drm/i915: Always use INTEL_INFO() to access the device_info structure
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (i915_gem_obj_is_pinned(obj))
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915.prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_ggtt_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915.prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         struct drm_device *dev = ring->dev;
1018         drm_i915_private_t *dev_priv = dev->dev_private;
1019         const bool irq_test_in_progress =
1020                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1021         struct timespec before, now;
1022         DEFINE_WAIT(wait);
1023         unsigned long timeout_expire;
1024         int ret;
1025
1026         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1027
1028         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1029                 return 0;
1030
1031         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1032
1033         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1034                 gen6_rps_boost(dev_priv);
1035                 if (file_priv)
1036                         mod_delayed_work(dev_priv->wq,
1037                                          &file_priv->mm.idle_work,
1038                                          msecs_to_jiffies(100));
1039         }
1040
1041         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1042                 return -ENODEV;
1043
1044         /* Record current time in case interrupted by signal, or wedged */
1045         trace_i915_gem_request_wait_begin(ring, seqno);
1046         getrawmonotonic(&before);
1047         for (;;) {
1048                 struct timer_list timer;
1049
1050                 prepare_to_wait(&ring->irq_queue, &wait,
1051                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1052
1053                 /* We need to check whether any gpu reset happened in between
1054                  * the caller grabbing the seqno and now ... */
1055                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1056                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1057                          * is truely gone. */
1058                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1059                         if (ret == 0)
1060                                 ret = -EAGAIN;
1061                         break;
1062                 }
1063
1064                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1065                         ret = 0;
1066                         break;
1067                 }
1068
1069                 if (interruptible && signal_pending(current)) {
1070                         ret = -ERESTARTSYS;
1071                         break;
1072                 }
1073
1074                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1075                         ret = -ETIME;
1076                         break;
1077                 }
1078
1079                 timer.function = NULL;
1080                 if (timeout || missed_irq(dev_priv, ring)) {
1081                         unsigned long expire;
1082
1083                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1084                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1085                         mod_timer(&timer, expire);
1086                 }
1087
1088                 io_schedule();
1089
1090                 if (timer.function) {
1091                         del_singleshot_timer_sync(&timer);
1092                         destroy_timer_on_stack(&timer);
1093                 }
1094         }
1095         getrawmonotonic(&now);
1096         trace_i915_gem_request_wait_end(ring, seqno);
1097
1098         if (!irq_test_in_progress)
1099                 ring->irq_put(ring);
1100
1101         finish_wait(&ring->irq_queue, &wait);
1102
1103         if (timeout) {
1104                 struct timespec sleep_time = timespec_sub(now, before);
1105                 *timeout = timespec_sub(*timeout, sleep_time);
1106                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1107                         set_normalized_timespec(timeout, 0, 0);
1108         }
1109
1110         return ret;
1111 }
1112
1113 /**
1114  * Waits for a sequence number to be signaled, and cleans up the
1115  * request and object lists appropriately for that event.
1116  */
1117 int
1118 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1119 {
1120         struct drm_device *dev = ring->dev;
1121         struct drm_i915_private *dev_priv = dev->dev_private;
1122         bool interruptible = dev_priv->mm.interruptible;
1123         int ret;
1124
1125         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1126         BUG_ON(seqno == 0);
1127
1128         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1129         if (ret)
1130                 return ret;
1131
1132         ret = i915_gem_check_olr(ring, seqno);
1133         if (ret)
1134                 return ret;
1135
1136         return __wait_seqno(ring, seqno,
1137                             atomic_read(&dev_priv->gpu_error.reset_counter),
1138                             interruptible, NULL, NULL);
1139 }
1140
1141 static int
1142 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1143                                      struct intel_ring_buffer *ring)
1144 {
1145         i915_gem_retire_requests_ring(ring);
1146
1147         /* Manually manage the write flush as we may have not yet
1148          * retired the buffer.
1149          *
1150          * Note that the last_write_seqno is always the earlier of
1151          * the two (read/write) seqno, so if we haved successfully waited,
1152          * we know we have passed the last write.
1153          */
1154         obj->last_write_seqno = 0;
1155         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1156
1157         return 0;
1158 }
1159
1160 /**
1161  * Ensures that all rendering to the object has completed and the object is
1162  * safe to unbind from the GTT or access from the CPU.
1163  */
1164 static __must_check int
1165 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1166                                bool readonly)
1167 {
1168         struct intel_ring_buffer *ring = obj->ring;
1169         u32 seqno;
1170         int ret;
1171
1172         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1173         if (seqno == 0)
1174                 return 0;
1175
1176         ret = i915_wait_seqno(ring, seqno);
1177         if (ret)
1178                 return ret;
1179
1180         return i915_gem_object_wait_rendering__tail(obj, ring);
1181 }
1182
1183 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1184  * as the object state may change during this call.
1185  */
1186 static __must_check int
1187 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1188                                             struct drm_file *file,
1189                                             bool readonly)
1190 {
1191         struct drm_device *dev = obj->base.dev;
1192         struct drm_i915_private *dev_priv = dev->dev_private;
1193         struct intel_ring_buffer *ring = obj->ring;
1194         unsigned reset_counter;
1195         u32 seqno;
1196         int ret;
1197
1198         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1199         BUG_ON(!dev_priv->mm.interruptible);
1200
1201         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1202         if (seqno == 0)
1203                 return 0;
1204
1205         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1206         if (ret)
1207                 return ret;
1208
1209         ret = i915_gem_check_olr(ring, seqno);
1210         if (ret)
1211                 return ret;
1212
1213         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1214         mutex_unlock(&dev->struct_mutex);
1215         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1216         mutex_lock(&dev->struct_mutex);
1217         if (ret)
1218                 return ret;
1219
1220         return i915_gem_object_wait_rendering__tail(obj, ring);
1221 }
1222
1223 /**
1224  * Called when user space prepares to use an object with the CPU, either
1225  * through the mmap ioctl's mapping or a GTT mapping.
1226  */
1227 int
1228 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1229                           struct drm_file *file)
1230 {
1231         struct drm_i915_gem_set_domain *args = data;
1232         struct drm_i915_gem_object *obj;
1233         uint32_t read_domains = args->read_domains;
1234         uint32_t write_domain = args->write_domain;
1235         int ret;
1236
1237         /* Only handle setting domains to types used by the CPU. */
1238         if (write_domain & I915_GEM_GPU_DOMAINS)
1239                 return -EINVAL;
1240
1241         if (read_domains & I915_GEM_GPU_DOMAINS)
1242                 return -EINVAL;
1243
1244         /* Having something in the write domain implies it's in the read
1245          * domain, and only that read domain.  Enforce that in the request.
1246          */
1247         if (write_domain != 0 && read_domains != write_domain)
1248                 return -EINVAL;
1249
1250         ret = i915_mutex_lock_interruptible(dev);
1251         if (ret)
1252                 return ret;
1253
1254         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1255         if (&obj->base == NULL) {
1256                 ret = -ENOENT;
1257                 goto unlock;
1258         }
1259
1260         /* Try to flush the object off the GPU without holding the lock.
1261          * We will repeat the flush holding the lock in the normal manner
1262          * to catch cases where we are gazumped.
1263          */
1264         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1265         if (ret)
1266                 goto unref;
1267
1268         if (read_domains & I915_GEM_DOMAIN_GTT) {
1269                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1270
1271                 /* Silently promote "you're not bound, there was nothing to do"
1272                  * to success, since the client was just asking us to
1273                  * make sure everything was done.
1274                  */
1275                 if (ret == -EINVAL)
1276                         ret = 0;
1277         } else {
1278                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1279         }
1280
1281 unref:
1282         drm_gem_object_unreference(&obj->base);
1283 unlock:
1284         mutex_unlock(&dev->struct_mutex);
1285         return ret;
1286 }
1287
1288 /**
1289  * Called when user space has done writes to this buffer
1290  */
1291 int
1292 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1293                          struct drm_file *file)
1294 {
1295         struct drm_i915_gem_sw_finish *args = data;
1296         struct drm_i915_gem_object *obj;
1297         int ret = 0;
1298
1299         ret = i915_mutex_lock_interruptible(dev);
1300         if (ret)
1301                 return ret;
1302
1303         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1304         if (&obj->base == NULL) {
1305                 ret = -ENOENT;
1306                 goto unlock;
1307         }
1308
1309         /* Pinned buffers may be scanout, so flush the cache */
1310         if (obj->pin_display)
1311                 i915_gem_object_flush_cpu_write_domain(obj, true);
1312
1313         drm_gem_object_unreference(&obj->base);
1314 unlock:
1315         mutex_unlock(&dev->struct_mutex);
1316         return ret;
1317 }
1318
1319 /**
1320  * Maps the contents of an object, returning the address it is mapped
1321  * into.
1322  *
1323  * While the mapping holds a reference on the contents of the object, it doesn't
1324  * imply a ref on the object itself.
1325  */
1326 int
1327 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1328                     struct drm_file *file)
1329 {
1330         struct drm_i915_gem_mmap *args = data;
1331         struct drm_gem_object *obj;
1332         unsigned long addr;
1333
1334         obj = drm_gem_object_lookup(dev, file, args->handle);
1335         if (obj == NULL)
1336                 return -ENOENT;
1337
1338         /* prime objects have no backing filp to GEM mmap
1339          * pages from.
1340          */
1341         if (!obj->filp) {
1342                 drm_gem_object_unreference_unlocked(obj);
1343                 return -EINVAL;
1344         }
1345
1346         addr = vm_mmap(obj->filp, 0, args->size,
1347                        PROT_READ | PROT_WRITE, MAP_SHARED,
1348                        args->offset);
1349         drm_gem_object_unreference_unlocked(obj);
1350         if (IS_ERR((void *)addr))
1351                 return addr;
1352
1353         args->addr_ptr = (uint64_t) addr;
1354
1355         return 0;
1356 }
1357
1358 /**
1359  * i915_gem_fault - fault a page into the GTT
1360  * vma: VMA in question
1361  * vmf: fault info
1362  *
1363  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1364  * from userspace.  The fault handler takes care of binding the object to
1365  * the GTT (if needed), allocating and programming a fence register (again,
1366  * only if needed based on whether the old reg is still valid or the object
1367  * is tiled) and inserting a new PTE into the faulting process.
1368  *
1369  * Note that the faulting process may involve evicting existing objects
1370  * from the GTT and/or fence registers to make room.  So performance may
1371  * suffer if the GTT working set is large or there are few fence registers
1372  * left.
1373  */
1374 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1375 {
1376         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1377         struct drm_device *dev = obj->base.dev;
1378         drm_i915_private_t *dev_priv = dev->dev_private;
1379         pgoff_t page_offset;
1380         unsigned long pfn;
1381         int ret = 0;
1382         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1383
1384         intel_runtime_pm_get(dev_priv);
1385
1386         /* We don't use vmf->pgoff since that has the fake offset */
1387         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1388                 PAGE_SHIFT;
1389
1390         ret = i915_mutex_lock_interruptible(dev);
1391         if (ret)
1392                 goto out;
1393
1394         trace_i915_gem_object_fault(obj, page_offset, true, write);
1395
1396         /* Access to snoopable pages through the GTT is incoherent. */
1397         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1398                 ret = -EINVAL;
1399                 goto unlock;
1400         }
1401
1402         /* Now bind it into the GTT if needed */
1403         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1404         if (ret)
1405                 goto unlock;
1406
1407         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1408         if (ret)
1409                 goto unpin;
1410
1411         ret = i915_gem_object_get_fence(obj);
1412         if (ret)
1413                 goto unpin;
1414
1415         obj->fault_mappable = true;
1416
1417         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1418         pfn >>= PAGE_SHIFT;
1419         pfn += page_offset;
1420
1421         /* Finally, remap it using the new GTT offset */
1422         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1423 unpin:
1424         i915_gem_object_ggtt_unpin(obj);
1425 unlock:
1426         mutex_unlock(&dev->struct_mutex);
1427 out:
1428         switch (ret) {
1429         case -EIO:
1430                 /* If this -EIO is due to a gpu hang, give the reset code a
1431                  * chance to clean up the mess. Otherwise return the proper
1432                  * SIGBUS. */
1433                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1434                         ret = VM_FAULT_SIGBUS;
1435                         break;
1436                 }
1437         case -EAGAIN:
1438                 /*
1439                  * EAGAIN means the gpu is hung and we'll wait for the error
1440                  * handler to reset everything when re-faulting in
1441                  * i915_mutex_lock_interruptible.
1442                  */
1443         case 0:
1444         case -ERESTARTSYS:
1445         case -EINTR:
1446         case -EBUSY:
1447                 /*
1448                  * EBUSY is ok: this just means that another thread
1449                  * already did the job.
1450                  */
1451                 ret = VM_FAULT_NOPAGE;
1452                 break;
1453         case -ENOMEM:
1454                 ret = VM_FAULT_OOM;
1455                 break;
1456         case -ENOSPC:
1457         case -EFAULT:
1458                 ret = VM_FAULT_SIGBUS;
1459                 break;
1460         default:
1461                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1462                 ret = VM_FAULT_SIGBUS;
1463                 break;
1464         }
1465
1466         intel_runtime_pm_put(dev_priv);
1467         return ret;
1468 }
1469
1470 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1471 {
1472         struct i915_vma *vma;
1473
1474         /*
1475          * Only the global gtt is relevant for gtt memory mappings, so restrict
1476          * list traversal to objects bound into the global address space. Note
1477          * that the active list should be empty, but better safe than sorry.
1478          */
1479         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1480         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1481                 i915_gem_release_mmap(vma->obj);
1482         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1483                 i915_gem_release_mmap(vma->obj);
1484 }
1485
1486 /**
1487  * i915_gem_release_mmap - remove physical page mappings
1488  * @obj: obj in question
1489  *
1490  * Preserve the reservation of the mmapping with the DRM core code, but
1491  * relinquish ownership of the pages back to the system.
1492  *
1493  * It is vital that we remove the page mapping if we have mapped a tiled
1494  * object through the GTT and then lose the fence register due to
1495  * resource pressure. Similarly if the object has been moved out of the
1496  * aperture, than pages mapped into userspace must be revoked. Removing the
1497  * mapping will then trigger a page fault on the next user access, allowing
1498  * fixup by i915_gem_fault().
1499  */
1500 void
1501 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1502 {
1503         if (!obj->fault_mappable)
1504                 return;
1505
1506         drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1507         obj->fault_mappable = false;
1508 }
1509
1510 uint32_t
1511 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1512 {
1513         uint32_t gtt_size;
1514
1515         if (INTEL_INFO(dev)->gen >= 4 ||
1516             tiling_mode == I915_TILING_NONE)
1517                 return size;
1518
1519         /* Previous chips need a power-of-two fence region when tiling */
1520         if (INTEL_INFO(dev)->gen == 3)
1521                 gtt_size = 1024*1024;
1522         else
1523                 gtt_size = 512*1024;
1524
1525         while (gtt_size < size)
1526                 gtt_size <<= 1;
1527
1528         return gtt_size;
1529 }
1530
1531 /**
1532  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1533  * @obj: object to check
1534  *
1535  * Return the required GTT alignment for an object, taking into account
1536  * potential fence register mapping.
1537  */
1538 uint32_t
1539 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1540                            int tiling_mode, bool fenced)
1541 {
1542         /*
1543          * Minimum alignment is 4k (GTT page size), but might be greater
1544          * if a fence register is needed for the object.
1545          */
1546         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1547             tiling_mode == I915_TILING_NONE)
1548                 return 4096;
1549
1550         /*
1551          * Previous chips need to be aligned to the size of the smallest
1552          * fence register that can contain the object.
1553          */
1554         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1555 }
1556
1557 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1558 {
1559         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1560         int ret;
1561
1562         if (drm_vma_node_has_offset(&obj->base.vma_node))
1563                 return 0;
1564
1565         dev_priv->mm.shrinker_no_lock_stealing = true;
1566
1567         ret = drm_gem_create_mmap_offset(&obj->base);
1568         if (ret != -ENOSPC)
1569                 goto out;
1570
1571         /* Badly fragmented mmap space? The only way we can recover
1572          * space is by destroying unwanted objects. We can't randomly release
1573          * mmap_offsets as userspace expects them to be persistent for the
1574          * lifetime of the objects. The closest we can is to release the
1575          * offsets on purgeable objects by truncating it and marking it purged,
1576          * which prevents userspace from ever using that object again.
1577          */
1578         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1579         ret = drm_gem_create_mmap_offset(&obj->base);
1580         if (ret != -ENOSPC)
1581                 goto out;
1582
1583         i915_gem_shrink_all(dev_priv);
1584         ret = drm_gem_create_mmap_offset(&obj->base);
1585 out:
1586         dev_priv->mm.shrinker_no_lock_stealing = false;
1587
1588         return ret;
1589 }
1590
1591 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1592 {
1593         drm_gem_free_mmap_offset(&obj->base);
1594 }
1595
1596 int
1597 i915_gem_mmap_gtt(struct drm_file *file,
1598                   struct drm_device *dev,
1599                   uint32_t handle,
1600                   uint64_t *offset)
1601 {
1602         struct drm_i915_private *dev_priv = dev->dev_private;
1603         struct drm_i915_gem_object *obj;
1604         int ret;
1605
1606         ret = i915_mutex_lock_interruptible(dev);
1607         if (ret)
1608                 return ret;
1609
1610         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1611         if (&obj->base == NULL) {
1612                 ret = -ENOENT;
1613                 goto unlock;
1614         }
1615
1616         if (obj->base.size > dev_priv->gtt.mappable_end) {
1617                 ret = -E2BIG;
1618                 goto out;
1619         }
1620
1621         if (obj->madv != I915_MADV_WILLNEED) {
1622                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1623                 ret = -EFAULT;
1624                 goto out;
1625         }
1626
1627         ret = i915_gem_object_create_mmap_offset(obj);
1628         if (ret)
1629                 goto out;
1630
1631         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1632
1633 out:
1634         drm_gem_object_unreference(&obj->base);
1635 unlock:
1636         mutex_unlock(&dev->struct_mutex);
1637         return ret;
1638 }
1639
1640 /**
1641  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1642  * @dev: DRM device
1643  * @data: GTT mapping ioctl data
1644  * @file: GEM object info
1645  *
1646  * Simply returns the fake offset to userspace so it can mmap it.
1647  * The mmap call will end up in drm_gem_mmap(), which will set things
1648  * up so we can get faults in the handler above.
1649  *
1650  * The fault handler will take care of binding the object into the GTT
1651  * (since it may have been evicted to make room for something), allocating
1652  * a fence register, and mapping the appropriate aperture address into
1653  * userspace.
1654  */
1655 int
1656 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1657                         struct drm_file *file)
1658 {
1659         struct drm_i915_gem_mmap_gtt *args = data;
1660
1661         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1662 }
1663
1664 /* Immediately discard the backing storage */
1665 static void
1666 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1667 {
1668         struct inode *inode;
1669
1670         i915_gem_object_free_mmap_offset(obj);
1671
1672         if (obj->base.filp == NULL)
1673                 return;
1674
1675         /* Our goal here is to return as much of the memory as
1676          * is possible back to the system as we are called from OOM.
1677          * To do this we must instruct the shmfs to drop all of its
1678          * backing pages, *now*.
1679          */
1680         inode = file_inode(obj->base.filp);
1681         shmem_truncate_range(inode, 0, (loff_t)-1);
1682
1683         obj->madv = __I915_MADV_PURGED;
1684 }
1685
1686 static inline int
1687 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1688 {
1689         return obj->madv == I915_MADV_DONTNEED;
1690 }
1691
1692 static void
1693 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1694 {
1695         struct sg_page_iter sg_iter;
1696         int ret;
1697
1698         BUG_ON(obj->madv == __I915_MADV_PURGED);
1699
1700         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1701         if (ret) {
1702                 /* In the event of a disaster, abandon all caches and
1703                  * hope for the best.
1704                  */
1705                 WARN_ON(ret != -EIO);
1706                 i915_gem_clflush_object(obj, true);
1707                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1708         }
1709
1710         if (i915_gem_object_needs_bit17_swizzle(obj))
1711                 i915_gem_object_save_bit_17_swizzle(obj);
1712
1713         if (obj->madv == I915_MADV_DONTNEED)
1714                 obj->dirty = 0;
1715
1716         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1717                 struct page *page = sg_page_iter_page(&sg_iter);
1718
1719                 if (obj->dirty)
1720                         set_page_dirty(page);
1721
1722                 if (obj->madv == I915_MADV_WILLNEED)
1723                         mark_page_accessed(page);
1724
1725                 page_cache_release(page);
1726         }
1727         obj->dirty = 0;
1728
1729         sg_free_table(obj->pages);
1730         kfree(obj->pages);
1731 }
1732
1733 int
1734 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1735 {
1736         const struct drm_i915_gem_object_ops *ops = obj->ops;
1737
1738         if (obj->pages == NULL)
1739                 return 0;
1740
1741         if (obj->pages_pin_count)
1742                 return -EBUSY;
1743
1744         BUG_ON(i915_gem_obj_bound_any(obj));
1745
1746         /* ->put_pages might need to allocate memory for the bit17 swizzle
1747          * array, hence protect them from being reaped by removing them from gtt
1748          * lists early. */
1749         list_del(&obj->global_list);
1750
1751         ops->put_pages(obj);
1752         obj->pages = NULL;
1753
1754         if (i915_gem_object_is_purgeable(obj))
1755                 i915_gem_object_truncate(obj);
1756
1757         return 0;
1758 }
1759
1760 static unsigned long
1761 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1762                   bool purgeable_only)
1763 {
1764         struct list_head still_bound_list;
1765         struct drm_i915_gem_object *obj, *next;
1766         unsigned long count = 0;
1767
1768         list_for_each_entry_safe(obj, next,
1769                                  &dev_priv->mm.unbound_list,
1770                                  global_list) {
1771                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1772                     i915_gem_object_put_pages(obj) == 0) {
1773                         count += obj->base.size >> PAGE_SHIFT;
1774                         if (count >= target)
1775                                 return count;
1776                 }
1777         }
1778
1779         /*
1780          * As we may completely rewrite the bound list whilst unbinding
1781          * (due to retiring requests) we have to strictly process only
1782          * one element of the list at the time, and recheck the list
1783          * on every iteration.
1784          */
1785         INIT_LIST_HEAD(&still_bound_list);
1786         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1787                 struct i915_vma *vma, *v;
1788
1789                 obj = list_first_entry(&dev_priv->mm.bound_list,
1790                                        typeof(*obj), global_list);
1791                 list_move_tail(&obj->global_list, &still_bound_list);
1792
1793                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1794                         continue;
1795
1796                 /*
1797                  * Hold a reference whilst we unbind this object, as we may
1798                  * end up waiting for and retiring requests. This might
1799                  * release the final reference (held by the active list)
1800                  * and result in the object being freed from under us.
1801                  * in this object being freed.
1802                  *
1803                  * Note 1: Shrinking the bound list is special since only active
1804                  * (and hence bound objects) can contain such limbo objects, so
1805                  * we don't need special tricks for shrinking the unbound list.
1806                  * The only other place where we have to be careful with active
1807                  * objects suddenly disappearing due to retiring requests is the
1808                  * eviction code.
1809                  *
1810                  * Note 2: Even though the bound list doesn't hold a reference
1811                  * to the object we can safely grab one here: The final object
1812                  * unreferencing and the bound_list are both protected by the
1813                  * dev->struct_mutex and so we won't ever be able to observe an
1814                  * object on the bound_list with a reference count equals 0.
1815                  */
1816                 drm_gem_object_reference(&obj->base);
1817
1818                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1819                         if (i915_vma_unbind(vma))
1820                                 break;
1821
1822                 if (i915_gem_object_put_pages(obj) == 0)
1823                         count += obj->base.size >> PAGE_SHIFT;
1824
1825                 drm_gem_object_unreference(&obj->base);
1826         }
1827         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1828
1829         return count;
1830 }
1831
1832 static unsigned long
1833 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1834 {
1835         return __i915_gem_shrink(dev_priv, target, true);
1836 }
1837
1838 static unsigned long
1839 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1840 {
1841         struct drm_i915_gem_object *obj, *next;
1842         long freed = 0;
1843
1844         i915_gem_evict_everything(dev_priv->dev);
1845
1846         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1847                                  global_list) {
1848                 if (i915_gem_object_put_pages(obj) == 0)
1849                         freed += obj->base.size >> PAGE_SHIFT;
1850         }
1851         return freed;
1852 }
1853
1854 static int
1855 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1856 {
1857         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1858         int page_count, i;
1859         struct address_space *mapping;
1860         struct sg_table *st;
1861         struct scatterlist *sg;
1862         struct sg_page_iter sg_iter;
1863         struct page *page;
1864         unsigned long last_pfn = 0;     /* suppress gcc warning */
1865         gfp_t gfp;
1866
1867         /* Assert that the object is not currently in any GPU domain. As it
1868          * wasn't in the GTT, there shouldn't be any way it could have been in
1869          * a GPU cache
1870          */
1871         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1872         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1873
1874         st = kmalloc(sizeof(*st), GFP_KERNEL);
1875         if (st == NULL)
1876                 return -ENOMEM;
1877
1878         page_count = obj->base.size / PAGE_SIZE;
1879         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1880                 kfree(st);
1881                 return -ENOMEM;
1882         }
1883
1884         /* Get the list of pages out of our struct file.  They'll be pinned
1885          * at this point until we release them.
1886          *
1887          * Fail silently without starting the shrinker
1888          */
1889         mapping = file_inode(obj->base.filp)->i_mapping;
1890         gfp = mapping_gfp_mask(mapping);
1891         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1892         gfp &= ~(__GFP_IO | __GFP_WAIT);
1893         sg = st->sgl;
1894         st->nents = 0;
1895         for (i = 0; i < page_count; i++) {
1896                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1897                 if (IS_ERR(page)) {
1898                         i915_gem_purge(dev_priv, page_count);
1899                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1900                 }
1901                 if (IS_ERR(page)) {
1902                         /* We've tried hard to allocate the memory by reaping
1903                          * our own buffer, now let the real VM do its job and
1904                          * go down in flames if truly OOM.
1905                          */
1906                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1907                         gfp |= __GFP_IO | __GFP_WAIT;
1908
1909                         i915_gem_shrink_all(dev_priv);
1910                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1911                         if (IS_ERR(page))
1912                                 goto err_pages;
1913
1914                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1915                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1916                 }
1917 #ifdef CONFIG_SWIOTLB
1918                 if (swiotlb_nr_tbl()) {
1919                         st->nents++;
1920                         sg_set_page(sg, page, PAGE_SIZE, 0);
1921                         sg = sg_next(sg);
1922                         continue;
1923                 }
1924 #endif
1925                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1926                         if (i)
1927                                 sg = sg_next(sg);
1928                         st->nents++;
1929                         sg_set_page(sg, page, PAGE_SIZE, 0);
1930                 } else {
1931                         sg->length += PAGE_SIZE;
1932                 }
1933                 last_pfn = page_to_pfn(page);
1934
1935                 /* Check that the i965g/gm workaround works. */
1936                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1937         }
1938 #ifdef CONFIG_SWIOTLB
1939         if (!swiotlb_nr_tbl())
1940 #endif
1941                 sg_mark_end(sg);
1942         obj->pages = st;
1943
1944         if (i915_gem_object_needs_bit17_swizzle(obj))
1945                 i915_gem_object_do_bit_17_swizzle(obj);
1946
1947         return 0;
1948
1949 err_pages:
1950         sg_mark_end(sg);
1951         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1952                 page_cache_release(sg_page_iter_page(&sg_iter));
1953         sg_free_table(st);
1954         kfree(st);
1955         return PTR_ERR(page);
1956 }
1957
1958 /* Ensure that the associated pages are gathered from the backing storage
1959  * and pinned into our object. i915_gem_object_get_pages() may be called
1960  * multiple times before they are released by a single call to
1961  * i915_gem_object_put_pages() - once the pages are no longer referenced
1962  * either as a result of memory pressure (reaping pages under the shrinker)
1963  * or as the object is itself released.
1964  */
1965 int
1966 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1967 {
1968         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1969         const struct drm_i915_gem_object_ops *ops = obj->ops;
1970         int ret;
1971
1972         if (obj->pages)
1973                 return 0;
1974
1975         if (obj->madv != I915_MADV_WILLNEED) {
1976                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1977                 return -EFAULT;
1978         }
1979
1980         BUG_ON(obj->pages_pin_count);
1981
1982         ret = ops->get_pages(obj);
1983         if (ret)
1984                 return ret;
1985
1986         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1987         return 0;
1988 }
1989
1990 static void
1991 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1992                                struct intel_ring_buffer *ring)
1993 {
1994         struct drm_device *dev = obj->base.dev;
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         u32 seqno = intel_ring_get_seqno(ring);
1997
1998         BUG_ON(ring == NULL);
1999         if (obj->ring != ring && obj->last_write_seqno) {
2000                 /* Keep the seqno relative to the current ring */
2001                 obj->last_write_seqno = seqno;
2002         }
2003         obj->ring = ring;
2004
2005         /* Add a reference if we're newly entering the active list. */
2006         if (!obj->active) {
2007                 drm_gem_object_reference(&obj->base);
2008                 obj->active = 1;
2009         }
2010
2011         list_move_tail(&obj->ring_list, &ring->active_list);
2012
2013         obj->last_read_seqno = seqno;
2014
2015         if (obj->fenced_gpu_access) {
2016                 obj->last_fenced_seqno = seqno;
2017
2018                 /* Bump MRU to take account of the delayed flush */
2019                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2020                         struct drm_i915_fence_reg *reg;
2021
2022                         reg = &dev_priv->fence_regs[obj->fence_reg];
2023                         list_move_tail(&reg->lru_list,
2024                                        &dev_priv->mm.fence_list);
2025                 }
2026         }
2027 }
2028
2029 void i915_vma_move_to_active(struct i915_vma *vma,
2030                              struct intel_ring_buffer *ring)
2031 {
2032         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2033         return i915_gem_object_move_to_active(vma->obj, ring);
2034 }
2035
2036 static void
2037 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2038 {
2039         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2040         struct i915_address_space *vm;
2041         struct i915_vma *vma;
2042
2043         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2044         BUG_ON(!obj->active);
2045
2046         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2047                 vma = i915_gem_obj_to_vma(obj, vm);
2048                 if (vma && !list_empty(&vma->mm_list))
2049                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2050         }
2051
2052         list_del_init(&obj->ring_list);
2053         obj->ring = NULL;
2054
2055         obj->last_read_seqno = 0;
2056         obj->last_write_seqno = 0;
2057         obj->base.write_domain = 0;
2058
2059         obj->last_fenced_seqno = 0;
2060         obj->fenced_gpu_access = false;
2061
2062         obj->active = 0;
2063         drm_gem_object_unreference(&obj->base);
2064
2065         WARN_ON(i915_verify_lists(dev));
2066 }
2067
2068 static int
2069 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2070 {
2071         struct drm_i915_private *dev_priv = dev->dev_private;
2072         struct intel_ring_buffer *ring;
2073         int ret, i, j;
2074
2075         /* Carefully retire all requests without writing to the rings */
2076         for_each_ring(ring, dev_priv, i) {
2077                 ret = intel_ring_idle(ring);
2078                 if (ret)
2079                         return ret;
2080         }
2081         i915_gem_retire_requests(dev);
2082
2083         /* Finally reset hw state */
2084         for_each_ring(ring, dev_priv, i) {
2085                 intel_ring_init_seqno(ring, seqno);
2086
2087                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2088                         ring->sync_seqno[j] = 0;
2089         }
2090
2091         return 0;
2092 }
2093
2094 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2095 {
2096         struct drm_i915_private *dev_priv = dev->dev_private;
2097         int ret;
2098
2099         if (seqno == 0)
2100                 return -EINVAL;
2101
2102         /* HWS page needs to be set less than what we
2103          * will inject to ring
2104          */
2105         ret = i915_gem_init_seqno(dev, seqno - 1);
2106         if (ret)
2107                 return ret;
2108
2109         /* Carefully set the last_seqno value so that wrap
2110          * detection still works
2111          */
2112         dev_priv->next_seqno = seqno;
2113         dev_priv->last_seqno = seqno - 1;
2114         if (dev_priv->last_seqno == 0)
2115                 dev_priv->last_seqno--;
2116
2117         return 0;
2118 }
2119
2120 int
2121 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2122 {
2123         struct drm_i915_private *dev_priv = dev->dev_private;
2124
2125         /* reserve 0 for non-seqno */
2126         if (dev_priv->next_seqno == 0) {
2127                 int ret = i915_gem_init_seqno(dev, 0);
2128                 if (ret)
2129                         return ret;
2130
2131                 dev_priv->next_seqno = 1;
2132         }
2133
2134         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2135         return 0;
2136 }
2137
2138 int __i915_add_request(struct intel_ring_buffer *ring,
2139                        struct drm_file *file,
2140                        struct drm_i915_gem_object *obj,
2141                        u32 *out_seqno)
2142 {
2143         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2144         struct drm_i915_gem_request *request;
2145         u32 request_ring_position, request_start;
2146         int was_empty;
2147         int ret;
2148
2149         request_start = intel_ring_get_tail(ring);
2150         /*
2151          * Emit any outstanding flushes - execbuf can fail to emit the flush
2152          * after having emitted the batchbuffer command. Hence we need to fix
2153          * things up similar to emitting the lazy request. The difference here
2154          * is that the flush _must_ happen before the next request, no matter
2155          * what.
2156          */
2157         ret = intel_ring_flush_all_caches(ring);
2158         if (ret)
2159                 return ret;
2160
2161         request = ring->preallocated_lazy_request;
2162         if (WARN_ON(request == NULL))
2163                 return -ENOMEM;
2164
2165         /* Record the position of the start of the request so that
2166          * should we detect the updated seqno part-way through the
2167          * GPU processing the request, we never over-estimate the
2168          * position of the head.
2169          */
2170         request_ring_position = intel_ring_get_tail(ring);
2171
2172         ret = ring->add_request(ring);
2173         if (ret)
2174                 return ret;
2175
2176         request->seqno = intel_ring_get_seqno(ring);
2177         request->ring = ring;
2178         request->head = request_start;
2179         request->tail = request_ring_position;
2180
2181         /* Whilst this request exists, batch_obj will be on the
2182          * active_list, and so will hold the active reference. Only when this
2183          * request is retired will the the batch_obj be moved onto the
2184          * inactive_list and lose its active reference. Hence we do not need
2185          * to explicitly hold another reference here.
2186          */
2187         request->batch_obj = obj;
2188
2189         /* Hold a reference to the current context so that we can inspect
2190          * it later in case a hangcheck error event fires.
2191          */
2192         request->ctx = ring->last_context;
2193         if (request->ctx)
2194                 i915_gem_context_reference(request->ctx);
2195
2196         request->emitted_jiffies = jiffies;
2197         was_empty = list_empty(&ring->request_list);
2198         list_add_tail(&request->list, &ring->request_list);
2199         request->file_priv = NULL;
2200
2201         if (file) {
2202                 struct drm_i915_file_private *file_priv = file->driver_priv;
2203
2204                 spin_lock(&file_priv->mm.lock);
2205                 request->file_priv = file_priv;
2206                 list_add_tail(&request->client_list,
2207                               &file_priv->mm.request_list);
2208                 spin_unlock(&file_priv->mm.lock);
2209         }
2210
2211         trace_i915_gem_request_add(ring, request->seqno);
2212         ring->outstanding_lazy_seqno = 0;
2213         ring->preallocated_lazy_request = NULL;
2214
2215         if (!dev_priv->ums.mm_suspended) {
2216                 i915_queue_hangcheck(ring->dev);
2217
2218                 if (was_empty) {
2219                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2220                         queue_delayed_work(dev_priv->wq,
2221                                            &dev_priv->mm.retire_work,
2222                                            round_jiffies_up_relative(HZ));
2223                         intel_mark_busy(dev_priv->dev);
2224                 }
2225         }
2226
2227         if (out_seqno)
2228                 *out_seqno = request->seqno;
2229         return 0;
2230 }
2231
2232 static inline void
2233 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2234 {
2235         struct drm_i915_file_private *file_priv = request->file_priv;
2236
2237         if (!file_priv)
2238                 return;
2239
2240         spin_lock(&file_priv->mm.lock);
2241         list_del(&request->client_list);
2242         request->file_priv = NULL;
2243         spin_unlock(&file_priv->mm.lock);
2244 }
2245
2246 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2247                                    const struct i915_hw_context *ctx)
2248 {
2249         unsigned long elapsed;
2250
2251         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2252
2253         if (ctx->hang_stats.banned)
2254                 return true;
2255
2256         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2257                 if (dev_priv->gpu_error.stop_rings == 0 &&
2258                     i915_gem_context_is_default(ctx)) {
2259                         DRM_ERROR("gpu hanging too fast, banning!\n");
2260                 } else {
2261                         DRM_DEBUG("context hanging too fast, banning!\n");
2262                 }
2263
2264                 return true;
2265         }
2266
2267         return false;
2268 }
2269
2270 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2271                                   struct i915_hw_context *ctx,
2272                                   const bool guilty)
2273 {
2274         struct i915_ctx_hang_stats *hs;
2275
2276         if (WARN_ON(!ctx))
2277                 return;
2278
2279         hs = &ctx->hang_stats;
2280
2281         if (guilty) {
2282                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2283                 hs->batch_active++;
2284                 hs->guilty_ts = get_seconds();
2285         } else {
2286                 hs->batch_pending++;
2287         }
2288 }
2289
2290 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2291 {
2292         list_del(&request->list);
2293         i915_gem_request_remove_from_client(request);
2294
2295         if (request->ctx)
2296                 i915_gem_context_unreference(request->ctx);
2297
2298         kfree(request);
2299 }
2300
2301 static struct drm_i915_gem_request *
2302 i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
2303 {
2304         struct drm_i915_gem_request *request;
2305         const u32 completed_seqno = ring->get_seqno(ring, false);
2306
2307         list_for_each_entry(request, &ring->request_list, list) {
2308                 if (i915_seqno_passed(completed_seqno, request->seqno))
2309                         continue;
2310
2311                 return request;
2312         }
2313
2314         return NULL;
2315 }
2316
2317 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2318                                        struct intel_ring_buffer *ring)
2319 {
2320         struct drm_i915_gem_request *request;
2321         bool ring_hung;
2322
2323         request = i915_gem_find_first_non_complete(ring);
2324
2325         if (request == NULL)
2326                 return;
2327
2328         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2329
2330         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2331
2332         list_for_each_entry_continue(request, &ring->request_list, list)
2333                 i915_set_reset_status(dev_priv, request->ctx, false);
2334 }
2335
2336 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2337                                         struct intel_ring_buffer *ring)
2338 {
2339         while (!list_empty(&ring->active_list)) {
2340                 struct drm_i915_gem_object *obj;
2341
2342                 obj = list_first_entry(&ring->active_list,
2343                                        struct drm_i915_gem_object,
2344                                        ring_list);
2345
2346                 i915_gem_object_move_to_inactive(obj);
2347         }
2348
2349         /*
2350          * We must free the requests after all the corresponding objects have
2351          * been moved off active lists. Which is the same order as the normal
2352          * retire_requests function does. This is important if object hold
2353          * implicit references on things like e.g. ppgtt address spaces through
2354          * the request.
2355          */
2356         while (!list_empty(&ring->request_list)) {
2357                 struct drm_i915_gem_request *request;
2358
2359                 request = list_first_entry(&ring->request_list,
2360                                            struct drm_i915_gem_request,
2361                                            list);
2362
2363                 i915_gem_free_request(request);
2364         }
2365 }
2366
2367 void i915_gem_restore_fences(struct drm_device *dev)
2368 {
2369         struct drm_i915_private *dev_priv = dev->dev_private;
2370         int i;
2371
2372         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2373                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2374
2375                 /*
2376                  * Commit delayed tiling changes if we have an object still
2377                  * attached to the fence, otherwise just clear the fence.
2378                  */
2379                 if (reg->obj) {
2380                         i915_gem_object_update_fence(reg->obj, reg,
2381                                                      reg->obj->tiling_mode);
2382                 } else {
2383                         i915_gem_write_fence(dev, i, NULL);
2384                 }
2385         }
2386 }
2387
2388 void i915_gem_reset(struct drm_device *dev)
2389 {
2390         struct drm_i915_private *dev_priv = dev->dev_private;
2391         struct intel_ring_buffer *ring;
2392         int i;
2393
2394         /*
2395          * Before we free the objects from the requests, we need to inspect
2396          * them for finding the guilty party. As the requests only borrow
2397          * their reference to the objects, the inspection must be done first.
2398          */
2399         for_each_ring(ring, dev_priv, i)
2400                 i915_gem_reset_ring_status(dev_priv, ring);
2401
2402         for_each_ring(ring, dev_priv, i)
2403                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2404
2405         i915_gem_cleanup_ringbuffer(dev);
2406
2407         i915_gem_context_reset(dev);
2408
2409         i915_gem_restore_fences(dev);
2410 }
2411
2412 /**
2413  * This function clears the request list as sequence numbers are passed.
2414  */
2415 void
2416 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2417 {
2418         uint32_t seqno;
2419
2420         if (list_empty(&ring->request_list))
2421                 return;
2422
2423         WARN_ON(i915_verify_lists(ring->dev));
2424
2425         seqno = ring->get_seqno(ring, true);
2426
2427         /* Move any buffers on the active list that are no longer referenced
2428          * by the ringbuffer to the flushing/inactive lists as appropriate,
2429          * before we free the context associated with the requests.
2430          */
2431         while (!list_empty(&ring->active_list)) {
2432                 struct drm_i915_gem_object *obj;
2433
2434                 obj = list_first_entry(&ring->active_list,
2435                                       struct drm_i915_gem_object,
2436                                       ring_list);
2437
2438                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2439                         break;
2440
2441                 i915_gem_object_move_to_inactive(obj);
2442         }
2443
2444
2445         while (!list_empty(&ring->request_list)) {
2446                 struct drm_i915_gem_request *request;
2447
2448                 request = list_first_entry(&ring->request_list,
2449                                            struct drm_i915_gem_request,
2450                                            list);
2451
2452                 if (!i915_seqno_passed(seqno, request->seqno))
2453                         break;
2454
2455                 trace_i915_gem_request_retire(ring, request->seqno);
2456                 /* We know the GPU must have read the request to have
2457                  * sent us the seqno + interrupt, so use the position
2458                  * of tail of the request to update the last known position
2459                  * of the GPU head.
2460                  */
2461                 ring->last_retired_head = request->tail;
2462
2463                 i915_gem_free_request(request);
2464         }
2465
2466         if (unlikely(ring->trace_irq_seqno &&
2467                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2468                 ring->irq_put(ring);
2469                 ring->trace_irq_seqno = 0;
2470         }
2471
2472         WARN_ON(i915_verify_lists(ring->dev));
2473 }
2474
2475 bool
2476 i915_gem_retire_requests(struct drm_device *dev)
2477 {
2478         drm_i915_private_t *dev_priv = dev->dev_private;
2479         struct intel_ring_buffer *ring;
2480         bool idle = true;
2481         int i;
2482
2483         for_each_ring(ring, dev_priv, i) {
2484                 i915_gem_retire_requests_ring(ring);
2485                 idle &= list_empty(&ring->request_list);
2486         }
2487
2488         if (idle)
2489                 mod_delayed_work(dev_priv->wq,
2490                                    &dev_priv->mm.idle_work,
2491                                    msecs_to_jiffies(100));
2492
2493         return idle;
2494 }
2495
2496 static void
2497 i915_gem_retire_work_handler(struct work_struct *work)
2498 {
2499         struct drm_i915_private *dev_priv =
2500                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2501         struct drm_device *dev = dev_priv->dev;
2502         bool idle;
2503
2504         /* Come back later if the device is busy... */
2505         idle = false;
2506         if (mutex_trylock(&dev->struct_mutex)) {
2507                 idle = i915_gem_retire_requests(dev);
2508                 mutex_unlock(&dev->struct_mutex);
2509         }
2510         if (!idle)
2511                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2512                                    round_jiffies_up_relative(HZ));
2513 }
2514
2515 static void
2516 i915_gem_idle_work_handler(struct work_struct *work)
2517 {
2518         struct drm_i915_private *dev_priv =
2519                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520
2521         intel_mark_idle(dev_priv->dev);
2522 }
2523
2524 /**
2525  * Ensures that an object will eventually get non-busy by flushing any required
2526  * write domains, emitting any outstanding lazy request and retiring and
2527  * completed requests.
2528  */
2529 static int
2530 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531 {
2532         int ret;
2533
2534         if (obj->active) {
2535                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2536                 if (ret)
2537                         return ret;
2538
2539                 i915_gem_retire_requests_ring(obj->ring);
2540         }
2541
2542         return 0;
2543 }
2544
2545 /**
2546  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2547  * @DRM_IOCTL_ARGS: standard ioctl arguments
2548  *
2549  * Returns 0 if successful, else an error is returned with the remaining time in
2550  * the timeout parameter.
2551  *  -ETIME: object is still busy after timeout
2552  *  -ERESTARTSYS: signal interrupted the wait
2553  *  -ENONENT: object doesn't exist
2554  * Also possible, but rare:
2555  *  -EAGAIN: GPU wedged
2556  *  -ENOMEM: damn
2557  *  -ENODEV: Internal IRQ fail
2558  *  -E?: The add request failed
2559  *
2560  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2561  * non-zero timeout parameter the wait ioctl will wait for the given number of
2562  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2563  * without holding struct_mutex the object may become re-busied before this
2564  * function completes. A similar but shorter * race condition exists in the busy
2565  * ioctl
2566  */
2567 int
2568 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569 {
2570         drm_i915_private_t *dev_priv = dev->dev_private;
2571         struct drm_i915_gem_wait *args = data;
2572         struct drm_i915_gem_object *obj;
2573         struct intel_ring_buffer *ring = NULL;
2574         struct timespec timeout_stack, *timeout = NULL;
2575         unsigned reset_counter;
2576         u32 seqno = 0;
2577         int ret = 0;
2578
2579         if (args->timeout_ns >= 0) {
2580                 timeout_stack = ns_to_timespec(args->timeout_ns);
2581                 timeout = &timeout_stack;
2582         }
2583
2584         ret = i915_mutex_lock_interruptible(dev);
2585         if (ret)
2586                 return ret;
2587
2588         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2589         if (&obj->base == NULL) {
2590                 mutex_unlock(&dev->struct_mutex);
2591                 return -ENOENT;
2592         }
2593
2594         /* Need to make sure the object gets inactive eventually. */
2595         ret = i915_gem_object_flush_active(obj);
2596         if (ret)
2597                 goto out;
2598
2599         if (obj->active) {
2600                 seqno = obj->last_read_seqno;
2601                 ring = obj->ring;
2602         }
2603
2604         if (seqno == 0)
2605                  goto out;
2606
2607         /* Do this after OLR check to make sure we make forward progress polling
2608          * on this IOCTL with a 0 timeout (like busy ioctl)
2609          */
2610         if (!args->timeout_ns) {
2611                 ret = -ETIME;
2612                 goto out;
2613         }
2614
2615         drm_gem_object_unreference(&obj->base);
2616         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2617         mutex_unlock(&dev->struct_mutex);
2618
2619         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2620         if (timeout)
2621                 args->timeout_ns = timespec_to_ns(timeout);
2622         return ret;
2623
2624 out:
2625         drm_gem_object_unreference(&obj->base);
2626         mutex_unlock(&dev->struct_mutex);
2627         return ret;
2628 }
2629
2630 /**
2631  * i915_gem_object_sync - sync an object to a ring.
2632  *
2633  * @obj: object which may be in use on another ring.
2634  * @to: ring we wish to use the object on. May be NULL.
2635  *
2636  * This code is meant to abstract object synchronization with the GPU.
2637  * Calling with NULL implies synchronizing the object with the CPU
2638  * rather than a particular GPU ring.
2639  *
2640  * Returns 0 if successful, else propagates up the lower layer error.
2641  */
2642 int
2643 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2644                      struct intel_ring_buffer *to)
2645 {
2646         struct intel_ring_buffer *from = obj->ring;
2647         u32 seqno;
2648         int ret, idx;
2649
2650         if (from == NULL || to == from)
2651                 return 0;
2652
2653         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2654                 return i915_gem_object_wait_rendering(obj, false);
2655
2656         idx = intel_ring_sync_index(from, to);
2657
2658         seqno = obj->last_read_seqno;
2659         if (seqno <= from->sync_seqno[idx])
2660                 return 0;
2661
2662         ret = i915_gem_check_olr(obj->ring, seqno);
2663         if (ret)
2664                 return ret;
2665
2666         trace_i915_gem_ring_sync_to(from, to, seqno);
2667         ret = to->sync_to(to, from, seqno);
2668         if (!ret)
2669                 /* We use last_read_seqno because sync_to()
2670                  * might have just caused seqno wrap under
2671                  * the radar.
2672                  */
2673                 from->sync_seqno[idx] = obj->last_read_seqno;
2674
2675         return ret;
2676 }
2677
2678 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679 {
2680         u32 old_write_domain, old_read_domains;
2681
2682         /* Force a pagefault for domain tracking on next user access */
2683         i915_gem_release_mmap(obj);
2684
2685         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2686                 return;
2687
2688         /* Wait for any direct GTT access to complete */
2689         mb();
2690
2691         old_read_domains = obj->base.read_domains;
2692         old_write_domain = obj->base.write_domain;
2693
2694         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2695         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696
2697         trace_i915_gem_object_change_domain(obj,
2698                                             old_read_domains,
2699                                             old_write_domain);
2700 }
2701
2702 int i915_vma_unbind(struct i915_vma *vma)
2703 {
2704         struct drm_i915_gem_object *obj = vma->obj;
2705         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2706         int ret;
2707
2708         if (list_empty(&vma->vma_link))
2709                 return 0;
2710
2711         if (!drm_mm_node_allocated(&vma->node)) {
2712                 i915_gem_vma_destroy(vma);
2713
2714                 return 0;
2715         }
2716
2717         if (vma->pin_count)
2718                 return -EBUSY;
2719
2720         BUG_ON(obj->pages == NULL);
2721
2722         ret = i915_gem_object_finish_gpu(obj);
2723         if (ret)
2724                 return ret;
2725         /* Continue on if we fail due to EIO, the GPU is hung so we
2726          * should be safe and we need to cleanup or else we might
2727          * cause memory corruption through use-after-free.
2728          */
2729
2730         i915_gem_object_finish_gtt(obj);
2731
2732         /* release the fence reg _after_ flushing */
2733         ret = i915_gem_object_put_fence(obj);
2734         if (ret)
2735                 return ret;
2736
2737         trace_i915_vma_unbind(vma);
2738
2739         vma->unbind_vma(vma);
2740
2741         i915_gem_gtt_finish_object(obj);
2742
2743         list_del(&vma->mm_list);
2744         /* Avoid an unnecessary call to unbind on rebind. */
2745         if (i915_is_ggtt(vma->vm))
2746                 obj->map_and_fenceable = true;
2747
2748         drm_mm_remove_node(&vma->node);
2749         i915_gem_vma_destroy(vma);
2750
2751         /* Since the unbound list is global, only move to that list if
2752          * no more VMAs exist. */
2753         if (list_empty(&obj->vma_list))
2754                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2755
2756         /* And finally now the object is completely decoupled from this vma,
2757          * we can drop its hold on the backing storage and allow it to be
2758          * reaped by the shrinker.
2759          */
2760         i915_gem_object_unpin_pages(obj);
2761
2762         return 0;
2763 }
2764
2765 /**
2766  * Unbinds an object from the global GTT aperture.
2767  */
2768 int
2769 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2770 {
2771         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2772         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2773
2774         if (!i915_gem_obj_ggtt_bound(obj))
2775                 return 0;
2776
2777         if (i915_gem_obj_to_ggtt(obj)->pin_count)
2778                 return -EBUSY;
2779
2780         BUG_ON(obj->pages == NULL);
2781
2782         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2783 }
2784
2785 int i915_gpu_idle(struct drm_device *dev)
2786 {
2787         drm_i915_private_t *dev_priv = dev->dev_private;
2788         struct intel_ring_buffer *ring;
2789         int ret, i;
2790
2791         /* Flush everything onto the inactive list. */
2792         for_each_ring(ring, dev_priv, i) {
2793                 ret = i915_switch_context(ring, NULL, ring->default_context);
2794                 if (ret)
2795                         return ret;
2796
2797                 ret = intel_ring_idle(ring);
2798                 if (ret)
2799                         return ret;
2800         }
2801
2802         return 0;
2803 }
2804
2805 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2806                                  struct drm_i915_gem_object *obj)
2807 {
2808         drm_i915_private_t *dev_priv = dev->dev_private;
2809         int fence_reg;
2810         int fence_pitch_shift;
2811
2812         if (INTEL_INFO(dev)->gen >= 6) {
2813                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2814                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2815         } else {
2816                 fence_reg = FENCE_REG_965_0;
2817                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2818         }
2819
2820         fence_reg += reg * 8;
2821
2822         /* To w/a incoherency with non-atomic 64-bit register updates,
2823          * we split the 64-bit update into two 32-bit writes. In order
2824          * for a partial fence not to be evaluated between writes, we
2825          * precede the update with write to turn off the fence register,
2826          * and only enable the fence as the last step.
2827          *
2828          * For extra levels of paranoia, we make sure each step lands
2829          * before applying the next step.
2830          */
2831         I915_WRITE(fence_reg, 0);
2832         POSTING_READ(fence_reg);
2833
2834         if (obj) {
2835                 u32 size = i915_gem_obj_ggtt_size(obj);
2836                 uint64_t val;
2837
2838                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2839                                  0xfffff000) << 32;
2840                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2841                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2842                 if (obj->tiling_mode == I915_TILING_Y)
2843                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2844                 val |= I965_FENCE_REG_VALID;
2845
2846                 I915_WRITE(fence_reg + 4, val >> 32);
2847                 POSTING_READ(fence_reg + 4);
2848
2849                 I915_WRITE(fence_reg + 0, val);
2850                 POSTING_READ(fence_reg);
2851         } else {
2852                 I915_WRITE(fence_reg + 4, 0);
2853                 POSTING_READ(fence_reg + 4);
2854         }
2855 }
2856
2857 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2858                                  struct drm_i915_gem_object *obj)
2859 {
2860         drm_i915_private_t *dev_priv = dev->dev_private;
2861         u32 val;
2862
2863         if (obj) {
2864                 u32 size = i915_gem_obj_ggtt_size(obj);
2865                 int pitch_val;
2866                 int tile_width;
2867
2868                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2869                      (size & -size) != size ||
2870                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2871                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2872                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2873
2874                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2875                         tile_width = 128;
2876                 else
2877                         tile_width = 512;
2878
2879                 /* Note: pitch better be a power of two tile widths */
2880                 pitch_val = obj->stride / tile_width;
2881                 pitch_val = ffs(pitch_val) - 1;
2882
2883                 val = i915_gem_obj_ggtt_offset(obj);
2884                 if (obj->tiling_mode == I915_TILING_Y)
2885                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2886                 val |= I915_FENCE_SIZE_BITS(size);
2887                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2888                 val |= I830_FENCE_REG_VALID;
2889         } else
2890                 val = 0;
2891
2892         if (reg < 8)
2893                 reg = FENCE_REG_830_0 + reg * 4;
2894         else
2895                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2896
2897         I915_WRITE(reg, val);
2898         POSTING_READ(reg);
2899 }
2900
2901 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2902                                 struct drm_i915_gem_object *obj)
2903 {
2904         drm_i915_private_t *dev_priv = dev->dev_private;
2905         uint32_t val;
2906
2907         if (obj) {
2908                 u32 size = i915_gem_obj_ggtt_size(obj);
2909                 uint32_t pitch_val;
2910
2911                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2912                      (size & -size) != size ||
2913                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2914                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2915                      i915_gem_obj_ggtt_offset(obj), size);
2916
2917                 pitch_val = obj->stride / 128;
2918                 pitch_val = ffs(pitch_val) - 1;
2919
2920                 val = i915_gem_obj_ggtt_offset(obj);
2921                 if (obj->tiling_mode == I915_TILING_Y)
2922                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2923                 val |= I830_FENCE_SIZE_BITS(size);
2924                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2925                 val |= I830_FENCE_REG_VALID;
2926         } else
2927                 val = 0;
2928
2929         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2930         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2931 }
2932
2933 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2934 {
2935         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2936 }
2937
2938 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2939                                  struct drm_i915_gem_object *obj)
2940 {
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942
2943         /* Ensure that all CPU reads are completed before installing a fence
2944          * and all writes before removing the fence.
2945          */
2946         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2947                 mb();
2948
2949         WARN(obj && (!obj->stride || !obj->tiling_mode),
2950              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2951              obj->stride, obj->tiling_mode);
2952
2953         switch (INTEL_INFO(dev)->gen) {
2954         case 8:
2955         case 7:
2956         case 6:
2957         case 5:
2958         case 4: i965_write_fence_reg(dev, reg, obj); break;
2959         case 3: i915_write_fence_reg(dev, reg, obj); break;
2960         case 2: i830_write_fence_reg(dev, reg, obj); break;
2961         default: BUG();
2962         }
2963
2964         /* And similarly be paranoid that no direct access to this region
2965          * is reordered to before the fence is installed.
2966          */
2967         if (i915_gem_object_needs_mb(obj))
2968                 mb();
2969 }
2970
2971 static inline int fence_number(struct drm_i915_private *dev_priv,
2972                                struct drm_i915_fence_reg *fence)
2973 {
2974         return fence - dev_priv->fence_regs;
2975 }
2976
2977 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2978                                          struct drm_i915_fence_reg *fence,
2979                                          bool enable)
2980 {
2981         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2982         int reg = fence_number(dev_priv, fence);
2983
2984         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2985
2986         if (enable) {
2987                 obj->fence_reg = reg;
2988                 fence->obj = obj;
2989                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2990         } else {
2991                 obj->fence_reg = I915_FENCE_REG_NONE;
2992                 fence->obj = NULL;
2993                 list_del_init(&fence->lru_list);
2994         }
2995         obj->fence_dirty = false;
2996 }
2997
2998 static int
2999 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3000 {
3001         if (obj->last_fenced_seqno) {
3002                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3003                 if (ret)
3004                         return ret;
3005
3006                 obj->last_fenced_seqno = 0;
3007         }
3008
3009         obj->fenced_gpu_access = false;
3010         return 0;
3011 }
3012
3013 int
3014 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3015 {
3016         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3017         struct drm_i915_fence_reg *fence;
3018         int ret;
3019
3020         ret = i915_gem_object_wait_fence(obj);
3021         if (ret)
3022                 return ret;
3023
3024         if (obj->fence_reg == I915_FENCE_REG_NONE)
3025                 return 0;
3026
3027         fence = &dev_priv->fence_regs[obj->fence_reg];
3028
3029         i915_gem_object_fence_lost(obj);
3030         i915_gem_object_update_fence(obj, fence, false);
3031
3032         return 0;
3033 }
3034
3035 static struct drm_i915_fence_reg *
3036 i915_find_fence_reg(struct drm_device *dev)
3037 {
3038         struct drm_i915_private *dev_priv = dev->dev_private;
3039         struct drm_i915_fence_reg *reg, *avail;
3040         int i;
3041
3042         /* First try to find a free reg */
3043         avail = NULL;
3044         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3045                 reg = &dev_priv->fence_regs[i];
3046                 if (!reg->obj)
3047                         return reg;
3048
3049                 if (!reg->pin_count)
3050                         avail = reg;
3051         }
3052
3053         if (avail == NULL)
3054                 goto deadlock;
3055
3056         /* None available, try to steal one or wait for a user to finish */
3057         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3058                 if (reg->pin_count)
3059                         continue;
3060
3061                 return reg;
3062         }
3063
3064 deadlock:
3065         /* Wait for completion of pending flips which consume fences */
3066         if (intel_has_pending_fb_unpin(dev))
3067                 return ERR_PTR(-EAGAIN);
3068
3069         return ERR_PTR(-EDEADLK);
3070 }
3071
3072 /**
3073  * i915_gem_object_get_fence - set up fencing for an object
3074  * @obj: object to map through a fence reg
3075  *
3076  * When mapping objects through the GTT, userspace wants to be able to write
3077  * to them without having to worry about swizzling if the object is tiled.
3078  * This function walks the fence regs looking for a free one for @obj,
3079  * stealing one if it can't find any.
3080  *
3081  * It then sets up the reg based on the object's properties: address, pitch
3082  * and tiling format.
3083  *
3084  * For an untiled surface, this removes any existing fence.
3085  */
3086 int
3087 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3088 {
3089         struct drm_device *dev = obj->base.dev;
3090         struct drm_i915_private *dev_priv = dev->dev_private;
3091         bool enable = obj->tiling_mode != I915_TILING_NONE;
3092         struct drm_i915_fence_reg *reg;
3093         int ret;
3094
3095         /* Have we updated the tiling parameters upon the object and so
3096          * will need to serialise the write to the associated fence register?
3097          */
3098         if (obj->fence_dirty) {
3099                 ret = i915_gem_object_wait_fence(obj);
3100                 if (ret)
3101                         return ret;
3102         }
3103
3104         /* Just update our place in the LRU if our fence is getting reused. */
3105         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3106                 reg = &dev_priv->fence_regs[obj->fence_reg];
3107                 if (!obj->fence_dirty) {
3108                         list_move_tail(&reg->lru_list,
3109                                        &dev_priv->mm.fence_list);
3110                         return 0;
3111                 }
3112         } else if (enable) {
3113                 reg = i915_find_fence_reg(dev);
3114                 if (IS_ERR(reg))
3115                         return PTR_ERR(reg);
3116
3117                 if (reg->obj) {
3118                         struct drm_i915_gem_object *old = reg->obj;
3119
3120                         ret = i915_gem_object_wait_fence(old);
3121                         if (ret)
3122                                 return ret;
3123
3124                         i915_gem_object_fence_lost(old);
3125                 }
3126         } else
3127                 return 0;
3128
3129         i915_gem_object_update_fence(obj, reg, enable);
3130
3131         return 0;
3132 }
3133
3134 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3135                                      struct drm_mm_node *gtt_space,
3136                                      unsigned long cache_level)
3137 {
3138         struct drm_mm_node *other;
3139
3140         /* On non-LLC machines we have to be careful when putting differing
3141          * types of snoopable memory together to avoid the prefetcher
3142          * crossing memory domains and dying.
3143          */
3144         if (HAS_LLC(dev))
3145                 return true;
3146
3147         if (!drm_mm_node_allocated(gtt_space))
3148                 return true;
3149
3150         if (list_empty(&gtt_space->node_list))
3151                 return true;
3152
3153         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3154         if (other->allocated && !other->hole_follows && other->color != cache_level)
3155                 return false;
3156
3157         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3158         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3159                 return false;
3160
3161         return true;
3162 }
3163
3164 static void i915_gem_verify_gtt(struct drm_device *dev)
3165 {
3166 #if WATCH_GTT
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168         struct drm_i915_gem_object *obj;
3169         int err = 0;
3170
3171         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3172                 if (obj->gtt_space == NULL) {
3173                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3174                         err++;
3175                         continue;
3176                 }
3177
3178                 if (obj->cache_level != obj->gtt_space->color) {
3179                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3180                                i915_gem_obj_ggtt_offset(obj),
3181                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3182                                obj->cache_level,
3183                                obj->gtt_space->color);
3184                         err++;
3185                         continue;
3186                 }
3187
3188                 if (!i915_gem_valid_gtt_space(dev,
3189                                               obj->gtt_space,
3190                                               obj->cache_level)) {
3191                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3192                                i915_gem_obj_ggtt_offset(obj),
3193                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3194                                obj->cache_level);
3195                         err++;
3196                         continue;
3197                 }
3198         }
3199
3200         WARN_ON(err);
3201 #endif
3202 }
3203
3204 /**
3205  * Finds free space in the GTT aperture and binds the object there.
3206  */
3207 static int
3208 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3209                            struct i915_address_space *vm,
3210                            unsigned alignment,
3211                            bool map_and_fenceable,
3212                            bool nonblocking)
3213 {
3214         struct drm_device *dev = obj->base.dev;
3215         drm_i915_private_t *dev_priv = dev->dev_private;
3216         u32 size, fence_size, fence_alignment, unfenced_alignment;
3217         size_t gtt_max =
3218                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3219         struct i915_vma *vma;
3220         int ret;
3221
3222         fence_size = i915_gem_get_gtt_size(dev,
3223                                            obj->base.size,
3224                                            obj->tiling_mode);
3225         fence_alignment = i915_gem_get_gtt_alignment(dev,
3226                                                      obj->base.size,
3227                                                      obj->tiling_mode, true);
3228         unfenced_alignment =
3229                 i915_gem_get_gtt_alignment(dev,
3230                                                     obj->base.size,
3231                                                     obj->tiling_mode, false);
3232
3233         if (alignment == 0)
3234                 alignment = map_and_fenceable ? fence_alignment :
3235                                                 unfenced_alignment;
3236         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3237                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3238                 return -EINVAL;
3239         }
3240
3241         size = map_and_fenceable ? fence_size : obj->base.size;
3242
3243         /* If the object is bigger than the entire aperture, reject it early
3244          * before evicting everything in a vain attempt to find space.
3245          */
3246         if (obj->base.size > gtt_max) {
3247                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3248                           obj->base.size,
3249                           map_and_fenceable ? "mappable" : "total",
3250                           gtt_max);
3251                 return -E2BIG;
3252         }
3253
3254         ret = i915_gem_object_get_pages(obj);
3255         if (ret)
3256                 return ret;
3257
3258         i915_gem_object_pin_pages(obj);
3259
3260         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3261         if (IS_ERR(vma)) {
3262                 ret = PTR_ERR(vma);
3263                 goto err_unpin;
3264         }
3265
3266 search_free:
3267         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3268                                                   size, alignment,
3269                                                   obj->cache_level, 0, gtt_max,
3270                                                   DRM_MM_SEARCH_DEFAULT);
3271         if (ret) {
3272                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3273                                                obj->cache_level,
3274                                                map_and_fenceable,
3275                                                nonblocking);
3276                 if (ret == 0)
3277                         goto search_free;
3278
3279                 goto err_free_vma;
3280         }
3281         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3282                                               obj->cache_level))) {
3283                 ret = -EINVAL;
3284                 goto err_remove_node;
3285         }
3286
3287         ret = i915_gem_gtt_prepare_object(obj);
3288         if (ret)
3289                 goto err_remove_node;
3290
3291         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3292         list_add_tail(&vma->mm_list, &vm->inactive_list);
3293
3294         if (i915_is_ggtt(vm)) {
3295                 bool mappable, fenceable;
3296
3297                 fenceable = (vma->node.size == fence_size &&
3298                              (vma->node.start & (fence_alignment - 1)) == 0);
3299
3300                 mappable = (vma->node.start + obj->base.size <=
3301                             dev_priv->gtt.mappable_end);
3302
3303                 obj->map_and_fenceable = mappable && fenceable;
3304         }
3305
3306         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3307
3308         trace_i915_vma_bind(vma, map_and_fenceable);
3309         i915_gem_verify_gtt(dev);
3310         return 0;
3311
3312 err_remove_node:
3313         drm_mm_remove_node(&vma->node);
3314 err_free_vma:
3315         i915_gem_vma_destroy(vma);
3316 err_unpin:
3317         i915_gem_object_unpin_pages(obj);
3318         return ret;
3319 }
3320
3321 bool
3322 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3323                         bool force)
3324 {
3325         /* If we don't have a page list set up, then we're not pinned
3326          * to GPU, and we can ignore the cache flush because it'll happen
3327          * again at bind time.
3328          */
3329         if (obj->pages == NULL)
3330                 return false;
3331
3332         /*
3333          * Stolen memory is always coherent with the GPU as it is explicitly
3334          * marked as wc by the system, or the system is cache-coherent.
3335          */
3336         if (obj->stolen)
3337                 return false;
3338
3339         /* If the GPU is snooping the contents of the CPU cache,
3340          * we do not need to manually clear the CPU cache lines.  However,
3341          * the caches are only snooped when the render cache is
3342          * flushed/invalidated.  As we always have to emit invalidations
3343          * and flushes when moving into and out of the RENDER domain, correct
3344          * snooping behaviour occurs naturally as the result of our domain
3345          * tracking.
3346          */
3347         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3348                 return false;
3349
3350         trace_i915_gem_object_clflush(obj);
3351         drm_clflush_sg(obj->pages);
3352
3353         return true;
3354 }
3355
3356 /** Flushes the GTT write domain for the object if it's dirty. */
3357 static void
3358 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3359 {
3360         uint32_t old_write_domain;
3361
3362         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3363                 return;
3364
3365         /* No actual flushing is required for the GTT write domain.  Writes
3366          * to it immediately go to main memory as far as we know, so there's
3367          * no chipset flush.  It also doesn't land in render cache.
3368          *
3369          * However, we do have to enforce the order so that all writes through
3370          * the GTT land before any writes to the device, such as updates to
3371          * the GATT itself.
3372          */
3373         wmb();
3374
3375         old_write_domain = obj->base.write_domain;
3376         obj->base.write_domain = 0;
3377
3378         trace_i915_gem_object_change_domain(obj,
3379                                             obj->base.read_domains,
3380                                             old_write_domain);
3381 }
3382
3383 /** Flushes the CPU write domain for the object if it's dirty. */
3384 static void
3385 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3386                                        bool force)
3387 {
3388         uint32_t old_write_domain;
3389
3390         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3391                 return;
3392
3393         if (i915_gem_clflush_object(obj, force))
3394                 i915_gem_chipset_flush(obj->base.dev);
3395
3396         old_write_domain = obj->base.write_domain;
3397         obj->base.write_domain = 0;
3398
3399         trace_i915_gem_object_change_domain(obj,
3400                                             obj->base.read_domains,
3401                                             old_write_domain);
3402 }
3403
3404 /**
3405  * Moves a single object to the GTT read, and possibly write domain.
3406  *
3407  * This function returns when the move is complete, including waiting on
3408  * flushes to occur.
3409  */
3410 int
3411 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3412 {
3413         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3414         uint32_t old_write_domain, old_read_domains;
3415         int ret;
3416
3417         /* Not valid to be called on unbound objects. */
3418         if (!i915_gem_obj_bound_any(obj))
3419                 return -EINVAL;
3420
3421         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3422                 return 0;
3423
3424         ret = i915_gem_object_wait_rendering(obj, !write);
3425         if (ret)
3426                 return ret;
3427
3428         i915_gem_object_flush_cpu_write_domain(obj, false);
3429
3430         /* Serialise direct access to this object with the barriers for
3431          * coherent writes from the GPU, by effectively invalidating the
3432          * GTT domain upon first access.
3433          */
3434         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3435                 mb();
3436
3437         old_write_domain = obj->base.write_domain;
3438         old_read_domains = obj->base.read_domains;
3439
3440         /* It should now be out of any other write domains, and we can update
3441          * the domain values for our changes.
3442          */
3443         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3445         if (write) {
3446                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448                 obj->dirty = 1;
3449         }
3450
3451         trace_i915_gem_object_change_domain(obj,
3452                                             old_read_domains,
3453                                             old_write_domain);
3454
3455         /* And bump the LRU for this access */
3456         if (i915_gem_object_is_inactive(obj)) {
3457                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3458                 if (vma)
3459                         list_move_tail(&vma->mm_list,
3460                                        &dev_priv->gtt.base.inactive_list);
3461
3462         }
3463
3464         return 0;
3465 }
3466
3467 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3468                                     enum i915_cache_level cache_level)
3469 {
3470         struct drm_device *dev = obj->base.dev;
3471         struct i915_vma *vma;
3472         int ret;
3473
3474         if (obj->cache_level == cache_level)
3475                 return 0;
3476
3477         if (i915_gem_obj_is_pinned(obj)) {
3478                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3479                 return -EBUSY;
3480         }
3481
3482         list_for_each_entry(vma, &obj->vma_list, vma_link) {
3483                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3484                         ret = i915_vma_unbind(vma);
3485                         if (ret)
3486                                 return ret;
3487
3488                         break;
3489                 }
3490         }
3491
3492         if (i915_gem_obj_bound_any(obj)) {
3493                 ret = i915_gem_object_finish_gpu(obj);
3494                 if (ret)
3495                         return ret;
3496
3497                 i915_gem_object_finish_gtt(obj);
3498
3499                 /* Before SandyBridge, you could not use tiling or fence
3500                  * registers with snooped memory, so relinquish any fences
3501                  * currently pointing to our region in the aperture.
3502                  */
3503                 if (INTEL_INFO(dev)->gen < 6) {
3504                         ret = i915_gem_object_put_fence(obj);
3505                         if (ret)
3506                                 return ret;
3507                 }
3508
3509                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3510                         vma->bind_vma(vma, cache_level, 0);
3511         }
3512
3513         list_for_each_entry(vma, &obj->vma_list, vma_link)
3514                 vma->node.color = cache_level;
3515         obj->cache_level = cache_level;
3516
3517         if (cpu_write_needs_clflush(obj)) {
3518                 u32 old_read_domains, old_write_domain;
3519
3520                 /* If we're coming from LLC cached, then we haven't
3521                  * actually been tracking whether the data is in the
3522                  * CPU cache or not, since we only allow one bit set
3523                  * in obj->write_domain and have been skipping the clflushes.
3524                  * Just set it to the CPU cache for now.
3525                  */
3526                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3527
3528                 old_read_domains = obj->base.read_domains;
3529                 old_write_domain = obj->base.write_domain;
3530
3531                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3532                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533
3534                 trace_i915_gem_object_change_domain(obj,
3535                                                     old_read_domains,
3536                                                     old_write_domain);
3537         }
3538
3539         i915_gem_verify_gtt(dev);
3540         return 0;
3541 }
3542
3543 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3544                                struct drm_file *file)
3545 {
3546         struct drm_i915_gem_caching *args = data;
3547         struct drm_i915_gem_object *obj;
3548         int ret;
3549
3550         ret = i915_mutex_lock_interruptible(dev);
3551         if (ret)
3552                 return ret;
3553
3554         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3555         if (&obj->base == NULL) {
3556                 ret = -ENOENT;
3557                 goto unlock;
3558         }
3559
3560         switch (obj->cache_level) {
3561         case I915_CACHE_LLC:
3562         case I915_CACHE_L3_LLC:
3563                 args->caching = I915_CACHING_CACHED;
3564                 break;
3565
3566         case I915_CACHE_WT:
3567                 args->caching = I915_CACHING_DISPLAY;
3568                 break;
3569
3570         default:
3571                 args->caching = I915_CACHING_NONE;
3572                 break;
3573         }
3574
3575         drm_gem_object_unreference(&obj->base);
3576 unlock:
3577         mutex_unlock(&dev->struct_mutex);
3578         return ret;
3579 }
3580
3581 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3582                                struct drm_file *file)
3583 {
3584         struct drm_i915_gem_caching *args = data;
3585         struct drm_i915_gem_object *obj;
3586         enum i915_cache_level level;
3587         int ret;
3588
3589         switch (args->caching) {
3590         case I915_CACHING_NONE:
3591                 level = I915_CACHE_NONE;
3592                 break;
3593         case I915_CACHING_CACHED:
3594                 level = I915_CACHE_LLC;
3595                 break;
3596         case I915_CACHING_DISPLAY:
3597                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3598                 break;
3599         default:
3600                 return -EINVAL;
3601         }
3602
3603         ret = i915_mutex_lock_interruptible(dev);
3604         if (ret)
3605                 return ret;
3606
3607         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3608         if (&obj->base == NULL) {
3609                 ret = -ENOENT;
3610                 goto unlock;
3611         }
3612
3613         ret = i915_gem_object_set_cache_level(obj, level);
3614
3615         drm_gem_object_unreference(&obj->base);
3616 unlock:
3617         mutex_unlock(&dev->struct_mutex);
3618         return ret;
3619 }
3620
3621 static bool is_pin_display(struct drm_i915_gem_object *obj)
3622 {
3623         /* There are 3 sources that pin objects:
3624          *   1. The display engine (scanouts, sprites, cursors);
3625          *   2. Reservations for execbuffer;
3626          *   3. The user.
3627          *
3628          * We can ignore reservations as we hold the struct_mutex and
3629          * are only called outside of the reservation path.  The user
3630          * can only increment pin_count once, and so if after
3631          * subtracting the potential reference by the user, any pin_count
3632          * remains, it must be due to another use by the display engine.
3633          */
3634         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3635 }
3636
3637 /*
3638  * Prepare buffer for display plane (scanout, cursors, etc).
3639  * Can be called from an uninterruptible phase (modesetting) and allows
3640  * any flushes to be pipelined (for pageflips).
3641  */
3642 int
3643 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3644                                      u32 alignment,
3645                                      struct intel_ring_buffer *pipelined)
3646 {
3647         u32 old_read_domains, old_write_domain;
3648         int ret;
3649
3650         if (pipelined != obj->ring) {
3651                 ret = i915_gem_object_sync(obj, pipelined);
3652                 if (ret)
3653                         return ret;
3654         }
3655
3656         /* Mark the pin_display early so that we account for the
3657          * display coherency whilst setting up the cache domains.
3658          */
3659         obj->pin_display = true;
3660
3661         /* The display engine is not coherent with the LLC cache on gen6.  As
3662          * a result, we make sure that the pinning that is about to occur is
3663          * done with uncached PTEs. This is lowest common denominator for all
3664          * chipsets.
3665          *
3666          * However for gen6+, we could do better by using the GFDT bit instead
3667          * of uncaching, which would allow us to flush all the LLC-cached data
3668          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3669          */
3670         ret = i915_gem_object_set_cache_level(obj,
3671                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3672         if (ret)
3673                 goto err_unpin_display;
3674
3675         /* As the user may map the buffer once pinned in the display plane
3676          * (e.g. libkms for the bootup splash), we have to ensure that we
3677          * always use map_and_fenceable for all scanout buffers.
3678          */
3679         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3680         if (ret)
3681                 goto err_unpin_display;
3682
3683         i915_gem_object_flush_cpu_write_domain(obj, true);
3684
3685         old_write_domain = obj->base.write_domain;
3686         old_read_domains = obj->base.read_domains;
3687
3688         /* It should now be out of any other write domains, and we can update
3689          * the domain values for our changes.
3690          */
3691         obj->base.write_domain = 0;
3692         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3693
3694         trace_i915_gem_object_change_domain(obj,
3695                                             old_read_domains,
3696                                             old_write_domain);
3697
3698         return 0;
3699
3700 err_unpin_display:
3701         obj->pin_display = is_pin_display(obj);
3702         return ret;
3703 }
3704
3705 void
3706 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3707 {
3708         i915_gem_object_ggtt_unpin(obj);
3709         obj->pin_display = is_pin_display(obj);
3710 }
3711
3712 int
3713 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3714 {
3715         int ret;
3716
3717         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3718                 return 0;
3719
3720         ret = i915_gem_object_wait_rendering(obj, false);
3721         if (ret)
3722                 return ret;
3723
3724         /* Ensure that we invalidate the GPU's caches and TLBs. */
3725         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3726         return 0;
3727 }
3728
3729 /**
3730  * Moves a single object to the CPU read, and possibly write domain.
3731  *
3732  * This function returns when the move is complete, including waiting on
3733  * flushes to occur.
3734  */
3735 int
3736 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3737 {
3738         uint32_t old_write_domain, old_read_domains;
3739         int ret;
3740
3741         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3742                 return 0;
3743
3744         ret = i915_gem_object_wait_rendering(obj, !write);
3745         if (ret)
3746                 return ret;
3747
3748         i915_gem_object_flush_gtt_write_domain(obj);
3749
3750         old_write_domain = obj->base.write_domain;
3751         old_read_domains = obj->base.read_domains;
3752
3753         /* Flush the CPU cache if it's still invalid. */
3754         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3755                 i915_gem_clflush_object(obj, false);
3756
3757                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3758         }
3759
3760         /* It should now be out of any other write domains, and we can update
3761          * the domain values for our changes.
3762          */
3763         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3764
3765         /* If we're writing through the CPU, then the GPU read domains will
3766          * need to be invalidated at next use.
3767          */
3768         if (write) {
3769                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3770                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3771         }
3772
3773         trace_i915_gem_object_change_domain(obj,
3774                                             old_read_domains,
3775                                             old_write_domain);
3776
3777         return 0;
3778 }
3779
3780 /* Throttle our rendering by waiting until the ring has completed our requests
3781  * emitted over 20 msec ago.
3782  *
3783  * Note that if we were to use the current jiffies each time around the loop,
3784  * we wouldn't escape the function with any frames outstanding if the time to
3785  * render a frame was over 20ms.
3786  *
3787  * This should get us reasonable parallelism between CPU and GPU but also
3788  * relatively low latency when blocking on a particular request to finish.
3789  */
3790 static int
3791 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3792 {
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct drm_i915_file_private *file_priv = file->driver_priv;
3795         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3796         struct drm_i915_gem_request *request;
3797         struct intel_ring_buffer *ring = NULL;
3798         unsigned reset_counter;
3799         u32 seqno = 0;
3800         int ret;
3801
3802         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3803         if (ret)
3804                 return ret;
3805
3806         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3807         if (ret)
3808                 return ret;
3809
3810         spin_lock(&file_priv->mm.lock);
3811         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3812                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3813                         break;
3814
3815                 ring = request->ring;
3816                 seqno = request->seqno;
3817         }
3818         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3819         spin_unlock(&file_priv->mm.lock);
3820
3821         if (seqno == 0)
3822                 return 0;
3823
3824         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3825         if (ret == 0)
3826                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3827
3828         return ret;
3829 }
3830
3831 int
3832 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3833                     struct i915_address_space *vm,
3834                     uint32_t alignment,
3835                     bool map_and_fenceable,
3836                     bool nonblocking)
3837 {
3838         const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3839         struct i915_vma *vma;
3840         int ret;
3841
3842         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3843
3844         vma = i915_gem_obj_to_vma(obj, vm);
3845
3846         if (vma) {
3847                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3848                         return -EBUSY;
3849
3850                 if ((alignment &&
3851                      vma->node.start & (alignment - 1)) ||
3852                     (map_and_fenceable && !obj->map_and_fenceable)) {
3853                         WARN(vma->pin_count,
3854                              "bo is already pinned with incorrect alignment:"
3855                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3856                              " obj->map_and_fenceable=%d\n",
3857                              i915_gem_obj_offset(obj, vm), alignment,
3858                              map_and_fenceable,
3859                              obj->map_and_fenceable);
3860                         ret = i915_vma_unbind(vma);
3861                         if (ret)
3862                                 return ret;
3863                 }
3864         }
3865
3866         if (!i915_gem_obj_bound(obj, vm)) {
3867                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3868                                                  map_and_fenceable,
3869                                                  nonblocking);
3870                 if (ret)
3871                         return ret;
3872
3873         }
3874
3875         vma = i915_gem_obj_to_vma(obj, vm);
3876
3877         vma->bind_vma(vma, obj->cache_level, flags);
3878
3879         i915_gem_obj_to_vma(obj, vm)->pin_count++;
3880         obj->pin_mappable |= map_and_fenceable;
3881
3882         return 0;
3883 }
3884
3885 void
3886 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3887 {
3888         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3889
3890         BUG_ON(!vma);
3891         BUG_ON(vma->pin_count == 0);
3892         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3893
3894         if (--vma->pin_count == 0)
3895                 obj->pin_mappable = false;
3896 }
3897
3898 int
3899 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3900                    struct drm_file *file)
3901 {
3902         struct drm_i915_gem_pin *args = data;
3903         struct drm_i915_gem_object *obj;
3904         int ret;
3905
3906         if (INTEL_INFO(dev)->gen >= 6)
3907                 return -ENODEV;
3908
3909         ret = i915_mutex_lock_interruptible(dev);
3910         if (ret)
3911                 return ret;
3912
3913         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3914         if (&obj->base == NULL) {
3915                 ret = -ENOENT;
3916                 goto unlock;
3917         }
3918
3919         if (obj->madv != I915_MADV_WILLNEED) {
3920                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3921                 ret = -EFAULT;
3922                 goto out;
3923         }
3924
3925         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3926                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3927                           args->handle);
3928                 ret = -EINVAL;
3929                 goto out;
3930         }
3931
3932         if (obj->user_pin_count == ULONG_MAX) {
3933                 ret = -EBUSY;
3934                 goto out;
3935         }
3936
3937         if (obj->user_pin_count == 0) {
3938                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3939                 if (ret)
3940                         goto out;
3941         }
3942
3943         obj->user_pin_count++;
3944         obj->pin_filp = file;
3945
3946         args->offset = i915_gem_obj_ggtt_offset(obj);
3947 out:
3948         drm_gem_object_unreference(&obj->base);
3949 unlock:
3950         mutex_unlock(&dev->struct_mutex);
3951         return ret;
3952 }
3953
3954 int
3955 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3956                      struct drm_file *file)
3957 {
3958         struct drm_i915_gem_pin *args = data;
3959         struct drm_i915_gem_object *obj;
3960         int ret;
3961
3962         ret = i915_mutex_lock_interruptible(dev);
3963         if (ret)
3964                 return ret;
3965
3966         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3967         if (&obj->base == NULL) {
3968                 ret = -ENOENT;
3969                 goto unlock;
3970         }
3971
3972         if (obj->pin_filp != file) {
3973                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3974                           args->handle);
3975                 ret = -EINVAL;
3976                 goto out;
3977         }
3978         obj->user_pin_count--;
3979         if (obj->user_pin_count == 0) {
3980                 obj->pin_filp = NULL;
3981                 i915_gem_object_ggtt_unpin(obj);
3982         }
3983
3984 out:
3985         drm_gem_object_unreference(&obj->base);
3986 unlock:
3987         mutex_unlock(&dev->struct_mutex);
3988         return ret;
3989 }
3990
3991 int
3992 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3993                     struct drm_file *file)
3994 {
3995         struct drm_i915_gem_busy *args = data;
3996         struct drm_i915_gem_object *obj;
3997         int ret;
3998
3999         ret = i915_mutex_lock_interruptible(dev);
4000         if (ret)
4001                 return ret;
4002
4003         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4004         if (&obj->base == NULL) {
4005                 ret = -ENOENT;
4006                 goto unlock;
4007         }
4008
4009         /* Count all active objects as busy, even if they are currently not used
4010          * by the gpu. Users of this interface expect objects to eventually
4011          * become non-busy without any further actions, therefore emit any
4012          * necessary flushes here.
4013          */
4014         ret = i915_gem_object_flush_active(obj);
4015
4016         args->busy = obj->active;
4017         if (obj->ring) {
4018                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4019                 args->busy |= intel_ring_flag(obj->ring) << 16;
4020         }
4021
4022         drm_gem_object_unreference(&obj->base);
4023 unlock:
4024         mutex_unlock(&dev->struct_mutex);
4025         return ret;
4026 }
4027
4028 int
4029 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4030                         struct drm_file *file_priv)
4031 {
4032         return i915_gem_ring_throttle(dev, file_priv);
4033 }
4034
4035 int
4036 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4037                        struct drm_file *file_priv)
4038 {
4039         struct drm_i915_gem_madvise *args = data;
4040         struct drm_i915_gem_object *obj;
4041         int ret;
4042
4043         switch (args->madv) {
4044         case I915_MADV_DONTNEED:
4045         case I915_MADV_WILLNEED:
4046             break;
4047         default:
4048             return -EINVAL;
4049         }
4050
4051         ret = i915_mutex_lock_interruptible(dev);
4052         if (ret)
4053                 return ret;
4054
4055         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4056         if (&obj->base == NULL) {
4057                 ret = -ENOENT;
4058                 goto unlock;
4059         }
4060
4061         if (i915_gem_obj_is_pinned(obj)) {
4062                 ret = -EINVAL;
4063                 goto out;
4064         }
4065
4066         if (obj->madv != __I915_MADV_PURGED)
4067                 obj->madv = args->madv;
4068
4069         /* if the object is no longer attached, discard its backing storage */
4070         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4071                 i915_gem_object_truncate(obj);
4072
4073         args->retained = obj->madv != __I915_MADV_PURGED;
4074
4075 out:
4076         drm_gem_object_unreference(&obj->base);
4077 unlock:
4078         mutex_unlock(&dev->struct_mutex);
4079         return ret;
4080 }
4081
4082 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4083                           const struct drm_i915_gem_object_ops *ops)
4084 {
4085         INIT_LIST_HEAD(&obj->global_list);
4086         INIT_LIST_HEAD(&obj->ring_list);
4087         INIT_LIST_HEAD(&obj->obj_exec_link);
4088         INIT_LIST_HEAD(&obj->vma_list);
4089
4090         obj->ops = ops;
4091
4092         obj->fence_reg = I915_FENCE_REG_NONE;
4093         obj->madv = I915_MADV_WILLNEED;
4094         /* Avoid an unnecessary call to unbind on the first bind. */
4095         obj->map_and_fenceable = true;
4096
4097         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4098 }
4099
4100 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4101         .get_pages = i915_gem_object_get_pages_gtt,
4102         .put_pages = i915_gem_object_put_pages_gtt,
4103 };
4104
4105 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4106                                                   size_t size)
4107 {
4108         struct drm_i915_gem_object *obj;
4109         struct address_space *mapping;
4110         gfp_t mask;
4111
4112         obj = i915_gem_object_alloc(dev);
4113         if (obj == NULL)
4114                 return NULL;
4115
4116         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4117                 i915_gem_object_free(obj);
4118                 return NULL;
4119         }
4120
4121         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4122         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4123                 /* 965gm cannot relocate objects above 4GiB. */
4124                 mask &= ~__GFP_HIGHMEM;
4125                 mask |= __GFP_DMA32;
4126         }
4127
4128         mapping = file_inode(obj->base.filp)->i_mapping;
4129         mapping_set_gfp_mask(mapping, mask);
4130
4131         i915_gem_object_init(obj, &i915_gem_object_ops);
4132
4133         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4134         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4135
4136         if (HAS_LLC(dev)) {
4137                 /* On some devices, we can have the GPU use the LLC (the CPU
4138                  * cache) for about a 10% performance improvement
4139                  * compared to uncached.  Graphics requests other than
4140                  * display scanout are coherent with the CPU in
4141                  * accessing this cache.  This means in this mode we
4142                  * don't need to clflush on the CPU side, and on the
4143                  * GPU side we only need to flush internal caches to
4144                  * get data visible to the CPU.
4145                  *
4146                  * However, we maintain the display planes as UC, and so
4147                  * need to rebind when first used as such.
4148                  */
4149                 obj->cache_level = I915_CACHE_LLC;
4150         } else
4151                 obj->cache_level = I915_CACHE_NONE;
4152
4153         trace_i915_gem_object_create(obj);
4154
4155         return obj;
4156 }
4157
4158 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4159 {
4160         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4161         struct drm_device *dev = obj->base.dev;
4162         drm_i915_private_t *dev_priv = dev->dev_private;
4163         struct i915_vma *vma, *next;
4164
4165         intel_runtime_pm_get(dev_priv);
4166
4167         trace_i915_gem_object_destroy(obj);
4168
4169         if (obj->phys_obj)
4170                 i915_gem_detach_phys_object(dev, obj);
4171
4172         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4173                 int ret;
4174
4175                 vma->pin_count = 0;
4176                 ret = i915_vma_unbind(vma);
4177                 if (WARN_ON(ret == -ERESTARTSYS)) {
4178                         bool was_interruptible;
4179
4180                         was_interruptible = dev_priv->mm.interruptible;
4181                         dev_priv->mm.interruptible = false;
4182
4183                         WARN_ON(i915_vma_unbind(vma));
4184
4185                         dev_priv->mm.interruptible = was_interruptible;
4186                 }
4187         }
4188
4189         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4190          * before progressing. */
4191         if (obj->stolen)
4192                 i915_gem_object_unpin_pages(obj);
4193
4194         if (WARN_ON(obj->pages_pin_count))
4195                 obj->pages_pin_count = 0;
4196         i915_gem_object_put_pages(obj);
4197         i915_gem_object_free_mmap_offset(obj);
4198         i915_gem_object_release_stolen(obj);
4199
4200         BUG_ON(obj->pages);
4201
4202         if (obj->base.import_attach)
4203                 drm_prime_gem_destroy(&obj->base, NULL);
4204
4205         drm_gem_object_release(&obj->base);
4206         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4207
4208         kfree(obj->bit_17);
4209         i915_gem_object_free(obj);
4210
4211         intel_runtime_pm_put(dev_priv);
4212 }
4213
4214 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4215                                      struct i915_address_space *vm)
4216 {
4217         struct i915_vma *vma;
4218         list_for_each_entry(vma, &obj->vma_list, vma_link)
4219                 if (vma->vm == vm)
4220                         return vma;
4221
4222         return NULL;
4223 }
4224
4225 void i915_gem_vma_destroy(struct i915_vma *vma)
4226 {
4227         WARN_ON(vma->node.allocated);
4228
4229         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4230         if (!list_empty(&vma->exec_list))
4231                 return;
4232
4233         list_del(&vma->vma_link);
4234
4235         kfree(vma);
4236 }
4237
4238 int
4239 i915_gem_suspend(struct drm_device *dev)
4240 {
4241         drm_i915_private_t *dev_priv = dev->dev_private;
4242         int ret = 0;
4243
4244         mutex_lock(&dev->struct_mutex);
4245         if (dev_priv->ums.mm_suspended)
4246                 goto err;
4247
4248         ret = i915_gpu_idle(dev);
4249         if (ret)
4250                 goto err;
4251
4252         i915_gem_retire_requests(dev);
4253
4254         /* Under UMS, be paranoid and evict. */
4255         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4256                 i915_gem_evict_everything(dev);
4257
4258         i915_kernel_lost_context(dev);
4259         i915_gem_cleanup_ringbuffer(dev);
4260
4261         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4262          * We need to replace this with a semaphore, or something.
4263          * And not confound ums.mm_suspended!
4264          */
4265         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4266                                                              DRIVER_MODESET);
4267         mutex_unlock(&dev->struct_mutex);
4268
4269         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4270         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4271         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4272
4273         return 0;
4274
4275 err:
4276         mutex_unlock(&dev->struct_mutex);
4277         return ret;
4278 }
4279
4280 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4281 {
4282         struct drm_device *dev = ring->dev;
4283         drm_i915_private_t *dev_priv = dev->dev_private;
4284         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4285         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4286         int i, ret;
4287
4288         if (!HAS_L3_DPF(dev) || !remap_info)
4289                 return 0;
4290
4291         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4292         if (ret)
4293                 return ret;
4294
4295         /*
4296          * Note: We do not worry about the concurrent register cacheline hang
4297          * here because no other code should access these registers other than
4298          * at initialization time.
4299          */
4300         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4301                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4302                 intel_ring_emit(ring, reg_base + i);
4303                 intel_ring_emit(ring, remap_info[i/4]);
4304         }
4305
4306         intel_ring_advance(ring);
4307
4308         return ret;
4309 }
4310
4311 void i915_gem_init_swizzling(struct drm_device *dev)
4312 {
4313         drm_i915_private_t *dev_priv = dev->dev_private;
4314
4315         if (INTEL_INFO(dev)->gen < 5 ||
4316             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4317                 return;
4318
4319         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4320                                  DISP_TILE_SURFACE_SWIZZLING);
4321
4322         if (IS_GEN5(dev))
4323                 return;
4324
4325         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4326         if (IS_GEN6(dev))
4327                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4328         else if (IS_GEN7(dev))
4329                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4330         else if (IS_GEN8(dev))
4331                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4332         else
4333                 BUG();
4334 }
4335
4336 static bool
4337 intel_enable_blt(struct drm_device *dev)
4338 {
4339         if (!HAS_BLT(dev))
4340                 return false;
4341
4342         /* The blitter was dysfunctional on early prototypes */
4343         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4344                 DRM_INFO("BLT not supported on this pre-production hardware;"
4345                          " graphics performance will be degraded.\n");
4346                 return false;
4347         }
4348
4349         return true;
4350 }
4351
4352 static int i915_gem_init_rings(struct drm_device *dev)
4353 {
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         int ret;
4356
4357         ret = intel_init_render_ring_buffer(dev);
4358         if (ret)
4359                 return ret;
4360
4361         if (HAS_BSD(dev)) {
4362                 ret = intel_init_bsd_ring_buffer(dev);
4363                 if (ret)
4364                         goto cleanup_render_ring;
4365         }
4366
4367         if (intel_enable_blt(dev)) {
4368                 ret = intel_init_blt_ring_buffer(dev);
4369                 if (ret)
4370                         goto cleanup_bsd_ring;
4371         }
4372
4373         if (HAS_VEBOX(dev)) {
4374                 ret = intel_init_vebox_ring_buffer(dev);
4375                 if (ret)
4376                         goto cleanup_blt_ring;
4377         }
4378
4379
4380         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4381         if (ret)
4382                 goto cleanup_vebox_ring;
4383
4384         return 0;
4385
4386 cleanup_vebox_ring:
4387         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4388 cleanup_blt_ring:
4389         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4390 cleanup_bsd_ring:
4391         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4392 cleanup_render_ring:
4393         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4394
4395         return ret;
4396 }
4397
4398 int
4399 i915_gem_init_hw(struct drm_device *dev)
4400 {
4401         drm_i915_private_t *dev_priv = dev->dev_private;
4402         int ret, i;
4403
4404         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4405                 return -EIO;
4406
4407         if (dev_priv->ellc_size)
4408                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4409
4410         if (IS_HASWELL(dev))
4411                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4412                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4413
4414         if (HAS_PCH_NOP(dev)) {
4415                 if (IS_IVYBRIDGE(dev)) {
4416                         u32 temp = I915_READ(GEN7_MSG_CTL);
4417                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4418                         I915_WRITE(GEN7_MSG_CTL, temp);
4419                 } else if (INTEL_INFO(dev)->gen >= 7) {
4420                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4421                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4422                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4423                 }
4424         }
4425
4426         i915_gem_init_swizzling(dev);
4427
4428         ret = i915_gem_init_rings(dev);
4429         if (ret)
4430                 return ret;
4431
4432         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4433                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4434
4435         /*
4436          * XXX: Contexts should only be initialized once. Doing a switch to the
4437          * default context switch however is something we'd like to do after
4438          * reset or thaw (the latter may not actually be necessary for HW, but
4439          * goes with our code better). Context switching requires rings (for
4440          * the do_switch), but before enabling PPGTT. So don't move this.
4441          */
4442         ret = i915_gem_context_enable(dev_priv);
4443         if (ret) {
4444                 DRM_ERROR("Context enable failed %d\n", ret);
4445                 goto err_out;
4446         }
4447
4448         return 0;
4449
4450 err_out:
4451         i915_gem_cleanup_ringbuffer(dev);
4452         return ret;
4453 }
4454
4455 int i915_gem_init(struct drm_device *dev)
4456 {
4457         struct drm_i915_private *dev_priv = dev->dev_private;
4458         int ret;
4459
4460         mutex_lock(&dev->struct_mutex);
4461
4462         if (IS_VALLEYVIEW(dev)) {
4463                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4464                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4465                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4466                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4467         }
4468
4469         i915_gem_init_global_gtt(dev);
4470
4471         ret = i915_gem_context_init(dev);
4472         if (ret) {
4473                 mutex_unlock(&dev->struct_mutex);
4474                 return ret;
4475         }
4476
4477         ret = i915_gem_init_hw(dev);
4478         mutex_unlock(&dev->struct_mutex);
4479         if (ret) {
4480                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4481                 i915_gem_context_fini(dev);
4482                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4483                 return ret;
4484         }
4485
4486         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4487         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4488                 dev_priv->dri1.allow_batchbuffer = 1;
4489         return 0;
4490 }
4491
4492 void
4493 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4494 {
4495         drm_i915_private_t *dev_priv = dev->dev_private;
4496         struct intel_ring_buffer *ring;
4497         int i;
4498
4499         for_each_ring(ring, dev_priv, i)
4500                 intel_cleanup_ring_buffer(ring);
4501 }
4502
4503 int
4504 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4505                        struct drm_file *file_priv)
4506 {
4507         struct drm_i915_private *dev_priv = dev->dev_private;
4508         int ret;
4509
4510         if (drm_core_check_feature(dev, DRIVER_MODESET))
4511                 return 0;
4512
4513         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4514                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4515                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4516         }
4517
4518         mutex_lock(&dev->struct_mutex);
4519         dev_priv->ums.mm_suspended = 0;
4520
4521         ret = i915_gem_init_hw(dev);
4522         if (ret != 0) {
4523                 mutex_unlock(&dev->struct_mutex);
4524                 return ret;
4525         }
4526
4527         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4528         mutex_unlock(&dev->struct_mutex);
4529
4530         ret = drm_irq_install(dev);
4531         if (ret)
4532                 goto cleanup_ringbuffer;
4533
4534         return 0;
4535
4536 cleanup_ringbuffer:
4537         mutex_lock(&dev->struct_mutex);
4538         i915_gem_cleanup_ringbuffer(dev);
4539         dev_priv->ums.mm_suspended = 1;
4540         mutex_unlock(&dev->struct_mutex);
4541
4542         return ret;
4543 }
4544
4545 int
4546 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4547                        struct drm_file *file_priv)
4548 {
4549         if (drm_core_check_feature(dev, DRIVER_MODESET))
4550                 return 0;
4551
4552         drm_irq_uninstall(dev);
4553
4554         return i915_gem_suspend(dev);
4555 }
4556
4557 void
4558 i915_gem_lastclose(struct drm_device *dev)
4559 {
4560         int ret;
4561
4562         if (drm_core_check_feature(dev, DRIVER_MODESET))
4563                 return;
4564
4565         ret = i915_gem_suspend(dev);
4566         if (ret)
4567                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4568 }
4569
4570 static void
4571 init_ring_lists(struct intel_ring_buffer *ring)
4572 {
4573         INIT_LIST_HEAD(&ring->active_list);
4574         INIT_LIST_HEAD(&ring->request_list);
4575 }
4576
4577 void i915_init_vm(struct drm_i915_private *dev_priv,
4578                   struct i915_address_space *vm)
4579 {
4580         if (!i915_is_ggtt(vm))
4581                 drm_mm_init(&vm->mm, vm->start, vm->total);
4582         vm->dev = dev_priv->dev;
4583         INIT_LIST_HEAD(&vm->active_list);
4584         INIT_LIST_HEAD(&vm->inactive_list);
4585         INIT_LIST_HEAD(&vm->global_link);
4586         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4587 }
4588
4589 void
4590 i915_gem_load(struct drm_device *dev)
4591 {
4592         drm_i915_private_t *dev_priv = dev->dev_private;
4593         int i;
4594
4595         dev_priv->slab =
4596                 kmem_cache_create("i915_gem_object",
4597                                   sizeof(struct drm_i915_gem_object), 0,
4598                                   SLAB_HWCACHE_ALIGN,
4599                                   NULL);
4600
4601         INIT_LIST_HEAD(&dev_priv->vm_list);
4602         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4603
4604         INIT_LIST_HEAD(&dev_priv->context_list);
4605         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4606         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4607         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4608         for (i = 0; i < I915_NUM_RINGS; i++)
4609                 init_ring_lists(&dev_priv->ring[i]);
4610         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4611                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4612         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4613                           i915_gem_retire_work_handler);
4614         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4615                           i915_gem_idle_work_handler);
4616         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4617
4618         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4619         if (IS_GEN3(dev)) {
4620                 I915_WRITE(MI_ARB_STATE,
4621                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4622         }
4623
4624         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4625
4626         /* Old X drivers will take 0-2 for front, back, depth buffers */
4627         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4628                 dev_priv->fence_reg_start = 3;
4629
4630         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4631                 dev_priv->num_fence_regs = 32;
4632         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4633                 dev_priv->num_fence_regs = 16;
4634         else
4635                 dev_priv->num_fence_regs = 8;
4636
4637         /* Initialize fence registers to zero */
4638         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4639         i915_gem_restore_fences(dev);
4640
4641         i915_gem_detect_bit_6_swizzle(dev);
4642         init_waitqueue_head(&dev_priv->pending_flip_queue);
4643
4644         dev_priv->mm.interruptible = true;
4645
4646         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4647         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4648         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4649         register_shrinker(&dev_priv->mm.inactive_shrinker);
4650 }
4651
4652 /*
4653  * Create a physically contiguous memory object for this object
4654  * e.g. for cursor + overlay regs
4655  */
4656 static int i915_gem_init_phys_object(struct drm_device *dev,
4657                                      int id, int size, int align)
4658 {
4659         drm_i915_private_t *dev_priv = dev->dev_private;
4660         struct drm_i915_gem_phys_object *phys_obj;
4661         int ret;
4662
4663         if (dev_priv->mm.phys_objs[id - 1] || !size)
4664                 return 0;
4665
4666         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4667         if (!phys_obj)
4668                 return -ENOMEM;
4669
4670         phys_obj->id = id;
4671
4672         phys_obj->handle = drm_pci_alloc(dev, size, align);
4673         if (!phys_obj->handle) {
4674                 ret = -ENOMEM;
4675                 goto kfree_obj;
4676         }
4677 #ifdef CONFIG_X86
4678         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4679 #endif
4680
4681         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4682
4683         return 0;
4684 kfree_obj:
4685         kfree(phys_obj);
4686         return ret;
4687 }
4688
4689 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4690 {
4691         drm_i915_private_t *dev_priv = dev->dev_private;
4692         struct drm_i915_gem_phys_object *phys_obj;
4693
4694         if (!dev_priv->mm.phys_objs[id - 1])
4695                 return;
4696
4697         phys_obj = dev_priv->mm.phys_objs[id - 1];
4698         if (phys_obj->cur_obj) {
4699                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4700         }
4701
4702 #ifdef CONFIG_X86
4703         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4704 #endif
4705         drm_pci_free(dev, phys_obj->handle);
4706         kfree(phys_obj);
4707         dev_priv->mm.phys_objs[id - 1] = NULL;
4708 }
4709
4710 void i915_gem_free_all_phys_object(struct drm_device *dev)
4711 {
4712         int i;
4713
4714         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4715                 i915_gem_free_phys_object(dev, i);
4716 }
4717
4718 void i915_gem_detach_phys_object(struct drm_device *dev,
4719                                  struct drm_i915_gem_object *obj)
4720 {
4721         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4722         char *vaddr;
4723         int i;
4724         int page_count;
4725
4726         if (!obj->phys_obj)
4727                 return;
4728         vaddr = obj->phys_obj->handle->vaddr;
4729
4730         page_count = obj->base.size / PAGE_SIZE;
4731         for (i = 0; i < page_count; i++) {
4732                 struct page *page = shmem_read_mapping_page(mapping, i);
4733                 if (!IS_ERR(page)) {
4734                         char *dst = kmap_atomic(page);
4735                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4736                         kunmap_atomic(dst);
4737
4738                         drm_clflush_pages(&page, 1);
4739
4740                         set_page_dirty(page);
4741                         mark_page_accessed(page);
4742                         page_cache_release(page);
4743                 }
4744         }
4745         i915_gem_chipset_flush(dev);
4746
4747         obj->phys_obj->cur_obj = NULL;
4748         obj->phys_obj = NULL;
4749 }
4750
4751 int
4752 i915_gem_attach_phys_object(struct drm_device *dev,
4753                             struct drm_i915_gem_object *obj,
4754                             int id,
4755                             int align)
4756 {
4757         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4758         drm_i915_private_t *dev_priv = dev->dev_private;
4759         int ret = 0;
4760         int page_count;
4761         int i;
4762
4763         if (id > I915_MAX_PHYS_OBJECT)
4764                 return -EINVAL;
4765
4766         if (obj->phys_obj) {
4767                 if (obj->phys_obj->id == id)
4768                         return 0;
4769                 i915_gem_detach_phys_object(dev, obj);
4770         }
4771
4772         /* create a new object */
4773         if (!dev_priv->mm.phys_objs[id - 1]) {
4774                 ret = i915_gem_init_phys_object(dev, id,
4775                                                 obj->base.size, align);
4776                 if (ret) {
4777                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4778                                   id, obj->base.size);
4779                         return ret;
4780                 }
4781         }
4782
4783         /* bind to the object */
4784         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4785         obj->phys_obj->cur_obj = obj;
4786
4787         page_count = obj->base.size / PAGE_SIZE;
4788
4789         for (i = 0; i < page_count; i++) {
4790                 struct page *page;
4791                 char *dst, *src;
4792
4793                 page = shmem_read_mapping_page(mapping, i);
4794                 if (IS_ERR(page))
4795                         return PTR_ERR(page);
4796
4797                 src = kmap_atomic(page);
4798                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4799                 memcpy(dst, src, PAGE_SIZE);
4800                 kunmap_atomic(src);
4801
4802                 mark_page_accessed(page);
4803                 page_cache_release(page);
4804         }
4805
4806         return 0;
4807 }
4808
4809 static int
4810 i915_gem_phys_pwrite(struct drm_device *dev,
4811                      struct drm_i915_gem_object *obj,
4812                      struct drm_i915_gem_pwrite *args,
4813                      struct drm_file *file_priv)
4814 {
4815         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4816         char __user *user_data = to_user_ptr(args->data_ptr);
4817
4818         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4819                 unsigned long unwritten;
4820
4821                 /* The physical object once assigned is fixed for the lifetime
4822                  * of the obj, so we can safely drop the lock and continue
4823                  * to access vaddr.
4824                  */
4825                 mutex_unlock(&dev->struct_mutex);
4826                 unwritten = copy_from_user(vaddr, user_data, args->size);
4827                 mutex_lock(&dev->struct_mutex);
4828                 if (unwritten)
4829                         return -EFAULT;
4830         }
4831
4832         i915_gem_chipset_flush(dev);
4833         return 0;
4834 }
4835
4836 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4837 {
4838         struct drm_i915_file_private *file_priv = file->driver_priv;
4839
4840         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4841
4842         /* Clean up our request list when the client is going away, so that
4843          * later retire_requests won't dereference our soon-to-be-gone
4844          * file_priv.
4845          */
4846         spin_lock(&file_priv->mm.lock);
4847         while (!list_empty(&file_priv->mm.request_list)) {
4848                 struct drm_i915_gem_request *request;
4849
4850                 request = list_first_entry(&file_priv->mm.request_list,
4851                                            struct drm_i915_gem_request,
4852                                            client_list);
4853                 list_del(&request->client_list);
4854                 request->file_priv = NULL;
4855         }
4856         spin_unlock(&file_priv->mm.lock);
4857 }
4858
4859 static void
4860 i915_gem_file_idle_work_handler(struct work_struct *work)
4861 {
4862         struct drm_i915_file_private *file_priv =
4863                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4864
4865         atomic_set(&file_priv->rps_wait_boost, false);
4866 }
4867
4868 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4869 {
4870         struct drm_i915_file_private *file_priv;
4871         int ret;
4872
4873         DRM_DEBUG_DRIVER("\n");
4874
4875         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4876         if (!file_priv)
4877                 return -ENOMEM;
4878
4879         file->driver_priv = file_priv;
4880         file_priv->dev_priv = dev->dev_private;
4881
4882         spin_lock_init(&file_priv->mm.lock);
4883         INIT_LIST_HEAD(&file_priv->mm.request_list);
4884         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4885                           i915_gem_file_idle_work_handler);
4886
4887         ret = i915_gem_context_open(dev, file);
4888         if (ret)
4889                 kfree(file_priv);
4890
4891         return ret;
4892 }
4893
4894 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4895 {
4896         if (!mutex_is_locked(mutex))
4897                 return false;
4898
4899 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4900         return mutex->owner == task;
4901 #else
4902         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4903         return false;
4904 #endif
4905 }
4906
4907 static unsigned long
4908 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4909 {
4910         struct drm_i915_private *dev_priv =
4911                 container_of(shrinker,
4912                              struct drm_i915_private,
4913                              mm.inactive_shrinker);
4914         struct drm_device *dev = dev_priv->dev;
4915         struct drm_i915_gem_object *obj;
4916         bool unlock = true;
4917         unsigned long count;
4918
4919         if (!mutex_trylock(&dev->struct_mutex)) {
4920                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4921                         return 0;
4922
4923                 if (dev_priv->mm.shrinker_no_lock_stealing)
4924                         return 0;
4925
4926                 unlock = false;
4927         }
4928
4929         count = 0;
4930         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4931                 if (obj->pages_pin_count == 0)
4932                         count += obj->base.size >> PAGE_SHIFT;
4933
4934         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4935                 if (obj->active)
4936                         continue;
4937
4938                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4939                         count += obj->base.size >> PAGE_SHIFT;
4940         }
4941
4942         if (unlock)
4943                 mutex_unlock(&dev->struct_mutex);
4944
4945         return count;
4946 }
4947
4948 /* All the new VM stuff */
4949 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4950                                   struct i915_address_space *vm)
4951 {
4952         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4953         struct i915_vma *vma;
4954
4955         if (!dev_priv->mm.aliasing_ppgtt ||
4956             vm == &dev_priv->mm.aliasing_ppgtt->base)
4957                 vm = &dev_priv->gtt.base;
4958
4959         BUG_ON(list_empty(&o->vma_list));
4960         list_for_each_entry(vma, &o->vma_list, vma_link) {
4961                 if (vma->vm == vm)
4962                         return vma->node.start;
4963
4964         }
4965         return -1;
4966 }
4967
4968 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4969                         struct i915_address_space *vm)
4970 {
4971         struct i915_vma *vma;
4972
4973         list_for_each_entry(vma, &o->vma_list, vma_link)
4974                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4975                         return true;
4976
4977         return false;
4978 }
4979
4980 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4981 {
4982         struct i915_vma *vma;
4983
4984         list_for_each_entry(vma, &o->vma_list, vma_link)
4985                 if (drm_mm_node_allocated(&vma->node))
4986                         return true;
4987
4988         return false;
4989 }
4990
4991 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4992                                 struct i915_address_space *vm)
4993 {
4994         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4995         struct i915_vma *vma;
4996
4997         if (!dev_priv->mm.aliasing_ppgtt ||
4998             vm == &dev_priv->mm.aliasing_ppgtt->base)
4999                 vm = &dev_priv->gtt.base;
5000
5001         BUG_ON(list_empty(&o->vma_list));
5002
5003         list_for_each_entry(vma, &o->vma_list, vma_link)
5004                 if (vma->vm == vm)
5005                         return vma->node.size;
5006
5007         return 0;
5008 }
5009
5010 static unsigned long
5011 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5012 {
5013         struct drm_i915_private *dev_priv =
5014                 container_of(shrinker,
5015                              struct drm_i915_private,
5016                              mm.inactive_shrinker);
5017         struct drm_device *dev = dev_priv->dev;
5018         unsigned long freed;
5019         bool unlock = true;
5020
5021         if (!mutex_trylock(&dev->struct_mutex)) {
5022                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5023                         return SHRINK_STOP;
5024
5025                 if (dev_priv->mm.shrinker_no_lock_stealing)
5026                         return SHRINK_STOP;
5027
5028                 unlock = false;
5029         }
5030
5031         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5032         if (freed < sc->nr_to_scan)
5033                 freed += __i915_gem_shrink(dev_priv,
5034                                            sc->nr_to_scan - freed,
5035                                            false);
5036         if (freed < sc->nr_to_scan)
5037                 freed += i915_gem_shrink_all(dev_priv);
5038
5039         if (unlock)
5040                 mutex_unlock(&dev->struct_mutex);
5041
5042         return freed;
5043 }
5044
5045 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5046 {
5047         struct i915_vma *vma;
5048
5049         if (WARN_ON(list_empty(&obj->vma_list)))
5050                 return NULL;
5051
5052         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5053         if (vma->vm != obj_to_ggtt(obj))
5054                 return NULL;
5055
5056         return vma;
5057 }