Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rkuo/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_sysfs.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *
26  */
27
28 #include <linux/device.h>
29 #include <linux/module.h>
30 #include <linux/stat.h>
31 #include <linux/sysfs.h>
32 #include "intel_drv.h"
33 #include "i915_drv.h"
34
35 #ifdef CONFIG_PM
36 static u32 calc_residency(struct drm_device *dev, const u32 reg)
37 {
38         struct drm_i915_private *dev_priv = dev->dev_private;
39         u64 raw_time; /* 32b value may overflow during fixed point math */
40
41         if (!intel_enable_rc6(dev))
42                 return 0;
43
44         raw_time = I915_READ(reg) * 128ULL;
45         return DIV_ROUND_UP_ULL(raw_time, 100000);
46 }
47
48 static ssize_t
49 show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
50 {
51         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
52         return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
53 }
54
55 static ssize_t
56 show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
57 {
58         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
59         u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
60         return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
61 }
62
63 static ssize_t
64 show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
65 {
66         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
67         u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
68         return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
69 }
70
71 static ssize_t
72 show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
73 {
74         struct drm_minor *dminor = container_of(kdev, struct drm_minor, kdev);
75         u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
76         return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
77 }
78
79 static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
80 static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
81 static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
82 static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
83
84 static struct attribute *rc6_attrs[] = {
85         &dev_attr_rc6_enable.attr,
86         &dev_attr_rc6_residency_ms.attr,
87         &dev_attr_rc6p_residency_ms.attr,
88         &dev_attr_rc6pp_residency_ms.attr,
89         NULL
90 };
91
92 static struct attribute_group rc6_attr_group = {
93         .name = power_group_name,
94         .attrs =  rc6_attrs
95 };
96 #endif
97
98 static int l3_access_valid(struct drm_device *dev, loff_t offset)
99 {
100         if (!HAS_L3_GPU_CACHE(dev))
101                 return -EPERM;
102
103         if (offset % 4 != 0)
104                 return -EINVAL;
105
106         if (offset >= GEN7_L3LOG_SIZE)
107                 return -ENXIO;
108
109         return 0;
110 }
111
112 static ssize_t
113 i915_l3_read(struct file *filp, struct kobject *kobj,
114              struct bin_attribute *attr, char *buf,
115              loff_t offset, size_t count)
116 {
117         struct device *dev = container_of(kobj, struct device, kobj);
118         struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
119         struct drm_device *drm_dev = dminor->dev;
120         struct drm_i915_private *dev_priv = drm_dev->dev_private;
121         uint32_t misccpctl;
122         int i, ret;
123
124         ret = l3_access_valid(drm_dev, offset);
125         if (ret)
126                 return ret;
127
128         ret = i915_mutex_lock_interruptible(drm_dev);
129         if (ret)
130                 return ret;
131
132         misccpctl = I915_READ(GEN7_MISCCPCTL);
133         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
134
135         for (i = offset; count >= 4 && i < GEN7_L3LOG_SIZE; i += 4, count -= 4)
136                 *((uint32_t *)(&buf[i])) = I915_READ(GEN7_L3LOG_BASE + i);
137
138         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
139
140         mutex_unlock(&drm_dev->struct_mutex);
141
142         return i - offset;
143 }
144
145 static ssize_t
146 i915_l3_write(struct file *filp, struct kobject *kobj,
147               struct bin_attribute *attr, char *buf,
148               loff_t offset, size_t count)
149 {
150         struct device *dev = container_of(kobj, struct device, kobj);
151         struct drm_minor *dminor = container_of(dev, struct drm_minor, kdev);
152         struct drm_device *drm_dev = dminor->dev;
153         struct drm_i915_private *dev_priv = drm_dev->dev_private;
154         u32 *temp = NULL; /* Just here to make handling failures easy */
155         int ret;
156
157         ret = l3_access_valid(drm_dev, offset);
158         if (ret)
159                 return ret;
160
161         ret = i915_mutex_lock_interruptible(drm_dev);
162         if (ret)
163                 return ret;
164
165         if (!dev_priv->l3_parity.remap_info) {
166                 temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
167                 if (!temp) {
168                         mutex_unlock(&drm_dev->struct_mutex);
169                         return -ENOMEM;
170                 }
171         }
172
173         ret = i915_gpu_idle(drm_dev);
174         if (ret) {
175                 kfree(temp);
176                 mutex_unlock(&drm_dev->struct_mutex);
177                 return ret;
178         }
179
180         /* TODO: Ideally we really want a GPU reset here to make sure errors
181          * aren't propagated. Since I cannot find a stable way to reset the GPU
182          * at this point it is left as a TODO.
183         */
184         if (temp)
185                 dev_priv->l3_parity.remap_info = temp;
186
187         memcpy(dev_priv->l3_parity.remap_info + (offset/4),
188                buf + (offset/4),
189                count);
190
191         i915_gem_l3_remap(drm_dev);
192
193         mutex_unlock(&drm_dev->struct_mutex);
194
195         return count;
196 }
197
198 static struct bin_attribute dpf_attrs = {
199         .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
200         .size = GEN7_L3LOG_SIZE,
201         .read = i915_l3_read,
202         .write = i915_l3_write,
203         .mmap = NULL
204 };
205
206 static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
207                                     struct device_attribute *attr, char *buf)
208 {
209         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
210         struct drm_device *dev = minor->dev;
211         struct drm_i915_private *dev_priv = dev->dev_private;
212         int ret;
213
214         mutex_lock(&dev_priv->rps.hw_lock);
215         ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
216         mutex_unlock(&dev_priv->rps.hw_lock);
217
218         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
219 }
220
221 static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
222 {
223         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
224         struct drm_device *dev = minor->dev;
225         struct drm_i915_private *dev_priv = dev->dev_private;
226         int ret;
227
228         mutex_lock(&dev_priv->rps.hw_lock);
229         ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
230         mutex_unlock(&dev_priv->rps.hw_lock);
231
232         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
233 }
234
235 static ssize_t gt_max_freq_mhz_store(struct device *kdev,
236                                      struct device_attribute *attr,
237                                      const char *buf, size_t count)
238 {
239         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
240         struct drm_device *dev = minor->dev;
241         struct drm_i915_private *dev_priv = dev->dev_private;
242         u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
243         ssize_t ret;
244
245         ret = kstrtou32(buf, 0, &val);
246         if (ret)
247                 return ret;
248
249         val /= GT_FREQUENCY_MULTIPLIER;
250
251         mutex_lock(&dev_priv->rps.hw_lock);
252
253         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
254         hw_max = dev_priv->rps.hw_max;
255         non_oc_max = (rp_state_cap & 0xff);
256         hw_min = ((rp_state_cap & 0xff0000) >> 16);
257
258         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_delay) {
259                 mutex_unlock(&dev_priv->rps.hw_lock);
260                 return -EINVAL;
261         }
262
263         if (val > non_oc_max)
264                 DRM_DEBUG("User requested overclocking to %d\n",
265                           val * GT_FREQUENCY_MULTIPLIER);
266
267         if (dev_priv->rps.cur_delay > val)
268                 gen6_set_rps(dev_priv->dev, val);
269
270         dev_priv->rps.max_delay = val;
271
272         mutex_unlock(&dev_priv->rps.hw_lock);
273
274         return count;
275 }
276
277 static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
278 {
279         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
280         struct drm_device *dev = minor->dev;
281         struct drm_i915_private *dev_priv = dev->dev_private;
282         int ret;
283
284         mutex_lock(&dev_priv->rps.hw_lock);
285         ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
286         mutex_unlock(&dev_priv->rps.hw_lock);
287
288         return snprintf(buf, PAGE_SIZE, "%d\n", ret);
289 }
290
291 static ssize_t gt_min_freq_mhz_store(struct device *kdev,
292                                      struct device_attribute *attr,
293                                      const char *buf, size_t count)
294 {
295         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
296         struct drm_device *dev = minor->dev;
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         u32 val, rp_state_cap, hw_max, hw_min;
299         ssize_t ret;
300
301         ret = kstrtou32(buf, 0, &val);
302         if (ret)
303                 return ret;
304
305         val /= GT_FREQUENCY_MULTIPLIER;
306
307         mutex_lock(&dev_priv->rps.hw_lock);
308
309         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
310         hw_max = dev_priv->rps.hw_max;
311         hw_min = ((rp_state_cap & 0xff0000) >> 16);
312
313         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
314                 mutex_unlock(&dev_priv->rps.hw_lock);
315                 return -EINVAL;
316         }
317
318         if (dev_priv->rps.cur_delay < val)
319                 gen6_set_rps(dev_priv->dev, val);
320
321         dev_priv->rps.min_delay = val;
322
323         mutex_unlock(&dev_priv->rps.hw_lock);
324
325         return count;
326
327 }
328
329 static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
330 static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
331 static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
332
333
334 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
335 static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
336 static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
337 static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
338
339 /* For now we have a static number of RP states */
340 static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
341 {
342         struct drm_minor *minor = container_of(kdev, struct drm_minor, kdev);
343         struct drm_device *dev = minor->dev;
344         struct drm_i915_private *dev_priv = dev->dev_private;
345         u32 val, rp_state_cap;
346         ssize_t ret;
347
348         ret = mutex_lock_interruptible(&dev->struct_mutex);
349         if (ret)
350                 return ret;
351         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
352         mutex_unlock(&dev->struct_mutex);
353
354         if (attr == &dev_attr_gt_RP0_freq_mhz) {
355                 val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
356         } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
357                 val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
358         } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
359                 val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
360         } else {
361                 BUG();
362         }
363         return snprintf(buf, PAGE_SIZE, "%d\n", val);
364 }
365
366 static const struct attribute *gen6_attrs[] = {
367         &dev_attr_gt_cur_freq_mhz.attr,
368         &dev_attr_gt_max_freq_mhz.attr,
369         &dev_attr_gt_min_freq_mhz.attr,
370         &dev_attr_gt_RP0_freq_mhz.attr,
371         &dev_attr_gt_RP1_freq_mhz.attr,
372         &dev_attr_gt_RPn_freq_mhz.attr,
373         NULL,
374 };
375
376 void i915_setup_sysfs(struct drm_device *dev)
377 {
378         int ret;
379
380 #ifdef CONFIG_PM
381         if (INTEL_INFO(dev)->gen >= 6) {
382                 ret = sysfs_merge_group(&dev->primary->kdev.kobj,
383                                         &rc6_attr_group);
384                 if (ret)
385                         DRM_ERROR("RC6 residency sysfs setup failed\n");
386         }
387 #endif
388         if (HAS_L3_GPU_CACHE(dev)) {
389                 ret = device_create_bin_file(&dev->primary->kdev, &dpf_attrs);
390                 if (ret)
391                         DRM_ERROR("l3 parity sysfs setup failed\n");
392         }
393
394         if (INTEL_INFO(dev)->gen >= 6) {
395                 ret = sysfs_create_files(&dev->primary->kdev.kobj, gen6_attrs);
396                 if (ret)
397                         DRM_ERROR("gen6 sysfs setup failed\n");
398         }
399 }
400
401 void i915_teardown_sysfs(struct drm_device *dev)
402 {
403         sysfs_remove_files(&dev->primary->kdev.kobj, gen6_attrs);
404         device_remove_bin_file(&dev->primary->kdev,  &dpf_attrs);
405 #ifdef CONFIG_PM
406         sysfs_unmerge_group(&dev->primary->kdev.kobj, &rc6_attr_group);
407 #endif
408 }