drm/i915: Get rid of acthd based guilty batch search
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (i915_gem_obj_is_pinned(obj))
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915.prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_ggtt_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915.prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         const bool irq_test_in_progress =
1019                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020         struct timespec before, now;
1021         DEFINE_WAIT(wait);
1022         unsigned long timeout_expire;
1023         int ret;
1024
1025         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028                 return 0;
1029
1030         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033                 gen6_rps_boost(dev_priv);
1034                 if (file_priv)
1035                         mod_delayed_work(dev_priv->wq,
1036                                          &file_priv->mm.idle_work,
1037                                          msecs_to_jiffies(100));
1038         }
1039
1040         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041                 return -ENODEV;
1042
1043         /* Record current time in case interrupted by signal, or wedged */
1044         trace_i915_gem_request_wait_begin(ring, seqno);
1045         getrawmonotonic(&before);
1046         for (;;) {
1047                 struct timer_list timer;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         unsigned long expire;
1081
1082                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084                         mod_timer(&timer, expire);
1085                 }
1086
1087                 io_schedule();
1088
1089                 if (timer.function) {
1090                         del_singleshot_timer_sync(&timer);
1091                         destroy_timer_on_stack(&timer);
1092                 }
1093         }
1094         getrawmonotonic(&now);
1095         trace_i915_gem_request_wait_end(ring, seqno);
1096
1097         if (!irq_test_in_progress)
1098                 ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         intel_runtime_pm_get(dev_priv);
1384
1385         /* We don't use vmf->pgoff since that has the fake offset */
1386         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387                 PAGE_SHIFT;
1388
1389         ret = i915_mutex_lock_interruptible(dev);
1390         if (ret)
1391                 goto out;
1392
1393         trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395         /* Access to snoopable pages through the GTT is incoherent. */
1396         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397                 ret = -EINVAL;
1398                 goto unlock;
1399         }
1400
1401         /* Now bind it into the GTT if needed */
1402         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1403         if (ret)
1404                 goto unlock;
1405
1406         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407         if (ret)
1408                 goto unpin;
1409
1410         ret = i915_gem_object_get_fence(obj);
1411         if (ret)
1412                 goto unpin;
1413
1414         obj->fault_mappable = true;
1415
1416         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417         pfn >>= PAGE_SHIFT;
1418         pfn += page_offset;
1419
1420         /* Finally, remap it using the new GTT offset */
1421         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423         i915_gem_object_ggtt_unpin(obj);
1424 unlock:
1425         mutex_unlock(&dev->struct_mutex);
1426 out:
1427         switch (ret) {
1428         case -EIO:
1429                 /* If this -EIO is due to a gpu hang, give the reset code a
1430                  * chance to clean up the mess. Otherwise return the proper
1431                  * SIGBUS. */
1432                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433                         ret = VM_FAULT_SIGBUS;
1434                         break;
1435                 }
1436         case -EAGAIN:
1437                 /*
1438                  * EAGAIN means the gpu is hung and we'll wait for the error
1439                  * handler to reset everything when re-faulting in
1440                  * i915_mutex_lock_interruptible.
1441                  */
1442         case 0:
1443         case -ERESTARTSYS:
1444         case -EINTR:
1445         case -EBUSY:
1446                 /*
1447                  * EBUSY is ok: this just means that another thread
1448                  * already did the job.
1449                  */
1450                 ret = VM_FAULT_NOPAGE;
1451                 break;
1452         case -ENOMEM:
1453                 ret = VM_FAULT_OOM;
1454                 break;
1455         case -ENOSPC:
1456                 ret = VM_FAULT_SIGBUS;
1457                 break;
1458         default:
1459                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460                 ret = VM_FAULT_SIGBUS;
1461                 break;
1462         }
1463
1464         intel_runtime_pm_put(dev_priv);
1465         return ret;
1466 }
1467
1468 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469 {
1470         struct i915_vma *vma;
1471
1472         /*
1473          * Only the global gtt is relevant for gtt memory mappings, so restrict
1474          * list traversal to objects bound into the global address space. Note
1475          * that the active list should be empty, but better safe than sorry.
1476          */
1477         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479                 i915_gem_release_mmap(vma->obj);
1480         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481                 i915_gem_release_mmap(vma->obj);
1482 }
1483
1484 /**
1485  * i915_gem_release_mmap - remove physical page mappings
1486  * @obj: obj in question
1487  *
1488  * Preserve the reservation of the mmapping with the DRM core code, but
1489  * relinquish ownership of the pages back to the system.
1490  *
1491  * It is vital that we remove the page mapping if we have mapped a tiled
1492  * object through the GTT and then lose the fence register due to
1493  * resource pressure. Similarly if the object has been moved out of the
1494  * aperture, than pages mapped into userspace must be revoked. Removing the
1495  * mapping will then trigger a page fault on the next user access, allowing
1496  * fixup by i915_gem_fault().
1497  */
1498 void
1499 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500 {
1501         if (!obj->fault_mappable)
1502                 return;
1503
1504         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505         obj->fault_mappable = false;
1506 }
1507
1508 uint32_t
1509 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510 {
1511         uint32_t gtt_size;
1512
1513         if (INTEL_INFO(dev)->gen >= 4 ||
1514             tiling_mode == I915_TILING_NONE)
1515                 return size;
1516
1517         /* Previous chips need a power-of-two fence region when tiling */
1518         if (INTEL_INFO(dev)->gen == 3)
1519                 gtt_size = 1024*1024;
1520         else
1521                 gtt_size = 512*1024;
1522
1523         while (gtt_size < size)
1524                 gtt_size <<= 1;
1525
1526         return gtt_size;
1527 }
1528
1529 /**
1530  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531  * @obj: object to check
1532  *
1533  * Return the required GTT alignment for an object, taking into account
1534  * potential fence register mapping.
1535  */
1536 uint32_t
1537 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538                            int tiling_mode, bool fenced)
1539 {
1540         /*
1541          * Minimum alignment is 4k (GTT page size), but might be greater
1542          * if a fence register is needed for the object.
1543          */
1544         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545             tiling_mode == I915_TILING_NONE)
1546                 return 4096;
1547
1548         /*
1549          * Previous chips need to be aligned to the size of the smallest
1550          * fence register that can contain the object.
1551          */
1552         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553 }
1554
1555 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556 {
1557         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558         int ret;
1559
1560         if (drm_vma_node_has_offset(&obj->base.vma_node))
1561                 return 0;
1562
1563         dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565         ret = drm_gem_create_mmap_offset(&obj->base);
1566         if (ret != -ENOSPC)
1567                 goto out;
1568
1569         /* Badly fragmented mmap space? The only way we can recover
1570          * space is by destroying unwanted objects. We can't randomly release
1571          * mmap_offsets as userspace expects them to be persistent for the
1572          * lifetime of the objects. The closest we can is to release the
1573          * offsets on purgeable objects by truncating it and marking it purged,
1574          * which prevents userspace from ever using that object again.
1575          */
1576         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577         ret = drm_gem_create_mmap_offset(&obj->base);
1578         if (ret != -ENOSPC)
1579                 goto out;
1580
1581         i915_gem_shrink_all(dev_priv);
1582         ret = drm_gem_create_mmap_offset(&obj->base);
1583 out:
1584         dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586         return ret;
1587 }
1588
1589 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590 {
1591         drm_gem_free_mmap_offset(&obj->base);
1592 }
1593
1594 int
1595 i915_gem_mmap_gtt(struct drm_file *file,
1596                   struct drm_device *dev,
1597                   uint32_t handle,
1598                   uint64_t *offset)
1599 {
1600         struct drm_i915_private *dev_priv = dev->dev_private;
1601         struct drm_i915_gem_object *obj;
1602         int ret;
1603
1604         ret = i915_mutex_lock_interruptible(dev);
1605         if (ret)
1606                 return ret;
1607
1608         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609         if (&obj->base == NULL) {
1610                 ret = -ENOENT;
1611                 goto unlock;
1612         }
1613
1614         if (obj->base.size > dev_priv->gtt.mappable_end) {
1615                 ret = -E2BIG;
1616                 goto out;
1617         }
1618
1619         if (obj->madv != I915_MADV_WILLNEED) {
1620                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621                 ret = -EINVAL;
1622                 goto out;
1623         }
1624
1625         ret = i915_gem_object_create_mmap_offset(obj);
1626         if (ret)
1627                 goto out;
1628
1629         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631 out:
1632         drm_gem_object_unreference(&obj->base);
1633 unlock:
1634         mutex_unlock(&dev->struct_mutex);
1635         return ret;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640  * @dev: DRM device
1641  * @data: GTT mapping ioctl data
1642  * @file: GEM object info
1643  *
1644  * Simply returns the fake offset to userspace so it can mmap it.
1645  * The mmap call will end up in drm_gem_mmap(), which will set things
1646  * up so we can get faults in the handler above.
1647  *
1648  * The fault handler will take care of binding the object into the GTT
1649  * (since it may have been evicted to make room for something), allocating
1650  * a fence register, and mapping the appropriate aperture address into
1651  * userspace.
1652  */
1653 int
1654 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655                         struct drm_file *file)
1656 {
1657         struct drm_i915_gem_mmap_gtt *args = data;
1658
1659         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660 }
1661
1662 /* Immediately discard the backing storage */
1663 static void
1664 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665 {
1666         struct inode *inode;
1667
1668         i915_gem_object_free_mmap_offset(obj);
1669
1670         if (obj->base.filp == NULL)
1671                 return;
1672
1673         /* Our goal here is to return as much of the memory as
1674          * is possible back to the system as we are called from OOM.
1675          * To do this we must instruct the shmfs to drop all of its
1676          * backing pages, *now*.
1677          */
1678         inode = file_inode(obj->base.filp);
1679         shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681         obj->madv = __I915_MADV_PURGED;
1682 }
1683
1684 static inline int
1685 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686 {
1687         return obj->madv == I915_MADV_DONTNEED;
1688 }
1689
1690 static void
1691 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692 {
1693         struct sg_page_iter sg_iter;
1694         int ret;
1695
1696         BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699         if (ret) {
1700                 /* In the event of a disaster, abandon all caches and
1701                  * hope for the best.
1702                  */
1703                 WARN_ON(ret != -EIO);
1704                 i915_gem_clflush_object(obj, true);
1705                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706         }
1707
1708         if (i915_gem_object_needs_bit17_swizzle(obj))
1709                 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711         if (obj->madv == I915_MADV_DONTNEED)
1712                 obj->dirty = 0;
1713
1714         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715                 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717                 if (obj->dirty)
1718                         set_page_dirty(page);
1719
1720                 if (obj->madv == I915_MADV_WILLNEED)
1721                         mark_page_accessed(page);
1722
1723                 page_cache_release(page);
1724         }
1725         obj->dirty = 0;
1726
1727         sg_free_table(obj->pages);
1728         kfree(obj->pages);
1729 }
1730
1731 int
1732 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733 {
1734         const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736         if (obj->pages == NULL)
1737                 return 0;
1738
1739         if (obj->pages_pin_count)
1740                 return -EBUSY;
1741
1742         BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744         /* ->put_pages might need to allocate memory for the bit17 swizzle
1745          * array, hence protect them from being reaped by removing them from gtt
1746          * lists early. */
1747         list_del(&obj->global_list);
1748
1749         ops->put_pages(obj);
1750         obj->pages = NULL;
1751
1752         if (i915_gem_object_is_purgeable(obj))
1753                 i915_gem_object_truncate(obj);
1754
1755         return 0;
1756 }
1757
1758 static unsigned long
1759 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760                   bool purgeable_only)
1761 {
1762         struct list_head still_bound_list;
1763         struct drm_i915_gem_object *obj, *next;
1764         unsigned long count = 0;
1765
1766         list_for_each_entry_safe(obj, next,
1767                                  &dev_priv->mm.unbound_list,
1768                                  global_list) {
1769                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770                     i915_gem_object_put_pages(obj) == 0) {
1771                         count += obj->base.size >> PAGE_SHIFT;
1772                         if (count >= target)
1773                                 return count;
1774                 }
1775         }
1776
1777         /*
1778          * As we may completely rewrite the bound list whilst unbinding
1779          * (due to retiring requests) we have to strictly process only
1780          * one element of the list at the time, and recheck the list
1781          * on every iteration.
1782          */
1783         INIT_LIST_HEAD(&still_bound_list);
1784         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785                 struct i915_vma *vma, *v;
1786
1787                 obj = list_first_entry(&dev_priv->mm.bound_list,
1788                                        typeof(*obj), global_list);
1789                 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792                         continue;
1793
1794                 /*
1795                  * Hold a reference whilst we unbind this object, as we may
1796                  * end up waiting for and retiring requests. This might
1797                  * release the final reference (held by the active list)
1798                  * and result in the object being freed from under us.
1799                  * in this object being freed.
1800                  *
1801                  * Note 1: Shrinking the bound list is special since only active
1802                  * (and hence bound objects) can contain such limbo objects, so
1803                  * we don't need special tricks for shrinking the unbound list.
1804                  * The only other place where we have to be careful with active
1805                  * objects suddenly disappearing due to retiring requests is the
1806                  * eviction code.
1807                  *
1808                  * Note 2: Even though the bound list doesn't hold a reference
1809                  * to the object we can safely grab one here: The final object
1810                  * unreferencing and the bound_list are both protected by the
1811                  * dev->struct_mutex and so we won't ever be able to observe an
1812                  * object on the bound_list with a reference count equals 0.
1813                  */
1814                 drm_gem_object_reference(&obj->base);
1815
1816                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817                         if (i915_vma_unbind(vma))
1818                                 break;
1819
1820                 if (i915_gem_object_put_pages(obj) == 0)
1821                         count += obj->base.size >> PAGE_SHIFT;
1822
1823                 drm_gem_object_unreference(&obj->base);
1824         }
1825         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827         return count;
1828 }
1829
1830 static unsigned long
1831 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832 {
1833         return __i915_gem_shrink(dev_priv, target, true);
1834 }
1835
1836 static unsigned long
1837 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838 {
1839         struct drm_i915_gem_object *obj, *next;
1840         long freed = 0;
1841
1842         i915_gem_evict_everything(dev_priv->dev);
1843
1844         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845                                  global_list) {
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         freed += obj->base.size >> PAGE_SHIFT;
1848         }
1849         return freed;
1850 }
1851
1852 static int
1853 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854 {
1855         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856         int page_count, i;
1857         struct address_space *mapping;
1858         struct sg_table *st;
1859         struct scatterlist *sg;
1860         struct sg_page_iter sg_iter;
1861         struct page *page;
1862         unsigned long last_pfn = 0;     /* suppress gcc warning */
1863         gfp_t gfp;
1864
1865         /* Assert that the object is not currently in any GPU domain. As it
1866          * wasn't in the GTT, there shouldn't be any way it could have been in
1867          * a GPU cache
1868          */
1869         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872         st = kmalloc(sizeof(*st), GFP_KERNEL);
1873         if (st == NULL)
1874                 return -ENOMEM;
1875
1876         page_count = obj->base.size / PAGE_SIZE;
1877         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878                 kfree(st);
1879                 return -ENOMEM;
1880         }
1881
1882         /* Get the list of pages out of our struct file.  They'll be pinned
1883          * at this point until we release them.
1884          *
1885          * Fail silently without starting the shrinker
1886          */
1887         mapping = file_inode(obj->base.filp)->i_mapping;
1888         gfp = mapping_gfp_mask(mapping);
1889         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890         gfp &= ~(__GFP_IO | __GFP_WAIT);
1891         sg = st->sgl;
1892         st->nents = 0;
1893         for (i = 0; i < page_count; i++) {
1894                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895                 if (IS_ERR(page)) {
1896                         i915_gem_purge(dev_priv, page_count);
1897                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898                 }
1899                 if (IS_ERR(page)) {
1900                         /* We've tried hard to allocate the memory by reaping
1901                          * our own buffer, now let the real VM do its job and
1902                          * go down in flames if truly OOM.
1903                          */
1904                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905                         gfp |= __GFP_IO | __GFP_WAIT;
1906
1907                         i915_gem_shrink_all(dev_priv);
1908                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909                         if (IS_ERR(page))
1910                                 goto err_pages;
1911
1912                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1914                 }
1915 #ifdef CONFIG_SWIOTLB
1916                 if (swiotlb_nr_tbl()) {
1917                         st->nents++;
1918                         sg_set_page(sg, page, PAGE_SIZE, 0);
1919                         sg = sg_next(sg);
1920                         continue;
1921                 }
1922 #endif
1923                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924                         if (i)
1925                                 sg = sg_next(sg);
1926                         st->nents++;
1927                         sg_set_page(sg, page, PAGE_SIZE, 0);
1928                 } else {
1929                         sg->length += PAGE_SIZE;
1930                 }
1931                 last_pfn = page_to_pfn(page);
1932
1933                 /* Check that the i965g/gm workaround works. */
1934                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935         }
1936 #ifdef CONFIG_SWIOTLB
1937         if (!swiotlb_nr_tbl())
1938 #endif
1939                 sg_mark_end(sg);
1940         obj->pages = st;
1941
1942         if (i915_gem_object_needs_bit17_swizzle(obj))
1943                 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945         return 0;
1946
1947 err_pages:
1948         sg_mark_end(sg);
1949         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950                 page_cache_release(sg_page_iter_page(&sg_iter));
1951         sg_free_table(st);
1952         kfree(st);
1953         return PTR_ERR(page);
1954 }
1955
1956 /* Ensure that the associated pages are gathered from the backing storage
1957  * and pinned into our object. i915_gem_object_get_pages() may be called
1958  * multiple times before they are released by a single call to
1959  * i915_gem_object_put_pages() - once the pages are no longer referenced
1960  * either as a result of memory pressure (reaping pages under the shrinker)
1961  * or as the object is itself released.
1962  */
1963 int
1964 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965 {
1966         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967         const struct drm_i915_gem_object_ops *ops = obj->ops;
1968         int ret;
1969
1970         if (obj->pages)
1971                 return 0;
1972
1973         if (obj->madv != I915_MADV_WILLNEED) {
1974                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975                 return -EINVAL;
1976         }
1977
1978         BUG_ON(obj->pages_pin_count);
1979
1980         ret = ops->get_pages(obj);
1981         if (ret)
1982                 return ret;
1983
1984         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985         return 0;
1986 }
1987
1988 static void
1989 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990                                struct intel_ring_buffer *ring)
1991 {
1992         struct drm_device *dev = obj->base.dev;
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994         u32 seqno = intel_ring_get_seqno(ring);
1995
1996         BUG_ON(ring == NULL);
1997         if (obj->ring != ring && obj->last_write_seqno) {
1998                 /* Keep the seqno relative to the current ring */
1999                 obj->last_write_seqno = seqno;
2000         }
2001         obj->ring = ring;
2002
2003         /* Add a reference if we're newly entering the active list. */
2004         if (!obj->active) {
2005                 drm_gem_object_reference(&obj->base);
2006                 obj->active = 1;
2007         }
2008
2009         list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011         obj->last_read_seqno = seqno;
2012
2013         if (obj->fenced_gpu_access) {
2014                 obj->last_fenced_seqno = seqno;
2015
2016                 /* Bump MRU to take account of the delayed flush */
2017                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018                         struct drm_i915_fence_reg *reg;
2019
2020                         reg = &dev_priv->fence_regs[obj->fence_reg];
2021                         list_move_tail(&reg->lru_list,
2022                                        &dev_priv->mm.fence_list);
2023                 }
2024         }
2025 }
2026
2027 void i915_vma_move_to_active(struct i915_vma *vma,
2028                              struct intel_ring_buffer *ring)
2029 {
2030         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031         return i915_gem_object_move_to_active(vma->obj, ring);
2032 }
2033
2034 static void
2035 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036 {
2037         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038         struct i915_address_space *vm;
2039         struct i915_vma *vma;
2040
2041         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042         BUG_ON(!obj->active);
2043
2044         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2045                 vma = i915_gem_obj_to_vma(obj, vm);
2046                 if (vma && !list_empty(&vma->mm_list))
2047                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2048         }
2049
2050         list_del_init(&obj->ring_list);
2051         obj->ring = NULL;
2052
2053         obj->last_read_seqno = 0;
2054         obj->last_write_seqno = 0;
2055         obj->base.write_domain = 0;
2056
2057         obj->last_fenced_seqno = 0;
2058         obj->fenced_gpu_access = false;
2059
2060         obj->active = 0;
2061         drm_gem_object_unreference(&obj->base);
2062
2063         WARN_ON(i915_verify_lists(dev));
2064 }
2065
2066 static int
2067 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         struct intel_ring_buffer *ring;
2071         int ret, i, j;
2072
2073         /* Carefully retire all requests without writing to the rings */
2074         for_each_ring(ring, dev_priv, i) {
2075                 ret = intel_ring_idle(ring);
2076                 if (ret)
2077                         return ret;
2078         }
2079         i915_gem_retire_requests(dev);
2080
2081         /* Finally reset hw state */
2082         for_each_ring(ring, dev_priv, i) {
2083                 intel_ring_init_seqno(ring, seqno);
2084
2085                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2086                         ring->sync_seqno[j] = 0;
2087         }
2088
2089         return 0;
2090 }
2091
2092 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2093 {
2094         struct drm_i915_private *dev_priv = dev->dev_private;
2095         int ret;
2096
2097         if (seqno == 0)
2098                 return -EINVAL;
2099
2100         /* HWS page needs to be set less than what we
2101          * will inject to ring
2102          */
2103         ret = i915_gem_init_seqno(dev, seqno - 1);
2104         if (ret)
2105                 return ret;
2106
2107         /* Carefully set the last_seqno value so that wrap
2108          * detection still works
2109          */
2110         dev_priv->next_seqno = seqno;
2111         dev_priv->last_seqno = seqno - 1;
2112         if (dev_priv->last_seqno == 0)
2113                 dev_priv->last_seqno--;
2114
2115         return 0;
2116 }
2117
2118 int
2119 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2120 {
2121         struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123         /* reserve 0 for non-seqno */
2124         if (dev_priv->next_seqno == 0) {
2125                 int ret = i915_gem_init_seqno(dev, 0);
2126                 if (ret)
2127                         return ret;
2128
2129                 dev_priv->next_seqno = 1;
2130         }
2131
2132         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2133         return 0;
2134 }
2135
2136 int __i915_add_request(struct intel_ring_buffer *ring,
2137                        struct drm_file *file,
2138                        struct drm_i915_gem_object *obj,
2139                        u32 *out_seqno)
2140 {
2141         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2142         struct drm_i915_gem_request *request;
2143         u32 request_ring_position, request_start;
2144         int was_empty;
2145         int ret;
2146
2147         request_start = intel_ring_get_tail(ring);
2148         /*
2149          * Emit any outstanding flushes - execbuf can fail to emit the flush
2150          * after having emitted the batchbuffer command. Hence we need to fix
2151          * things up similar to emitting the lazy request. The difference here
2152          * is that the flush _must_ happen before the next request, no matter
2153          * what.
2154          */
2155         ret = intel_ring_flush_all_caches(ring);
2156         if (ret)
2157                 return ret;
2158
2159         request = ring->preallocated_lazy_request;
2160         if (WARN_ON(request == NULL))
2161                 return -ENOMEM;
2162
2163         /* Record the position of the start of the request so that
2164          * should we detect the updated seqno part-way through the
2165          * GPU processing the request, we never over-estimate the
2166          * position of the head.
2167          */
2168         request_ring_position = intel_ring_get_tail(ring);
2169
2170         ret = ring->add_request(ring);
2171         if (ret)
2172                 return ret;
2173
2174         request->seqno = intel_ring_get_seqno(ring);
2175         request->ring = ring;
2176         request->head = request_start;
2177         request->tail = request_ring_position;
2178
2179         /* Whilst this request exists, batch_obj will be on the
2180          * active_list, and so will hold the active reference. Only when this
2181          * request is retired will the the batch_obj be moved onto the
2182          * inactive_list and lose its active reference. Hence we do not need
2183          * to explicitly hold another reference here.
2184          */
2185         request->batch_obj = obj;
2186
2187         /* Hold a reference to the current context so that we can inspect
2188          * it later in case a hangcheck error event fires.
2189          */
2190         request->ctx = ring->last_context;
2191         if (request->ctx)
2192                 i915_gem_context_reference(request->ctx);
2193
2194         request->emitted_jiffies = jiffies;
2195         was_empty = list_empty(&ring->request_list);
2196         list_add_tail(&request->list, &ring->request_list);
2197         request->file_priv = NULL;
2198
2199         if (file) {
2200                 struct drm_i915_file_private *file_priv = file->driver_priv;
2201
2202                 spin_lock(&file_priv->mm.lock);
2203                 request->file_priv = file_priv;
2204                 list_add_tail(&request->client_list,
2205                               &file_priv->mm.request_list);
2206                 spin_unlock(&file_priv->mm.lock);
2207         }
2208
2209         trace_i915_gem_request_add(ring, request->seqno);
2210         ring->outstanding_lazy_seqno = 0;
2211         ring->preallocated_lazy_request = NULL;
2212
2213         if (!dev_priv->ums.mm_suspended) {
2214                 i915_queue_hangcheck(ring->dev);
2215
2216                 if (was_empty) {
2217                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2218                         queue_delayed_work(dev_priv->wq,
2219                                            &dev_priv->mm.retire_work,
2220                                            round_jiffies_up_relative(HZ));
2221                         intel_mark_busy(dev_priv->dev);
2222                 }
2223         }
2224
2225         if (out_seqno)
2226                 *out_seqno = request->seqno;
2227         return 0;
2228 }
2229
2230 static inline void
2231 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2232 {
2233         struct drm_i915_file_private *file_priv = request->file_priv;
2234
2235         if (!file_priv)
2236                 return;
2237
2238         spin_lock(&file_priv->mm.lock);
2239         list_del(&request->client_list);
2240         request->file_priv = NULL;
2241         spin_unlock(&file_priv->mm.lock);
2242 }
2243
2244 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2245                                    const struct i915_hw_context *ctx)
2246 {
2247         unsigned long elapsed;
2248
2249         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2250
2251         if (ctx->hang_stats.banned)
2252                 return true;
2253
2254         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2255                 if (dev_priv->gpu_error.stop_rings == 0 &&
2256                     i915_gem_context_is_default(ctx)) {
2257                         DRM_ERROR("gpu hanging too fast, banning!\n");
2258                 } else {
2259                         DRM_DEBUG("context hanging too fast, banning!\n");
2260                 }
2261
2262                 return true;
2263         }
2264
2265         return false;
2266 }
2267
2268 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2269                                   struct i915_hw_context *ctx,
2270                                   const bool guilty)
2271 {
2272         struct i915_ctx_hang_stats *hs;
2273
2274         if (WARN_ON(!ctx))
2275                 return;
2276
2277         hs = &ctx->hang_stats;
2278
2279         if (guilty) {
2280                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2281                 hs->batch_active++;
2282                 hs->guilty_ts = get_seconds();
2283         } else {
2284                 hs->batch_pending++;
2285         }
2286 }
2287
2288 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289 {
2290         list_del(&request->list);
2291         i915_gem_request_remove_from_client(request);
2292
2293         if (request->ctx)
2294                 i915_gem_context_unreference(request->ctx);
2295
2296         kfree(request);
2297 }
2298
2299 static struct drm_i915_gem_request *
2300 i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
2301 {
2302         struct drm_i915_gem_request *request;
2303         const u32 completed_seqno = ring->get_seqno(ring, false);
2304
2305         list_for_each_entry(request, &ring->request_list, list) {
2306                 if (i915_seqno_passed(completed_seqno, request->seqno))
2307                         continue;
2308
2309                 return request;
2310         }
2311
2312         return NULL;
2313 }
2314
2315 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2316                                        struct intel_ring_buffer *ring)
2317 {
2318         struct drm_i915_gem_request *request;
2319         bool ring_hung;
2320
2321         request = i915_gem_find_first_non_complete(ring);
2322
2323         if (request == NULL)
2324                 return;
2325
2326         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2327
2328         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2329
2330         list_for_each_entry_continue(request, &ring->request_list, list)
2331                 i915_set_reset_status(dev_priv, request->ctx, false);
2332 }
2333
2334 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2335                                         struct intel_ring_buffer *ring)
2336 {
2337         while (!list_empty(&ring->active_list)) {
2338                 struct drm_i915_gem_object *obj;
2339
2340                 obj = list_first_entry(&ring->active_list,
2341                                        struct drm_i915_gem_object,
2342                                        ring_list);
2343
2344                 i915_gem_object_move_to_inactive(obj);
2345         }
2346
2347         /*
2348          * We must free the requests after all the corresponding objects have
2349          * been moved off active lists. Which is the same order as the normal
2350          * retire_requests function does. This is important if object hold
2351          * implicit references on things like e.g. ppgtt address spaces through
2352          * the request.
2353          */
2354         while (!list_empty(&ring->request_list)) {
2355                 struct drm_i915_gem_request *request;
2356
2357                 request = list_first_entry(&ring->request_list,
2358                                            struct drm_i915_gem_request,
2359                                            list);
2360
2361                 i915_gem_free_request(request);
2362         }
2363 }
2364
2365 void i915_gem_restore_fences(struct drm_device *dev)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         int i;
2369
2370         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2371                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2372
2373                 /*
2374                  * Commit delayed tiling changes if we have an object still
2375                  * attached to the fence, otherwise just clear the fence.
2376                  */
2377                 if (reg->obj) {
2378                         i915_gem_object_update_fence(reg->obj, reg,
2379                                                      reg->obj->tiling_mode);
2380                 } else {
2381                         i915_gem_write_fence(dev, i, NULL);
2382                 }
2383         }
2384 }
2385
2386 void i915_gem_reset(struct drm_device *dev)
2387 {
2388         struct drm_i915_private *dev_priv = dev->dev_private;
2389         struct intel_ring_buffer *ring;
2390         int i;
2391
2392         /*
2393          * Before we free the objects from the requests, we need to inspect
2394          * them for finding the guilty party. As the requests only borrow
2395          * their reference to the objects, the inspection must be done first.
2396          */
2397         for_each_ring(ring, dev_priv, i)
2398                 i915_gem_reset_ring_status(dev_priv, ring);
2399
2400         for_each_ring(ring, dev_priv, i)
2401                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2402
2403         i915_gem_cleanup_ringbuffer(dev);
2404
2405         i915_gem_context_reset(dev);
2406
2407         i915_gem_restore_fences(dev);
2408 }
2409
2410 /**
2411  * This function clears the request list as sequence numbers are passed.
2412  */
2413 void
2414 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2415 {
2416         uint32_t seqno;
2417
2418         if (list_empty(&ring->request_list))
2419                 return;
2420
2421         WARN_ON(i915_verify_lists(ring->dev));
2422
2423         seqno = ring->get_seqno(ring, true);
2424
2425         /* Move any buffers on the active list that are no longer referenced
2426          * by the ringbuffer to the flushing/inactive lists as appropriate,
2427          * before we free the context associated with the requests.
2428          */
2429         while (!list_empty(&ring->active_list)) {
2430                 struct drm_i915_gem_object *obj;
2431
2432                 obj = list_first_entry(&ring->active_list,
2433                                       struct drm_i915_gem_object,
2434                                       ring_list);
2435
2436                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2437                         break;
2438
2439                 i915_gem_object_move_to_inactive(obj);
2440         }
2441
2442
2443         while (!list_empty(&ring->request_list)) {
2444                 struct drm_i915_gem_request *request;
2445
2446                 request = list_first_entry(&ring->request_list,
2447                                            struct drm_i915_gem_request,
2448                                            list);
2449
2450                 if (!i915_seqno_passed(seqno, request->seqno))
2451                         break;
2452
2453                 trace_i915_gem_request_retire(ring, request->seqno);
2454                 /* We know the GPU must have read the request to have
2455                  * sent us the seqno + interrupt, so use the position
2456                  * of tail of the request to update the last known position
2457                  * of the GPU head.
2458                  */
2459                 ring->last_retired_head = request->tail;
2460
2461                 i915_gem_free_request(request);
2462         }
2463
2464         if (unlikely(ring->trace_irq_seqno &&
2465                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2466                 ring->irq_put(ring);
2467                 ring->trace_irq_seqno = 0;
2468         }
2469
2470         WARN_ON(i915_verify_lists(ring->dev));
2471 }
2472
2473 bool
2474 i915_gem_retire_requests(struct drm_device *dev)
2475 {
2476         drm_i915_private_t *dev_priv = dev->dev_private;
2477         struct intel_ring_buffer *ring;
2478         bool idle = true;
2479         int i;
2480
2481         for_each_ring(ring, dev_priv, i) {
2482                 i915_gem_retire_requests_ring(ring);
2483                 idle &= list_empty(&ring->request_list);
2484         }
2485
2486         if (idle)
2487                 mod_delayed_work(dev_priv->wq,
2488                                    &dev_priv->mm.idle_work,
2489                                    msecs_to_jiffies(100));
2490
2491         return idle;
2492 }
2493
2494 static void
2495 i915_gem_retire_work_handler(struct work_struct *work)
2496 {
2497         struct drm_i915_private *dev_priv =
2498                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2499         struct drm_device *dev = dev_priv->dev;
2500         bool idle;
2501
2502         /* Come back later if the device is busy... */
2503         idle = false;
2504         if (mutex_trylock(&dev->struct_mutex)) {
2505                 idle = i915_gem_retire_requests(dev);
2506                 mutex_unlock(&dev->struct_mutex);
2507         }
2508         if (!idle)
2509                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2510                                    round_jiffies_up_relative(HZ));
2511 }
2512
2513 static void
2514 i915_gem_idle_work_handler(struct work_struct *work)
2515 {
2516         struct drm_i915_private *dev_priv =
2517                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2518
2519         intel_mark_idle(dev_priv->dev);
2520 }
2521
2522 /**
2523  * Ensures that an object will eventually get non-busy by flushing any required
2524  * write domains, emitting any outstanding lazy request and retiring and
2525  * completed requests.
2526  */
2527 static int
2528 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2529 {
2530         int ret;
2531
2532         if (obj->active) {
2533                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2534                 if (ret)
2535                         return ret;
2536
2537                 i915_gem_retire_requests_ring(obj->ring);
2538         }
2539
2540         return 0;
2541 }
2542
2543 /**
2544  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2545  * @DRM_IOCTL_ARGS: standard ioctl arguments
2546  *
2547  * Returns 0 if successful, else an error is returned with the remaining time in
2548  * the timeout parameter.
2549  *  -ETIME: object is still busy after timeout
2550  *  -ERESTARTSYS: signal interrupted the wait
2551  *  -ENONENT: object doesn't exist
2552  * Also possible, but rare:
2553  *  -EAGAIN: GPU wedged
2554  *  -ENOMEM: damn
2555  *  -ENODEV: Internal IRQ fail
2556  *  -E?: The add request failed
2557  *
2558  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2559  * non-zero timeout parameter the wait ioctl will wait for the given number of
2560  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2561  * without holding struct_mutex the object may become re-busied before this
2562  * function completes. A similar but shorter * race condition exists in the busy
2563  * ioctl
2564  */
2565 int
2566 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2567 {
2568         drm_i915_private_t *dev_priv = dev->dev_private;
2569         struct drm_i915_gem_wait *args = data;
2570         struct drm_i915_gem_object *obj;
2571         struct intel_ring_buffer *ring = NULL;
2572         struct timespec timeout_stack, *timeout = NULL;
2573         unsigned reset_counter;
2574         u32 seqno = 0;
2575         int ret = 0;
2576
2577         if (args->timeout_ns >= 0) {
2578                 timeout_stack = ns_to_timespec(args->timeout_ns);
2579                 timeout = &timeout_stack;
2580         }
2581
2582         ret = i915_mutex_lock_interruptible(dev);
2583         if (ret)
2584                 return ret;
2585
2586         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2587         if (&obj->base == NULL) {
2588                 mutex_unlock(&dev->struct_mutex);
2589                 return -ENOENT;
2590         }
2591
2592         /* Need to make sure the object gets inactive eventually. */
2593         ret = i915_gem_object_flush_active(obj);
2594         if (ret)
2595                 goto out;
2596
2597         if (obj->active) {
2598                 seqno = obj->last_read_seqno;
2599                 ring = obj->ring;
2600         }
2601
2602         if (seqno == 0)
2603                  goto out;
2604
2605         /* Do this after OLR check to make sure we make forward progress polling
2606          * on this IOCTL with a 0 timeout (like busy ioctl)
2607          */
2608         if (!args->timeout_ns) {
2609                 ret = -ETIME;
2610                 goto out;
2611         }
2612
2613         drm_gem_object_unreference(&obj->base);
2614         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2615         mutex_unlock(&dev->struct_mutex);
2616
2617         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2618         if (timeout)
2619                 args->timeout_ns = timespec_to_ns(timeout);
2620         return ret;
2621
2622 out:
2623         drm_gem_object_unreference(&obj->base);
2624         mutex_unlock(&dev->struct_mutex);
2625         return ret;
2626 }
2627
2628 /**
2629  * i915_gem_object_sync - sync an object to a ring.
2630  *
2631  * @obj: object which may be in use on another ring.
2632  * @to: ring we wish to use the object on. May be NULL.
2633  *
2634  * This code is meant to abstract object synchronization with the GPU.
2635  * Calling with NULL implies synchronizing the object with the CPU
2636  * rather than a particular GPU ring.
2637  *
2638  * Returns 0 if successful, else propagates up the lower layer error.
2639  */
2640 int
2641 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2642                      struct intel_ring_buffer *to)
2643 {
2644         struct intel_ring_buffer *from = obj->ring;
2645         u32 seqno;
2646         int ret, idx;
2647
2648         if (from == NULL || to == from)
2649                 return 0;
2650
2651         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2652                 return i915_gem_object_wait_rendering(obj, false);
2653
2654         idx = intel_ring_sync_index(from, to);
2655
2656         seqno = obj->last_read_seqno;
2657         if (seqno <= from->sync_seqno[idx])
2658                 return 0;
2659
2660         ret = i915_gem_check_olr(obj->ring, seqno);
2661         if (ret)
2662                 return ret;
2663
2664         trace_i915_gem_ring_sync_to(from, to, seqno);
2665         ret = to->sync_to(to, from, seqno);
2666         if (!ret)
2667                 /* We use last_read_seqno because sync_to()
2668                  * might have just caused seqno wrap under
2669                  * the radar.
2670                  */
2671                 from->sync_seqno[idx] = obj->last_read_seqno;
2672
2673         return ret;
2674 }
2675
2676 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2677 {
2678         u32 old_write_domain, old_read_domains;
2679
2680         /* Force a pagefault for domain tracking on next user access */
2681         i915_gem_release_mmap(obj);
2682
2683         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2684                 return;
2685
2686         /* Wait for any direct GTT access to complete */
2687         mb();
2688
2689         old_read_domains = obj->base.read_domains;
2690         old_write_domain = obj->base.write_domain;
2691
2692         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2693         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2694
2695         trace_i915_gem_object_change_domain(obj,
2696                                             old_read_domains,
2697                                             old_write_domain);
2698 }
2699
2700 int i915_vma_unbind(struct i915_vma *vma)
2701 {
2702         struct drm_i915_gem_object *obj = vma->obj;
2703         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2704         int ret;
2705
2706         if (list_empty(&vma->vma_link))
2707                 return 0;
2708
2709         if (!drm_mm_node_allocated(&vma->node)) {
2710                 i915_gem_vma_destroy(vma);
2711
2712                 return 0;
2713         }
2714
2715         if (vma->pin_count)
2716                 return -EBUSY;
2717
2718         BUG_ON(obj->pages == NULL);
2719
2720         ret = i915_gem_object_finish_gpu(obj);
2721         if (ret)
2722                 return ret;
2723         /* Continue on if we fail due to EIO, the GPU is hung so we
2724          * should be safe and we need to cleanup or else we might
2725          * cause memory corruption through use-after-free.
2726          */
2727
2728         i915_gem_object_finish_gtt(obj);
2729
2730         /* release the fence reg _after_ flushing */
2731         ret = i915_gem_object_put_fence(obj);
2732         if (ret)
2733                 return ret;
2734
2735         trace_i915_vma_unbind(vma);
2736
2737         vma->unbind_vma(vma);
2738
2739         i915_gem_gtt_finish_object(obj);
2740
2741         list_del(&vma->mm_list);
2742         /* Avoid an unnecessary call to unbind on rebind. */
2743         if (i915_is_ggtt(vma->vm))
2744                 obj->map_and_fenceable = true;
2745
2746         drm_mm_remove_node(&vma->node);
2747         i915_gem_vma_destroy(vma);
2748
2749         /* Since the unbound list is global, only move to that list if
2750          * no more VMAs exist. */
2751         if (list_empty(&obj->vma_list))
2752                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2753
2754         /* And finally now the object is completely decoupled from this vma,
2755          * we can drop its hold on the backing storage and allow it to be
2756          * reaped by the shrinker.
2757          */
2758         i915_gem_object_unpin_pages(obj);
2759
2760         return 0;
2761 }
2762
2763 /**
2764  * Unbinds an object from the global GTT aperture.
2765  */
2766 int
2767 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2768 {
2769         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2770         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2771
2772         if (!i915_gem_obj_ggtt_bound(obj))
2773                 return 0;
2774
2775         if (i915_gem_obj_to_ggtt(obj)->pin_count)
2776                 return -EBUSY;
2777
2778         BUG_ON(obj->pages == NULL);
2779
2780         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2781 }
2782
2783 int i915_gpu_idle(struct drm_device *dev)
2784 {
2785         drm_i915_private_t *dev_priv = dev->dev_private;
2786         struct intel_ring_buffer *ring;
2787         int ret, i;
2788
2789         /* Flush everything onto the inactive list. */
2790         for_each_ring(ring, dev_priv, i) {
2791                 ret = i915_switch_context(ring, NULL, ring->default_context);
2792                 if (ret)
2793                         return ret;
2794
2795                 ret = intel_ring_idle(ring);
2796                 if (ret)
2797                         return ret;
2798         }
2799
2800         return 0;
2801 }
2802
2803 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2804                                  struct drm_i915_gem_object *obj)
2805 {
2806         drm_i915_private_t *dev_priv = dev->dev_private;
2807         int fence_reg;
2808         int fence_pitch_shift;
2809
2810         if (INTEL_INFO(dev)->gen >= 6) {
2811                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2812                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2813         } else {
2814                 fence_reg = FENCE_REG_965_0;
2815                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2816         }
2817
2818         fence_reg += reg * 8;
2819
2820         /* To w/a incoherency with non-atomic 64-bit register updates,
2821          * we split the 64-bit update into two 32-bit writes. In order
2822          * for a partial fence not to be evaluated between writes, we
2823          * precede the update with write to turn off the fence register,
2824          * and only enable the fence as the last step.
2825          *
2826          * For extra levels of paranoia, we make sure each step lands
2827          * before applying the next step.
2828          */
2829         I915_WRITE(fence_reg, 0);
2830         POSTING_READ(fence_reg);
2831
2832         if (obj) {
2833                 u32 size = i915_gem_obj_ggtt_size(obj);
2834                 uint64_t val;
2835
2836                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2837                                  0xfffff000) << 32;
2838                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2839                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2840                 if (obj->tiling_mode == I915_TILING_Y)
2841                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2842                 val |= I965_FENCE_REG_VALID;
2843
2844                 I915_WRITE(fence_reg + 4, val >> 32);
2845                 POSTING_READ(fence_reg + 4);
2846
2847                 I915_WRITE(fence_reg + 0, val);
2848                 POSTING_READ(fence_reg);
2849         } else {
2850                 I915_WRITE(fence_reg + 4, 0);
2851                 POSTING_READ(fence_reg + 4);
2852         }
2853 }
2854
2855 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2856                                  struct drm_i915_gem_object *obj)
2857 {
2858         drm_i915_private_t *dev_priv = dev->dev_private;
2859         u32 val;
2860
2861         if (obj) {
2862                 u32 size = i915_gem_obj_ggtt_size(obj);
2863                 int pitch_val;
2864                 int tile_width;
2865
2866                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2867                      (size & -size) != size ||
2868                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2869                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2870                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2871
2872                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2873                         tile_width = 128;
2874                 else
2875                         tile_width = 512;
2876
2877                 /* Note: pitch better be a power of two tile widths */
2878                 pitch_val = obj->stride / tile_width;
2879                 pitch_val = ffs(pitch_val) - 1;
2880
2881                 val = i915_gem_obj_ggtt_offset(obj);
2882                 if (obj->tiling_mode == I915_TILING_Y)
2883                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2884                 val |= I915_FENCE_SIZE_BITS(size);
2885                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2886                 val |= I830_FENCE_REG_VALID;
2887         } else
2888                 val = 0;
2889
2890         if (reg < 8)
2891                 reg = FENCE_REG_830_0 + reg * 4;
2892         else
2893                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2894
2895         I915_WRITE(reg, val);
2896         POSTING_READ(reg);
2897 }
2898
2899 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2900                                 struct drm_i915_gem_object *obj)
2901 {
2902         drm_i915_private_t *dev_priv = dev->dev_private;
2903         uint32_t val;
2904
2905         if (obj) {
2906                 u32 size = i915_gem_obj_ggtt_size(obj);
2907                 uint32_t pitch_val;
2908
2909                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2910                      (size & -size) != size ||
2911                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2912                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2913                      i915_gem_obj_ggtt_offset(obj), size);
2914
2915                 pitch_val = obj->stride / 128;
2916                 pitch_val = ffs(pitch_val) - 1;
2917
2918                 val = i915_gem_obj_ggtt_offset(obj);
2919                 if (obj->tiling_mode == I915_TILING_Y)
2920                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2921                 val |= I830_FENCE_SIZE_BITS(size);
2922                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2923                 val |= I830_FENCE_REG_VALID;
2924         } else
2925                 val = 0;
2926
2927         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2928         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2929 }
2930
2931 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2932 {
2933         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2934 }
2935
2936 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2937                                  struct drm_i915_gem_object *obj)
2938 {
2939         struct drm_i915_private *dev_priv = dev->dev_private;
2940
2941         /* Ensure that all CPU reads are completed before installing a fence
2942          * and all writes before removing the fence.
2943          */
2944         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2945                 mb();
2946
2947         WARN(obj && (!obj->stride || !obj->tiling_mode),
2948              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2949              obj->stride, obj->tiling_mode);
2950
2951         switch (INTEL_INFO(dev)->gen) {
2952         case 8:
2953         case 7:
2954         case 6:
2955         case 5:
2956         case 4: i965_write_fence_reg(dev, reg, obj); break;
2957         case 3: i915_write_fence_reg(dev, reg, obj); break;
2958         case 2: i830_write_fence_reg(dev, reg, obj); break;
2959         default: BUG();
2960         }
2961
2962         /* And similarly be paranoid that no direct access to this region
2963          * is reordered to before the fence is installed.
2964          */
2965         if (i915_gem_object_needs_mb(obj))
2966                 mb();
2967 }
2968
2969 static inline int fence_number(struct drm_i915_private *dev_priv,
2970                                struct drm_i915_fence_reg *fence)
2971 {
2972         return fence - dev_priv->fence_regs;
2973 }
2974
2975 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2976                                          struct drm_i915_fence_reg *fence,
2977                                          bool enable)
2978 {
2979         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2980         int reg = fence_number(dev_priv, fence);
2981
2982         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2983
2984         if (enable) {
2985                 obj->fence_reg = reg;
2986                 fence->obj = obj;
2987                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2988         } else {
2989                 obj->fence_reg = I915_FENCE_REG_NONE;
2990                 fence->obj = NULL;
2991                 list_del_init(&fence->lru_list);
2992         }
2993         obj->fence_dirty = false;
2994 }
2995
2996 static int
2997 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2998 {
2999         if (obj->last_fenced_seqno) {
3000                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3001                 if (ret)
3002                         return ret;
3003
3004                 obj->last_fenced_seqno = 0;
3005         }
3006
3007         obj->fenced_gpu_access = false;
3008         return 0;
3009 }
3010
3011 int
3012 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3013 {
3014         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3015         struct drm_i915_fence_reg *fence;
3016         int ret;
3017
3018         ret = i915_gem_object_wait_fence(obj);
3019         if (ret)
3020                 return ret;
3021
3022         if (obj->fence_reg == I915_FENCE_REG_NONE)
3023                 return 0;
3024
3025         fence = &dev_priv->fence_regs[obj->fence_reg];
3026
3027         i915_gem_object_fence_lost(obj);
3028         i915_gem_object_update_fence(obj, fence, false);
3029
3030         return 0;
3031 }
3032
3033 static struct drm_i915_fence_reg *
3034 i915_find_fence_reg(struct drm_device *dev)
3035 {
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct drm_i915_fence_reg *reg, *avail;
3038         int i;
3039
3040         /* First try to find a free reg */
3041         avail = NULL;
3042         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3043                 reg = &dev_priv->fence_regs[i];
3044                 if (!reg->obj)
3045                         return reg;
3046
3047                 if (!reg->pin_count)
3048                         avail = reg;
3049         }
3050
3051         if (avail == NULL)
3052                 goto deadlock;
3053
3054         /* None available, try to steal one or wait for a user to finish */
3055         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3056                 if (reg->pin_count)
3057                         continue;
3058
3059                 return reg;
3060         }
3061
3062 deadlock:
3063         /* Wait for completion of pending flips which consume fences */
3064         if (intel_has_pending_fb_unpin(dev))
3065                 return ERR_PTR(-EAGAIN);
3066
3067         return ERR_PTR(-EDEADLK);
3068 }
3069
3070 /**
3071  * i915_gem_object_get_fence - set up fencing for an object
3072  * @obj: object to map through a fence reg
3073  *
3074  * When mapping objects through the GTT, userspace wants to be able to write
3075  * to them without having to worry about swizzling if the object is tiled.
3076  * This function walks the fence regs looking for a free one for @obj,
3077  * stealing one if it can't find any.
3078  *
3079  * It then sets up the reg based on the object's properties: address, pitch
3080  * and tiling format.
3081  *
3082  * For an untiled surface, this removes any existing fence.
3083  */
3084 int
3085 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3086 {
3087         struct drm_device *dev = obj->base.dev;
3088         struct drm_i915_private *dev_priv = dev->dev_private;
3089         bool enable = obj->tiling_mode != I915_TILING_NONE;
3090         struct drm_i915_fence_reg *reg;
3091         int ret;
3092
3093         /* Have we updated the tiling parameters upon the object and so
3094          * will need to serialise the write to the associated fence register?
3095          */
3096         if (obj->fence_dirty) {
3097                 ret = i915_gem_object_wait_fence(obj);
3098                 if (ret)
3099                         return ret;
3100         }
3101
3102         /* Just update our place in the LRU if our fence is getting reused. */
3103         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3104                 reg = &dev_priv->fence_regs[obj->fence_reg];
3105                 if (!obj->fence_dirty) {
3106                         list_move_tail(&reg->lru_list,
3107                                        &dev_priv->mm.fence_list);
3108                         return 0;
3109                 }
3110         } else if (enable) {
3111                 reg = i915_find_fence_reg(dev);
3112                 if (IS_ERR(reg))
3113                         return PTR_ERR(reg);
3114
3115                 if (reg->obj) {
3116                         struct drm_i915_gem_object *old = reg->obj;
3117
3118                         ret = i915_gem_object_wait_fence(old);
3119                         if (ret)
3120                                 return ret;
3121
3122                         i915_gem_object_fence_lost(old);
3123                 }
3124         } else
3125                 return 0;
3126
3127         i915_gem_object_update_fence(obj, reg, enable);
3128
3129         return 0;
3130 }
3131
3132 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3133                                      struct drm_mm_node *gtt_space,
3134                                      unsigned long cache_level)
3135 {
3136         struct drm_mm_node *other;
3137
3138         /* On non-LLC machines we have to be careful when putting differing
3139          * types of snoopable memory together to avoid the prefetcher
3140          * crossing memory domains and dying.
3141          */
3142         if (HAS_LLC(dev))
3143                 return true;
3144
3145         if (!drm_mm_node_allocated(gtt_space))
3146                 return true;
3147
3148         if (list_empty(&gtt_space->node_list))
3149                 return true;
3150
3151         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3152         if (other->allocated && !other->hole_follows && other->color != cache_level)
3153                 return false;
3154
3155         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3156         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3157                 return false;
3158
3159         return true;
3160 }
3161
3162 static void i915_gem_verify_gtt(struct drm_device *dev)
3163 {
3164 #if WATCH_GTT
3165         struct drm_i915_private *dev_priv = dev->dev_private;
3166         struct drm_i915_gem_object *obj;
3167         int err = 0;
3168
3169         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3170                 if (obj->gtt_space == NULL) {
3171                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3172                         err++;
3173                         continue;
3174                 }
3175
3176                 if (obj->cache_level != obj->gtt_space->color) {
3177                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3178                                i915_gem_obj_ggtt_offset(obj),
3179                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3180                                obj->cache_level,
3181                                obj->gtt_space->color);
3182                         err++;
3183                         continue;
3184                 }
3185
3186                 if (!i915_gem_valid_gtt_space(dev,
3187                                               obj->gtt_space,
3188                                               obj->cache_level)) {
3189                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3190                                i915_gem_obj_ggtt_offset(obj),
3191                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3192                                obj->cache_level);
3193                         err++;
3194                         continue;
3195                 }
3196         }
3197
3198         WARN_ON(err);
3199 #endif
3200 }
3201
3202 /**
3203  * Finds free space in the GTT aperture and binds the object there.
3204  */
3205 static int
3206 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3207                            struct i915_address_space *vm,
3208                            unsigned alignment,
3209                            bool map_and_fenceable,
3210                            bool nonblocking)
3211 {
3212         struct drm_device *dev = obj->base.dev;
3213         drm_i915_private_t *dev_priv = dev->dev_private;
3214         u32 size, fence_size, fence_alignment, unfenced_alignment;
3215         size_t gtt_max =
3216                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3217         struct i915_vma *vma;
3218         int ret;
3219
3220         fence_size = i915_gem_get_gtt_size(dev,
3221                                            obj->base.size,
3222                                            obj->tiling_mode);
3223         fence_alignment = i915_gem_get_gtt_alignment(dev,
3224                                                      obj->base.size,
3225                                                      obj->tiling_mode, true);
3226         unfenced_alignment =
3227                 i915_gem_get_gtt_alignment(dev,
3228                                                     obj->base.size,
3229                                                     obj->tiling_mode, false);
3230
3231         if (alignment == 0)
3232                 alignment = map_and_fenceable ? fence_alignment :
3233                                                 unfenced_alignment;
3234         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3235                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3236                 return -EINVAL;
3237         }
3238
3239         size = map_and_fenceable ? fence_size : obj->base.size;
3240
3241         /* If the object is bigger than the entire aperture, reject it early
3242          * before evicting everything in a vain attempt to find space.
3243          */
3244         if (obj->base.size > gtt_max) {
3245                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3246                           obj->base.size,
3247                           map_and_fenceable ? "mappable" : "total",
3248                           gtt_max);
3249                 return -E2BIG;
3250         }
3251
3252         ret = i915_gem_object_get_pages(obj);
3253         if (ret)
3254                 return ret;
3255
3256         i915_gem_object_pin_pages(obj);
3257
3258         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3259         if (IS_ERR(vma)) {
3260                 ret = PTR_ERR(vma);
3261                 goto err_unpin;
3262         }
3263
3264 search_free:
3265         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3266                                                   size, alignment,
3267                                                   obj->cache_level, 0, gtt_max,
3268                                                   DRM_MM_SEARCH_DEFAULT);
3269         if (ret) {
3270                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3271                                                obj->cache_level,
3272                                                map_and_fenceable,
3273                                                nonblocking);
3274                 if (ret == 0)
3275                         goto search_free;
3276
3277                 goto err_free_vma;
3278         }
3279         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3280                                               obj->cache_level))) {
3281                 ret = -EINVAL;
3282                 goto err_remove_node;
3283         }
3284
3285         ret = i915_gem_gtt_prepare_object(obj);
3286         if (ret)
3287                 goto err_remove_node;
3288
3289         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3290         list_add_tail(&vma->mm_list, &vm->inactive_list);
3291
3292         if (i915_is_ggtt(vm)) {
3293                 bool mappable, fenceable;
3294
3295                 fenceable = (vma->node.size == fence_size &&
3296                              (vma->node.start & (fence_alignment - 1)) == 0);
3297
3298                 mappable = (vma->node.start + obj->base.size <=
3299                             dev_priv->gtt.mappable_end);
3300
3301                 obj->map_and_fenceable = mappable && fenceable;
3302         }
3303
3304         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3305
3306         trace_i915_vma_bind(vma, map_and_fenceable);
3307         i915_gem_verify_gtt(dev);
3308         return 0;
3309
3310 err_remove_node:
3311         drm_mm_remove_node(&vma->node);
3312 err_free_vma:
3313         i915_gem_vma_destroy(vma);
3314 err_unpin:
3315         i915_gem_object_unpin_pages(obj);
3316         return ret;
3317 }
3318
3319 bool
3320 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3321                         bool force)
3322 {
3323         /* If we don't have a page list set up, then we're not pinned
3324          * to GPU, and we can ignore the cache flush because it'll happen
3325          * again at bind time.
3326          */
3327         if (obj->pages == NULL)
3328                 return false;
3329
3330         /*
3331          * Stolen memory is always coherent with the GPU as it is explicitly
3332          * marked as wc by the system, or the system is cache-coherent.
3333          */
3334         if (obj->stolen)
3335                 return false;
3336
3337         /* If the GPU is snooping the contents of the CPU cache,
3338          * we do not need to manually clear the CPU cache lines.  However,
3339          * the caches are only snooped when the render cache is
3340          * flushed/invalidated.  As we always have to emit invalidations
3341          * and flushes when moving into and out of the RENDER domain, correct
3342          * snooping behaviour occurs naturally as the result of our domain
3343          * tracking.
3344          */
3345         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3346                 return false;
3347
3348         trace_i915_gem_object_clflush(obj);
3349         drm_clflush_sg(obj->pages);
3350
3351         return true;
3352 }
3353
3354 /** Flushes the GTT write domain for the object if it's dirty. */
3355 static void
3356 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3357 {
3358         uint32_t old_write_domain;
3359
3360         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3361                 return;
3362
3363         /* No actual flushing is required for the GTT write domain.  Writes
3364          * to it immediately go to main memory as far as we know, so there's
3365          * no chipset flush.  It also doesn't land in render cache.
3366          *
3367          * However, we do have to enforce the order so that all writes through
3368          * the GTT land before any writes to the device, such as updates to
3369          * the GATT itself.
3370          */
3371         wmb();
3372
3373         old_write_domain = obj->base.write_domain;
3374         obj->base.write_domain = 0;
3375
3376         trace_i915_gem_object_change_domain(obj,
3377                                             obj->base.read_domains,
3378                                             old_write_domain);
3379 }
3380
3381 /** Flushes the CPU write domain for the object if it's dirty. */
3382 static void
3383 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3384                                        bool force)
3385 {
3386         uint32_t old_write_domain;
3387
3388         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3389                 return;
3390
3391         if (i915_gem_clflush_object(obj, force))
3392                 i915_gem_chipset_flush(obj->base.dev);
3393
3394         old_write_domain = obj->base.write_domain;
3395         obj->base.write_domain = 0;
3396
3397         trace_i915_gem_object_change_domain(obj,
3398                                             obj->base.read_domains,
3399                                             old_write_domain);
3400 }
3401
3402 /**
3403  * Moves a single object to the GTT read, and possibly write domain.
3404  *
3405  * This function returns when the move is complete, including waiting on
3406  * flushes to occur.
3407  */
3408 int
3409 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3410 {
3411         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3412         uint32_t old_write_domain, old_read_domains;
3413         int ret;
3414
3415         /* Not valid to be called on unbound objects. */
3416         if (!i915_gem_obj_bound_any(obj))
3417                 return -EINVAL;
3418
3419         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3420                 return 0;
3421
3422         ret = i915_gem_object_wait_rendering(obj, !write);
3423         if (ret)
3424                 return ret;
3425
3426         i915_gem_object_flush_cpu_write_domain(obj, false);
3427
3428         /* Serialise direct access to this object with the barriers for
3429          * coherent writes from the GPU, by effectively invalidating the
3430          * GTT domain upon first access.
3431          */
3432         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3433                 mb();
3434
3435         old_write_domain = obj->base.write_domain;
3436         old_read_domains = obj->base.read_domains;
3437
3438         /* It should now be out of any other write domains, and we can update
3439          * the domain values for our changes.
3440          */
3441         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3442         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3443         if (write) {
3444                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3445                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3446                 obj->dirty = 1;
3447         }
3448
3449         trace_i915_gem_object_change_domain(obj,
3450                                             old_read_domains,
3451                                             old_write_domain);
3452
3453         /* And bump the LRU for this access */
3454         if (i915_gem_object_is_inactive(obj)) {
3455                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3456                 if (vma)
3457                         list_move_tail(&vma->mm_list,
3458                                        &dev_priv->gtt.base.inactive_list);
3459
3460         }
3461
3462         return 0;
3463 }
3464
3465 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3466                                     enum i915_cache_level cache_level)
3467 {
3468         struct drm_device *dev = obj->base.dev;
3469         struct i915_vma *vma;
3470         int ret;
3471
3472         if (obj->cache_level == cache_level)
3473                 return 0;
3474
3475         if (i915_gem_obj_is_pinned(obj)) {
3476                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3477                 return -EBUSY;
3478         }
3479
3480         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3481                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3482                         ret = i915_vma_unbind(vma);
3483                         if (ret)
3484                                 return ret;
3485
3486                         break;
3487                 }
3488         }
3489
3490         if (i915_gem_obj_bound_any(obj)) {
3491                 ret = i915_gem_object_finish_gpu(obj);
3492                 if (ret)
3493                         return ret;
3494
3495                 i915_gem_object_finish_gtt(obj);
3496
3497                 /* Before SandyBridge, you could not use tiling or fence
3498                  * registers with snooped memory, so relinquish any fences
3499                  * currently pointing to our region in the aperture.
3500                  */
3501                 if (INTEL_INFO(dev)->gen < 6) {
3502                         ret = i915_gem_object_put_fence(obj);
3503                         if (ret)
3504                                 return ret;
3505                 }
3506
3507                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3508                         vma->bind_vma(vma, cache_level, 0);
3509         }
3510
3511         list_for_each_entry(vma, &obj->vma_list, vma_link)
3512                 vma->node.color = cache_level;
3513         obj->cache_level = cache_level;
3514
3515         if (cpu_write_needs_clflush(obj)) {
3516                 u32 old_read_domains, old_write_domain;
3517
3518                 /* If we're coming from LLC cached, then we haven't
3519                  * actually been tracking whether the data is in the
3520                  * CPU cache or not, since we only allow one bit set
3521                  * in obj->write_domain and have been skipping the clflushes.
3522                  * Just set it to the CPU cache for now.
3523                  */
3524                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3525
3526                 old_read_domains = obj->base.read_domains;
3527                 old_write_domain = obj->base.write_domain;
3528
3529                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3530                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3531
3532                 trace_i915_gem_object_change_domain(obj,
3533                                                     old_read_domains,
3534                                                     old_write_domain);
3535         }
3536
3537         i915_gem_verify_gtt(dev);
3538         return 0;
3539 }
3540
3541 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3542                                struct drm_file *file)
3543 {
3544         struct drm_i915_gem_caching *args = data;
3545         struct drm_i915_gem_object *obj;
3546         int ret;
3547
3548         ret = i915_mutex_lock_interruptible(dev);
3549         if (ret)
3550                 return ret;
3551
3552         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3553         if (&obj->base == NULL) {
3554                 ret = -ENOENT;
3555                 goto unlock;
3556         }
3557
3558         switch (obj->cache_level) {
3559         case I915_CACHE_LLC:
3560         case I915_CACHE_L3_LLC:
3561                 args->caching = I915_CACHING_CACHED;
3562                 break;
3563
3564         case I915_CACHE_WT:
3565                 args->caching = I915_CACHING_DISPLAY;
3566                 break;
3567
3568         default:
3569                 args->caching = I915_CACHING_NONE;
3570                 break;
3571         }
3572
3573         drm_gem_object_unreference(&obj->base);
3574 unlock:
3575         mutex_unlock(&dev->struct_mutex);
3576         return ret;
3577 }
3578
3579 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3580                                struct drm_file *file)
3581 {
3582         struct drm_i915_gem_caching *args = data;
3583         struct drm_i915_gem_object *obj;
3584         enum i915_cache_level level;
3585         int ret;
3586
3587         switch (args->caching) {
3588         case I915_CACHING_NONE:
3589                 level = I915_CACHE_NONE;
3590                 break;
3591         case I915_CACHING_CACHED:
3592                 level = I915_CACHE_LLC;
3593                 break;
3594         case I915_CACHING_DISPLAY:
3595                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3596                 break;
3597         default:
3598                 return -EINVAL;
3599         }
3600
3601         ret = i915_mutex_lock_interruptible(dev);
3602         if (ret)
3603                 return ret;
3604
3605         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606         if (&obj->base == NULL) {
3607                 ret = -ENOENT;
3608                 goto unlock;
3609         }
3610
3611         ret = i915_gem_object_set_cache_level(obj, level);
3612
3613         drm_gem_object_unreference(&obj->base);
3614 unlock:
3615         mutex_unlock(&dev->struct_mutex);
3616         return ret;
3617 }
3618
3619 static bool is_pin_display(struct drm_i915_gem_object *obj)
3620 {
3621         /* There are 3 sources that pin objects:
3622          *   1. The display engine (scanouts, sprites, cursors);
3623          *   2. Reservations for execbuffer;
3624          *   3. The user.
3625          *
3626          * We can ignore reservations as we hold the struct_mutex and
3627          * are only called outside of the reservation path.  The user
3628          * can only increment pin_count once, and so if after
3629          * subtracting the potential reference by the user, any pin_count
3630          * remains, it must be due to another use by the display engine.
3631          */
3632         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3633 }
3634
3635 /*
3636  * Prepare buffer for display plane (scanout, cursors, etc).
3637  * Can be called from an uninterruptible phase (modesetting) and allows
3638  * any flushes to be pipelined (for pageflips).
3639  */
3640 int
3641 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3642                                      u32 alignment,
3643                                      struct intel_ring_buffer *pipelined)
3644 {
3645         u32 old_read_domains, old_write_domain;
3646         int ret;
3647
3648         if (pipelined != obj->ring) {
3649                 ret = i915_gem_object_sync(obj, pipelined);
3650                 if (ret)
3651                         return ret;
3652         }
3653
3654         /* Mark the pin_display early so that we account for the
3655          * display coherency whilst setting up the cache domains.
3656          */
3657         obj->pin_display = true;
3658
3659         /* The display engine is not coherent with the LLC cache on gen6.  As
3660          * a result, we make sure that the pinning that is about to occur is
3661          * done with uncached PTEs. This is lowest common denominator for all
3662          * chipsets.
3663          *
3664          * However for gen6+, we could do better by using the GFDT bit instead
3665          * of uncaching, which would allow us to flush all the LLC-cached data
3666          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3667          */
3668         ret = i915_gem_object_set_cache_level(obj,
3669                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3670         if (ret)
3671                 goto err_unpin_display;
3672
3673         /* As the user may map the buffer once pinned in the display plane
3674          * (e.g. libkms for the bootup splash), we have to ensure that we
3675          * always use map_and_fenceable for all scanout buffers.
3676          */
3677         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3678         if (ret)
3679                 goto err_unpin_display;
3680
3681         i915_gem_object_flush_cpu_write_domain(obj, true);
3682
3683         old_write_domain = obj->base.write_domain;
3684         old_read_domains = obj->base.read_domains;
3685
3686         /* It should now be out of any other write domains, and we can update
3687          * the domain values for our changes.
3688          */
3689         obj->base.write_domain = 0;
3690         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3691
3692         trace_i915_gem_object_change_domain(obj,
3693                                             old_read_domains,
3694                                             old_write_domain);
3695
3696         return 0;
3697
3698 err_unpin_display:
3699         obj->pin_display = is_pin_display(obj);
3700         return ret;
3701 }
3702
3703 void
3704 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3705 {
3706         i915_gem_object_ggtt_unpin(obj);
3707         obj->pin_display = is_pin_display(obj);
3708 }
3709
3710 int
3711 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3712 {
3713         int ret;
3714
3715         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3716                 return 0;
3717
3718         ret = i915_gem_object_wait_rendering(obj, false);
3719         if (ret)
3720                 return ret;
3721
3722         /* Ensure that we invalidate the GPU's caches and TLBs. */
3723         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3724         return 0;
3725 }
3726
3727 /**
3728  * Moves a single object to the CPU read, and possibly write domain.
3729  *
3730  * This function returns when the move is complete, including waiting on
3731  * flushes to occur.
3732  */
3733 int
3734 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3735 {
3736         uint32_t old_write_domain, old_read_domains;
3737         int ret;
3738
3739         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3740                 return 0;
3741
3742         ret = i915_gem_object_wait_rendering(obj, !write);
3743         if (ret)
3744                 return ret;
3745
3746         i915_gem_object_flush_gtt_write_domain(obj);
3747
3748         old_write_domain = obj->base.write_domain;
3749         old_read_domains = obj->base.read_domains;
3750
3751         /* Flush the CPU cache if it's still invalid. */
3752         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3753                 i915_gem_clflush_object(obj, false);
3754
3755                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3756         }
3757
3758         /* It should now be out of any other write domains, and we can update
3759          * the domain values for our changes.
3760          */
3761         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3762
3763         /* If we're writing through the CPU, then the GPU read domains will
3764          * need to be invalidated at next use.
3765          */
3766         if (write) {
3767                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3768                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3769         }
3770
3771         trace_i915_gem_object_change_domain(obj,
3772                                             old_read_domains,
3773                                             old_write_domain);
3774
3775         return 0;
3776 }
3777
3778 /* Throttle our rendering by waiting until the ring has completed our requests
3779  * emitted over 20 msec ago.
3780  *
3781  * Note that if we were to use the current jiffies each time around the loop,
3782  * we wouldn't escape the function with any frames outstanding if the time to
3783  * render a frame was over 20ms.
3784  *
3785  * This should get us reasonable parallelism between CPU and GPU but also
3786  * relatively low latency when blocking on a particular request to finish.
3787  */
3788 static int
3789 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3790 {
3791         struct drm_i915_private *dev_priv = dev->dev_private;
3792         struct drm_i915_file_private *file_priv = file->driver_priv;
3793         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3794         struct drm_i915_gem_request *request;
3795         struct intel_ring_buffer *ring = NULL;
3796         unsigned reset_counter;
3797         u32 seqno = 0;
3798         int ret;
3799
3800         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3801         if (ret)
3802                 return ret;
3803
3804         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3805         if (ret)
3806                 return ret;
3807
3808         spin_lock(&file_priv->mm.lock);
3809         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3810                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3811                         break;
3812
3813                 ring = request->ring;
3814                 seqno = request->seqno;
3815         }
3816         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3817         spin_unlock(&file_priv->mm.lock);
3818
3819         if (seqno == 0)
3820                 return 0;
3821
3822         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3823         if (ret == 0)
3824                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3825
3826         return ret;
3827 }
3828
3829 int
3830 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3831                     struct i915_address_space *vm,
3832                     uint32_t alignment,
3833                     bool map_and_fenceable,
3834                     bool nonblocking)
3835 {
3836         const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3837         struct i915_vma *vma;
3838         int ret;
3839
3840         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3841
3842         vma = i915_gem_obj_to_vma(obj, vm);
3843
3844         if (vma) {
3845                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846                         return -EBUSY;
3847
3848                 if ((alignment &&
3849                      vma->node.start & (alignment - 1)) ||
3850                     (map_and_fenceable && !obj->map_and_fenceable)) {
3851                         WARN(vma->pin_count,
3852                              "bo is already pinned with incorrect alignment:"
3853                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3854                              " obj->map_and_fenceable=%d\n",
3855                              i915_gem_obj_offset(obj, vm), alignment,
3856                              map_and_fenceable,
3857                              obj->map_and_fenceable);
3858                         ret = i915_vma_unbind(vma);
3859                         if (ret)
3860                                 return ret;
3861                 }
3862         }
3863
3864         if (!i915_gem_obj_bound(obj, vm)) {
3865                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3866                                                  map_and_fenceable,
3867                                                  nonblocking);
3868                 if (ret)
3869                         return ret;
3870
3871         }
3872
3873         vma = i915_gem_obj_to_vma(obj, vm);
3874
3875         vma->bind_vma(vma, obj->cache_level, flags);
3876
3877         i915_gem_obj_to_vma(obj, vm)->pin_count++;
3878         obj->pin_mappable |= map_and_fenceable;
3879
3880         return 0;
3881 }
3882
3883 void
3884 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3885 {
3886         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3887
3888         BUG_ON(!vma);
3889         BUG_ON(vma->pin_count == 0);
3890         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892         if (--vma->pin_count == 0)
3893                 obj->pin_mappable = false;
3894 }
3895
3896 int
3897 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3898                    struct drm_file *file)
3899 {
3900         struct drm_i915_gem_pin *args = data;
3901         struct drm_i915_gem_object *obj;
3902         int ret;
3903
3904         if (INTEL_INFO(dev)->gen >= 6)
3905                 return -ENODEV;
3906
3907         ret = i915_mutex_lock_interruptible(dev);
3908         if (ret)
3909                 return ret;
3910
3911         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912         if (&obj->base == NULL) {
3913                 ret = -ENOENT;
3914                 goto unlock;
3915         }
3916
3917         if (obj->madv != I915_MADV_WILLNEED) {
3918                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3919                 ret = -EINVAL;
3920                 goto out;
3921         }
3922
3923         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3924                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925                           args->handle);
3926                 ret = -EINVAL;
3927                 goto out;
3928         }
3929
3930         if (obj->user_pin_count == ULONG_MAX) {
3931                 ret = -EBUSY;
3932                 goto out;
3933         }
3934
3935         if (obj->user_pin_count == 0) {
3936                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3937                 if (ret)
3938                         goto out;
3939         }
3940
3941         obj->user_pin_count++;
3942         obj->pin_filp = file;
3943
3944         args->offset = i915_gem_obj_ggtt_offset(obj);
3945 out:
3946         drm_gem_object_unreference(&obj->base);
3947 unlock:
3948         mutex_unlock(&dev->struct_mutex);
3949         return ret;
3950 }
3951
3952 int
3953 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3954                      struct drm_file *file)
3955 {
3956         struct drm_i915_gem_pin *args = data;
3957         struct drm_i915_gem_object *obj;
3958         int ret;
3959
3960         ret = i915_mutex_lock_interruptible(dev);
3961         if (ret)
3962                 return ret;
3963
3964         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3965         if (&obj->base == NULL) {
3966                 ret = -ENOENT;
3967                 goto unlock;
3968         }
3969
3970         if (obj->pin_filp != file) {
3971                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3972                           args->handle);
3973                 ret = -EINVAL;
3974                 goto out;
3975         }
3976         obj->user_pin_count--;
3977         if (obj->user_pin_count == 0) {
3978                 obj->pin_filp = NULL;
3979                 i915_gem_object_ggtt_unpin(obj);
3980         }
3981
3982 out:
3983         drm_gem_object_unreference(&obj->base);
3984 unlock:
3985         mutex_unlock(&dev->struct_mutex);
3986         return ret;
3987 }
3988
3989 int
3990 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3991                     struct drm_file *file)
3992 {
3993         struct drm_i915_gem_busy *args = data;
3994         struct drm_i915_gem_object *obj;
3995         int ret;
3996
3997         ret = i915_mutex_lock_interruptible(dev);
3998         if (ret)
3999                 return ret;
4000
4001         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002         if (&obj->base == NULL) {
4003                 ret = -ENOENT;
4004                 goto unlock;
4005         }
4006
4007         /* Count all active objects as busy, even if they are currently not used
4008          * by the gpu. Users of this interface expect objects to eventually
4009          * become non-busy without any further actions, therefore emit any
4010          * necessary flushes here.
4011          */
4012         ret = i915_gem_object_flush_active(obj);
4013
4014         args->busy = obj->active;
4015         if (obj->ring) {
4016                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017                 args->busy |= intel_ring_flag(obj->ring) << 16;
4018         }
4019
4020         drm_gem_object_unreference(&obj->base);
4021 unlock:
4022         mutex_unlock(&dev->struct_mutex);
4023         return ret;
4024 }
4025
4026 int
4027 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028                         struct drm_file *file_priv)
4029 {
4030         return i915_gem_ring_throttle(dev, file_priv);
4031 }
4032
4033 int
4034 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035                        struct drm_file *file_priv)
4036 {
4037         struct drm_i915_gem_madvise *args = data;
4038         struct drm_i915_gem_object *obj;
4039         int ret;
4040
4041         switch (args->madv) {
4042         case I915_MADV_DONTNEED:
4043         case I915_MADV_WILLNEED:
4044             break;
4045         default:
4046             return -EINVAL;
4047         }
4048
4049         ret = i915_mutex_lock_interruptible(dev);
4050         if (ret)
4051                 return ret;
4052
4053         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4054         if (&obj->base == NULL) {
4055                 ret = -ENOENT;
4056                 goto unlock;
4057         }
4058
4059         if (i915_gem_obj_is_pinned(obj)) {
4060                 ret = -EINVAL;
4061                 goto out;
4062         }
4063
4064         if (obj->madv != __I915_MADV_PURGED)
4065                 obj->madv = args->madv;
4066
4067         /* if the object is no longer attached, discard its backing storage */
4068         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4069                 i915_gem_object_truncate(obj);
4070
4071         args->retained = obj->madv != __I915_MADV_PURGED;
4072
4073 out:
4074         drm_gem_object_unreference(&obj->base);
4075 unlock:
4076         mutex_unlock(&dev->struct_mutex);
4077         return ret;
4078 }
4079
4080 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081                           const struct drm_i915_gem_object_ops *ops)
4082 {
4083         INIT_LIST_HEAD(&obj->global_list);
4084         INIT_LIST_HEAD(&obj->ring_list);
4085         INIT_LIST_HEAD(&obj->obj_exec_link);
4086         INIT_LIST_HEAD(&obj->vma_list);
4087
4088         obj->ops = ops;
4089
4090         obj->fence_reg = I915_FENCE_REG_NONE;
4091         obj->madv = I915_MADV_WILLNEED;
4092         /* Avoid an unnecessary call to unbind on the first bind. */
4093         obj->map_and_fenceable = true;
4094
4095         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096 }
4097
4098 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099         .get_pages = i915_gem_object_get_pages_gtt,
4100         .put_pages = i915_gem_object_put_pages_gtt,
4101 };
4102
4103 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104                                                   size_t size)
4105 {
4106         struct drm_i915_gem_object *obj;
4107         struct address_space *mapping;
4108         gfp_t mask;
4109
4110         obj = i915_gem_object_alloc(dev);
4111         if (obj == NULL)
4112                 return NULL;
4113
4114         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4115                 i915_gem_object_free(obj);
4116                 return NULL;
4117         }
4118
4119         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121                 /* 965gm cannot relocate objects above 4GiB. */
4122                 mask &= ~__GFP_HIGHMEM;
4123                 mask |= __GFP_DMA32;
4124         }
4125
4126         mapping = file_inode(obj->base.filp)->i_mapping;
4127         mapping_set_gfp_mask(mapping, mask);
4128
4129         i915_gem_object_init(obj, &i915_gem_object_ops);
4130
4131         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133
4134         if (HAS_LLC(dev)) {
4135                 /* On some devices, we can have the GPU use the LLC (the CPU
4136                  * cache) for about a 10% performance improvement
4137                  * compared to uncached.  Graphics requests other than
4138                  * display scanout are coherent with the CPU in
4139                  * accessing this cache.  This means in this mode we
4140                  * don't need to clflush on the CPU side, and on the
4141                  * GPU side we only need to flush internal caches to
4142                  * get data visible to the CPU.
4143                  *
4144                  * However, we maintain the display planes as UC, and so
4145                  * need to rebind when first used as such.
4146                  */
4147                 obj->cache_level = I915_CACHE_LLC;
4148         } else
4149                 obj->cache_level = I915_CACHE_NONE;
4150
4151         trace_i915_gem_object_create(obj);
4152
4153         return obj;
4154 }
4155
4156 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4157 {
4158         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4159         struct drm_device *dev = obj->base.dev;
4160         drm_i915_private_t *dev_priv = dev->dev_private;
4161         struct i915_vma *vma, *next;
4162
4163         intel_runtime_pm_get(dev_priv);
4164
4165         trace_i915_gem_object_destroy(obj);
4166
4167         if (obj->phys_obj)
4168                 i915_gem_detach_phys_object(dev, obj);
4169
4170         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4171                 int ret;
4172
4173                 vma->pin_count = 0;
4174                 ret = i915_vma_unbind(vma);
4175                 if (WARN_ON(ret == -ERESTARTSYS)) {
4176                         bool was_interruptible;
4177
4178                         was_interruptible = dev_priv->mm.interruptible;
4179                         dev_priv->mm.interruptible = false;
4180
4181                         WARN_ON(i915_vma_unbind(vma));
4182
4183                         dev_priv->mm.interruptible = was_interruptible;
4184                 }
4185         }
4186
4187         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188          * before progressing. */
4189         if (obj->stolen)
4190                 i915_gem_object_unpin_pages(obj);
4191
4192         if (WARN_ON(obj->pages_pin_count))
4193                 obj->pages_pin_count = 0;
4194         i915_gem_object_put_pages(obj);
4195         i915_gem_object_free_mmap_offset(obj);
4196         i915_gem_object_release_stolen(obj);
4197
4198         BUG_ON(obj->pages);
4199
4200         if (obj->base.import_attach)
4201                 drm_prime_gem_destroy(&obj->base, NULL);
4202
4203         drm_gem_object_release(&obj->base);
4204         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4205
4206         kfree(obj->bit_17);
4207         i915_gem_object_free(obj);
4208
4209         intel_runtime_pm_put(dev_priv);
4210 }
4211
4212 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4213                                      struct i915_address_space *vm)
4214 {
4215         struct i915_vma *vma;
4216         list_for_each_entry(vma, &obj->vma_list, vma_link)
4217                 if (vma->vm == vm)
4218                         return vma;
4219
4220         return NULL;
4221 }
4222
4223 void i915_gem_vma_destroy(struct i915_vma *vma)
4224 {
4225         WARN_ON(vma->node.allocated);
4226
4227         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228         if (!list_empty(&vma->exec_list))
4229                 return;
4230
4231         list_del(&vma->vma_link);
4232
4233         kfree(vma);
4234 }
4235
4236 int
4237 i915_gem_suspend(struct drm_device *dev)
4238 {
4239         drm_i915_private_t *dev_priv = dev->dev_private;
4240         int ret = 0;
4241
4242         mutex_lock(&dev->struct_mutex);
4243         if (dev_priv->ums.mm_suspended)
4244                 goto err;
4245
4246         ret = i915_gpu_idle(dev);
4247         if (ret)
4248                 goto err;
4249
4250         i915_gem_retire_requests(dev);
4251
4252         /* Under UMS, be paranoid and evict. */
4253         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4254                 i915_gem_evict_everything(dev);
4255
4256         i915_kernel_lost_context(dev);
4257         i915_gem_cleanup_ringbuffer(dev);
4258
4259         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4260          * We need to replace this with a semaphore, or something.
4261          * And not confound ums.mm_suspended!
4262          */
4263         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264                                                              DRIVER_MODESET);
4265         mutex_unlock(&dev->struct_mutex);
4266
4267         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4268         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4269         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4270
4271         return 0;
4272
4273 err:
4274         mutex_unlock(&dev->struct_mutex);
4275         return ret;
4276 }
4277
4278 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4279 {
4280         struct drm_device *dev = ring->dev;
4281         drm_i915_private_t *dev_priv = dev->dev_private;
4282         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4284         int i, ret;
4285
4286         if (!HAS_L3_DPF(dev) || !remap_info)
4287                 return 0;
4288
4289         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290         if (ret)
4291                 return ret;
4292
4293         /*
4294          * Note: We do not worry about the concurrent register cacheline hang
4295          * here because no other code should access these registers other than
4296          * at initialization time.
4297          */
4298         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4299                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300                 intel_ring_emit(ring, reg_base + i);
4301                 intel_ring_emit(ring, remap_info[i/4]);
4302         }
4303
4304         intel_ring_advance(ring);
4305
4306         return ret;
4307 }
4308
4309 void i915_gem_init_swizzling(struct drm_device *dev)
4310 {
4311         drm_i915_private_t *dev_priv = dev->dev_private;
4312
4313         if (INTEL_INFO(dev)->gen < 5 ||
4314             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315                 return;
4316
4317         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318                                  DISP_TILE_SURFACE_SWIZZLING);
4319
4320         if (IS_GEN5(dev))
4321                 return;
4322
4323         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324         if (IS_GEN6(dev))
4325                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4326         else if (IS_GEN7(dev))
4327                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4328         else if (IS_GEN8(dev))
4329                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4330         else
4331                 BUG();
4332 }
4333
4334 static bool
4335 intel_enable_blt(struct drm_device *dev)
4336 {
4337         if (!HAS_BLT(dev))
4338                 return false;
4339
4340         /* The blitter was dysfunctional on early prototypes */
4341         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342                 DRM_INFO("BLT not supported on this pre-production hardware;"
4343                          " graphics performance will be degraded.\n");
4344                 return false;
4345         }
4346
4347         return true;
4348 }
4349
4350 static int i915_gem_init_rings(struct drm_device *dev)
4351 {
4352         struct drm_i915_private *dev_priv = dev->dev_private;
4353         int ret;
4354
4355         ret = intel_init_render_ring_buffer(dev);
4356         if (ret)
4357                 return ret;
4358
4359         if (HAS_BSD(dev)) {
4360                 ret = intel_init_bsd_ring_buffer(dev);
4361                 if (ret)
4362                         goto cleanup_render_ring;
4363         }
4364
4365         if (intel_enable_blt(dev)) {
4366                 ret = intel_init_blt_ring_buffer(dev);
4367                 if (ret)
4368                         goto cleanup_bsd_ring;
4369         }
4370
4371         if (HAS_VEBOX(dev)) {
4372                 ret = intel_init_vebox_ring_buffer(dev);
4373                 if (ret)
4374                         goto cleanup_blt_ring;
4375         }
4376
4377
4378         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4379         if (ret)
4380                 goto cleanup_vebox_ring;
4381
4382         return 0;
4383
4384 cleanup_vebox_ring:
4385         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4386 cleanup_blt_ring:
4387         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388 cleanup_bsd_ring:
4389         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390 cleanup_render_ring:
4391         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393         return ret;
4394 }
4395
4396 int
4397 i915_gem_init_hw(struct drm_device *dev)
4398 {
4399         drm_i915_private_t *dev_priv = dev->dev_private;
4400         int ret, i;
4401
4402         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403                 return -EIO;
4404
4405         if (dev_priv->ellc_size)
4406                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4407
4408         if (IS_HASWELL(dev))
4409                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4411
4412         if (HAS_PCH_NOP(dev)) {
4413                 if (IS_IVYBRIDGE(dev)) {
4414                         u32 temp = I915_READ(GEN7_MSG_CTL);
4415                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416                         I915_WRITE(GEN7_MSG_CTL, temp);
4417                 } else if (INTEL_INFO(dev)->gen >= 7) {
4418                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421                 }
4422         }
4423
4424         i915_gem_init_swizzling(dev);
4425
4426         ret = i915_gem_init_rings(dev);
4427         if (ret)
4428                 return ret;
4429
4430         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
4433         /*
4434          * XXX: Contexts should only be initialized once. Doing a switch to the
4435          * default context switch however is something we'd like to do after
4436          * reset or thaw (the latter may not actually be necessary for HW, but
4437          * goes with our code better). Context switching requires rings (for
4438          * the do_switch), but before enabling PPGTT. So don't move this.
4439          */
4440         ret = i915_gem_context_enable(dev_priv);
4441         if (ret) {
4442                 DRM_ERROR("Context enable failed %d\n", ret);
4443                 goto err_out;
4444         }
4445
4446         return 0;
4447
4448 err_out:
4449         i915_gem_cleanup_ringbuffer(dev);
4450         return ret;
4451 }
4452
4453 int i915_gem_init(struct drm_device *dev)
4454 {
4455         struct drm_i915_private *dev_priv = dev->dev_private;
4456         int ret;
4457
4458         mutex_lock(&dev->struct_mutex);
4459
4460         if (IS_VALLEYVIEW(dev)) {
4461                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465         }
4466
4467         i915_gem_init_global_gtt(dev);
4468
4469         ret = i915_gem_context_init(dev);
4470         if (ret)
4471                 return ret;
4472
4473         ret = i915_gem_init_hw(dev);
4474         mutex_unlock(&dev->struct_mutex);
4475         if (ret) {
4476                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4477                 i915_gem_context_fini(dev);
4478                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4479                 return ret;
4480         }
4481
4482         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4483         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4484                 dev_priv->dri1.allow_batchbuffer = 1;
4485         return 0;
4486 }
4487
4488 void
4489 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4490 {
4491         drm_i915_private_t *dev_priv = dev->dev_private;
4492         struct intel_ring_buffer *ring;
4493         int i;
4494
4495         for_each_ring(ring, dev_priv, i)
4496                 intel_cleanup_ring_buffer(ring);
4497 }
4498
4499 int
4500 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4501                        struct drm_file *file_priv)
4502 {
4503         struct drm_i915_private *dev_priv = dev->dev_private;
4504         int ret;
4505
4506         if (drm_core_check_feature(dev, DRIVER_MODESET))
4507                 return 0;
4508
4509         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4510                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4511                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4512         }
4513
4514         mutex_lock(&dev->struct_mutex);
4515         dev_priv->ums.mm_suspended = 0;
4516
4517         ret = i915_gem_init_hw(dev);
4518         if (ret != 0) {
4519                 mutex_unlock(&dev->struct_mutex);
4520                 return ret;
4521         }
4522
4523         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4524         mutex_unlock(&dev->struct_mutex);
4525
4526         ret = drm_irq_install(dev);
4527         if (ret)
4528                 goto cleanup_ringbuffer;
4529
4530         return 0;
4531
4532 cleanup_ringbuffer:
4533         mutex_lock(&dev->struct_mutex);
4534         i915_gem_cleanup_ringbuffer(dev);
4535         dev_priv->ums.mm_suspended = 1;
4536         mutex_unlock(&dev->struct_mutex);
4537
4538         return ret;
4539 }
4540
4541 int
4542 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4543                        struct drm_file *file_priv)
4544 {
4545         if (drm_core_check_feature(dev, DRIVER_MODESET))
4546                 return 0;
4547
4548         drm_irq_uninstall(dev);
4549
4550         return i915_gem_suspend(dev);
4551 }
4552
4553 void
4554 i915_gem_lastclose(struct drm_device *dev)
4555 {
4556         int ret;
4557
4558         if (drm_core_check_feature(dev, DRIVER_MODESET))
4559                 return;
4560
4561         ret = i915_gem_suspend(dev);
4562         if (ret)
4563                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4564 }
4565
4566 static void
4567 init_ring_lists(struct intel_ring_buffer *ring)
4568 {
4569         INIT_LIST_HEAD(&ring->active_list);
4570         INIT_LIST_HEAD(&ring->request_list);
4571 }
4572
4573 void i915_init_vm(struct drm_i915_private *dev_priv,
4574                   struct i915_address_space *vm)
4575 {
4576         if (!i915_is_ggtt(vm))
4577                 drm_mm_init(&vm->mm, vm->start, vm->total);
4578         vm->dev = dev_priv->dev;
4579         INIT_LIST_HEAD(&vm->active_list);
4580         INIT_LIST_HEAD(&vm->inactive_list);
4581         INIT_LIST_HEAD(&vm->global_link);
4582         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4583 }
4584
4585 void
4586 i915_gem_load(struct drm_device *dev)
4587 {
4588         drm_i915_private_t *dev_priv = dev->dev_private;
4589         int i;
4590
4591         dev_priv->slab =
4592                 kmem_cache_create("i915_gem_object",
4593                                   sizeof(struct drm_i915_gem_object), 0,
4594                                   SLAB_HWCACHE_ALIGN,
4595                                   NULL);
4596
4597         INIT_LIST_HEAD(&dev_priv->vm_list);
4598         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4599
4600         INIT_LIST_HEAD(&dev_priv->context_list);
4601         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4602         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4603         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4604         for (i = 0; i < I915_NUM_RINGS; i++)
4605                 init_ring_lists(&dev_priv->ring[i]);
4606         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4607                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4608         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4609                           i915_gem_retire_work_handler);
4610         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4611                           i915_gem_idle_work_handler);
4612         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4613
4614         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4615         if (IS_GEN3(dev)) {
4616                 I915_WRITE(MI_ARB_STATE,
4617                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4618         }
4619
4620         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4621
4622         /* Old X drivers will take 0-2 for front, back, depth buffers */
4623         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624                 dev_priv->fence_reg_start = 3;
4625
4626         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4627                 dev_priv->num_fence_regs = 32;
4628         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4629                 dev_priv->num_fence_regs = 16;
4630         else
4631                 dev_priv->num_fence_regs = 8;
4632
4633         /* Initialize fence registers to zero */
4634         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635         i915_gem_restore_fences(dev);
4636
4637         i915_gem_detect_bit_6_swizzle(dev);
4638         init_waitqueue_head(&dev_priv->pending_flip_queue);
4639
4640         dev_priv->mm.interruptible = true;
4641
4642         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4643         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4644         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4645         register_shrinker(&dev_priv->mm.inactive_shrinker);
4646 }
4647
4648 /*
4649  * Create a physically contiguous memory object for this object
4650  * e.g. for cursor + overlay regs
4651  */
4652 static int i915_gem_init_phys_object(struct drm_device *dev,
4653                                      int id, int size, int align)
4654 {
4655         drm_i915_private_t *dev_priv = dev->dev_private;
4656         struct drm_i915_gem_phys_object *phys_obj;
4657         int ret;
4658
4659         if (dev_priv->mm.phys_objs[id - 1] || !size)
4660                 return 0;
4661
4662         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4663         if (!phys_obj)
4664                 return -ENOMEM;
4665
4666         phys_obj->id = id;
4667
4668         phys_obj->handle = drm_pci_alloc(dev, size, align);
4669         if (!phys_obj->handle) {
4670                 ret = -ENOMEM;
4671                 goto kfree_obj;
4672         }
4673 #ifdef CONFIG_X86
4674         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675 #endif
4676
4677         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4678
4679         return 0;
4680 kfree_obj:
4681         kfree(phys_obj);
4682         return ret;
4683 }
4684
4685 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4686 {
4687         drm_i915_private_t *dev_priv = dev->dev_private;
4688         struct drm_i915_gem_phys_object *phys_obj;
4689
4690         if (!dev_priv->mm.phys_objs[id - 1])
4691                 return;
4692
4693         phys_obj = dev_priv->mm.phys_objs[id - 1];
4694         if (phys_obj->cur_obj) {
4695                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4696         }
4697
4698 #ifdef CONFIG_X86
4699         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4700 #endif
4701         drm_pci_free(dev, phys_obj->handle);
4702         kfree(phys_obj);
4703         dev_priv->mm.phys_objs[id - 1] = NULL;
4704 }
4705
4706 void i915_gem_free_all_phys_object(struct drm_device *dev)
4707 {
4708         int i;
4709
4710         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4711                 i915_gem_free_phys_object(dev, i);
4712 }
4713
4714 void i915_gem_detach_phys_object(struct drm_device *dev,
4715                                  struct drm_i915_gem_object *obj)
4716 {
4717         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4718         char *vaddr;
4719         int i;
4720         int page_count;
4721
4722         if (!obj->phys_obj)
4723                 return;
4724         vaddr = obj->phys_obj->handle->vaddr;
4725
4726         page_count = obj->base.size / PAGE_SIZE;
4727         for (i = 0; i < page_count; i++) {
4728                 struct page *page = shmem_read_mapping_page(mapping, i);
4729                 if (!IS_ERR(page)) {
4730                         char *dst = kmap_atomic(page);
4731                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4732                         kunmap_atomic(dst);
4733
4734                         drm_clflush_pages(&page, 1);
4735
4736                         set_page_dirty(page);
4737                         mark_page_accessed(page);
4738                         page_cache_release(page);
4739                 }
4740         }
4741         i915_gem_chipset_flush(dev);
4742
4743         obj->phys_obj->cur_obj = NULL;
4744         obj->phys_obj = NULL;
4745 }
4746
4747 int
4748 i915_gem_attach_phys_object(struct drm_device *dev,
4749                             struct drm_i915_gem_object *obj,
4750                             int id,
4751                             int align)
4752 {
4753         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4754         drm_i915_private_t *dev_priv = dev->dev_private;
4755         int ret = 0;
4756         int page_count;
4757         int i;
4758
4759         if (id > I915_MAX_PHYS_OBJECT)
4760                 return -EINVAL;
4761
4762         if (obj->phys_obj) {
4763                 if (obj->phys_obj->id == id)
4764                         return 0;
4765                 i915_gem_detach_phys_object(dev, obj);
4766         }
4767
4768         /* create a new object */
4769         if (!dev_priv->mm.phys_objs[id - 1]) {
4770                 ret = i915_gem_init_phys_object(dev, id,
4771                                                 obj->base.size, align);
4772                 if (ret) {
4773                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4774                                   id, obj->base.size);
4775                         return ret;
4776                 }
4777         }
4778
4779         /* bind to the object */
4780         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781         obj->phys_obj->cur_obj = obj;
4782
4783         page_count = obj->base.size / PAGE_SIZE;
4784
4785         for (i = 0; i < page_count; i++) {
4786                 struct page *page;
4787                 char *dst, *src;
4788
4789                 page = shmem_read_mapping_page(mapping, i);
4790                 if (IS_ERR(page))
4791                         return PTR_ERR(page);
4792
4793                 src = kmap_atomic(page);
4794                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4795                 memcpy(dst, src, PAGE_SIZE);
4796                 kunmap_atomic(src);
4797
4798                 mark_page_accessed(page);
4799                 page_cache_release(page);
4800         }
4801
4802         return 0;
4803 }
4804
4805 static int
4806 i915_gem_phys_pwrite(struct drm_device *dev,
4807                      struct drm_i915_gem_object *obj,
4808                      struct drm_i915_gem_pwrite *args,
4809                      struct drm_file *file_priv)
4810 {
4811         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4812         char __user *user_data = to_user_ptr(args->data_ptr);
4813
4814         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4815                 unsigned long unwritten;
4816
4817                 /* The physical object once assigned is fixed for the lifetime
4818                  * of the obj, so we can safely drop the lock and continue
4819                  * to access vaddr.
4820                  */
4821                 mutex_unlock(&dev->struct_mutex);
4822                 unwritten = copy_from_user(vaddr, user_data, args->size);
4823                 mutex_lock(&dev->struct_mutex);
4824                 if (unwritten)
4825                         return -EFAULT;
4826         }
4827
4828         i915_gem_chipset_flush(dev);
4829         return 0;
4830 }
4831
4832 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4833 {
4834         struct drm_i915_file_private *file_priv = file->driver_priv;
4835
4836         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4837
4838         /* Clean up our request list when the client is going away, so that
4839          * later retire_requests won't dereference our soon-to-be-gone
4840          * file_priv.
4841          */
4842         spin_lock(&file_priv->mm.lock);
4843         while (!list_empty(&file_priv->mm.request_list)) {
4844                 struct drm_i915_gem_request *request;
4845
4846                 request = list_first_entry(&file_priv->mm.request_list,
4847                                            struct drm_i915_gem_request,
4848                                            client_list);
4849                 list_del(&request->client_list);
4850                 request->file_priv = NULL;
4851         }
4852         spin_unlock(&file_priv->mm.lock);
4853 }
4854
4855 static void
4856 i915_gem_file_idle_work_handler(struct work_struct *work)
4857 {
4858         struct drm_i915_file_private *file_priv =
4859                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4860
4861         atomic_set(&file_priv->rps_wait_boost, false);
4862 }
4863
4864 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4865 {
4866         struct drm_i915_file_private *file_priv;
4867         int ret;
4868
4869         DRM_DEBUG_DRIVER("\n");
4870
4871         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4872         if (!file_priv)
4873                 return -ENOMEM;
4874
4875         file->driver_priv = file_priv;
4876         file_priv->dev_priv = dev->dev_private;
4877
4878         spin_lock_init(&file_priv->mm.lock);
4879         INIT_LIST_HEAD(&file_priv->mm.request_list);
4880         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4881                           i915_gem_file_idle_work_handler);
4882
4883         ret = i915_gem_context_open(dev, file);
4884         if (ret)
4885                 kfree(file_priv);
4886
4887         return ret;
4888 }
4889
4890 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4891 {
4892         if (!mutex_is_locked(mutex))
4893                 return false;
4894
4895 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4896         return mutex->owner == task;
4897 #else
4898         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4899         return false;
4900 #endif
4901 }
4902
4903 static unsigned long
4904 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4905 {
4906         struct drm_i915_private *dev_priv =
4907                 container_of(shrinker,
4908                              struct drm_i915_private,
4909                              mm.inactive_shrinker);
4910         struct drm_device *dev = dev_priv->dev;
4911         struct drm_i915_gem_object *obj;
4912         bool unlock = true;
4913         unsigned long count;
4914
4915         if (!mutex_trylock(&dev->struct_mutex)) {
4916                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4917                         return 0;
4918
4919                 if (dev_priv->mm.shrinker_no_lock_stealing)
4920                         return 0;
4921
4922                 unlock = false;
4923         }
4924
4925         count = 0;
4926         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4927                 if (obj->pages_pin_count == 0)
4928                         count += obj->base.size >> PAGE_SHIFT;
4929
4930         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4931                 if (obj->active)
4932                         continue;
4933
4934                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4935                         count += obj->base.size >> PAGE_SHIFT;
4936         }
4937
4938         if (unlock)
4939                 mutex_unlock(&dev->struct_mutex);
4940
4941         return count;
4942 }
4943
4944 /* All the new VM stuff */
4945 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4946                                   struct i915_address_space *vm)
4947 {
4948         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4949         struct i915_vma *vma;
4950
4951         if (!dev_priv->mm.aliasing_ppgtt ||
4952             vm == &dev_priv->mm.aliasing_ppgtt->base)
4953                 vm = &dev_priv->gtt.base;
4954
4955         BUG_ON(list_empty(&o->vma_list));
4956         list_for_each_entry(vma, &o->vma_list, vma_link) {
4957                 if (vma->vm == vm)
4958                         return vma->node.start;
4959
4960         }
4961         return -1;
4962 }
4963
4964 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4965                         struct i915_address_space *vm)
4966 {
4967         struct i915_vma *vma;
4968
4969         list_for_each_entry(vma, &o->vma_list, vma_link)
4970                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4971                         return true;
4972
4973         return false;
4974 }
4975
4976 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4977 {
4978         struct i915_vma *vma;
4979
4980         list_for_each_entry(vma, &o->vma_list, vma_link)
4981                 if (drm_mm_node_allocated(&vma->node))
4982                         return true;
4983
4984         return false;
4985 }
4986
4987 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4988                                 struct i915_address_space *vm)
4989 {
4990         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991         struct i915_vma *vma;
4992
4993         if (!dev_priv->mm.aliasing_ppgtt ||
4994             vm == &dev_priv->mm.aliasing_ppgtt->base)
4995                 vm = &dev_priv->gtt.base;
4996
4997         BUG_ON(list_empty(&o->vma_list));
4998
4999         list_for_each_entry(vma, &o->vma_list, vma_link)
5000                 if (vma->vm == vm)
5001                         return vma->node.size;
5002
5003         return 0;
5004 }
5005
5006 static unsigned long
5007 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5008 {
5009         struct drm_i915_private *dev_priv =
5010                 container_of(shrinker,
5011                              struct drm_i915_private,
5012                              mm.inactive_shrinker);
5013         struct drm_device *dev = dev_priv->dev;
5014         unsigned long freed;
5015         bool unlock = true;
5016
5017         if (!mutex_trylock(&dev->struct_mutex)) {
5018                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5019                         return SHRINK_STOP;
5020
5021                 if (dev_priv->mm.shrinker_no_lock_stealing)
5022                         return SHRINK_STOP;
5023
5024                 unlock = false;
5025         }
5026
5027         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5028         if (freed < sc->nr_to_scan)
5029                 freed += __i915_gem_shrink(dev_priv,
5030                                            sc->nr_to_scan - freed,
5031                                            false);
5032         if (freed < sc->nr_to_scan)
5033                 freed += i915_gem_shrink_all(dev_priv);
5034
5035         if (unlock)
5036                 mutex_unlock(&dev->struct_mutex);
5037
5038         return freed;
5039 }
5040
5041 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5042 {
5043         struct i915_vma *vma;
5044
5045         if (WARN_ON(list_empty(&obj->vma_list)))
5046                 return NULL;
5047
5048         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5049         if (vma->vm != obj_to_ggtt(obj))
5050                 return NULL;
5051
5052         return vma;
5053 }