Merge branch 'topic/drm-vblank-rework' into drm-intel-next-queued
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static int i915_gem_phys_pwrite(struct drm_device *dev,
51                                 struct drm_i915_gem_object *obj,
52                                 struct drm_i915_gem_pwrite *args,
53                                 struct drm_file *file);
54
55 static void i915_gem_write_fence(struct drm_device *dev, int reg,
56                                  struct drm_i915_gem_object *obj);
57 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
58                                          struct drm_i915_fence_reg *fence,
59                                          bool enable);
60
61 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
62                                              struct shrink_control *sc);
63 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
64                                             struct shrink_control *sc);
65 static int i915_gem_shrinker_oom(struct notifier_block *nb,
66                                  unsigned long event,
67                                  void *ptr);
68 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
69 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (i915_gem_obj_is_pinned(obj))
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /*
336  * Pins the specified object's pages and synchronizes the object with
337  * GPU accesses. Sets needs_clflush to non-zero if the caller should
338  * flush the object from the CPU cache.
339  */
340 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
341                                     int *needs_clflush)
342 {
343         int ret;
344
345         *needs_clflush = 0;
346
347         if (!obj->base.filp)
348                 return -EINVAL;
349
350         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
351                 /* If we're not in the cpu read domain, set ourself into the gtt
352                  * read domain and manually flush cachelines (if required). This
353                  * optimizes for the case when the gpu will dirty the data
354                  * anyway again before the next pread happens. */
355                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
356                                                         obj->cache_level);
357                 ret = i915_gem_object_wait_rendering(obj, true);
358                 if (ret)
359                         return ret;
360
361                 i915_gem_object_retire(obj);
362         }
363
364         ret = i915_gem_object_get_pages(obj);
365         if (ret)
366                 return ret;
367
368         i915_gem_object_pin_pages(obj);
369
370         return ret;
371 }
372
373 /* Per-page copy function for the shmem pread fastpath.
374  * Flushes invalid cachelines before reading the target if
375  * needs_clflush is set. */
376 static int
377 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
378                  char __user *user_data,
379                  bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381         char *vaddr;
382         int ret;
383
384         if (unlikely(page_do_bit17_swizzling))
385                 return -EINVAL;
386
387         vaddr = kmap_atomic(page);
388         if (needs_clflush)
389                 drm_clflush_virt_range(vaddr + shmem_page_offset,
390                                        page_length);
391         ret = __copy_to_user_inatomic(user_data,
392                                       vaddr + shmem_page_offset,
393                                       page_length);
394         kunmap_atomic(vaddr);
395
396         return ret ? -EFAULT : 0;
397 }
398
399 static void
400 shmem_clflush_swizzled_range(char *addr, unsigned long length,
401                              bool swizzled)
402 {
403         if (unlikely(swizzled)) {
404                 unsigned long start = (unsigned long) addr;
405                 unsigned long end = (unsigned long) addr + length;
406
407                 /* For swizzling simply ensure that we always flush both
408                  * channels. Lame, but simple and it works. Swizzled
409                  * pwrite/pread is far from a hotpath - current userspace
410                  * doesn't use it at all. */
411                 start = round_down(start, 128);
412                 end = round_up(end, 128);
413
414                 drm_clflush_virt_range((void *)start, end - start);
415         } else {
416                 drm_clflush_virt_range(addr, length);
417         }
418
419 }
420
421 /* Only difference to the fast-path function is that this can handle bit17
422  * and uses non-atomic copy and kmap functions. */
423 static int
424 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
425                  char __user *user_data,
426                  bool page_do_bit17_swizzling, bool needs_clflush)
427 {
428         char *vaddr;
429         int ret;
430
431         vaddr = kmap(page);
432         if (needs_clflush)
433                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
434                                              page_length,
435                                              page_do_bit17_swizzling);
436
437         if (page_do_bit17_swizzling)
438                 ret = __copy_to_user_swizzled(user_data,
439                                               vaddr, shmem_page_offset,
440                                               page_length);
441         else
442                 ret = __copy_to_user(user_data,
443                                      vaddr + shmem_page_offset,
444                                      page_length);
445         kunmap(page);
446
447         return ret ? - EFAULT : 0;
448 }
449
450 static int
451 i915_gem_shmem_pread(struct drm_device *dev,
452                      struct drm_i915_gem_object *obj,
453                      struct drm_i915_gem_pread *args,
454                      struct drm_file *file)
455 {
456         char __user *user_data;
457         ssize_t remain;
458         loff_t offset;
459         int shmem_page_offset, page_length, ret = 0;
460         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
461         int prefaulted = 0;
462         int needs_clflush = 0;
463         struct sg_page_iter sg_iter;
464
465         user_data = to_user_ptr(args->data_ptr);
466         remain = args->size;
467
468         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
469
470         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
471         if (ret)
472                 return ret;
473
474         offset = args->offset;
475
476         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
477                          offset >> PAGE_SHIFT) {
478                 struct page *page = sg_page_iter_page(&sg_iter);
479
480                 if (remain <= 0)
481                         break;
482
483                 /* Operation in this page
484                  *
485                  * shmem_page_offset = offset within page in shmem file
486                  * page_length = bytes to copy for this page
487                  */
488                 shmem_page_offset = offset_in_page(offset);
489                 page_length = remain;
490                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
491                         page_length = PAGE_SIZE - shmem_page_offset;
492
493                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
494                         (page_to_phys(page) & (1 << 17)) != 0;
495
496                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
497                                        user_data, page_do_bit17_swizzling,
498                                        needs_clflush);
499                 if (ret == 0)
500                         goto next_page;
501
502                 mutex_unlock(&dev->struct_mutex);
503
504                 if (likely(!i915.prefault_disable) && !prefaulted) {
505                         ret = fault_in_multipages_writeable(user_data, remain);
506                         /* Userspace is tricking us, but we've already clobbered
507                          * its pages with the prefault and promised to write the
508                          * data up to the first fault. Hence ignore any errors
509                          * and just continue. */
510                         (void)ret;
511                         prefaulted = 1;
512                 }
513
514                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
515                                        user_data, page_do_bit17_swizzling,
516                                        needs_clflush);
517
518                 mutex_lock(&dev->struct_mutex);
519
520                 if (ret)
521                         goto out;
522
523 next_page:
524                 remain -= page_length;
525                 user_data += page_length;
526                 offset += page_length;
527         }
528
529 out:
530         i915_gem_object_unpin_pages(obj);
531
532         return ret;
533 }
534
535 /**
536  * Reads data from the object referenced by handle.
537  *
538  * On error, the contents of *data are undefined.
539  */
540 int
541 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
542                      struct drm_file *file)
543 {
544         struct drm_i915_gem_pread *args = data;
545         struct drm_i915_gem_object *obj;
546         int ret = 0;
547
548         if (args->size == 0)
549                 return 0;
550
551         if (!access_ok(VERIFY_WRITE,
552                        to_user_ptr(args->data_ptr),
553                        args->size))
554                 return -EFAULT;
555
556         ret = i915_mutex_lock_interruptible(dev);
557         if (ret)
558                 return ret;
559
560         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
561         if (&obj->base == NULL) {
562                 ret = -ENOENT;
563                 goto unlock;
564         }
565
566         /* Bounds check source.  */
567         if (args->offset > obj->base.size ||
568             args->size > obj->base.size - args->offset) {
569                 ret = -EINVAL;
570                 goto out;
571         }
572
573         /* prime objects have no backing filp to GEM pread/pwrite
574          * pages from.
575          */
576         if (!obj->base.filp) {
577                 ret = -EINVAL;
578                 goto out;
579         }
580
581         trace_i915_gem_object_pread(obj, args->offset, args->size);
582
583         ret = i915_gem_shmem_pread(dev, obj, args, file);
584
585 out:
586         drm_gem_object_unreference(&obj->base);
587 unlock:
588         mutex_unlock(&dev->struct_mutex);
589         return ret;
590 }
591
592 /* This is the fast write path which cannot handle
593  * page faults in the source data
594  */
595
596 static inline int
597 fast_user_write(struct io_mapping *mapping,
598                 loff_t page_base, int page_offset,
599                 char __user *user_data,
600                 int length)
601 {
602         void __iomem *vaddr_atomic;
603         void *vaddr;
604         unsigned long unwritten;
605
606         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
607         /* We can use the cpu mem copy function because this is X86. */
608         vaddr = (void __force*)vaddr_atomic + page_offset;
609         unwritten = __copy_from_user_inatomic_nocache(vaddr,
610                                                       user_data, length);
611         io_mapping_unmap_atomic(vaddr_atomic);
612         return unwritten;
613 }
614
615 /**
616  * This is the fast pwrite path, where we copy the data directly from the
617  * user into the GTT, uncached.
618  */
619 static int
620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621                          struct drm_i915_gem_object *obj,
622                          struct drm_i915_gem_pwrite *args,
623                          struct drm_file *file)
624 {
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         ssize_t remain;
627         loff_t offset, page_base;
628         char __user *user_data;
629         int page_offset, page_length, ret;
630
631         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
632         if (ret)
633                 goto out;
634
635         ret = i915_gem_object_set_to_gtt_domain(obj, true);
636         if (ret)
637                 goto out_unpin;
638
639         ret = i915_gem_object_put_fence(obj);
640         if (ret)
641                 goto out_unpin;
642
643         user_data = to_user_ptr(args->data_ptr);
644         remain = args->size;
645
646         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
647
648         while (remain > 0) {
649                 /* Operation in this page
650                  *
651                  * page_base = page offset within aperture
652                  * page_offset = offset within page
653                  * page_length = bytes to copy for this page
654                  */
655                 page_base = offset & PAGE_MASK;
656                 page_offset = offset_in_page(offset);
657                 page_length = remain;
658                 if ((page_offset + remain) > PAGE_SIZE)
659                         page_length = PAGE_SIZE - page_offset;
660
661                 /* If we get a fault while copying data, then (presumably) our
662                  * source page isn't available.  Return the error and we'll
663                  * retry in the slow path.
664                  */
665                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
666                                     page_offset, user_data, page_length)) {
667                         ret = -EFAULT;
668                         goto out_unpin;
669                 }
670
671                 remain -= page_length;
672                 user_data += page_length;
673                 offset += page_length;
674         }
675
676 out_unpin:
677         i915_gem_object_ggtt_unpin(obj);
678 out:
679         return ret;
680 }
681
682 /* Per-page copy function for the shmem pwrite fastpath.
683  * Flushes invalid cachelines before writing to the target if
684  * needs_clflush_before is set and flushes out any written cachelines after
685  * writing if needs_clflush is set. */
686 static int
687 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
688                   char __user *user_data,
689                   bool page_do_bit17_swizzling,
690                   bool needs_clflush_before,
691                   bool needs_clflush_after)
692 {
693         char *vaddr;
694         int ret;
695
696         if (unlikely(page_do_bit17_swizzling))
697                 return -EINVAL;
698
699         vaddr = kmap_atomic(page);
700         if (needs_clflush_before)
701                 drm_clflush_virt_range(vaddr + shmem_page_offset,
702                                        page_length);
703         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
704                                         user_data, page_length);
705         if (needs_clflush_after)
706                 drm_clflush_virt_range(vaddr + shmem_page_offset,
707                                        page_length);
708         kunmap_atomic(vaddr);
709
710         return ret ? -EFAULT : 0;
711 }
712
713 /* Only difference to the fast-path function is that this can handle bit17
714  * and uses non-atomic copy and kmap functions. */
715 static int
716 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
717                   char __user *user_data,
718                   bool page_do_bit17_swizzling,
719                   bool needs_clflush_before,
720                   bool needs_clflush_after)
721 {
722         char *vaddr;
723         int ret;
724
725         vaddr = kmap(page);
726         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
727                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
728                                              page_length,
729                                              page_do_bit17_swizzling);
730         if (page_do_bit17_swizzling)
731                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
732                                                 user_data,
733                                                 page_length);
734         else
735                 ret = __copy_from_user(vaddr + shmem_page_offset,
736                                        user_data,
737                                        page_length);
738         if (needs_clflush_after)
739                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
740                                              page_length,
741                                              page_do_bit17_swizzling);
742         kunmap(page);
743
744         return ret ? -EFAULT : 0;
745 }
746
747 static int
748 i915_gem_shmem_pwrite(struct drm_device *dev,
749                       struct drm_i915_gem_object *obj,
750                       struct drm_i915_gem_pwrite *args,
751                       struct drm_file *file)
752 {
753         ssize_t remain;
754         loff_t offset;
755         char __user *user_data;
756         int shmem_page_offset, page_length, ret = 0;
757         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
758         int hit_slowpath = 0;
759         int needs_clflush_after = 0;
760         int needs_clflush_before = 0;
761         struct sg_page_iter sg_iter;
762
763         user_data = to_user_ptr(args->data_ptr);
764         remain = args->size;
765
766         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
767
768         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
769                 /* If we're not in the cpu write domain, set ourself into the gtt
770                  * write domain and manually flush cachelines (if required). This
771                  * optimizes for the case when the gpu will use the data
772                  * right away and we therefore have to clflush anyway. */
773                 needs_clflush_after = cpu_write_needs_clflush(obj);
774                 ret = i915_gem_object_wait_rendering(obj, false);
775                 if (ret)
776                         return ret;
777
778                 i915_gem_object_retire(obj);
779         }
780         /* Same trick applies to invalidate partially written cachelines read
781          * before writing. */
782         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
783                 needs_clflush_before =
784                         !cpu_cache_is_coherent(dev, obj->cache_level);
785
786         ret = i915_gem_object_get_pages(obj);
787         if (ret)
788                 return ret;
789
790         i915_gem_object_pin_pages(obj);
791
792         offset = args->offset;
793         obj->dirty = 1;
794
795         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
796                          offset >> PAGE_SHIFT) {
797                 struct page *page = sg_page_iter_page(&sg_iter);
798                 int partial_cacheline_write;
799
800                 if (remain <= 0)
801                         break;
802
803                 /* Operation in this page
804                  *
805                  * shmem_page_offset = offset within page in shmem file
806                  * page_length = bytes to copy for this page
807                  */
808                 shmem_page_offset = offset_in_page(offset);
809
810                 page_length = remain;
811                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
812                         page_length = PAGE_SIZE - shmem_page_offset;
813
814                 /* If we don't overwrite a cacheline completely we need to be
815                  * careful to have up-to-date data by first clflushing. Don't
816                  * overcomplicate things and flush the entire patch. */
817                 partial_cacheline_write = needs_clflush_before &&
818                         ((shmem_page_offset | page_length)
819                                 & (boot_cpu_data.x86_clflush_size - 1));
820
821                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
822                         (page_to_phys(page) & (1 << 17)) != 0;
823
824                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
825                                         user_data, page_do_bit17_swizzling,
826                                         partial_cacheline_write,
827                                         needs_clflush_after);
828                 if (ret == 0)
829                         goto next_page;
830
831                 hit_slowpath = 1;
832                 mutex_unlock(&dev->struct_mutex);
833                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
834                                         user_data, page_do_bit17_swizzling,
835                                         partial_cacheline_write,
836                                         needs_clflush_after);
837
838                 mutex_lock(&dev->struct_mutex);
839
840                 if (ret)
841                         goto out;
842
843 next_page:
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out:
850         i915_gem_object_unpin_pages(obj);
851
852         if (hit_slowpath) {
853                 /*
854                  * Fixup: Flush cpu caches in case we didn't flush the dirty
855                  * cachelines in-line while writing and the object moved
856                  * out of the cpu write domain while we've dropped the lock.
857                  */
858                 if (!needs_clflush_after &&
859                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
860                         if (i915_gem_clflush_object(obj, obj->pin_display))
861                                 i915_gem_chipset_flush(dev);
862                 }
863         }
864
865         if (needs_clflush_after)
866                 i915_gem_chipset_flush(dev);
867
868         return ret;
869 }
870
871 /**
872  * Writes data to the object referenced by handle.
873  *
874  * On error, the contents of the buffer that were to be modified are undefined.
875  */
876 int
877 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
878                       struct drm_file *file)
879 {
880         struct drm_i915_gem_pwrite *args = data;
881         struct drm_i915_gem_object *obj;
882         int ret;
883
884         if (args->size == 0)
885                 return 0;
886
887         if (!access_ok(VERIFY_READ,
888                        to_user_ptr(args->data_ptr),
889                        args->size))
890                 return -EFAULT;
891
892         if (likely(!i915.prefault_disable)) {
893                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
894                                                    args->size);
895                 if (ret)
896                         return -EFAULT;
897         }
898
899         ret = i915_mutex_lock_interruptible(dev);
900         if (ret)
901                 return ret;
902
903         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
904         if (&obj->base == NULL) {
905                 ret = -ENOENT;
906                 goto unlock;
907         }
908
909         /* Bounds check destination. */
910         if (args->offset > obj->base.size ||
911             args->size > obj->base.size - args->offset) {
912                 ret = -EINVAL;
913                 goto out;
914         }
915
916         /* prime objects have no backing filp to GEM pread/pwrite
917          * pages from.
918          */
919         if (!obj->base.filp) {
920                 ret = -EINVAL;
921                 goto out;
922         }
923
924         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
925
926         ret = -EFAULT;
927         /* We can only do the GTT pwrite on untiled buffers, as otherwise
928          * it would end up going through the fenced access, and we'll get
929          * different detiling behavior between reading and writing.
930          * pread/pwrite currently are reading and writing from the CPU
931          * perspective, requiring manual detiling by the client.
932          */
933         if (obj->phys_obj) {
934                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
935                 goto out;
936         }
937
938         if (obj->tiling_mode == I915_TILING_NONE &&
939             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
940             cpu_write_needs_clflush(obj)) {
941                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
942                 /* Note that the gtt paths might fail with non-page-backed user
943                  * pointers (e.g. gtt mappings when moving data between
944                  * textures). Fallback to the shmem path in that case. */
945         }
946
947         if (ret == -EFAULT || ret == -ENOSPC)
948                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
949
950 out:
951         drm_gem_object_unreference(&obj->base);
952 unlock:
953         mutex_unlock(&dev->struct_mutex);
954         return ret;
955 }
956
957 int
958 i915_gem_check_wedge(struct i915_gpu_error *error,
959                      bool interruptible)
960 {
961         if (i915_reset_in_progress(error)) {
962                 /* Non-interruptible callers can't handle -EAGAIN, hence return
963                  * -EIO unconditionally for these. */
964                 if (!interruptible)
965                         return -EIO;
966
967                 /* Recovery complete, but the reset failed ... */
968                 if (i915_terminally_wedged(error))
969                         return -EIO;
970
971                 return -EAGAIN;
972         }
973
974         return 0;
975 }
976
977 /*
978  * Compare seqno against outstanding lazy request. Emit a request if they are
979  * equal.
980  */
981 static int
982 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
983 {
984         int ret;
985
986         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988         ret = 0;
989         if (seqno == ring->outstanding_lazy_seqno)
990                 ret = i915_add_request(ring, NULL);
991
992         return ret;
993 }
994
995 static void fake_irq(unsigned long data)
996 {
997         wake_up_process((struct task_struct *)data);
998 }
999
1000 static bool missed_irq(struct drm_i915_private *dev_priv,
1001                        struct intel_ring_buffer *ring)
1002 {
1003         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1004 }
1005
1006 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1007 {
1008         if (file_priv == NULL)
1009                 return true;
1010
1011         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1012 }
1013
1014 /**
1015  * __wait_seqno - wait until execution of seqno has finished
1016  * @ring: the ring expected to report seqno
1017  * @seqno: duh!
1018  * @reset_counter: reset sequence associated with the given seqno
1019  * @interruptible: do an interruptible wait (normally yes)
1020  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1021  *
1022  * Note: It is of utmost importance that the passed in seqno and reset_counter
1023  * values have been read by the caller in an smp safe manner. Where read-side
1024  * locks are involved, it is sufficient to read the reset_counter before
1025  * unlocking the lock that protects the seqno. For lockless tricks, the
1026  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1027  * inserted.
1028  *
1029  * Returns 0 if the seqno was found within the alloted time. Else returns the
1030  * errno with remaining time filled in timeout argument.
1031  */
1032 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1033                         unsigned reset_counter,
1034                         bool interruptible,
1035                         struct timespec *timeout,
1036                         struct drm_i915_file_private *file_priv)
1037 {
1038         struct drm_device *dev = ring->dev;
1039         struct drm_i915_private *dev_priv = dev->dev_private;
1040         const bool irq_test_in_progress =
1041                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1042         struct timespec before, now;
1043         DEFINE_WAIT(wait);
1044         unsigned long timeout_expire;
1045         int ret;
1046
1047         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1048
1049         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1050                 return 0;
1051
1052         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1053
1054         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1055                 gen6_rps_boost(dev_priv);
1056                 if (file_priv)
1057                         mod_delayed_work(dev_priv->wq,
1058                                          &file_priv->mm.idle_work,
1059                                          msecs_to_jiffies(100));
1060         }
1061
1062         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1063                 return -ENODEV;
1064
1065         /* Record current time in case interrupted by signal, or wedged */
1066         trace_i915_gem_request_wait_begin(ring, seqno);
1067         getrawmonotonic(&before);
1068         for (;;) {
1069                 struct timer_list timer;
1070
1071                 prepare_to_wait(&ring->irq_queue, &wait,
1072                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1073
1074                 /* We need to check whether any gpu reset happened in between
1075                  * the caller grabbing the seqno and now ... */
1076                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1077                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1078                          * is truely gone. */
1079                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080                         if (ret == 0)
1081                                 ret = -EAGAIN;
1082                         break;
1083                 }
1084
1085                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1086                         ret = 0;
1087                         break;
1088                 }
1089
1090                 if (interruptible && signal_pending(current)) {
1091                         ret = -ERESTARTSYS;
1092                         break;
1093                 }
1094
1095                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1096                         ret = -ETIME;
1097                         break;
1098                 }
1099
1100                 timer.function = NULL;
1101                 if (timeout || missed_irq(dev_priv, ring)) {
1102                         unsigned long expire;
1103
1104                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1105                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1106                         mod_timer(&timer, expire);
1107                 }
1108
1109                 io_schedule();
1110
1111                 if (timer.function) {
1112                         del_singleshot_timer_sync(&timer);
1113                         destroy_timer_on_stack(&timer);
1114                 }
1115         }
1116         getrawmonotonic(&now);
1117         trace_i915_gem_request_wait_end(ring, seqno);
1118
1119         if (!irq_test_in_progress)
1120                 ring->irq_put(ring);
1121
1122         finish_wait(&ring->irq_queue, &wait);
1123
1124         if (timeout) {
1125                 struct timespec sleep_time = timespec_sub(now, before);
1126                 *timeout = timespec_sub(*timeout, sleep_time);
1127                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1128                         set_normalized_timespec(timeout, 0, 0);
1129         }
1130
1131         return ret;
1132 }
1133
1134 /**
1135  * Waits for a sequence number to be signaled, and cleans up the
1136  * request and object lists appropriately for that event.
1137  */
1138 int
1139 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1140 {
1141         struct drm_device *dev = ring->dev;
1142         struct drm_i915_private *dev_priv = dev->dev_private;
1143         bool interruptible = dev_priv->mm.interruptible;
1144         int ret;
1145
1146         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147         BUG_ON(seqno == 0);
1148
1149         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1150         if (ret)
1151                 return ret;
1152
1153         ret = i915_gem_check_olr(ring, seqno);
1154         if (ret)
1155                 return ret;
1156
1157         return __wait_seqno(ring, seqno,
1158                             atomic_read(&dev_priv->gpu_error.reset_counter),
1159                             interruptible, NULL, NULL);
1160 }
1161
1162 static int
1163 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1164                                      struct intel_ring_buffer *ring)
1165 {
1166         if (!obj->active)
1167                 return 0;
1168
1169         /* Manually manage the write flush as we may have not yet
1170          * retired the buffer.
1171          *
1172          * Note that the last_write_seqno is always the earlier of
1173          * the two (read/write) seqno, so if we haved successfully waited,
1174          * we know we have passed the last write.
1175          */
1176         obj->last_write_seqno = 0;
1177
1178         return 0;
1179 }
1180
1181 /**
1182  * Ensures that all rendering to the object has completed and the object is
1183  * safe to unbind from the GTT or access from the CPU.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1187                                bool readonly)
1188 {
1189         struct intel_ring_buffer *ring = obj->ring;
1190         u32 seqno;
1191         int ret;
1192
1193         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1194         if (seqno == 0)
1195                 return 0;
1196
1197         ret = i915_wait_seqno(ring, seqno);
1198         if (ret)
1199                 return ret;
1200
1201         return i915_gem_object_wait_rendering__tail(obj, ring);
1202 }
1203
1204 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1205  * as the object state may change during this call.
1206  */
1207 static __must_check int
1208 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1209                                             struct drm_i915_file_private *file_priv,
1210                                             bool readonly)
1211 {
1212         struct drm_device *dev = obj->base.dev;
1213         struct drm_i915_private *dev_priv = dev->dev_private;
1214         struct intel_ring_buffer *ring = obj->ring;
1215         unsigned reset_counter;
1216         u32 seqno;
1217         int ret;
1218
1219         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1220         BUG_ON(!dev_priv->mm.interruptible);
1221
1222         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1223         if (seqno == 0)
1224                 return 0;
1225
1226         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1227         if (ret)
1228                 return ret;
1229
1230         ret = i915_gem_check_olr(ring, seqno);
1231         if (ret)
1232                 return ret;
1233
1234         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1235         mutex_unlock(&dev->struct_mutex);
1236         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1237         mutex_lock(&dev->struct_mutex);
1238         if (ret)
1239                 return ret;
1240
1241         return i915_gem_object_wait_rendering__tail(obj, ring);
1242 }
1243
1244 /**
1245  * Called when user space prepares to use an object with the CPU, either
1246  * through the mmap ioctl's mapping or a GTT mapping.
1247  */
1248 int
1249 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1250                           struct drm_file *file)
1251 {
1252         struct drm_i915_gem_set_domain *args = data;
1253         struct drm_i915_gem_object *obj;
1254         uint32_t read_domains = args->read_domains;
1255         uint32_t write_domain = args->write_domain;
1256         int ret;
1257
1258         /* Only handle setting domains to types used by the CPU. */
1259         if (write_domain & I915_GEM_GPU_DOMAINS)
1260                 return -EINVAL;
1261
1262         if (read_domains & I915_GEM_GPU_DOMAINS)
1263                 return -EINVAL;
1264
1265         /* Having something in the write domain implies it's in the read
1266          * domain, and only that read domain.  Enforce that in the request.
1267          */
1268         if (write_domain != 0 && read_domains != write_domain)
1269                 return -EINVAL;
1270
1271         ret = i915_mutex_lock_interruptible(dev);
1272         if (ret)
1273                 return ret;
1274
1275         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1276         if (&obj->base == NULL) {
1277                 ret = -ENOENT;
1278                 goto unlock;
1279         }
1280
1281         /* Try to flush the object off the GPU without holding the lock.
1282          * We will repeat the flush holding the lock in the normal manner
1283          * to catch cases where we are gazumped.
1284          */
1285         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1286                                                           file->driver_priv,
1287                                                           !write_domain);
1288         if (ret)
1289                 goto unref;
1290
1291         if (read_domains & I915_GEM_DOMAIN_GTT) {
1292                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1293
1294                 /* Silently promote "you're not bound, there was nothing to do"
1295                  * to success, since the client was just asking us to
1296                  * make sure everything was done.
1297                  */
1298                 if (ret == -EINVAL)
1299                         ret = 0;
1300         } else {
1301                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1302         }
1303
1304 unref:
1305         drm_gem_object_unreference(&obj->base);
1306 unlock:
1307         mutex_unlock(&dev->struct_mutex);
1308         return ret;
1309 }
1310
1311 /**
1312  * Called when user space has done writes to this buffer
1313  */
1314 int
1315 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1316                          struct drm_file *file)
1317 {
1318         struct drm_i915_gem_sw_finish *args = data;
1319         struct drm_i915_gem_object *obj;
1320         int ret = 0;
1321
1322         ret = i915_mutex_lock_interruptible(dev);
1323         if (ret)
1324                 return ret;
1325
1326         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1327         if (&obj->base == NULL) {
1328                 ret = -ENOENT;
1329                 goto unlock;
1330         }
1331
1332         /* Pinned buffers may be scanout, so flush the cache */
1333         if (obj->pin_display)
1334                 i915_gem_object_flush_cpu_write_domain(obj, true);
1335
1336         drm_gem_object_unreference(&obj->base);
1337 unlock:
1338         mutex_unlock(&dev->struct_mutex);
1339         return ret;
1340 }
1341
1342 /**
1343  * Maps the contents of an object, returning the address it is mapped
1344  * into.
1345  *
1346  * While the mapping holds a reference on the contents of the object, it doesn't
1347  * imply a ref on the object itself.
1348  */
1349 int
1350 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1351                     struct drm_file *file)
1352 {
1353         struct drm_i915_gem_mmap *args = data;
1354         struct drm_gem_object *obj;
1355         unsigned long addr;
1356
1357         obj = drm_gem_object_lookup(dev, file, args->handle);
1358         if (obj == NULL)
1359                 return -ENOENT;
1360
1361         /* prime objects have no backing filp to GEM mmap
1362          * pages from.
1363          */
1364         if (!obj->filp) {
1365                 drm_gem_object_unreference_unlocked(obj);
1366                 return -EINVAL;
1367         }
1368
1369         addr = vm_mmap(obj->filp, 0, args->size,
1370                        PROT_READ | PROT_WRITE, MAP_SHARED,
1371                        args->offset);
1372         drm_gem_object_unreference_unlocked(obj);
1373         if (IS_ERR((void *)addr))
1374                 return addr;
1375
1376         args->addr_ptr = (uint64_t) addr;
1377
1378         return 0;
1379 }
1380
1381 /**
1382  * i915_gem_fault - fault a page into the GTT
1383  * vma: VMA in question
1384  * vmf: fault info
1385  *
1386  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1387  * from userspace.  The fault handler takes care of binding the object to
1388  * the GTT (if needed), allocating and programming a fence register (again,
1389  * only if needed based on whether the old reg is still valid or the object
1390  * is tiled) and inserting a new PTE into the faulting process.
1391  *
1392  * Note that the faulting process may involve evicting existing objects
1393  * from the GTT and/or fence registers to make room.  So performance may
1394  * suffer if the GTT working set is large or there are few fence registers
1395  * left.
1396  */
1397 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1398 {
1399         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1400         struct drm_device *dev = obj->base.dev;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         pgoff_t page_offset;
1403         unsigned long pfn;
1404         int ret = 0;
1405         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1406
1407         intel_runtime_pm_get(dev_priv);
1408
1409         /* We don't use vmf->pgoff since that has the fake offset */
1410         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1411                 PAGE_SHIFT;
1412
1413         ret = i915_mutex_lock_interruptible(dev);
1414         if (ret)
1415                 goto out;
1416
1417         trace_i915_gem_object_fault(obj, page_offset, true, write);
1418
1419         /* Try to flush the object off the GPU first without holding the lock.
1420          * Upon reacquiring the lock, we will perform our sanity checks and then
1421          * repeat the flush holding the lock in the normal manner to catch cases
1422          * where we are gazumped.
1423          */
1424         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1425         if (ret)
1426                 goto unlock;
1427
1428         /* Access to snoopable pages through the GTT is incoherent. */
1429         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1430                 ret = -EINVAL;
1431                 goto unlock;
1432         }
1433
1434         /* Now bind it into the GTT if needed */
1435         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1436         if (ret)
1437                 goto unlock;
1438
1439         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1440         if (ret)
1441                 goto unpin;
1442
1443         ret = i915_gem_object_get_fence(obj);
1444         if (ret)
1445                 goto unpin;
1446
1447         obj->fault_mappable = true;
1448
1449         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1450         pfn >>= PAGE_SHIFT;
1451         pfn += page_offset;
1452
1453         /* Finally, remap it using the new GTT offset */
1454         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1455 unpin:
1456         i915_gem_object_ggtt_unpin(obj);
1457 unlock:
1458         mutex_unlock(&dev->struct_mutex);
1459 out:
1460         switch (ret) {
1461         case -EIO:
1462                 /* If this -EIO is due to a gpu hang, give the reset code a
1463                  * chance to clean up the mess. Otherwise return the proper
1464                  * SIGBUS. */
1465                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1466                         ret = VM_FAULT_SIGBUS;
1467                         break;
1468                 }
1469         case -EAGAIN:
1470                 /*
1471                  * EAGAIN means the gpu is hung and we'll wait for the error
1472                  * handler to reset everything when re-faulting in
1473                  * i915_mutex_lock_interruptible.
1474                  */
1475         case 0:
1476         case -ERESTARTSYS:
1477         case -EINTR:
1478         case -EBUSY:
1479                 /*
1480                  * EBUSY is ok: this just means that another thread
1481                  * already did the job.
1482                  */
1483                 ret = VM_FAULT_NOPAGE;
1484                 break;
1485         case -ENOMEM:
1486                 ret = VM_FAULT_OOM;
1487                 break;
1488         case -ENOSPC:
1489         case -EFAULT:
1490                 ret = VM_FAULT_SIGBUS;
1491                 break;
1492         default:
1493                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1494                 ret = VM_FAULT_SIGBUS;
1495                 break;
1496         }
1497
1498         intel_runtime_pm_put(dev_priv);
1499         return ret;
1500 }
1501
1502 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1503 {
1504         struct i915_vma *vma;
1505
1506         /*
1507          * Only the global gtt is relevant for gtt memory mappings, so restrict
1508          * list traversal to objects bound into the global address space. Note
1509          * that the active list should be empty, but better safe than sorry.
1510          */
1511         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1512         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1513                 i915_gem_release_mmap(vma->obj);
1514         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1515                 i915_gem_release_mmap(vma->obj);
1516 }
1517
1518 /**
1519  * i915_gem_release_mmap - remove physical page mappings
1520  * @obj: obj in question
1521  *
1522  * Preserve the reservation of the mmapping with the DRM core code, but
1523  * relinquish ownership of the pages back to the system.
1524  *
1525  * It is vital that we remove the page mapping if we have mapped a tiled
1526  * object through the GTT and then lose the fence register due to
1527  * resource pressure. Similarly if the object has been moved out of the
1528  * aperture, than pages mapped into userspace must be revoked. Removing the
1529  * mapping will then trigger a page fault on the next user access, allowing
1530  * fixup by i915_gem_fault().
1531  */
1532 void
1533 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1534 {
1535         if (!obj->fault_mappable)
1536                 return;
1537
1538         drm_vma_node_unmap(&obj->base.vma_node,
1539                            obj->base.dev->anon_inode->i_mapping);
1540         obj->fault_mappable = false;
1541 }
1542
1543 uint32_t
1544 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1545 {
1546         uint32_t gtt_size;
1547
1548         if (INTEL_INFO(dev)->gen >= 4 ||
1549             tiling_mode == I915_TILING_NONE)
1550                 return size;
1551
1552         /* Previous chips need a power-of-two fence region when tiling */
1553         if (INTEL_INFO(dev)->gen == 3)
1554                 gtt_size = 1024*1024;
1555         else
1556                 gtt_size = 512*1024;
1557
1558         while (gtt_size < size)
1559                 gtt_size <<= 1;
1560
1561         return gtt_size;
1562 }
1563
1564 /**
1565  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1566  * @obj: object to check
1567  *
1568  * Return the required GTT alignment for an object, taking into account
1569  * potential fence register mapping.
1570  */
1571 uint32_t
1572 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1573                            int tiling_mode, bool fenced)
1574 {
1575         /*
1576          * Minimum alignment is 4k (GTT page size), but might be greater
1577          * if a fence register is needed for the object.
1578          */
1579         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1580             tiling_mode == I915_TILING_NONE)
1581                 return 4096;
1582
1583         /*
1584          * Previous chips need to be aligned to the size of the smallest
1585          * fence register that can contain the object.
1586          */
1587         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1588 }
1589
1590 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1591 {
1592         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1593         int ret;
1594
1595         if (drm_vma_node_has_offset(&obj->base.vma_node))
1596                 return 0;
1597
1598         dev_priv->mm.shrinker_no_lock_stealing = true;
1599
1600         ret = drm_gem_create_mmap_offset(&obj->base);
1601         if (ret != -ENOSPC)
1602                 goto out;
1603
1604         /* Badly fragmented mmap space? The only way we can recover
1605          * space is by destroying unwanted objects. We can't randomly release
1606          * mmap_offsets as userspace expects them to be persistent for the
1607          * lifetime of the objects. The closest we can is to release the
1608          * offsets on purgeable objects by truncating it and marking it purged,
1609          * which prevents userspace from ever using that object again.
1610          */
1611         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1612         ret = drm_gem_create_mmap_offset(&obj->base);
1613         if (ret != -ENOSPC)
1614                 goto out;
1615
1616         i915_gem_shrink_all(dev_priv);
1617         ret = drm_gem_create_mmap_offset(&obj->base);
1618 out:
1619         dev_priv->mm.shrinker_no_lock_stealing = false;
1620
1621         return ret;
1622 }
1623
1624 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1625 {
1626         drm_gem_free_mmap_offset(&obj->base);
1627 }
1628
1629 int
1630 i915_gem_mmap_gtt(struct drm_file *file,
1631                   struct drm_device *dev,
1632                   uint32_t handle,
1633                   uint64_t *offset)
1634 {
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636         struct drm_i915_gem_object *obj;
1637         int ret;
1638
1639         ret = i915_mutex_lock_interruptible(dev);
1640         if (ret)
1641                 return ret;
1642
1643         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1644         if (&obj->base == NULL) {
1645                 ret = -ENOENT;
1646                 goto unlock;
1647         }
1648
1649         if (obj->base.size > dev_priv->gtt.mappable_end) {
1650                 ret = -E2BIG;
1651                 goto out;
1652         }
1653
1654         if (obj->madv != I915_MADV_WILLNEED) {
1655                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1656                 ret = -EFAULT;
1657                 goto out;
1658         }
1659
1660         ret = i915_gem_object_create_mmap_offset(obj);
1661         if (ret)
1662                 goto out;
1663
1664         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1665
1666 out:
1667         drm_gem_object_unreference(&obj->base);
1668 unlock:
1669         mutex_unlock(&dev->struct_mutex);
1670         return ret;
1671 }
1672
1673 /**
1674  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1675  * @dev: DRM device
1676  * @data: GTT mapping ioctl data
1677  * @file: GEM object info
1678  *
1679  * Simply returns the fake offset to userspace so it can mmap it.
1680  * The mmap call will end up in drm_gem_mmap(), which will set things
1681  * up so we can get faults in the handler above.
1682  *
1683  * The fault handler will take care of binding the object into the GTT
1684  * (since it may have been evicted to make room for something), allocating
1685  * a fence register, and mapping the appropriate aperture address into
1686  * userspace.
1687  */
1688 int
1689 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1690                         struct drm_file *file)
1691 {
1692         struct drm_i915_gem_mmap_gtt *args = data;
1693
1694         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1695 }
1696
1697 static inline int
1698 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1699 {
1700         return obj->madv == I915_MADV_DONTNEED;
1701 }
1702
1703 /* Immediately discard the backing storage */
1704 static void
1705 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1706 {
1707         i915_gem_object_free_mmap_offset(obj);
1708
1709         if (obj->base.filp == NULL)
1710                 return;
1711
1712         /* Our goal here is to return as much of the memory as
1713          * is possible back to the system as we are called from OOM.
1714          * To do this we must instruct the shmfs to drop all of its
1715          * backing pages, *now*.
1716          */
1717         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1718         obj->madv = __I915_MADV_PURGED;
1719 }
1720
1721 /* Try to discard unwanted pages */
1722 static void
1723 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1724 {
1725         struct address_space *mapping;
1726
1727         switch (obj->madv) {
1728         case I915_MADV_DONTNEED:
1729                 i915_gem_object_truncate(obj);
1730         case __I915_MADV_PURGED:
1731                 return;
1732         }
1733
1734         if (obj->base.filp == NULL)
1735                 return;
1736
1737         mapping = file_inode(obj->base.filp)->i_mapping,
1738         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1739 }
1740
1741 static void
1742 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744         struct sg_page_iter sg_iter;
1745         int ret;
1746
1747         BUG_ON(obj->madv == __I915_MADV_PURGED);
1748
1749         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1750         if (ret) {
1751                 /* In the event of a disaster, abandon all caches and
1752                  * hope for the best.
1753                  */
1754                 WARN_ON(ret != -EIO);
1755                 i915_gem_clflush_object(obj, true);
1756                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1757         }
1758
1759         if (i915_gem_object_needs_bit17_swizzle(obj))
1760                 i915_gem_object_save_bit_17_swizzle(obj);
1761
1762         if (obj->madv == I915_MADV_DONTNEED)
1763                 obj->dirty = 0;
1764
1765         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1766                 struct page *page = sg_page_iter_page(&sg_iter);
1767
1768                 if (obj->dirty)
1769                         set_page_dirty(page);
1770
1771                 if (obj->madv == I915_MADV_WILLNEED)
1772                         mark_page_accessed(page);
1773
1774                 page_cache_release(page);
1775         }
1776         obj->dirty = 0;
1777
1778         sg_free_table(obj->pages);
1779         kfree(obj->pages);
1780 }
1781
1782 int
1783 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1784 {
1785         const struct drm_i915_gem_object_ops *ops = obj->ops;
1786
1787         if (obj->pages == NULL)
1788                 return 0;
1789
1790         if (obj->pages_pin_count)
1791                 return -EBUSY;
1792
1793         BUG_ON(i915_gem_obj_bound_any(obj));
1794
1795         /* ->put_pages might need to allocate memory for the bit17 swizzle
1796          * array, hence protect them from being reaped by removing them from gtt
1797          * lists early. */
1798         list_del(&obj->global_list);
1799
1800         ops->put_pages(obj);
1801         obj->pages = NULL;
1802
1803         i915_gem_object_invalidate(obj);
1804
1805         return 0;
1806 }
1807
1808 static unsigned long
1809 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1810                   bool purgeable_only)
1811 {
1812         struct list_head still_in_list;
1813         struct drm_i915_gem_object *obj;
1814         unsigned long count = 0;
1815
1816         /*
1817          * As we may completely rewrite the (un)bound list whilst unbinding
1818          * (due to retiring requests) we have to strictly process only
1819          * one element of the list at the time, and recheck the list
1820          * on every iteration.
1821          *
1822          * In particular, we must hold a reference whilst removing the
1823          * object as we may end up waiting for and/or retiring the objects.
1824          * This might release the final reference (held by the active list)
1825          * and result in the object being freed from under us. This is
1826          * similar to the precautions the eviction code must take whilst
1827          * removing objects.
1828          *
1829          * Also note that although these lists do not hold a reference to
1830          * the object we can safely grab one here: The final object
1831          * unreferencing and the bound_list are both protected by the
1832          * dev->struct_mutex and so we won't ever be able to observe an
1833          * object on the bound_list with a reference count equals 0.
1834          */
1835         INIT_LIST_HEAD(&still_in_list);
1836         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1837                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1838                                        typeof(*obj), global_list);
1839                 list_move_tail(&obj->global_list, &still_in_list);
1840
1841                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1842                         continue;
1843
1844                 drm_gem_object_reference(&obj->base);
1845
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         count += obj->base.size >> PAGE_SHIFT;
1848
1849                 drm_gem_object_unreference(&obj->base);
1850         }
1851         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1852
1853         INIT_LIST_HEAD(&still_in_list);
1854         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1855                 struct i915_vma *vma, *v;
1856
1857                 obj = list_first_entry(&dev_priv->mm.bound_list,
1858                                        typeof(*obj), global_list);
1859                 list_move_tail(&obj->global_list, &still_in_list);
1860
1861                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1862                         continue;
1863
1864                 drm_gem_object_reference(&obj->base);
1865
1866                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1867                         if (i915_vma_unbind(vma))
1868                                 break;
1869
1870                 if (i915_gem_object_put_pages(obj) == 0)
1871                         count += obj->base.size >> PAGE_SHIFT;
1872
1873                 drm_gem_object_unreference(&obj->base);
1874         }
1875         list_splice(&still_in_list, &dev_priv->mm.bound_list);
1876
1877         return count;
1878 }
1879
1880 static unsigned long
1881 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1882 {
1883         return __i915_gem_shrink(dev_priv, target, true);
1884 }
1885
1886 static unsigned long
1887 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1888 {
1889         i915_gem_evict_everything(dev_priv->dev);
1890         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
1891 }
1892
1893 static int
1894 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1895 {
1896         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1897         int page_count, i;
1898         struct address_space *mapping;
1899         struct sg_table *st;
1900         struct scatterlist *sg;
1901         struct sg_page_iter sg_iter;
1902         struct page *page;
1903         unsigned long last_pfn = 0;     /* suppress gcc warning */
1904         gfp_t gfp;
1905
1906         /* Assert that the object is not currently in any GPU domain. As it
1907          * wasn't in the GTT, there shouldn't be any way it could have been in
1908          * a GPU cache
1909          */
1910         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1911         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1912
1913         st = kmalloc(sizeof(*st), GFP_KERNEL);
1914         if (st == NULL)
1915                 return -ENOMEM;
1916
1917         page_count = obj->base.size / PAGE_SIZE;
1918         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1919                 kfree(st);
1920                 return -ENOMEM;
1921         }
1922
1923         /* Get the list of pages out of our struct file.  They'll be pinned
1924          * at this point until we release them.
1925          *
1926          * Fail silently without starting the shrinker
1927          */
1928         mapping = file_inode(obj->base.filp)->i_mapping;
1929         gfp = mapping_gfp_mask(mapping);
1930         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1931         gfp &= ~(__GFP_IO | __GFP_WAIT);
1932         sg = st->sgl;
1933         st->nents = 0;
1934         for (i = 0; i < page_count; i++) {
1935                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1936                 if (IS_ERR(page)) {
1937                         i915_gem_purge(dev_priv, page_count);
1938                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1939                 }
1940                 if (IS_ERR(page)) {
1941                         /* We've tried hard to allocate the memory by reaping
1942                          * our own buffer, now let the real VM do its job and
1943                          * go down in flames if truly OOM.
1944                          */
1945                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1946                         gfp |= __GFP_IO | __GFP_WAIT;
1947
1948                         i915_gem_shrink_all(dev_priv);
1949                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1950                         if (IS_ERR(page))
1951                                 goto err_pages;
1952
1953                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1954                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1955                 }
1956 #ifdef CONFIG_SWIOTLB
1957                 if (swiotlb_nr_tbl()) {
1958                         st->nents++;
1959                         sg_set_page(sg, page, PAGE_SIZE, 0);
1960                         sg = sg_next(sg);
1961                         continue;
1962                 }
1963 #endif
1964                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1965                         if (i)
1966                                 sg = sg_next(sg);
1967                         st->nents++;
1968                         sg_set_page(sg, page, PAGE_SIZE, 0);
1969                 } else {
1970                         sg->length += PAGE_SIZE;
1971                 }
1972                 last_pfn = page_to_pfn(page);
1973
1974                 /* Check that the i965g/gm workaround works. */
1975                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1976         }
1977 #ifdef CONFIG_SWIOTLB
1978         if (!swiotlb_nr_tbl())
1979 #endif
1980                 sg_mark_end(sg);
1981         obj->pages = st;
1982
1983         if (i915_gem_object_needs_bit17_swizzle(obj))
1984                 i915_gem_object_do_bit_17_swizzle(obj);
1985
1986         return 0;
1987
1988 err_pages:
1989         sg_mark_end(sg);
1990         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1991                 page_cache_release(sg_page_iter_page(&sg_iter));
1992         sg_free_table(st);
1993         kfree(st);
1994
1995         /* shmemfs first checks if there is enough memory to allocate the page
1996          * and reports ENOSPC should there be insufficient, along with the usual
1997          * ENOMEM for a genuine allocation failure.
1998          *
1999          * We use ENOSPC in our driver to mean that we have run out of aperture
2000          * space and so want to translate the error from shmemfs back to our
2001          * usual understanding of ENOMEM.
2002          */
2003         if (PTR_ERR(page) == -ENOSPC)
2004                 return -ENOMEM;
2005         else
2006                 return PTR_ERR(page);
2007 }
2008
2009 /* Ensure that the associated pages are gathered from the backing storage
2010  * and pinned into our object. i915_gem_object_get_pages() may be called
2011  * multiple times before they are released by a single call to
2012  * i915_gem_object_put_pages() - once the pages are no longer referenced
2013  * either as a result of memory pressure (reaping pages under the shrinker)
2014  * or as the object is itself released.
2015  */
2016 int
2017 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2018 {
2019         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2020         const struct drm_i915_gem_object_ops *ops = obj->ops;
2021         int ret;
2022
2023         if (obj->pages)
2024                 return 0;
2025
2026         if (obj->madv != I915_MADV_WILLNEED) {
2027                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2028                 return -EFAULT;
2029         }
2030
2031         BUG_ON(obj->pages_pin_count);
2032
2033         ret = ops->get_pages(obj);
2034         if (ret)
2035                 return ret;
2036
2037         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2038         return 0;
2039 }
2040
2041 static void
2042 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2043                                struct intel_ring_buffer *ring)
2044 {
2045         struct drm_device *dev = obj->base.dev;
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         u32 seqno = intel_ring_get_seqno(ring);
2048
2049         BUG_ON(ring == NULL);
2050         if (obj->ring != ring && obj->last_write_seqno) {
2051                 /* Keep the seqno relative to the current ring */
2052                 obj->last_write_seqno = seqno;
2053         }
2054         obj->ring = ring;
2055
2056         /* Add a reference if we're newly entering the active list. */
2057         if (!obj->active) {
2058                 drm_gem_object_reference(&obj->base);
2059                 obj->active = 1;
2060         }
2061
2062         list_move_tail(&obj->ring_list, &ring->active_list);
2063
2064         obj->last_read_seqno = seqno;
2065
2066         if (obj->fenced_gpu_access) {
2067                 obj->last_fenced_seqno = seqno;
2068
2069                 /* Bump MRU to take account of the delayed flush */
2070                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2071                         struct drm_i915_fence_reg *reg;
2072
2073                         reg = &dev_priv->fence_regs[obj->fence_reg];
2074                         list_move_tail(&reg->lru_list,
2075                                        &dev_priv->mm.fence_list);
2076                 }
2077         }
2078 }
2079
2080 void i915_vma_move_to_active(struct i915_vma *vma,
2081                              struct intel_ring_buffer *ring)
2082 {
2083         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2084         return i915_gem_object_move_to_active(vma->obj, ring);
2085 }
2086
2087 static void
2088 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2089 {
2090         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2091         struct i915_address_space *vm;
2092         struct i915_vma *vma;
2093
2094         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2095         BUG_ON(!obj->active);
2096
2097         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2098                 vma = i915_gem_obj_to_vma(obj, vm);
2099                 if (vma && !list_empty(&vma->mm_list))
2100                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2101         }
2102
2103         list_del_init(&obj->ring_list);
2104         obj->ring = NULL;
2105
2106         obj->last_read_seqno = 0;
2107         obj->last_write_seqno = 0;
2108         obj->base.write_domain = 0;
2109
2110         obj->last_fenced_seqno = 0;
2111         obj->fenced_gpu_access = false;
2112
2113         obj->active = 0;
2114         drm_gem_object_unreference(&obj->base);
2115
2116         WARN_ON(i915_verify_lists(dev));
2117 }
2118
2119 static void
2120 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2121 {
2122         struct intel_ring_buffer *ring = obj->ring;
2123
2124         if (ring == NULL)
2125                 return;
2126
2127         if (i915_seqno_passed(ring->get_seqno(ring, true),
2128                               obj->last_read_seqno))
2129                 i915_gem_object_move_to_inactive(obj);
2130 }
2131
2132 static int
2133 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2134 {
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_ring_buffer *ring;
2137         int ret, i, j;
2138
2139         /* Carefully retire all requests without writing to the rings */
2140         for_each_ring(ring, dev_priv, i) {
2141                 ret = intel_ring_idle(ring);
2142                 if (ret)
2143                         return ret;
2144         }
2145         i915_gem_retire_requests(dev);
2146
2147         /* Finally reset hw state */
2148         for_each_ring(ring, dev_priv, i) {
2149                 intel_ring_init_seqno(ring, seqno);
2150
2151                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2152                         ring->semaphore.sync_seqno[j] = 0;
2153         }
2154
2155         return 0;
2156 }
2157
2158 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2159 {
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         int ret;
2162
2163         if (seqno == 0)
2164                 return -EINVAL;
2165
2166         /* HWS page needs to be set less than what we
2167          * will inject to ring
2168          */
2169         ret = i915_gem_init_seqno(dev, seqno - 1);
2170         if (ret)
2171                 return ret;
2172
2173         /* Carefully set the last_seqno value so that wrap
2174          * detection still works
2175          */
2176         dev_priv->next_seqno = seqno;
2177         dev_priv->last_seqno = seqno - 1;
2178         if (dev_priv->last_seqno == 0)
2179                 dev_priv->last_seqno--;
2180
2181         return 0;
2182 }
2183
2184 int
2185 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2186 {
2187         struct drm_i915_private *dev_priv = dev->dev_private;
2188
2189         /* reserve 0 for non-seqno */
2190         if (dev_priv->next_seqno == 0) {
2191                 int ret = i915_gem_init_seqno(dev, 0);
2192                 if (ret)
2193                         return ret;
2194
2195                 dev_priv->next_seqno = 1;
2196         }
2197
2198         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2199         return 0;
2200 }
2201
2202 int __i915_add_request(struct intel_ring_buffer *ring,
2203                        struct drm_file *file,
2204                        struct drm_i915_gem_object *obj,
2205                        u32 *out_seqno)
2206 {
2207         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2208         struct drm_i915_gem_request *request;
2209         u32 request_ring_position, request_start;
2210         int ret;
2211
2212         request_start = intel_ring_get_tail(ring);
2213         /*
2214          * Emit any outstanding flushes - execbuf can fail to emit the flush
2215          * after having emitted the batchbuffer command. Hence we need to fix
2216          * things up similar to emitting the lazy request. The difference here
2217          * is that the flush _must_ happen before the next request, no matter
2218          * what.
2219          */
2220         ret = intel_ring_flush_all_caches(ring);
2221         if (ret)
2222                 return ret;
2223
2224         request = ring->preallocated_lazy_request;
2225         if (WARN_ON(request == NULL))
2226                 return -ENOMEM;
2227
2228         /* Record the position of the start of the request so that
2229          * should we detect the updated seqno part-way through the
2230          * GPU processing the request, we never over-estimate the
2231          * position of the head.
2232          */
2233         request_ring_position = intel_ring_get_tail(ring);
2234
2235         ret = ring->add_request(ring);
2236         if (ret)
2237                 return ret;
2238
2239         request->seqno = intel_ring_get_seqno(ring);
2240         request->ring = ring;
2241         request->head = request_start;
2242         request->tail = request_ring_position;
2243
2244         /* Whilst this request exists, batch_obj will be on the
2245          * active_list, and so will hold the active reference. Only when this
2246          * request is retired will the the batch_obj be moved onto the
2247          * inactive_list and lose its active reference. Hence we do not need
2248          * to explicitly hold another reference here.
2249          */
2250         request->batch_obj = obj;
2251
2252         /* Hold a reference to the current context so that we can inspect
2253          * it later in case a hangcheck error event fires.
2254          */
2255         request->ctx = ring->last_context;
2256         if (request->ctx)
2257                 i915_gem_context_reference(request->ctx);
2258
2259         request->emitted_jiffies = jiffies;
2260         list_add_tail(&request->list, &ring->request_list);
2261         request->file_priv = NULL;
2262
2263         if (file) {
2264                 struct drm_i915_file_private *file_priv = file->driver_priv;
2265
2266                 spin_lock(&file_priv->mm.lock);
2267                 request->file_priv = file_priv;
2268                 list_add_tail(&request->client_list,
2269                               &file_priv->mm.request_list);
2270                 spin_unlock(&file_priv->mm.lock);
2271         }
2272
2273         trace_i915_gem_request_add(ring, request->seqno);
2274         ring->outstanding_lazy_seqno = 0;
2275         ring->preallocated_lazy_request = NULL;
2276
2277         if (!dev_priv->ums.mm_suspended) {
2278                 i915_queue_hangcheck(ring->dev);
2279
2280                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2281                 queue_delayed_work(dev_priv->wq,
2282                                    &dev_priv->mm.retire_work,
2283                                    round_jiffies_up_relative(HZ));
2284                 intel_mark_busy(dev_priv->dev);
2285         }
2286
2287         if (out_seqno)
2288                 *out_seqno = request->seqno;
2289         return 0;
2290 }
2291
2292 static inline void
2293 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2294 {
2295         struct drm_i915_file_private *file_priv = request->file_priv;
2296
2297         if (!file_priv)
2298                 return;
2299
2300         spin_lock(&file_priv->mm.lock);
2301         list_del(&request->client_list);
2302         request->file_priv = NULL;
2303         spin_unlock(&file_priv->mm.lock);
2304 }
2305
2306 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2307                                    const struct i915_hw_context *ctx)
2308 {
2309         unsigned long elapsed;
2310
2311         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2312
2313         if (ctx->hang_stats.banned)
2314                 return true;
2315
2316         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2317                 if (!i915_gem_context_is_default(ctx)) {
2318                         DRM_DEBUG("context hanging too fast, banning!\n");
2319                         return true;
2320                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2321                         if (i915_stop_ring_allow_warn(dev_priv))
2322                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2323                         return true;
2324                 }
2325         }
2326
2327         return false;
2328 }
2329
2330 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2331                                   struct i915_hw_context *ctx,
2332                                   const bool guilty)
2333 {
2334         struct i915_ctx_hang_stats *hs;
2335
2336         if (WARN_ON(!ctx))
2337                 return;
2338
2339         hs = &ctx->hang_stats;
2340
2341         if (guilty) {
2342                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2343                 hs->batch_active++;
2344                 hs->guilty_ts = get_seconds();
2345         } else {
2346                 hs->batch_pending++;
2347         }
2348 }
2349
2350 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2351 {
2352         list_del(&request->list);
2353         i915_gem_request_remove_from_client(request);
2354
2355         if (request->ctx)
2356                 i915_gem_context_unreference(request->ctx);
2357
2358         kfree(request);
2359 }
2360
2361 struct drm_i915_gem_request *
2362 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2363 {
2364         struct drm_i915_gem_request *request;
2365         u32 completed_seqno;
2366
2367         completed_seqno = ring->get_seqno(ring, false);
2368
2369         list_for_each_entry(request, &ring->request_list, list) {
2370                 if (i915_seqno_passed(completed_seqno, request->seqno))
2371                         continue;
2372
2373                 return request;
2374         }
2375
2376         return NULL;
2377 }
2378
2379 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2380                                        struct intel_ring_buffer *ring)
2381 {
2382         struct drm_i915_gem_request *request;
2383         bool ring_hung;
2384
2385         request = i915_gem_find_active_request(ring);
2386
2387         if (request == NULL)
2388                 return;
2389
2390         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2391
2392         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2393
2394         list_for_each_entry_continue(request, &ring->request_list, list)
2395                 i915_set_reset_status(dev_priv, request->ctx, false);
2396 }
2397
2398 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2399                                         struct intel_ring_buffer *ring)
2400 {
2401         while (!list_empty(&ring->active_list)) {
2402                 struct drm_i915_gem_object *obj;
2403
2404                 obj = list_first_entry(&ring->active_list,
2405                                        struct drm_i915_gem_object,
2406                                        ring_list);
2407
2408                 i915_gem_object_move_to_inactive(obj);
2409         }
2410
2411         /*
2412          * We must free the requests after all the corresponding objects have
2413          * been moved off active lists. Which is the same order as the normal
2414          * retire_requests function does. This is important if object hold
2415          * implicit references on things like e.g. ppgtt address spaces through
2416          * the request.
2417          */
2418         while (!list_empty(&ring->request_list)) {
2419                 struct drm_i915_gem_request *request;
2420
2421                 request = list_first_entry(&ring->request_list,
2422                                            struct drm_i915_gem_request,
2423                                            list);
2424
2425                 i915_gem_free_request(request);
2426         }
2427
2428         /* These may not have been flush before the reset, do so now */
2429         kfree(ring->preallocated_lazy_request);
2430         ring->preallocated_lazy_request = NULL;
2431         ring->outstanding_lazy_seqno = 0;
2432 }
2433
2434 void i915_gem_restore_fences(struct drm_device *dev)
2435 {
2436         struct drm_i915_private *dev_priv = dev->dev_private;
2437         int i;
2438
2439         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2440                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2441
2442                 /*
2443                  * Commit delayed tiling changes if we have an object still
2444                  * attached to the fence, otherwise just clear the fence.
2445                  */
2446                 if (reg->obj) {
2447                         i915_gem_object_update_fence(reg->obj, reg,
2448                                                      reg->obj->tiling_mode);
2449                 } else {
2450                         i915_gem_write_fence(dev, i, NULL);
2451                 }
2452         }
2453 }
2454
2455 void i915_gem_reset(struct drm_device *dev)
2456 {
2457         struct drm_i915_private *dev_priv = dev->dev_private;
2458         struct intel_ring_buffer *ring;
2459         int i;
2460
2461         /*
2462          * Before we free the objects from the requests, we need to inspect
2463          * them for finding the guilty party. As the requests only borrow
2464          * their reference to the objects, the inspection must be done first.
2465          */
2466         for_each_ring(ring, dev_priv, i)
2467                 i915_gem_reset_ring_status(dev_priv, ring);
2468
2469         for_each_ring(ring, dev_priv, i)
2470                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2471
2472         i915_gem_context_reset(dev);
2473
2474         i915_gem_restore_fences(dev);
2475 }
2476
2477 /**
2478  * This function clears the request list as sequence numbers are passed.
2479  */
2480 void
2481 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2482 {
2483         uint32_t seqno;
2484
2485         if (list_empty(&ring->request_list))
2486                 return;
2487
2488         WARN_ON(i915_verify_lists(ring->dev));
2489
2490         seqno = ring->get_seqno(ring, true);
2491
2492         /* Move any buffers on the active list that are no longer referenced
2493          * by the ringbuffer to the flushing/inactive lists as appropriate,
2494          * before we free the context associated with the requests.
2495          */
2496         while (!list_empty(&ring->active_list)) {
2497                 struct drm_i915_gem_object *obj;
2498
2499                 obj = list_first_entry(&ring->active_list,
2500                                       struct drm_i915_gem_object,
2501                                       ring_list);
2502
2503                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2504                         break;
2505
2506                 i915_gem_object_move_to_inactive(obj);
2507         }
2508
2509
2510         while (!list_empty(&ring->request_list)) {
2511                 struct drm_i915_gem_request *request;
2512
2513                 request = list_first_entry(&ring->request_list,
2514                                            struct drm_i915_gem_request,
2515                                            list);
2516
2517                 if (!i915_seqno_passed(seqno, request->seqno))
2518                         break;
2519
2520                 trace_i915_gem_request_retire(ring, request->seqno);
2521                 /* We know the GPU must have read the request to have
2522                  * sent us the seqno + interrupt, so use the position
2523                  * of tail of the request to update the last known position
2524                  * of the GPU head.
2525                  */
2526                 ring->last_retired_head = request->tail;
2527
2528                 i915_gem_free_request(request);
2529         }
2530
2531         if (unlikely(ring->trace_irq_seqno &&
2532                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2533                 ring->irq_put(ring);
2534                 ring->trace_irq_seqno = 0;
2535         }
2536
2537         WARN_ON(i915_verify_lists(ring->dev));
2538 }
2539
2540 bool
2541 i915_gem_retire_requests(struct drm_device *dev)
2542 {
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544         struct intel_ring_buffer *ring;
2545         bool idle = true;
2546         int i;
2547
2548         for_each_ring(ring, dev_priv, i) {
2549                 i915_gem_retire_requests_ring(ring);
2550                 idle &= list_empty(&ring->request_list);
2551         }
2552
2553         if (idle)
2554                 mod_delayed_work(dev_priv->wq,
2555                                    &dev_priv->mm.idle_work,
2556                                    msecs_to_jiffies(100));
2557
2558         return idle;
2559 }
2560
2561 static void
2562 i915_gem_retire_work_handler(struct work_struct *work)
2563 {
2564         struct drm_i915_private *dev_priv =
2565                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2566         struct drm_device *dev = dev_priv->dev;
2567         bool idle;
2568
2569         /* Come back later if the device is busy... */
2570         idle = false;
2571         if (mutex_trylock(&dev->struct_mutex)) {
2572                 idle = i915_gem_retire_requests(dev);
2573                 mutex_unlock(&dev->struct_mutex);
2574         }
2575         if (!idle)
2576                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2577                                    round_jiffies_up_relative(HZ));
2578 }
2579
2580 static void
2581 i915_gem_idle_work_handler(struct work_struct *work)
2582 {
2583         struct drm_i915_private *dev_priv =
2584                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2585
2586         intel_mark_idle(dev_priv->dev);
2587 }
2588
2589 /**
2590  * Ensures that an object will eventually get non-busy by flushing any required
2591  * write domains, emitting any outstanding lazy request and retiring and
2592  * completed requests.
2593  */
2594 static int
2595 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2596 {
2597         int ret;
2598
2599         if (obj->active) {
2600                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2601                 if (ret)
2602                         return ret;
2603
2604                 i915_gem_retire_requests_ring(obj->ring);
2605         }
2606
2607         return 0;
2608 }
2609
2610 /**
2611  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2612  * @DRM_IOCTL_ARGS: standard ioctl arguments
2613  *
2614  * Returns 0 if successful, else an error is returned with the remaining time in
2615  * the timeout parameter.
2616  *  -ETIME: object is still busy after timeout
2617  *  -ERESTARTSYS: signal interrupted the wait
2618  *  -ENONENT: object doesn't exist
2619  * Also possible, but rare:
2620  *  -EAGAIN: GPU wedged
2621  *  -ENOMEM: damn
2622  *  -ENODEV: Internal IRQ fail
2623  *  -E?: The add request failed
2624  *
2625  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2626  * non-zero timeout parameter the wait ioctl will wait for the given number of
2627  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2628  * without holding struct_mutex the object may become re-busied before this
2629  * function completes. A similar but shorter * race condition exists in the busy
2630  * ioctl
2631  */
2632 int
2633 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2634 {
2635         struct drm_i915_private *dev_priv = dev->dev_private;
2636         struct drm_i915_gem_wait *args = data;
2637         struct drm_i915_gem_object *obj;
2638         struct intel_ring_buffer *ring = NULL;
2639         struct timespec timeout_stack, *timeout = NULL;
2640         unsigned reset_counter;
2641         u32 seqno = 0;
2642         int ret = 0;
2643
2644         if (args->timeout_ns >= 0) {
2645                 timeout_stack = ns_to_timespec(args->timeout_ns);
2646                 timeout = &timeout_stack;
2647         }
2648
2649         ret = i915_mutex_lock_interruptible(dev);
2650         if (ret)
2651                 return ret;
2652
2653         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2654         if (&obj->base == NULL) {
2655                 mutex_unlock(&dev->struct_mutex);
2656                 return -ENOENT;
2657         }
2658
2659         /* Need to make sure the object gets inactive eventually. */
2660         ret = i915_gem_object_flush_active(obj);
2661         if (ret)
2662                 goto out;
2663
2664         if (obj->active) {
2665                 seqno = obj->last_read_seqno;
2666                 ring = obj->ring;
2667         }
2668
2669         if (seqno == 0)
2670                  goto out;
2671
2672         /* Do this after OLR check to make sure we make forward progress polling
2673          * on this IOCTL with a 0 timeout (like busy ioctl)
2674          */
2675         if (!args->timeout_ns) {
2676                 ret = -ETIME;
2677                 goto out;
2678         }
2679
2680         drm_gem_object_unreference(&obj->base);
2681         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2682         mutex_unlock(&dev->struct_mutex);
2683
2684         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2685         if (timeout)
2686                 args->timeout_ns = timespec_to_ns(timeout);
2687         return ret;
2688
2689 out:
2690         drm_gem_object_unreference(&obj->base);
2691         mutex_unlock(&dev->struct_mutex);
2692         return ret;
2693 }
2694
2695 /**
2696  * i915_gem_object_sync - sync an object to a ring.
2697  *
2698  * @obj: object which may be in use on another ring.
2699  * @to: ring we wish to use the object on. May be NULL.
2700  *
2701  * This code is meant to abstract object synchronization with the GPU.
2702  * Calling with NULL implies synchronizing the object with the CPU
2703  * rather than a particular GPU ring.
2704  *
2705  * Returns 0 if successful, else propagates up the lower layer error.
2706  */
2707 int
2708 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2709                      struct intel_ring_buffer *to)
2710 {
2711         struct intel_ring_buffer *from = obj->ring;
2712         u32 seqno;
2713         int ret, idx;
2714
2715         if (from == NULL || to == from)
2716                 return 0;
2717
2718         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2719                 return i915_gem_object_wait_rendering(obj, false);
2720
2721         idx = intel_ring_sync_index(from, to);
2722
2723         seqno = obj->last_read_seqno;
2724         if (seqno <= from->semaphore.sync_seqno[idx])
2725                 return 0;
2726
2727         ret = i915_gem_check_olr(obj->ring, seqno);
2728         if (ret)
2729                 return ret;
2730
2731         trace_i915_gem_ring_sync_to(from, to, seqno);
2732         ret = to->semaphore.sync_to(to, from, seqno);
2733         if (!ret)
2734                 /* We use last_read_seqno because sync_to()
2735                  * might have just caused seqno wrap under
2736                  * the radar.
2737                  */
2738                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2739
2740         return ret;
2741 }
2742
2743 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2744 {
2745         u32 old_write_domain, old_read_domains;
2746
2747         /* Force a pagefault for domain tracking on next user access */
2748         i915_gem_release_mmap(obj);
2749
2750         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2751                 return;
2752
2753         /* Wait for any direct GTT access to complete */
2754         mb();
2755
2756         old_read_domains = obj->base.read_domains;
2757         old_write_domain = obj->base.write_domain;
2758
2759         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2760         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2761
2762         trace_i915_gem_object_change_domain(obj,
2763                                             old_read_domains,
2764                                             old_write_domain);
2765 }
2766
2767 int i915_vma_unbind(struct i915_vma *vma)
2768 {
2769         struct drm_i915_gem_object *obj = vma->obj;
2770         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771         int ret;
2772
2773         if (list_empty(&vma->vma_link))
2774                 return 0;
2775
2776         if (!drm_mm_node_allocated(&vma->node)) {
2777                 i915_gem_vma_destroy(vma);
2778                 return 0;
2779         }
2780
2781         if (vma->pin_count)
2782                 return -EBUSY;
2783
2784         BUG_ON(obj->pages == NULL);
2785
2786         ret = i915_gem_object_finish_gpu(obj);
2787         if (ret)
2788                 return ret;
2789         /* Continue on if we fail due to EIO, the GPU is hung so we
2790          * should be safe and we need to cleanup or else we might
2791          * cause memory corruption through use-after-free.
2792          */
2793
2794         if (i915_is_ggtt(vma->vm)) {
2795                 i915_gem_object_finish_gtt(obj);
2796
2797                 /* release the fence reg _after_ flushing */
2798                 ret = i915_gem_object_put_fence(obj);
2799                 if (ret)
2800                         return ret;
2801         }
2802
2803         trace_i915_vma_unbind(vma);
2804
2805         vma->unbind_vma(vma);
2806
2807         i915_gem_gtt_finish_object(obj);
2808
2809         list_del_init(&vma->mm_list);
2810         /* Avoid an unnecessary call to unbind on rebind. */
2811         if (i915_is_ggtt(vma->vm))
2812                 obj->map_and_fenceable = true;
2813
2814         drm_mm_remove_node(&vma->node);
2815         i915_gem_vma_destroy(vma);
2816
2817         /* Since the unbound list is global, only move to that list if
2818          * no more VMAs exist. */
2819         if (list_empty(&obj->vma_list))
2820                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2821
2822         /* And finally now the object is completely decoupled from this vma,
2823          * we can drop its hold on the backing storage and allow it to be
2824          * reaped by the shrinker.
2825          */
2826         i915_gem_object_unpin_pages(obj);
2827
2828         return 0;
2829 }
2830
2831 int i915_gpu_idle(struct drm_device *dev)
2832 {
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834         struct intel_ring_buffer *ring;
2835         int ret, i;
2836
2837         /* Flush everything onto the inactive list. */
2838         for_each_ring(ring, dev_priv, i) {
2839                 ret = i915_switch_context(ring, ring->default_context);
2840                 if (ret)
2841                         return ret;
2842
2843                 ret = intel_ring_idle(ring);
2844                 if (ret)
2845                         return ret;
2846         }
2847
2848         return 0;
2849 }
2850
2851 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2852                                  struct drm_i915_gem_object *obj)
2853 {
2854         struct drm_i915_private *dev_priv = dev->dev_private;
2855         int fence_reg;
2856         int fence_pitch_shift;
2857
2858         if (INTEL_INFO(dev)->gen >= 6) {
2859                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2860                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2861         } else {
2862                 fence_reg = FENCE_REG_965_0;
2863                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2864         }
2865
2866         fence_reg += reg * 8;
2867
2868         /* To w/a incoherency with non-atomic 64-bit register updates,
2869          * we split the 64-bit update into two 32-bit writes. In order
2870          * for a partial fence not to be evaluated between writes, we
2871          * precede the update with write to turn off the fence register,
2872          * and only enable the fence as the last step.
2873          *
2874          * For extra levels of paranoia, we make sure each step lands
2875          * before applying the next step.
2876          */
2877         I915_WRITE(fence_reg, 0);
2878         POSTING_READ(fence_reg);
2879
2880         if (obj) {
2881                 u32 size = i915_gem_obj_ggtt_size(obj);
2882                 uint64_t val;
2883
2884                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2885                                  0xfffff000) << 32;
2886                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2887                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2888                 if (obj->tiling_mode == I915_TILING_Y)
2889                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2890                 val |= I965_FENCE_REG_VALID;
2891
2892                 I915_WRITE(fence_reg + 4, val >> 32);
2893                 POSTING_READ(fence_reg + 4);
2894
2895                 I915_WRITE(fence_reg + 0, val);
2896                 POSTING_READ(fence_reg);
2897         } else {
2898                 I915_WRITE(fence_reg + 4, 0);
2899                 POSTING_READ(fence_reg + 4);
2900         }
2901 }
2902
2903 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2904                                  struct drm_i915_gem_object *obj)
2905 {
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         u32 val;
2908
2909         if (obj) {
2910                 u32 size = i915_gem_obj_ggtt_size(obj);
2911                 int pitch_val;
2912                 int tile_width;
2913
2914                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2915                      (size & -size) != size ||
2916                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2917                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2918                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2919
2920                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2921                         tile_width = 128;
2922                 else
2923                         tile_width = 512;
2924
2925                 /* Note: pitch better be a power of two tile widths */
2926                 pitch_val = obj->stride / tile_width;
2927                 pitch_val = ffs(pitch_val) - 1;
2928
2929                 val = i915_gem_obj_ggtt_offset(obj);
2930                 if (obj->tiling_mode == I915_TILING_Y)
2931                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2932                 val |= I915_FENCE_SIZE_BITS(size);
2933                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2934                 val |= I830_FENCE_REG_VALID;
2935         } else
2936                 val = 0;
2937
2938         if (reg < 8)
2939                 reg = FENCE_REG_830_0 + reg * 4;
2940         else
2941                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2942
2943         I915_WRITE(reg, val);
2944         POSTING_READ(reg);
2945 }
2946
2947 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2948                                 struct drm_i915_gem_object *obj)
2949 {
2950         struct drm_i915_private *dev_priv = dev->dev_private;
2951         uint32_t val;
2952
2953         if (obj) {
2954                 u32 size = i915_gem_obj_ggtt_size(obj);
2955                 uint32_t pitch_val;
2956
2957                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2958                      (size & -size) != size ||
2959                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2960                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2961                      i915_gem_obj_ggtt_offset(obj), size);
2962
2963                 pitch_val = obj->stride / 128;
2964                 pitch_val = ffs(pitch_val) - 1;
2965
2966                 val = i915_gem_obj_ggtt_offset(obj);
2967                 if (obj->tiling_mode == I915_TILING_Y)
2968                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2969                 val |= I830_FENCE_SIZE_BITS(size);
2970                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2971                 val |= I830_FENCE_REG_VALID;
2972         } else
2973                 val = 0;
2974
2975         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2976         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2977 }
2978
2979 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2980 {
2981         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2982 }
2983
2984 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2985                                  struct drm_i915_gem_object *obj)
2986 {
2987         struct drm_i915_private *dev_priv = dev->dev_private;
2988
2989         /* Ensure that all CPU reads are completed before installing a fence
2990          * and all writes before removing the fence.
2991          */
2992         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2993                 mb();
2994
2995         WARN(obj && (!obj->stride || !obj->tiling_mode),
2996              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2997              obj->stride, obj->tiling_mode);
2998
2999         switch (INTEL_INFO(dev)->gen) {
3000         case 8:
3001         case 7:
3002         case 6:
3003         case 5:
3004         case 4: i965_write_fence_reg(dev, reg, obj); break;
3005         case 3: i915_write_fence_reg(dev, reg, obj); break;
3006         case 2: i830_write_fence_reg(dev, reg, obj); break;
3007         default: BUG();
3008         }
3009
3010         /* And similarly be paranoid that no direct access to this region
3011          * is reordered to before the fence is installed.
3012          */
3013         if (i915_gem_object_needs_mb(obj))
3014                 mb();
3015 }
3016
3017 static inline int fence_number(struct drm_i915_private *dev_priv,
3018                                struct drm_i915_fence_reg *fence)
3019 {
3020         return fence - dev_priv->fence_regs;
3021 }
3022
3023 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3024                                          struct drm_i915_fence_reg *fence,
3025                                          bool enable)
3026 {
3027         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3028         int reg = fence_number(dev_priv, fence);
3029
3030         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031
3032         if (enable) {
3033                 obj->fence_reg = reg;
3034                 fence->obj = obj;
3035                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3036         } else {
3037                 obj->fence_reg = I915_FENCE_REG_NONE;
3038                 fence->obj = NULL;
3039                 list_del_init(&fence->lru_list);
3040         }
3041         obj->fence_dirty = false;
3042 }
3043
3044 static int
3045 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3046 {
3047         if (obj->last_fenced_seqno) {
3048                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3049                 if (ret)
3050                         return ret;
3051
3052                 obj->last_fenced_seqno = 0;
3053         }
3054
3055         obj->fenced_gpu_access = false;
3056         return 0;
3057 }
3058
3059 int
3060 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3061 {
3062         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3063         struct drm_i915_fence_reg *fence;
3064         int ret;
3065
3066         ret = i915_gem_object_wait_fence(obj);
3067         if (ret)
3068                 return ret;
3069
3070         if (obj->fence_reg == I915_FENCE_REG_NONE)
3071                 return 0;
3072
3073         fence = &dev_priv->fence_regs[obj->fence_reg];
3074
3075         if (WARN_ON(fence->pin_count))
3076                 return -EBUSY;
3077
3078         i915_gem_object_fence_lost(obj);
3079         i915_gem_object_update_fence(obj, fence, false);
3080
3081         return 0;
3082 }
3083
3084 static struct drm_i915_fence_reg *
3085 i915_find_fence_reg(struct drm_device *dev)
3086 {
3087         struct drm_i915_private *dev_priv = dev->dev_private;
3088         struct drm_i915_fence_reg *reg, *avail;
3089         int i;
3090
3091         /* First try to find a free reg */
3092         avail = NULL;
3093         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3094                 reg = &dev_priv->fence_regs[i];
3095                 if (!reg->obj)
3096                         return reg;
3097
3098                 if (!reg->pin_count)
3099                         avail = reg;
3100         }
3101
3102         if (avail == NULL)
3103                 goto deadlock;
3104
3105         /* None available, try to steal one or wait for a user to finish */
3106         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3107                 if (reg->pin_count)
3108                         continue;
3109
3110                 return reg;
3111         }
3112
3113 deadlock:
3114         /* Wait for completion of pending flips which consume fences */
3115         if (intel_has_pending_fb_unpin(dev))
3116                 return ERR_PTR(-EAGAIN);
3117
3118         return ERR_PTR(-EDEADLK);
3119 }
3120
3121 /**
3122  * i915_gem_object_get_fence - set up fencing for an object
3123  * @obj: object to map through a fence reg
3124  *
3125  * When mapping objects through the GTT, userspace wants to be able to write
3126  * to them without having to worry about swizzling if the object is tiled.
3127  * This function walks the fence regs looking for a free one for @obj,
3128  * stealing one if it can't find any.
3129  *
3130  * It then sets up the reg based on the object's properties: address, pitch
3131  * and tiling format.
3132  *
3133  * For an untiled surface, this removes any existing fence.
3134  */
3135 int
3136 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3137 {
3138         struct drm_device *dev = obj->base.dev;
3139         struct drm_i915_private *dev_priv = dev->dev_private;
3140         bool enable = obj->tiling_mode != I915_TILING_NONE;
3141         struct drm_i915_fence_reg *reg;
3142         int ret;
3143
3144         /* Have we updated the tiling parameters upon the object and so
3145          * will need to serialise the write to the associated fence register?
3146          */
3147         if (obj->fence_dirty) {
3148                 ret = i915_gem_object_wait_fence(obj);
3149                 if (ret)
3150                         return ret;
3151         }
3152
3153         /* Just update our place in the LRU if our fence is getting reused. */
3154         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3155                 reg = &dev_priv->fence_regs[obj->fence_reg];
3156                 if (!obj->fence_dirty) {
3157                         list_move_tail(&reg->lru_list,
3158                                        &dev_priv->mm.fence_list);
3159                         return 0;
3160                 }
3161         } else if (enable) {
3162                 reg = i915_find_fence_reg(dev);
3163                 if (IS_ERR(reg))
3164                         return PTR_ERR(reg);
3165
3166                 if (reg->obj) {
3167                         struct drm_i915_gem_object *old = reg->obj;
3168
3169                         ret = i915_gem_object_wait_fence(old);
3170                         if (ret)
3171                                 return ret;
3172
3173                         i915_gem_object_fence_lost(old);
3174                 }
3175         } else
3176                 return 0;
3177
3178         i915_gem_object_update_fence(obj, reg, enable);
3179
3180         return 0;
3181 }
3182
3183 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3184                                      struct drm_mm_node *gtt_space,
3185                                      unsigned long cache_level)
3186 {
3187         struct drm_mm_node *other;
3188
3189         /* On non-LLC machines we have to be careful when putting differing
3190          * types of snoopable memory together to avoid the prefetcher
3191          * crossing memory domains and dying.
3192          */
3193         if (HAS_LLC(dev))
3194                 return true;
3195
3196         if (!drm_mm_node_allocated(gtt_space))
3197                 return true;
3198
3199         if (list_empty(&gtt_space->node_list))
3200                 return true;
3201
3202         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3203         if (other->allocated && !other->hole_follows && other->color != cache_level)
3204                 return false;
3205
3206         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3207         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3208                 return false;
3209
3210         return true;
3211 }
3212
3213 static void i915_gem_verify_gtt(struct drm_device *dev)
3214 {
3215 #if WATCH_GTT
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217         struct drm_i915_gem_object *obj;
3218         int err = 0;
3219
3220         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3221                 if (obj->gtt_space == NULL) {
3222                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3223                         err++;
3224                         continue;
3225                 }
3226
3227                 if (obj->cache_level != obj->gtt_space->color) {
3228                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3229                                i915_gem_obj_ggtt_offset(obj),
3230                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3231                                obj->cache_level,
3232                                obj->gtt_space->color);
3233                         err++;
3234                         continue;
3235                 }
3236
3237                 if (!i915_gem_valid_gtt_space(dev,
3238                                               obj->gtt_space,
3239                                               obj->cache_level)) {
3240                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3241                                i915_gem_obj_ggtt_offset(obj),
3242                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3243                                obj->cache_level);
3244                         err++;
3245                         continue;
3246                 }
3247         }
3248
3249         WARN_ON(err);
3250 #endif
3251 }
3252
3253 /**
3254  * Finds free space in the GTT aperture and binds the object there.
3255  */
3256 static struct i915_vma *
3257 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3258                            struct i915_address_space *vm,
3259                            unsigned alignment,
3260                            unsigned flags)
3261 {
3262         struct drm_device *dev = obj->base.dev;
3263         struct drm_i915_private *dev_priv = dev->dev_private;
3264         u32 size, fence_size, fence_alignment, unfenced_alignment;
3265         size_t gtt_max =
3266                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3267         struct i915_vma *vma;
3268         int ret;
3269
3270         fence_size = i915_gem_get_gtt_size(dev,
3271                                            obj->base.size,
3272                                            obj->tiling_mode);
3273         fence_alignment = i915_gem_get_gtt_alignment(dev,
3274                                                      obj->base.size,
3275                                                      obj->tiling_mode, true);
3276         unfenced_alignment =
3277                 i915_gem_get_gtt_alignment(dev,
3278                                            obj->base.size,
3279                                            obj->tiling_mode, false);
3280
3281         if (alignment == 0)
3282                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3283                                                 unfenced_alignment;
3284         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3285                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3286                 return ERR_PTR(-EINVAL);
3287         }
3288
3289         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3290
3291         /* If the object is bigger than the entire aperture, reject it early
3292          * before evicting everything in a vain attempt to find space.
3293          */
3294         if (obj->base.size > gtt_max) {
3295                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3296                           obj->base.size,
3297                           flags & PIN_MAPPABLE ? "mappable" : "total",
3298                           gtt_max);
3299                 return ERR_PTR(-E2BIG);
3300         }
3301
3302         ret = i915_gem_object_get_pages(obj);
3303         if (ret)
3304                 return ERR_PTR(ret);
3305
3306         i915_gem_object_pin_pages(obj);
3307
3308         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3309         if (IS_ERR(vma))
3310                 goto err_unpin;
3311
3312 search_free:
3313         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3314                                                   size, alignment,
3315                                                   obj->cache_level, 0, gtt_max,
3316                                                   DRM_MM_SEARCH_DEFAULT,
3317                                                   DRM_MM_CREATE_DEFAULT);
3318         if (ret) {
3319                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3320                                                obj->cache_level, flags);
3321                 if (ret == 0)
3322                         goto search_free;
3323
3324                 goto err_free_vma;
3325         }
3326         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3327                                               obj->cache_level))) {
3328                 ret = -EINVAL;
3329                 goto err_remove_node;
3330         }
3331
3332         ret = i915_gem_gtt_prepare_object(obj);
3333         if (ret)
3334                 goto err_remove_node;
3335
3336         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3337         list_add_tail(&vma->mm_list, &vm->inactive_list);
3338
3339         if (i915_is_ggtt(vm)) {
3340                 bool mappable, fenceable;
3341
3342                 fenceable = (vma->node.size == fence_size &&
3343                              (vma->node.start & (fence_alignment - 1)) == 0);
3344
3345                 mappable = (vma->node.start + obj->base.size <=
3346                             dev_priv->gtt.mappable_end);
3347
3348                 obj->map_and_fenceable = mappable && fenceable;
3349         }
3350
3351         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3352
3353         trace_i915_vma_bind(vma, flags);
3354         vma->bind_vma(vma, obj->cache_level,
3355                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3356
3357         i915_gem_verify_gtt(dev);
3358         return vma;
3359
3360 err_remove_node:
3361         drm_mm_remove_node(&vma->node);
3362 err_free_vma:
3363         i915_gem_vma_destroy(vma);
3364         vma = ERR_PTR(ret);
3365 err_unpin:
3366         i915_gem_object_unpin_pages(obj);
3367         return vma;
3368 }
3369
3370 bool
3371 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3372                         bool force)
3373 {
3374         /* If we don't have a page list set up, then we're not pinned
3375          * to GPU, and we can ignore the cache flush because it'll happen
3376          * again at bind time.
3377          */
3378         if (obj->pages == NULL)
3379                 return false;
3380
3381         /*
3382          * Stolen memory is always coherent with the GPU as it is explicitly
3383          * marked as wc by the system, or the system is cache-coherent.
3384          */
3385         if (obj->stolen)
3386                 return false;
3387
3388         /* If the GPU is snooping the contents of the CPU cache,
3389          * we do not need to manually clear the CPU cache lines.  However,
3390          * the caches are only snooped when the render cache is
3391          * flushed/invalidated.  As we always have to emit invalidations
3392          * and flushes when moving into and out of the RENDER domain, correct
3393          * snooping behaviour occurs naturally as the result of our domain
3394          * tracking.
3395          */
3396         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3397                 return false;
3398
3399         trace_i915_gem_object_clflush(obj);
3400         drm_clflush_sg(obj->pages);
3401
3402         return true;
3403 }
3404
3405 /** Flushes the GTT write domain for the object if it's dirty. */
3406 static void
3407 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3408 {
3409         uint32_t old_write_domain;
3410
3411         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3412                 return;
3413
3414         /* No actual flushing is required for the GTT write domain.  Writes
3415          * to it immediately go to main memory as far as we know, so there's
3416          * no chipset flush.  It also doesn't land in render cache.
3417          *
3418          * However, we do have to enforce the order so that all writes through
3419          * the GTT land before any writes to the device, such as updates to
3420          * the GATT itself.
3421          */
3422         wmb();
3423
3424         old_write_domain = obj->base.write_domain;
3425         obj->base.write_domain = 0;
3426
3427         trace_i915_gem_object_change_domain(obj,
3428                                             obj->base.read_domains,
3429                                             old_write_domain);
3430 }
3431
3432 /** Flushes the CPU write domain for the object if it's dirty. */
3433 static void
3434 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3435                                        bool force)
3436 {
3437         uint32_t old_write_domain;
3438
3439         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3440                 return;
3441
3442         if (i915_gem_clflush_object(obj, force))
3443                 i915_gem_chipset_flush(obj->base.dev);
3444
3445         old_write_domain = obj->base.write_domain;
3446         obj->base.write_domain = 0;
3447
3448         trace_i915_gem_object_change_domain(obj,
3449                                             obj->base.read_domains,
3450                                             old_write_domain);
3451 }
3452
3453 /**
3454  * Moves a single object to the GTT read, and possibly write domain.
3455  *
3456  * This function returns when the move is complete, including waiting on
3457  * flushes to occur.
3458  */
3459 int
3460 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3461 {
3462         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3463         uint32_t old_write_domain, old_read_domains;
3464         int ret;
3465
3466         /* Not valid to be called on unbound objects. */
3467         if (!i915_gem_obj_bound_any(obj))
3468                 return -EINVAL;
3469
3470         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3471                 return 0;
3472
3473         ret = i915_gem_object_wait_rendering(obj, !write);
3474         if (ret)
3475                 return ret;
3476
3477         i915_gem_object_retire(obj);
3478         i915_gem_object_flush_cpu_write_domain(obj, false);
3479
3480         /* Serialise direct access to this object with the barriers for
3481          * coherent writes from the GPU, by effectively invalidating the
3482          * GTT domain upon first access.
3483          */
3484         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3485                 mb();
3486
3487         old_write_domain = obj->base.write_domain;
3488         old_read_domains = obj->base.read_domains;
3489
3490         /* It should now be out of any other write domains, and we can update
3491          * the domain values for our changes.
3492          */
3493         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3494         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3495         if (write) {
3496                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3497                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3498                 obj->dirty = 1;
3499         }
3500
3501         trace_i915_gem_object_change_domain(obj,
3502                                             old_read_domains,
3503                                             old_write_domain);
3504
3505         /* And bump the LRU for this access */
3506         if (i915_gem_object_is_inactive(obj)) {
3507                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3508                 if (vma)
3509                         list_move_tail(&vma->mm_list,
3510                                        &dev_priv->gtt.base.inactive_list);
3511
3512         }
3513
3514         return 0;
3515 }
3516
3517 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3518                                     enum i915_cache_level cache_level)
3519 {
3520         struct drm_device *dev = obj->base.dev;
3521         struct i915_vma *vma, *next;
3522         int ret;
3523
3524         if (obj->cache_level == cache_level)
3525                 return 0;
3526
3527         if (i915_gem_obj_is_pinned(obj)) {
3528                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3529                 return -EBUSY;
3530         }
3531
3532         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3533                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3534                         ret = i915_vma_unbind(vma);
3535                         if (ret)
3536                                 return ret;
3537                 }
3538         }
3539
3540         if (i915_gem_obj_bound_any(obj)) {
3541                 ret = i915_gem_object_finish_gpu(obj);
3542                 if (ret)
3543                         return ret;
3544
3545                 i915_gem_object_finish_gtt(obj);
3546
3547                 /* Before SandyBridge, you could not use tiling or fence
3548                  * registers with snooped memory, so relinquish any fences
3549                  * currently pointing to our region in the aperture.
3550                  */
3551                 if (INTEL_INFO(dev)->gen < 6) {
3552                         ret = i915_gem_object_put_fence(obj);
3553                         if (ret)
3554                                 return ret;
3555                 }
3556
3557                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3558                         if (drm_mm_node_allocated(&vma->node))
3559                                 vma->bind_vma(vma, cache_level,
3560                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3561         }
3562
3563         list_for_each_entry(vma, &obj->vma_list, vma_link)
3564                 vma->node.color = cache_level;
3565         obj->cache_level = cache_level;
3566
3567         if (cpu_write_needs_clflush(obj)) {
3568                 u32 old_read_domains, old_write_domain;
3569
3570                 /* If we're coming from LLC cached, then we haven't
3571                  * actually been tracking whether the data is in the
3572                  * CPU cache or not, since we only allow one bit set
3573                  * in obj->write_domain and have been skipping the clflushes.
3574                  * Just set it to the CPU cache for now.
3575                  */
3576                 i915_gem_object_retire(obj);
3577                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3578
3579                 old_read_domains = obj->base.read_domains;
3580                 old_write_domain = obj->base.write_domain;
3581
3582                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3583                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3584
3585                 trace_i915_gem_object_change_domain(obj,
3586                                                     old_read_domains,
3587                                                     old_write_domain);
3588         }
3589
3590         i915_gem_verify_gtt(dev);
3591         return 0;
3592 }
3593
3594 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3595                                struct drm_file *file)
3596 {
3597         struct drm_i915_gem_caching *args = data;
3598         struct drm_i915_gem_object *obj;
3599         int ret;
3600
3601         ret = i915_mutex_lock_interruptible(dev);
3602         if (ret)
3603                 return ret;
3604
3605         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606         if (&obj->base == NULL) {
3607                 ret = -ENOENT;
3608                 goto unlock;
3609         }
3610
3611         switch (obj->cache_level) {
3612         case I915_CACHE_LLC:
3613         case I915_CACHE_L3_LLC:
3614                 args->caching = I915_CACHING_CACHED;
3615                 break;
3616
3617         case I915_CACHE_WT:
3618                 args->caching = I915_CACHING_DISPLAY;
3619                 break;
3620
3621         default:
3622                 args->caching = I915_CACHING_NONE;
3623                 break;
3624         }
3625
3626         drm_gem_object_unreference(&obj->base);
3627 unlock:
3628         mutex_unlock(&dev->struct_mutex);
3629         return ret;
3630 }
3631
3632 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3633                                struct drm_file *file)
3634 {
3635         struct drm_i915_gem_caching *args = data;
3636         struct drm_i915_gem_object *obj;
3637         enum i915_cache_level level;
3638         int ret;
3639
3640         switch (args->caching) {
3641         case I915_CACHING_NONE:
3642                 level = I915_CACHE_NONE;
3643                 break;
3644         case I915_CACHING_CACHED:
3645                 level = I915_CACHE_LLC;
3646                 break;
3647         case I915_CACHING_DISPLAY:
3648                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3649                 break;
3650         default:
3651                 return -EINVAL;
3652         }
3653
3654         ret = i915_mutex_lock_interruptible(dev);
3655         if (ret)
3656                 return ret;
3657
3658         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3659         if (&obj->base == NULL) {
3660                 ret = -ENOENT;
3661                 goto unlock;
3662         }
3663
3664         ret = i915_gem_object_set_cache_level(obj, level);
3665
3666         drm_gem_object_unreference(&obj->base);
3667 unlock:
3668         mutex_unlock(&dev->struct_mutex);
3669         return ret;
3670 }
3671
3672 static bool is_pin_display(struct drm_i915_gem_object *obj)
3673 {
3674         struct i915_vma *vma;
3675
3676         if (list_empty(&obj->vma_list))
3677                 return false;
3678
3679         vma = i915_gem_obj_to_ggtt(obj);
3680         if (!vma)
3681                 return false;
3682
3683         /* There are 3 sources that pin objects:
3684          *   1. The display engine (scanouts, sprites, cursors);
3685          *   2. Reservations for execbuffer;
3686          *   3. The user.
3687          *
3688          * We can ignore reservations as we hold the struct_mutex and
3689          * are only called outside of the reservation path.  The user
3690          * can only increment pin_count once, and so if after
3691          * subtracting the potential reference by the user, any pin_count
3692          * remains, it must be due to another use by the display engine.
3693          */
3694         return vma->pin_count - !!obj->user_pin_count;
3695 }
3696
3697 /*
3698  * Prepare buffer for display plane (scanout, cursors, etc).
3699  * Can be called from an uninterruptible phase (modesetting) and allows
3700  * any flushes to be pipelined (for pageflips).
3701  */
3702 int
3703 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3704                                      u32 alignment,
3705                                      struct intel_ring_buffer *pipelined)
3706 {
3707         u32 old_read_domains, old_write_domain;
3708         bool was_pin_display;
3709         int ret;
3710
3711         if (pipelined != obj->ring) {
3712                 ret = i915_gem_object_sync(obj, pipelined);
3713                 if (ret)
3714                         return ret;
3715         }
3716
3717         /* Mark the pin_display early so that we account for the
3718          * display coherency whilst setting up the cache domains.
3719          */
3720         was_pin_display = obj->pin_display;
3721         obj->pin_display = true;
3722
3723         /* The display engine is not coherent with the LLC cache on gen6.  As
3724          * a result, we make sure that the pinning that is about to occur is
3725          * done with uncached PTEs. This is lowest common denominator for all
3726          * chipsets.
3727          *
3728          * However for gen6+, we could do better by using the GFDT bit instead
3729          * of uncaching, which would allow us to flush all the LLC-cached data
3730          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3731          */
3732         ret = i915_gem_object_set_cache_level(obj,
3733                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3734         if (ret)
3735                 goto err_unpin_display;
3736
3737         /* As the user may map the buffer once pinned in the display plane
3738          * (e.g. libkms for the bootup splash), we have to ensure that we
3739          * always use map_and_fenceable for all scanout buffers.
3740          */
3741         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3742         if (ret)
3743                 goto err_unpin_display;
3744
3745         i915_gem_object_flush_cpu_write_domain(obj, true);
3746
3747         old_write_domain = obj->base.write_domain;
3748         old_read_domains = obj->base.read_domains;
3749
3750         /* It should now be out of any other write domains, and we can update
3751          * the domain values for our changes.
3752          */
3753         obj->base.write_domain = 0;
3754         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755
3756         trace_i915_gem_object_change_domain(obj,
3757                                             old_read_domains,
3758                                             old_write_domain);
3759
3760         return 0;
3761
3762 err_unpin_display:
3763         WARN_ON(was_pin_display != is_pin_display(obj));
3764         obj->pin_display = was_pin_display;
3765         return ret;
3766 }
3767
3768 void
3769 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3770 {
3771         i915_gem_object_ggtt_unpin(obj);
3772         obj->pin_display = is_pin_display(obj);
3773 }
3774
3775 int
3776 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3777 {
3778         int ret;
3779
3780         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3781                 return 0;
3782
3783         ret = i915_gem_object_wait_rendering(obj, false);
3784         if (ret)
3785                 return ret;
3786
3787         /* Ensure that we invalidate the GPU's caches and TLBs. */
3788         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3789         return 0;
3790 }
3791
3792 /**
3793  * Moves a single object to the CPU read, and possibly write domain.
3794  *
3795  * This function returns when the move is complete, including waiting on
3796  * flushes to occur.
3797  */
3798 int
3799 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3800 {
3801         uint32_t old_write_domain, old_read_domains;
3802         int ret;
3803
3804         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3805                 return 0;
3806
3807         ret = i915_gem_object_wait_rendering(obj, !write);
3808         if (ret)
3809                 return ret;
3810
3811         i915_gem_object_retire(obj);
3812         i915_gem_object_flush_gtt_write_domain(obj);
3813
3814         old_write_domain = obj->base.write_domain;
3815         old_read_domains = obj->base.read_domains;
3816
3817         /* Flush the CPU cache if it's still invalid. */
3818         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3819                 i915_gem_clflush_object(obj, false);
3820
3821                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822         }
3823
3824         /* It should now be out of any other write domains, and we can update
3825          * the domain values for our changes.
3826          */
3827         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828
3829         /* If we're writing through the CPU, then the GPU read domains will
3830          * need to be invalidated at next use.
3831          */
3832         if (write) {
3833                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835         }
3836
3837         trace_i915_gem_object_change_domain(obj,
3838                                             old_read_domains,
3839                                             old_write_domain);
3840
3841         return 0;
3842 }
3843
3844 /* Throttle our rendering by waiting until the ring has completed our requests
3845  * emitted over 20 msec ago.
3846  *
3847  * Note that if we were to use the current jiffies each time around the loop,
3848  * we wouldn't escape the function with any frames outstanding if the time to
3849  * render a frame was over 20ms.
3850  *
3851  * This should get us reasonable parallelism between CPU and GPU but also
3852  * relatively low latency when blocking on a particular request to finish.
3853  */
3854 static int
3855 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3856 {
3857         struct drm_i915_private *dev_priv = dev->dev_private;
3858         struct drm_i915_file_private *file_priv = file->driver_priv;
3859         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3860         struct drm_i915_gem_request *request;
3861         struct intel_ring_buffer *ring = NULL;
3862         unsigned reset_counter;
3863         u32 seqno = 0;
3864         int ret;
3865
3866         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3867         if (ret)
3868                 return ret;
3869
3870         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3871         if (ret)
3872                 return ret;
3873
3874         spin_lock(&file_priv->mm.lock);
3875         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3876                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3877                         break;
3878
3879                 ring = request->ring;
3880                 seqno = request->seqno;
3881         }
3882         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3883         spin_unlock(&file_priv->mm.lock);
3884
3885         if (seqno == 0)
3886                 return 0;
3887
3888         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3889         if (ret == 0)
3890                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3891
3892         return ret;
3893 }
3894
3895 int
3896 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3897                     struct i915_address_space *vm,
3898                     uint32_t alignment,
3899                     unsigned flags)
3900 {
3901         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3902         struct i915_vma *vma;
3903         int ret;
3904
3905         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3906                 return -ENODEV;
3907
3908         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3909                 return -EINVAL;
3910
3911         vma = i915_gem_obj_to_vma(obj, vm);
3912         if (vma) {
3913                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3914                         return -EBUSY;
3915
3916                 if ((alignment &&
3917                      vma->node.start & (alignment - 1)) ||
3918                     (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3919                         WARN(vma->pin_count,
3920                              "bo is already pinned with incorrect alignment:"
3921                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3922                              " obj->map_and_fenceable=%d\n",
3923                              i915_gem_obj_offset(obj, vm), alignment,
3924                              flags & PIN_MAPPABLE,
3925                              obj->map_and_fenceable);
3926                         ret = i915_vma_unbind(vma);
3927                         if (ret)
3928                                 return ret;
3929
3930                         vma = NULL;
3931                 }
3932         }
3933
3934         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3935                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3936                 if (IS_ERR(vma))
3937                         return PTR_ERR(vma);
3938         }
3939
3940         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3941                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3942
3943         vma->pin_count++;
3944         if (flags & PIN_MAPPABLE)
3945                 obj->pin_mappable |= true;
3946
3947         return 0;
3948 }
3949
3950 void
3951 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3952 {
3953         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3954
3955         BUG_ON(!vma);
3956         BUG_ON(vma->pin_count == 0);
3957         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3958
3959         if (--vma->pin_count == 0)
3960                 obj->pin_mappable = false;
3961 }
3962
3963 bool
3964 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3965 {
3966         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3967                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3968                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3969
3970                 WARN_ON(!ggtt_vma ||
3971                         dev_priv->fence_regs[obj->fence_reg].pin_count >
3972                         ggtt_vma->pin_count);
3973                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3974                 return true;
3975         } else
3976                 return false;
3977 }
3978
3979 void
3980 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3981 {
3982         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3983                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3984                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3985                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3986         }
3987 }
3988
3989 int
3990 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3991                    struct drm_file *file)
3992 {
3993         struct drm_i915_gem_pin *args = data;
3994         struct drm_i915_gem_object *obj;
3995         int ret;
3996
3997         if (INTEL_INFO(dev)->gen >= 6)
3998                 return -ENODEV;
3999
4000         ret = i915_mutex_lock_interruptible(dev);
4001         if (ret)
4002                 return ret;
4003
4004         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4005         if (&obj->base == NULL) {
4006                 ret = -ENOENT;
4007                 goto unlock;
4008         }
4009
4010         if (obj->madv != I915_MADV_WILLNEED) {
4011                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4012                 ret = -EFAULT;
4013                 goto out;
4014         }
4015
4016         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4017                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4018                           args->handle);
4019                 ret = -EINVAL;
4020                 goto out;
4021         }
4022
4023         if (obj->user_pin_count == ULONG_MAX) {
4024                 ret = -EBUSY;
4025                 goto out;
4026         }
4027
4028         if (obj->user_pin_count == 0) {
4029                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4030                 if (ret)
4031                         goto out;
4032         }
4033
4034         obj->user_pin_count++;
4035         obj->pin_filp = file;
4036
4037         args->offset = i915_gem_obj_ggtt_offset(obj);
4038 out:
4039         drm_gem_object_unreference(&obj->base);
4040 unlock:
4041         mutex_unlock(&dev->struct_mutex);
4042         return ret;
4043 }
4044
4045 int
4046 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4047                      struct drm_file *file)
4048 {
4049         struct drm_i915_gem_pin *args = data;
4050         struct drm_i915_gem_object *obj;
4051         int ret;
4052
4053         ret = i915_mutex_lock_interruptible(dev);
4054         if (ret)
4055                 return ret;
4056
4057         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4058         if (&obj->base == NULL) {
4059                 ret = -ENOENT;
4060                 goto unlock;
4061         }
4062
4063         if (obj->pin_filp != file) {
4064                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4065                           args->handle);
4066                 ret = -EINVAL;
4067                 goto out;
4068         }
4069         obj->user_pin_count--;
4070         if (obj->user_pin_count == 0) {
4071                 obj->pin_filp = NULL;
4072                 i915_gem_object_ggtt_unpin(obj);
4073         }
4074
4075 out:
4076         drm_gem_object_unreference(&obj->base);
4077 unlock:
4078         mutex_unlock(&dev->struct_mutex);
4079         return ret;
4080 }
4081
4082 int
4083 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4084                     struct drm_file *file)
4085 {
4086         struct drm_i915_gem_busy *args = data;
4087         struct drm_i915_gem_object *obj;
4088         int ret;
4089
4090         ret = i915_mutex_lock_interruptible(dev);
4091         if (ret)
4092                 return ret;
4093
4094         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4095         if (&obj->base == NULL) {
4096                 ret = -ENOENT;
4097                 goto unlock;
4098         }
4099
4100         /* Count all active objects as busy, even if they are currently not used
4101          * by the gpu. Users of this interface expect objects to eventually
4102          * become non-busy without any further actions, therefore emit any
4103          * necessary flushes here.
4104          */
4105         ret = i915_gem_object_flush_active(obj);
4106
4107         args->busy = obj->active;
4108         if (obj->ring) {
4109                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4110                 args->busy |= intel_ring_flag(obj->ring) << 16;
4111         }
4112
4113         drm_gem_object_unreference(&obj->base);
4114 unlock:
4115         mutex_unlock(&dev->struct_mutex);
4116         return ret;
4117 }
4118
4119 int
4120 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4121                         struct drm_file *file_priv)
4122 {
4123         return i915_gem_ring_throttle(dev, file_priv);
4124 }
4125
4126 int
4127 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4128                        struct drm_file *file_priv)
4129 {
4130         struct drm_i915_gem_madvise *args = data;
4131         struct drm_i915_gem_object *obj;
4132         int ret;
4133
4134         switch (args->madv) {
4135         case I915_MADV_DONTNEED:
4136         case I915_MADV_WILLNEED:
4137             break;
4138         default:
4139             return -EINVAL;
4140         }
4141
4142         ret = i915_mutex_lock_interruptible(dev);
4143         if (ret)
4144                 return ret;
4145
4146         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4147         if (&obj->base == NULL) {
4148                 ret = -ENOENT;
4149                 goto unlock;
4150         }
4151
4152         if (i915_gem_obj_is_pinned(obj)) {
4153                 ret = -EINVAL;
4154                 goto out;
4155         }
4156
4157         if (obj->madv != __I915_MADV_PURGED)
4158                 obj->madv = args->madv;
4159
4160         /* if the object is no longer attached, discard its backing storage */
4161         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4162                 i915_gem_object_truncate(obj);
4163
4164         args->retained = obj->madv != __I915_MADV_PURGED;
4165
4166 out:
4167         drm_gem_object_unreference(&obj->base);
4168 unlock:
4169         mutex_unlock(&dev->struct_mutex);
4170         return ret;
4171 }
4172
4173 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4174                           const struct drm_i915_gem_object_ops *ops)
4175 {
4176         INIT_LIST_HEAD(&obj->global_list);
4177         INIT_LIST_HEAD(&obj->ring_list);
4178         INIT_LIST_HEAD(&obj->obj_exec_link);
4179         INIT_LIST_HEAD(&obj->vma_list);
4180
4181         obj->ops = ops;
4182
4183         obj->fence_reg = I915_FENCE_REG_NONE;
4184         obj->madv = I915_MADV_WILLNEED;
4185         /* Avoid an unnecessary call to unbind on the first bind. */
4186         obj->map_and_fenceable = true;
4187
4188         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4189 }
4190
4191 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4192         .get_pages = i915_gem_object_get_pages_gtt,
4193         .put_pages = i915_gem_object_put_pages_gtt,
4194 };
4195
4196 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4197                                                   size_t size)
4198 {
4199         struct drm_i915_gem_object *obj;
4200         struct address_space *mapping;
4201         gfp_t mask;
4202
4203         obj = i915_gem_object_alloc(dev);
4204         if (obj == NULL)
4205                 return NULL;
4206
4207         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4208                 i915_gem_object_free(obj);
4209                 return NULL;
4210         }
4211
4212         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4213         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4214                 /* 965gm cannot relocate objects above 4GiB. */
4215                 mask &= ~__GFP_HIGHMEM;
4216                 mask |= __GFP_DMA32;
4217         }
4218
4219         mapping = file_inode(obj->base.filp)->i_mapping;
4220         mapping_set_gfp_mask(mapping, mask);
4221
4222         i915_gem_object_init(obj, &i915_gem_object_ops);
4223
4224         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226
4227         if (HAS_LLC(dev)) {
4228                 /* On some devices, we can have the GPU use the LLC (the CPU
4229                  * cache) for about a 10% performance improvement
4230                  * compared to uncached.  Graphics requests other than
4231                  * display scanout are coherent with the CPU in
4232                  * accessing this cache.  This means in this mode we
4233                  * don't need to clflush on the CPU side, and on the
4234                  * GPU side we only need to flush internal caches to
4235                  * get data visible to the CPU.
4236                  *
4237                  * However, we maintain the display planes as UC, and so
4238                  * need to rebind when first used as such.
4239                  */
4240                 obj->cache_level = I915_CACHE_LLC;
4241         } else
4242                 obj->cache_level = I915_CACHE_NONE;
4243
4244         trace_i915_gem_object_create(obj);
4245
4246         return obj;
4247 }
4248
4249 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4250 {
4251         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4252         struct drm_device *dev = obj->base.dev;
4253         struct drm_i915_private *dev_priv = dev->dev_private;
4254         struct i915_vma *vma, *next;
4255
4256         intel_runtime_pm_get(dev_priv);
4257
4258         trace_i915_gem_object_destroy(obj);
4259
4260         if (obj->phys_obj)
4261                 i915_gem_detach_phys_object(dev, obj);
4262
4263         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4264                 int ret;
4265
4266                 vma->pin_count = 0;
4267                 ret = i915_vma_unbind(vma);
4268                 if (WARN_ON(ret == -ERESTARTSYS)) {
4269                         bool was_interruptible;
4270
4271                         was_interruptible = dev_priv->mm.interruptible;
4272                         dev_priv->mm.interruptible = false;
4273
4274                         WARN_ON(i915_vma_unbind(vma));
4275
4276                         dev_priv->mm.interruptible = was_interruptible;
4277                 }
4278         }
4279
4280         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4281          * before progressing. */
4282         if (obj->stolen)
4283                 i915_gem_object_unpin_pages(obj);
4284
4285         if (WARN_ON(obj->pages_pin_count))
4286                 obj->pages_pin_count = 0;
4287         if (obj->madv != __I915_MADV_PURGED)
4288                 obj->madv = I915_MADV_DONTNEED;
4289         i915_gem_object_put_pages(obj);
4290         i915_gem_object_free_mmap_offset(obj);
4291         i915_gem_object_release_stolen(obj);
4292
4293         BUG_ON(obj->pages);
4294
4295         if (obj->base.import_attach)
4296                 drm_prime_gem_destroy(&obj->base, NULL);
4297
4298         if (obj->ops->release)
4299                 obj->ops->release(obj);
4300
4301         drm_gem_object_release(&obj->base);
4302         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4303
4304         kfree(obj->bit_17);
4305         i915_gem_object_free(obj);
4306
4307         intel_runtime_pm_put(dev_priv);
4308 }
4309
4310 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4311                                      struct i915_address_space *vm)
4312 {
4313         struct i915_vma *vma;
4314         list_for_each_entry(vma, &obj->vma_list, vma_link)
4315                 if (vma->vm == vm)
4316                         return vma;
4317
4318         return NULL;
4319 }
4320
4321 void i915_gem_vma_destroy(struct i915_vma *vma)
4322 {
4323         WARN_ON(vma->node.allocated);
4324
4325         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4326         if (!list_empty(&vma->exec_list))
4327                 return;
4328
4329         list_del(&vma->vma_link);
4330
4331         kfree(vma);
4332 }
4333
4334 static void
4335 i915_gem_stop_ringbuffers(struct drm_device *dev)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         struct intel_ring_buffer *ring;
4339         int i;
4340
4341         for_each_ring(ring, dev_priv, i)
4342                 intel_stop_ring_buffer(ring);
4343 }
4344
4345 int
4346 i915_gem_suspend(struct drm_device *dev)
4347 {
4348         struct drm_i915_private *dev_priv = dev->dev_private;
4349         int ret = 0;
4350
4351         mutex_lock(&dev->struct_mutex);
4352         if (dev_priv->ums.mm_suspended)
4353                 goto err;
4354
4355         ret = i915_gpu_idle(dev);
4356         if (ret)
4357                 goto err;
4358
4359         i915_gem_retire_requests(dev);
4360
4361         /* Under UMS, be paranoid and evict. */
4362         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4363                 i915_gem_evict_everything(dev);
4364
4365         i915_kernel_lost_context(dev);
4366         i915_gem_stop_ringbuffers(dev);
4367
4368         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4369          * We need to replace this with a semaphore, or something.
4370          * And not confound ums.mm_suspended!
4371          */
4372         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4373                                                              DRIVER_MODESET);
4374         mutex_unlock(&dev->struct_mutex);
4375
4376         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4377         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4378         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4379
4380         return 0;
4381
4382 err:
4383         mutex_unlock(&dev->struct_mutex);
4384         return ret;
4385 }
4386
4387 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4388 {
4389         struct drm_device *dev = ring->dev;
4390         struct drm_i915_private *dev_priv = dev->dev_private;
4391         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4392         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4393         int i, ret;
4394
4395         if (!HAS_L3_DPF(dev) || !remap_info)
4396                 return 0;
4397
4398         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4399         if (ret)
4400                 return ret;
4401
4402         /*
4403          * Note: We do not worry about the concurrent register cacheline hang
4404          * here because no other code should access these registers other than
4405          * at initialization time.
4406          */
4407         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4408                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4409                 intel_ring_emit(ring, reg_base + i);
4410                 intel_ring_emit(ring, remap_info[i/4]);
4411         }
4412
4413         intel_ring_advance(ring);
4414
4415         return ret;
4416 }
4417
4418 void i915_gem_init_swizzling(struct drm_device *dev)
4419 {
4420         struct drm_i915_private *dev_priv = dev->dev_private;
4421
4422         if (INTEL_INFO(dev)->gen < 5 ||
4423             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4424                 return;
4425
4426         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4427                                  DISP_TILE_SURFACE_SWIZZLING);
4428
4429         if (IS_GEN5(dev))
4430                 return;
4431
4432         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4433         if (IS_GEN6(dev))
4434                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4435         else if (IS_GEN7(dev))
4436                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4437         else if (IS_GEN8(dev))
4438                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4439         else
4440                 BUG();
4441 }
4442
4443 static bool
4444 intel_enable_blt(struct drm_device *dev)
4445 {
4446         if (!HAS_BLT(dev))
4447                 return false;
4448
4449         /* The blitter was dysfunctional on early prototypes */
4450         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4451                 DRM_INFO("BLT not supported on this pre-production hardware;"
4452                          " graphics performance will be degraded.\n");
4453                 return false;
4454         }
4455
4456         return true;
4457 }
4458
4459 static int i915_gem_init_rings(struct drm_device *dev)
4460 {
4461         struct drm_i915_private *dev_priv = dev->dev_private;
4462         int ret;
4463
4464         ret = intel_init_render_ring_buffer(dev);
4465         if (ret)
4466                 return ret;
4467
4468         if (HAS_BSD(dev)) {
4469                 ret = intel_init_bsd_ring_buffer(dev);
4470                 if (ret)
4471                         goto cleanup_render_ring;
4472         }
4473
4474         if (intel_enable_blt(dev)) {
4475                 ret = intel_init_blt_ring_buffer(dev);
4476                 if (ret)
4477                         goto cleanup_bsd_ring;
4478         }
4479
4480         if (HAS_VEBOX(dev)) {
4481                 ret = intel_init_vebox_ring_buffer(dev);
4482                 if (ret)
4483                         goto cleanup_blt_ring;
4484         }
4485
4486         if (HAS_BSD2(dev)) {
4487                 ret = intel_init_bsd2_ring_buffer(dev);
4488                 if (ret)
4489                         goto cleanup_vebox_ring;
4490         }
4491
4492         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4493         if (ret)
4494                 goto cleanup_bsd2_ring;
4495
4496         return 0;
4497
4498 cleanup_bsd2_ring:
4499         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4500 cleanup_vebox_ring:
4501         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4502 cleanup_blt_ring:
4503         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4504 cleanup_bsd_ring:
4505         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4506 cleanup_render_ring:
4507         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4508
4509         return ret;
4510 }
4511
4512 int
4513 i915_gem_init_hw(struct drm_device *dev)
4514 {
4515         struct drm_i915_private *dev_priv = dev->dev_private;
4516         int ret, i;
4517
4518         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4519                 return -EIO;
4520
4521         if (dev_priv->ellc_size)
4522                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4523
4524         if (IS_HASWELL(dev))
4525                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4526                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4527
4528         if (HAS_PCH_NOP(dev)) {
4529                 if (IS_IVYBRIDGE(dev)) {
4530                         u32 temp = I915_READ(GEN7_MSG_CTL);
4531                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4532                         I915_WRITE(GEN7_MSG_CTL, temp);
4533                 } else if (INTEL_INFO(dev)->gen >= 7) {
4534                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4535                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4536                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4537                 }
4538         }
4539
4540         i915_gem_init_swizzling(dev);
4541
4542         ret = i915_gem_init_rings(dev);
4543         if (ret)
4544                 return ret;
4545
4546         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4547                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4548
4549         /*
4550          * XXX: Contexts should only be initialized once. Doing a switch to the
4551          * default context switch however is something we'd like to do after
4552          * reset or thaw (the latter may not actually be necessary for HW, but
4553          * goes with our code better). Context switching requires rings (for
4554          * the do_switch), but before enabling PPGTT. So don't move this.
4555          */
4556         ret = i915_gem_context_enable(dev_priv);
4557         if (ret && ret != -EIO) {
4558                 DRM_ERROR("Context enable failed %d\n", ret);
4559                 i915_gem_cleanup_ringbuffer(dev);
4560         }
4561
4562         return ret;
4563 }
4564
4565 int i915_gem_init(struct drm_device *dev)
4566 {
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568         int ret;
4569
4570         mutex_lock(&dev->struct_mutex);
4571
4572         if (IS_VALLEYVIEW(dev)) {
4573                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4574                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4575                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4576                               VLV_GTLC_ALLOWWAKEACK), 10))
4577                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4578         }
4579
4580         i915_gem_init_userptr(dev);
4581         i915_gem_init_global_gtt(dev);
4582
4583         ret = i915_gem_context_init(dev);
4584         if (ret) {
4585                 mutex_unlock(&dev->struct_mutex);
4586                 return ret;
4587         }
4588
4589         ret = i915_gem_init_hw(dev);
4590         if (ret == -EIO) {
4591                 /* Allow ring initialisation to fail by marking the GPU as
4592                  * wedged. But we only want to do this where the GPU is angry,
4593                  * for all other failure, such as an allocation failure, bail.
4594                  */
4595                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4596                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4597                 ret = 0;
4598         }
4599         mutex_unlock(&dev->struct_mutex);
4600
4601         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4602         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4603                 dev_priv->dri1.allow_batchbuffer = 1;
4604         return ret;
4605 }
4606
4607 void
4608 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4609 {
4610         struct drm_i915_private *dev_priv = dev->dev_private;
4611         struct intel_ring_buffer *ring;
4612         int i;
4613
4614         for_each_ring(ring, dev_priv, i)
4615                 intel_cleanup_ring_buffer(ring);
4616 }
4617
4618 int
4619 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4620                        struct drm_file *file_priv)
4621 {
4622         struct drm_i915_private *dev_priv = dev->dev_private;
4623         int ret;
4624
4625         if (drm_core_check_feature(dev, DRIVER_MODESET))
4626                 return 0;
4627
4628         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4629                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4630                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4631         }
4632
4633         mutex_lock(&dev->struct_mutex);
4634         dev_priv->ums.mm_suspended = 0;
4635
4636         ret = i915_gem_init_hw(dev);
4637         if (ret != 0) {
4638                 mutex_unlock(&dev->struct_mutex);
4639                 return ret;
4640         }
4641
4642         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4643
4644         ret = drm_irq_install(dev, dev->pdev->irq);
4645         if (ret)
4646                 goto cleanup_ringbuffer;
4647         mutex_unlock(&dev->struct_mutex);
4648
4649         return 0;
4650
4651 cleanup_ringbuffer:
4652         i915_gem_cleanup_ringbuffer(dev);
4653         dev_priv->ums.mm_suspended = 1;
4654         mutex_unlock(&dev->struct_mutex);
4655
4656         return ret;
4657 }
4658
4659 int
4660 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4661                        struct drm_file *file_priv)
4662 {
4663         if (drm_core_check_feature(dev, DRIVER_MODESET))
4664                 return 0;
4665
4666         mutex_lock(&dev->struct_mutex);
4667         drm_irq_uninstall(dev);
4668         mutex_unlock(&dev->struct_mutex);
4669
4670         return i915_gem_suspend(dev);
4671 }
4672
4673 void
4674 i915_gem_lastclose(struct drm_device *dev)
4675 {
4676         int ret;
4677
4678         if (drm_core_check_feature(dev, DRIVER_MODESET))
4679                 return;
4680
4681         ret = i915_gem_suspend(dev);
4682         if (ret)
4683                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4684 }
4685
4686 static void
4687 init_ring_lists(struct intel_ring_buffer *ring)
4688 {
4689         INIT_LIST_HEAD(&ring->active_list);
4690         INIT_LIST_HEAD(&ring->request_list);
4691 }
4692
4693 void i915_init_vm(struct drm_i915_private *dev_priv,
4694                   struct i915_address_space *vm)
4695 {
4696         if (!i915_is_ggtt(vm))
4697                 drm_mm_init(&vm->mm, vm->start, vm->total);
4698         vm->dev = dev_priv->dev;
4699         INIT_LIST_HEAD(&vm->active_list);
4700         INIT_LIST_HEAD(&vm->inactive_list);
4701         INIT_LIST_HEAD(&vm->global_link);
4702         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4703 }
4704
4705 void
4706 i915_gem_load(struct drm_device *dev)
4707 {
4708         struct drm_i915_private *dev_priv = dev->dev_private;
4709         int i;
4710
4711         dev_priv->slab =
4712                 kmem_cache_create("i915_gem_object",
4713                                   sizeof(struct drm_i915_gem_object), 0,
4714                                   SLAB_HWCACHE_ALIGN,
4715                                   NULL);
4716
4717         INIT_LIST_HEAD(&dev_priv->vm_list);
4718         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4719
4720         INIT_LIST_HEAD(&dev_priv->context_list);
4721         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4722         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4723         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4724         for (i = 0; i < I915_NUM_RINGS; i++)
4725                 init_ring_lists(&dev_priv->ring[i]);
4726         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4727                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4728         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4729                           i915_gem_retire_work_handler);
4730         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4731                           i915_gem_idle_work_handler);
4732         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4733
4734         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4735         if (IS_GEN3(dev)) {
4736                 I915_WRITE(MI_ARB_STATE,
4737                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4738         }
4739
4740         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4741
4742         /* Old X drivers will take 0-2 for front, back, depth buffers */
4743         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4744                 dev_priv->fence_reg_start = 3;
4745
4746         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4747                 dev_priv->num_fence_regs = 32;
4748         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4749                 dev_priv->num_fence_regs = 16;
4750         else
4751                 dev_priv->num_fence_regs = 8;
4752
4753         /* Initialize fence registers to zero */
4754         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4755         i915_gem_restore_fences(dev);
4756
4757         i915_gem_detect_bit_6_swizzle(dev);
4758         init_waitqueue_head(&dev_priv->pending_flip_queue);
4759
4760         dev_priv->mm.interruptible = true;
4761
4762         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4763         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4764         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4765         register_shrinker(&dev_priv->mm.shrinker);
4766
4767         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4768         register_oom_notifier(&dev_priv->mm.oom_notifier);
4769 }
4770
4771 /*
4772  * Create a physically contiguous memory object for this object
4773  * e.g. for cursor + overlay regs
4774  */
4775 static int i915_gem_init_phys_object(struct drm_device *dev,
4776                                      int id, int size, int align)
4777 {
4778         struct drm_i915_private *dev_priv = dev->dev_private;
4779         struct drm_i915_gem_phys_object *phys_obj;
4780         int ret;
4781
4782         if (dev_priv->mm.phys_objs[id - 1] || !size)
4783                 return 0;
4784
4785         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4786         if (!phys_obj)
4787                 return -ENOMEM;
4788
4789         phys_obj->id = id;
4790
4791         phys_obj->handle = drm_pci_alloc(dev, size, align);
4792         if (!phys_obj->handle) {
4793                 ret = -ENOMEM;
4794                 goto kfree_obj;
4795         }
4796 #ifdef CONFIG_X86
4797         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4798 #endif
4799
4800         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4801
4802         return 0;
4803 kfree_obj:
4804         kfree(phys_obj);
4805         return ret;
4806 }
4807
4808 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4809 {
4810         struct drm_i915_private *dev_priv = dev->dev_private;
4811         struct drm_i915_gem_phys_object *phys_obj;
4812
4813         if (!dev_priv->mm.phys_objs[id - 1])
4814                 return;
4815
4816         phys_obj = dev_priv->mm.phys_objs[id - 1];
4817         if (phys_obj->cur_obj) {
4818                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4819         }
4820
4821 #ifdef CONFIG_X86
4822         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4823 #endif
4824         drm_pci_free(dev, phys_obj->handle);
4825         kfree(phys_obj);
4826         dev_priv->mm.phys_objs[id - 1] = NULL;
4827 }
4828
4829 void i915_gem_free_all_phys_object(struct drm_device *dev)
4830 {
4831         int i;
4832
4833         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4834                 i915_gem_free_phys_object(dev, i);
4835 }
4836
4837 void i915_gem_detach_phys_object(struct drm_device *dev,
4838                                  struct drm_i915_gem_object *obj)
4839 {
4840         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4841         char *vaddr;
4842         int i;
4843         int page_count;
4844
4845         if (!obj->phys_obj)
4846                 return;
4847         vaddr = obj->phys_obj->handle->vaddr;
4848
4849         page_count = obj->base.size / PAGE_SIZE;
4850         for (i = 0; i < page_count; i++) {
4851                 struct page *page = shmem_read_mapping_page(mapping, i);
4852                 if (!IS_ERR(page)) {
4853                         char *dst = kmap_atomic(page);
4854                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4855                         kunmap_atomic(dst);
4856
4857                         drm_clflush_pages(&page, 1);
4858
4859                         set_page_dirty(page);
4860                         mark_page_accessed(page);
4861                         page_cache_release(page);
4862                 }
4863         }
4864         i915_gem_chipset_flush(dev);
4865
4866         obj->phys_obj->cur_obj = NULL;
4867         obj->phys_obj = NULL;
4868 }
4869
4870 int
4871 i915_gem_attach_phys_object(struct drm_device *dev,
4872                             struct drm_i915_gem_object *obj,
4873                             int id,
4874                             int align)
4875 {
4876         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         int ret = 0;
4879         int page_count;
4880         int i;
4881
4882         if (id > I915_MAX_PHYS_OBJECT)
4883                 return -EINVAL;
4884
4885         if (obj->phys_obj) {
4886                 if (obj->phys_obj->id == id)
4887                         return 0;
4888                 i915_gem_detach_phys_object(dev, obj);
4889         }
4890
4891         /* create a new object */
4892         if (!dev_priv->mm.phys_objs[id - 1]) {
4893                 ret = i915_gem_init_phys_object(dev, id,
4894                                                 obj->base.size, align);
4895                 if (ret) {
4896                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4897                                   id, obj->base.size);
4898                         return ret;
4899                 }
4900         }
4901
4902         /* bind to the object */
4903         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4904         obj->phys_obj->cur_obj = obj;
4905
4906         page_count = obj->base.size / PAGE_SIZE;
4907
4908         for (i = 0; i < page_count; i++) {
4909                 struct page *page;
4910                 char *dst, *src;
4911
4912                 page = shmem_read_mapping_page(mapping, i);
4913                 if (IS_ERR(page))
4914                         return PTR_ERR(page);
4915
4916                 src = kmap_atomic(page);
4917                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4918                 memcpy(dst, src, PAGE_SIZE);
4919                 kunmap_atomic(src);
4920
4921                 mark_page_accessed(page);
4922                 page_cache_release(page);
4923         }
4924
4925         return 0;
4926 }
4927
4928 static int
4929 i915_gem_phys_pwrite(struct drm_device *dev,
4930                      struct drm_i915_gem_object *obj,
4931                      struct drm_i915_gem_pwrite *args,
4932                      struct drm_file *file_priv)
4933 {
4934         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4935         char __user *user_data = to_user_ptr(args->data_ptr);
4936
4937         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4938                 unsigned long unwritten;
4939
4940                 /* The physical object once assigned is fixed for the lifetime
4941                  * of the obj, so we can safely drop the lock and continue
4942                  * to access vaddr.
4943                  */
4944                 mutex_unlock(&dev->struct_mutex);
4945                 unwritten = copy_from_user(vaddr, user_data, args->size);
4946                 mutex_lock(&dev->struct_mutex);
4947                 if (unwritten)
4948                         return -EFAULT;
4949         }
4950
4951         i915_gem_chipset_flush(dev);
4952         return 0;
4953 }
4954
4955 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4956 {
4957         struct drm_i915_file_private *file_priv = file->driver_priv;
4958
4959         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4960
4961         /* Clean up our request list when the client is going away, so that
4962          * later retire_requests won't dereference our soon-to-be-gone
4963          * file_priv.
4964          */
4965         spin_lock(&file_priv->mm.lock);
4966         while (!list_empty(&file_priv->mm.request_list)) {
4967                 struct drm_i915_gem_request *request;
4968
4969                 request = list_first_entry(&file_priv->mm.request_list,
4970                                            struct drm_i915_gem_request,
4971                                            client_list);
4972                 list_del(&request->client_list);
4973                 request->file_priv = NULL;
4974         }
4975         spin_unlock(&file_priv->mm.lock);
4976 }
4977
4978 static void
4979 i915_gem_file_idle_work_handler(struct work_struct *work)
4980 {
4981         struct drm_i915_file_private *file_priv =
4982                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4983
4984         atomic_set(&file_priv->rps_wait_boost, false);
4985 }
4986
4987 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4988 {
4989         struct drm_i915_file_private *file_priv;
4990         int ret;
4991
4992         DRM_DEBUG_DRIVER("\n");
4993
4994         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4995         if (!file_priv)
4996                 return -ENOMEM;
4997
4998         file->driver_priv = file_priv;
4999         file_priv->dev_priv = dev->dev_private;
5000         file_priv->file = file;
5001
5002         spin_lock_init(&file_priv->mm.lock);
5003         INIT_LIST_HEAD(&file_priv->mm.request_list);
5004         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5005                           i915_gem_file_idle_work_handler);
5006
5007         ret = i915_gem_context_open(dev, file);
5008         if (ret)
5009                 kfree(file_priv);
5010
5011         return ret;
5012 }
5013
5014 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5015 {
5016         if (!mutex_is_locked(mutex))
5017                 return false;
5018
5019 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5020         return mutex->owner == task;
5021 #else
5022         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5023         return false;
5024 #endif
5025 }
5026
5027 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5028 {
5029         if (!mutex_trylock(&dev->struct_mutex)) {
5030                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5031                         return false;
5032
5033                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5034                         return false;
5035
5036                 *unlock = false;
5037         } else
5038                 *unlock = true;
5039
5040         return true;
5041 }
5042
5043 static int num_vma_bound(struct drm_i915_gem_object *obj)
5044 {
5045         struct i915_vma *vma;
5046         int count = 0;
5047
5048         list_for_each_entry(vma, &obj->vma_list, vma_link)
5049                 if (drm_mm_node_allocated(&vma->node))
5050                         count++;
5051
5052         return count;
5053 }
5054
5055 static unsigned long
5056 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5057 {
5058         struct drm_i915_private *dev_priv =
5059                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5060         struct drm_device *dev = dev_priv->dev;
5061         struct drm_i915_gem_object *obj;
5062         unsigned long count;
5063         bool unlock;
5064
5065         if (!i915_gem_shrinker_lock(dev, &unlock))
5066                 return 0;
5067
5068         count = 0;
5069         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5070                 if (obj->pages_pin_count == 0)
5071                         count += obj->base.size >> PAGE_SHIFT;
5072
5073         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5074                 if (!i915_gem_obj_is_pinned(obj) &&
5075                     obj->pages_pin_count == num_vma_bound(obj))
5076                         count += obj->base.size >> PAGE_SHIFT;
5077         }
5078
5079         if (unlock)
5080                 mutex_unlock(&dev->struct_mutex);
5081
5082         return count;
5083 }
5084
5085 /* All the new VM stuff */
5086 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5087                                   struct i915_address_space *vm)
5088 {
5089         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5090         struct i915_vma *vma;
5091
5092         if (!dev_priv->mm.aliasing_ppgtt ||
5093             vm == &dev_priv->mm.aliasing_ppgtt->base)
5094                 vm = &dev_priv->gtt.base;
5095
5096         BUG_ON(list_empty(&o->vma_list));
5097         list_for_each_entry(vma, &o->vma_list, vma_link) {
5098                 if (vma->vm == vm)
5099                         return vma->node.start;
5100
5101         }
5102         return -1;
5103 }
5104
5105 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5106                         struct i915_address_space *vm)
5107 {
5108         struct i915_vma *vma;
5109
5110         list_for_each_entry(vma, &o->vma_list, vma_link)
5111                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5112                         return true;
5113
5114         return false;
5115 }
5116
5117 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5118 {
5119         struct i915_vma *vma;
5120
5121         list_for_each_entry(vma, &o->vma_list, vma_link)
5122                 if (drm_mm_node_allocated(&vma->node))
5123                         return true;
5124
5125         return false;
5126 }
5127
5128 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5129                                 struct i915_address_space *vm)
5130 {
5131         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5132         struct i915_vma *vma;
5133
5134         if (!dev_priv->mm.aliasing_ppgtt ||
5135             vm == &dev_priv->mm.aliasing_ppgtt->base)
5136                 vm = &dev_priv->gtt.base;
5137
5138         BUG_ON(list_empty(&o->vma_list));
5139
5140         list_for_each_entry(vma, &o->vma_list, vma_link)
5141                 if (vma->vm == vm)
5142                         return vma->node.size;
5143
5144         return 0;
5145 }
5146
5147 static unsigned long
5148 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5149 {
5150         struct drm_i915_private *dev_priv =
5151                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5152         struct drm_device *dev = dev_priv->dev;
5153         unsigned long freed;
5154         bool unlock;
5155
5156         if (!i915_gem_shrinker_lock(dev, &unlock))
5157                 return SHRINK_STOP;
5158
5159         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5160         if (freed < sc->nr_to_scan)
5161                 freed += __i915_gem_shrink(dev_priv,
5162                                            sc->nr_to_scan - freed,
5163                                            false);
5164         if (unlock)
5165                 mutex_unlock(&dev->struct_mutex);
5166
5167         return freed;
5168 }
5169
5170 static int
5171 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5172 {
5173         struct drm_i915_private *dev_priv =
5174                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5175         struct drm_device *dev = dev_priv->dev;
5176         struct drm_i915_gem_object *obj;
5177         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5178         unsigned long pinned, bound, unbound, freed;
5179         bool was_interruptible;
5180         bool unlock;
5181
5182         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5183                 schedule_timeout_killable(1);
5184         if (timeout == 0) {
5185                 pr_err("Unable to purge GPU memory due lock contention.\n");
5186                 return NOTIFY_DONE;
5187         }
5188
5189         was_interruptible = dev_priv->mm.interruptible;
5190         dev_priv->mm.interruptible = false;
5191
5192         freed = i915_gem_shrink_all(dev_priv);
5193
5194         dev_priv->mm.interruptible = was_interruptible;
5195
5196         /* Because we may be allocating inside our own driver, we cannot
5197          * assert that there are no objects with pinned pages that are not
5198          * being pointed to by hardware.
5199          */
5200         unbound = bound = pinned = 0;
5201         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5202                 if (!obj->base.filp) /* not backed by a freeable object */
5203                         continue;
5204
5205                 if (obj->pages_pin_count)
5206                         pinned += obj->base.size;
5207                 else
5208                         unbound += obj->base.size;
5209         }
5210         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5211                 if (!obj->base.filp)
5212                         continue;
5213
5214                 if (obj->pages_pin_count)
5215                         pinned += obj->base.size;
5216                 else
5217                         bound += obj->base.size;
5218         }
5219
5220         if (unlock)
5221                 mutex_unlock(&dev->struct_mutex);
5222
5223         pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5224                 freed, pinned);
5225         if (unbound || bound)
5226                 pr_err("%lu and %lu bytes still available in the "
5227                        "bound and unbound GPU page lists.\n",
5228                        bound, unbound);
5229
5230         *(unsigned long *)ptr += freed;
5231         return NOTIFY_DONE;
5232 }
5233
5234 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5235 {
5236         struct i915_vma *vma;
5237
5238         /* This WARN has probably outlived its usefulness (callers already
5239          * WARN if they don't find the GGTT vma they expect). When removing,
5240          * remember to remove the pre-check in is_pin_display() as well */
5241         if (WARN_ON(list_empty(&obj->vma_list)))
5242                 return NULL;
5243
5244         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5245         if (vma->vm != obj_to_ggtt(obj))
5246                 return NULL;
5247
5248         return vma;
5249 }