get_encoder_port(encoder);
1529
1530         WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
1531
1532         if (port == PORT_A)
1533                 pipe_config->cpu_transcoder = TRANSCODER_EDP;
1534
1535         if (type == INTEL_OUTPUT_HDMI)
1536                 return intel_hdmi_compute_config(encoder, pipe_config);
1537         else
1538                 return intel_dp_compute_config(encoder, pipe_config);
1539 }
1540
1541 static const struct drm_encoder_funcs intel_ddi_funcs = {
1542         .destroy = intel_ddi_destroy,
1543 };
1544
1545 static struct intel_connector *
1546 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
1547 {
1548         struct intel_connector *connector;
1549         enum port port = intel_dig_port->port;
1550
1551         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
1552         if (!connector)
1553                 return NULL;
1554
1555         intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
1556         if (!intel_dp_init_connector(intel_dig_port, connector)) {
1557                 kfree(connector);
1558                 return NULL;
1559         }
1560
1561         return connector;
1562 }
1563
1564 static struct intel_connector *
1565 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
1566 {
1567         struct intel_connector *connector;
1568         enum port port = intel_dig_port->port;
1569
1570         connector = kzalloc(sizeof(*connector), GFP_KERNEL);
1571         if (!connector)
1572                 return NULL;
1573
1574         intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
1575         intel_hdmi_init_connector(intel_dig_port, connector);
1576
1577         return connector;
1578 }
1579
1580 void intel_ddi_init(struct drm_device *dev, enum port port)
1581 {
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         struct intel_digital_port *intel_dig_port;
1584         struct intel_encoder *intel_encoder;
1585         struct drm_encoder *encoder;
1586         bool init_hdmi, init_dp;
1587
1588         init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
1589                      dev_priv->vbt.ddi_port_info[port].supports_hdmi);
1590         init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
1591         if (!init_dp && !init_hdmi) {
1592                 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, assuming it is\n",
1593                               port_name(port));
1594                 init_hdmi = true;
1595                 init_dp = true;
1596         }
1597
1598         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
1599         if (!intel_dig_port)
1600                 return;
1601
1602         intel_encoder = &intel_dig_port->base;
1603         encoder = &intel_encoder->base;
1604
1605         drm_encoder_init(dev, encoder, &intel_ddi_funcs,
1606                          DRM_MODE_ENCODER_TMDS);
1607
1608         intel_encoder->compute_config = intel_ddi_compute_config;
1609         intel_encoder->enable = intel_enable_ddi;
1610         intel_encoder->pre_enable = intel_ddi_pre_enable;
1611         intel_encoder->disable = intel_disable_ddi;
1612         intel_encoder->post_disable = intel_ddi_post_disable;
1613         intel_encoder->get_hw_state = intel_ddi_get_hw_state;
1614         intel_encoder->get_config = intel_ddi_get_config;
1615
1616         intel_dig_port->port = port;
1617         intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
1618                                           (DDI_BUF_PORT_REVERSAL |
1619                                            DDI_A_4_LANES);
1620
1621         intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
1622         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1623         intel_encoder->cloneable = 0;
1624         intel_encoder->hot_plug = intel_ddi_hot_plug;
1625
1626         if (init_dp) {
1627                 if (!intel_ddi_init_dp_connector(intel_dig_port))
1628                         goto err;
1629
1630                 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
1631                 dev_priv->hpd_irq_port[port] = intel_dig_port;
1632         }
1633
1634         /* In theory we don't need the encoder->type check, but leave it just in
1635          * case we have some really bad VBTs... */
1636         if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
1637                 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
1638                         goto err;
1639         }
1640
1641         return;
1642
1643 err:
1644         drm_encoder_cleanup(encoder);
1645         kfree(intel_dig_port);
1646 }