Merge tag 'drm-intel-next-2015-09-11' of git://anongit.freedesktop.org/drm-intel...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
143         u32 val = I915_READ(reg); \
144         if (val) { \
145                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
146                      (reg), val); \
147                 I915_WRITE((reg), 0xffffffff); \
148                 POSTING_READ(reg); \
149                 I915_WRITE((reg), 0xffffffff); \
150                 POSTING_READ(reg); \
151         } \
152 } while (0)
153
154 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
155         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
156         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
157         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
158         POSTING_READ(GEN8_##type##_IMR(which)); \
159 } while (0)
160
161 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
162         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
163         I915_WRITE(type##IER, (ier_val)); \
164         I915_WRITE(type##IMR, (imr_val)); \
165         POSTING_READ(type##IMR); \
166 } while (0)
167
168 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
169
170 /**
171  * ilk_update_display_irq - update DEIMR
172  * @dev_priv: driver private
173  * @interrupt_mask: mask of interrupt bits to update
174  * @enabled_irq_mask: mask of interrupt bits to enable
175  */
176 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
177                                    uint32_t interrupt_mask,
178                                    uint32_t enabled_irq_mask)
179 {
180         uint32_t new_val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183
184         WARN_ON(enabled_irq_mask & ~interrupt_mask);
185
186         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187                 return;
188
189         new_val = dev_priv->irq_mask;
190         new_val &= ~interrupt_mask;
191         new_val |= (~enabled_irq_mask & interrupt_mask);
192
193         if (new_val != dev_priv->irq_mask) {
194                 dev_priv->irq_mask = new_val;
195                 I915_WRITE(DEIMR, dev_priv->irq_mask);
196                 POSTING_READ(DEIMR);
197         }
198 }
199
200 void
201 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
202 {
203         ilk_update_display_irq(dev_priv, mask, mask);
204 }
205
206 void
207 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
208 {
209         ilk_update_display_irq(dev_priv, mask, 0);
210 }
211
212 /**
213  * ilk_update_gt_irq - update GTIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
219                               uint32_t interrupt_mask,
220                               uint32_t enabled_irq_mask)
221 {
222         assert_spin_locked(&dev_priv->irq_lock);
223
224         WARN_ON(enabled_irq_mask & ~interrupt_mask);
225
226         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
227                 return;
228
229         dev_priv->gt_irq_mask &= ~interrupt_mask;
230         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
231         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
232         POSTING_READ(GTIMR);
233 }
234
235 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
236 {
237         ilk_update_gt_irq(dev_priv, mask, mask);
238 }
239
240 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
241 {
242         ilk_update_gt_irq(dev_priv, mask, 0);
243 }
244
245 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
246 {
247         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
248 }
249
250 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
251 {
252         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
253 }
254
255 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
256 {
257         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
258 }
259
260 /**
261   * snb_update_pm_irq - update GEN6_PMIMR
262   * @dev_priv: driver private
263   * @interrupt_mask: mask of interrupt bits to update
264   * @enabled_irq_mask: mask of interrupt bits to enable
265   */
266 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
267                               uint32_t interrupt_mask,
268                               uint32_t enabled_irq_mask)
269 {
270         uint32_t new_val;
271
272         WARN_ON(enabled_irq_mask & ~interrupt_mask);
273
274         assert_spin_locked(&dev_priv->irq_lock);
275
276         new_val = dev_priv->pm_irq_mask;
277         new_val &= ~interrupt_mask;
278         new_val |= (~enabled_irq_mask & interrupt_mask);
279
280         if (new_val != dev_priv->pm_irq_mask) {
281                 dev_priv->pm_irq_mask = new_val;
282                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
283                 POSTING_READ(gen6_pm_imr(dev_priv));
284         }
285 }
286
287 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
288 {
289         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
290                 return;
291
292         snb_update_pm_irq(dev_priv, mask, mask);
293 }
294
295 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
296                                   uint32_t mask)
297 {
298         snb_update_pm_irq(dev_priv, mask, 0);
299 }
300
301 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
302 {
303         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
304                 return;
305
306         __gen6_disable_pm_irq(dev_priv, mask);
307 }
308
309 void gen6_reset_rps_interrupts(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         uint32_t reg = gen6_pm_iir(dev_priv);
313
314         spin_lock_irq(&dev_priv->irq_lock);
315         I915_WRITE(reg, dev_priv->pm_rps_events);
316         I915_WRITE(reg, dev_priv->pm_rps_events);
317         POSTING_READ(reg);
318         dev_priv->rps.pm_iir = 0;
319         spin_unlock_irq(&dev_priv->irq_lock);
320 }
321
322 void gen6_enable_rps_interrupts(struct drm_device *dev)
323 {
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         spin_lock_irq(&dev_priv->irq_lock);
327
328         WARN_ON(dev_priv->rps.pm_iir);
329         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
330         dev_priv->rps.interrupts_enabled = true;
331         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
332                                 dev_priv->pm_rps_events);
333         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
334
335         spin_unlock_irq(&dev_priv->irq_lock);
336 }
337
338 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
339 {
340         /*
341          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
342          * if GEN6_PM_UP_EI_EXPIRED is masked.
343          *
344          * TODO: verify if this can be reproduced on VLV,CHV.
345          */
346         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
347                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
348
349         if (INTEL_INFO(dev_priv)->gen >= 8)
350                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
351
352         return mask;
353 }
354
355 void gen6_disable_rps_interrupts(struct drm_device *dev)
356 {
357         struct drm_i915_private *dev_priv = dev->dev_private;
358
359         spin_lock_irq(&dev_priv->irq_lock);
360         dev_priv->rps.interrupts_enabled = false;
361         spin_unlock_irq(&dev_priv->irq_lock);
362
363         cancel_work_sync(&dev_priv->rps.work);
364
365         spin_lock_irq(&dev_priv->irq_lock);
366
367         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
368
369         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
370         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
371                                 ~dev_priv->pm_rps_events);
372
373         spin_unlock_irq(&dev_priv->irq_lock);
374
375         synchronize_irq(dev->irq);
376 }
377
378 /**
379   * bdw_update_port_irq - update DE port interrupt
380   * @dev_priv: driver private
381   * @interrupt_mask: mask of interrupt bits to update
382   * @enabled_irq_mask: mask of interrupt bits to enable
383   */
384 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
385                                 uint32_t interrupt_mask,
386                                 uint32_t enabled_irq_mask)
387 {
388         uint32_t new_val;
389         uint32_t old_val;
390
391         assert_spin_locked(&dev_priv->irq_lock);
392
393         WARN_ON(enabled_irq_mask & ~interrupt_mask);
394
395         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
396                 return;
397
398         old_val = I915_READ(GEN8_DE_PORT_IMR);
399
400         new_val = old_val;
401         new_val &= ~interrupt_mask;
402         new_val |= (~enabled_irq_mask & interrupt_mask);
403
404         if (new_val != old_val) {
405                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
406                 POSTING_READ(GEN8_DE_PORT_IMR);
407         }
408 }
409
410 /**
411  * ibx_display_interrupt_update - update SDEIMR
412  * @dev_priv: driver private
413  * @interrupt_mask: mask of interrupt bits to update
414  * @enabled_irq_mask: mask of interrupt bits to enable
415  */
416 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
417                                   uint32_t interrupt_mask,
418                                   uint32_t enabled_irq_mask)
419 {
420         uint32_t sdeimr = I915_READ(SDEIMR);
421         sdeimr &= ~interrupt_mask;
422         sdeimr |= (~enabled_irq_mask & interrupt_mask);
423
424         WARN_ON(enabled_irq_mask & ~interrupt_mask);
425
426         assert_spin_locked(&dev_priv->irq_lock);
427
428         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
429                 return;
430
431         I915_WRITE(SDEIMR, sdeimr);
432         POSTING_READ(SDEIMR);
433 }
434
435 static void
436 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
437                        u32 enable_mask, u32 status_mask)
438 {
439         u32 reg = PIPESTAT(pipe);
440         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
441
442         assert_spin_locked(&dev_priv->irq_lock);
443         WARN_ON(!intel_irqs_enabled(dev_priv));
444
445         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
446                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
447                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
448                       pipe_name(pipe), enable_mask, status_mask))
449                 return;
450
451         if ((pipestat & enable_mask) == enable_mask)
452                 return;
453
454         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
455
456         /* Enable the interrupt, clear any pending status */
457         pipestat |= enable_mask | status_mask;
458         I915_WRITE(reg, pipestat);
459         POSTING_READ(reg);
460 }
461
462 static void
463 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
464                         u32 enable_mask, u32 status_mask)
465 {
466         u32 reg = PIPESTAT(pipe);
467         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
468
469         assert_spin_locked(&dev_priv->irq_lock);
470         WARN_ON(!intel_irqs_enabled(dev_priv));
471
472         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
473                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
474                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
475                       pipe_name(pipe), enable_mask, status_mask))
476                 return;
477
478         if ((pipestat & enable_mask) == 0)
479                 return;
480
481         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
482
483         pipestat &= ~enable_mask;
484         I915_WRITE(reg, pipestat);
485         POSTING_READ(reg);
486 }
487
488 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
489 {
490         u32 enable_mask = status_mask << 16;
491
492         /*
493          * On pipe A we don't support the PSR interrupt yet,
494          * on pipe B and C the same bit MBZ.
495          */
496         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
497                 return 0;
498         /*
499          * On pipe B and C we don't support the PSR interrupt yet, on pipe
500          * A the same bit is for perf counters which we don't use either.
501          */
502         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
503                 return 0;
504
505         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
506                          SPRITE0_FLIP_DONE_INT_EN_VLV |
507                          SPRITE1_FLIP_DONE_INT_EN_VLV);
508         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
509                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
510         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
511                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
512
513         return enable_mask;
514 }
515
516 void
517 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
518                      u32 status_mask)
519 {
520         u32 enable_mask;
521
522         if (IS_VALLEYVIEW(dev_priv->dev))
523                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
524                                                            status_mask);
525         else
526                 enable_mask = status_mask << 16;
527         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
528 }
529
530 void
531 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
532                       u32 status_mask)
533 {
534         u32 enable_mask;
535
536         if (IS_VALLEYVIEW(dev_priv->dev))
537                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
538                                                            status_mask);
539         else
540                 enable_mask = status_mask << 16;
541         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
542 }
543
544 /**
545  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
546  */
547 static void i915_enable_asle_pipestat(struct drm_device *dev)
548 {
549         struct drm_i915_private *dev_priv = dev->dev_private;
550
551         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
552                 return;
553
554         spin_lock_irq(&dev_priv->irq_lock);
555
556         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
557         if (INTEL_INFO(dev)->gen >= 4)
558                 i915_enable_pipestat(dev_priv, PIPE_A,
559                                      PIPE_LEGACY_BLC_EVENT_STATUS);
560
561         spin_unlock_irq(&dev_priv->irq_lock);
562 }
563
564 /*
565  * This timing diagram depicts the video signal in and
566  * around the vertical blanking period.
567  *
568  * Assumptions about the fictitious mode used in this example:
569  *  vblank_start >= 3
570  *  vsync_start = vblank_start + 1
571  *  vsync_end = vblank_start + 2
572  *  vtotal = vblank_start + 3
573  *
574  *           start of vblank:
575  *           latch double buffered registers
576  *           increment frame counter (ctg+)
577  *           generate start of vblank interrupt (gen4+)
578  *           |
579  *           |          frame start:
580  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
581  *           |          may be shifted forward 1-3 extra lines via PIPECONF
582  *           |          |
583  *           |          |  start of vsync:
584  *           |          |  generate vsync interrupt
585  *           |          |  |
586  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
587  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
588  * ----va---> <-----------------vb--------------------> <--------va-------------
589  *       |          |       <----vs----->                     |
590  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
591  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
592  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
593  *       |          |                                         |
594  *       last visible pixel                                   first visible pixel
595  *                  |                                         increment frame counter (gen3/4)
596  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
597  *
598  * x  = horizontal active
599  * _  = horizontal blanking
600  * hs = horizontal sync
601  * va = vertical active
602  * vb = vertical blanking
603  * vs = vertical sync
604  * vbs = vblank_start (number)
605  *
606  * Summary:
607  * - most events happen at the start of horizontal sync
608  * - frame start happens at the start of horizontal blank, 1-4 lines
609  *   (depending on PIPECONF settings) after the start of vblank
610  * - gen3/4 pixel and frame counter are synchronized with the start
611  *   of horizontal active on the first line of vertical active
612  */
613
614 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
615 {
616         /* Gen2 doesn't have a hardware frame counter */
617         return 0;
618 }
619
620 /* Called from drm generic code, passed a 'crtc', which
621  * we use as a pipe index
622  */
623 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
624 {
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         unsigned long high_frame;
627         unsigned long low_frame;
628         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
629         struct intel_crtc *intel_crtc =
630                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
631         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
632
633         htotal = mode->crtc_htotal;
634         hsync_start = mode->crtc_hsync_start;
635         vbl_start = mode->crtc_vblank_start;
636         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
637                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
638
639         /* Convert to pixel count */
640         vbl_start *= htotal;
641
642         /* Start of vblank event occurs at start of hsync */
643         vbl_start -= htotal - hsync_start;
644
645         high_frame = PIPEFRAME(pipe);
646         low_frame = PIPEFRAMEPIXEL(pipe);
647
648         /*
649          * High & low register fields aren't synchronized, so make sure
650          * we get a low value that's stable across two reads of the high
651          * register.
652          */
653         do {
654                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
655                 low   = I915_READ(low_frame);
656                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
657         } while (high1 != high2);
658
659         high1 >>= PIPE_FRAME_HIGH_SHIFT;
660         pixel = low & PIPE_PIXEL_MASK;
661         low >>= PIPE_FRAME_LOW_SHIFT;
662
663         /*
664          * The frame counter increments at beginning of active.
665          * Cook up a vblank counter by also checking the pixel
666          * counter against vblank start.
667          */
668         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
669 }
670
671 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
672 {
673         struct drm_i915_private *dev_priv = dev->dev_private;
674         int reg = PIPE_FRMCOUNT_GM45(pipe);
675
676         return I915_READ(reg);
677 }
678
679 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
680 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
681
682 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
683 {
684         struct drm_device *dev = crtc->base.dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         const struct drm_display_mode *mode = &crtc->base.hwmode;
687         enum pipe pipe = crtc->pipe;
688         int position, vtotal;
689
690         vtotal = mode->crtc_vtotal;
691         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
692                 vtotal /= 2;
693
694         if (IS_GEN2(dev))
695                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
696         else
697                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
698
699         /*
700          * On HSW, the DSL reg (0x70000) appears to return 0 if we
701          * read it just before the start of vblank.  So try it again
702          * so we don't accidentally end up spanning a vblank frame
703          * increment, causing the pipe_update_end() code to squak at us.
704          *
705          * The nature of this problem means we can't simply check the ISR
706          * bit and return the vblank start value; nor can we use the scanline
707          * debug register in the transcoder as it appears to have the same
708          * problem.  We may need to extend this to include other platforms,
709          * but so far testing only shows the problem on HSW.
710          */
711         if (IS_HASWELL(dev) && !position) {
712                 int i, temp;
713
714                 for (i = 0; i < 100; i++) {
715                         udelay(1);
716                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
717                                 DSL_LINEMASK_GEN3;
718                         if (temp != position) {
719                                 position = temp;
720                                 break;
721                         }
722                 }
723         }
724
725         /*
726          * See update_scanline_offset() for the details on the
727          * scanline_offset adjustment.
728          */
729         return (position + crtc->scanline_offset) % vtotal;
730 }
731
732 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
733                                     unsigned int flags, int *vpos, int *hpos,
734                                     ktime_t *stime, ktime_t *etime,
735                                     const struct drm_display_mode *mode)
736 {
737         struct drm_i915_private *dev_priv = dev->dev_private;
738         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
740         int position;
741         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
742         bool in_vbl = true;
743         int ret = 0;
744         unsigned long irqflags;
745
746         if (WARN_ON(!mode->crtc_clock)) {
747                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
748                                  "pipe %c\n", pipe_name(pipe));
749                 return 0;
750         }
751
752         htotal = mode->crtc_htotal;
753         hsync_start = mode->crtc_hsync_start;
754         vtotal = mode->crtc_vtotal;
755         vbl_start = mode->crtc_vblank_start;
756         vbl_end = mode->crtc_vblank_end;
757
758         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
759                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
760                 vbl_end /= 2;
761                 vtotal /= 2;
762         }
763
764         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
765
766         /*
767          * Lock uncore.lock, as we will do multiple timing critical raw
768          * register reads, potentially with preemption disabled, so the
769          * following code must not block on uncore.lock.
770          */
771         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
772
773         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
774
775         /* Get optional system timestamp before query. */
776         if (stime)
777                 *stime = ktime_get();
778
779         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
780                 /* No obvious pixelcount register. Only query vertical
781                  * scanout position from Display scan line register.
782                  */
783                 position = __intel_get_crtc_scanline(intel_crtc);
784         } else {
785                 /* Have access to pixelcount since start of frame.
786                  * We can split this into vertical and horizontal
787                  * scanout position.
788                  */
789                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
790
791                 /* convert to pixel counts */
792                 vbl_start *= htotal;
793                 vbl_end *= htotal;
794                 vtotal *= htotal;
795
796                 /*
797                  * In interlaced modes, the pixel counter counts all pixels,
798                  * so one field will have htotal more pixels. In order to avoid
799                  * the reported position from jumping backwards when the pixel
800                  * counter is beyond the length of the shorter field, just
801                  * clamp the position the length of the shorter field. This
802                  * matches how the scanline counter based position works since
803                  * the scanline counter doesn't count the two half lines.
804                  */
805                 if (position >= vtotal)
806                         position = vtotal - 1;
807
808                 /*
809                  * Start of vblank interrupt is triggered at start of hsync,
810                  * just prior to the first active line of vblank. However we
811                  * consider lines to start at the leading edge of horizontal
812                  * active. So, should we get here before we've crossed into
813                  * the horizontal active of the first line in vblank, we would
814                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
815                  * always add htotal-hsync_start to the current pixel position.
816                  */
817                 position = (position + htotal - hsync_start) % vtotal;
818         }
819
820         /* Get optional system timestamp after query. */
821         if (etime)
822                 *etime = ktime_get();
823
824         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
825
826         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
827
828         in_vbl = position >= vbl_start && position < vbl_end;
829
830         /*
831          * While in vblank, position will be negative
832          * counting up towards 0 at vbl_end. And outside
833          * vblank, position will be positive counting
834          * up since vbl_end.
835          */
836         if (position >= vbl_start)
837                 position -= vbl_end;
838         else
839                 position += vtotal - vbl_end;
840
841         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
842                 *vpos = position;
843                 *hpos = 0;
844         } else {
845                 *vpos = position / htotal;
846                 *hpos = position - (*vpos * htotal);
847         }
848
849         /* In vblank? */
850         if (in_vbl)
851                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
852
853         return ret;
854 }
855
856 int intel_get_crtc_scanline(struct intel_crtc *crtc)
857 {
858         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
859         unsigned long irqflags;
860         int position;
861
862         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
863         position = __intel_get_crtc_scanline(crtc);
864         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
865
866         return position;
867 }
868
869 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
870                               int *max_error,
871                               struct timeval *vblank_time,
872                               unsigned flags)
873 {
874         struct drm_crtc *crtc;
875
876         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
877                 DRM_ERROR("Invalid crtc %d\n", pipe);
878                 return -EINVAL;
879         }
880
881         /* Get drm_crtc to timestamp: */
882         crtc = intel_get_crtc_for_pipe(dev, pipe);
883         if (crtc == NULL) {
884                 DRM_ERROR("Invalid crtc %d\n", pipe);
885                 return -EINVAL;
886         }
887
888         if (!crtc->hwmode.crtc_clock) {
889                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
890                 return -EBUSY;
891         }
892
893         /* Helper routine in DRM core does all the work: */
894         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
895                                                      vblank_time, flags,
896                                                      &crtc->hwmode);
897 }
898
899 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
900 {
901         struct drm_i915_private *dev_priv = dev->dev_private;
902         u32 busy_up, busy_down, max_avg, min_avg;
903         u8 new_delay;
904
905         spin_lock(&mchdev_lock);
906
907         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
908
909         new_delay = dev_priv->ips.cur_delay;
910
911         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
912         busy_up = I915_READ(RCPREVBSYTUPAVG);
913         busy_down = I915_READ(RCPREVBSYTDNAVG);
914         max_avg = I915_READ(RCBMAXAVG);
915         min_avg = I915_READ(RCBMINAVG);
916
917         /* Handle RCS change request from hw */
918         if (busy_up > max_avg) {
919                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
920                         new_delay = dev_priv->ips.cur_delay - 1;
921                 if (new_delay < dev_priv->ips.max_delay)
922                         new_delay = dev_priv->ips.max_delay;
923         } else if (busy_down < min_avg) {
924                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
925                         new_delay = dev_priv->ips.cur_delay + 1;
926                 if (new_delay > dev_priv->ips.min_delay)
927                         new_delay = dev_priv->ips.min_delay;
928         }
929
930         if (ironlake_set_drps(dev, new_delay))
931                 dev_priv->ips.cur_delay = new_delay;
932
933         spin_unlock(&mchdev_lock);
934
935         return;
936 }
937
938 static void notify_ring(struct intel_engine_cs *ring)
939 {
940         if (!intel_ring_initialized(ring))
941                 return;
942
943         trace_i915_gem_request_notify(ring);
944
945         wake_up_all(&ring->irq_queue);
946 }
947
948 static void vlv_c0_read(struct drm_i915_private *dev_priv,
949                         struct intel_rps_ei *ei)
950 {
951         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
952         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
953         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
954 }
955
956 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
957                          const struct intel_rps_ei *old,
958                          const struct intel_rps_ei *now,
959                          int threshold)
960 {
961         u64 time, c0;
962
963         if (old->cz_clock == 0)
964                 return false;
965
966         time = now->cz_clock - old->cz_clock;
967         time *= threshold * dev_priv->mem_freq;
968
969         /* Workload can be split between render + media, e.g. SwapBuffers
970          * being blitted in X after being rendered in mesa. To account for
971          * this we need to combine both engines into our activity counter.
972          */
973         c0 = now->render_c0 - old->render_c0;
974         c0 += now->media_c0 - old->media_c0;
975         c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
976
977         return c0 >= time;
978 }
979
980 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
981 {
982         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
983         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
984 }
985
986 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
987 {
988         struct intel_rps_ei now;
989         u32 events = 0;
990
991         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
992                 return 0;
993
994         vlv_c0_read(dev_priv, &now);
995         if (now.cz_clock == 0)
996                 return 0;
997
998         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
999                 if (!vlv_c0_above(dev_priv,
1000                                   &dev_priv->rps.down_ei, &now,
1001                                   dev_priv->rps.down_threshold))
1002                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1003                 dev_priv->rps.down_ei = now;
1004         }
1005
1006         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1007                 if (vlv_c0_above(dev_priv,
1008                                  &dev_priv->rps.up_ei, &now,
1009                                  dev_priv->rps.up_threshold))
1010                         events |= GEN6_PM_RP_UP_THRESHOLD;
1011                 dev_priv->rps.up_ei = now;
1012         }
1013
1014         return events;
1015 }
1016
1017 static bool any_waiters(struct drm_i915_private *dev_priv)
1018 {
1019         struct intel_engine_cs *ring;
1020         int i;
1021
1022         for_each_ring(ring, dev_priv, i)
1023                 if (ring->irq_refcount)
1024                         return true;
1025
1026         return false;
1027 }
1028
1029 static void gen6_pm_rps_work(struct work_struct *work)
1030 {
1031         struct drm_i915_private *dev_priv =
1032                 container_of(work, struct drm_i915_private, rps.work);
1033         bool client_boost;
1034         int new_delay, adj, min, max;
1035         u32 pm_iir;
1036
1037         spin_lock_irq(&dev_priv->irq_lock);
1038         /* Speed up work cancelation during disabling rps interrupts. */
1039         if (!dev_priv->rps.interrupts_enabled) {
1040                 spin_unlock_irq(&dev_priv->irq_lock);
1041                 return;
1042         }
1043         pm_iir = dev_priv->rps.pm_iir;
1044         dev_priv->rps.pm_iir = 0;
1045         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1046         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1047         client_boost = dev_priv->rps.client_boost;
1048         dev_priv->rps.client_boost = false;
1049         spin_unlock_irq(&dev_priv->irq_lock);
1050
1051         /* Make sure we didn't queue anything we're not going to process. */
1052         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1053
1054         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1055                 return;
1056
1057         mutex_lock(&dev_priv->rps.hw_lock);
1058
1059         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1060
1061         adj = dev_priv->rps.last_adj;
1062         new_delay = dev_priv->rps.cur_freq;
1063         min = dev_priv->rps.min_freq_softlimit;
1064         max = dev_priv->rps.max_freq_softlimit;
1065
1066         if (client_boost) {
1067                 new_delay = dev_priv->rps.max_freq_softlimit;
1068                 adj = 0;
1069         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1070                 if (adj > 0)
1071                         adj *= 2;
1072                 else /* CHV needs even encode values */
1073                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1074                 /*
1075                  * For better performance, jump directly
1076                  * to RPe if we're below it.
1077                  */
1078                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1079                         new_delay = dev_priv->rps.efficient_freq;
1080                         adj = 0;
1081                 }
1082         } else if (any_waiters(dev_priv)) {
1083                 adj = 0;
1084         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1085                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1086                         new_delay = dev_priv->rps.efficient_freq;
1087                 else
1088                         new_delay = dev_priv->rps.min_freq_softlimit;
1089                 adj = 0;
1090         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1091                 if (adj < 0)
1092                         adj *= 2;
1093                 else /* CHV needs even encode values */
1094                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1095         } else { /* unknown event */
1096                 adj = 0;
1097         }
1098
1099         dev_priv->rps.last_adj = adj;
1100
1101         /* sysfs frequency interfaces may have snuck in while servicing the
1102          * interrupt
1103          */
1104         new_delay += adj;
1105         new_delay = clamp_t(int, new_delay, min, max);
1106
1107         intel_set_rps(dev_priv->dev, new_delay);
1108
1109         mutex_unlock(&dev_priv->rps.hw_lock);
1110 }
1111
1112
1113 /**
1114  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1115  * occurred.
1116  * @work: workqueue struct
1117  *
1118  * Doesn't actually do anything except notify userspace. As a consequence of
1119  * this event, userspace should try to remap the bad rows since statistically
1120  * it is likely the same row is more likely to go bad again.
1121  */
1122 static void ivybridge_parity_work(struct work_struct *work)
1123 {
1124         struct drm_i915_private *dev_priv =
1125                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1126         u32 error_status, row, bank, subbank;
1127         char *parity_event[6];
1128         uint32_t misccpctl;
1129         uint8_t slice = 0;
1130
1131         /* We must turn off DOP level clock gating to access the L3 registers.
1132          * In order to prevent a get/put style interface, acquire struct mutex
1133          * any time we access those registers.
1134          */
1135         mutex_lock(&dev_priv->dev->struct_mutex);
1136
1137         /* If we've screwed up tracking, just let the interrupt fire again */
1138         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1139                 goto out;
1140
1141         misccpctl = I915_READ(GEN7_MISCCPCTL);
1142         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1143         POSTING_READ(GEN7_MISCCPCTL);
1144
1145         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1146                 u32 reg;
1147
1148                 slice--;
1149                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1150                         break;
1151
1152                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1153
1154                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1155
1156                 error_status = I915_READ(reg);
1157                 row = GEN7_PARITY_ERROR_ROW(error_status);
1158                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1159                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1160
1161                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1162                 POSTING_READ(reg);
1163
1164                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1165                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1166                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1167                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1168                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1169                 parity_event[5] = NULL;
1170
1171                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1172                                    KOBJ_CHANGE, parity_event);
1173
1174                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1175                           slice, row, bank, subbank);
1176
1177                 kfree(parity_event[4]);
1178                 kfree(parity_event[3]);
1179                 kfree(parity_event[2]);
1180                 kfree(parity_event[1]);
1181         }
1182
1183         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1184
1185 out:
1186         WARN_ON(dev_priv->l3_parity.which_slice);
1187         spin_lock_irq(&dev_priv->irq_lock);
1188         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1189         spin_unlock_irq(&dev_priv->irq_lock);
1190
1191         mutex_unlock(&dev_priv->dev->struct_mutex);
1192 }
1193
1194 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1195 {
1196         struct drm_i915_private *dev_priv = dev->dev_private;
1197
1198         if (!HAS_L3_DPF(dev))
1199                 return;
1200
1201         spin_lock(&dev_priv->irq_lock);
1202         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1203         spin_unlock(&dev_priv->irq_lock);
1204
1205         iir &= GT_PARITY_ERROR(dev);
1206         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1207                 dev_priv->l3_parity.which_slice |= 1 << 1;
1208
1209         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1210                 dev_priv->l3_parity.which_slice |= 1 << 0;
1211
1212         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1213 }
1214
1215 static void ilk_gt_irq_handler(struct drm_device *dev,
1216                                struct drm_i915_private *dev_priv,
1217                                u32 gt_iir)
1218 {
1219         if (gt_iir &
1220             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1221                 notify_ring(&dev_priv->ring[RCS]);
1222         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1223                 notify_ring(&dev_priv->ring[VCS]);
1224 }
1225
1226 static void snb_gt_irq_handler(struct drm_device *dev,
1227                                struct drm_i915_private *dev_priv,
1228                                u32 gt_iir)
1229 {
1230
1231         if (gt_iir &
1232             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1233                 notify_ring(&dev_priv->ring[RCS]);
1234         if (gt_iir & GT_BSD_USER_INTERRUPT)
1235                 notify_ring(&dev_priv->ring[VCS]);
1236         if (gt_iir & GT_BLT_USER_INTERRUPT)
1237                 notify_ring(&dev_priv->ring[BCS]);
1238
1239         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1240                       GT_BSD_CS_ERROR_INTERRUPT |
1241                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1242                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1243
1244         if (gt_iir & GT_PARITY_ERROR(dev))
1245                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1246 }
1247
1248 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1249                                        u32 master_ctl)
1250 {
1251         irqreturn_t ret = IRQ_NONE;
1252
1253         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1254                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1255                 if (tmp) {
1256                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1257                         ret = IRQ_HANDLED;
1258
1259                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1260                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1261                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1262                                 notify_ring(&dev_priv->ring[RCS]);
1263
1264                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1265                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1266                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1267                                 notify_ring(&dev_priv->ring[BCS]);
1268                 } else
1269                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1270         }
1271
1272         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1273                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1274                 if (tmp) {
1275                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1276                         ret = IRQ_HANDLED;
1277
1278                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1279                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1280                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1281                                 notify_ring(&dev_priv->ring[VCS]);
1282
1283                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1284                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1285                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1286                                 notify_ring(&dev_priv->ring[VCS2]);
1287                 } else
1288                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1289         }
1290
1291         if (master_ctl & GEN8_GT_VECS_IRQ) {
1292                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1293                 if (tmp) {
1294                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1295                         ret = IRQ_HANDLED;
1296
1297                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1298                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1299                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1300                                 notify_ring(&dev_priv->ring[VECS]);
1301                 } else
1302                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1303         }
1304
1305         if (master_ctl & GEN8_GT_PM_IRQ) {
1306                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1307                 if (tmp & dev_priv->pm_rps_events) {
1308                         I915_WRITE_FW(GEN8_GT_IIR(2),
1309                                       tmp & dev_priv->pm_rps_events);
1310                         ret = IRQ_HANDLED;
1311                         gen6_rps_irq_handler(dev_priv, tmp);
1312                 } else
1313                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1314         }
1315
1316         return ret;
1317 }
1318
1319 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1320 {
1321         switch (port) {
1322         case PORT_A:
1323                 return val & PORTA_HOTPLUG_LONG_DETECT;
1324         case PORT_B:
1325                 return val & PORTB_HOTPLUG_LONG_DETECT;
1326         case PORT_C:
1327                 return val & PORTC_HOTPLUG_LONG_DETECT;
1328         default:
1329                 return false;
1330         }
1331 }
1332
1333 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1334 {
1335         switch (port) {
1336         case PORT_E:
1337                 return val & PORTE_HOTPLUG_LONG_DETECT;
1338         default:
1339                 return false;
1340         }
1341 }
1342
1343 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1344 {
1345         switch (port) {
1346         case PORT_A:
1347                 return val & PORTA_HOTPLUG_LONG_DETECT;
1348         case PORT_B:
1349                 return val & PORTB_HOTPLUG_LONG_DETECT;
1350         case PORT_C:
1351                 return val & PORTC_HOTPLUG_LONG_DETECT;
1352         case PORT_D:
1353                 return val & PORTD_HOTPLUG_LONG_DETECT;
1354         default:
1355                 return false;
1356         }
1357 }
1358
1359 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1360 {
1361         switch (port) {
1362         case PORT_A:
1363                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1364         default:
1365                 return false;
1366         }
1367 }
1368
1369 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1370 {
1371         switch (port) {
1372         case PORT_B:
1373                 return val & PORTB_HOTPLUG_LONG_DETECT;
1374         case PORT_C:
1375                 return val & PORTC_HOTPLUG_LONG_DETECT;
1376         case PORT_D:
1377                 return val & PORTD_HOTPLUG_LONG_DETECT;
1378         default:
1379                 return false;
1380         }
1381 }
1382
1383 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1384 {
1385         switch (port) {
1386         case PORT_B:
1387                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1388         case PORT_C:
1389                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1390         case PORT_D:
1391                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1392         default:
1393                 return false;
1394         }
1395 }
1396
1397 /*
1398  * Get a bit mask of pins that have triggered, and which ones may be long.
1399  * This can be called multiple times with the same masks to accumulate
1400  * hotplug detection results from several registers.
1401  *
1402  * Note that the caller is expected to zero out the masks initially.
1403  */
1404 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1405                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1406                              const u32 hpd[HPD_NUM_PINS],
1407                              bool long_pulse_detect(enum port port, u32 val))
1408 {
1409         enum port port;
1410         int i;
1411
1412         for_each_hpd_pin(i) {
1413                 if ((hpd[i] & hotplug_trigger) == 0)
1414                         continue;
1415
1416                 *pin_mask |= BIT(i);
1417
1418                 if (!intel_hpd_pin_to_port(i, &port))
1419                         continue;
1420
1421                 if (long_pulse_detect(port, dig_hotplug_reg))
1422                         *long_mask |= BIT(i);
1423         }
1424
1425         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1426                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1427
1428 }
1429
1430 static void gmbus_irq_handler(struct drm_device *dev)
1431 {
1432         struct drm_i915_private *dev_priv = dev->dev_private;
1433
1434         wake_up_all(&dev_priv->gmbus_wait_queue);
1435 }
1436
1437 static void dp_aux_irq_handler(struct drm_device *dev)
1438 {
1439         struct drm_i915_private *dev_priv = dev->dev_private;
1440
1441         wake_up_all(&dev_priv->gmbus_wait_queue);
1442 }
1443
1444 #if defined(CONFIG_DEBUG_FS)
1445 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1446                                          uint32_t crc0, uint32_t crc1,
1447                                          uint32_t crc2, uint32_t crc3,
1448                                          uint32_t crc4)
1449 {
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1452         struct intel_pipe_crc_entry *entry;
1453         int head, tail;
1454
1455         spin_lock(&pipe_crc->lock);
1456
1457         if (!pipe_crc->entries) {
1458                 spin_unlock(&pipe_crc->lock);
1459                 DRM_DEBUG_KMS("spurious interrupt\n");
1460                 return;
1461         }
1462
1463         head = pipe_crc->head;
1464         tail = pipe_crc->tail;
1465
1466         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1467                 spin_unlock(&pipe_crc->lock);
1468                 DRM_ERROR("CRC buffer overflowing\n");
1469                 return;
1470         }
1471
1472         entry = &pipe_crc->entries[head];
1473
1474         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1475         entry->crc[0] = crc0;
1476         entry->crc[1] = crc1;
1477         entry->crc[2] = crc2;
1478         entry->crc[3] = crc3;
1479         entry->crc[4] = crc4;
1480
1481         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1482         pipe_crc->head = head;
1483
1484         spin_unlock(&pipe_crc->lock);
1485
1486         wake_up_interruptible(&pipe_crc->wq);
1487 }
1488 #else
1489 static inline void
1490 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1491                              uint32_t crc0, uint32_t crc1,
1492                              uint32_t crc2, uint32_t crc3,
1493                              uint32_t crc4) {}
1494 #endif
1495
1496
1497 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1498 {
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500
1501         display_pipe_crc_irq_handler(dev, pipe,
1502                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1503                                      0, 0, 0, 0);
1504 }
1505
1506 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1507 {
1508         struct drm_i915_private *dev_priv = dev->dev_private;
1509
1510         display_pipe_crc_irq_handler(dev, pipe,
1511                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1512                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1513                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1514                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1515                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1516 }
1517
1518 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1519 {
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521         uint32_t res1, res2;
1522
1523         if (INTEL_INFO(dev)->gen >= 3)
1524                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1525         else
1526                 res1 = 0;
1527
1528         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1529                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1530         else
1531                 res2 = 0;
1532
1533         display_pipe_crc_irq_handler(dev, pipe,
1534                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1535                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1536                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1537                                      res1, res2);
1538 }
1539
1540 /* The RPS events need forcewake, so we add them to a work queue and mask their
1541  * IMR bits until the work is done. Other interrupts can be processed without
1542  * the work queue. */
1543 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1544 {
1545         if (pm_iir & dev_priv->pm_rps_events) {
1546                 spin_lock(&dev_priv->irq_lock);
1547                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1548                 if (dev_priv->rps.interrupts_enabled) {
1549                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1550                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1551                 }
1552                 spin_unlock(&dev_priv->irq_lock);
1553         }
1554
1555         if (INTEL_INFO(dev_priv)->gen >= 8)
1556                 return;
1557
1558         if (HAS_VEBOX(dev_priv->dev)) {
1559                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1560                         notify_ring(&dev_priv->ring[VECS]);
1561
1562                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1563                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1564         }
1565 }
1566
1567 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1568 {
1569         if (!drm_handle_vblank(dev, pipe))
1570                 return false;
1571
1572         return true;
1573 }
1574
1575 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1576 {
1577         struct drm_i915_private *dev_priv = dev->dev_private;
1578         u32 pipe_stats[I915_MAX_PIPES] = { };
1579         int pipe;
1580
1581         spin_lock(&dev_priv->irq_lock);
1582         for_each_pipe(dev_priv, pipe) {
1583                 int reg;
1584                 u32 mask, iir_bit = 0;
1585
1586                 /*
1587                  * PIPESTAT bits get signalled even when the interrupt is
1588                  * disabled with the mask bits, and some of the status bits do
1589                  * not generate interrupts at all (like the underrun bit). Hence
1590                  * we need to be careful that we only handle what we want to
1591                  * handle.
1592                  */
1593
1594                 /* fifo underruns are filterered in the underrun handler. */
1595                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1596
1597                 switch (pipe) {
1598                 case PIPE_A:
1599                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1600                         break;
1601                 case PIPE_B:
1602                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1603                         break;
1604                 case PIPE_C:
1605                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1606                         break;
1607                 }
1608                 if (iir & iir_bit)
1609                         mask |= dev_priv->pipestat_irq_mask[pipe];
1610
1611                 if (!mask)
1612                         continue;
1613
1614                 reg = PIPESTAT(pipe);
1615                 mask |= PIPESTAT_INT_ENABLE_MASK;
1616                 pipe_stats[pipe] = I915_READ(reg) & mask;
1617
1618                 /*
1619                  * Clear the PIPE*STAT regs before the IIR
1620                  */
1621                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1622                                         PIPESTAT_INT_STATUS_MASK))
1623                         I915_WRITE(reg, pipe_stats[pipe]);
1624         }
1625         spin_unlock(&dev_priv->irq_lock);
1626
1627         for_each_pipe(dev_priv, pipe) {
1628                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1629                     intel_pipe_handle_vblank(dev, pipe))
1630                         intel_check_page_flip(dev, pipe);
1631
1632                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1633                         intel_prepare_page_flip(dev, pipe);
1634                         intel_finish_page_flip(dev, pipe);
1635                 }
1636
1637                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1638                         i9xx_pipe_crc_irq_handler(dev, pipe);
1639
1640                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1641                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1642         }
1643
1644         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1645                 gmbus_irq_handler(dev);
1646 }
1647
1648 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1649 {
1650         struct drm_i915_private *dev_priv = dev->dev_private;
1651         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1652         u32 pin_mask = 0, long_mask = 0;
1653
1654         if (!hotplug_status)
1655                 return;
1656
1657         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1658         /*
1659          * Make sure hotplug status is cleared before we clear IIR, or else we
1660          * may miss hotplug events.
1661          */
1662         POSTING_READ(PORT_HOTPLUG_STAT);
1663
1664         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1665                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1666
1667                 if (hotplug_trigger) {
1668                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1669                                            hotplug_trigger, hpd_status_g4x,
1670                                            i9xx_port_hotplug_long_detect);
1671
1672                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1673                 }
1674
1675                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1676                         dp_aux_irq_handler(dev);
1677         } else {
1678                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1679
1680                 if (hotplug_trigger) {
1681                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1682                                            hotplug_trigger, hpd_status_i915,
1683                                            i9xx_port_hotplug_long_detect);
1684
1685                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1686                 }
1687         }
1688 }
1689
1690 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1691 {
1692         struct drm_device *dev = arg;
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         u32 iir, gt_iir, pm_iir;
1695         irqreturn_t ret = IRQ_NONE;
1696
1697         if (!intel_irqs_enabled(dev_priv))
1698                 return IRQ_NONE;
1699
1700         while (true) {
1701                 /* Find, clear, then process each source of interrupt */
1702
1703                 gt_iir = I915_READ(GTIIR);
1704                 if (gt_iir)
1705                         I915_WRITE(GTIIR, gt_iir);
1706
1707                 pm_iir = I915_READ(GEN6_PMIIR);
1708                 if (pm_iir)
1709                         I915_WRITE(GEN6_PMIIR, pm_iir);
1710
1711                 iir = I915_READ(VLV_IIR);
1712                 if (iir) {
1713                         /* Consume port before clearing IIR or we'll miss events */
1714                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1715                                 i9xx_hpd_irq_handler(dev);
1716                         I915_WRITE(VLV_IIR, iir);
1717                 }
1718
1719                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1720                         goto out;
1721
1722                 ret = IRQ_HANDLED;
1723
1724                 if (gt_iir)
1725                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1726                 if (pm_iir)
1727                         gen6_rps_irq_handler(dev_priv, pm_iir);
1728                 /* Call regardless, as some status bits might not be
1729                  * signalled in iir */
1730                 valleyview_pipestat_irq_handler(dev, iir);
1731         }
1732
1733 out:
1734         return ret;
1735 }
1736
1737 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1738 {
1739         struct drm_device *dev = arg;
1740         struct drm_i915_private *dev_priv = dev->dev_private;
1741         u32 master_ctl, iir;
1742         irqreturn_t ret = IRQ_NONE;
1743
1744         if (!intel_irqs_enabled(dev_priv))
1745                 return IRQ_NONE;
1746
1747         for (;;) {
1748                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1749                 iir = I915_READ(VLV_IIR);
1750
1751                 if (master_ctl == 0 && iir == 0)
1752                         break;
1753
1754                 ret = IRQ_HANDLED;
1755
1756                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1757
1758                 /* Find, clear, then process each source of interrupt */
1759
1760                 if (iir) {
1761                         /* Consume port before clearing IIR or we'll miss events */
1762                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1763                                 i9xx_hpd_irq_handler(dev);
1764                         I915_WRITE(VLV_IIR, iir);
1765                 }
1766
1767                 gen8_gt_irq_handler(dev_priv, master_ctl);
1768
1769                 /* Call regardless, as some status bits might not be
1770                  * signalled in iir */
1771                 valleyview_pipestat_irq_handler(dev, iir);
1772
1773                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1774                 POSTING_READ(GEN8_MASTER_IRQ);
1775         }
1776
1777         return ret;
1778 }
1779
1780 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1781                                 const u32 hpd[HPD_NUM_PINS])
1782 {
1783         struct drm_i915_private *dev_priv = to_i915(dev);
1784         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1785
1786         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1787         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1788
1789         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1790                            dig_hotplug_reg, hpd,
1791                            pch_port_hotplug_long_detect);
1792
1793         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1794 }
1795
1796 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1797 {
1798         struct drm_i915_private *dev_priv = dev->dev_private;
1799         int pipe;
1800         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1801
1802         if (hotplug_trigger)
1803                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1804
1805         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1806                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1807                                SDE_AUDIO_POWER_SHIFT);
1808                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1809                                  port_name(port));
1810         }
1811
1812         if (pch_iir & SDE_AUX_MASK)
1813                 dp_aux_irq_handler(dev);
1814
1815         if (pch_iir & SDE_GMBUS)
1816                 gmbus_irq_handler(dev);
1817
1818         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1819                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1820
1821         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1822                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1823
1824         if (pch_iir & SDE_POISON)
1825                 DRM_ERROR("PCH poison interrupt\n");
1826
1827         if (pch_iir & SDE_FDI_MASK)
1828                 for_each_pipe(dev_priv, pipe)
1829                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1830                                          pipe_name(pipe),
1831                                          I915_READ(FDI_RX_IIR(pipe)));
1832
1833         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1834                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1835
1836         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1837                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1838
1839         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1840                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1841
1842         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1843                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1844 }
1845
1846 static void ivb_err_int_handler(struct drm_device *dev)
1847 {
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         u32 err_int = I915_READ(GEN7_ERR_INT);
1850         enum pipe pipe;
1851
1852         if (err_int & ERR_INT_POISON)
1853                 DRM_ERROR("Poison interrupt\n");
1854
1855         for_each_pipe(dev_priv, pipe) {
1856                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1857                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1858
1859                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1860                         if (IS_IVYBRIDGE(dev))
1861                                 ivb_pipe_crc_irq_handler(dev, pipe);
1862                         else
1863                                 hsw_pipe_crc_irq_handler(dev, pipe);
1864                 }
1865         }
1866
1867         I915_WRITE(GEN7_ERR_INT, err_int);
1868 }
1869
1870 static void cpt_serr_int_handler(struct drm_device *dev)
1871 {
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873         u32 serr_int = I915_READ(SERR_INT);
1874
1875         if (serr_int & SERR_INT_POISON)
1876                 DRM_ERROR("PCH poison interrupt\n");
1877
1878         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1879                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1880
1881         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1882                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1883
1884         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1885                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1886
1887         I915_WRITE(SERR_INT, serr_int);
1888 }
1889
1890 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1891 {
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         int pipe;
1894         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1895
1896         if (hotplug_trigger)
1897                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1898
1899         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1900                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1901                                SDE_AUDIO_POWER_SHIFT_CPT);
1902                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1903                                  port_name(port));
1904         }
1905
1906         if (pch_iir & SDE_AUX_MASK_CPT)
1907                 dp_aux_irq_handler(dev);
1908
1909         if (pch_iir & SDE_GMBUS_CPT)
1910                 gmbus_irq_handler(dev);
1911
1912         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1913                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1914
1915         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1916                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1917
1918         if (pch_iir & SDE_FDI_MASK_CPT)
1919                 for_each_pipe(dev_priv, pipe)
1920                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1921                                          pipe_name(pipe),
1922                                          I915_READ(FDI_RX_IIR(pipe)));
1923
1924         if (pch_iir & SDE_ERROR_CPT)
1925                 cpt_serr_int_handler(dev);
1926 }
1927
1928 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1929 {
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1932                 ~SDE_PORTE_HOTPLUG_SPT;
1933         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1934         u32 pin_mask = 0, long_mask = 0;
1935
1936         if (hotplug_trigger) {
1937                 u32 dig_hotplug_reg;
1938
1939                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1940                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1941
1942                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1943                                    dig_hotplug_reg, hpd_spt,
1944                                    spt_port_hotplug_long_detect);
1945         }
1946
1947         if (hotplug2_trigger) {
1948                 u32 dig_hotplug_reg;
1949
1950                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1951                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1952
1953                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1954                                    dig_hotplug_reg, hpd_spt,
1955                                    spt_port_hotplug2_long_detect);
1956         }
1957
1958         if (pin_mask)
1959                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1960
1961         if (pch_iir & SDE_GMBUS_CPT)
1962                 gmbus_irq_handler(dev);
1963 }
1964
1965 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1966                                 const u32 hpd[HPD_NUM_PINS])
1967 {
1968         struct drm_i915_private *dev_priv = to_i915(dev);
1969         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1970
1971         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1972         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1973
1974         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1975                            dig_hotplug_reg, hpd,
1976                            ilk_port_hotplug_long_detect);
1977
1978         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1979 }
1980
1981 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1982 {
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         enum pipe pipe;
1985         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1986
1987         if (hotplug_trigger)
1988                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
1989
1990         if (de_iir & DE_AUX_CHANNEL_A)
1991                 dp_aux_irq_handler(dev);
1992
1993         if (de_iir & DE_GSE)
1994                 intel_opregion_asle_intr(dev);
1995
1996         if (de_iir & DE_POISON)
1997                 DRM_ERROR("Poison interrupt\n");
1998
1999         for_each_pipe(dev_priv, pipe) {
2000                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2001                     intel_pipe_handle_vblank(dev, pipe))
2002                         intel_check_page_flip(dev, pipe);
2003
2004                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2005                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2006
2007                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2008                         i9xx_pipe_crc_irq_handler(dev, pipe);
2009
2010                 /* plane/pipes map 1:1 on ilk+ */
2011                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2012                         intel_prepare_page_flip(dev, pipe);
2013                         intel_finish_page_flip_plane(dev, pipe);
2014                 }
2015         }
2016
2017         /* check event from PCH */
2018         if (de_iir & DE_PCH_EVENT) {
2019                 u32 pch_iir = I915_READ(SDEIIR);
2020
2021                 if (HAS_PCH_CPT(dev))
2022                         cpt_irq_handler(dev, pch_iir);
2023                 else
2024                         ibx_irq_handler(dev, pch_iir);
2025
2026                 /* should clear PCH hotplug event before clear CPU irq */
2027                 I915_WRITE(SDEIIR, pch_iir);
2028         }
2029
2030         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2031                 ironlake_rps_change_irq_handler(dev);
2032 }
2033
2034 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2035 {
2036         struct drm_i915_private *dev_priv = dev->dev_private;
2037         enum pipe pipe;
2038         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2039
2040         if (hotplug_trigger)
2041                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2042
2043         if (de_iir & DE_ERR_INT_IVB)
2044                 ivb_err_int_handler(dev);
2045
2046         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2047                 dp_aux_irq_handler(dev);
2048
2049         if (de_iir & DE_GSE_IVB)
2050                 intel_opregion_asle_intr(dev);
2051
2052         for_each_pipe(dev_priv, pipe) {
2053                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2054                     intel_pipe_handle_vblank(dev, pipe))
2055                         intel_check_page_flip(dev, pipe);
2056
2057                 /* plane/pipes map 1:1 on ilk+ */
2058                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2059                         intel_prepare_page_flip(dev, pipe);
2060                         intel_finish_page_flip_plane(dev, pipe);
2061                 }
2062         }
2063
2064         /* check event from PCH */
2065         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2066                 u32 pch_iir = I915_READ(SDEIIR);
2067
2068                 cpt_irq_handler(dev, pch_iir);
2069
2070                 /* clear PCH hotplug event before clear CPU irq */
2071                 I915_WRITE(SDEIIR, pch_iir);
2072         }
2073 }
2074
2075 /*
2076  * To handle irqs with the minimum potential races with fresh interrupts, we:
2077  * 1 - Disable Master Interrupt Control.
2078  * 2 - Find the source(s) of the interrupt.
2079  * 3 - Clear the Interrupt Identity bits (IIR).
2080  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2081  * 5 - Re-enable Master Interrupt Control.
2082  */
2083 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2084 {
2085         struct drm_device *dev = arg;
2086         struct drm_i915_private *dev_priv = dev->dev_private;
2087         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2088         irqreturn_t ret = IRQ_NONE;
2089
2090         if (!intel_irqs_enabled(dev_priv))
2091                 return IRQ_NONE;
2092
2093         /* We get interrupts on unclaimed registers, so check for this before we
2094          * do any I915_{READ,WRITE}. */
2095         intel_uncore_check_errors(dev);
2096
2097         /* disable master interrupt before clearing iir  */
2098         de_ier = I915_READ(DEIER);
2099         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2100         POSTING_READ(DEIER);
2101
2102         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2103          * interrupts will will be stored on its back queue, and then we'll be
2104          * able to process them after we restore SDEIER (as soon as we restore
2105          * it, we'll get an interrupt if SDEIIR still has something to process
2106          * due to its back queue). */
2107         if (!HAS_PCH_NOP(dev)) {
2108                 sde_ier = I915_READ(SDEIER);
2109                 I915_WRITE(SDEIER, 0);
2110                 POSTING_READ(SDEIER);
2111         }
2112
2113         /* Find, clear, then process each source of interrupt */
2114
2115         gt_iir = I915_READ(GTIIR);
2116         if (gt_iir) {
2117                 I915_WRITE(GTIIR, gt_iir);
2118                 ret = IRQ_HANDLED;
2119                 if (INTEL_INFO(dev)->gen >= 6)
2120                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2121                 else
2122                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2123         }
2124
2125         de_iir = I915_READ(DEIIR);
2126         if (de_iir) {
2127                 I915_WRITE(DEIIR, de_iir);
2128                 ret = IRQ_HANDLED;
2129                 if (INTEL_INFO(dev)->gen >= 7)
2130                         ivb_display_irq_handler(dev, de_iir);
2131                 else
2132                         ilk_display_irq_handler(dev, de_iir);
2133         }
2134
2135         if (INTEL_INFO(dev)->gen >= 6) {
2136                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2137                 if (pm_iir) {
2138                         I915_WRITE(GEN6_PMIIR, pm_iir);
2139                         ret = IRQ_HANDLED;
2140                         gen6_rps_irq_handler(dev_priv, pm_iir);
2141                 }
2142         }
2143
2144         I915_WRITE(DEIER, de_ier);
2145         POSTING_READ(DEIER);
2146         if (!HAS_PCH_NOP(dev)) {
2147                 I915_WRITE(SDEIER, sde_ier);
2148                 POSTING_READ(SDEIER);
2149         }
2150
2151         return ret;
2152 }
2153
2154 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2155                                 const u32 hpd[HPD_NUM_PINS])
2156 {
2157         struct drm_i915_private *dev_priv = to_i915(dev);
2158         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2159
2160         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2161         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2162
2163         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2164                            dig_hotplug_reg, hpd,
2165                            bxt_port_hotplug_long_detect);
2166
2167         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2168 }
2169
2170 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2171 {
2172         struct drm_device *dev = arg;
2173         struct drm_i915_private *dev_priv = dev->dev_private;
2174         u32 master_ctl;
2175         irqreturn_t ret = IRQ_NONE;
2176         uint32_t tmp = 0;
2177         enum pipe pipe;
2178         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2179
2180         if (!intel_irqs_enabled(dev_priv))
2181                 return IRQ_NONE;
2182
2183         if (INTEL_INFO(dev_priv)->gen >= 9)
2184                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2185                         GEN9_AUX_CHANNEL_D;
2186
2187         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2188         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2189         if (!master_ctl)
2190                 return IRQ_NONE;
2191
2192         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2193
2194         /* Find, clear, then process each source of interrupt */
2195
2196         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2197
2198         if (master_ctl & GEN8_DE_MISC_IRQ) {
2199                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2200                 if (tmp) {
2201                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2202                         ret = IRQ_HANDLED;
2203                         if (tmp & GEN8_DE_MISC_GSE)
2204                                 intel_opregion_asle_intr(dev);
2205                         else
2206                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2207                 }
2208                 else
2209                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2210         }
2211
2212         if (master_ctl & GEN8_DE_PORT_IRQ) {
2213                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2214                 if (tmp) {
2215                         bool found = false;
2216                         u32 hotplug_trigger = 0;
2217
2218                         if (IS_BROXTON(dev_priv))
2219                                 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2220                         else if (IS_BROADWELL(dev_priv))
2221                                 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2222
2223                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2224                         ret = IRQ_HANDLED;
2225
2226                         if (tmp & aux_mask) {
2227                                 dp_aux_irq_handler(dev);
2228                                 found = true;
2229                         }
2230
2231                         if (hotplug_trigger) {
2232                                 if (IS_BROXTON(dev))
2233                                         bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2234                                 else
2235                                         ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2236                                 found = true;
2237                         }
2238
2239                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2240                                 gmbus_irq_handler(dev);
2241                                 found = true;
2242                         }
2243
2244                         if (!found)
2245                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2246                 }
2247                 else
2248                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2249         }
2250
2251         for_each_pipe(dev_priv, pipe) {
2252                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2253
2254                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2255                         continue;
2256
2257                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2258                 if (pipe_iir) {
2259                         ret = IRQ_HANDLED;
2260                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2261
2262                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2263                             intel_pipe_handle_vblank(dev, pipe))
2264                                 intel_check_page_flip(dev, pipe);
2265
2266                         if (INTEL_INFO(dev_priv)->gen >= 9)
2267                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2268                         else
2269                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2270
2271                         if (flip_done) {
2272                                 intel_prepare_page_flip(dev, pipe);
2273                                 intel_finish_page_flip_plane(dev, pipe);
2274                         }
2275
2276                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2277                                 hsw_pipe_crc_irq_handler(dev, pipe);
2278
2279                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2280                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2281                                                                     pipe);
2282
2283
2284                         if (INTEL_INFO(dev_priv)->gen >= 9)
2285                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2286                         else
2287                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2288
2289                         if (fault_errors)
2290                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2291                                           pipe_name(pipe),
2292                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2293                 } else
2294                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2295         }
2296
2297         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2298             master_ctl & GEN8_DE_PCH_IRQ) {
2299                 /*
2300                  * FIXME(BDW): Assume for now that the new interrupt handling
2301                  * scheme also closed the SDE interrupt handling race we've seen
2302                  * on older pch-split platforms. But this needs testing.
2303                  */
2304                 u32 pch_iir = I915_READ(SDEIIR);
2305                 if (pch_iir) {
2306                         I915_WRITE(SDEIIR, pch_iir);
2307                         ret = IRQ_HANDLED;
2308
2309                         if (HAS_PCH_SPT(dev_priv))
2310                                 spt_irq_handler(dev, pch_iir);
2311                         else
2312                                 cpt_irq_handler(dev, pch_iir);
2313                 } else
2314                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2315
2316         }
2317
2318         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2319         POSTING_READ_FW(GEN8_MASTER_IRQ);
2320
2321         return ret;
2322 }
2323
2324 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2325                                bool reset_completed)
2326 {
2327         struct intel_engine_cs *ring;
2328         int i;
2329
2330         /*
2331          * Notify all waiters for GPU completion events that reset state has
2332          * been changed, and that they need to restart their wait after
2333          * checking for potential errors (and bail out to drop locks if there is
2334          * a gpu reset pending so that i915_error_work_func can acquire them).
2335          */
2336
2337         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2338         for_each_ring(ring, dev_priv, i)
2339                 wake_up_all(&ring->irq_queue);
2340
2341         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2342         wake_up_all(&dev_priv->pending_flip_queue);
2343
2344         /*
2345          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2346          * reset state is cleared.
2347          */
2348         if (reset_completed)
2349                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2350 }
2351
2352 /**
2353  * i915_reset_and_wakeup - do process context error handling work
2354  *
2355  * Fire an error uevent so userspace can see that a hang or error
2356  * was detected.
2357  */
2358 static void i915_reset_and_wakeup(struct drm_device *dev)
2359 {
2360         struct drm_i915_private *dev_priv = to_i915(dev);
2361         struct i915_gpu_error *error = &dev_priv->gpu_error;
2362         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2363         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2364         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2365         int ret;
2366
2367         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2368
2369         /*
2370          * Note that there's only one work item which does gpu resets, so we
2371          * need not worry about concurrent gpu resets potentially incrementing
2372          * error->reset_counter twice. We only need to take care of another
2373          * racing irq/hangcheck declaring the gpu dead for a second time. A
2374          * quick check for that is good enough: schedule_work ensures the
2375          * correct ordering between hang detection and this work item, and since
2376          * the reset in-progress bit is only ever set by code outside of this
2377          * work we don't need to worry about any other races.
2378          */
2379         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2380                 DRM_DEBUG_DRIVER("resetting chip\n");
2381                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2382                                    reset_event);
2383
2384                 /*
2385                  * In most cases it's guaranteed that we get here with an RPM
2386                  * reference held, for example because there is a pending GPU
2387                  * request that won't finish until the reset is done. This
2388                  * isn't the case at least when we get here by doing a
2389                  * simulated reset via debugs, so get an RPM reference.
2390                  */
2391                 intel_runtime_pm_get(dev_priv);
2392
2393                 intel_prepare_reset(dev);
2394
2395                 /*
2396                  * All state reset _must_ be completed before we update the
2397                  * reset counter, for otherwise waiters might miss the reset
2398                  * pending state and not properly drop locks, resulting in
2399                  * deadlocks with the reset work.
2400                  */
2401                 ret = i915_reset(dev);
2402
2403                 intel_finish_reset(dev);
2404
2405                 intel_runtime_pm_put(dev_priv);
2406
2407                 if (ret == 0) {
2408                         /*
2409                          * After all the gem state is reset, increment the reset
2410                          * counter and wake up everyone waiting for the reset to
2411                          * complete.
2412                          *
2413                          * Since unlock operations are a one-sided barrier only,
2414                          * we need to insert a barrier here to order any seqno
2415                          * updates before
2416                          * the counter increment.
2417                          */
2418                         smp_mb__before_atomic();
2419                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2420
2421                         kobject_uevent_env(&dev->primary->kdev->kobj,
2422                                            KOBJ_CHANGE, reset_done_event);
2423                 } else {
2424                         atomic_or(I915_WEDGED, &error->reset_counter);
2425                 }
2426
2427                 /*
2428                  * Note: The wake_up also serves as a memory barrier so that
2429                  * waiters see the update value of the reset counter atomic_t.
2430                  */
2431                 i915_error_wake_up(dev_priv, true);
2432         }
2433 }
2434
2435 static void i915_report_and_clear_eir(struct drm_device *dev)
2436 {
2437         struct drm_i915_private *dev_priv = dev->dev_private;
2438         uint32_t instdone[I915_NUM_INSTDONE_REG];
2439         u32 eir = I915_READ(EIR);
2440         int pipe, i;
2441
2442         if (!eir)
2443                 return;
2444
2445         pr_err("render error detected, EIR: 0x%08x\n", eir);
2446
2447         i915_get_extra_instdone(dev, instdone);
2448
2449         if (IS_G4X(dev)) {
2450                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2451                         u32 ipeir = I915_READ(IPEIR_I965);
2452
2453                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2454                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2455                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2456                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2457                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2458                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2459                         I915_WRITE(IPEIR_I965, ipeir);
2460                         POSTING_READ(IPEIR_I965);
2461                 }
2462                 if (eir & GM45_ERROR_PAGE_TABLE) {
2463                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2464                         pr_err("page table error\n");
2465                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2466                         I915_WRITE(PGTBL_ER, pgtbl_err);
2467                         POSTING_READ(PGTBL_ER);
2468                 }
2469         }
2470
2471         if (!IS_GEN2(dev)) {
2472                 if (eir & I915_ERROR_PAGE_TABLE) {
2473                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2474                         pr_err("page table error\n");
2475                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2476                         I915_WRITE(PGTBL_ER, pgtbl_err);
2477                         POSTING_READ(PGTBL_ER);
2478                 }
2479         }
2480
2481         if (eir & I915_ERROR_MEMORY_REFRESH) {
2482                 pr_err("memory refresh error:\n");
2483                 for_each_pipe(dev_priv, pipe)
2484                         pr_err("pipe %c stat: 0x%08x\n",
2485                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2486                 /* pipestat has already been acked */
2487         }
2488         if (eir & I915_ERROR_INSTRUCTION) {
2489                 pr_err("instruction error\n");
2490                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2491                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2492                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2493                 if (INTEL_INFO(dev)->gen < 4) {
2494                         u32 ipeir = I915_READ(IPEIR);
2495
2496                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2497                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2498                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2499                         I915_WRITE(IPEIR, ipeir);
2500                         POSTING_READ(IPEIR);
2501                 } else {
2502                         u32 ipeir = I915_READ(IPEIR_I965);
2503
2504                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2505                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2506                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2507                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2508                         I915_WRITE(IPEIR_I965, ipeir);
2509                         POSTING_READ(IPEIR_I965);
2510                 }
2511         }
2512
2513         I915_WRITE(EIR, eir);
2514         POSTING_READ(EIR);
2515         eir = I915_READ(EIR);
2516         if (eir) {
2517                 /*
2518                  * some errors might have become stuck,
2519                  * mask them.
2520                  */
2521                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2522                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2523                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2524         }
2525 }
2526
2527 /**
2528  * i915_handle_error - handle a gpu error
2529  * @dev: drm device
2530  *
2531  * Do some basic checking of regsiter state at error time and
2532  * dump it to the syslog.  Also call i915_capture_error_state() to make
2533  * sure we get a record and make it available in debugfs.  Fire a uevent
2534  * so userspace knows something bad happened (should trigger collection
2535  * of a ring dump etc.).
2536  */
2537 void i915_handle_error(struct drm_device *dev, bool wedged,
2538                        const char *fmt, ...)
2539 {
2540         struct drm_i915_private *dev_priv = dev->dev_private;
2541         va_list args;
2542         char error_msg[80];
2543
2544         va_start(args, fmt);
2545         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2546         va_end(args);
2547
2548         i915_capture_error_state(dev, wedged, error_msg);
2549         i915_report_and_clear_eir(dev);
2550
2551         if (wedged) {
2552                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2553                                 &dev_priv->gpu_error.reset_counter);
2554
2555                 /*
2556                  * Wakeup waiting processes so that the reset function
2557                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2558                  * various locks. By bumping the reset counter first, the woken
2559                  * processes will see a reset in progress and back off,
2560                  * releasing their locks and then wait for the reset completion.
2561                  * We must do this for _all_ gpu waiters that might hold locks
2562                  * that the reset work needs to acquire.
2563                  *
2564                  * Note: The wake_up serves as the required memory barrier to
2565                  * ensure that the waiters see the updated value of the reset
2566                  * counter atomic_t.
2567                  */
2568                 i915_error_wake_up(dev_priv, false);
2569         }
2570
2571         i915_reset_and_wakeup(dev);
2572 }
2573
2574 /* Called from drm generic code, passed 'crtc' which
2575  * we use as a pipe index
2576  */
2577 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2578 {
2579         struct drm_i915_private *dev_priv = dev->dev_private;
2580         unsigned long irqflags;
2581
2582         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2583         if (INTEL_INFO(dev)->gen >= 4)
2584                 i915_enable_pipestat(dev_priv, pipe,
2585                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2586         else
2587                 i915_enable_pipestat(dev_priv, pipe,
2588                                      PIPE_VBLANK_INTERRUPT_STATUS);
2589         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2590
2591         return 0;
2592 }
2593
2594 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2595 {
2596         struct drm_i915_private *dev_priv = dev->dev_private;
2597         unsigned long irqflags;
2598         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2599                                                      DE_PIPE_VBLANK(pipe);
2600
2601         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2602         ironlake_enable_display_irq(dev_priv, bit);
2603         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2604
2605         return 0;
2606 }
2607
2608 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2609 {
2610         struct drm_i915_private *dev_priv = dev->dev_private;
2611         unsigned long irqflags;
2612
2613         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2614         i915_enable_pipestat(dev_priv, pipe,
2615                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2616         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2617
2618         return 0;
2619 }
2620
2621 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2622 {
2623         struct drm_i915_private *dev_priv = dev->dev_private;
2624         unsigned long irqflags;
2625
2626         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2628         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2629         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2630         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2631         return 0;
2632 }
2633
2634 /* Called from drm generic code, passed 'crtc' which
2635  * we use as a pipe index
2636  */
2637 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2638 {
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         unsigned long irqflags;
2641
2642         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2643         i915_disable_pipestat(dev_priv, pipe,
2644                               PIPE_VBLANK_INTERRUPT_STATUS |
2645                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2646         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2647 }
2648
2649 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2650 {
2651         struct drm_i915_private *dev_priv = dev->dev_private;
2652         unsigned long irqflags;
2653         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2654                                                      DE_PIPE_VBLANK(pipe);
2655
2656         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2657         ironlake_disable_display_irq(dev_priv, bit);
2658         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2659 }
2660
2661 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2662 {
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         unsigned long irqflags;
2665
2666         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2667         i915_disable_pipestat(dev_priv, pipe,
2668                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2669         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2670 }
2671
2672 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2673 {
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         unsigned long irqflags;
2676
2677         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2678         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2679         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2680         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2681         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2682 }
2683
2684 static bool
2685 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2686 {
2687         return (list_empty(&ring->request_list) ||
2688                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2689 }
2690
2691 static bool
2692 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2693 {
2694         if (INTEL_INFO(dev)->gen >= 8) {
2695                 return (ipehr >> 23) == 0x1c;
2696         } else {
2697                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2698                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2699                                  MI_SEMAPHORE_REGISTER);
2700         }
2701 }
2702
2703 static struct intel_engine_cs *
2704 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2705 {
2706         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2707         struct intel_engine_cs *signaller;
2708         int i;
2709
2710         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2711                 for_each_ring(signaller, dev_priv, i) {
2712                         if (ring == signaller)
2713                                 continue;
2714
2715                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2716                                 return signaller;
2717                 }
2718         } else {
2719                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2720
2721                 for_each_ring(signaller, dev_priv, i) {
2722                         if(ring == signaller)
2723                                 continue;
2724
2725                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2726                                 return signaller;
2727                 }
2728         }
2729
2730         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2731                   ring->id, ipehr, offset);
2732
2733         return NULL;
2734 }
2735
2736 static struct intel_engine_cs *
2737 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2738 {
2739         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2740         u32 cmd, ipehr, head;
2741         u64 offset = 0;
2742         int i, backwards;
2743
2744         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2745         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2746                 return NULL;
2747
2748         /*
2749          * HEAD is likely pointing to the dword after the actual command,
2750          * so scan backwards until we find the MBOX. But limit it to just 3
2751          * or 4 dwords depending on the semaphore wait command size.
2752          * Note that we don't care about ACTHD here since that might
2753          * point at at batch, and semaphores are always emitted into the
2754          * ringbuffer itself.
2755          */
2756         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2757         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2758
2759         for (i = backwards; i; --i) {
2760                 /*
2761                  * Be paranoid and presume the hw has gone off into the wild -
2762                  * our ring is smaller than what the hardware (and hence
2763                  * HEAD_ADDR) allows. Also handles wrap-around.
2764                  */
2765                 head &= ring->buffer->size - 1;
2766
2767                 /* This here seems to blow up */
2768                 cmd = ioread32(ring->buffer->virtual_start + head);
2769                 if (cmd == ipehr)
2770                         break;
2771
2772                 head -= 4;
2773         }
2774
2775         if (!i)
2776                 return NULL;
2777
2778         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2779         if (INTEL_INFO(ring->dev)->gen >= 8) {
2780                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2781                 offset <<= 32;
2782                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2783         }
2784         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2785 }
2786
2787 static int semaphore_passed(struct intel_engine_cs *ring)
2788 {
2789         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2790         struct intel_engine_cs *signaller;
2791         u32 seqno;
2792
2793         ring->hangcheck.deadlock++;
2794
2795         signaller = semaphore_waits_for(ring, &seqno);
2796         if (signaller == NULL)
2797                 return -1;
2798
2799         /* Prevent pathological recursion due to driver bugs */
2800         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2801                 return -1;
2802
2803         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2804                 return 1;
2805
2806         /* cursory check for an unkickable deadlock */
2807         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2808             semaphore_passed(signaller) < 0)
2809                 return -1;
2810
2811         return 0;
2812 }
2813
2814 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2815 {
2816         struct intel_engine_cs *ring;
2817         int i;
2818
2819         for_each_ring(ring, dev_priv, i)
2820                 ring->hangcheck.deadlock = 0;
2821 }
2822
2823 static enum intel_ring_hangcheck_action
2824 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2825 {
2826         struct drm_device *dev = ring->dev;
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828         u32 tmp;
2829
2830         if (acthd != ring->hangcheck.acthd) {
2831                 if (acthd > ring->hangcheck.max_acthd) {
2832                         ring->hangcheck.max_acthd = acthd;
2833                         return HANGCHECK_ACTIVE;
2834                 }
2835
2836                 return HANGCHECK_ACTIVE_LOOP;
2837         }
2838
2839         if (IS_GEN2(dev))
2840                 return HANGCHECK_HUNG;
2841
2842         /* Is the chip hanging on a WAIT_FOR_EVENT?
2843          * If so we can simply poke the RB_WAIT bit
2844          * and break the hang. This should work on
2845          * all but the second generation chipsets.
2846          */
2847         tmp = I915_READ_CTL(ring);
2848         if (tmp & RING_WAIT) {
2849                 i915_handle_error(dev, false,
2850                                   "Kicking stuck wait on %s",
2851                                   ring->name);
2852                 I915_WRITE_CTL(ring, tmp);
2853                 return HANGCHECK_KICK;
2854         }
2855
2856         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2857                 switch (semaphore_passed(ring)) {
2858                 default:
2859                         return HANGCHECK_HUNG;
2860                 case 1:
2861                         i915_handle_error(dev, false,
2862                                           "Kicking stuck semaphore on %s",
2863                                           ring->name);
2864                         I915_WRITE_CTL(ring, tmp);
2865                         return HANGCHECK_KICK;
2866                 case 0:
2867                         return HANGCHECK_WAIT;
2868                 }
2869         }
2870
2871         return HANGCHECK_HUNG;
2872 }
2873
2874 /*
2875  * This is called when the chip hasn't reported back with completed
2876  * batchbuffers in a long time. We keep track per ring seqno progress and
2877  * if there are no progress, hangcheck score for that ring is increased.
2878  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2879  * we kick the ring. If we see no progress on three subsequent calls
2880  * we assume chip is wedged and try to fix it by resetting the chip.
2881  */
2882 static void i915_hangcheck_elapsed(struct work_struct *work)
2883 {
2884         struct drm_i915_private *dev_priv =
2885                 container_of(work, typeof(*dev_priv),
2886                              gpu_error.hangcheck_work.work);
2887         struct drm_device *dev = dev_priv->dev;
2888         struct intel_engine_cs *ring;
2889         int i;
2890         int busy_count = 0, rings_hung = 0;
2891         bool stuck[I915_NUM_RINGS] = { 0 };
2892 #define BUSY 1
2893 #define KICK 5
2894 #define HUNG 20
2895
2896         if (!i915.enable_hangcheck)
2897                 return;
2898
2899         for_each_ring(ring, dev_priv, i) {
2900                 u64 acthd;
2901                 u32 seqno;
2902                 bool busy = true;
2903
2904                 semaphore_clear_deadlocks(dev_priv);
2905
2906                 seqno = ring->get_seqno(ring, false);
2907                 acthd = intel_ring_get_active_head(ring);
2908
2909                 if (ring->hangcheck.seqno == seqno) {
2910                         if (ring_idle(ring, seqno)) {
2911                                 ring->hangcheck.action = HANGCHECK_IDLE;
2912
2913                                 if (waitqueue_active(&ring->irq_queue)) {
2914                                         /* Issue a wake-up to catch stuck h/w. */
2915                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2916                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2917                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2918                                                                   ring->name);
2919                                                 else
2920                                                         DRM_INFO("Fake missed irq on %s\n",
2921                                                                  ring->name);
2922                                                 wake_up_all(&ring->irq_queue);
2923                                         }
2924                                         /* Safeguard against driver failure */
2925                                         ring->hangcheck.score += BUSY;
2926                                 } else
2927                                         busy = false;
2928                         } else {
2929                                 /* We always increment the hangcheck score
2930                                  * if the ring is busy and still processing
2931                                  * the same request, so that no single request
2932                                  * can run indefinitely (such as a chain of
2933                                  * batches). The only time we do not increment
2934                                  * the hangcheck score on this ring, if this
2935                                  * ring is in a legitimate wait for another
2936                                  * ring. In that case the waiting ring is a
2937                                  * victim and we want to be sure we catch the
2938                                  * right culprit. Then every time we do kick
2939                                  * the ring, add a small increment to the
2940                                  * score so that we can catch a batch that is
2941                                  * being repeatedly kicked and so responsible
2942                                  * for stalling the machine.
2943                                  */
2944                                 ring->hangcheck.action = ring_stuck(ring,
2945                                                                     acthd);
2946
2947                                 switch (ring->hangcheck.action) {
2948                                 case HANGCHECK_IDLE:
2949                                 case HANGCHECK_WAIT:
2950                                 case HANGCHECK_ACTIVE:
2951                                         break;
2952                                 case HANGCHECK_ACTIVE_LOOP:
2953                                         ring->hangcheck.score += BUSY;
2954                                         break;
2955                                 case HANGCHECK_KICK:
2956                                         ring->hangcheck.score += KICK;
2957                                         break;
2958                                 case HANGCHECK_HUNG:
2959                                         ring->hangcheck.score += HUNG;
2960                                         stuck[i] = true;
2961                                         break;
2962                                 }
2963                         }
2964                 } else {
2965                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2966
2967                         /* Gradually reduce the count so that we catch DoS
2968                          * attempts across multiple batches.
2969                          */
2970                         if (ring->hangcheck.score > 0)
2971                                 ring->hangcheck.score--;
2972
2973                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2974                 }
2975
2976                 ring->hangcheck.seqno = seqno;
2977                 ring->hangcheck.acthd = acthd;
2978                 busy_count += busy;
2979         }
2980
2981         for_each_ring(ring, dev_priv, i) {
2982                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2983                         DRM_INFO("%s on %s\n",
2984                                  stuck[i] ? "stuck" : "no progress",
2985                                  ring->name);
2986                         rings_hung++;
2987                 }
2988         }
2989
2990         if (rings_hung)
2991                 return i915_handle_error(dev, true, "Ring hung");
2992
2993         if (busy_count)
2994                 /* Reset timer case chip hangs without another request
2995                  * being added */
2996                 i915_queue_hangcheck(dev);
2997 }
2998
2999 void i915_queue_hangcheck(struct drm_device *dev)
3000 {
3001         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3002
3003         if (!i915.enable_hangcheck)
3004                 return;
3005
3006         /* Don't continually defer the hangcheck so that it is always run at
3007          * least once after work has been scheduled on any ring. Otherwise,
3008          * we will ignore a hung ring if a second ring is kept busy.
3009          */
3010
3011         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3012                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3013 }
3014
3015 static void ibx_irq_reset(struct drm_device *dev)
3016 {
3017         struct drm_i915_private *dev_priv = dev->dev_private;
3018
3019         if (HAS_PCH_NOP(dev))
3020                 return;
3021
3022         GEN5_IRQ_RESET(SDE);
3023
3024         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3025                 I915_WRITE(SERR_INT, 0xffffffff);
3026 }
3027
3028 /*
3029  * SDEIER is also touched by the interrupt handler to work around missed PCH
3030  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3031  * instead we unconditionally enable all PCH interrupt sources here, but then
3032  * only unmask them as needed with SDEIMR.
3033  *
3034  * This function needs to be called before interrupts are enabled.
3035  */
3036 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3037 {
3038         struct drm_i915_private *dev_priv = dev->dev_private;
3039
3040         if (HAS_PCH_NOP(dev))
3041                 return;
3042
3043         WARN_ON(I915_READ(SDEIER) != 0);
3044         I915_WRITE(SDEIER, 0xffffffff);
3045         POSTING_READ(SDEIER);
3046 }
3047
3048 static void gen5_gt_irq_reset(struct drm_device *dev)
3049 {
3050         struct drm_i915_private *dev_priv = dev->dev_private;
3051
3052         GEN5_IRQ_RESET(GT);
3053         if (INTEL_INFO(dev)->gen >= 6)
3054                 GEN5_IRQ_RESET(GEN6_PM);
3055 }
3056
3057 /* drm_dma.h hooks
3058 */
3059 static void ironlake_irq_reset(struct drm_device *dev)
3060 {
3061         struct drm_i915_private *dev_priv = dev->dev_private;
3062
3063         I915_WRITE(HWSTAM, 0xffffffff);
3064
3065         GEN5_IRQ_RESET(DE);
3066         if (IS_GEN7(dev))
3067                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3068
3069         gen5_gt_irq_reset(dev);
3070
3071         ibx_irq_reset(dev);
3072 }
3073
3074 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3075 {
3076         enum pipe pipe;
3077
3078         I915_WRITE(PORT_HOTPLUG_EN, 0);
3079         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3080
3081         for_each_pipe(dev_priv, pipe)
3082                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3083
3084         GEN5_IRQ_RESET(VLV_);
3085 }
3086
3087 static void valleyview_irq_preinstall(struct drm_device *dev)
3088 {
3089         struct drm_i915_private *dev_priv = dev->dev_private;
3090
3091         /* VLV magic */
3092         I915_WRITE(VLV_IMR, 0);
3093         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3094         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3095         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3096
3097         gen5_gt_irq_reset(dev);
3098
3099         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3100
3101         vlv_display_irq_reset(dev_priv);
3102 }
3103
3104 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3105 {
3106         GEN8_IRQ_RESET_NDX(GT, 0);
3107         GEN8_IRQ_RESET_NDX(GT, 1);
3108         GEN8_IRQ_RESET_NDX(GT, 2);
3109         GEN8_IRQ_RESET_NDX(GT, 3);
3110 }
3111
3112 static void gen8_irq_reset(struct drm_device *dev)
3113 {
3114         struct drm_i915_private *dev_priv = dev->dev_private;
3115         int pipe;
3116
3117         I915_WRITE(GEN8_MASTER_IRQ, 0);
3118         POSTING_READ(GEN8_MASTER_IRQ);
3119
3120         gen8_gt_irq_reset(dev_priv);
3121
3122         for_each_pipe(dev_priv, pipe)
3123                 if (intel_display_power_is_enabled(dev_priv,
3124                                                    POWER_DOMAIN_PIPE(pipe)))
3125                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3126
3127         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3128         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3129         GEN5_IRQ_RESET(GEN8_PCU_);
3130
3131         if (HAS_PCH_SPLIT(dev))
3132                 ibx_irq_reset(dev);
3133 }
3134
3135 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3136                                      unsigned int pipe_mask)
3137 {
3138         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3139
3140         spin_lock_irq(&dev_priv->irq_lock);
3141         if (pipe_mask & 1 << PIPE_A)
3142                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3143                                   dev_priv->de_irq_mask[PIPE_A],
3144                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3145         if (pipe_mask & 1 << PIPE_B)
3146                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3147                                   dev_priv->de_irq_mask[PIPE_B],
3148                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3149         if (pipe_mask & 1 << PIPE_C)
3150                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3151                                   dev_priv->de_irq_mask[PIPE_C],
3152                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3153         spin_unlock_irq(&dev_priv->irq_lock);
3154 }
3155
3156 static void cherryview_irq_preinstall(struct drm_device *dev)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160         I915_WRITE(GEN8_MASTER_IRQ, 0);
3161         POSTING_READ(GEN8_MASTER_IRQ);
3162
3163         gen8_gt_irq_reset(dev_priv);
3164
3165         GEN5_IRQ_RESET(GEN8_PCU_);
3166
3167         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3168
3169         vlv_display_irq_reset(dev_priv);
3170 }
3171
3172 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3173                                   const u32 hpd[HPD_NUM_PINS])
3174 {
3175         struct drm_i915_private *dev_priv = to_i915(dev);
3176         struct intel_encoder *encoder;
3177         u32 enabled_irqs = 0;
3178
3179         for_each_intel_encoder(dev, encoder)
3180                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3181                         enabled_irqs |= hpd[encoder->hpd_pin];
3182
3183         return enabled_irqs;
3184 }
3185
3186 static void ibx_hpd_irq_setup(struct drm_device *dev)
3187 {
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         u32 hotplug_irqs, hotplug, enabled_irqs;
3190
3191         if (HAS_PCH_IBX(dev)) {
3192                 hotplug_irqs = SDE_HOTPLUG_MASK;
3193                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3194         } else {
3195                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3196                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3197         }
3198
3199         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3200
3201         /*
3202          * Enable digital hotplug on the PCH, and configure the DP short pulse
3203          * duration to 2ms (which is the minimum in the Display Port spec).
3204          * The pulse duration bits are reserved on LPT+.
3205          */
3206         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3207         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3208         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3209         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3210         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3211         /*
3212          * When CPU and PCH are on the same package, port A
3213          * HPD must be enabled in both north and south.
3214          */
3215         if (HAS_PCH_LPT_LP(dev))
3216                 hotplug |= PORTA_HOTPLUG_ENABLE;
3217         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3218 }
3219
3220 static void spt_hpd_irq_setup(struct drm_device *dev)
3221 {
3222         struct drm_i915_private *dev_priv = dev->dev_private;
3223         u32 hotplug_irqs, hotplug, enabled_irqs;
3224
3225         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3226         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3227
3228         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3229
3230         /* Enable digital hotplug on the PCH */
3231         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3232         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3233                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3234         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3235
3236         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3237         hotplug |= PORTE_HOTPLUG_ENABLE;
3238         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3239 }
3240
3241 static void ilk_hpd_irq_setup(struct drm_device *dev)
3242 {
3243         struct drm_i915_private *dev_priv = dev->dev_private;
3244         u32 hotplug_irqs, hotplug, enabled_irqs;
3245
3246         if (INTEL_INFO(dev)->gen >= 8) {
3247                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3248                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3249
3250                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3251         } else if (INTEL_INFO(dev)->gen >= 7) {
3252                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3253                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3254
3255                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3256         } else {
3257                 hotplug_irqs = DE_DP_A_HOTPLUG;
3258                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3259
3260                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3261         }
3262
3263         /*
3264          * Enable digital hotplug on the CPU, and configure the DP short pulse
3265          * duration to 2ms (which is the minimum in the Display Port spec)
3266          * The pulse duration bits are reserved on HSW+.
3267          */
3268         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3269         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3270         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3271         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3272
3273         ibx_hpd_irq_setup(dev);
3274 }
3275
3276 static void bxt_hpd_irq_setup(struct drm_device *dev)
3277 {
3278         struct drm_i915_private *dev_priv = dev->dev_private;
3279         u32 hotplug_irqs, hotplug, enabled_irqs;
3280
3281         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3282         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3283
3284         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3285
3286         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3287         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3288                 PORTA_HOTPLUG_ENABLE;
3289         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3290 }
3291
3292 static void ibx_irq_postinstall(struct drm_device *dev)
3293 {
3294         struct drm_i915_private *dev_priv = dev->dev_private;
3295         u32 mask;
3296
3297         if (HAS_PCH_NOP(dev))
3298                 return;
3299
3300         if (HAS_PCH_IBX(dev))
3301                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3302         else
3303                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3304
3305         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3306         I915_WRITE(SDEIMR, ~mask);
3307 }
3308
3309 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3310 {
3311         struct drm_i915_private *dev_priv = dev->dev_private;
3312         u32 pm_irqs, gt_irqs;
3313
3314         pm_irqs = gt_irqs = 0;
3315
3316         dev_priv->gt_irq_mask = ~0;
3317         if (HAS_L3_DPF(dev)) {
3318                 /* L3 parity interrupt is always unmasked. */
3319                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3320                 gt_irqs |= GT_PARITY_ERROR(dev);
3321         }
3322
3323         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3324         if (IS_GEN5(dev)) {
3325                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3326                            ILK_BSD_USER_INTERRUPT;
3327         } else {
3328                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3329         }
3330
3331         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3332
3333         if (INTEL_INFO(dev)->gen >= 6) {
3334                 /*
3335                  * RPS interrupts will get enabled/disabled on demand when RPS
3336                  * itself is enabled/disabled.
3337                  */
3338                 if (HAS_VEBOX(dev))
3339                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3340
3341                 dev_priv->pm_irq_mask = 0xffffffff;
3342                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3343         }
3344 }
3345
3346 static int ironlake_irq_postinstall(struct drm_device *dev)
3347 {
3348         struct drm_i915_private *dev_priv = dev->dev_private;
3349         u32 display_mask, extra_mask;
3350
3351         if (INTEL_INFO(dev)->gen >= 7) {
3352                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3353                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3354                                 DE_PLANEB_FLIP_DONE_IVB |
3355                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3356                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3357                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3358                               DE_DP_A_HOTPLUG_IVB);
3359         } else {
3360                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3361                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3362                                 DE_AUX_CHANNEL_A |
3363                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3364                                 DE_POISON);
3365                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3366                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3367                               DE_DP_A_HOTPLUG);
3368         }
3369
3370         dev_priv->irq_mask = ~display_mask;
3371
3372         I915_WRITE(HWSTAM, 0xeffe);
3373
3374         ibx_irq_pre_postinstall(dev);
3375
3376         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3377
3378         gen5_gt_irq_postinstall(dev);
3379
3380         ibx_irq_postinstall(dev);
3381
3382         if (IS_IRONLAKE_M(dev)) {
3383                 /* Enable PCU event interrupts
3384                  *
3385                  * spinlocking not required here for correctness since interrupt
3386                  * setup is guaranteed to run in single-threaded context. But we
3387                  * need it to make the assert_spin_locked happy. */
3388                 spin_lock_irq(&dev_priv->irq_lock);
3389                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3390                 spin_unlock_irq(&dev_priv->irq_lock);
3391         }
3392
3393         return 0;
3394 }
3395
3396 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3397 {
3398         u32 pipestat_mask;
3399         u32 iir_mask;
3400         enum pipe pipe;
3401
3402         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3403                         PIPE_FIFO_UNDERRUN_STATUS;
3404
3405         for_each_pipe(dev_priv, pipe)
3406                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3407         POSTING_READ(PIPESTAT(PIPE_A));
3408
3409         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3410                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3411
3412         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3413         for_each_pipe(dev_priv, pipe)
3414                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3415
3416         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3417                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3418                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3419         if (IS_CHERRYVIEW(dev_priv))
3420                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3421         dev_priv->irq_mask &= ~iir_mask;
3422
3423         I915_WRITE(VLV_IIR, iir_mask);
3424         I915_WRITE(VLV_IIR, iir_mask);
3425         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3426         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3427         POSTING_READ(VLV_IMR);
3428 }
3429
3430 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3431 {
3432         u32 pipestat_mask;
3433         u32 iir_mask;
3434         enum pipe pipe;
3435
3436         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3437                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3438                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3439         if (IS_CHERRYVIEW(dev_priv))
3440                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3441
3442         dev_priv->irq_mask |= iir_mask;
3443         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3444         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3445         I915_WRITE(VLV_IIR, iir_mask);
3446         I915_WRITE(VLV_IIR, iir_mask);
3447         POSTING_READ(VLV_IIR);
3448
3449         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3450                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3451
3452         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3453         for_each_pipe(dev_priv, pipe)
3454                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3455
3456         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3457                         PIPE_FIFO_UNDERRUN_STATUS;
3458
3459         for_each_pipe(dev_priv, pipe)
3460                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3461         POSTING_READ(PIPESTAT(PIPE_A));
3462 }
3463
3464 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3465 {
3466         assert_spin_locked(&dev_priv->irq_lock);
3467
3468         if (dev_priv->display_irqs_enabled)
3469                 return;
3470
3471         dev_priv->display_irqs_enabled = true;
3472
3473         if (intel_irqs_enabled(dev_priv))
3474                 valleyview_display_irqs_install(dev_priv);
3475 }
3476
3477 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3478 {
3479         assert_spin_locked(&dev_priv->irq_lock);
3480
3481         if (!dev_priv->display_irqs_enabled)
3482                 return;
3483
3484         dev_priv->display_irqs_enabled = false;
3485
3486         if (intel_irqs_enabled(dev_priv))
3487                 valleyview_display_irqs_uninstall(dev_priv);
3488 }
3489
3490 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3491 {
3492         dev_priv->irq_mask = ~0;
3493
3494         I915_WRITE(PORT_HOTPLUG_EN, 0);
3495         POSTING_READ(PORT_HOTPLUG_EN);
3496
3497         I915_WRITE(VLV_IIR, 0xffffffff);
3498         I915_WRITE(VLV_IIR, 0xffffffff);
3499         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3500         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3501         POSTING_READ(VLV_IMR);
3502
3503         /* Interrupt setup is already guaranteed to be single-threaded, this is
3504          * just to make the assert_spin_locked check happy. */
3505         spin_lock_irq(&dev_priv->irq_lock);
3506         if (dev_priv->display_irqs_enabled)
3507                 valleyview_display_irqs_install(dev_priv);
3508         spin_unlock_irq(&dev_priv->irq_lock);
3509 }
3510
3511 static int valleyview_irq_postinstall(struct drm_device *dev)
3512 {
3513         struct drm_i915_private *dev_priv = dev->dev_private;
3514
3515         vlv_display_irq_postinstall(dev_priv);
3516
3517         gen5_gt_irq_postinstall(dev);
3518
3519         /* ack & enable invalid PTE error interrupts */
3520 #if 0 /* FIXME: add support to irq handler for checking these bits */
3521         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3522         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3523 #endif
3524
3525         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3526
3527         return 0;
3528 }
3529
3530 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3531 {
3532         /* These are interrupts we'll toggle with the ring mask register */
3533         uint32_t gt_interrupts[] = {
3534                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3535                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3536                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3537                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3538                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3539                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3540                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3541                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3542                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3543                 0,
3544                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3545                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3546                 };
3547
3548         dev_priv->pm_irq_mask = 0xffffffff;
3549         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3550         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3551         /*
3552          * RPS interrupts will get enabled/disabled on demand when RPS itself
3553          * is enabled/disabled.
3554          */
3555         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3556         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3557 }
3558
3559 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3562         uint32_t de_pipe_enables;
3563         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3564         u32 de_port_enables;
3565         enum pipe pipe;
3566
3567         if (INTEL_INFO(dev_priv)->gen >= 9) {
3568                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3569                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3570                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3571                                   GEN9_AUX_CHANNEL_D;
3572                 if (IS_BROXTON(dev_priv))
3573                         de_port_masked |= BXT_DE_PORT_GMBUS;
3574         } else {
3575                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3576                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3577         }
3578
3579         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3580                                            GEN8_PIPE_FIFO_UNDERRUN;
3581
3582         de_port_enables = de_port_masked;
3583         if (IS_BROXTON(dev_priv))
3584                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3585         else if (IS_BROADWELL(dev_priv))
3586                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3587
3588         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3589         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3590         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3591
3592         for_each_pipe(dev_priv, pipe)
3593                 if (intel_display_power_is_enabled(dev_priv,
3594                                 POWER_DOMAIN_PIPE(pipe)))
3595                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3596                                           dev_priv->de_irq_mask[pipe],
3597                                           de_pipe_enables);
3598
3599         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3600 }
3601
3602 static int gen8_irq_postinstall(struct drm_device *dev)
3603 {
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605
3606         if (HAS_PCH_SPLIT(dev))
3607                 ibx_irq_pre_postinstall(dev);
3608
3609         gen8_gt_irq_postinstall(dev_priv);
3610         gen8_de_irq_postinstall(dev_priv);
3611
3612         if (HAS_PCH_SPLIT(dev))
3613                 ibx_irq_postinstall(dev);
3614
3615         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3616         POSTING_READ(GEN8_MASTER_IRQ);
3617
3618         return 0;
3619 }
3620
3621 static int cherryview_irq_postinstall(struct drm_device *dev)
3622 {
3623         struct drm_i915_private *dev_priv = dev->dev_private;
3624
3625         vlv_display_irq_postinstall(dev_priv);
3626
3627         gen8_gt_irq_postinstall(dev_priv);
3628
3629         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3630         POSTING_READ(GEN8_MASTER_IRQ);
3631
3632         return 0;
3633 }
3634
3635 static void gen8_irq_uninstall(struct drm_device *dev)
3636 {
3637         struct drm_i915_private *dev_priv = dev->dev_private;
3638
3639         if (!dev_priv)
3640                 return;
3641
3642         gen8_irq_reset(dev);
3643 }
3644
3645 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3646 {
3647         /* Interrupt setup is already guaranteed to be single-threaded, this is
3648          * just to make the assert_spin_locked check happy. */
3649         spin_lock_irq(&dev_priv->irq_lock);
3650         if (dev_priv->display_irqs_enabled)
3651                 valleyview_display_irqs_uninstall(dev_priv);
3652         spin_unlock_irq(&dev_priv->irq_lock);
3653
3654         vlv_display_irq_reset(dev_priv);
3655
3656         dev_priv->irq_mask = ~0;
3657 }
3658
3659 static void valleyview_irq_uninstall(struct drm_device *dev)
3660 {
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662
3663         if (!dev_priv)
3664                 return;
3665
3666         I915_WRITE(VLV_MASTER_IER, 0);
3667
3668         gen5_gt_irq_reset(dev);
3669
3670         I915_WRITE(HWSTAM, 0xffffffff);
3671
3672         vlv_display_irq_uninstall(dev_priv);
3673 }
3674
3675 static void cherryview_irq_uninstall(struct drm_device *dev)
3676 {
3677         struct drm_i915_private *dev_priv = dev->dev_private;
3678
3679         if (!dev_priv)
3680                 return;
3681
3682         I915_WRITE(GEN8_MASTER_IRQ, 0);
3683         POSTING_READ(GEN8_MASTER_IRQ);
3684
3685         gen8_gt_irq_reset(dev_priv);
3686
3687         GEN5_IRQ_RESET(GEN8_PCU_);
3688
3689         vlv_display_irq_uninstall(dev_priv);
3690 }
3691
3692 static void ironlake_irq_uninstall(struct drm_device *dev)
3693 {
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695
3696         if (!dev_priv)
3697                 return;
3698
3699         ironlake_irq_reset(dev);
3700 }
3701
3702 static void i8xx_irq_preinstall(struct drm_device * dev)
3703 {
3704         struct drm_i915_private *dev_priv = dev->dev_private;
3705         int pipe;
3706
3707         for_each_pipe(dev_priv, pipe)
3708                 I915_WRITE(PIPESTAT(pipe), 0);
3709         I915_WRITE16(IMR, 0xffff);
3710         I915_WRITE16(IER, 0x0);
3711         POSTING_READ16(IER);
3712 }
3713
3714 static int i8xx_irq_postinstall(struct drm_device *dev)
3715 {
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717
3718         I915_WRITE16(EMR,
3719                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3720
3721         /* Unmask the interrupts that we always want on. */
3722         dev_priv->irq_mask =
3723                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3724                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3725                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3726                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3727         I915_WRITE16(IMR, dev_priv->irq_mask);
3728
3729         I915_WRITE16(IER,
3730                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3731                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3732                      I915_USER_INTERRUPT);
3733         POSTING_READ16(IER);
3734
3735         /* Interrupt setup is already guaranteed to be single-threaded, this is
3736          * just to make the assert_spin_locked check happy. */
3737         spin_lock_irq(&dev_priv->irq_lock);
3738         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3739         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3740         spin_unlock_irq(&dev_priv->irq_lock);
3741
3742         return 0;
3743 }
3744
3745 /*
3746  * Returns true when a page flip has completed.
3747  */
3748 static bool i8xx_handle_vblank(struct drm_device *dev,
3749                                int plane, int pipe, u32 iir)
3750 {
3751         struct drm_i915_private *dev_priv = dev->dev_private;
3752         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3753
3754         if (!intel_pipe_handle_vblank(dev, pipe))
3755                 return false;
3756
3757         if ((iir & flip_pending) == 0)
3758                 goto check_page_flip;
3759
3760         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3761          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3762          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3763          * the flip is completed (no longer pending). Since this doesn't raise
3764          * an interrupt per se, we watch for the change at vblank.
3765          */
3766         if (I915_READ16(ISR) & flip_pending)
3767                 goto check_page_flip;
3768
3769         intel_prepare_page_flip(dev, plane);
3770         intel_finish_page_flip(dev, pipe);
3771         return true;
3772
3773 check_page_flip:
3774         intel_check_page_flip(dev, pipe);
3775         return false;
3776 }
3777
3778 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3779 {
3780         struct drm_device *dev = arg;
3781         struct drm_i915_private *dev_priv = dev->dev_private;
3782         u16 iir, new_iir;
3783         u32 pipe_stats[2];
3784         int pipe;
3785         u16 flip_mask =
3786                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3787                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3788
3789         if (!intel_irqs_enabled(dev_priv))
3790                 return IRQ_NONE;
3791
3792         iir = I915_READ16(IIR);
3793         if (iir == 0)
3794                 return IRQ_NONE;
3795
3796         while (iir & ~flip_mask) {
3797                 /* Can't rely on pipestat interrupt bit in iir as it might
3798                  * have been cleared after the pipestat interrupt was received.
3799                  * It doesn't set the bit in iir again, but it still produces
3800                  * interrupts (for non-MSI).
3801                  */
3802                 spin_lock(&dev_priv->irq_lock);
3803                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3804                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3805
3806                 for_each_pipe(dev_priv, pipe) {
3807                         int reg = PIPESTAT(pipe);
3808                         pipe_stats[pipe] = I915_READ(reg);
3809
3810                         /*
3811                          * Clear the PIPE*STAT regs before the IIR
3812                          */
3813                         if (pipe_stats[pipe] & 0x8000ffff)
3814                                 I915_WRITE(reg, pipe_stats[pipe]);
3815                 }
3816                 spin_unlock(&dev_priv->irq_lock);
3817
3818                 I915_WRITE16(IIR, iir & ~flip_mask);
3819                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3820
3821                 if (iir & I915_USER_INTERRUPT)
3822                         notify_ring(&dev_priv->ring[RCS]);
3823
3824                 for_each_pipe(dev_priv, pipe) {
3825                         int plane = pipe;
3826                         if (HAS_FBC(dev))
3827                                 plane = !plane;
3828
3829                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3830                             i8xx_handle_vblank(dev, plane, pipe, iir))
3831                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3832
3833                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3834                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3835
3836                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3837                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3838                                                                     pipe);
3839                 }
3840
3841                 iir = new_iir;
3842         }
3843
3844         return IRQ_HANDLED;
3845 }
3846
3847 static void i8xx_irq_uninstall(struct drm_device * dev)
3848 {
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850         int pipe;
3851
3852         for_each_pipe(dev_priv, pipe) {
3853                 /* Clear enable bits; then clear status bits */
3854                 I915_WRITE(PIPESTAT(pipe), 0);
3855                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3856         }
3857         I915_WRITE16(IMR, 0xffff);
3858         I915_WRITE16(IER, 0x0);
3859         I915_WRITE16(IIR, I915_READ16(IIR));
3860 }
3861
3862 static void i915_irq_preinstall(struct drm_device * dev)
3863 {
3864         struct drm_i915_private *dev_priv = dev->dev_private;
3865         int pipe;
3866
3867         if (I915_HAS_HOTPLUG(dev)) {
3868                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3869                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3870         }
3871
3872         I915_WRITE16(HWSTAM, 0xeffe);
3873         for_each_pipe(dev_priv, pipe)
3874                 I915_WRITE(PIPESTAT(pipe), 0);
3875         I915_WRITE(IMR, 0xffffffff);
3876         I915_WRITE(IER, 0x0);
3877         POSTING_READ(IER);
3878 }
3879
3880 static int i915_irq_postinstall(struct drm_device *dev)
3881 {
3882         struct drm_i915_private *dev_priv = dev->dev_private;
3883         u32 enable_mask;
3884
3885         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3886
3887         /* Unmask the interrupts that we always want on. */
3888         dev_priv->irq_mask =
3889                 ~(I915_ASLE_INTERRUPT |
3890                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3891                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3892                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3893                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3894
3895         enable_mask =
3896                 I915_ASLE_INTERRUPT |
3897                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3898                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3899                 I915_USER_INTERRUPT;
3900
3901         if (I915_HAS_HOTPLUG(dev)) {
3902                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3903                 POSTING_READ(PORT_HOTPLUG_EN);
3904
3905                 /* Enable in IER... */
3906                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3907                 /* and unmask in IMR */
3908                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3909         }
3910
3911         I915_WRITE(IMR, dev_priv->irq_mask);
3912         I915_WRITE(IER, enable_mask);
3913         POSTING_READ(IER);
3914
3915         i915_enable_asle_pipestat(dev);
3916
3917         /* Interrupt setup is already guaranteed to be single-threaded, this is
3918          * just to make the assert_spin_locked check happy. */
3919         spin_lock_irq(&dev_priv->irq_lock);
3920         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3921         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3922         spin_unlock_irq(&dev_priv->irq_lock);
3923
3924         return 0;
3925 }
3926
3927 /*
3928  * Returns true when a page flip has completed.
3929  */
3930 static bool i915_handle_vblank(struct drm_device *dev,
3931                                int plane, int pipe, u32 iir)
3932 {
3933         struct drm_i915_private *dev_priv = dev->dev_private;
3934         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3935
3936         if (!intel_pipe_handle_vblank(dev, pipe))
3937                 return false;
3938
3939         if ((iir & flip_pending) == 0)
3940                 goto check_page_flip;
3941
3942         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3943          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3944          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3945          * the flip is completed (no longer pending). Since this doesn't raise
3946          * an interrupt per se, we watch for the change at vblank.
3947          */
3948         if (I915_READ(ISR) & flip_pending)
3949                 goto check_page_flip;
3950
3951         intel_prepare_page_flip(dev, plane);
3952         intel_finish_page_flip(dev, pipe);
3953         return true;
3954
3955 check_page_flip:
3956         intel_check_page_flip(dev, pipe);
3957         return false;
3958 }
3959
3960 static irqreturn_t i915_irq_handler(int irq, void *arg)
3961 {
3962         struct drm_device *dev = arg;
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3965         u32 flip_mask =
3966                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3967                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3968         int pipe, ret = IRQ_NONE;
3969
3970         if (!intel_irqs_enabled(dev_priv))
3971                 return IRQ_NONE;
3972
3973         iir = I915_READ(IIR);
3974         do {
3975                 bool irq_received = (iir & ~flip_mask) != 0;
3976                 bool blc_event = false;
3977
3978                 /* Can't rely on pipestat interrupt bit in iir as it might
3979                  * have been cleared after the pipestat interrupt was received.
3980                  * It doesn't set the bit in iir again, but it still produces
3981                  * interrupts (for non-MSI).
3982                  */
3983                 spin_lock(&dev_priv->irq_lock);
3984                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3985                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3986
3987                 for_each_pipe(dev_priv, pipe) {
3988                         int reg = PIPESTAT(pipe);
3989                         pipe_stats[pipe] = I915_READ(reg);
3990
3991                         /* Clear the PIPE*STAT regs before the IIR */
3992                         if (pipe_stats[pipe] & 0x8000ffff) {
3993                                 I915_WRITE(reg, pipe_stats[pipe]);
3994                                 irq_received = true;
3995                         }
3996                 }
3997                 spin_unlock(&dev_priv->irq_lock);
3998
3999                 if (!irq_received)
4000                         break;
4001
4002                 /* Consume port.  Then clear IIR or we'll miss events */
4003                 if (I915_HAS_HOTPLUG(dev) &&
4004                     iir & I915_DISPLAY_PORT_INTERRUPT)
4005                         i9xx_hpd_irq_handler(dev);
4006
4007                 I915_WRITE(IIR, iir & ~flip_mask);
4008                 new_iir = I915_READ(IIR); /* Flush posted writes */
4009
4010                 if (iir & I915_USER_INTERRUPT)
4011                         notify_ring(&dev_priv->ring[RCS]);
4012
4013                 for_each_pipe(dev_priv, pipe) {
4014                         int plane = pipe;
4015                         if (HAS_FBC(dev))
4016                                 plane = !plane;
4017
4018                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4019                             i915_handle_vblank(dev, plane, pipe, iir))
4020                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4021
4022                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4023                                 blc_event = true;
4024
4025                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4026                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4027
4028                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4029                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4030                                                                     pipe);
4031                 }
4032
4033                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4034                         intel_opregion_asle_intr(dev);
4035
4036                 /* With MSI, interrupts are only generated when iir
4037                  * transitions from zero to nonzero.  If another bit got
4038                  * set while we were handling the existing iir bits, then
4039                  * we would never get another interrupt.
4040                  *
4041                  * This is fine on non-MSI as well, as if we hit this path
4042                  * we avoid exiting the interrupt handler only to generate
4043                  * another one.
4044                  *
4045                  * Note that for MSI this could cause a stray interrupt report
4046                  * if an interrupt landed in the time between writing IIR and
4047                  * the posting read.  This should be rare enough to never
4048                  * trigger the 99% of 100,000 interrupts test for disabling
4049                  * stray interrupts.
4050                  */
4051                 ret = IRQ_HANDLED;
4052                 iir = new_iir;
4053         } while (iir & ~flip_mask);
4054
4055         return ret;
4056 }
4057
4058 static void i915_irq_uninstall(struct drm_device * dev)
4059 {
4060         struct drm_i915_private *dev_priv = dev->dev_private;
4061         int pipe;
4062
4063         if (I915_HAS_HOTPLUG(dev)) {
4064                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4065                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4066         }
4067
4068         I915_WRITE16(HWSTAM, 0xffff);
4069         for_each_pipe(dev_priv, pipe) {
4070                 /* Clear enable bits; then clear status bits */
4071                 I915_WRITE(PIPESTAT(pipe), 0);
4072                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4073         }
4074         I915_WRITE(IMR, 0xffffffff);
4075         I915_WRITE(IER, 0x0);
4076
4077         I915_WRITE(IIR, I915_READ(IIR));
4078 }
4079
4080 static void i965_irq_preinstall(struct drm_device * dev)
4081 {
4082         struct drm_i915_private *dev_priv = dev->dev_private;
4083         int pipe;
4084
4085         I915_WRITE(PORT_HOTPLUG_EN, 0);
4086         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4087
4088         I915_WRITE(HWSTAM, 0xeffe);
4089         for_each_pipe(dev_priv, pipe)
4090                 I915_WRITE(PIPESTAT(pipe), 0);
4091         I915_WRITE(IMR, 0xffffffff);
4092         I915_WRITE(IER, 0x0);
4093         POSTING_READ(IER);
4094 }
4095
4096 static int i965_irq_postinstall(struct drm_device *dev)
4097 {
4098         struct drm_i915_private *dev_priv = dev->dev_private;
4099         u32 enable_mask;
4100         u32 error_mask;
4101
4102         /* Unmask the interrupts that we always want on. */
4103         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4104                                I915_DISPLAY_PORT_INTERRUPT |
4105                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4106                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4107                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4108                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4109                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4110
4111         enable_mask = ~dev_priv->irq_mask;
4112         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4113                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4114         enable_mask |= I915_USER_INTERRUPT;
4115
4116         if (IS_G4X(dev))
4117                 enable_mask |= I915_BSD_USER_INTERRUPT;
4118
4119         /* Interrupt setup is already guaranteed to be single-threaded, this is
4120          * just to make the assert_spin_locked check happy. */
4121         spin_lock_irq(&dev_priv->irq_lock);
4122         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4123         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4124         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4125         spin_unlock_irq(&dev_priv->irq_lock);
4126
4127         /*
4128          * Enable some error detection, note the instruction error mask
4129          * bit is reserved, so we leave it masked.
4130          */
4131         if (IS_G4X(dev)) {
4132                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4133                                GM45_ERROR_MEM_PRIV |
4134                                GM45_ERROR_CP_PRIV |
4135                                I915_ERROR_MEMORY_REFRESH);
4136         } else {
4137                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4138                                I915_ERROR_MEMORY_REFRESH);
4139         }
4140         I915_WRITE(EMR, error_mask);
4141
4142         I915_WRITE(IMR, dev_priv->irq_mask);
4143         I915_WRITE(IER, enable_mask);
4144         POSTING_READ(IER);
4145
4146         I915_WRITE(PORT_HOTPLUG_EN, 0);
4147         POSTING_READ(PORT_HOTPLUG_EN);
4148
4149         i915_enable_asle_pipestat(dev);
4150
4151         return 0;
4152 }
4153
4154 static void i915_hpd_irq_setup(struct drm_device *dev)
4155 {
4156         struct drm_i915_private *dev_priv = dev->dev_private;
4157         u32 hotplug_en;
4158
4159         assert_spin_locked(&dev_priv->irq_lock);
4160
4161         hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4162         hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4163         /* Note HDMI and DP share hotplug bits */
4164         /* enable bits are the same for all generations */
4165         hotplug_en |= intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4166         /* Programming the CRT detection parameters tends
4167            to generate a spurious hotplug event about three
4168            seconds later.  So just do it once.
4169         */
4170         if (IS_G4X(dev))
4171                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4172         hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4173         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4174
4175         /* Ignore TV since it's buggy */
4176         I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4177 }
4178
4179 static irqreturn_t i965_irq_handler(int irq, void *arg)
4180 {
4181         struct drm_device *dev = arg;
4182         struct drm_i915_private *dev_priv = dev->dev_private;
4183         u32 iir, new_iir;
4184         u32 pipe_stats[I915_MAX_PIPES];
4185         int ret = IRQ_NONE, pipe;
4186         u32 flip_mask =
4187                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4188                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4189
4190         if (!intel_irqs_enabled(dev_priv))
4191                 return IRQ_NONE;
4192
4193         iir = I915_READ(IIR);
4194
4195         for (;;) {
4196                 bool irq_received = (iir & ~flip_mask) != 0;
4197                 bool blc_event = false;
4198
4199                 /* Can't rely on pipestat interrupt bit in iir as it might
4200                  * have been cleared after the pipestat interrupt was received.
4201                  * It doesn't set the bit in iir again, but it still produces
4202                  * interrupts (for non-MSI).
4203                  */
4204                 spin_lock(&dev_priv->irq_lock);
4205                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4206                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4207
4208                 for_each_pipe(dev_priv, pipe) {
4209                         int reg = PIPESTAT(pipe);
4210                         pipe_stats[pipe] = I915_READ(reg);
4211
4212                         /*
4213                          * Clear the PIPE*STAT regs before the IIR
4214                          */
4215                         if (pipe_stats[pipe] & 0x8000ffff) {
4216                                 I915_WRITE(reg, pipe_stats[pipe]);
4217                                 irq_received = true;
4218                         }
4219                 }
4220                 spin_unlock(&dev_priv->irq_lock);
4221
4222                 if (!irq_received)
4223                         break;
4224
4225                 ret = IRQ_HANDLED;
4226
4227                 /* Consume port.  Then clear IIR or we'll miss events */
4228                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4229                         i9xx_hpd_irq_handler(dev);
4230
4231                 I915_WRITE(IIR, iir & ~flip_mask);
4232                 new_iir = I915_READ(IIR); /* Flush posted writes */
4233
4234                 if (iir & I915_USER_INTERRUPT)
4235                         notify_ring(&dev_priv->ring[RCS]);
4236                 if (iir & I915_BSD_USER_INTERRUPT)
4237                         notify_ring(&dev_priv->ring[VCS]);
4238
4239                 for_each_pipe(dev_priv, pipe) {
4240                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4241                             i915_handle_vblank(dev, pipe, pipe, iir))
4242                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4243
4244                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4245                                 blc_event = true;
4246
4247                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4248                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4249
4250                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4251                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4252                 }
4253
4254                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4255                         intel_opregion_asle_intr(dev);
4256
4257                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4258                         gmbus_irq_handler(dev);
4259
4260                 /* With MSI, interrupts are only generated when iir
4261                  * transitions from zero to nonzero.  If another bit got
4262                  * set while we were handling the existing iir bits, then
4263                  * we would never get another interrupt.
4264                  *
4265                  * This is fine on non-MSI as well, as if we hit this path
4266                  * we avoid exiting the interrupt handler only to generate
4267                  * another one.
4268                  *
4269                  * Note that for MSI this could cause a stray interrupt report
4270                  * if an interrupt landed in the time between writing IIR and
4271                  * the posting read.  This should be rare enough to never
4272                  * trigger the 99% of 100,000 interrupts test for disabling
4273                  * stray interrupts.
4274                  */
4275                 iir = new_iir;
4276         }
4277
4278         return ret;
4279 }
4280
4281 static void i965_irq_uninstall(struct drm_device * dev)
4282 {
4283         struct drm_i915_private *dev_priv = dev->dev_private;
4284         int pipe;
4285
4286         if (!dev_priv)
4287                 return;
4288
4289         I915_WRITE(PORT_HOTPLUG_EN, 0);
4290         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4291
4292         I915_WRITE(HWSTAM, 0xffffffff);
4293         for_each_pipe(dev_priv, pipe)
4294                 I915_WRITE(PIPESTAT(pipe), 0);
4295         I915_WRITE(IMR, 0xffffffff);
4296         I915_WRITE(IER, 0x0);
4297
4298         for_each_pipe(dev_priv, pipe)
4299                 I915_WRITE(PIPESTAT(pipe),
4300                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4301         I915_WRITE(IIR, I915_READ(IIR));
4302 }
4303
4304 /**
4305  * intel_irq_init - initializes irq support
4306  * @dev_priv: i915 device instance
4307  *
4308  * This function initializes all the irq support including work items, timers
4309  * and all the vtables. It does not setup the interrupt itself though.
4310  */
4311 void intel_irq_init(struct drm_i915_private *dev_priv)
4312 {
4313         struct drm_device *dev = dev_priv->dev;
4314
4315         intel_hpd_init_work(dev_priv);
4316
4317         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4318         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4319
4320         /* Let's track the enabled rps events */
4321         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4322                 /* WaGsvRC0ResidencyMethod:vlv */
4323                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4324         else
4325                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4326
4327         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4328                           i915_hangcheck_elapsed);
4329
4330         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4331
4332         if (IS_GEN2(dev_priv)) {
4333                 dev->max_vblank_count = 0;
4334                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4335         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4336                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4337                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4338         } else {
4339                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4340                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4341         }
4342
4343         /*
4344          * Opt out of the vblank disable timer on everything except gen2.
4345          * Gen2 doesn't have a hardware frame counter and so depends on
4346          * vblank interrupts to produce sane vblank seuquence numbers.
4347          */
4348         if (!IS_GEN2(dev_priv))
4349                 dev->vblank_disable_immediate = true;
4350
4351         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4352         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4353
4354         if (IS_CHERRYVIEW(dev_priv)) {
4355                 dev->driver->irq_handler = cherryview_irq_handler;
4356                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4357                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4358                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4359                 dev->driver->enable_vblank = valleyview_enable_vblank;
4360                 dev->driver->disable_vblank = valleyview_disable_vblank;
4361                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4362         } else if (IS_VALLEYVIEW(dev_priv)) {
4363                 dev->driver->irq_handler = valleyview_irq_handler;
4364                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4365                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4366                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4367                 dev->driver->enable_vblank = valleyview_enable_vblank;
4368                 dev->driver->disable_vblank = valleyview_disable_vblank;
4369                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4370         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4371                 dev->driver->irq_handler = gen8_irq_handler;
4372                 dev->driver->irq_preinstall = gen8_irq_reset;
4373                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4374                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4375                 dev->driver->enable_vblank = gen8_enable_vblank;
4376                 dev->driver->disable_vblank = gen8_disable_vblank;
4377                 if (IS_BROXTON(dev))
4378                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4379                 else if (HAS_PCH_SPT(dev))
4380                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4381                 else
4382                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4383         } else if (HAS_PCH_SPLIT(dev)) {
4384                 dev->driver->irq_handler = ironlake_irq_handler;
4385                 dev->driver->irq_preinstall = ironlake_irq_reset;
4386                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4387                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4388                 dev->driver->enable_vblank = ironlake_enable_vblank;
4389                 dev->driver->disable_vblank = ironlake_disable_vblank;
4390                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4391         } else {
4392                 if (INTEL_INFO(dev_priv)->gen == 2) {
4393                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4394                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4395                         dev->driver->irq_handler = i8xx_irq_handler;
4396                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4397                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4398                         dev->driver->irq_preinstall = i915_irq_preinstall;
4399                         dev->driver->irq_postinstall = i915_irq_postinstall;
4400                         dev->driver->irq_uninstall = i915_irq_uninstall;
4401                         dev->driver->irq_handler = i915_irq_handler;
4402                 } else {
4403                         dev->driver->irq_preinstall = i965_irq_preinstall;
4404                         dev->driver->irq_postinstall = i965_irq_postinstall;
4405                         dev->driver->irq_uninstall = i965_irq_uninstall;
4406                         dev->driver->irq_handler = i965_irq_handler;
4407                 }
4408                 if (I915_HAS_HOTPLUG(dev_priv))
4409                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4410                 dev->driver->enable_vblank = i915_enable_vblank;
4411                 dev->driver->disable_vblank = i915_disable_vblank;
4412         }
4413 }
4414
4415 /**
4416  * intel_irq_install - enables the hardware interrupt
4417  * @dev_priv: i915 device instance
4418  *
4419  * This function enables the hardware interrupt handling, but leaves the hotplug
4420  * handling still disabled. It is called after intel_irq_init().
4421  *
4422  * In the driver load and resume code we need working interrupts in a few places
4423  * but don't want to deal with the hassle of concurrent probe and hotplug
4424  * workers. Hence the split into this two-stage approach.
4425  */
4426 int intel_irq_install(struct drm_i915_private *dev_priv)
4427 {
4428         /*
4429          * We enable some interrupt sources in our postinstall hooks, so mark
4430          * interrupts as enabled _before_ actually enabling them to avoid
4431          * special cases in our ordering checks.
4432          */
4433         dev_priv->pm.irqs_enabled = true;
4434
4435         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4436 }
4437
4438 /**
4439  * intel_irq_uninstall - finilizes all irq handling
4440  * @dev_priv: i915 device instance
4441  *
4442  * This stops interrupt and hotplug handling and unregisters and frees all
4443  * resources acquired in the init functions.
4444  */
4445 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4446 {
4447         drm_irq_uninstall(dev_priv->dev);
4448         intel_hpd_cancel_work(dev_priv);
4449         dev_priv->pm.irqs_enabled = false;
4450 }
4451
4452 /**
4453  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4454  * @dev_priv: i915 device instance
4455  *
4456  * This function is used to disable interrupts at runtime, both in the runtime
4457  * pm and the system suspend/resume code.
4458  */
4459 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4460 {
4461         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4462         dev_priv->pm.irqs_enabled = false;
4463         synchronize_irq(dev_priv->dev->irq);
4464 }
4465
4466 /**
4467  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4468  * @dev_priv: i915 device instance
4469  *
4470  * This function is used to enable interrupts at runtime, both in the runtime
4471  * pm and the system suspend/resume code.
4472  */
4473 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4474 {
4475         dev_priv->pm.irqs_enabled = true;
4476         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4477         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4478 }