drm/i915: Place the Global GTT VM first in the list of VM
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (i915_gem_obj_is_pinned(obj))
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_ggtt_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         struct timespec before, now;
1019         DEFINE_WAIT(wait);
1020         long timeout_jiffies;
1021         int ret;
1022
1023         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
1025         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026                 return 0;
1027
1028         timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
1029
1030         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031                 gen6_rps_boost(dev_priv);
1032                 if (file_priv)
1033                         mod_delayed_work(dev_priv->wq,
1034                                          &file_priv->mm.idle_work,
1035                                          msecs_to_jiffies(100));
1036         }
1037
1038         if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039             WARN_ON(!ring->irq_get(ring)))
1040                 return -ENODEV;
1041
1042         /* Record current time in case interrupted by signal, or wedged */
1043         trace_i915_gem_request_wait_begin(ring, seqno);
1044         getrawmonotonic(&before);
1045         for (;;) {
1046                 struct timer_list timer;
1047                 unsigned long expire;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout_jiffies <= 0) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081                         expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082                         mod_timer(&timer, expire);
1083                 }
1084
1085                 io_schedule();
1086
1087                 if (timeout)
1088                         timeout_jiffies = expire - jiffies;
1089
1090                 if (timer.function) {
1091                         del_singleshot_timer_sync(&timer);
1092                         destroy_timer_on_stack(&timer);
1093                 }
1094         }
1095         getrawmonotonic(&now);
1096         trace_i915_gem_request_wait_end(ring, seqno);
1097
1098         ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         /* We don't use vmf->pgoff since that has the fake offset */
1384         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385                 PAGE_SHIFT;
1386
1387         ret = i915_mutex_lock_interruptible(dev);
1388         if (ret)
1389                 goto out;
1390
1391         trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
1393         /* Access to snoopable pages through the GTT is incoherent. */
1394         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395                 ret = -EINVAL;
1396                 goto unlock;
1397         }
1398
1399         /* Now bind it into the GTT if needed */
1400         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1401         if (ret)
1402                 goto unlock;
1403
1404         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405         if (ret)
1406                 goto unpin;
1407
1408         ret = i915_gem_object_get_fence(obj);
1409         if (ret)
1410                 goto unpin;
1411
1412         obj->fault_mappable = true;
1413
1414         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415         pfn >>= PAGE_SHIFT;
1416         pfn += page_offset;
1417
1418         /* Finally, remap it using the new GTT offset */
1419         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1420 unpin:
1421         i915_gem_object_ggtt_unpin(obj);
1422 unlock:
1423         mutex_unlock(&dev->struct_mutex);
1424 out:
1425         switch (ret) {
1426         case -EIO:
1427                 /* If this -EIO is due to a gpu hang, give the reset code a
1428                  * chance to clean up the mess. Otherwise return the proper
1429                  * SIGBUS. */
1430                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1431                         return VM_FAULT_SIGBUS;
1432         case -EAGAIN:
1433                 /*
1434                  * EAGAIN means the gpu is hung and we'll wait for the error
1435                  * handler to reset everything when re-faulting in
1436                  * i915_mutex_lock_interruptible.
1437                  */
1438         case 0:
1439         case -ERESTARTSYS:
1440         case -EINTR:
1441         case -EBUSY:
1442                 /*
1443                  * EBUSY is ok: this just means that another thread
1444                  * already did the job.
1445                  */
1446                 return VM_FAULT_NOPAGE;
1447         case -ENOMEM:
1448                 return VM_FAULT_OOM;
1449         case -ENOSPC:
1450                 return VM_FAULT_SIGBUS;
1451         default:
1452                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1453                 return VM_FAULT_SIGBUS;
1454         }
1455 }
1456
1457 /**
1458  * i915_gem_release_mmap - remove physical page mappings
1459  * @obj: obj in question
1460  *
1461  * Preserve the reservation of the mmapping with the DRM core code, but
1462  * relinquish ownership of the pages back to the system.
1463  *
1464  * It is vital that we remove the page mapping if we have mapped a tiled
1465  * object through the GTT and then lose the fence register due to
1466  * resource pressure. Similarly if the object has been moved out of the
1467  * aperture, than pages mapped into userspace must be revoked. Removing the
1468  * mapping will then trigger a page fault on the next user access, allowing
1469  * fixup by i915_gem_fault().
1470  */
1471 void
1472 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1473 {
1474         if (!obj->fault_mappable)
1475                 return;
1476
1477         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1478         obj->fault_mappable = false;
1479 }
1480
1481 uint32_t
1482 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1483 {
1484         uint32_t gtt_size;
1485
1486         if (INTEL_INFO(dev)->gen >= 4 ||
1487             tiling_mode == I915_TILING_NONE)
1488                 return size;
1489
1490         /* Previous chips need a power-of-two fence region when tiling */
1491         if (INTEL_INFO(dev)->gen == 3)
1492                 gtt_size = 1024*1024;
1493         else
1494                 gtt_size = 512*1024;
1495
1496         while (gtt_size < size)
1497                 gtt_size <<= 1;
1498
1499         return gtt_size;
1500 }
1501
1502 /**
1503  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504  * @obj: object to check
1505  *
1506  * Return the required GTT alignment for an object, taking into account
1507  * potential fence register mapping.
1508  */
1509 uint32_t
1510 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511                            int tiling_mode, bool fenced)
1512 {
1513         /*
1514          * Minimum alignment is 4k (GTT page size), but might be greater
1515          * if a fence register is needed for the object.
1516          */
1517         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1518             tiling_mode == I915_TILING_NONE)
1519                 return 4096;
1520
1521         /*
1522          * Previous chips need to be aligned to the size of the smallest
1523          * fence register that can contain the object.
1524          */
1525         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1526 }
1527
1528 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529 {
1530         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531         int ret;
1532
1533         if (drm_vma_node_has_offset(&obj->base.vma_node))
1534                 return 0;
1535
1536         dev_priv->mm.shrinker_no_lock_stealing = true;
1537
1538         ret = drm_gem_create_mmap_offset(&obj->base);
1539         if (ret != -ENOSPC)
1540                 goto out;
1541
1542         /* Badly fragmented mmap space? The only way we can recover
1543          * space is by destroying unwanted objects. We can't randomly release
1544          * mmap_offsets as userspace expects them to be persistent for the
1545          * lifetime of the objects. The closest we can is to release the
1546          * offsets on purgeable objects by truncating it and marking it purged,
1547          * which prevents userspace from ever using that object again.
1548          */
1549         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550         ret = drm_gem_create_mmap_offset(&obj->base);
1551         if (ret != -ENOSPC)
1552                 goto out;
1553
1554         i915_gem_shrink_all(dev_priv);
1555         ret = drm_gem_create_mmap_offset(&obj->base);
1556 out:
1557         dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559         return ret;
1560 }
1561
1562 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563 {
1564         drm_gem_free_mmap_offset(&obj->base);
1565 }
1566
1567 int
1568 i915_gem_mmap_gtt(struct drm_file *file,
1569                   struct drm_device *dev,
1570                   uint32_t handle,
1571                   uint64_t *offset)
1572 {
1573         struct drm_i915_private *dev_priv = dev->dev_private;
1574         struct drm_i915_gem_object *obj;
1575         int ret;
1576
1577         ret = i915_mutex_lock_interruptible(dev);
1578         if (ret)
1579                 return ret;
1580
1581         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1582         if (&obj->base == NULL) {
1583                 ret = -ENOENT;
1584                 goto unlock;
1585         }
1586
1587         if (obj->base.size > dev_priv->gtt.mappable_end) {
1588                 ret = -E2BIG;
1589                 goto out;
1590         }
1591
1592         if (obj->madv != I915_MADV_WILLNEED) {
1593                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1594                 ret = -EINVAL;
1595                 goto out;
1596         }
1597
1598         ret = i915_gem_object_create_mmap_offset(obj);
1599         if (ret)
1600                 goto out;
1601
1602         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1603
1604 out:
1605         drm_gem_object_unreference(&obj->base);
1606 unlock:
1607         mutex_unlock(&dev->struct_mutex);
1608         return ret;
1609 }
1610
1611 /**
1612  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613  * @dev: DRM device
1614  * @data: GTT mapping ioctl data
1615  * @file: GEM object info
1616  *
1617  * Simply returns the fake offset to userspace so it can mmap it.
1618  * The mmap call will end up in drm_gem_mmap(), which will set things
1619  * up so we can get faults in the handler above.
1620  *
1621  * The fault handler will take care of binding the object into the GTT
1622  * (since it may have been evicted to make room for something), allocating
1623  * a fence register, and mapping the appropriate aperture address into
1624  * userspace.
1625  */
1626 int
1627 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628                         struct drm_file *file)
1629 {
1630         struct drm_i915_gem_mmap_gtt *args = data;
1631
1632         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633 }
1634
1635 /* Immediately discard the backing storage */
1636 static void
1637 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1638 {
1639         struct inode *inode;
1640
1641         i915_gem_object_free_mmap_offset(obj);
1642
1643         if (obj->base.filp == NULL)
1644                 return;
1645
1646         /* Our goal here is to return as much of the memory as
1647          * is possible back to the system as we are called from OOM.
1648          * To do this we must instruct the shmfs to drop all of its
1649          * backing pages, *now*.
1650          */
1651         inode = file_inode(obj->base.filp);
1652         shmem_truncate_range(inode, 0, (loff_t)-1);
1653
1654         obj->madv = __I915_MADV_PURGED;
1655 }
1656
1657 static inline int
1658 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659 {
1660         return obj->madv == I915_MADV_DONTNEED;
1661 }
1662
1663 static void
1664 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1665 {
1666         struct sg_page_iter sg_iter;
1667         int ret;
1668
1669         BUG_ON(obj->madv == __I915_MADV_PURGED);
1670
1671         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672         if (ret) {
1673                 /* In the event of a disaster, abandon all caches and
1674                  * hope for the best.
1675                  */
1676                 WARN_ON(ret != -EIO);
1677                 i915_gem_clflush_object(obj, true);
1678                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679         }
1680
1681         if (i915_gem_object_needs_bit17_swizzle(obj))
1682                 i915_gem_object_save_bit_17_swizzle(obj);
1683
1684         if (obj->madv == I915_MADV_DONTNEED)
1685                 obj->dirty = 0;
1686
1687         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1688                 struct page *page = sg_page_iter_page(&sg_iter);
1689
1690                 if (obj->dirty)
1691                         set_page_dirty(page);
1692
1693                 if (obj->madv == I915_MADV_WILLNEED)
1694                         mark_page_accessed(page);
1695
1696                 page_cache_release(page);
1697         }
1698         obj->dirty = 0;
1699
1700         sg_free_table(obj->pages);
1701         kfree(obj->pages);
1702 }
1703
1704 int
1705 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706 {
1707         const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
1709         if (obj->pages == NULL)
1710                 return 0;
1711
1712         if (obj->pages_pin_count)
1713                 return -EBUSY;
1714
1715         BUG_ON(i915_gem_obj_bound_any(obj));
1716
1717         /* ->put_pages might need to allocate memory for the bit17 swizzle
1718          * array, hence protect them from being reaped by removing them from gtt
1719          * lists early. */
1720         list_del(&obj->global_list);
1721
1722         ops->put_pages(obj);
1723         obj->pages = NULL;
1724
1725         if (i915_gem_object_is_purgeable(obj))
1726                 i915_gem_object_truncate(obj);
1727
1728         return 0;
1729 }
1730
1731 static unsigned long
1732 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733                   bool purgeable_only)
1734 {
1735         struct list_head still_bound_list;
1736         struct drm_i915_gem_object *obj, *next;
1737         unsigned long count = 0;
1738
1739         list_for_each_entry_safe(obj, next,
1740                                  &dev_priv->mm.unbound_list,
1741                                  global_list) {
1742                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1743                     i915_gem_object_put_pages(obj) == 0) {
1744                         count += obj->base.size >> PAGE_SHIFT;
1745                         if (count >= target)
1746                                 return count;
1747                 }
1748         }
1749
1750         /*
1751          * As we may completely rewrite the bound list whilst unbinding
1752          * (due to retiring requests) we have to strictly process only
1753          * one element of the list at the time, and recheck the list
1754          * on every iteration.
1755          */
1756         INIT_LIST_HEAD(&still_bound_list);
1757         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1758                 struct i915_vma *vma, *v;
1759
1760                 obj = list_first_entry(&dev_priv->mm.bound_list,
1761                                        typeof(*obj), global_list);
1762                 list_move_tail(&obj->global_list, &still_bound_list);
1763
1764                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765                         continue;
1766
1767                 /*
1768                  * Hold a reference whilst we unbind this object, as we may
1769                  * end up waiting for and retiring requests. This might
1770                  * release the final reference (held by the active list)
1771                  * and result in the object being freed from under us.
1772                  * in this object being freed.
1773                  *
1774                  * Note 1: Shrinking the bound list is special since only active
1775                  * (and hence bound objects) can contain such limbo objects, so
1776                  * we don't need special tricks for shrinking the unbound list.
1777                  * The only other place where we have to be careful with active
1778                  * objects suddenly disappearing due to retiring requests is the
1779                  * eviction code.
1780                  *
1781                  * Note 2: Even though the bound list doesn't hold a reference
1782                  * to the object we can safely grab one here: The final object
1783                  * unreferencing and the bound_list are both protected by the
1784                  * dev->struct_mutex and so we won't ever be able to observe an
1785                  * object on the bound_list with a reference count equals 0.
1786                  */
1787                 drm_gem_object_reference(&obj->base);
1788
1789                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790                         if (i915_vma_unbind(vma))
1791                                 break;
1792
1793                 if (i915_gem_object_put_pages(obj) == 0)
1794                         count += obj->base.size >> PAGE_SHIFT;
1795
1796                 drm_gem_object_unreference(&obj->base);
1797         }
1798         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1799
1800         return count;
1801 }
1802
1803 static unsigned long
1804 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805 {
1806         return __i915_gem_shrink(dev_priv, target, true);
1807 }
1808
1809 static unsigned long
1810 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811 {
1812         struct drm_i915_gem_object *obj, *next;
1813         long freed = 0;
1814
1815         i915_gem_evict_everything(dev_priv->dev);
1816
1817         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1818                                  global_list) {
1819                 if (i915_gem_object_put_pages(obj) == 0)
1820                         freed += obj->base.size >> PAGE_SHIFT;
1821         }
1822         return freed;
1823 }
1824
1825 static int
1826 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1827 {
1828         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1829         int page_count, i;
1830         struct address_space *mapping;
1831         struct sg_table *st;
1832         struct scatterlist *sg;
1833         struct sg_page_iter sg_iter;
1834         struct page *page;
1835         unsigned long last_pfn = 0;     /* suppress gcc warning */
1836         gfp_t gfp;
1837
1838         /* Assert that the object is not currently in any GPU domain. As it
1839          * wasn't in the GTT, there shouldn't be any way it could have been in
1840          * a GPU cache
1841          */
1842         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
1845         st = kmalloc(sizeof(*st), GFP_KERNEL);
1846         if (st == NULL)
1847                 return -ENOMEM;
1848
1849         page_count = obj->base.size / PAGE_SIZE;
1850         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1851                 kfree(st);
1852                 return -ENOMEM;
1853         }
1854
1855         /* Get the list of pages out of our struct file.  They'll be pinned
1856          * at this point until we release them.
1857          *
1858          * Fail silently without starting the shrinker
1859          */
1860         mapping = file_inode(obj->base.filp)->i_mapping;
1861         gfp = mapping_gfp_mask(mapping);
1862         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1863         gfp &= ~(__GFP_IO | __GFP_WAIT);
1864         sg = st->sgl;
1865         st->nents = 0;
1866         for (i = 0; i < page_count; i++) {
1867                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868                 if (IS_ERR(page)) {
1869                         i915_gem_purge(dev_priv, page_count);
1870                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871                 }
1872                 if (IS_ERR(page)) {
1873                         /* We've tried hard to allocate the memory by reaping
1874                          * our own buffer, now let the real VM do its job and
1875                          * go down in flames if truly OOM.
1876                          */
1877                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1878                         gfp |= __GFP_IO | __GFP_WAIT;
1879
1880                         i915_gem_shrink_all(dev_priv);
1881                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882                         if (IS_ERR(page))
1883                                 goto err_pages;
1884
1885                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1886                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1887                 }
1888 #ifdef CONFIG_SWIOTLB
1889                 if (swiotlb_nr_tbl()) {
1890                         st->nents++;
1891                         sg_set_page(sg, page, PAGE_SIZE, 0);
1892                         sg = sg_next(sg);
1893                         continue;
1894                 }
1895 #endif
1896                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897                         if (i)
1898                                 sg = sg_next(sg);
1899                         st->nents++;
1900                         sg_set_page(sg, page, PAGE_SIZE, 0);
1901                 } else {
1902                         sg->length += PAGE_SIZE;
1903                 }
1904                 last_pfn = page_to_pfn(page);
1905
1906                 /* Check that the i965g/gm workaround works. */
1907                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1908         }
1909 #ifdef CONFIG_SWIOTLB
1910         if (!swiotlb_nr_tbl())
1911 #endif
1912                 sg_mark_end(sg);
1913         obj->pages = st;
1914
1915         if (i915_gem_object_needs_bit17_swizzle(obj))
1916                 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918         return 0;
1919
1920 err_pages:
1921         sg_mark_end(sg);
1922         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1923                 page_cache_release(sg_page_iter_page(&sg_iter));
1924         sg_free_table(st);
1925         kfree(st);
1926         return PTR_ERR(page);
1927 }
1928
1929 /* Ensure that the associated pages are gathered from the backing storage
1930  * and pinned into our object. i915_gem_object_get_pages() may be called
1931  * multiple times before they are released by a single call to
1932  * i915_gem_object_put_pages() - once the pages are no longer referenced
1933  * either as a result of memory pressure (reaping pages under the shrinker)
1934  * or as the object is itself released.
1935  */
1936 int
1937 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938 {
1939         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940         const struct drm_i915_gem_object_ops *ops = obj->ops;
1941         int ret;
1942
1943         if (obj->pages)
1944                 return 0;
1945
1946         if (obj->madv != I915_MADV_WILLNEED) {
1947                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948                 return -EINVAL;
1949         }
1950
1951         BUG_ON(obj->pages_pin_count);
1952
1953         ret = ops->get_pages(obj);
1954         if (ret)
1955                 return ret;
1956
1957         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1958         return 0;
1959 }
1960
1961 static void
1962 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1963                                struct intel_ring_buffer *ring)
1964 {
1965         struct drm_device *dev = obj->base.dev;
1966         struct drm_i915_private *dev_priv = dev->dev_private;
1967         u32 seqno = intel_ring_get_seqno(ring);
1968
1969         BUG_ON(ring == NULL);
1970         if (obj->ring != ring && obj->last_write_seqno) {
1971                 /* Keep the seqno relative to the current ring */
1972                 obj->last_write_seqno = seqno;
1973         }
1974         obj->ring = ring;
1975
1976         /* Add a reference if we're newly entering the active list. */
1977         if (!obj->active) {
1978                 drm_gem_object_reference(&obj->base);
1979                 obj->active = 1;
1980         }
1981
1982         list_move_tail(&obj->ring_list, &ring->active_list);
1983
1984         obj->last_read_seqno = seqno;
1985
1986         if (obj->fenced_gpu_access) {
1987                 obj->last_fenced_seqno = seqno;
1988
1989                 /* Bump MRU to take account of the delayed flush */
1990                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991                         struct drm_i915_fence_reg *reg;
1992
1993                         reg = &dev_priv->fence_regs[obj->fence_reg];
1994                         list_move_tail(&reg->lru_list,
1995                                        &dev_priv->mm.fence_list);
1996                 }
1997         }
1998 }
1999
2000 void i915_vma_move_to_active(struct i915_vma *vma,
2001                              struct intel_ring_buffer *ring)
2002 {
2003         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004         return i915_gem_object_move_to_active(vma->obj, ring);
2005 }
2006
2007 static void
2008 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2009 {
2010         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011         struct i915_address_space *vm;
2012         struct i915_vma *vma;
2013
2014         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2015         BUG_ON(!obj->active);
2016
2017         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2018                 vma = i915_gem_obj_to_vma(obj, vm);
2019                 if (vma && !list_empty(&vma->mm_list))
2020                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2021         }
2022
2023         list_del_init(&obj->ring_list);
2024         obj->ring = NULL;
2025
2026         obj->last_read_seqno = 0;
2027         obj->last_write_seqno = 0;
2028         obj->base.write_domain = 0;
2029
2030         obj->last_fenced_seqno = 0;
2031         obj->fenced_gpu_access = false;
2032
2033         obj->active = 0;
2034         drm_gem_object_unreference(&obj->base);
2035
2036         WARN_ON(i915_verify_lists(dev));
2037 }
2038
2039 static int
2040 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2041 {
2042         struct drm_i915_private *dev_priv = dev->dev_private;
2043         struct intel_ring_buffer *ring;
2044         int ret, i, j;
2045
2046         /* Carefully retire all requests without writing to the rings */
2047         for_each_ring(ring, dev_priv, i) {
2048                 ret = intel_ring_idle(ring);
2049                 if (ret)
2050                         return ret;
2051         }
2052         i915_gem_retire_requests(dev);
2053
2054         /* Finally reset hw state */
2055         for_each_ring(ring, dev_priv, i) {
2056                 intel_ring_init_seqno(ring, seqno);
2057
2058                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2059                         ring->sync_seqno[j] = 0;
2060         }
2061
2062         return 0;
2063 }
2064
2065 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         int ret;
2069
2070         if (seqno == 0)
2071                 return -EINVAL;
2072
2073         /* HWS page needs to be set less than what we
2074          * will inject to ring
2075          */
2076         ret = i915_gem_init_seqno(dev, seqno - 1);
2077         if (ret)
2078                 return ret;
2079
2080         /* Carefully set the last_seqno value so that wrap
2081          * detection still works
2082          */
2083         dev_priv->next_seqno = seqno;
2084         dev_priv->last_seqno = seqno - 1;
2085         if (dev_priv->last_seqno == 0)
2086                 dev_priv->last_seqno--;
2087
2088         return 0;
2089 }
2090
2091 int
2092 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2093 {
2094         struct drm_i915_private *dev_priv = dev->dev_private;
2095
2096         /* reserve 0 for non-seqno */
2097         if (dev_priv->next_seqno == 0) {
2098                 int ret = i915_gem_init_seqno(dev, 0);
2099                 if (ret)
2100                         return ret;
2101
2102                 dev_priv->next_seqno = 1;
2103         }
2104
2105         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2106         return 0;
2107 }
2108
2109 int __i915_add_request(struct intel_ring_buffer *ring,
2110                        struct drm_file *file,
2111                        struct drm_i915_gem_object *obj,
2112                        u32 *out_seqno)
2113 {
2114         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2115         struct drm_i915_gem_request *request;
2116         u32 request_ring_position, request_start;
2117         int was_empty;
2118         int ret;
2119
2120         request_start = intel_ring_get_tail(ring);
2121         /*
2122          * Emit any outstanding flushes - execbuf can fail to emit the flush
2123          * after having emitted the batchbuffer command. Hence we need to fix
2124          * things up similar to emitting the lazy request. The difference here
2125          * is that the flush _must_ happen before the next request, no matter
2126          * what.
2127          */
2128         ret = intel_ring_flush_all_caches(ring);
2129         if (ret)
2130                 return ret;
2131
2132         request = ring->preallocated_lazy_request;
2133         if (WARN_ON(request == NULL))
2134                 return -ENOMEM;
2135
2136         /* Record the position of the start of the request so that
2137          * should we detect the updated seqno part-way through the
2138          * GPU processing the request, we never over-estimate the
2139          * position of the head.
2140          */
2141         request_ring_position = intel_ring_get_tail(ring);
2142
2143         ret = ring->add_request(ring);
2144         if (ret)
2145                 return ret;
2146
2147         request->seqno = intel_ring_get_seqno(ring);
2148         request->ring = ring;
2149         request->head = request_start;
2150         request->tail = request_ring_position;
2151
2152         /* Whilst this request exists, batch_obj will be on the
2153          * active_list, and so will hold the active reference. Only when this
2154          * request is retired will the the batch_obj be moved onto the
2155          * inactive_list and lose its active reference. Hence we do not need
2156          * to explicitly hold another reference here.
2157          */
2158         request->batch_obj = obj;
2159
2160         /* Hold a reference to the current context so that we can inspect
2161          * it later in case a hangcheck error event fires.
2162          */
2163         request->ctx = ring->last_context;
2164         if (request->ctx)
2165                 i915_gem_context_reference(request->ctx);
2166
2167         request->emitted_jiffies = jiffies;
2168         was_empty = list_empty(&ring->request_list);
2169         list_add_tail(&request->list, &ring->request_list);
2170         request->file_priv = NULL;
2171
2172         if (file) {
2173                 struct drm_i915_file_private *file_priv = file->driver_priv;
2174
2175                 spin_lock(&file_priv->mm.lock);
2176                 request->file_priv = file_priv;
2177                 list_add_tail(&request->client_list,
2178                               &file_priv->mm.request_list);
2179                 spin_unlock(&file_priv->mm.lock);
2180         }
2181
2182         trace_i915_gem_request_add(ring, request->seqno);
2183         ring->outstanding_lazy_seqno = 0;
2184         ring->preallocated_lazy_request = NULL;
2185
2186         if (!dev_priv->ums.mm_suspended) {
2187                 i915_queue_hangcheck(ring->dev);
2188
2189                 if (was_empty) {
2190                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2191                         queue_delayed_work(dev_priv->wq,
2192                                            &dev_priv->mm.retire_work,
2193                                            round_jiffies_up_relative(HZ));
2194                         intel_mark_busy(dev_priv->dev);
2195                 }
2196         }
2197
2198         if (out_seqno)
2199                 *out_seqno = request->seqno;
2200         return 0;
2201 }
2202
2203 static inline void
2204 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2205 {
2206         struct drm_i915_file_private *file_priv = request->file_priv;
2207
2208         if (!file_priv)
2209                 return;
2210
2211         spin_lock(&file_priv->mm.lock);
2212         list_del(&request->client_list);
2213         request->file_priv = NULL;
2214         spin_unlock(&file_priv->mm.lock);
2215 }
2216
2217 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2218                                     struct i915_address_space *vm)
2219 {
2220         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2221             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2222                 return true;
2223
2224         return false;
2225 }
2226
2227 static bool i915_head_inside_request(const u32 acthd_unmasked,
2228                                      const u32 request_start,
2229                                      const u32 request_end)
2230 {
2231         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2232
2233         if (request_start < request_end) {
2234                 if (acthd >= request_start && acthd < request_end)
2235                         return true;
2236         } else if (request_start > request_end) {
2237                 if (acthd >= request_start || acthd < request_end)
2238                         return true;
2239         }
2240
2241         return false;
2242 }
2243
2244 static struct i915_address_space *
2245 request_to_vm(struct drm_i915_gem_request *request)
2246 {
2247         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2248         struct i915_address_space *vm;
2249
2250         if (request->ctx)
2251                 vm = request->ctx->vm;
2252         else
2253                 vm = &dev_priv->gtt.base;
2254
2255         return vm;
2256 }
2257
2258 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2259                                 const u32 acthd, bool *inside)
2260 {
2261         /* There is a possibility that unmasked head address
2262          * pointing inside the ring, matches the batch_obj address range.
2263          * However this is extremely unlikely.
2264          */
2265         if (request->batch_obj) {
2266                 if (i915_head_inside_object(acthd, request->batch_obj,
2267                                             request_to_vm(request))) {
2268                         *inside = true;
2269                         return true;
2270                 }
2271         }
2272
2273         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2274                 *inside = false;
2275                 return true;
2276         }
2277
2278         return false;
2279 }
2280
2281 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2282 {
2283         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2284
2285         if (hs->banned)
2286                 return true;
2287
2288         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2289                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2290                 return true;
2291         }
2292
2293         return false;
2294 }
2295
2296 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2297                                   struct drm_i915_gem_request *request,
2298                                   u32 acthd)
2299 {
2300         struct i915_ctx_hang_stats *hs = NULL;
2301         bool inside, guilty;
2302         unsigned long offset = 0;
2303
2304         /* Innocent until proven guilty */
2305         guilty = false;
2306
2307         if (request->batch_obj)
2308                 offset = i915_gem_obj_offset(request->batch_obj,
2309                                              request_to_vm(request));
2310
2311         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2312             i915_request_guilty(request, acthd, &inside)) {
2313                 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2314                           ring->name,
2315                           inside ? "inside" : "flushing",
2316                           offset,
2317                           request->ctx ? request->ctx->id : 0,
2318                           acthd);
2319
2320                 guilty = true;
2321         }
2322
2323         /* If contexts are disabled or this is the default context, use
2324          * file_priv->reset_state
2325          */
2326         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2327                 hs = &request->ctx->hang_stats;
2328         else if (request->file_priv)
2329                 hs = &request->file_priv->private_default_ctx->hang_stats;
2330
2331         if (hs) {
2332                 if (guilty) {
2333                         hs->banned = i915_context_is_banned(hs);
2334                         hs->batch_active++;
2335                         hs->guilty_ts = get_seconds();
2336                 } else {
2337                         hs->batch_pending++;
2338                 }
2339         }
2340 }
2341
2342 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2343 {
2344         list_del(&request->list);
2345         i915_gem_request_remove_from_client(request);
2346
2347         if (request->ctx)
2348                 i915_gem_context_unreference(request->ctx);
2349
2350         kfree(request);
2351 }
2352
2353 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2354                                       struct intel_ring_buffer *ring)
2355 {
2356         u32 completed_seqno;
2357         u32 acthd;
2358
2359         acthd = intel_ring_get_active_head(ring);
2360         completed_seqno = ring->get_seqno(ring, false);
2361
2362         while (!list_empty(&ring->request_list)) {
2363                 struct drm_i915_gem_request *request;
2364
2365                 request = list_first_entry(&ring->request_list,
2366                                            struct drm_i915_gem_request,
2367                                            list);
2368
2369                 if (request->seqno > completed_seqno)
2370                         i915_set_reset_status(ring, request, acthd);
2371
2372                 i915_gem_free_request(request);
2373         }
2374
2375         while (!list_empty(&ring->active_list)) {
2376                 struct drm_i915_gem_object *obj;
2377
2378                 obj = list_first_entry(&ring->active_list,
2379                                        struct drm_i915_gem_object,
2380                                        ring_list);
2381
2382                 i915_gem_object_move_to_inactive(obj);
2383         }
2384 }
2385
2386 void i915_gem_restore_fences(struct drm_device *dev)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389         int i;
2390
2391         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2392                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2393
2394                 /*
2395                  * Commit delayed tiling changes if we have an object still
2396                  * attached to the fence, otherwise just clear the fence.
2397                  */
2398                 if (reg->obj) {
2399                         i915_gem_object_update_fence(reg->obj, reg,
2400                                                      reg->obj->tiling_mode);
2401                 } else {
2402                         i915_gem_write_fence(dev, i, NULL);
2403                 }
2404         }
2405 }
2406
2407 void i915_gem_reset(struct drm_device *dev)
2408 {
2409         struct drm_i915_private *dev_priv = dev->dev_private;
2410         struct intel_ring_buffer *ring;
2411         int i;
2412
2413         for_each_ring(ring, dev_priv, i)
2414                 i915_gem_reset_ring_lists(dev_priv, ring);
2415
2416         i915_gem_cleanup_ringbuffer(dev);
2417
2418         i915_gem_context_reset(dev);
2419
2420         i915_gem_restore_fences(dev);
2421 }
2422
2423 /**
2424  * This function clears the request list as sequence numbers are passed.
2425  */
2426 void
2427 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2428 {
2429         uint32_t seqno;
2430
2431         if (list_empty(&ring->request_list))
2432                 return;
2433
2434         WARN_ON(i915_verify_lists(ring->dev));
2435
2436         seqno = ring->get_seqno(ring, true);
2437
2438         /* Move any buffers on the active list that are no longer referenced
2439          * by the ringbuffer to the flushing/inactive lists as appropriate,
2440          * before we free the context associated with the requests.
2441          */
2442         while (!list_empty(&ring->active_list)) {
2443                 struct drm_i915_gem_object *obj;
2444
2445                 obj = list_first_entry(&ring->active_list,
2446                                       struct drm_i915_gem_object,
2447                                       ring_list);
2448
2449                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2450                         break;
2451
2452                 i915_gem_object_move_to_inactive(obj);
2453         }
2454
2455
2456         while (!list_empty(&ring->request_list)) {
2457                 struct drm_i915_gem_request *request;
2458
2459                 request = list_first_entry(&ring->request_list,
2460                                            struct drm_i915_gem_request,
2461                                            list);
2462
2463                 if (!i915_seqno_passed(seqno, request->seqno))
2464                         break;
2465
2466                 trace_i915_gem_request_retire(ring, request->seqno);
2467                 /* We know the GPU must have read the request to have
2468                  * sent us the seqno + interrupt, so use the position
2469                  * of tail of the request to update the last known position
2470                  * of the GPU head.
2471                  */
2472                 ring->last_retired_head = request->tail;
2473
2474                 i915_gem_free_request(request);
2475         }
2476
2477         if (unlikely(ring->trace_irq_seqno &&
2478                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2479                 ring->irq_put(ring);
2480                 ring->trace_irq_seqno = 0;
2481         }
2482
2483         WARN_ON(i915_verify_lists(ring->dev));
2484 }
2485
2486 bool
2487 i915_gem_retire_requests(struct drm_device *dev)
2488 {
2489         drm_i915_private_t *dev_priv = dev->dev_private;
2490         struct intel_ring_buffer *ring;
2491         bool idle = true;
2492         int i;
2493
2494         for_each_ring(ring, dev_priv, i) {
2495                 i915_gem_retire_requests_ring(ring);
2496                 idle &= list_empty(&ring->request_list);
2497         }
2498
2499         if (idle)
2500                 mod_delayed_work(dev_priv->wq,
2501                                    &dev_priv->mm.idle_work,
2502                                    msecs_to_jiffies(100));
2503
2504         return idle;
2505 }
2506
2507 static void
2508 i915_gem_retire_work_handler(struct work_struct *work)
2509 {
2510         struct drm_i915_private *dev_priv =
2511                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2512         struct drm_device *dev = dev_priv->dev;
2513         bool idle;
2514
2515         /* Come back later if the device is busy... */
2516         idle = false;
2517         if (mutex_trylock(&dev->struct_mutex)) {
2518                 idle = i915_gem_retire_requests(dev);
2519                 mutex_unlock(&dev->struct_mutex);
2520         }
2521         if (!idle)
2522                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2523                                    round_jiffies_up_relative(HZ));
2524 }
2525
2526 static void
2527 i915_gem_idle_work_handler(struct work_struct *work)
2528 {
2529         struct drm_i915_private *dev_priv =
2530                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2531
2532         intel_mark_idle(dev_priv->dev);
2533 }
2534
2535 /**
2536  * Ensures that an object will eventually get non-busy by flushing any required
2537  * write domains, emitting any outstanding lazy request and retiring and
2538  * completed requests.
2539  */
2540 static int
2541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2542 {
2543         int ret;
2544
2545         if (obj->active) {
2546                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2547                 if (ret)
2548                         return ret;
2549
2550                 i915_gem_retire_requests_ring(obj->ring);
2551         }
2552
2553         return 0;
2554 }
2555
2556 /**
2557  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2558  * @DRM_IOCTL_ARGS: standard ioctl arguments
2559  *
2560  * Returns 0 if successful, else an error is returned with the remaining time in
2561  * the timeout parameter.
2562  *  -ETIME: object is still busy after timeout
2563  *  -ERESTARTSYS: signal interrupted the wait
2564  *  -ENONENT: object doesn't exist
2565  * Also possible, but rare:
2566  *  -EAGAIN: GPU wedged
2567  *  -ENOMEM: damn
2568  *  -ENODEV: Internal IRQ fail
2569  *  -E?: The add request failed
2570  *
2571  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2572  * non-zero timeout parameter the wait ioctl will wait for the given number of
2573  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2574  * without holding struct_mutex the object may become re-busied before this
2575  * function completes. A similar but shorter * race condition exists in the busy
2576  * ioctl
2577  */
2578 int
2579 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2580 {
2581         drm_i915_private_t *dev_priv = dev->dev_private;
2582         struct drm_i915_gem_wait *args = data;
2583         struct drm_i915_gem_object *obj;
2584         struct intel_ring_buffer *ring = NULL;
2585         struct timespec timeout_stack, *timeout = NULL;
2586         unsigned reset_counter;
2587         u32 seqno = 0;
2588         int ret = 0;
2589
2590         if (args->timeout_ns >= 0) {
2591                 timeout_stack = ns_to_timespec(args->timeout_ns);
2592                 timeout = &timeout_stack;
2593         }
2594
2595         ret = i915_mutex_lock_interruptible(dev);
2596         if (ret)
2597                 return ret;
2598
2599         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2600         if (&obj->base == NULL) {
2601                 mutex_unlock(&dev->struct_mutex);
2602                 return -ENOENT;
2603         }
2604
2605         /* Need to make sure the object gets inactive eventually. */
2606         ret = i915_gem_object_flush_active(obj);
2607         if (ret)
2608                 goto out;
2609
2610         if (obj->active) {
2611                 seqno = obj->last_read_seqno;
2612                 ring = obj->ring;
2613         }
2614
2615         if (seqno == 0)
2616                  goto out;
2617
2618         /* Do this after OLR check to make sure we make forward progress polling
2619          * on this IOCTL with a 0 timeout (like busy ioctl)
2620          */
2621         if (!args->timeout_ns) {
2622                 ret = -ETIME;
2623                 goto out;
2624         }
2625
2626         drm_gem_object_unreference(&obj->base);
2627         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2628         mutex_unlock(&dev->struct_mutex);
2629
2630         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2631         if (timeout)
2632                 args->timeout_ns = timespec_to_ns(timeout);
2633         return ret;
2634
2635 out:
2636         drm_gem_object_unreference(&obj->base);
2637         mutex_unlock(&dev->struct_mutex);
2638         return ret;
2639 }
2640
2641 /**
2642  * i915_gem_object_sync - sync an object to a ring.
2643  *
2644  * @obj: object which may be in use on another ring.
2645  * @to: ring we wish to use the object on. May be NULL.
2646  *
2647  * This code is meant to abstract object synchronization with the GPU.
2648  * Calling with NULL implies synchronizing the object with the CPU
2649  * rather than a particular GPU ring.
2650  *
2651  * Returns 0 if successful, else propagates up the lower layer error.
2652  */
2653 int
2654 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2655                      struct intel_ring_buffer *to)
2656 {
2657         struct intel_ring_buffer *from = obj->ring;
2658         u32 seqno;
2659         int ret, idx;
2660
2661         if (from == NULL || to == from)
2662                 return 0;
2663
2664         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2665                 return i915_gem_object_wait_rendering(obj, false);
2666
2667         idx = intel_ring_sync_index(from, to);
2668
2669         seqno = obj->last_read_seqno;
2670         if (seqno <= from->sync_seqno[idx])
2671                 return 0;
2672
2673         ret = i915_gem_check_olr(obj->ring, seqno);
2674         if (ret)
2675                 return ret;
2676
2677         trace_i915_gem_ring_sync_to(from, to, seqno);
2678         ret = to->sync_to(to, from, seqno);
2679         if (!ret)
2680                 /* We use last_read_seqno because sync_to()
2681                  * might have just caused seqno wrap under
2682                  * the radar.
2683                  */
2684                 from->sync_seqno[idx] = obj->last_read_seqno;
2685
2686         return ret;
2687 }
2688
2689 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2690 {
2691         u32 old_write_domain, old_read_domains;
2692
2693         /* Force a pagefault for domain tracking on next user access */
2694         i915_gem_release_mmap(obj);
2695
2696         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2697                 return;
2698
2699         /* Wait for any direct GTT access to complete */
2700         mb();
2701
2702         old_read_domains = obj->base.read_domains;
2703         old_write_domain = obj->base.write_domain;
2704
2705         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2706         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2707
2708         trace_i915_gem_object_change_domain(obj,
2709                                             old_read_domains,
2710                                             old_write_domain);
2711 }
2712
2713 int i915_vma_unbind(struct i915_vma *vma)
2714 {
2715         struct drm_i915_gem_object *obj = vma->obj;
2716         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2717         int ret;
2718
2719         if (list_empty(&vma->vma_link))
2720                 return 0;
2721
2722         if (!drm_mm_node_allocated(&vma->node)) {
2723                 i915_gem_vma_destroy(vma);
2724
2725                 return 0;
2726         }
2727
2728         if (vma->pin_count)
2729                 return -EBUSY;
2730
2731         BUG_ON(obj->pages == NULL);
2732
2733         ret = i915_gem_object_finish_gpu(obj);
2734         if (ret)
2735                 return ret;
2736         /* Continue on if we fail due to EIO, the GPU is hung so we
2737          * should be safe and we need to cleanup or else we might
2738          * cause memory corruption through use-after-free.
2739          */
2740
2741         i915_gem_object_finish_gtt(obj);
2742
2743         /* release the fence reg _after_ flushing */
2744         ret = i915_gem_object_put_fence(obj);
2745         if (ret)
2746                 return ret;
2747
2748         trace_i915_vma_unbind(vma);
2749
2750         vma->unbind_vma(vma);
2751
2752         i915_gem_gtt_finish_object(obj);
2753
2754         list_del(&vma->mm_list);
2755         /* Avoid an unnecessary call to unbind on rebind. */
2756         if (i915_is_ggtt(vma->vm))
2757                 obj->map_and_fenceable = true;
2758
2759         drm_mm_remove_node(&vma->node);
2760         i915_gem_vma_destroy(vma);
2761
2762         /* Since the unbound list is global, only move to that list if
2763          * no more VMAs exist. */
2764         if (list_empty(&obj->vma_list))
2765                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2766
2767         /* And finally now the object is completely decoupled from this vma,
2768          * we can drop its hold on the backing storage and allow it to be
2769          * reaped by the shrinker.
2770          */
2771         i915_gem_object_unpin_pages(obj);
2772
2773         return 0;
2774 }
2775
2776 /**
2777  * Unbinds an object from the global GTT aperture.
2778  */
2779 int
2780 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2781 {
2782         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2783         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2784
2785         if (!i915_gem_obj_ggtt_bound(obj))
2786                 return 0;
2787
2788         if (i915_gem_obj_to_ggtt(obj)->pin_count)
2789                 return -EBUSY;
2790
2791         BUG_ON(obj->pages == NULL);
2792
2793         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2794 }
2795
2796 int i915_gpu_idle(struct drm_device *dev)
2797 {
2798         drm_i915_private_t *dev_priv = dev->dev_private;
2799         struct intel_ring_buffer *ring;
2800         int ret, i;
2801
2802         /* Flush everything onto the inactive list. */
2803         for_each_ring(ring, dev_priv, i) {
2804                 ret = i915_switch_context(ring, NULL, ring->default_context);
2805                 if (ret)
2806                         return ret;
2807
2808                 ret = intel_ring_idle(ring);
2809                 if (ret)
2810                         return ret;
2811         }
2812
2813         return 0;
2814 }
2815
2816 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2817                                  struct drm_i915_gem_object *obj)
2818 {
2819         drm_i915_private_t *dev_priv = dev->dev_private;
2820         int fence_reg;
2821         int fence_pitch_shift;
2822
2823         if (INTEL_INFO(dev)->gen >= 6) {
2824                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2825                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2826         } else {
2827                 fence_reg = FENCE_REG_965_0;
2828                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2829         }
2830
2831         fence_reg += reg * 8;
2832
2833         /* To w/a incoherency with non-atomic 64-bit register updates,
2834          * we split the 64-bit update into two 32-bit writes. In order
2835          * for a partial fence not to be evaluated between writes, we
2836          * precede the update with write to turn off the fence register,
2837          * and only enable the fence as the last step.
2838          *
2839          * For extra levels of paranoia, we make sure each step lands
2840          * before applying the next step.
2841          */
2842         I915_WRITE(fence_reg, 0);
2843         POSTING_READ(fence_reg);
2844
2845         if (obj) {
2846                 u32 size = i915_gem_obj_ggtt_size(obj);
2847                 uint64_t val;
2848
2849                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2850                                  0xfffff000) << 32;
2851                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2852                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2853                 if (obj->tiling_mode == I915_TILING_Y)
2854                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2855                 val |= I965_FENCE_REG_VALID;
2856
2857                 I915_WRITE(fence_reg + 4, val >> 32);
2858                 POSTING_READ(fence_reg + 4);
2859
2860                 I915_WRITE(fence_reg + 0, val);
2861                 POSTING_READ(fence_reg);
2862         } else {
2863                 I915_WRITE(fence_reg + 4, 0);
2864                 POSTING_READ(fence_reg + 4);
2865         }
2866 }
2867
2868 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2869                                  struct drm_i915_gem_object *obj)
2870 {
2871         drm_i915_private_t *dev_priv = dev->dev_private;
2872         u32 val;
2873
2874         if (obj) {
2875                 u32 size = i915_gem_obj_ggtt_size(obj);
2876                 int pitch_val;
2877                 int tile_width;
2878
2879                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2880                      (size & -size) != size ||
2881                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2882                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2883                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2884
2885                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2886                         tile_width = 128;
2887                 else
2888                         tile_width = 512;
2889
2890                 /* Note: pitch better be a power of two tile widths */
2891                 pitch_val = obj->stride / tile_width;
2892                 pitch_val = ffs(pitch_val) - 1;
2893
2894                 val = i915_gem_obj_ggtt_offset(obj);
2895                 if (obj->tiling_mode == I915_TILING_Y)
2896                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2897                 val |= I915_FENCE_SIZE_BITS(size);
2898                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2899                 val |= I830_FENCE_REG_VALID;
2900         } else
2901                 val = 0;
2902
2903         if (reg < 8)
2904                 reg = FENCE_REG_830_0 + reg * 4;
2905         else
2906                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2907
2908         I915_WRITE(reg, val);
2909         POSTING_READ(reg);
2910 }
2911
2912 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2913                                 struct drm_i915_gem_object *obj)
2914 {
2915         drm_i915_private_t *dev_priv = dev->dev_private;
2916         uint32_t val;
2917
2918         if (obj) {
2919                 u32 size = i915_gem_obj_ggtt_size(obj);
2920                 uint32_t pitch_val;
2921
2922                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2923                      (size & -size) != size ||
2924                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2925                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2926                      i915_gem_obj_ggtt_offset(obj), size);
2927
2928                 pitch_val = obj->stride / 128;
2929                 pitch_val = ffs(pitch_val) - 1;
2930
2931                 val = i915_gem_obj_ggtt_offset(obj);
2932                 if (obj->tiling_mode == I915_TILING_Y)
2933                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2934                 val |= I830_FENCE_SIZE_BITS(size);
2935                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2936                 val |= I830_FENCE_REG_VALID;
2937         } else
2938                 val = 0;
2939
2940         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2941         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2942 }
2943
2944 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2945 {
2946         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2947 }
2948
2949 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2950                                  struct drm_i915_gem_object *obj)
2951 {
2952         struct drm_i915_private *dev_priv = dev->dev_private;
2953
2954         /* Ensure that all CPU reads are completed before installing a fence
2955          * and all writes before removing the fence.
2956          */
2957         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2958                 mb();
2959
2960         WARN(obj && (!obj->stride || !obj->tiling_mode),
2961              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2962              obj->stride, obj->tiling_mode);
2963
2964         switch (INTEL_INFO(dev)->gen) {
2965         case 8:
2966         case 7:
2967         case 6:
2968         case 5:
2969         case 4: i965_write_fence_reg(dev, reg, obj); break;
2970         case 3: i915_write_fence_reg(dev, reg, obj); break;
2971         case 2: i830_write_fence_reg(dev, reg, obj); break;
2972         default: BUG();
2973         }
2974
2975         /* And similarly be paranoid that no direct access to this region
2976          * is reordered to before the fence is installed.
2977          */
2978         if (i915_gem_object_needs_mb(obj))
2979                 mb();
2980 }
2981
2982 static inline int fence_number(struct drm_i915_private *dev_priv,
2983                                struct drm_i915_fence_reg *fence)
2984 {
2985         return fence - dev_priv->fence_regs;
2986 }
2987
2988 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2989                                          struct drm_i915_fence_reg *fence,
2990                                          bool enable)
2991 {
2992         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2993         int reg = fence_number(dev_priv, fence);
2994
2995         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2996
2997         if (enable) {
2998                 obj->fence_reg = reg;
2999                 fence->obj = obj;
3000                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3001         } else {
3002                 obj->fence_reg = I915_FENCE_REG_NONE;
3003                 fence->obj = NULL;
3004                 list_del_init(&fence->lru_list);
3005         }
3006         obj->fence_dirty = false;
3007 }
3008
3009 static int
3010 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3011 {
3012         if (obj->last_fenced_seqno) {
3013                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3014                 if (ret)
3015                         return ret;
3016
3017                 obj->last_fenced_seqno = 0;
3018         }
3019
3020         obj->fenced_gpu_access = false;
3021         return 0;
3022 }
3023
3024 int
3025 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3026 {
3027         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3028         struct drm_i915_fence_reg *fence;
3029         int ret;
3030
3031         ret = i915_gem_object_wait_fence(obj);
3032         if (ret)
3033                 return ret;
3034
3035         if (obj->fence_reg == I915_FENCE_REG_NONE)
3036                 return 0;
3037
3038         fence = &dev_priv->fence_regs[obj->fence_reg];
3039
3040         i915_gem_object_fence_lost(obj);
3041         i915_gem_object_update_fence(obj, fence, false);
3042
3043         return 0;
3044 }
3045
3046 static struct drm_i915_fence_reg *
3047 i915_find_fence_reg(struct drm_device *dev)
3048 {
3049         struct drm_i915_private *dev_priv = dev->dev_private;
3050         struct drm_i915_fence_reg *reg, *avail;
3051         int i;
3052
3053         /* First try to find a free reg */
3054         avail = NULL;
3055         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3056                 reg = &dev_priv->fence_regs[i];
3057                 if (!reg->obj)
3058                         return reg;
3059
3060                 if (!reg->pin_count)
3061                         avail = reg;
3062         }
3063
3064         if (avail == NULL)
3065                 return NULL;
3066
3067         /* None available, try to steal one or wait for a user to finish */
3068         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3069                 if (reg->pin_count)
3070                         continue;
3071
3072                 return reg;
3073         }
3074
3075         return NULL;
3076 }
3077
3078 /**
3079  * i915_gem_object_get_fence - set up fencing for an object
3080  * @obj: object to map through a fence reg
3081  *
3082  * When mapping objects through the GTT, userspace wants to be able to write
3083  * to them without having to worry about swizzling if the object is tiled.
3084  * This function walks the fence regs looking for a free one for @obj,
3085  * stealing one if it can't find any.
3086  *
3087  * It then sets up the reg based on the object's properties: address, pitch
3088  * and tiling format.
3089  *
3090  * For an untiled surface, this removes any existing fence.
3091  */
3092 int
3093 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3094 {
3095         struct drm_device *dev = obj->base.dev;
3096         struct drm_i915_private *dev_priv = dev->dev_private;
3097         bool enable = obj->tiling_mode != I915_TILING_NONE;
3098         struct drm_i915_fence_reg *reg;
3099         int ret;
3100
3101         /* Have we updated the tiling parameters upon the object and so
3102          * will need to serialise the write to the associated fence register?
3103          */
3104         if (obj->fence_dirty) {
3105                 ret = i915_gem_object_wait_fence(obj);
3106                 if (ret)
3107                         return ret;
3108         }
3109
3110         /* Just update our place in the LRU if our fence is getting reused. */
3111         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3112                 reg = &dev_priv->fence_regs[obj->fence_reg];
3113                 if (!obj->fence_dirty) {
3114                         list_move_tail(&reg->lru_list,
3115                                        &dev_priv->mm.fence_list);
3116                         return 0;
3117                 }
3118         } else if (enable) {
3119                 reg = i915_find_fence_reg(dev);
3120                 if (reg == NULL)
3121                         return -EDEADLK;
3122
3123                 if (reg->obj) {
3124                         struct drm_i915_gem_object *old = reg->obj;
3125
3126                         ret = i915_gem_object_wait_fence(old);
3127                         if (ret)
3128                                 return ret;
3129
3130                         i915_gem_object_fence_lost(old);
3131                 }
3132         } else
3133                 return 0;
3134
3135         i915_gem_object_update_fence(obj, reg, enable);
3136
3137         return 0;
3138 }
3139
3140 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3141                                      struct drm_mm_node *gtt_space,
3142                                      unsigned long cache_level)
3143 {
3144         struct drm_mm_node *other;
3145
3146         /* On non-LLC machines we have to be careful when putting differing
3147          * types of snoopable memory together to avoid the prefetcher
3148          * crossing memory domains and dying.
3149          */
3150         if (HAS_LLC(dev))
3151                 return true;
3152
3153         if (!drm_mm_node_allocated(gtt_space))
3154                 return true;
3155
3156         if (list_empty(&gtt_space->node_list))
3157                 return true;
3158
3159         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3160         if (other->allocated && !other->hole_follows && other->color != cache_level)
3161                 return false;
3162
3163         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3164         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3165                 return false;
3166
3167         return true;
3168 }
3169
3170 static void i915_gem_verify_gtt(struct drm_device *dev)
3171 {
3172 #if WATCH_GTT
3173         struct drm_i915_private *dev_priv = dev->dev_private;
3174         struct drm_i915_gem_object *obj;
3175         int err = 0;
3176
3177         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3178                 if (obj->gtt_space == NULL) {
3179                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3180                         err++;
3181                         continue;
3182                 }
3183
3184                 if (obj->cache_level != obj->gtt_space->color) {
3185                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3186                                i915_gem_obj_ggtt_offset(obj),
3187                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3188                                obj->cache_level,
3189                                obj->gtt_space->color);
3190                         err++;
3191                         continue;
3192                 }
3193
3194                 if (!i915_gem_valid_gtt_space(dev,
3195                                               obj->gtt_space,
3196                                               obj->cache_level)) {
3197                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3198                                i915_gem_obj_ggtt_offset(obj),
3199                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3200                                obj->cache_level);
3201                         err++;
3202                         continue;
3203                 }
3204         }
3205
3206         WARN_ON(err);
3207 #endif
3208 }
3209
3210 /**
3211  * Finds free space in the GTT aperture and binds the object there.
3212  */
3213 static int
3214 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3215                            struct i915_address_space *vm,
3216                            unsigned alignment,
3217                            bool map_and_fenceable,
3218                            bool nonblocking)
3219 {
3220         struct drm_device *dev = obj->base.dev;
3221         drm_i915_private_t *dev_priv = dev->dev_private;
3222         u32 size, fence_size, fence_alignment, unfenced_alignment;
3223         size_t gtt_max =
3224                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3225         struct i915_vma *vma;
3226         int ret;
3227
3228         fence_size = i915_gem_get_gtt_size(dev,
3229                                            obj->base.size,
3230                                            obj->tiling_mode);
3231         fence_alignment = i915_gem_get_gtt_alignment(dev,
3232                                                      obj->base.size,
3233                                                      obj->tiling_mode, true);
3234         unfenced_alignment =
3235                 i915_gem_get_gtt_alignment(dev,
3236                                                     obj->base.size,
3237                                                     obj->tiling_mode, false);
3238
3239         if (alignment == 0)
3240                 alignment = map_and_fenceable ? fence_alignment :
3241                                                 unfenced_alignment;
3242         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3243                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3244                 return -EINVAL;
3245         }
3246
3247         size = map_and_fenceable ? fence_size : obj->base.size;
3248
3249         /* If the object is bigger than the entire aperture, reject it early
3250          * before evicting everything in a vain attempt to find space.
3251          */
3252         if (obj->base.size > gtt_max) {
3253                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3254                           obj->base.size,
3255                           map_and_fenceable ? "mappable" : "total",
3256                           gtt_max);
3257                 return -E2BIG;
3258         }
3259
3260         ret = i915_gem_object_get_pages(obj);
3261         if (ret)
3262                 return ret;
3263
3264         i915_gem_object_pin_pages(obj);
3265
3266         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3267         if (IS_ERR(vma)) {
3268                 ret = PTR_ERR(vma);
3269                 goto err_unpin;
3270         }
3271
3272 search_free:
3273         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3274                                                   size, alignment,
3275                                                   obj->cache_level, 0, gtt_max,
3276                                                   DRM_MM_SEARCH_DEFAULT);
3277         if (ret) {
3278                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3279                                                obj->cache_level,
3280                                                map_and_fenceable,
3281                                                nonblocking);
3282                 if (ret == 0)
3283                         goto search_free;
3284
3285                 goto err_free_vma;
3286         }
3287         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3288                                               obj->cache_level))) {
3289                 ret = -EINVAL;
3290                 goto err_remove_node;
3291         }
3292
3293         ret = i915_gem_gtt_prepare_object(obj);
3294         if (ret)
3295                 goto err_remove_node;
3296
3297         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3298         list_add_tail(&vma->mm_list, &vm->inactive_list);
3299
3300         if (i915_is_ggtt(vm)) {
3301                 bool mappable, fenceable;
3302
3303                 fenceable = (vma->node.size == fence_size &&
3304                              (vma->node.start & (fence_alignment - 1)) == 0);
3305
3306                 mappable = (vma->node.start + obj->base.size <=
3307                             dev_priv->gtt.mappable_end);
3308
3309                 obj->map_and_fenceable = mappable && fenceable;
3310         }
3311
3312         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3313
3314         trace_i915_vma_bind(vma, map_and_fenceable);
3315         i915_gem_verify_gtt(dev);
3316         return 0;
3317
3318 err_remove_node:
3319         drm_mm_remove_node(&vma->node);
3320 err_free_vma:
3321         i915_gem_vma_destroy(vma);
3322 err_unpin:
3323         i915_gem_object_unpin_pages(obj);
3324         return ret;
3325 }
3326
3327 bool
3328 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3329                         bool force)
3330 {
3331         /* If we don't have a page list set up, then we're not pinned
3332          * to GPU, and we can ignore the cache flush because it'll happen
3333          * again at bind time.
3334          */
3335         if (obj->pages == NULL)
3336                 return false;
3337
3338         /*
3339          * Stolen memory is always coherent with the GPU as it is explicitly
3340          * marked as wc by the system, or the system is cache-coherent.
3341          */
3342         if (obj->stolen)
3343                 return false;
3344
3345         /* If the GPU is snooping the contents of the CPU cache,
3346          * we do not need to manually clear the CPU cache lines.  However,
3347          * the caches are only snooped when the render cache is
3348          * flushed/invalidated.  As we always have to emit invalidations
3349          * and flushes when moving into and out of the RENDER domain, correct
3350          * snooping behaviour occurs naturally as the result of our domain
3351          * tracking.
3352          */
3353         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3354                 return false;
3355
3356         trace_i915_gem_object_clflush(obj);
3357         drm_clflush_sg(obj->pages);
3358
3359         return true;
3360 }
3361
3362 /** Flushes the GTT write domain for the object if it's dirty. */
3363 static void
3364 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3365 {
3366         uint32_t old_write_domain;
3367
3368         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3369                 return;
3370
3371         /* No actual flushing is required for the GTT write domain.  Writes
3372          * to it immediately go to main memory as far as we know, so there's
3373          * no chipset flush.  It also doesn't land in render cache.
3374          *
3375          * However, we do have to enforce the order so that all writes through
3376          * the GTT land before any writes to the device, such as updates to
3377          * the GATT itself.
3378          */
3379         wmb();
3380
3381         old_write_domain = obj->base.write_domain;
3382         obj->base.write_domain = 0;
3383
3384         trace_i915_gem_object_change_domain(obj,
3385                                             obj->base.read_domains,
3386                                             old_write_domain);
3387 }
3388
3389 /** Flushes the CPU write domain for the object if it's dirty. */
3390 static void
3391 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3392                                        bool force)
3393 {
3394         uint32_t old_write_domain;
3395
3396         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3397                 return;
3398
3399         if (i915_gem_clflush_object(obj, force))
3400                 i915_gem_chipset_flush(obj->base.dev);
3401
3402         old_write_domain = obj->base.write_domain;
3403         obj->base.write_domain = 0;
3404
3405         trace_i915_gem_object_change_domain(obj,
3406                                             obj->base.read_domains,
3407                                             old_write_domain);
3408 }
3409
3410 /**
3411  * Moves a single object to the GTT read, and possibly write domain.
3412  *
3413  * This function returns when the move is complete, including waiting on
3414  * flushes to occur.
3415  */
3416 int
3417 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3418 {
3419         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3420         uint32_t old_write_domain, old_read_domains;
3421         int ret;
3422
3423         /* Not valid to be called on unbound objects. */
3424         if (!i915_gem_obj_bound_any(obj))
3425                 return -EINVAL;
3426
3427         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3428                 return 0;
3429
3430         ret = i915_gem_object_wait_rendering(obj, !write);
3431         if (ret)
3432                 return ret;
3433
3434         i915_gem_object_flush_cpu_write_domain(obj, false);
3435
3436         /* Serialise direct access to this object with the barriers for
3437          * coherent writes from the GPU, by effectively invalidating the
3438          * GTT domain upon first access.
3439          */
3440         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3441                 mb();
3442
3443         old_write_domain = obj->base.write_domain;
3444         old_read_domains = obj->base.read_domains;
3445
3446         /* It should now be out of any other write domains, and we can update
3447          * the domain values for our changes.
3448          */
3449         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3450         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3451         if (write) {
3452                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3453                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3454                 obj->dirty = 1;
3455         }
3456
3457         trace_i915_gem_object_change_domain(obj,
3458                                             old_read_domains,
3459                                             old_write_domain);
3460
3461         /* And bump the LRU for this access */
3462         if (i915_gem_object_is_inactive(obj)) {
3463                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3464                 if (vma)
3465                         list_move_tail(&vma->mm_list,
3466                                        &dev_priv->gtt.base.inactive_list);
3467
3468         }
3469
3470         return 0;
3471 }
3472
3473 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3474                                     enum i915_cache_level cache_level)
3475 {
3476         struct drm_device *dev = obj->base.dev;
3477         struct i915_vma *vma;
3478         int ret;
3479
3480         if (obj->cache_level == cache_level)
3481                 return 0;
3482
3483         if (i915_gem_obj_is_pinned(obj)) {
3484                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3485                 return -EBUSY;
3486         }
3487
3488         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3489                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3490                         ret = i915_vma_unbind(vma);
3491                         if (ret)
3492                                 return ret;
3493
3494                         break;
3495                 }
3496         }
3497
3498         if (i915_gem_obj_bound_any(obj)) {
3499                 ret = i915_gem_object_finish_gpu(obj);
3500                 if (ret)
3501                         return ret;
3502
3503                 i915_gem_object_finish_gtt(obj);
3504
3505                 /* Before SandyBridge, you could not use tiling or fence
3506                  * registers with snooped memory, so relinquish any fences
3507                  * currently pointing to our region in the aperture.
3508                  */
3509                 if (INTEL_INFO(dev)->gen < 6) {
3510                         ret = i915_gem_object_put_fence(obj);
3511                         if (ret)
3512                                 return ret;
3513                 }
3514
3515                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3516                         vma->bind_vma(vma, cache_level, 0);
3517         }
3518
3519         list_for_each_entry(vma, &obj->vma_list, vma_link)
3520                 vma->node.color = cache_level;
3521         obj->cache_level = cache_level;
3522
3523         if (cpu_write_needs_clflush(obj)) {
3524                 u32 old_read_domains, old_write_domain;
3525
3526                 /* If we're coming from LLC cached, then we haven't
3527                  * actually been tracking whether the data is in the
3528                  * CPU cache or not, since we only allow one bit set
3529                  * in obj->write_domain and have been skipping the clflushes.
3530                  * Just set it to the CPU cache for now.
3531                  */
3532                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3533
3534                 old_read_domains = obj->base.read_domains;
3535                 old_write_domain = obj->base.write_domain;
3536
3537                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3538                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3539
3540                 trace_i915_gem_object_change_domain(obj,
3541                                                     old_read_domains,
3542                                                     old_write_domain);
3543         }
3544
3545         i915_gem_verify_gtt(dev);
3546         return 0;
3547 }
3548
3549 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3550                                struct drm_file *file)
3551 {
3552         struct drm_i915_gem_caching *args = data;
3553         struct drm_i915_gem_object *obj;
3554         int ret;
3555
3556         ret = i915_mutex_lock_interruptible(dev);
3557         if (ret)
3558                 return ret;
3559
3560         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3561         if (&obj->base == NULL) {
3562                 ret = -ENOENT;
3563                 goto unlock;
3564         }
3565
3566         switch (obj->cache_level) {
3567         case I915_CACHE_LLC:
3568         case I915_CACHE_L3_LLC:
3569                 args->caching = I915_CACHING_CACHED;
3570                 break;
3571
3572         case I915_CACHE_WT:
3573                 args->caching = I915_CACHING_DISPLAY;
3574                 break;
3575
3576         default:
3577                 args->caching = I915_CACHING_NONE;
3578                 break;
3579         }
3580
3581         drm_gem_object_unreference(&obj->base);
3582 unlock:
3583         mutex_unlock(&dev->struct_mutex);
3584         return ret;
3585 }
3586
3587 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3588                                struct drm_file *file)
3589 {
3590         struct drm_i915_gem_caching *args = data;
3591         struct drm_i915_gem_object *obj;
3592         enum i915_cache_level level;
3593         int ret;
3594
3595         switch (args->caching) {
3596         case I915_CACHING_NONE:
3597                 level = I915_CACHE_NONE;
3598                 break;
3599         case I915_CACHING_CACHED:
3600                 level = I915_CACHE_LLC;
3601                 break;
3602         case I915_CACHING_DISPLAY:
3603                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3604                 break;
3605         default:
3606                 return -EINVAL;
3607         }
3608
3609         ret = i915_mutex_lock_interruptible(dev);
3610         if (ret)
3611                 return ret;
3612
3613         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3614         if (&obj->base == NULL) {
3615                 ret = -ENOENT;
3616                 goto unlock;
3617         }
3618
3619         ret = i915_gem_object_set_cache_level(obj, level);
3620
3621         drm_gem_object_unreference(&obj->base);
3622 unlock:
3623         mutex_unlock(&dev->struct_mutex);
3624         return ret;
3625 }
3626
3627 static bool is_pin_display(struct drm_i915_gem_object *obj)
3628 {
3629         /* There are 3 sources that pin objects:
3630          *   1. The display engine (scanouts, sprites, cursors);
3631          *   2. Reservations for execbuffer;
3632          *   3. The user.
3633          *
3634          * We can ignore reservations as we hold the struct_mutex and
3635          * are only called outside of the reservation path.  The user
3636          * can only increment pin_count once, and so if after
3637          * subtracting the potential reference by the user, any pin_count
3638          * remains, it must be due to another use by the display engine.
3639          */
3640         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3641 }
3642
3643 /*
3644  * Prepare buffer for display plane (scanout, cursors, etc).
3645  * Can be called from an uninterruptible phase (modesetting) and allows
3646  * any flushes to be pipelined (for pageflips).
3647  */
3648 int
3649 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3650                                      u32 alignment,
3651                                      struct intel_ring_buffer *pipelined)
3652 {
3653         u32 old_read_domains, old_write_domain;
3654         int ret;
3655
3656         if (pipelined != obj->ring) {
3657                 ret = i915_gem_object_sync(obj, pipelined);
3658                 if (ret)
3659                         return ret;
3660         }
3661
3662         /* Mark the pin_display early so that we account for the
3663          * display coherency whilst setting up the cache domains.
3664          */
3665         obj->pin_display = true;
3666
3667         /* The display engine is not coherent with the LLC cache on gen6.  As
3668          * a result, we make sure that the pinning that is about to occur is
3669          * done with uncached PTEs. This is lowest common denominator for all
3670          * chipsets.
3671          *
3672          * However for gen6+, we could do better by using the GFDT bit instead
3673          * of uncaching, which would allow us to flush all the LLC-cached data
3674          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3675          */
3676         ret = i915_gem_object_set_cache_level(obj,
3677                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3678         if (ret)
3679                 goto err_unpin_display;
3680
3681         /* As the user may map the buffer once pinned in the display plane
3682          * (e.g. libkms for the bootup splash), we have to ensure that we
3683          * always use map_and_fenceable for all scanout buffers.
3684          */
3685         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3686         if (ret)
3687                 goto err_unpin_display;
3688
3689         i915_gem_object_flush_cpu_write_domain(obj, true);
3690
3691         old_write_domain = obj->base.write_domain;
3692         old_read_domains = obj->base.read_domains;
3693
3694         /* It should now be out of any other write domains, and we can update
3695          * the domain values for our changes.
3696          */
3697         obj->base.write_domain = 0;
3698         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3699
3700         trace_i915_gem_object_change_domain(obj,
3701                                             old_read_domains,
3702                                             old_write_domain);
3703
3704         return 0;
3705
3706 err_unpin_display:
3707         obj->pin_display = is_pin_display(obj);
3708         return ret;
3709 }
3710
3711 void
3712 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3713 {
3714         i915_gem_object_ggtt_unpin(obj);
3715         obj->pin_display = is_pin_display(obj);
3716 }
3717
3718 int
3719 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3720 {
3721         int ret;
3722
3723         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3724                 return 0;
3725
3726         ret = i915_gem_object_wait_rendering(obj, false);
3727         if (ret)
3728                 return ret;
3729
3730         /* Ensure that we invalidate the GPU's caches and TLBs. */
3731         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3732         return 0;
3733 }
3734
3735 /**
3736  * Moves a single object to the CPU read, and possibly write domain.
3737  *
3738  * This function returns when the move is complete, including waiting on
3739  * flushes to occur.
3740  */
3741 int
3742 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3743 {
3744         uint32_t old_write_domain, old_read_domains;
3745         int ret;
3746
3747         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3748                 return 0;
3749
3750         ret = i915_gem_object_wait_rendering(obj, !write);
3751         if (ret)
3752                 return ret;
3753
3754         i915_gem_object_flush_gtt_write_domain(obj);
3755
3756         old_write_domain = obj->base.write_domain;
3757         old_read_domains = obj->base.read_domains;
3758
3759         /* Flush the CPU cache if it's still invalid. */
3760         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3761                 i915_gem_clflush_object(obj, false);
3762
3763                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3764         }
3765
3766         /* It should now be out of any other write domains, and we can update
3767          * the domain values for our changes.
3768          */
3769         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3770
3771         /* If we're writing through the CPU, then the GPU read domains will
3772          * need to be invalidated at next use.
3773          */
3774         if (write) {
3775                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3776                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3777         }
3778
3779         trace_i915_gem_object_change_domain(obj,
3780                                             old_read_domains,
3781                                             old_write_domain);
3782
3783         return 0;
3784 }
3785
3786 /* Throttle our rendering by waiting until the ring has completed our requests
3787  * emitted over 20 msec ago.
3788  *
3789  * Note that if we were to use the current jiffies each time around the loop,
3790  * we wouldn't escape the function with any frames outstanding if the time to
3791  * render a frame was over 20ms.
3792  *
3793  * This should get us reasonable parallelism between CPU and GPU but also
3794  * relatively low latency when blocking on a particular request to finish.
3795  */
3796 static int
3797 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3798 {
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800         struct drm_i915_file_private *file_priv = file->driver_priv;
3801         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3802         struct drm_i915_gem_request *request;
3803         struct intel_ring_buffer *ring = NULL;
3804         unsigned reset_counter;
3805         u32 seqno = 0;
3806         int ret;
3807
3808         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3809         if (ret)
3810                 return ret;
3811
3812         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3813         if (ret)
3814                 return ret;
3815
3816         spin_lock(&file_priv->mm.lock);
3817         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3818                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3819                         break;
3820
3821                 ring = request->ring;
3822                 seqno = request->seqno;
3823         }
3824         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3825         spin_unlock(&file_priv->mm.lock);
3826
3827         if (seqno == 0)
3828                 return 0;
3829
3830         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3831         if (ret == 0)
3832                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3833
3834         return ret;
3835 }
3836
3837 int
3838 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3839                     struct i915_address_space *vm,
3840                     uint32_t alignment,
3841                     bool map_and_fenceable,
3842                     bool nonblocking)
3843 {
3844         const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3845         struct i915_vma *vma;
3846         int ret;
3847
3848         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3849
3850         vma = i915_gem_obj_to_vma(obj, vm);
3851
3852         if (vma) {
3853                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3854                         return -EBUSY;
3855
3856                 if ((alignment &&
3857                      vma->node.start & (alignment - 1)) ||
3858                     (map_and_fenceable && !obj->map_and_fenceable)) {
3859                         WARN(vma->pin_count,
3860                              "bo is already pinned with incorrect alignment:"
3861                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3862                              " obj->map_and_fenceable=%d\n",
3863                              i915_gem_obj_offset(obj, vm), alignment,
3864                              map_and_fenceable,
3865                              obj->map_and_fenceable);
3866                         ret = i915_vma_unbind(vma);
3867                         if (ret)
3868                                 return ret;
3869                 }
3870         }
3871
3872         if (!i915_gem_obj_bound(obj, vm)) {
3873                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3874                                                  map_and_fenceable,
3875                                                  nonblocking);
3876                 if (ret)
3877                         return ret;
3878
3879         }
3880
3881         vma = i915_gem_obj_to_vma(obj, vm);
3882
3883         vma->bind_vma(vma, obj->cache_level, flags);
3884
3885         i915_gem_obj_to_vma(obj, vm)->pin_count++;
3886         obj->pin_mappable |= map_and_fenceable;
3887
3888         return 0;
3889 }
3890
3891 void
3892 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3893 {
3894         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3895
3896         BUG_ON(!vma);
3897         BUG_ON(vma->pin_count == 0);
3898         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3899
3900         if (--vma->pin_count == 0)
3901                 obj->pin_mappable = false;
3902 }
3903
3904 int
3905 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3906                    struct drm_file *file)
3907 {
3908         struct drm_i915_gem_pin *args = data;
3909         struct drm_i915_gem_object *obj;
3910         int ret;
3911
3912         if (INTEL_INFO(dev)->gen >= 6)
3913                 return -ENODEV;
3914
3915         ret = i915_mutex_lock_interruptible(dev);
3916         if (ret)
3917                 return ret;
3918
3919         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3920         if (&obj->base == NULL) {
3921                 ret = -ENOENT;
3922                 goto unlock;
3923         }
3924
3925         if (obj->madv != I915_MADV_WILLNEED) {
3926                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930
3931         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3932                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3933                           args->handle);
3934                 ret = -EINVAL;
3935                 goto out;
3936         }
3937
3938         if (obj->user_pin_count == ULONG_MAX) {
3939                 ret = -EBUSY;
3940                 goto out;
3941         }
3942
3943         if (obj->user_pin_count == 0) {
3944                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3945                 if (ret)
3946                         goto out;
3947         }
3948
3949         obj->user_pin_count++;
3950         obj->pin_filp = file;
3951
3952         args->offset = i915_gem_obj_ggtt_offset(obj);
3953 out:
3954         drm_gem_object_unreference(&obj->base);
3955 unlock:
3956         mutex_unlock(&dev->struct_mutex);
3957         return ret;
3958 }
3959
3960 int
3961 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3962                      struct drm_file *file)
3963 {
3964         struct drm_i915_gem_pin *args = data;
3965         struct drm_i915_gem_object *obj;
3966         int ret;
3967
3968         ret = i915_mutex_lock_interruptible(dev);
3969         if (ret)
3970                 return ret;
3971
3972         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3973         if (&obj->base == NULL) {
3974                 ret = -ENOENT;
3975                 goto unlock;
3976         }
3977
3978         if (obj->pin_filp != file) {
3979                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3980                           args->handle);
3981                 ret = -EINVAL;
3982                 goto out;
3983         }
3984         obj->user_pin_count--;
3985         if (obj->user_pin_count == 0) {
3986                 obj->pin_filp = NULL;
3987                 i915_gem_object_ggtt_unpin(obj);
3988         }
3989
3990 out:
3991         drm_gem_object_unreference(&obj->base);
3992 unlock:
3993         mutex_unlock(&dev->struct_mutex);
3994         return ret;
3995 }
3996
3997 int
3998 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3999                     struct drm_file *file)
4000 {
4001         struct drm_i915_gem_busy *args = data;
4002         struct drm_i915_gem_object *obj;
4003         int ret;
4004
4005         ret = i915_mutex_lock_interruptible(dev);
4006         if (ret)
4007                 return ret;
4008
4009         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4010         if (&obj->base == NULL) {
4011                 ret = -ENOENT;
4012                 goto unlock;
4013         }
4014
4015         /* Count all active objects as busy, even if they are currently not used
4016          * by the gpu. Users of this interface expect objects to eventually
4017          * become non-busy without any further actions, therefore emit any
4018          * necessary flushes here.
4019          */
4020         ret = i915_gem_object_flush_active(obj);
4021
4022         args->busy = obj->active;
4023         if (obj->ring) {
4024                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4025                 args->busy |= intel_ring_flag(obj->ring) << 16;
4026         }
4027
4028         drm_gem_object_unreference(&obj->base);
4029 unlock:
4030         mutex_unlock(&dev->struct_mutex);
4031         return ret;
4032 }
4033
4034 int
4035 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4036                         struct drm_file *file_priv)
4037 {
4038         return i915_gem_ring_throttle(dev, file_priv);
4039 }
4040
4041 int
4042 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4043                        struct drm_file *file_priv)
4044 {
4045         struct drm_i915_gem_madvise *args = data;
4046         struct drm_i915_gem_object *obj;
4047         int ret;
4048
4049         switch (args->madv) {
4050         case I915_MADV_DONTNEED:
4051         case I915_MADV_WILLNEED:
4052             break;
4053         default:
4054             return -EINVAL;
4055         }
4056
4057         ret = i915_mutex_lock_interruptible(dev);
4058         if (ret)
4059                 return ret;
4060
4061         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4062         if (&obj->base == NULL) {
4063                 ret = -ENOENT;
4064                 goto unlock;
4065         }
4066
4067         if (i915_gem_obj_is_pinned(obj)) {
4068                 ret = -EINVAL;
4069                 goto out;
4070         }
4071
4072         if (obj->madv != __I915_MADV_PURGED)
4073                 obj->madv = args->madv;
4074
4075         /* if the object is no longer attached, discard its backing storage */
4076         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4077                 i915_gem_object_truncate(obj);
4078
4079         args->retained = obj->madv != __I915_MADV_PURGED;
4080
4081 out:
4082         drm_gem_object_unreference(&obj->base);
4083 unlock:
4084         mutex_unlock(&dev->struct_mutex);
4085         return ret;
4086 }
4087
4088 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4089                           const struct drm_i915_gem_object_ops *ops)
4090 {
4091         INIT_LIST_HEAD(&obj->global_list);
4092         INIT_LIST_HEAD(&obj->ring_list);
4093         INIT_LIST_HEAD(&obj->obj_exec_link);
4094         INIT_LIST_HEAD(&obj->vma_list);
4095
4096         obj->ops = ops;
4097
4098         obj->fence_reg = I915_FENCE_REG_NONE;
4099         obj->madv = I915_MADV_WILLNEED;
4100         /* Avoid an unnecessary call to unbind on the first bind. */
4101         obj->map_and_fenceable = true;
4102
4103         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4104 }
4105
4106 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4107         .get_pages = i915_gem_object_get_pages_gtt,
4108         .put_pages = i915_gem_object_put_pages_gtt,
4109 };
4110
4111 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4112                                                   size_t size)
4113 {
4114         struct drm_i915_gem_object *obj;
4115         struct address_space *mapping;
4116         gfp_t mask;
4117
4118         obj = i915_gem_object_alloc(dev);
4119         if (obj == NULL)
4120                 return NULL;
4121
4122         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4123                 i915_gem_object_free(obj);
4124                 return NULL;
4125         }
4126
4127         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4128         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4129                 /* 965gm cannot relocate objects above 4GiB. */
4130                 mask &= ~__GFP_HIGHMEM;
4131                 mask |= __GFP_DMA32;
4132         }
4133
4134         mapping = file_inode(obj->base.filp)->i_mapping;
4135         mapping_set_gfp_mask(mapping, mask);
4136
4137         i915_gem_object_init(obj, &i915_gem_object_ops);
4138
4139         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4140         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4141
4142         if (HAS_LLC(dev)) {
4143                 /* On some devices, we can have the GPU use the LLC (the CPU
4144                  * cache) for about a 10% performance improvement
4145                  * compared to uncached.  Graphics requests other than
4146                  * display scanout are coherent with the CPU in
4147                  * accessing this cache.  This means in this mode we
4148                  * don't need to clflush on the CPU side, and on the
4149                  * GPU side we only need to flush internal caches to
4150                  * get data visible to the CPU.
4151                  *
4152                  * However, we maintain the display planes as UC, and so
4153                  * need to rebind when first used as such.
4154                  */
4155                 obj->cache_level = I915_CACHE_LLC;
4156         } else
4157                 obj->cache_level = I915_CACHE_NONE;
4158
4159         trace_i915_gem_object_create(obj);
4160
4161         return obj;
4162 }
4163
4164 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4165 {
4166         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4167         struct drm_device *dev = obj->base.dev;
4168         drm_i915_private_t *dev_priv = dev->dev_private;
4169         struct i915_vma *vma, *next;
4170
4171         trace_i915_gem_object_destroy(obj);
4172
4173         if (obj->phys_obj)
4174                 i915_gem_detach_phys_object(dev, obj);
4175
4176         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4177                 int ret;
4178
4179                 vma->pin_count = 0;
4180                 ret = i915_vma_unbind(vma);
4181                 if (WARN_ON(ret == -ERESTARTSYS)) {
4182                         bool was_interruptible;
4183
4184                         was_interruptible = dev_priv->mm.interruptible;
4185                         dev_priv->mm.interruptible = false;
4186
4187                         WARN_ON(i915_vma_unbind(vma));
4188
4189                         dev_priv->mm.interruptible = was_interruptible;
4190                 }
4191         }
4192
4193         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4194          * before progressing. */
4195         if (obj->stolen)
4196                 i915_gem_object_unpin_pages(obj);
4197
4198         if (WARN_ON(obj->pages_pin_count))
4199                 obj->pages_pin_count = 0;
4200         i915_gem_object_put_pages(obj);
4201         i915_gem_object_free_mmap_offset(obj);
4202         i915_gem_object_release_stolen(obj);
4203
4204         BUG_ON(obj->pages);
4205
4206         if (obj->base.import_attach)
4207                 drm_prime_gem_destroy(&obj->base, NULL);
4208
4209         drm_gem_object_release(&obj->base);
4210         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4211
4212         kfree(obj->bit_17);
4213         i915_gem_object_free(obj);
4214 }
4215
4216 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4217                                      struct i915_address_space *vm)
4218 {
4219         struct i915_vma *vma;
4220         list_for_each_entry(vma, &obj->vma_list, vma_link)
4221                 if (vma->vm == vm)
4222                         return vma;
4223
4224         return NULL;
4225 }
4226
4227 void i915_gem_vma_destroy(struct i915_vma *vma)
4228 {
4229         WARN_ON(vma->node.allocated);
4230
4231         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4232         if (!list_empty(&vma->exec_list))
4233                 return;
4234
4235         list_del(&vma->vma_link);
4236
4237         kfree(vma);
4238 }
4239
4240 int
4241 i915_gem_suspend(struct drm_device *dev)
4242 {
4243         drm_i915_private_t *dev_priv = dev->dev_private;
4244         int ret = 0;
4245
4246         mutex_lock(&dev->struct_mutex);
4247         if (dev_priv->ums.mm_suspended)
4248                 goto err;
4249
4250         ret = i915_gpu_idle(dev);
4251         if (ret)
4252                 goto err;
4253
4254         i915_gem_retire_requests(dev);
4255
4256         /* Under UMS, be paranoid and evict. */
4257         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4258                 i915_gem_evict_everything(dev);
4259
4260         i915_kernel_lost_context(dev);
4261         i915_gem_cleanup_ringbuffer(dev);
4262
4263         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4264          * We need to replace this with a semaphore, or something.
4265          * And not confound ums.mm_suspended!
4266          */
4267         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4268                                                              DRIVER_MODESET);
4269         mutex_unlock(&dev->struct_mutex);
4270
4271         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4272         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4273         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4274
4275         return 0;
4276
4277 err:
4278         mutex_unlock(&dev->struct_mutex);
4279         return ret;
4280 }
4281
4282 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4283 {
4284         struct drm_device *dev = ring->dev;
4285         drm_i915_private_t *dev_priv = dev->dev_private;
4286         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4287         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4288         int i, ret;
4289
4290         if (!HAS_L3_DPF(dev) || !remap_info)
4291                 return 0;
4292
4293         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4294         if (ret)
4295                 return ret;
4296
4297         /*
4298          * Note: We do not worry about the concurrent register cacheline hang
4299          * here because no other code should access these registers other than
4300          * at initialization time.
4301          */
4302         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4303                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4304                 intel_ring_emit(ring, reg_base + i);
4305                 intel_ring_emit(ring, remap_info[i/4]);
4306         }
4307
4308         intel_ring_advance(ring);
4309
4310         return ret;
4311 }
4312
4313 void i915_gem_init_swizzling(struct drm_device *dev)
4314 {
4315         drm_i915_private_t *dev_priv = dev->dev_private;
4316
4317         if (INTEL_INFO(dev)->gen < 5 ||
4318             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4319                 return;
4320
4321         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4322                                  DISP_TILE_SURFACE_SWIZZLING);
4323
4324         if (IS_GEN5(dev))
4325                 return;
4326
4327         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4328         if (IS_GEN6(dev))
4329                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4330         else if (IS_GEN7(dev))
4331                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4332         else if (IS_GEN8(dev))
4333                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4334         else
4335                 BUG();
4336 }
4337
4338 static bool
4339 intel_enable_blt(struct drm_device *dev)
4340 {
4341         if (!HAS_BLT(dev))
4342                 return false;
4343
4344         /* The blitter was dysfunctional on early prototypes */
4345         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4346                 DRM_INFO("BLT not supported on this pre-production hardware;"
4347                          " graphics performance will be degraded.\n");
4348                 return false;
4349         }
4350
4351         return true;
4352 }
4353
4354 static int i915_gem_init_rings(struct drm_device *dev)
4355 {
4356         struct drm_i915_private *dev_priv = dev->dev_private;
4357         int ret;
4358
4359         ret = intel_init_render_ring_buffer(dev);
4360         if (ret)
4361                 return ret;
4362
4363         if (HAS_BSD(dev)) {
4364                 ret = intel_init_bsd_ring_buffer(dev);
4365                 if (ret)
4366                         goto cleanup_render_ring;
4367         }
4368
4369         if (intel_enable_blt(dev)) {
4370                 ret = intel_init_blt_ring_buffer(dev);
4371                 if (ret)
4372                         goto cleanup_bsd_ring;
4373         }
4374
4375         if (HAS_VEBOX(dev)) {
4376                 ret = intel_init_vebox_ring_buffer(dev);
4377                 if (ret)
4378                         goto cleanup_blt_ring;
4379         }
4380
4381
4382         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4383         if (ret)
4384                 goto cleanup_vebox_ring;
4385
4386         return 0;
4387
4388 cleanup_vebox_ring:
4389         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4390 cleanup_blt_ring:
4391         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4392 cleanup_bsd_ring:
4393         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4394 cleanup_render_ring:
4395         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4396
4397         return ret;
4398 }
4399
4400 int
4401 i915_gem_init_hw(struct drm_device *dev)
4402 {
4403         drm_i915_private_t *dev_priv = dev->dev_private;
4404         int ret, i;
4405
4406         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4407                 return -EIO;
4408
4409         if (dev_priv->ellc_size)
4410                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4411
4412         if (IS_HASWELL(dev))
4413                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4414                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4415
4416         if (HAS_PCH_NOP(dev)) {
4417                 u32 temp = I915_READ(GEN7_MSG_CTL);
4418                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4419                 I915_WRITE(GEN7_MSG_CTL, temp);
4420         }
4421
4422         i915_gem_init_swizzling(dev);
4423
4424         ret = i915_gem_init_rings(dev);
4425         if (ret)
4426                 return ret;
4427
4428         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4429                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4430
4431         /*
4432          * XXX: Contexts should only be initialized once. Doing a switch to the
4433          * default context switch however is something we'd like to do after
4434          * reset or thaw (the latter may not actually be necessary for HW, but
4435          * goes with our code better). Context switching requires rings (for
4436          * the do_switch), but before enabling PPGTT. So don't move this.
4437          */
4438         ret = i915_gem_context_enable(dev_priv);
4439         if (ret) {
4440                 DRM_ERROR("Context enable failed %d\n", ret);
4441                 goto err_out;
4442         }
4443
4444         return 0;
4445
4446 err_out:
4447         i915_gem_cleanup_ringbuffer(dev);
4448         return ret;
4449 }
4450
4451 int i915_gem_init(struct drm_device *dev)
4452 {
4453         struct drm_i915_private *dev_priv = dev->dev_private;
4454         int ret;
4455
4456         mutex_lock(&dev->struct_mutex);
4457
4458         if (IS_VALLEYVIEW(dev)) {
4459                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4460                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4461                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4462                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4463         }
4464
4465         i915_gem_init_global_gtt(dev);
4466
4467         ret = i915_gem_context_init(dev);
4468         if (ret)
4469                 return ret;
4470
4471         ret = i915_gem_init_hw(dev);
4472         mutex_unlock(&dev->struct_mutex);
4473         if (ret) {
4474                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4475                 i915_gem_context_fini(dev);
4476                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4477                 return ret;
4478         }
4479
4480         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4481         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4482                 dev_priv->dri1.allow_batchbuffer = 1;
4483         return 0;
4484 }
4485
4486 void
4487 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4488 {
4489         drm_i915_private_t *dev_priv = dev->dev_private;
4490         struct intel_ring_buffer *ring;
4491         int i;
4492
4493         for_each_ring(ring, dev_priv, i)
4494                 intel_cleanup_ring_buffer(ring);
4495 }
4496
4497 int
4498 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4499                        struct drm_file *file_priv)
4500 {
4501         struct drm_i915_private *dev_priv = dev->dev_private;
4502         int ret;
4503
4504         if (drm_core_check_feature(dev, DRIVER_MODESET))
4505                 return 0;
4506
4507         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4508                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4509                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4510         }
4511
4512         mutex_lock(&dev->struct_mutex);
4513         dev_priv->ums.mm_suspended = 0;
4514
4515         ret = i915_gem_init_hw(dev);
4516         if (ret != 0) {
4517                 mutex_unlock(&dev->struct_mutex);
4518                 return ret;
4519         }
4520
4521         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4522         mutex_unlock(&dev->struct_mutex);
4523
4524         ret = drm_irq_install(dev);
4525         if (ret)
4526                 goto cleanup_ringbuffer;
4527
4528         return 0;
4529
4530 cleanup_ringbuffer:
4531         mutex_lock(&dev->struct_mutex);
4532         i915_gem_cleanup_ringbuffer(dev);
4533         dev_priv->ums.mm_suspended = 1;
4534         mutex_unlock(&dev->struct_mutex);
4535
4536         return ret;
4537 }
4538
4539 int
4540 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4541                        struct drm_file *file_priv)
4542 {
4543         if (drm_core_check_feature(dev, DRIVER_MODESET))
4544                 return 0;
4545
4546         drm_irq_uninstall(dev);
4547
4548         return i915_gem_suspend(dev);
4549 }
4550
4551 void
4552 i915_gem_lastclose(struct drm_device *dev)
4553 {
4554         int ret;
4555
4556         if (drm_core_check_feature(dev, DRIVER_MODESET))
4557                 return;
4558
4559         ret = i915_gem_suspend(dev);
4560         if (ret)
4561                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4562 }
4563
4564 static void
4565 init_ring_lists(struct intel_ring_buffer *ring)
4566 {
4567         INIT_LIST_HEAD(&ring->active_list);
4568         INIT_LIST_HEAD(&ring->request_list);
4569 }
4570
4571 void i915_init_vm(struct drm_i915_private *dev_priv,
4572                   struct i915_address_space *vm)
4573 {
4574         if (!i915_is_ggtt(vm))
4575                 drm_mm_init(&vm->mm, vm->start, vm->total);
4576         vm->dev = dev_priv->dev;
4577         INIT_LIST_HEAD(&vm->active_list);
4578         INIT_LIST_HEAD(&vm->inactive_list);
4579         INIT_LIST_HEAD(&vm->global_link);
4580         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4581 }
4582
4583 void
4584 i915_gem_load(struct drm_device *dev)
4585 {
4586         drm_i915_private_t *dev_priv = dev->dev_private;
4587         int i;
4588
4589         dev_priv->slab =
4590                 kmem_cache_create("i915_gem_object",
4591                                   sizeof(struct drm_i915_gem_object), 0,
4592                                   SLAB_HWCACHE_ALIGN,
4593                                   NULL);
4594
4595         INIT_LIST_HEAD(&dev_priv->vm_list);
4596         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4597
4598         INIT_LIST_HEAD(&dev_priv->context_list);
4599         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4600         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4601         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4602         for (i = 0; i < I915_NUM_RINGS; i++)
4603                 init_ring_lists(&dev_priv->ring[i]);
4604         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4605                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4606         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4607                           i915_gem_retire_work_handler);
4608         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4609                           i915_gem_idle_work_handler);
4610         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4611
4612         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4613         if (IS_GEN3(dev)) {
4614                 I915_WRITE(MI_ARB_STATE,
4615                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4616         }
4617
4618         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4619
4620         /* Old X drivers will take 0-2 for front, back, depth buffers */
4621         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4622                 dev_priv->fence_reg_start = 3;
4623
4624         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4625                 dev_priv->num_fence_regs = 32;
4626         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4627                 dev_priv->num_fence_regs = 16;
4628         else
4629                 dev_priv->num_fence_regs = 8;
4630
4631         /* Initialize fence registers to zero */
4632         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4633         i915_gem_restore_fences(dev);
4634
4635         i915_gem_detect_bit_6_swizzle(dev);
4636         init_waitqueue_head(&dev_priv->pending_flip_queue);
4637
4638         dev_priv->mm.interruptible = true;
4639
4640         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4641         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4642         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4643         register_shrinker(&dev_priv->mm.inactive_shrinker);
4644 }
4645
4646 /*
4647  * Create a physically contiguous memory object for this object
4648  * e.g. for cursor + overlay regs
4649  */
4650 static int i915_gem_init_phys_object(struct drm_device *dev,
4651                                      int id, int size, int align)
4652 {
4653         drm_i915_private_t *dev_priv = dev->dev_private;
4654         struct drm_i915_gem_phys_object *phys_obj;
4655         int ret;
4656
4657         if (dev_priv->mm.phys_objs[id - 1] || !size)
4658                 return 0;
4659
4660         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4661         if (!phys_obj)
4662                 return -ENOMEM;
4663
4664         phys_obj->id = id;
4665
4666         phys_obj->handle = drm_pci_alloc(dev, size, align);
4667         if (!phys_obj->handle) {
4668                 ret = -ENOMEM;
4669                 goto kfree_obj;
4670         }
4671 #ifdef CONFIG_X86
4672         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4673 #endif
4674
4675         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4676
4677         return 0;
4678 kfree_obj:
4679         kfree(phys_obj);
4680         return ret;
4681 }
4682
4683 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4684 {
4685         drm_i915_private_t *dev_priv = dev->dev_private;
4686         struct drm_i915_gem_phys_object *phys_obj;
4687
4688         if (!dev_priv->mm.phys_objs[id - 1])
4689                 return;
4690
4691         phys_obj = dev_priv->mm.phys_objs[id - 1];
4692         if (phys_obj->cur_obj) {
4693                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4694         }
4695
4696 #ifdef CONFIG_X86
4697         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4698 #endif
4699         drm_pci_free(dev, phys_obj->handle);
4700         kfree(phys_obj);
4701         dev_priv->mm.phys_objs[id - 1] = NULL;
4702 }
4703
4704 void i915_gem_free_all_phys_object(struct drm_device *dev)
4705 {
4706         int i;
4707
4708         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4709                 i915_gem_free_phys_object(dev, i);
4710 }
4711
4712 void i915_gem_detach_phys_object(struct drm_device *dev,
4713                                  struct drm_i915_gem_object *obj)
4714 {
4715         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4716         char *vaddr;
4717         int i;
4718         int page_count;
4719
4720         if (!obj->phys_obj)
4721                 return;
4722         vaddr = obj->phys_obj->handle->vaddr;
4723
4724         page_count = obj->base.size / PAGE_SIZE;
4725         for (i = 0; i < page_count; i++) {
4726                 struct page *page = shmem_read_mapping_page(mapping, i);
4727                 if (!IS_ERR(page)) {
4728                         char *dst = kmap_atomic(page);
4729                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4730                         kunmap_atomic(dst);
4731
4732                         drm_clflush_pages(&page, 1);
4733
4734                         set_page_dirty(page);
4735                         mark_page_accessed(page);
4736                         page_cache_release(page);
4737                 }
4738         }
4739         i915_gem_chipset_flush(dev);
4740
4741         obj->phys_obj->cur_obj = NULL;
4742         obj->phys_obj = NULL;
4743 }
4744
4745 int
4746 i915_gem_attach_phys_object(struct drm_device *dev,
4747                             struct drm_i915_gem_object *obj,
4748                             int id,
4749                             int align)
4750 {
4751         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4752         drm_i915_private_t *dev_priv = dev->dev_private;
4753         int ret = 0;
4754         int page_count;
4755         int i;
4756
4757         if (id > I915_MAX_PHYS_OBJECT)
4758                 return -EINVAL;
4759
4760         if (obj->phys_obj) {
4761                 if (obj->phys_obj->id == id)
4762                         return 0;
4763                 i915_gem_detach_phys_object(dev, obj);
4764         }
4765
4766         /* create a new object */
4767         if (!dev_priv->mm.phys_objs[id - 1]) {
4768                 ret = i915_gem_init_phys_object(dev, id,
4769                                                 obj->base.size, align);
4770                 if (ret) {
4771                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4772                                   id, obj->base.size);
4773                         return ret;
4774                 }
4775         }
4776
4777         /* bind to the object */
4778         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4779         obj->phys_obj->cur_obj = obj;
4780
4781         page_count = obj->base.size / PAGE_SIZE;
4782
4783         for (i = 0; i < page_count; i++) {
4784                 struct page *page;
4785                 char *dst, *src;
4786
4787                 page = shmem_read_mapping_page(mapping, i);
4788                 if (IS_ERR(page))
4789                         return PTR_ERR(page);
4790
4791                 src = kmap_atomic(page);
4792                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4793                 memcpy(dst, src, PAGE_SIZE);
4794                 kunmap_atomic(src);
4795
4796                 mark_page_accessed(page);
4797                 page_cache_release(page);
4798         }
4799
4800         return 0;
4801 }
4802
4803 static int
4804 i915_gem_phys_pwrite(struct drm_device *dev,
4805                      struct drm_i915_gem_object *obj,
4806                      struct drm_i915_gem_pwrite *args,
4807                      struct drm_file *file_priv)
4808 {
4809         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4810         char __user *user_data = to_user_ptr(args->data_ptr);
4811
4812         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4813                 unsigned long unwritten;
4814
4815                 /* The physical object once assigned is fixed for the lifetime
4816                  * of the obj, so we can safely drop the lock and continue
4817                  * to access vaddr.
4818                  */
4819                 mutex_unlock(&dev->struct_mutex);
4820                 unwritten = copy_from_user(vaddr, user_data, args->size);
4821                 mutex_lock(&dev->struct_mutex);
4822                 if (unwritten)
4823                         return -EFAULT;
4824         }
4825
4826         i915_gem_chipset_flush(dev);
4827         return 0;
4828 }
4829
4830 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4831 {
4832         struct drm_i915_file_private *file_priv = file->driver_priv;
4833
4834         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4835
4836         /* Clean up our request list when the client is going away, so that
4837          * later retire_requests won't dereference our soon-to-be-gone
4838          * file_priv.
4839          */
4840         spin_lock(&file_priv->mm.lock);
4841         while (!list_empty(&file_priv->mm.request_list)) {
4842                 struct drm_i915_gem_request *request;
4843
4844                 request = list_first_entry(&file_priv->mm.request_list,
4845                                            struct drm_i915_gem_request,
4846                                            client_list);
4847                 list_del(&request->client_list);
4848                 request->file_priv = NULL;
4849         }
4850         spin_unlock(&file_priv->mm.lock);
4851 }
4852
4853 static void
4854 i915_gem_file_idle_work_handler(struct work_struct *work)
4855 {
4856         struct drm_i915_file_private *file_priv =
4857                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4858
4859         atomic_set(&file_priv->rps_wait_boost, false);
4860 }
4861
4862 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4863 {
4864         struct drm_i915_file_private *file_priv;
4865         int ret;
4866
4867         DRM_DEBUG_DRIVER("\n");
4868
4869         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4870         if (!file_priv)
4871                 return -ENOMEM;
4872
4873         file->driver_priv = file_priv;
4874         file_priv->dev_priv = dev->dev_private;
4875
4876         spin_lock_init(&file_priv->mm.lock);
4877         INIT_LIST_HEAD(&file_priv->mm.request_list);
4878         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4879                           i915_gem_file_idle_work_handler);
4880
4881         ret = i915_gem_context_open(dev, file);
4882         if (ret)
4883                 kfree(file_priv);
4884
4885         return ret;
4886 }
4887
4888 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4889 {
4890         if (!mutex_is_locked(mutex))
4891                 return false;
4892
4893 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4894         return mutex->owner == task;
4895 #else
4896         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4897         return false;
4898 #endif
4899 }
4900
4901 static unsigned long
4902 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4903 {
4904         struct drm_i915_private *dev_priv =
4905                 container_of(shrinker,
4906                              struct drm_i915_private,
4907                              mm.inactive_shrinker);
4908         struct drm_device *dev = dev_priv->dev;
4909         struct drm_i915_gem_object *obj;
4910         bool unlock = true;
4911         unsigned long count;
4912
4913         if (!mutex_trylock(&dev->struct_mutex)) {
4914                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4915                         return 0;
4916
4917                 if (dev_priv->mm.shrinker_no_lock_stealing)
4918                         return 0;
4919
4920                 unlock = false;
4921         }
4922
4923         count = 0;
4924         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4925                 if (obj->pages_pin_count == 0)
4926                         count += obj->base.size >> PAGE_SHIFT;
4927
4928         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4929                 if (obj->active)
4930                         continue;
4931
4932                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4933                         count += obj->base.size >> PAGE_SHIFT;
4934         }
4935
4936         if (unlock)
4937                 mutex_unlock(&dev->struct_mutex);
4938
4939         return count;
4940 }
4941
4942 /* All the new VM stuff */
4943 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4944                                   struct i915_address_space *vm)
4945 {
4946         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4947         struct i915_vma *vma;
4948
4949         if (!dev_priv->mm.aliasing_ppgtt ||
4950             vm == &dev_priv->mm.aliasing_ppgtt->base)
4951                 vm = &dev_priv->gtt.base;
4952
4953         BUG_ON(list_empty(&o->vma_list));
4954         list_for_each_entry(vma, &o->vma_list, vma_link) {
4955                 if (vma->vm == vm)
4956                         return vma->node.start;
4957
4958         }
4959         return -1;
4960 }
4961
4962 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4963                         struct i915_address_space *vm)
4964 {
4965         struct i915_vma *vma;
4966
4967         list_for_each_entry(vma, &o->vma_list, vma_link)
4968                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4969                         return true;
4970
4971         return false;
4972 }
4973
4974 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4975 {
4976         struct i915_vma *vma;
4977
4978         list_for_each_entry(vma, &o->vma_list, vma_link)
4979                 if (drm_mm_node_allocated(&vma->node))
4980                         return true;
4981
4982         return false;
4983 }
4984
4985 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4986                                 struct i915_address_space *vm)
4987 {
4988         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4989         struct i915_vma *vma;
4990
4991         if (!dev_priv->mm.aliasing_ppgtt ||
4992             vm == &dev_priv->mm.aliasing_ppgtt->base)
4993                 vm = &dev_priv->gtt.base;
4994
4995         BUG_ON(list_empty(&o->vma_list));
4996
4997         list_for_each_entry(vma, &o->vma_list, vma_link)
4998                 if (vma->vm == vm)
4999                         return vma->node.size;
5000
5001         return 0;
5002 }
5003
5004 static unsigned long
5005 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5006 {
5007         struct drm_i915_private *dev_priv =
5008                 container_of(shrinker,
5009                              struct drm_i915_private,
5010                              mm.inactive_shrinker);
5011         struct drm_device *dev = dev_priv->dev;
5012         unsigned long freed;
5013         bool unlock = true;
5014
5015         if (!mutex_trylock(&dev->struct_mutex)) {
5016                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5017                         return SHRINK_STOP;
5018
5019                 if (dev_priv->mm.shrinker_no_lock_stealing)
5020                         return SHRINK_STOP;
5021
5022                 unlock = false;
5023         }
5024
5025         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5026         if (freed < sc->nr_to_scan)
5027                 freed += __i915_gem_shrink(dev_priv,
5028                                            sc->nr_to_scan - freed,
5029                                            false);
5030         if (freed < sc->nr_to_scan)
5031                 freed += i915_gem_shrink_all(dev_priv);
5032
5033         if (unlock)
5034                 mutex_unlock(&dev->struct_mutex);
5035
5036         return freed;
5037 }
5038
5039 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5040 {
5041         struct i915_vma *vma;
5042
5043         if (WARN_ON(list_empty(&obj->vma_list)))
5044                 return NULL;
5045
5046         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5047         if (vma->vm != obj_to_ggtt(obj))
5048                 return NULL;
5049
5050         return vma;
5051 }