drm/i915: Drop schedule_back from psr_exit
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (i915_gem_obj_is_pinned(obj))
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214         drm_dma_handle_t *phys = obj->phys_handle;
215
216         if (!phys)
217                 return;
218
219         if (obj->madv == I915_MADV_WILLNEED) {
220                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221                 char *vaddr = phys->vaddr;
222                 int i;
223
224                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225                         struct page *page = shmem_read_mapping_page(mapping, i);
226                         if (!IS_ERR(page)) {
227                                 char *dst = kmap_atomic(page);
228                                 memcpy(dst, vaddr, PAGE_SIZE);
229                                 drm_clflush_virt_range(dst, PAGE_SIZE);
230                                 kunmap_atomic(dst);
231
232                                 set_page_dirty(page);
233                                 mark_page_accessed(page);
234                                 page_cache_release(page);
235                         }
236                         vaddr += PAGE_SIZE;
237                 }
238                 i915_gem_chipset_flush(obj->base.dev);
239         }
240
241 #ifdef CONFIG_X86
242         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244         drm_pci_free(obj->base.dev, phys);
245         obj->phys_handle = NULL;
246 }
247
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250                             int align)
251 {
252         drm_dma_handle_t *phys;
253         struct address_space *mapping;
254         char *vaddr;
255         int i;
256
257         if (obj->phys_handle) {
258                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259                         return -EBUSY;
260
261                 return 0;
262         }
263
264         if (obj->madv != I915_MADV_WILLNEED)
265                 return -EFAULT;
266
267         if (obj->base.filp == NULL)
268                 return -EINVAL;
269
270         /* create a new object */
271         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272         if (!phys)
273                 return -ENOMEM;
274
275         vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279         mapping = file_inode(obj->base.filp)->i_mapping;
280         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281                 struct page *page;
282                 char *src;
283
284                 page = shmem_read_mapping_page(mapping, i);
285                 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289                         drm_pci_free(obj->base.dev, phys);
290                         return PTR_ERR(page);
291                 }
292
293                 src = kmap_atomic(page);
294                 memcpy(vaddr, src, PAGE_SIZE);
295                 kunmap_atomic(src);
296
297                 mark_page_accessed(page);
298                 page_cache_release(page);
299
300                 vaddr += PAGE_SIZE;
301         }
302
303         obj->phys_handle = phys;
304         return 0;
305 }
306
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309                      struct drm_i915_gem_pwrite *args,
310                      struct drm_file *file_priv)
311 {
312         struct drm_device *dev = obj->base.dev;
313         void *vaddr = obj->phys_handle->vaddr + args->offset;
314         char __user *user_data = to_user_ptr(args->data_ptr);
315
316         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317                 unsigned long unwritten;
318
319                 /* The physical object once assigned is fixed for the lifetime
320                  * of the obj, so we can safely drop the lock and continue
321                  * to access vaddr.
322                  */
323                 mutex_unlock(&dev->struct_mutex);
324                 unwritten = copy_from_user(vaddr, user_data, args->size);
325                 mutex_lock(&dev->struct_mutex);
326                 if (unwritten)
327                         return -EFAULT;
328         }
329
330         i915_gem_chipset_flush(dev);
331         return 0;
332 }
333
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336         struct drm_i915_private *dev_priv = dev->dev_private;
337         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343         kmem_cache_free(dev_priv->slab, obj);
344 }
345
346 static int
347 i915_gem_create(struct drm_file *file,
348                 struct drm_device *dev,
349                 uint64_t size,
350                 uint32_t *handle_p)
351 {
352         struct drm_i915_gem_object *obj;
353         int ret;
354         u32 handle;
355
356         size = roundup(size, PAGE_SIZE);
357         if (size == 0)
358                 return -EINVAL;
359
360         /* Allocate the new object */
361         obj = i915_gem_alloc_object(dev, size);
362         if (obj == NULL)
363                 return -ENOMEM;
364
365         ret = drm_gem_handle_create(file, &obj->base, &handle);
366         /* drop reference from allocate - handle holds it now */
367         drm_gem_object_unreference_unlocked(&obj->base);
368         if (ret)
369                 return ret;
370
371         *handle_p = handle;
372         return 0;
373 }
374
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377                      struct drm_device *dev,
378                      struct drm_mode_create_dumb *args)
379 {
380         /* have to work out size/pitch and return them */
381         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382         args->size = args->pitch * args->height;
383         return i915_gem_create(file, dev,
384                                args->size, &args->handle);
385 }
386
387 /**
388  * Creates a new mm object and returns a handle to it.
389  */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392                       struct drm_file *file)
393 {
394         struct drm_i915_gem_create *args = data;
395
396         return i915_gem_create(file, dev,
397                                args->size, &args->handle);
398 }
399
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402                         const char *gpu_vaddr, int gpu_offset,
403                         int length)
404 {
405         int ret, cpu_offset = 0;
406
407         while (length > 0) {
408                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409                 int this_length = min(cacheline_end - gpu_offset, length);
410                 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413                                      gpu_vaddr + swizzled_gpu_offset,
414                                      this_length);
415                 if (ret)
416                         return ret + length;
417
418                 cpu_offset += this_length;
419                 gpu_offset += this_length;
420                 length -= this_length;
421         }
422
423         return 0;
424 }
425
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428                           const char __user *cpu_vaddr,
429                           int length)
430 {
431         int ret, cpu_offset = 0;
432
433         while (length > 0) {
434                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435                 int this_length = min(cacheline_end - gpu_offset, length);
436                 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439                                        cpu_vaddr + cpu_offset,
440                                        this_length);
441                 if (ret)
442                         return ret + length;
443
444                 cpu_offset += this_length;
445                 gpu_offset += this_length;
446                 length -= this_length;
447         }
448
449         return 0;
450 }
451
452 /*
453  * Pins the specified object's pages and synchronizes the object with
454  * GPU accesses. Sets needs_clflush to non-zero if the caller should
455  * flush the object from the CPU cache.
456  */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458                                     int *needs_clflush)
459 {
460         int ret;
461
462         *needs_clflush = 0;
463
464         if (!obj->base.filp)
465                 return -EINVAL;
466
467         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468                 /* If we're not in the cpu read domain, set ourself into the gtt
469                  * read domain and manually flush cachelines (if required). This
470                  * optimizes for the case when the gpu will dirty the data
471                  * anyway again before the next pread happens. */
472                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473                                                         obj->cache_level);
474                 ret = i915_gem_object_wait_rendering(obj, true);
475                 if (ret)
476                         return ret;
477
478                 i915_gem_object_retire(obj);
479         }
480
481         ret = i915_gem_object_get_pages(obj);
482         if (ret)
483                 return ret;
484
485         i915_gem_object_pin_pages(obj);
486
487         return ret;
488 }
489
490 /* Per-page copy function for the shmem pread fastpath.
491  * Flushes invalid cachelines before reading the target if
492  * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495                  char __user *user_data,
496                  bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498         char *vaddr;
499         int ret;
500
501         if (unlikely(page_do_bit17_swizzling))
502                 return -EINVAL;
503
504         vaddr = kmap_atomic(page);
505         if (needs_clflush)
506                 drm_clflush_virt_range(vaddr + shmem_page_offset,
507                                        page_length);
508         ret = __copy_to_user_inatomic(user_data,
509                                       vaddr + shmem_page_offset,
510                                       page_length);
511         kunmap_atomic(vaddr);
512
513         return ret ? -EFAULT : 0;
514 }
515
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518                              bool swizzled)
519 {
520         if (unlikely(swizzled)) {
521                 unsigned long start = (unsigned long) addr;
522                 unsigned long end = (unsigned long) addr + length;
523
524                 /* For swizzling simply ensure that we always flush both
525                  * channels. Lame, but simple and it works. Swizzled
526                  * pwrite/pread is far from a hotpath - current userspace
527                  * doesn't use it at all. */
528                 start = round_down(start, 128);
529                 end = round_up(end, 128);
530
531                 drm_clflush_virt_range((void *)start, end - start);
532         } else {
533                 drm_clflush_virt_range(addr, length);
534         }
535
536 }
537
538 /* Only difference to the fast-path function is that this can handle bit17
539  * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542                  char __user *user_data,
543                  bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545         char *vaddr;
546         int ret;
547
548         vaddr = kmap(page);
549         if (needs_clflush)
550                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551                                              page_length,
552                                              page_do_bit17_swizzling);
553
554         if (page_do_bit17_swizzling)
555                 ret = __copy_to_user_swizzled(user_data,
556                                               vaddr, shmem_page_offset,
557                                               page_length);
558         else
559                 ret = __copy_to_user(user_data,
560                                      vaddr + shmem_page_offset,
561                                      page_length);
562         kunmap(page);
563
564         return ret ? - EFAULT : 0;
565 }
566
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569                      struct drm_i915_gem_object *obj,
570                      struct drm_i915_gem_pread *args,
571                      struct drm_file *file)
572 {
573         char __user *user_data;
574         ssize_t remain;
575         loff_t offset;
576         int shmem_page_offset, page_length, ret = 0;
577         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578         int prefaulted = 0;
579         int needs_clflush = 0;
580         struct sg_page_iter sg_iter;
581
582         user_data = to_user_ptr(args->data_ptr);
583         remain = args->size;
584
585         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586
587         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588         if (ret)
589                 return ret;
590
591         offset = args->offset;
592
593         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594                          offset >> PAGE_SHIFT) {
595                 struct page *page = sg_page_iter_page(&sg_iter);
596
597                 if (remain <= 0)
598                         break;
599
600                 /* Operation in this page
601                  *
602                  * shmem_page_offset = offset within page in shmem file
603                  * page_length = bytes to copy for this page
604                  */
605                 shmem_page_offset = offset_in_page(offset);
606                 page_length = remain;
607                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608                         page_length = PAGE_SIZE - shmem_page_offset;
609
610                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611                         (page_to_phys(page) & (1 << 17)) != 0;
612
613                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614                                        user_data, page_do_bit17_swizzling,
615                                        needs_clflush);
616                 if (ret == 0)
617                         goto next_page;
618
619                 mutex_unlock(&dev->struct_mutex);
620
621                 if (likely(!i915.prefault_disable) && !prefaulted) {
622                         ret = fault_in_multipages_writeable(user_data, remain);
623                         /* Userspace is tricking us, but we've already clobbered
624                          * its pages with the prefault and promised to write the
625                          * data up to the first fault. Hence ignore any errors
626                          * and just continue. */
627                         (void)ret;
628                         prefaulted = 1;
629                 }
630
631                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632                                        user_data, page_do_bit17_swizzling,
633                                        needs_clflush);
634
635                 mutex_lock(&dev->struct_mutex);
636
637                 if (ret)
638                         goto out;
639
640 next_page:
641                 remain -= page_length;
642                 user_data += page_length;
643                 offset += page_length;
644         }
645
646 out:
647         i915_gem_object_unpin_pages(obj);
648
649         return ret;
650 }
651
652 /**
653  * Reads data from the object referenced by handle.
654  *
655  * On error, the contents of *data are undefined.
656  */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659                      struct drm_file *file)
660 {
661         struct drm_i915_gem_pread *args = data;
662         struct drm_i915_gem_object *obj;
663         int ret = 0;
664
665         if (args->size == 0)
666                 return 0;
667
668         if (!access_ok(VERIFY_WRITE,
669                        to_user_ptr(args->data_ptr),
670                        args->size))
671                 return -EFAULT;
672
673         ret = i915_mutex_lock_interruptible(dev);
674         if (ret)
675                 return ret;
676
677         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678         if (&obj->base == NULL) {
679                 ret = -ENOENT;
680                 goto unlock;
681         }
682
683         /* Bounds check source.  */
684         if (args->offset > obj->base.size ||
685             args->size > obj->base.size - args->offset) {
686                 ret = -EINVAL;
687                 goto out;
688         }
689
690         /* prime objects have no backing filp to GEM pread/pwrite
691          * pages from.
692          */
693         if (!obj->base.filp) {
694                 ret = -EINVAL;
695                 goto out;
696         }
697
698         trace_i915_gem_object_pread(obj, args->offset, args->size);
699
700         ret = i915_gem_shmem_pread(dev, obj, args, file);
701
702 out:
703         drm_gem_object_unreference(&obj->base);
704 unlock:
705         mutex_unlock(&dev->struct_mutex);
706         return ret;
707 }
708
709 /* This is the fast write path which cannot handle
710  * page faults in the source data
711  */
712
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715                 loff_t page_base, int page_offset,
716                 char __user *user_data,
717                 int length)
718 {
719         void __iomem *vaddr_atomic;
720         void *vaddr;
721         unsigned long unwritten;
722
723         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724         /* We can use the cpu mem copy function because this is X86. */
725         vaddr = (void __force*)vaddr_atomic + page_offset;
726         unwritten = __copy_from_user_inatomic_nocache(vaddr,
727                                                       user_data, length);
728         io_mapping_unmap_atomic(vaddr_atomic);
729         return unwritten;
730 }
731
732 /**
733  * This is the fast pwrite path, where we copy the data directly from the
734  * user into the GTT, uncached.
735  */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738                          struct drm_i915_gem_object *obj,
739                          struct drm_i915_gem_pwrite *args,
740                          struct drm_file *file)
741 {
742         struct drm_i915_private *dev_priv = dev->dev_private;
743         ssize_t remain;
744         loff_t offset, page_base;
745         char __user *user_data;
746         int page_offset, page_length, ret;
747
748         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749         if (ret)
750                 goto out;
751
752         ret = i915_gem_object_set_to_gtt_domain(obj, true);
753         if (ret)
754                 goto out_unpin;
755
756         ret = i915_gem_object_put_fence(obj);
757         if (ret)
758                 goto out_unpin;
759
760         user_data = to_user_ptr(args->data_ptr);
761         remain = args->size;
762
763         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764
765         while (remain > 0) {
766                 /* Operation in this page
767                  *
768                  * page_base = page offset within aperture
769                  * page_offset = offset within page
770                  * page_length = bytes to copy for this page
771                  */
772                 page_base = offset & PAGE_MASK;
773                 page_offset = offset_in_page(offset);
774                 page_length = remain;
775                 if ((page_offset + remain) > PAGE_SIZE)
776                         page_length = PAGE_SIZE - page_offset;
777
778                 /* If we get a fault while copying data, then (presumably) our
779                  * source page isn't available.  Return the error and we'll
780                  * retry in the slow path.
781                  */
782                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783                                     page_offset, user_data, page_length)) {
784                         ret = -EFAULT;
785                         goto out_unpin;
786                 }
787
788                 remain -= page_length;
789                 user_data += page_length;
790                 offset += page_length;
791         }
792
793 out_unpin:
794         i915_gem_object_ggtt_unpin(obj);
795 out:
796         return ret;
797 }
798
799 /* Per-page copy function for the shmem pwrite fastpath.
800  * Flushes invalid cachelines before writing to the target if
801  * needs_clflush_before is set and flushes out any written cachelines after
802  * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805                   char __user *user_data,
806                   bool page_do_bit17_swizzling,
807                   bool needs_clflush_before,
808                   bool needs_clflush_after)
809 {
810         char *vaddr;
811         int ret;
812
813         if (unlikely(page_do_bit17_swizzling))
814                 return -EINVAL;
815
816         vaddr = kmap_atomic(page);
817         if (needs_clflush_before)
818                 drm_clflush_virt_range(vaddr + shmem_page_offset,
819                                        page_length);
820         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821                                         user_data, page_length);
822         if (needs_clflush_after)
823                 drm_clflush_virt_range(vaddr + shmem_page_offset,
824                                        page_length);
825         kunmap_atomic(vaddr);
826
827         return ret ? -EFAULT : 0;
828 }
829
830 /* Only difference to the fast-path function is that this can handle bit17
831  * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834                   char __user *user_data,
835                   bool page_do_bit17_swizzling,
836                   bool needs_clflush_before,
837                   bool needs_clflush_after)
838 {
839         char *vaddr;
840         int ret;
841
842         vaddr = kmap(page);
843         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845                                              page_length,
846                                              page_do_bit17_swizzling);
847         if (page_do_bit17_swizzling)
848                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849                                                 user_data,
850                                                 page_length);
851         else
852                 ret = __copy_from_user(vaddr + shmem_page_offset,
853                                        user_data,
854                                        page_length);
855         if (needs_clflush_after)
856                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857                                              page_length,
858                                              page_do_bit17_swizzling);
859         kunmap(page);
860
861         return ret ? -EFAULT : 0;
862 }
863
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866                       struct drm_i915_gem_object *obj,
867                       struct drm_i915_gem_pwrite *args,
868                       struct drm_file *file)
869 {
870         ssize_t remain;
871         loff_t offset;
872         char __user *user_data;
873         int shmem_page_offset, page_length, ret = 0;
874         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875         int hit_slowpath = 0;
876         int needs_clflush_after = 0;
877         int needs_clflush_before = 0;
878         struct sg_page_iter sg_iter;
879
880         user_data = to_user_ptr(args->data_ptr);
881         remain = args->size;
882
883         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886                 /* If we're not in the cpu write domain, set ourself into the gtt
887                  * write domain and manually flush cachelines (if required). This
888                  * optimizes for the case when the gpu will use the data
889                  * right away and we therefore have to clflush anyway. */
890                 needs_clflush_after = cpu_write_needs_clflush(obj);
891                 ret = i915_gem_object_wait_rendering(obj, false);
892                 if (ret)
893                         return ret;
894
895                 i915_gem_object_retire(obj);
896         }
897         /* Same trick applies to invalidate partially written cachelines read
898          * before writing. */
899         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900                 needs_clflush_before =
901                         !cpu_cache_is_coherent(dev, obj->cache_level);
902
903         ret = i915_gem_object_get_pages(obj);
904         if (ret)
905                 return ret;
906
907         i915_gem_object_pin_pages(obj);
908
909         offset = args->offset;
910         obj->dirty = 1;
911
912         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913                          offset >> PAGE_SHIFT) {
914                 struct page *page = sg_page_iter_page(&sg_iter);
915                 int partial_cacheline_write;
916
917                 if (remain <= 0)
918                         break;
919
920                 /* Operation in this page
921                  *
922                  * shmem_page_offset = offset within page in shmem file
923                  * page_length = bytes to copy for this page
924                  */
925                 shmem_page_offset = offset_in_page(offset);
926
927                 page_length = remain;
928                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929                         page_length = PAGE_SIZE - shmem_page_offset;
930
931                 /* If we don't overwrite a cacheline completely we need to be
932                  * careful to have up-to-date data by first clflushing. Don't
933                  * overcomplicate things and flush the entire patch. */
934                 partial_cacheline_write = needs_clflush_before &&
935                         ((shmem_page_offset | page_length)
936                                 & (boot_cpu_data.x86_clflush_size - 1));
937
938                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939                         (page_to_phys(page) & (1 << 17)) != 0;
940
941                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942                                         user_data, page_do_bit17_swizzling,
943                                         partial_cacheline_write,
944                                         needs_clflush_after);
945                 if (ret == 0)
946                         goto next_page;
947
948                 hit_slowpath = 1;
949                 mutex_unlock(&dev->struct_mutex);
950                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951                                         user_data, page_do_bit17_swizzling,
952                                         partial_cacheline_write,
953                                         needs_clflush_after);
954
955                 mutex_lock(&dev->struct_mutex);
956
957                 if (ret)
958                         goto out;
959
960 next_page:
961                 remain -= page_length;
962                 user_data += page_length;
963                 offset += page_length;
964         }
965
966 out:
967         i915_gem_object_unpin_pages(obj);
968
969         if (hit_slowpath) {
970                 /*
971                  * Fixup: Flush cpu caches in case we didn't flush the dirty
972                  * cachelines in-line while writing and the object moved
973                  * out of the cpu write domain while we've dropped the lock.
974                  */
975                 if (!needs_clflush_after &&
976                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977                         if (i915_gem_clflush_object(obj, obj->pin_display))
978                                 i915_gem_chipset_flush(dev);
979                 }
980         }
981
982         if (needs_clflush_after)
983                 i915_gem_chipset_flush(dev);
984
985         return ret;
986 }
987
988 /**
989  * Writes data to the object referenced by handle.
990  *
991  * On error, the contents of the buffer that were to be modified are undefined.
992  */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995                       struct drm_file *file)
996 {
997         struct drm_i915_gem_pwrite *args = data;
998         struct drm_i915_gem_object *obj;
999         int ret;
1000
1001         if (args->size == 0)
1002                 return 0;
1003
1004         if (!access_ok(VERIFY_READ,
1005                        to_user_ptr(args->data_ptr),
1006                        args->size))
1007                 return -EFAULT;
1008
1009         if (likely(!i915.prefault_disable)) {
1010                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011                                                    args->size);
1012                 if (ret)
1013                         return -EFAULT;
1014         }
1015
1016         ret = i915_mutex_lock_interruptible(dev);
1017         if (ret)
1018                 return ret;
1019
1020         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021         if (&obj->base == NULL) {
1022                 ret = -ENOENT;
1023                 goto unlock;
1024         }
1025
1026         /* Bounds check destination. */
1027         if (args->offset > obj->base.size ||
1028             args->size > obj->base.size - args->offset) {
1029                 ret = -EINVAL;
1030                 goto out;
1031         }
1032
1033         /* prime objects have no backing filp to GEM pread/pwrite
1034          * pages from.
1035          */
1036         if (!obj->base.filp) {
1037                 ret = -EINVAL;
1038                 goto out;
1039         }
1040
1041         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
1043         ret = -EFAULT;
1044         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045          * it would end up going through the fenced access, and we'll get
1046          * different detiling behavior between reading and writing.
1047          * pread/pwrite currently are reading and writing from the CPU
1048          * perspective, requiring manual detiling by the client.
1049          */
1050         if (obj->phys_handle) {
1051                 ret = i915_gem_phys_pwrite(obj, args, file);
1052                 goto out;
1053         }
1054
1055         if (obj->tiling_mode == I915_TILING_NONE &&
1056             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057             cpu_write_needs_clflush(obj)) {
1058                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059                 /* Note that the gtt paths might fail with non-page-backed user
1060                  * pointers (e.g. gtt mappings when moving data between
1061                  * textures). Fallback to the shmem path in that case. */
1062         }
1063
1064         if (ret == -EFAULT || ret == -ENOSPC)
1065                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066
1067 out:
1068         drm_gem_object_unreference(&obj->base);
1069 unlock:
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076                      bool interruptible)
1077 {
1078         if (i915_reset_in_progress(error)) {
1079                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080                  * -EIO unconditionally for these. */
1081                 if (!interruptible)
1082                         return -EIO;
1083
1084                 /* Recovery complete, but the reset failed ... */
1085                 if (i915_terminally_wedged(error))
1086                         return -EIO;
1087
1088                 return -EAGAIN;
1089         }
1090
1091         return 0;
1092 }
1093
1094 /*
1095  * Compare seqno against outstanding lazy request. Emit a request if they are
1096  * equal.
1097  */
1098 int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101         int ret;
1102
1103         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105         ret = 0;
1106         if (seqno == ring->outstanding_lazy_seqno)
1107                 ret = i915_add_request(ring, NULL);
1108
1109         return ret;
1110 }
1111
1112 static void fake_irq(unsigned long data)
1113 {
1114         wake_up_process((struct task_struct *)data);
1115 }
1116
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118                        struct intel_engine_cs *ring)
1119 {
1120         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125         if (file_priv == NULL)
1126                 return true;
1127
1128         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130
1131 /**
1132  * __wait_seqno - wait until execution of seqno has finished
1133  * @ring: the ring expected to report seqno
1134  * @seqno: duh!
1135  * @reset_counter: reset sequence associated with the given seqno
1136  * @interruptible: do an interruptible wait (normally yes)
1137  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138  *
1139  * Note: It is of utmost importance that the passed in seqno and reset_counter
1140  * values have been read by the caller in an smp safe manner. Where read-side
1141  * locks are involved, it is sufficient to read the reset_counter before
1142  * unlocking the lock that protects the seqno. For lockless tricks, the
1143  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144  * inserted.
1145  *
1146  * Returns 0 if the seqno was found within the alloted time. Else returns the
1147  * errno with remaining time filled in timeout argument.
1148  */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150                         unsigned reset_counter,
1151                         bool interruptible,
1152                         struct timespec *timeout,
1153                         struct drm_i915_file_private *file_priv)
1154 {
1155         struct drm_device *dev = ring->dev;
1156         struct drm_i915_private *dev_priv = dev->dev_private;
1157         const bool irq_test_in_progress =
1158                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159         struct timespec before, now;
1160         DEFINE_WAIT(wait);
1161         unsigned long timeout_expire;
1162         int ret;
1163
1164         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1165
1166         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167                 return 0;
1168
1169         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170
1171         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1172                 gen6_rps_boost(dev_priv);
1173                 if (file_priv)
1174                         mod_delayed_work(dev_priv->wq,
1175                                          &file_priv->mm.idle_work,
1176                                          msecs_to_jiffies(100));
1177         }
1178
1179         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180                 return -ENODEV;
1181
1182         /* Record current time in case interrupted by signal, or wedged */
1183         trace_i915_gem_request_wait_begin(ring, seqno);
1184         getrawmonotonic(&before);
1185         for (;;) {
1186                 struct timer_list timer;
1187
1188                 prepare_to_wait(&ring->irq_queue, &wait,
1189                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190
1191                 /* We need to check whether any gpu reset happened in between
1192                  * the caller grabbing the seqno and now ... */
1193                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195                          * is truely gone. */
1196                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197                         if (ret == 0)
1198                                 ret = -EAGAIN;
1199                         break;
1200                 }
1201
1202                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203                         ret = 0;
1204                         break;
1205                 }
1206
1207                 if (interruptible && signal_pending(current)) {
1208                         ret = -ERESTARTSYS;
1209                         break;
1210                 }
1211
1212                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213                         ret = -ETIME;
1214                         break;
1215                 }
1216
1217                 timer.function = NULL;
1218                 if (timeout || missed_irq(dev_priv, ring)) {
1219                         unsigned long expire;
1220
1221                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223                         mod_timer(&timer, expire);
1224                 }
1225
1226                 io_schedule();
1227
1228                 if (timer.function) {
1229                         del_singleshot_timer_sync(&timer);
1230                         destroy_timer_on_stack(&timer);
1231                 }
1232         }
1233         getrawmonotonic(&now);
1234         trace_i915_gem_request_wait_end(ring, seqno);
1235
1236         if (!irq_test_in_progress)
1237                 ring->irq_put(ring);
1238
1239         finish_wait(&ring->irq_queue, &wait);
1240
1241         if (timeout) {
1242                 struct timespec sleep_time = timespec_sub(now, before);
1243                 *timeout = timespec_sub(*timeout, sleep_time);
1244                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245                         set_normalized_timespec(timeout, 0, 0);
1246         }
1247
1248         return ret;
1249 }
1250
1251 /**
1252  * Waits for a sequence number to be signaled, and cleans up the
1253  * request and object lists appropriately for that event.
1254  */
1255 int
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 {
1258         struct drm_device *dev = ring->dev;
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         bool interruptible = dev_priv->mm.interruptible;
1261         int ret;
1262
1263         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264         BUG_ON(seqno == 0);
1265
1266         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267         if (ret)
1268                 return ret;
1269
1270         ret = i915_gem_check_olr(ring, seqno);
1271         if (ret)
1272                 return ret;
1273
1274         return __wait_seqno(ring, seqno,
1275                             atomic_read(&dev_priv->gpu_error.reset_counter),
1276                             interruptible, NULL, NULL);
1277 }
1278
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281                                      struct intel_engine_cs *ring)
1282 {
1283         if (!obj->active)
1284                 return 0;
1285
1286         /* Manually manage the write flush as we may have not yet
1287          * retired the buffer.
1288          *
1289          * Note that the last_write_seqno is always the earlier of
1290          * the two (read/write) seqno, so if we haved successfully waited,
1291          * we know we have passed the last write.
1292          */
1293         obj->last_write_seqno = 0;
1294
1295         return 0;
1296 }
1297
1298 /**
1299  * Ensures that all rendering to the object has completed and the object is
1300  * safe to unbind from the GTT or access from the CPU.
1301  */
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304                                bool readonly)
1305 {
1306         struct intel_engine_cs *ring = obj->ring;
1307         u32 seqno;
1308         int ret;
1309
1310         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311         if (seqno == 0)
1312                 return 0;
1313
1314         ret = i915_wait_seqno(ring, seqno);
1315         if (ret)
1316                 return ret;
1317
1318         return i915_gem_object_wait_rendering__tail(obj, ring);
1319 }
1320
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322  * as the object state may change during this call.
1323  */
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326                                             struct drm_i915_file_private *file_priv,
1327                                             bool readonly)
1328 {
1329         struct drm_device *dev = obj->base.dev;
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331         struct intel_engine_cs *ring = obj->ring;
1332         unsigned reset_counter;
1333         u32 seqno;
1334         int ret;
1335
1336         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337         BUG_ON(!dev_priv->mm.interruptible);
1338
1339         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340         if (seqno == 0)
1341                 return 0;
1342
1343         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344         if (ret)
1345                 return ret;
1346
1347         ret = i915_gem_check_olr(ring, seqno);
1348         if (ret)
1349                 return ret;
1350
1351         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352         mutex_unlock(&dev->struct_mutex);
1353         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354         mutex_lock(&dev->struct_mutex);
1355         if (ret)
1356                 return ret;
1357
1358         return i915_gem_object_wait_rendering__tail(obj, ring);
1359 }
1360
1361 /**
1362  * Called when user space prepares to use an object with the CPU, either
1363  * through the mmap ioctl's mapping or a GTT mapping.
1364  */
1365 int
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367                           struct drm_file *file)
1368 {
1369         struct drm_i915_gem_set_domain *args = data;
1370         struct drm_i915_gem_object *obj;
1371         uint32_t read_domains = args->read_domains;
1372         uint32_t write_domain = args->write_domain;
1373         int ret;
1374
1375         /* Only handle setting domains to types used by the CPU. */
1376         if (write_domain & I915_GEM_GPU_DOMAINS)
1377                 return -EINVAL;
1378
1379         if (read_domains & I915_GEM_GPU_DOMAINS)
1380                 return -EINVAL;
1381
1382         /* Having something in the write domain implies it's in the read
1383          * domain, and only that read domain.  Enforce that in the request.
1384          */
1385         if (write_domain != 0 && read_domains != write_domain)
1386                 return -EINVAL;
1387
1388         ret = i915_mutex_lock_interruptible(dev);
1389         if (ret)
1390                 return ret;
1391
1392         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393         if (&obj->base == NULL) {
1394                 ret = -ENOENT;
1395                 goto unlock;
1396         }
1397
1398         intel_edp_psr_exit(dev);
1399
1400         /* Try to flush the object off the GPU without holding the lock.
1401          * We will repeat the flush holding the lock in the normal manner
1402          * to catch cases where we are gazumped.
1403          */
1404         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1405                                                           file->driver_priv,
1406                                                           !write_domain);
1407         if (ret)
1408                 goto unref;
1409
1410         if (read_domains & I915_GEM_DOMAIN_GTT) {
1411                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1412
1413                 /* Silently promote "you're not bound, there was nothing to do"
1414                  * to success, since the client was just asking us to
1415                  * make sure everything was done.
1416                  */
1417                 if (ret == -EINVAL)
1418                         ret = 0;
1419         } else {
1420                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1421         }
1422
1423 unref:
1424         drm_gem_object_unreference(&obj->base);
1425 unlock:
1426         mutex_unlock(&dev->struct_mutex);
1427         return ret;
1428 }
1429
1430 /**
1431  * Called when user space has done writes to this buffer
1432  */
1433 int
1434 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1435                          struct drm_file *file)
1436 {
1437         struct drm_i915_gem_sw_finish *args = data;
1438         struct drm_i915_gem_object *obj;
1439         int ret = 0;
1440
1441         ret = i915_mutex_lock_interruptible(dev);
1442         if (ret)
1443                 return ret;
1444
1445         intel_edp_psr_exit(dev);
1446
1447         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448         if (&obj->base == NULL) {
1449                 ret = -ENOENT;
1450                 goto unlock;
1451         }
1452
1453         /* Pinned buffers may be scanout, so flush the cache */
1454         if (obj->pin_display)
1455                 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457         drm_gem_object_unreference(&obj->base);
1458 unlock:
1459         mutex_unlock(&dev->struct_mutex);
1460         return ret;
1461 }
1462
1463 /**
1464  * Maps the contents of an object, returning the address it is mapped
1465  * into.
1466  *
1467  * While the mapping holds a reference on the contents of the object, it doesn't
1468  * imply a ref on the object itself.
1469  */
1470 int
1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472                     struct drm_file *file)
1473 {
1474         struct drm_i915_gem_mmap *args = data;
1475         struct drm_gem_object *obj;
1476         unsigned long addr;
1477
1478         obj = drm_gem_object_lookup(dev, file, args->handle);
1479         if (obj == NULL)
1480                 return -ENOENT;
1481
1482         /* prime objects have no backing filp to GEM mmap
1483          * pages from.
1484          */
1485         if (!obj->filp) {
1486                 drm_gem_object_unreference_unlocked(obj);
1487                 return -EINVAL;
1488         }
1489
1490         addr = vm_mmap(obj->filp, 0, args->size,
1491                        PROT_READ | PROT_WRITE, MAP_SHARED,
1492                        args->offset);
1493         drm_gem_object_unreference_unlocked(obj);
1494         if (IS_ERR((void *)addr))
1495                 return addr;
1496
1497         args->addr_ptr = (uint64_t) addr;
1498
1499         return 0;
1500 }
1501
1502 /**
1503  * i915_gem_fault - fault a page into the GTT
1504  * vma: VMA in question
1505  * vmf: fault info
1506  *
1507  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508  * from userspace.  The fault handler takes care of binding the object to
1509  * the GTT (if needed), allocating and programming a fence register (again,
1510  * only if needed based on whether the old reg is still valid or the object
1511  * is tiled) and inserting a new PTE into the faulting process.
1512  *
1513  * Note that the faulting process may involve evicting existing objects
1514  * from the GTT and/or fence registers to make room.  So performance may
1515  * suffer if the GTT working set is large or there are few fence registers
1516  * left.
1517  */
1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521         struct drm_device *dev = obj->base.dev;
1522         struct drm_i915_private *dev_priv = dev->dev_private;
1523         pgoff_t page_offset;
1524         unsigned long pfn;
1525         int ret = 0;
1526         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528         intel_runtime_pm_get(dev_priv);
1529
1530         /* We don't use vmf->pgoff since that has the fake offset */
1531         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532                 PAGE_SHIFT;
1533
1534         ret = i915_mutex_lock_interruptible(dev);
1535         if (ret)
1536                 goto out;
1537
1538         trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540         /* Try to flush the object off the GPU first without holding the lock.
1541          * Upon reacquiring the lock, we will perform our sanity checks and then
1542          * repeat the flush holding the lock in the normal manner to catch cases
1543          * where we are gazumped.
1544          */
1545         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546         if (ret)
1547                 goto unlock;
1548
1549         /* Access to snoopable pages through the GTT is incoherent. */
1550         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551                 ret = -EFAULT;
1552                 goto unlock;
1553         }
1554
1555         /* Now bind it into the GTT if needed */
1556         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557         if (ret)
1558                 goto unlock;
1559
1560         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561         if (ret)
1562                 goto unpin;
1563
1564         ret = i915_gem_object_get_fence(obj);
1565         if (ret)
1566                 goto unpin;
1567
1568         /* Finally, remap it using the new GTT offset */
1569         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570         pfn >>= PAGE_SHIFT;
1571
1572         if (!obj->fault_mappable) {
1573                 unsigned long size = min_t(unsigned long,
1574                                            vma->vm_end - vma->vm_start,
1575                                            obj->base.size);
1576                 int i;
1577
1578                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579                         ret = vm_insert_pfn(vma,
1580                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581                                             pfn + i);
1582                         if (ret)
1583                                 break;
1584                 }
1585
1586                 obj->fault_mappable = true;
1587         } else
1588                 ret = vm_insert_pfn(vma,
1589                                     (unsigned long)vmf->virtual_address,
1590                                     pfn + page_offset);
1591 unpin:
1592         i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594         mutex_unlock(&dev->struct_mutex);
1595 out:
1596         switch (ret) {
1597         case -EIO:
1598                 /* If this -EIO is due to a gpu hang, give the reset code a
1599                  * chance to clean up the mess. Otherwise return the proper
1600                  * SIGBUS. */
1601                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1602                         ret = VM_FAULT_SIGBUS;
1603                         break;
1604                 }
1605         case -EAGAIN:
1606                 /*
1607                  * EAGAIN means the gpu is hung and we'll wait for the error
1608                  * handler to reset everything when re-faulting in
1609                  * i915_mutex_lock_interruptible.
1610                  */
1611         case 0:
1612         case -ERESTARTSYS:
1613         case -EINTR:
1614         case -EBUSY:
1615                 /*
1616                  * EBUSY is ok: this just means that another thread
1617                  * already did the job.
1618                  */
1619                 ret = VM_FAULT_NOPAGE;
1620                 break;
1621         case -ENOMEM:
1622                 ret = VM_FAULT_OOM;
1623                 break;
1624         case -ENOSPC:
1625         case -EFAULT:
1626                 ret = VM_FAULT_SIGBUS;
1627                 break;
1628         default:
1629                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1630                 ret = VM_FAULT_SIGBUS;
1631                 break;
1632         }
1633
1634         intel_runtime_pm_put(dev_priv);
1635         return ret;
1636 }
1637
1638 /**
1639  * i915_gem_release_mmap - remove physical page mappings
1640  * @obj: obj in question
1641  *
1642  * Preserve the reservation of the mmapping with the DRM core code, but
1643  * relinquish ownership of the pages back to the system.
1644  *
1645  * It is vital that we remove the page mapping if we have mapped a tiled
1646  * object through the GTT and then lose the fence register due to
1647  * resource pressure. Similarly if the object has been moved out of the
1648  * aperture, than pages mapped into userspace must be revoked. Removing the
1649  * mapping will then trigger a page fault on the next user access, allowing
1650  * fixup by i915_gem_fault().
1651  */
1652 void
1653 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1654 {
1655         if (!obj->fault_mappable)
1656                 return;
1657
1658         drm_vma_node_unmap(&obj->base.vma_node,
1659                            obj->base.dev->anon_inode->i_mapping);
1660         obj->fault_mappable = false;
1661 }
1662
1663 void
1664 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1665 {
1666         struct drm_i915_gem_object *obj;
1667
1668         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1669                 i915_gem_release_mmap(obj);
1670 }
1671
1672 uint32_t
1673 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1674 {
1675         uint32_t gtt_size;
1676
1677         if (INTEL_INFO(dev)->gen >= 4 ||
1678             tiling_mode == I915_TILING_NONE)
1679                 return size;
1680
1681         /* Previous chips need a power-of-two fence region when tiling */
1682         if (INTEL_INFO(dev)->gen == 3)
1683                 gtt_size = 1024*1024;
1684         else
1685                 gtt_size = 512*1024;
1686
1687         while (gtt_size < size)
1688                 gtt_size <<= 1;
1689
1690         return gtt_size;
1691 }
1692
1693 /**
1694  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1695  * @obj: object to check
1696  *
1697  * Return the required GTT alignment for an object, taking into account
1698  * potential fence register mapping.
1699  */
1700 uint32_t
1701 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1702                            int tiling_mode, bool fenced)
1703 {
1704         /*
1705          * Minimum alignment is 4k (GTT page size), but might be greater
1706          * if a fence register is needed for the object.
1707          */
1708         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1709             tiling_mode == I915_TILING_NONE)
1710                 return 4096;
1711
1712         /*
1713          * Previous chips need to be aligned to the size of the smallest
1714          * fence register that can contain the object.
1715          */
1716         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1717 }
1718
1719 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1720 {
1721         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1722         int ret;
1723
1724         if (drm_vma_node_has_offset(&obj->base.vma_node))
1725                 return 0;
1726
1727         dev_priv->mm.shrinker_no_lock_stealing = true;
1728
1729         ret = drm_gem_create_mmap_offset(&obj->base);
1730         if (ret != -ENOSPC)
1731                 goto out;
1732
1733         /* Badly fragmented mmap space? The only way we can recover
1734          * space is by destroying unwanted objects. We can't randomly release
1735          * mmap_offsets as userspace expects them to be persistent for the
1736          * lifetime of the objects. The closest we can is to release the
1737          * offsets on purgeable objects by truncating it and marking it purged,
1738          * which prevents userspace from ever using that object again.
1739          */
1740         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1741         ret = drm_gem_create_mmap_offset(&obj->base);
1742         if (ret != -ENOSPC)
1743                 goto out;
1744
1745         i915_gem_shrink_all(dev_priv);
1746         ret = drm_gem_create_mmap_offset(&obj->base);
1747 out:
1748         dev_priv->mm.shrinker_no_lock_stealing = false;
1749
1750         return ret;
1751 }
1752
1753 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1754 {
1755         drm_gem_free_mmap_offset(&obj->base);
1756 }
1757
1758 int
1759 i915_gem_mmap_gtt(struct drm_file *file,
1760                   struct drm_device *dev,
1761                   uint32_t handle,
1762                   uint64_t *offset)
1763 {
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         struct drm_i915_gem_object *obj;
1766         int ret;
1767
1768         ret = i915_mutex_lock_interruptible(dev);
1769         if (ret)
1770                 return ret;
1771
1772         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1773         if (&obj->base == NULL) {
1774                 ret = -ENOENT;
1775                 goto unlock;
1776         }
1777
1778         if (obj->base.size > dev_priv->gtt.mappable_end) {
1779                 ret = -E2BIG;
1780                 goto out;
1781         }
1782
1783         if (obj->madv != I915_MADV_WILLNEED) {
1784                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1785                 ret = -EFAULT;
1786                 goto out;
1787         }
1788
1789         ret = i915_gem_object_create_mmap_offset(obj);
1790         if (ret)
1791                 goto out;
1792
1793         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1794
1795 out:
1796         drm_gem_object_unreference(&obj->base);
1797 unlock:
1798         mutex_unlock(&dev->struct_mutex);
1799         return ret;
1800 }
1801
1802 /**
1803  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1804  * @dev: DRM device
1805  * @data: GTT mapping ioctl data
1806  * @file: GEM object info
1807  *
1808  * Simply returns the fake offset to userspace so it can mmap it.
1809  * The mmap call will end up in drm_gem_mmap(), which will set things
1810  * up so we can get faults in the handler above.
1811  *
1812  * The fault handler will take care of binding the object into the GTT
1813  * (since it may have been evicted to make room for something), allocating
1814  * a fence register, and mapping the appropriate aperture address into
1815  * userspace.
1816  */
1817 int
1818 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1819                         struct drm_file *file)
1820 {
1821         struct drm_i915_gem_mmap_gtt *args = data;
1822
1823         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1824 }
1825
1826 static inline int
1827 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1828 {
1829         return obj->madv == I915_MADV_DONTNEED;
1830 }
1831
1832 /* Immediately discard the backing storage */
1833 static void
1834 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1835 {
1836         i915_gem_object_free_mmap_offset(obj);
1837
1838         if (obj->base.filp == NULL)
1839                 return;
1840
1841         /* Our goal here is to return as much of the memory as
1842          * is possible back to the system as we are called from OOM.
1843          * To do this we must instruct the shmfs to drop all of its
1844          * backing pages, *now*.
1845          */
1846         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1847         obj->madv = __I915_MADV_PURGED;
1848 }
1849
1850 /* Try to discard unwanted pages */
1851 static void
1852 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1853 {
1854         struct address_space *mapping;
1855
1856         switch (obj->madv) {
1857         case I915_MADV_DONTNEED:
1858                 i915_gem_object_truncate(obj);
1859         case __I915_MADV_PURGED:
1860                 return;
1861         }
1862
1863         if (obj->base.filp == NULL)
1864                 return;
1865
1866         mapping = file_inode(obj->base.filp)->i_mapping,
1867         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1868 }
1869
1870 static void
1871 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1872 {
1873         struct sg_page_iter sg_iter;
1874         int ret;
1875
1876         BUG_ON(obj->madv == __I915_MADV_PURGED);
1877
1878         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1879         if (ret) {
1880                 /* In the event of a disaster, abandon all caches and
1881                  * hope for the best.
1882                  */
1883                 WARN_ON(ret != -EIO);
1884                 i915_gem_clflush_object(obj, true);
1885                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1886         }
1887
1888         if (i915_gem_object_needs_bit17_swizzle(obj))
1889                 i915_gem_object_save_bit_17_swizzle(obj);
1890
1891         if (obj->madv == I915_MADV_DONTNEED)
1892                 obj->dirty = 0;
1893
1894         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1895                 struct page *page = sg_page_iter_page(&sg_iter);
1896
1897                 if (obj->dirty)
1898                         set_page_dirty(page);
1899
1900                 if (obj->madv == I915_MADV_WILLNEED)
1901                         mark_page_accessed(page);
1902
1903                 page_cache_release(page);
1904         }
1905         obj->dirty = 0;
1906
1907         sg_free_table(obj->pages);
1908         kfree(obj->pages);
1909 }
1910
1911 int
1912 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1913 {
1914         const struct drm_i915_gem_object_ops *ops = obj->ops;
1915
1916         if (obj->pages == NULL)
1917                 return 0;
1918
1919         if (obj->pages_pin_count)
1920                 return -EBUSY;
1921
1922         BUG_ON(i915_gem_obj_bound_any(obj));
1923
1924         /* ->put_pages might need to allocate memory for the bit17 swizzle
1925          * array, hence protect them from being reaped by removing them from gtt
1926          * lists early. */
1927         list_del(&obj->global_list);
1928
1929         ops->put_pages(obj);
1930         obj->pages = NULL;
1931
1932         i915_gem_object_invalidate(obj);
1933
1934         return 0;
1935 }
1936
1937 static unsigned long
1938 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1939                   bool purgeable_only)
1940 {
1941         struct list_head still_in_list;
1942         struct drm_i915_gem_object *obj;
1943         unsigned long count = 0;
1944
1945         /*
1946          * As we may completely rewrite the (un)bound list whilst unbinding
1947          * (due to retiring requests) we have to strictly process only
1948          * one element of the list at the time, and recheck the list
1949          * on every iteration.
1950          *
1951          * In particular, we must hold a reference whilst removing the
1952          * object as we may end up waiting for and/or retiring the objects.
1953          * This might release the final reference (held by the active list)
1954          * and result in the object being freed from under us. This is
1955          * similar to the precautions the eviction code must take whilst
1956          * removing objects.
1957          *
1958          * Also note that although these lists do not hold a reference to
1959          * the object we can safely grab one here: The final object
1960          * unreferencing and the bound_list are both protected by the
1961          * dev->struct_mutex and so we won't ever be able to observe an
1962          * object on the bound_list with a reference count equals 0.
1963          */
1964         INIT_LIST_HEAD(&still_in_list);
1965         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1966                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1967                                        typeof(*obj), global_list);
1968                 list_move_tail(&obj->global_list, &still_in_list);
1969
1970                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1971                         continue;
1972
1973                 drm_gem_object_reference(&obj->base);
1974
1975                 if (i915_gem_object_put_pages(obj) == 0)
1976                         count += obj->base.size >> PAGE_SHIFT;
1977
1978                 drm_gem_object_unreference(&obj->base);
1979         }
1980         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1981
1982         INIT_LIST_HEAD(&still_in_list);
1983         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1984                 struct i915_vma *vma, *v;
1985
1986                 obj = list_first_entry(&dev_priv->mm.bound_list,
1987                                        typeof(*obj), global_list);
1988                 list_move_tail(&obj->global_list, &still_in_list);
1989
1990                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1991                         continue;
1992
1993                 drm_gem_object_reference(&obj->base);
1994
1995                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1996                         if (i915_vma_unbind(vma))
1997                                 break;
1998
1999                 if (i915_gem_object_put_pages(obj) == 0)
2000                         count += obj->base.size >> PAGE_SHIFT;
2001
2002                 drm_gem_object_unreference(&obj->base);
2003         }
2004         list_splice(&still_in_list, &dev_priv->mm.bound_list);
2005
2006         return count;
2007 }
2008
2009 static unsigned long
2010 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2011 {
2012         return __i915_gem_shrink(dev_priv, target, true);
2013 }
2014
2015 static unsigned long
2016 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2017 {
2018         i915_gem_evict_everything(dev_priv->dev);
2019         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2020 }
2021
2022 static int
2023 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2024 {
2025         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2026         int page_count, i;
2027         struct address_space *mapping;
2028         struct sg_table *st;
2029         struct scatterlist *sg;
2030         struct sg_page_iter sg_iter;
2031         struct page *page;
2032         unsigned long last_pfn = 0;     /* suppress gcc warning */
2033         gfp_t gfp;
2034
2035         /* Assert that the object is not currently in any GPU domain. As it
2036          * wasn't in the GTT, there shouldn't be any way it could have been in
2037          * a GPU cache
2038          */
2039         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2040         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2041
2042         st = kmalloc(sizeof(*st), GFP_KERNEL);
2043         if (st == NULL)
2044                 return -ENOMEM;
2045
2046         page_count = obj->base.size / PAGE_SIZE;
2047         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2048                 kfree(st);
2049                 return -ENOMEM;
2050         }
2051
2052         /* Get the list of pages out of our struct file.  They'll be pinned
2053          * at this point until we release them.
2054          *
2055          * Fail silently without starting the shrinker
2056          */
2057         mapping = file_inode(obj->base.filp)->i_mapping;
2058         gfp = mapping_gfp_mask(mapping);
2059         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2060         gfp &= ~(__GFP_IO | __GFP_WAIT);
2061         sg = st->sgl;
2062         st->nents = 0;
2063         for (i = 0; i < page_count; i++) {
2064                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2065                 if (IS_ERR(page)) {
2066                         i915_gem_purge(dev_priv, page_count);
2067                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2068                 }
2069                 if (IS_ERR(page)) {
2070                         /* We've tried hard to allocate the memory by reaping
2071                          * our own buffer, now let the real VM do its job and
2072                          * go down in flames if truly OOM.
2073                          */
2074                         i915_gem_shrink_all(dev_priv);
2075                         page = shmem_read_mapping_page(mapping, i);
2076                         if (IS_ERR(page))
2077                                 goto err_pages;
2078                 }
2079 #ifdef CONFIG_SWIOTLB
2080                 if (swiotlb_nr_tbl()) {
2081                         st->nents++;
2082                         sg_set_page(sg, page, PAGE_SIZE, 0);
2083                         sg = sg_next(sg);
2084                         continue;
2085                 }
2086 #endif
2087                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2088                         if (i)
2089                                 sg = sg_next(sg);
2090                         st->nents++;
2091                         sg_set_page(sg, page, PAGE_SIZE, 0);
2092                 } else {
2093                         sg->length += PAGE_SIZE;
2094                 }
2095                 last_pfn = page_to_pfn(page);
2096
2097                 /* Check that the i965g/gm workaround works. */
2098                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2099         }
2100 #ifdef CONFIG_SWIOTLB
2101         if (!swiotlb_nr_tbl())
2102 #endif
2103                 sg_mark_end(sg);
2104         obj->pages = st;
2105
2106         if (i915_gem_object_needs_bit17_swizzle(obj))
2107                 i915_gem_object_do_bit_17_swizzle(obj);
2108
2109         return 0;
2110
2111 err_pages:
2112         sg_mark_end(sg);
2113         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2114                 page_cache_release(sg_page_iter_page(&sg_iter));
2115         sg_free_table(st);
2116         kfree(st);
2117
2118         /* shmemfs first checks if there is enough memory to allocate the page
2119          * and reports ENOSPC should there be insufficient, along with the usual
2120          * ENOMEM for a genuine allocation failure.
2121          *
2122          * We use ENOSPC in our driver to mean that we have run out of aperture
2123          * space and so want to translate the error from shmemfs back to our
2124          * usual understanding of ENOMEM.
2125          */
2126         if (PTR_ERR(page) == -ENOSPC)
2127                 return -ENOMEM;
2128         else
2129                 return PTR_ERR(page);
2130 }
2131
2132 /* Ensure that the associated pages are gathered from the backing storage
2133  * and pinned into our object. i915_gem_object_get_pages() may be called
2134  * multiple times before they are released by a single call to
2135  * i915_gem_object_put_pages() - once the pages are no longer referenced
2136  * either as a result of memory pressure (reaping pages under the shrinker)
2137  * or as the object is itself released.
2138  */
2139 int
2140 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2141 {
2142         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2143         const struct drm_i915_gem_object_ops *ops = obj->ops;
2144         int ret;
2145
2146         if (obj->pages)
2147                 return 0;
2148
2149         if (obj->madv != I915_MADV_WILLNEED) {
2150                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2151                 return -EFAULT;
2152         }
2153
2154         BUG_ON(obj->pages_pin_count);
2155
2156         ret = ops->get_pages(obj);
2157         if (ret)
2158                 return ret;
2159
2160         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2161         return 0;
2162 }
2163
2164 static void
2165 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2166                                struct intel_engine_cs *ring)
2167 {
2168         struct drm_device *dev = obj->base.dev;
2169         struct drm_i915_private *dev_priv = dev->dev_private;
2170         u32 seqno = intel_ring_get_seqno(ring);
2171
2172         BUG_ON(ring == NULL);
2173         if (obj->ring != ring && obj->last_write_seqno) {
2174                 /* Keep the seqno relative to the current ring */
2175                 obj->last_write_seqno = seqno;
2176         }
2177         obj->ring = ring;
2178
2179         /* Add a reference if we're newly entering the active list. */
2180         if (!obj->active) {
2181                 drm_gem_object_reference(&obj->base);
2182                 obj->active = 1;
2183         }
2184
2185         list_move_tail(&obj->ring_list, &ring->active_list);
2186
2187         obj->last_read_seqno = seqno;
2188
2189         if (obj->fenced_gpu_access) {
2190                 obj->last_fenced_seqno = seqno;
2191
2192                 /* Bump MRU to take account of the delayed flush */
2193                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2194                         struct drm_i915_fence_reg *reg;
2195
2196                         reg = &dev_priv->fence_regs[obj->fence_reg];
2197                         list_move_tail(&reg->lru_list,
2198                                        &dev_priv->mm.fence_list);
2199                 }
2200         }
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204                              struct intel_engine_cs *ring)
2205 {
2206         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207         return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2214         struct i915_address_space *vm;
2215         struct i915_vma *vma;
2216
2217         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2218         BUG_ON(!obj->active);
2219
2220         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2221                 vma = i915_gem_obj_to_vma(obj, vm);
2222                 if (vma && !list_empty(&vma->mm_list))
2223                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2224         }
2225
2226         list_del_init(&obj->ring_list);
2227         obj->ring = NULL;
2228
2229         obj->last_read_seqno = 0;
2230         obj->last_write_seqno = 0;
2231         obj->base.write_domain = 0;
2232
2233         obj->last_fenced_seqno = 0;
2234         obj->fenced_gpu_access = false;
2235
2236         obj->active = 0;
2237         drm_gem_object_unreference(&obj->base);
2238
2239         WARN_ON(i915_verify_lists(dev));
2240 }
2241
2242 static void
2243 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2244 {
2245         struct intel_engine_cs *ring = obj->ring;
2246
2247         if (ring == NULL)
2248                 return;
2249
2250         if (i915_seqno_passed(ring->get_seqno(ring, true),
2251                               obj->last_read_seqno))
2252                 i915_gem_object_move_to_inactive(obj);
2253 }
2254
2255 static int
2256 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2257 {
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         struct intel_engine_cs *ring;
2260         int ret, i, j;
2261
2262         /* Carefully retire all requests without writing to the rings */
2263         for_each_ring(ring, dev_priv, i) {
2264                 ret = intel_ring_idle(ring);
2265                 if (ret)
2266                         return ret;
2267         }
2268         i915_gem_retire_requests(dev);
2269
2270         /* Finally reset hw state */
2271         for_each_ring(ring, dev_priv, i) {
2272                 intel_ring_init_seqno(ring, seqno);
2273
2274                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2275                         ring->semaphore.sync_seqno[j] = 0;
2276         }
2277
2278         return 0;
2279 }
2280
2281 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2282 {
2283         struct drm_i915_private *dev_priv = dev->dev_private;
2284         int ret;
2285
2286         if (seqno == 0)
2287                 return -EINVAL;
2288
2289         /* HWS page needs to be set less than what we
2290          * will inject to ring
2291          */
2292         ret = i915_gem_init_seqno(dev, seqno - 1);
2293         if (ret)
2294                 return ret;
2295
2296         /* Carefully set the last_seqno value so that wrap
2297          * detection still works
2298          */
2299         dev_priv->next_seqno = seqno;
2300         dev_priv->last_seqno = seqno - 1;
2301         if (dev_priv->last_seqno == 0)
2302                 dev_priv->last_seqno--;
2303
2304         return 0;
2305 }
2306
2307 int
2308 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2309 {
2310         struct drm_i915_private *dev_priv = dev->dev_private;
2311
2312         /* reserve 0 for non-seqno */
2313         if (dev_priv->next_seqno == 0) {
2314                 int ret = i915_gem_init_seqno(dev, 0);
2315                 if (ret)
2316                         return ret;
2317
2318                 dev_priv->next_seqno = 1;
2319         }
2320
2321         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2322         return 0;
2323 }
2324
2325 int __i915_add_request(struct intel_engine_cs *ring,
2326                        struct drm_file *file,
2327                        struct drm_i915_gem_object *obj,
2328                        u32 *out_seqno)
2329 {
2330         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2331         struct drm_i915_gem_request *request;
2332         u32 request_ring_position, request_start;
2333         int ret;
2334
2335         request_start = intel_ring_get_tail(ring);
2336         /*
2337          * Emit any outstanding flushes - execbuf can fail to emit the flush
2338          * after having emitted the batchbuffer command. Hence we need to fix
2339          * things up similar to emitting the lazy request. The difference here
2340          * is that the flush _must_ happen before the next request, no matter
2341          * what.
2342          */
2343         ret = intel_ring_flush_all_caches(ring);
2344         if (ret)
2345                 return ret;
2346
2347         request = ring->preallocated_lazy_request;
2348         if (WARN_ON(request == NULL))
2349                 return -ENOMEM;
2350
2351         /* Record the position of the start of the request so that
2352          * should we detect the updated seqno part-way through the
2353          * GPU processing the request, we never over-estimate the
2354          * position of the head.
2355          */
2356         request_ring_position = intel_ring_get_tail(ring);
2357
2358         ret = ring->add_request(ring);
2359         if (ret)
2360                 return ret;
2361
2362         request->seqno = intel_ring_get_seqno(ring);
2363         request->ring = ring;
2364         request->head = request_start;
2365         request->tail = request_ring_position;
2366
2367         /* Whilst this request exists, batch_obj will be on the
2368          * active_list, and so will hold the active reference. Only when this
2369          * request is retired will the the batch_obj be moved onto the
2370          * inactive_list and lose its active reference. Hence we do not need
2371          * to explicitly hold another reference here.
2372          */
2373         request->batch_obj = obj;
2374
2375         /* Hold a reference to the current context so that we can inspect
2376          * it later in case a hangcheck error event fires.
2377          */
2378         request->ctx = ring->last_context;
2379         if (request->ctx)
2380                 i915_gem_context_reference(request->ctx);
2381
2382         request->emitted_jiffies = jiffies;
2383         list_add_tail(&request->list, &ring->request_list);
2384         request->file_priv = NULL;
2385
2386         if (file) {
2387                 struct drm_i915_file_private *file_priv = file->driver_priv;
2388
2389                 spin_lock(&file_priv->mm.lock);
2390                 request->file_priv = file_priv;
2391                 list_add_tail(&request->client_list,
2392                               &file_priv->mm.request_list);
2393                 spin_unlock(&file_priv->mm.lock);
2394         }
2395
2396         trace_i915_gem_request_add(ring, request->seqno);
2397         ring->outstanding_lazy_seqno = 0;
2398         ring->preallocated_lazy_request = NULL;
2399
2400         if (!dev_priv->ums.mm_suspended) {
2401                 i915_queue_hangcheck(ring->dev);
2402
2403                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2404                 queue_delayed_work(dev_priv->wq,
2405                                    &dev_priv->mm.retire_work,
2406                                    round_jiffies_up_relative(HZ));
2407                 intel_mark_busy(dev_priv->dev);
2408         }
2409
2410         if (out_seqno)
2411                 *out_seqno = request->seqno;
2412         return 0;
2413 }
2414
2415 static inline void
2416 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2417 {
2418         struct drm_i915_file_private *file_priv = request->file_priv;
2419
2420         if (!file_priv)
2421                 return;
2422
2423         spin_lock(&file_priv->mm.lock);
2424         list_del(&request->client_list);
2425         request->file_priv = NULL;
2426         spin_unlock(&file_priv->mm.lock);
2427 }
2428
2429 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2430                                    const struct intel_context *ctx)
2431 {
2432         unsigned long elapsed;
2433
2434         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2435
2436         if (ctx->hang_stats.banned)
2437                 return true;
2438
2439         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2440                 if (!i915_gem_context_is_default(ctx)) {
2441                         DRM_DEBUG("context hanging too fast, banning!\n");
2442                         return true;
2443                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2444                         if (i915_stop_ring_allow_warn(dev_priv))
2445                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2446                         return true;
2447                 }
2448         }
2449
2450         return false;
2451 }
2452
2453 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2454                                   struct intel_context *ctx,
2455                                   const bool guilty)
2456 {
2457         struct i915_ctx_hang_stats *hs;
2458
2459         if (WARN_ON(!ctx))
2460                 return;
2461
2462         hs = &ctx->hang_stats;
2463
2464         if (guilty) {
2465                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2466                 hs->batch_active++;
2467                 hs->guilty_ts = get_seconds();
2468         } else {
2469                 hs->batch_pending++;
2470         }
2471 }
2472
2473 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2474 {
2475         list_del(&request->list);
2476         i915_gem_request_remove_from_client(request);
2477
2478         if (request->ctx)
2479                 i915_gem_context_unreference(request->ctx);
2480
2481         kfree(request);
2482 }
2483
2484 struct drm_i915_gem_request *
2485 i915_gem_find_active_request(struct intel_engine_cs *ring)
2486 {
2487         struct drm_i915_gem_request *request;
2488         u32 completed_seqno;
2489
2490         completed_seqno = ring->get_seqno(ring, false);
2491
2492         list_for_each_entry(request, &ring->request_list, list) {
2493                 if (i915_seqno_passed(completed_seqno, request->seqno))
2494                         continue;
2495
2496                 return request;
2497         }
2498
2499         return NULL;
2500 }
2501
2502 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2503                                        struct intel_engine_cs *ring)
2504 {
2505         struct drm_i915_gem_request *request;
2506         bool ring_hung;
2507
2508         request = i915_gem_find_active_request(ring);
2509
2510         if (request == NULL)
2511                 return;
2512
2513         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2514
2515         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2516
2517         list_for_each_entry_continue(request, &ring->request_list, list)
2518                 i915_set_reset_status(dev_priv, request->ctx, false);
2519 }
2520
2521 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2522                                         struct intel_engine_cs *ring)
2523 {
2524         while (!list_empty(&ring->active_list)) {
2525                 struct drm_i915_gem_object *obj;
2526
2527                 obj = list_first_entry(&ring->active_list,
2528                                        struct drm_i915_gem_object,
2529                                        ring_list);
2530
2531                 i915_gem_object_move_to_inactive(obj);
2532         }
2533
2534         /*
2535          * We must free the requests after all the corresponding objects have
2536          * been moved off active lists. Which is the same order as the normal
2537          * retire_requests function does. This is important if object hold
2538          * implicit references on things like e.g. ppgtt address spaces through
2539          * the request.
2540          */
2541         while (!list_empty(&ring->request_list)) {
2542                 struct drm_i915_gem_request *request;
2543
2544                 request = list_first_entry(&ring->request_list,
2545                                            struct drm_i915_gem_request,
2546                                            list);
2547
2548                 i915_gem_free_request(request);
2549         }
2550
2551         /* These may not have been flush before the reset, do so now */
2552         kfree(ring->preallocated_lazy_request);
2553         ring->preallocated_lazy_request = NULL;
2554         ring->outstanding_lazy_seqno = 0;
2555 }
2556
2557 void i915_gem_restore_fences(struct drm_device *dev)
2558 {
2559         struct drm_i915_private *dev_priv = dev->dev_private;
2560         int i;
2561
2562         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2563                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2564
2565                 /*
2566                  * Commit delayed tiling changes if we have an object still
2567                  * attached to the fence, otherwise just clear the fence.
2568                  */
2569                 if (reg->obj) {
2570                         i915_gem_object_update_fence(reg->obj, reg,
2571                                                      reg->obj->tiling_mode);
2572                 } else {
2573                         i915_gem_write_fence(dev, i, NULL);
2574                 }
2575         }
2576 }
2577
2578 void i915_gem_reset(struct drm_device *dev)
2579 {
2580         struct drm_i915_private *dev_priv = dev->dev_private;
2581         struct intel_engine_cs *ring;
2582         int i;
2583
2584         /*
2585          * Before we free the objects from the requests, we need to inspect
2586          * them for finding the guilty party. As the requests only borrow
2587          * their reference to the objects, the inspection must be done first.
2588          */
2589         for_each_ring(ring, dev_priv, i)
2590                 i915_gem_reset_ring_status(dev_priv, ring);
2591
2592         for_each_ring(ring, dev_priv, i)
2593                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2594
2595         i915_gem_context_reset(dev);
2596
2597         i915_gem_restore_fences(dev);
2598 }
2599
2600 /**
2601  * This function clears the request list as sequence numbers are passed.
2602  */
2603 void
2604 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2605 {
2606         uint32_t seqno;
2607
2608         if (list_empty(&ring->request_list))
2609                 return;
2610
2611         WARN_ON(i915_verify_lists(ring->dev));
2612
2613         seqno = ring->get_seqno(ring, true);
2614
2615         /* Move any buffers on the active list that are no longer referenced
2616          * by the ringbuffer to the flushing/inactive lists as appropriate,
2617          * before we free the context associated with the requests.
2618          */
2619         while (!list_empty(&ring->active_list)) {
2620                 struct drm_i915_gem_object *obj;
2621
2622                 obj = list_first_entry(&ring->active_list,
2623                                       struct drm_i915_gem_object,
2624                                       ring_list);
2625
2626                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2627                         break;
2628
2629                 i915_gem_object_move_to_inactive(obj);
2630         }
2631
2632
2633         while (!list_empty(&ring->request_list)) {
2634                 struct drm_i915_gem_request *request;
2635
2636                 request = list_first_entry(&ring->request_list,
2637                                            struct drm_i915_gem_request,
2638                                            list);
2639
2640                 if (!i915_seqno_passed(seqno, request->seqno))
2641                         break;
2642
2643                 trace_i915_gem_request_retire(ring, request->seqno);
2644                 /* We know the GPU must have read the request to have
2645                  * sent us the seqno + interrupt, so use the position
2646                  * of tail of the request to update the last known position
2647                  * of the GPU head.
2648                  */
2649                 ring->buffer->last_retired_head = request->tail;
2650
2651                 i915_gem_free_request(request);
2652         }
2653
2654         if (unlikely(ring->trace_irq_seqno &&
2655                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2656                 ring->irq_put(ring);
2657                 ring->trace_irq_seqno = 0;
2658         }
2659
2660         WARN_ON(i915_verify_lists(ring->dev));
2661 }
2662
2663 bool
2664 i915_gem_retire_requests(struct drm_device *dev)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         struct intel_engine_cs *ring;
2668         bool idle = true;
2669         int i;
2670
2671         for_each_ring(ring, dev_priv, i) {
2672                 i915_gem_retire_requests_ring(ring);
2673                 idle &= list_empty(&ring->request_list);
2674         }
2675
2676         if (idle)
2677                 mod_delayed_work(dev_priv->wq,
2678                                    &dev_priv->mm.idle_work,
2679                                    msecs_to_jiffies(100));
2680
2681         return idle;
2682 }
2683
2684 static void
2685 i915_gem_retire_work_handler(struct work_struct *work)
2686 {
2687         struct drm_i915_private *dev_priv =
2688                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2689         struct drm_device *dev = dev_priv->dev;
2690         bool idle;
2691
2692         /* Come back later if the device is busy... */
2693         idle = false;
2694         if (mutex_trylock(&dev->struct_mutex)) {
2695                 idle = i915_gem_retire_requests(dev);
2696                 mutex_unlock(&dev->struct_mutex);
2697         }
2698         if (!idle)
2699                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2700                                    round_jiffies_up_relative(HZ));
2701 }
2702
2703 static void
2704 i915_gem_idle_work_handler(struct work_struct *work)
2705 {
2706         struct drm_i915_private *dev_priv =
2707                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2708
2709         intel_mark_idle(dev_priv->dev);
2710 }
2711
2712 /**
2713  * Ensures that an object will eventually get non-busy by flushing any required
2714  * write domains, emitting any outstanding lazy request and retiring and
2715  * completed requests.
2716  */
2717 static int
2718 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2719 {
2720         int ret;
2721
2722         if (obj->active) {
2723                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2724                 if (ret)
2725                         return ret;
2726
2727                 i915_gem_retire_requests_ring(obj->ring);
2728         }
2729
2730         return 0;
2731 }
2732
2733 /**
2734  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2735  * @DRM_IOCTL_ARGS: standard ioctl arguments
2736  *
2737  * Returns 0 if successful, else an error is returned with the remaining time in
2738  * the timeout parameter.
2739  *  -ETIME: object is still busy after timeout
2740  *  -ERESTARTSYS: signal interrupted the wait
2741  *  -ENONENT: object doesn't exist
2742  * Also possible, but rare:
2743  *  -EAGAIN: GPU wedged
2744  *  -ENOMEM: damn
2745  *  -ENODEV: Internal IRQ fail
2746  *  -E?: The add request failed
2747  *
2748  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2749  * non-zero timeout parameter the wait ioctl will wait for the given number of
2750  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2751  * without holding struct_mutex the object may become re-busied before this
2752  * function completes. A similar but shorter * race condition exists in the busy
2753  * ioctl
2754  */
2755 int
2756 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2757 {
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759         struct drm_i915_gem_wait *args = data;
2760         struct drm_i915_gem_object *obj;
2761         struct intel_engine_cs *ring = NULL;
2762         struct timespec timeout_stack, *timeout = NULL;
2763         unsigned reset_counter;
2764         u32 seqno = 0;
2765         int ret = 0;
2766
2767         if (args->timeout_ns >= 0) {
2768                 timeout_stack = ns_to_timespec(args->timeout_ns);
2769                 timeout = &timeout_stack;
2770         }
2771
2772         ret = i915_mutex_lock_interruptible(dev);
2773         if (ret)
2774                 return ret;
2775
2776         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2777         if (&obj->base == NULL) {
2778                 mutex_unlock(&dev->struct_mutex);
2779                 return -ENOENT;
2780         }
2781
2782         /* Need to make sure the object gets inactive eventually. */
2783         ret = i915_gem_object_flush_active(obj);
2784         if (ret)
2785                 goto out;
2786
2787         if (obj->active) {
2788                 seqno = obj->last_read_seqno;
2789                 ring = obj->ring;
2790         }
2791
2792         if (seqno == 0)
2793                  goto out;
2794
2795         /* Do this after OLR check to make sure we make forward progress polling
2796          * on this IOCTL with a 0 timeout (like busy ioctl)
2797          */
2798         if (!args->timeout_ns) {
2799                 ret = -ETIME;
2800                 goto out;
2801         }
2802
2803         drm_gem_object_unreference(&obj->base);
2804         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2805         mutex_unlock(&dev->struct_mutex);
2806
2807         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2808         if (timeout)
2809                 args->timeout_ns = timespec_to_ns(timeout);
2810         return ret;
2811
2812 out:
2813         drm_gem_object_unreference(&obj->base);
2814         mutex_unlock(&dev->struct_mutex);
2815         return ret;
2816 }
2817
2818 /**
2819  * i915_gem_object_sync - sync an object to a ring.
2820  *
2821  * @obj: object which may be in use on another ring.
2822  * @to: ring we wish to use the object on. May be NULL.
2823  *
2824  * This code is meant to abstract object synchronization with the GPU.
2825  * Calling with NULL implies synchronizing the object with the CPU
2826  * rather than a particular GPU ring.
2827  *
2828  * Returns 0 if successful, else propagates up the lower layer error.
2829  */
2830 int
2831 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2832                      struct intel_engine_cs *to)
2833 {
2834         struct intel_engine_cs *from = obj->ring;
2835         u32 seqno;
2836         int ret, idx;
2837
2838         if (from == NULL || to == from)
2839                 return 0;
2840
2841         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2842                 return i915_gem_object_wait_rendering(obj, false);
2843
2844         idx = intel_ring_sync_index(from, to);
2845
2846         seqno = obj->last_read_seqno;
2847         if (seqno <= from->semaphore.sync_seqno[idx])
2848                 return 0;
2849
2850         ret = i915_gem_check_olr(obj->ring, seqno);
2851         if (ret)
2852                 return ret;
2853
2854         trace_i915_gem_ring_sync_to(from, to, seqno);
2855         ret = to->semaphore.sync_to(to, from, seqno);
2856         if (!ret)
2857                 /* We use last_read_seqno because sync_to()
2858                  * might have just caused seqno wrap under
2859                  * the radar.
2860                  */
2861                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2862
2863         return ret;
2864 }
2865
2866 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2867 {
2868         u32 old_write_domain, old_read_domains;
2869
2870         /* Force a pagefault for domain tracking on next user access */
2871         i915_gem_release_mmap(obj);
2872
2873         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2874                 return;
2875
2876         /* Wait for any direct GTT access to complete */
2877         mb();
2878
2879         old_read_domains = obj->base.read_domains;
2880         old_write_domain = obj->base.write_domain;
2881
2882         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2883         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2884
2885         trace_i915_gem_object_change_domain(obj,
2886                                             old_read_domains,
2887                                             old_write_domain);
2888 }
2889
2890 int i915_vma_unbind(struct i915_vma *vma)
2891 {
2892         struct drm_i915_gem_object *obj = vma->obj;
2893         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2894         int ret;
2895
2896         if (list_empty(&vma->vma_link))
2897                 return 0;
2898
2899         if (!drm_mm_node_allocated(&vma->node)) {
2900                 i915_gem_vma_destroy(vma);
2901                 return 0;
2902         }
2903
2904         if (vma->pin_count)
2905                 return -EBUSY;
2906
2907         BUG_ON(obj->pages == NULL);
2908
2909         ret = i915_gem_object_finish_gpu(obj);
2910         if (ret)
2911                 return ret;
2912         /* Continue on if we fail due to EIO, the GPU is hung so we
2913          * should be safe and we need to cleanup or else we might
2914          * cause memory corruption through use-after-free.
2915          */
2916
2917         if (i915_is_ggtt(vma->vm)) {
2918                 i915_gem_object_finish_gtt(obj);
2919
2920                 /* release the fence reg _after_ flushing */
2921                 ret = i915_gem_object_put_fence(obj);
2922                 if (ret)
2923                         return ret;
2924         }
2925
2926         trace_i915_vma_unbind(vma);
2927
2928         vma->unbind_vma(vma);
2929
2930         i915_gem_gtt_finish_object(obj);
2931
2932         list_del_init(&vma->mm_list);
2933         /* Avoid an unnecessary call to unbind on rebind. */
2934         if (i915_is_ggtt(vma->vm))
2935                 obj->map_and_fenceable = true;
2936
2937         drm_mm_remove_node(&vma->node);
2938         i915_gem_vma_destroy(vma);
2939
2940         /* Since the unbound list is global, only move to that list if
2941          * no more VMAs exist. */
2942         if (list_empty(&obj->vma_list))
2943                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2944
2945         /* And finally now the object is completely decoupled from this vma,
2946          * we can drop its hold on the backing storage and allow it to be
2947          * reaped by the shrinker.
2948          */
2949         i915_gem_object_unpin_pages(obj);
2950
2951         return 0;
2952 }
2953
2954 int i915_gpu_idle(struct drm_device *dev)
2955 {
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         struct intel_engine_cs *ring;
2958         int ret, i;
2959
2960         /* Flush everything onto the inactive list. */
2961         for_each_ring(ring, dev_priv, i) {
2962                 ret = i915_switch_context(ring, ring->default_context);
2963                 if (ret)
2964                         return ret;
2965
2966                 ret = intel_ring_idle(ring);
2967                 if (ret)
2968                         return ret;
2969         }
2970
2971         return 0;
2972 }
2973
2974 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2975                                  struct drm_i915_gem_object *obj)
2976 {
2977         struct drm_i915_private *dev_priv = dev->dev_private;
2978         int fence_reg;
2979         int fence_pitch_shift;
2980
2981         if (INTEL_INFO(dev)->gen >= 6) {
2982                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2983                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2984         } else {
2985                 fence_reg = FENCE_REG_965_0;
2986                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2987         }
2988
2989         fence_reg += reg * 8;
2990
2991         /* To w/a incoherency with non-atomic 64-bit register updates,
2992          * we split the 64-bit update into two 32-bit writes. In order
2993          * for a partial fence not to be evaluated between writes, we
2994          * precede the update with write to turn off the fence register,
2995          * and only enable the fence as the last step.
2996          *
2997          * For extra levels of paranoia, we make sure each step lands
2998          * before applying the next step.
2999          */
3000         I915_WRITE(fence_reg, 0);
3001         POSTING_READ(fence_reg);
3002
3003         if (obj) {
3004                 u32 size = i915_gem_obj_ggtt_size(obj);
3005                 uint64_t val;
3006
3007                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3008                                  0xfffff000) << 32;
3009                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3010                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3011                 if (obj->tiling_mode == I915_TILING_Y)
3012                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3013                 val |= I965_FENCE_REG_VALID;
3014
3015                 I915_WRITE(fence_reg + 4, val >> 32);
3016                 POSTING_READ(fence_reg + 4);
3017
3018                 I915_WRITE(fence_reg + 0, val);
3019                 POSTING_READ(fence_reg);
3020         } else {
3021                 I915_WRITE(fence_reg + 4, 0);
3022                 POSTING_READ(fence_reg + 4);
3023         }
3024 }
3025
3026 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3027                                  struct drm_i915_gem_object *obj)
3028 {
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         u32 val;
3031
3032         if (obj) {
3033                 u32 size = i915_gem_obj_ggtt_size(obj);
3034                 int pitch_val;
3035                 int tile_width;
3036
3037                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3038                      (size & -size) != size ||
3039                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3040                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3041                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3042
3043                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3044                         tile_width = 128;
3045                 else
3046                         tile_width = 512;
3047
3048                 /* Note: pitch better be a power of two tile widths */
3049                 pitch_val = obj->stride / tile_width;
3050                 pitch_val = ffs(pitch_val) - 1;
3051
3052                 val = i915_gem_obj_ggtt_offset(obj);
3053                 if (obj->tiling_mode == I915_TILING_Y)
3054                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3055                 val |= I915_FENCE_SIZE_BITS(size);
3056                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3057                 val |= I830_FENCE_REG_VALID;
3058         } else
3059                 val = 0;
3060
3061         if (reg < 8)
3062                 reg = FENCE_REG_830_0 + reg * 4;
3063         else
3064                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3065
3066         I915_WRITE(reg, val);
3067         POSTING_READ(reg);
3068 }
3069
3070 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3071                                 struct drm_i915_gem_object *obj)
3072 {
3073         struct drm_i915_private *dev_priv = dev->dev_private;
3074         uint32_t val;
3075
3076         if (obj) {
3077                 u32 size = i915_gem_obj_ggtt_size(obj);
3078                 uint32_t pitch_val;
3079
3080                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3081                      (size & -size) != size ||
3082                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3083                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3084                      i915_gem_obj_ggtt_offset(obj), size);
3085
3086                 pitch_val = obj->stride / 128;
3087                 pitch_val = ffs(pitch_val) - 1;
3088
3089                 val = i915_gem_obj_ggtt_offset(obj);
3090                 if (obj->tiling_mode == I915_TILING_Y)
3091                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3092                 val |= I830_FENCE_SIZE_BITS(size);
3093                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3094                 val |= I830_FENCE_REG_VALID;
3095         } else
3096                 val = 0;
3097
3098         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3099         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3100 }
3101
3102 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3103 {
3104         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3105 }
3106
3107 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3108                                  struct drm_i915_gem_object *obj)
3109 {
3110         struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112         /* Ensure that all CPU reads are completed before installing a fence
3113          * and all writes before removing the fence.
3114          */
3115         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3116                 mb();
3117
3118         WARN(obj && (!obj->stride || !obj->tiling_mode),
3119              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3120              obj->stride, obj->tiling_mode);
3121
3122         switch (INTEL_INFO(dev)->gen) {
3123         case 8:
3124         case 7:
3125         case 6:
3126         case 5:
3127         case 4: i965_write_fence_reg(dev, reg, obj); break;
3128         case 3: i915_write_fence_reg(dev, reg, obj); break;
3129         case 2: i830_write_fence_reg(dev, reg, obj); break;
3130         default: BUG();
3131         }
3132
3133         /* And similarly be paranoid that no direct access to this region
3134          * is reordered to before the fence is installed.
3135          */
3136         if (i915_gem_object_needs_mb(obj))
3137                 mb();
3138 }
3139
3140 static inline int fence_number(struct drm_i915_private *dev_priv,
3141                                struct drm_i915_fence_reg *fence)
3142 {
3143         return fence - dev_priv->fence_regs;
3144 }
3145
3146 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3147                                          struct drm_i915_fence_reg *fence,
3148                                          bool enable)
3149 {
3150         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3151         int reg = fence_number(dev_priv, fence);
3152
3153         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3154
3155         if (enable) {
3156                 obj->fence_reg = reg;
3157                 fence->obj = obj;
3158                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3159         } else {
3160                 obj->fence_reg = I915_FENCE_REG_NONE;
3161                 fence->obj = NULL;
3162                 list_del_init(&fence->lru_list);
3163         }
3164         obj->fence_dirty = false;
3165 }
3166
3167 static int
3168 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3169 {
3170         if (obj->last_fenced_seqno) {
3171                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3172                 if (ret)
3173                         return ret;
3174
3175                 obj->last_fenced_seqno = 0;
3176         }
3177
3178         obj->fenced_gpu_access = false;
3179         return 0;
3180 }
3181
3182 int
3183 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3184 {
3185         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3186         struct drm_i915_fence_reg *fence;
3187         int ret;
3188
3189         ret = i915_gem_object_wait_fence(obj);
3190         if (ret)
3191                 return ret;
3192
3193         if (obj->fence_reg == I915_FENCE_REG_NONE)
3194                 return 0;
3195
3196         fence = &dev_priv->fence_regs[obj->fence_reg];
3197
3198         if (WARN_ON(fence->pin_count))
3199                 return -EBUSY;
3200
3201         i915_gem_object_fence_lost(obj);
3202         i915_gem_object_update_fence(obj, fence, false);
3203
3204         return 0;
3205 }
3206
3207 static struct drm_i915_fence_reg *
3208 i915_find_fence_reg(struct drm_device *dev)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         struct drm_i915_fence_reg *reg, *avail;
3212         int i;
3213
3214         /* First try to find a free reg */
3215         avail = NULL;
3216         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3217                 reg = &dev_priv->fence_regs[i];
3218                 if (!reg->obj)
3219                         return reg;
3220
3221                 if (!reg->pin_count)
3222                         avail = reg;
3223         }
3224
3225         if (avail == NULL)
3226                 goto deadlock;
3227
3228         /* None available, try to steal one or wait for a user to finish */
3229         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3230                 if (reg->pin_count)
3231                         continue;
3232
3233                 return reg;
3234         }
3235
3236 deadlock:
3237         /* Wait for completion of pending flips which consume fences */
3238         if (intel_has_pending_fb_unpin(dev))
3239                 return ERR_PTR(-EAGAIN);
3240
3241         return ERR_PTR(-EDEADLK);
3242 }
3243
3244 /**
3245  * i915_gem_object_get_fence - set up fencing for an object
3246  * @obj: object to map through a fence reg
3247  *
3248  * When mapping objects through the GTT, userspace wants to be able to write
3249  * to them without having to worry about swizzling if the object is tiled.
3250  * This function walks the fence regs looking for a free one for @obj,
3251  * stealing one if it can't find any.
3252  *
3253  * It then sets up the reg based on the object's properties: address, pitch
3254  * and tiling format.
3255  *
3256  * For an untiled surface, this removes any existing fence.
3257  */
3258 int
3259 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3260 {
3261         struct drm_device *dev = obj->base.dev;
3262         struct drm_i915_private *dev_priv = dev->dev_private;
3263         bool enable = obj->tiling_mode != I915_TILING_NONE;
3264         struct drm_i915_fence_reg *reg;
3265         int ret;
3266
3267         /* Have we updated the tiling parameters upon the object and so
3268          * will need to serialise the write to the associated fence register?
3269          */
3270         if (obj->fence_dirty) {
3271                 ret = i915_gem_object_wait_fence(obj);
3272                 if (ret)
3273                         return ret;
3274         }
3275
3276         /* Just update our place in the LRU if our fence is getting reused. */
3277         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3278                 reg = &dev_priv->fence_regs[obj->fence_reg];
3279                 if (!obj->fence_dirty) {
3280                         list_move_tail(&reg->lru_list,
3281                                        &dev_priv->mm.fence_list);
3282                         return 0;
3283                 }
3284         } else if (enable) {
3285                 reg = i915_find_fence_reg(dev);
3286                 if (IS_ERR(reg))
3287                         return PTR_ERR(reg);
3288
3289                 if (reg->obj) {
3290                         struct drm_i915_gem_object *old = reg->obj;
3291
3292                         ret = i915_gem_object_wait_fence(old);
3293                         if (ret)
3294                                 return ret;
3295
3296                         i915_gem_object_fence_lost(old);
3297                 }
3298         } else
3299                 return 0;
3300
3301         i915_gem_object_update_fence(obj, reg, enable);
3302
3303         return 0;
3304 }
3305
3306 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3307                                      struct drm_mm_node *gtt_space,
3308                                      unsigned long cache_level)
3309 {
3310         struct drm_mm_node *other;
3311
3312         /* On non-LLC machines we have to be careful when putting differing
3313          * types of snoopable memory together to avoid the prefetcher
3314          * crossing memory domains and dying.
3315          */
3316         if (HAS_LLC(dev))
3317                 return true;
3318
3319         if (!drm_mm_node_allocated(gtt_space))
3320                 return true;
3321
3322         if (list_empty(&gtt_space->node_list))
3323                 return true;
3324
3325         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3326         if (other->allocated && !other->hole_follows && other->color != cache_level)
3327                 return false;
3328
3329         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3330         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3331                 return false;
3332
3333         return true;
3334 }
3335
3336 static void i915_gem_verify_gtt(struct drm_device *dev)
3337 {
3338 #if WATCH_GTT
3339         struct drm_i915_private *dev_priv = dev->dev_private;
3340         struct drm_i915_gem_object *obj;
3341         int err = 0;
3342
3343         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3344                 if (obj->gtt_space == NULL) {
3345                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3346                         err++;
3347                         continue;
3348                 }
3349
3350                 if (obj->cache_level != obj->gtt_space->color) {
3351                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3352                                i915_gem_obj_ggtt_offset(obj),
3353                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3354                                obj->cache_level,
3355                                obj->gtt_space->color);
3356                         err++;
3357                         continue;
3358                 }
3359
3360                 if (!i915_gem_valid_gtt_space(dev,
3361                                               obj->gtt_space,
3362                                               obj->cache_level)) {
3363                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3364                                i915_gem_obj_ggtt_offset(obj),
3365                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3366                                obj->cache_level);
3367                         err++;
3368                         continue;
3369                 }
3370         }
3371
3372         WARN_ON(err);
3373 #endif
3374 }
3375
3376 /**
3377  * Finds free space in the GTT aperture and binds the object there.
3378  */
3379 static struct i915_vma *
3380 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3381                            struct i915_address_space *vm,
3382                            unsigned alignment,
3383                            uint64_t flags)
3384 {
3385         struct drm_device *dev = obj->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         u32 size, fence_size, fence_alignment, unfenced_alignment;
3388         unsigned long start =
3389                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3390         unsigned long end =
3391                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3392         struct i915_vma *vma;
3393         int ret;
3394
3395         fence_size = i915_gem_get_gtt_size(dev,
3396                                            obj->base.size,
3397                                            obj->tiling_mode);
3398         fence_alignment = i915_gem_get_gtt_alignment(dev,
3399                                                      obj->base.size,
3400                                                      obj->tiling_mode, true);
3401         unfenced_alignment =
3402                 i915_gem_get_gtt_alignment(dev,
3403                                            obj->base.size,
3404                                            obj->tiling_mode, false);
3405
3406         if (alignment == 0)
3407                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3408                                                 unfenced_alignment;
3409         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3410                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3411                 return ERR_PTR(-EINVAL);
3412         }
3413
3414         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3415
3416         /* If the object is bigger than the entire aperture, reject it early
3417          * before evicting everything in a vain attempt to find space.
3418          */
3419         if (obj->base.size > end) {
3420                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3421                           obj->base.size,
3422                           flags & PIN_MAPPABLE ? "mappable" : "total",
3423                           end);
3424                 return ERR_PTR(-E2BIG);
3425         }
3426
3427         ret = i915_gem_object_get_pages(obj);
3428         if (ret)
3429                 return ERR_PTR(ret);
3430
3431         i915_gem_object_pin_pages(obj);
3432
3433         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3434         if (IS_ERR(vma))
3435                 goto err_unpin;
3436
3437 search_free:
3438         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439                                                   size, alignment,
3440                                                   obj->cache_level,
3441                                                   start, end,
3442                                                   DRM_MM_SEARCH_DEFAULT,
3443                                                   DRM_MM_CREATE_DEFAULT);
3444         if (ret) {
3445                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3446                                                obj->cache_level,
3447                                                start, end,
3448                                                flags);
3449                 if (ret == 0)
3450                         goto search_free;
3451
3452                 goto err_free_vma;
3453         }
3454         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3455                                               obj->cache_level))) {
3456                 ret = -EINVAL;
3457                 goto err_remove_node;
3458         }
3459
3460         ret = i915_gem_gtt_prepare_object(obj);
3461         if (ret)
3462                 goto err_remove_node;
3463
3464         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465         list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467         if (i915_is_ggtt(vm)) {
3468                 bool mappable, fenceable;
3469
3470                 fenceable = (vma->node.size == fence_size &&
3471                              (vma->node.start & (fence_alignment - 1)) == 0);
3472
3473                 mappable = (vma->node.start + obj->base.size <=
3474                             dev_priv->gtt.mappable_end);
3475
3476                 obj->map_and_fenceable = mappable && fenceable;
3477         }
3478
3479         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3480
3481         trace_i915_vma_bind(vma, flags);
3482         vma->bind_vma(vma, obj->cache_level,
3483                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3484
3485         i915_gem_verify_gtt(dev);
3486         return vma;
3487
3488 err_remove_node:
3489         drm_mm_remove_node(&vma->node);
3490 err_free_vma:
3491         i915_gem_vma_destroy(vma);
3492         vma = ERR_PTR(ret);
3493 err_unpin:
3494         i915_gem_object_unpin_pages(obj);
3495         return vma;
3496 }
3497
3498 bool
3499 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3500                         bool force)
3501 {
3502         /* If we don't have a page list set up, then we're not pinned
3503          * to GPU, and we can ignore the cache flush because it'll happen
3504          * again at bind time.
3505          */
3506         if (obj->pages == NULL)
3507                 return false;
3508
3509         /*
3510          * Stolen memory is always coherent with the GPU as it is explicitly
3511          * marked as wc by the system, or the system is cache-coherent.
3512          */
3513         if (obj->stolen)
3514                 return false;
3515
3516         /* If the GPU is snooping the contents of the CPU cache,
3517          * we do not need to manually clear the CPU cache lines.  However,
3518          * the caches are only snooped when the render cache is
3519          * flushed/invalidated.  As we always have to emit invalidations
3520          * and flushes when moving into and out of the RENDER domain, correct
3521          * snooping behaviour occurs naturally as the result of our domain
3522          * tracking.
3523          */
3524         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3525                 return false;
3526
3527         trace_i915_gem_object_clflush(obj);
3528         drm_clflush_sg(obj->pages);
3529
3530         return true;
3531 }
3532
3533 /** Flushes the GTT write domain for the object if it's dirty. */
3534 static void
3535 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3536 {
3537         uint32_t old_write_domain;
3538
3539         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3540                 return;
3541
3542         /* No actual flushing is required for the GTT write domain.  Writes
3543          * to it immediately go to main memory as far as we know, so there's
3544          * no chipset flush.  It also doesn't land in render cache.
3545          *
3546          * However, we do have to enforce the order so that all writes through
3547          * the GTT land before any writes to the device, such as updates to
3548          * the GATT itself.
3549          */
3550         wmb();
3551
3552         old_write_domain = obj->base.write_domain;
3553         obj->base.write_domain = 0;
3554
3555         trace_i915_gem_object_change_domain(obj,
3556                                             obj->base.read_domains,
3557                                             old_write_domain);
3558 }
3559
3560 /** Flushes the CPU write domain for the object if it's dirty. */
3561 static void
3562 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3563                                        bool force)
3564 {
3565         uint32_t old_write_domain;
3566
3567         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3568                 return;
3569
3570         if (i915_gem_clflush_object(obj, force))
3571                 i915_gem_chipset_flush(obj->base.dev);
3572
3573         old_write_domain = obj->base.write_domain;
3574         obj->base.write_domain = 0;
3575
3576         trace_i915_gem_object_change_domain(obj,
3577                                             obj->base.read_domains,
3578                                             old_write_domain);
3579 }
3580
3581 /**
3582  * Moves a single object to the GTT read, and possibly write domain.
3583  *
3584  * This function returns when the move is complete, including waiting on
3585  * flushes to occur.
3586  */
3587 int
3588 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3589 {
3590         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3591         uint32_t old_write_domain, old_read_domains;
3592         int ret;
3593
3594         /* Not valid to be called on unbound objects. */
3595         if (!i915_gem_obj_bound_any(obj))
3596                 return -EINVAL;
3597
3598         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3599                 return 0;
3600
3601         ret = i915_gem_object_wait_rendering(obj, !write);
3602         if (ret)
3603                 return ret;
3604
3605         i915_gem_object_retire(obj);
3606         i915_gem_object_flush_cpu_write_domain(obj, false);
3607
3608         /* Serialise direct access to this object with the barriers for
3609          * coherent writes from the GPU, by effectively invalidating the
3610          * GTT domain upon first access.
3611          */
3612         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3613                 mb();
3614
3615         old_write_domain = obj->base.write_domain;
3616         old_read_domains = obj->base.read_domains;
3617
3618         /* It should now be out of any other write domains, and we can update
3619          * the domain values for our changes.
3620          */
3621         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3622         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3623         if (write) {
3624                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3625                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3626                 obj->dirty = 1;
3627         }
3628
3629         trace_i915_gem_object_change_domain(obj,
3630                                             old_read_domains,
3631                                             old_write_domain);
3632
3633         /* And bump the LRU for this access */
3634         if (i915_gem_object_is_inactive(obj)) {
3635                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3636                 if (vma)
3637                         list_move_tail(&vma->mm_list,
3638                                        &dev_priv->gtt.base.inactive_list);
3639
3640         }
3641
3642         return 0;
3643 }
3644
3645 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3646                                     enum i915_cache_level cache_level)
3647 {
3648         struct drm_device *dev = obj->base.dev;
3649         struct i915_vma *vma, *next;
3650         int ret;
3651
3652         if (obj->cache_level == cache_level)
3653                 return 0;
3654
3655         if (i915_gem_obj_is_pinned(obj)) {
3656                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3657                 return -EBUSY;
3658         }
3659
3660         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3661                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3662                         ret = i915_vma_unbind(vma);
3663                         if (ret)
3664                                 return ret;
3665                 }
3666         }
3667
3668         if (i915_gem_obj_bound_any(obj)) {
3669                 ret = i915_gem_object_finish_gpu(obj);
3670                 if (ret)
3671                         return ret;
3672
3673                 i915_gem_object_finish_gtt(obj);
3674
3675                 /* Before SandyBridge, you could not use tiling or fence
3676                  * registers with snooped memory, so relinquish any fences
3677                  * currently pointing to our region in the aperture.
3678                  */
3679                 if (INTEL_INFO(dev)->gen < 6) {
3680                         ret = i915_gem_object_put_fence(obj);
3681                         if (ret)
3682                                 return ret;
3683                 }
3684
3685                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3686                         if (drm_mm_node_allocated(&vma->node))
3687                                 vma->bind_vma(vma, cache_level,
3688                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3689         }
3690
3691         list_for_each_entry(vma, &obj->vma_list, vma_link)
3692                 vma->node.color = cache_level;
3693         obj->cache_level = cache_level;
3694
3695         if (cpu_write_needs_clflush(obj)) {
3696                 u32 old_read_domains, old_write_domain;
3697
3698                 /* If we're coming from LLC cached, then we haven't
3699                  * actually been tracking whether the data is in the
3700                  * CPU cache or not, since we only allow one bit set
3701                  * in obj->write_domain and have been skipping the clflushes.
3702                  * Just set it to the CPU cache for now.
3703                  */
3704                 i915_gem_object_retire(obj);
3705                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3706
3707                 old_read_domains = obj->base.read_domains;
3708                 old_write_domain = obj->base.write_domain;
3709
3710                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3711                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3712
3713                 trace_i915_gem_object_change_domain(obj,
3714                                                     old_read_domains,
3715                                                     old_write_domain);
3716         }
3717
3718         i915_gem_verify_gtt(dev);
3719         return 0;
3720 }
3721
3722 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3723                                struct drm_file *file)
3724 {
3725         struct drm_i915_gem_caching *args = data;
3726         struct drm_i915_gem_object *obj;
3727         int ret;
3728
3729         ret = i915_mutex_lock_interruptible(dev);
3730         if (ret)
3731                 return ret;
3732
3733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3734         if (&obj->base == NULL) {
3735                 ret = -ENOENT;
3736                 goto unlock;
3737         }
3738
3739         switch (obj->cache_level) {
3740         case I915_CACHE_LLC:
3741         case I915_CACHE_L3_LLC:
3742                 args->caching = I915_CACHING_CACHED;
3743                 break;
3744
3745         case I915_CACHE_WT:
3746                 args->caching = I915_CACHING_DISPLAY;
3747                 break;
3748
3749         default:
3750                 args->caching = I915_CACHING_NONE;
3751                 break;
3752         }
3753
3754         drm_gem_object_unreference(&obj->base);
3755 unlock:
3756         mutex_unlock(&dev->struct_mutex);
3757         return ret;
3758 }
3759
3760 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3761                                struct drm_file *file)
3762 {
3763         struct drm_i915_gem_caching *args = data;
3764         struct drm_i915_gem_object *obj;
3765         enum i915_cache_level level;
3766         int ret;
3767
3768         switch (args->caching) {
3769         case I915_CACHING_NONE:
3770                 level = I915_CACHE_NONE;
3771                 break;
3772         case I915_CACHING_CACHED:
3773                 level = I915_CACHE_LLC;
3774                 break;
3775         case I915_CACHING_DISPLAY:
3776                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3777                 break;
3778         default:
3779                 return -EINVAL;
3780         }
3781
3782         ret = i915_mutex_lock_interruptible(dev);
3783         if (ret)
3784                 return ret;
3785
3786         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787         if (&obj->base == NULL) {
3788                 ret = -ENOENT;
3789                 goto unlock;
3790         }
3791
3792         ret = i915_gem_object_set_cache_level(obj, level);
3793
3794         drm_gem_object_unreference(&obj->base);
3795 unlock:
3796         mutex_unlock(&dev->struct_mutex);
3797         return ret;
3798 }
3799
3800 static bool is_pin_display(struct drm_i915_gem_object *obj)
3801 {
3802         struct i915_vma *vma;
3803
3804         if (list_empty(&obj->vma_list))
3805                 return false;
3806
3807         vma = i915_gem_obj_to_ggtt(obj);
3808         if (!vma)
3809                 return false;
3810
3811         /* There are 3 sources that pin objects:
3812          *   1. The display engine (scanouts, sprites, cursors);
3813          *   2. Reservations for execbuffer;
3814          *   3. The user.
3815          *
3816          * We can ignore reservations as we hold the struct_mutex and
3817          * are only called outside of the reservation path.  The user
3818          * can only increment pin_count once, and so if after
3819          * subtracting the potential reference by the user, any pin_count
3820          * remains, it must be due to another use by the display engine.
3821          */
3822         return vma->pin_count - !!obj->user_pin_count;
3823 }
3824
3825 /*
3826  * Prepare buffer for display plane (scanout, cursors, etc).
3827  * Can be called from an uninterruptible phase (modesetting) and allows
3828  * any flushes to be pipelined (for pageflips).
3829  */
3830 int
3831 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3832                                      u32 alignment,
3833                                      struct intel_engine_cs *pipelined)
3834 {
3835         u32 old_read_domains, old_write_domain;
3836         bool was_pin_display;
3837         int ret;
3838
3839         if (pipelined != obj->ring) {
3840                 ret = i915_gem_object_sync(obj, pipelined);
3841                 if (ret)
3842                         return ret;
3843         }
3844
3845         /* Mark the pin_display early so that we account for the
3846          * display coherency whilst setting up the cache domains.
3847          */
3848         was_pin_display = obj->pin_display;
3849         obj->pin_display = true;
3850
3851         /* The display engine is not coherent with the LLC cache on gen6.  As
3852          * a result, we make sure that the pinning that is about to occur is
3853          * done with uncached PTEs. This is lowest common denominator for all
3854          * chipsets.
3855          *
3856          * However for gen6+, we could do better by using the GFDT bit instead
3857          * of uncaching, which would allow us to flush all the LLC-cached data
3858          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3859          */
3860         ret = i915_gem_object_set_cache_level(obj,
3861                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3862         if (ret)
3863                 goto err_unpin_display;
3864
3865         /* As the user may map the buffer once pinned in the display plane
3866          * (e.g. libkms for the bootup splash), we have to ensure that we
3867          * always use map_and_fenceable for all scanout buffers.
3868          */
3869         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3870         if (ret)
3871                 goto err_unpin_display;
3872
3873         i915_gem_object_flush_cpu_write_domain(obj, true);
3874
3875         old_write_domain = obj->base.write_domain;
3876         old_read_domains = obj->base.read_domains;
3877
3878         /* It should now be out of any other write domains, and we can update
3879          * the domain values for our changes.
3880          */
3881         obj->base.write_domain = 0;
3882         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3883
3884         trace_i915_gem_object_change_domain(obj,
3885                                             old_read_domains,
3886                                             old_write_domain);
3887
3888         return 0;
3889
3890 err_unpin_display:
3891         WARN_ON(was_pin_display != is_pin_display(obj));
3892         obj->pin_display = was_pin_display;
3893         return ret;
3894 }
3895
3896 void
3897 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3898 {
3899         i915_gem_object_ggtt_unpin(obj);
3900         obj->pin_display = is_pin_display(obj);
3901 }
3902
3903 int
3904 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3905 {
3906         int ret;
3907
3908         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3909                 return 0;
3910
3911         ret = i915_gem_object_wait_rendering(obj, false);
3912         if (ret)
3913                 return ret;
3914
3915         /* Ensure that we invalidate the GPU's caches and TLBs. */
3916         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3917         return 0;
3918 }
3919
3920 /**
3921  * Moves a single object to the CPU read, and possibly write domain.
3922  *
3923  * This function returns when the move is complete, including waiting on
3924  * flushes to occur.
3925  */
3926 int
3927 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3928 {
3929         uint32_t old_write_domain, old_read_domains;
3930         int ret;
3931
3932         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3933                 return 0;
3934
3935         ret = i915_gem_object_wait_rendering(obj, !write);
3936         if (ret)
3937                 return ret;
3938
3939         i915_gem_object_retire(obj);
3940         i915_gem_object_flush_gtt_write_domain(obj);
3941
3942         old_write_domain = obj->base.write_domain;
3943         old_read_domains = obj->base.read_domains;
3944
3945         /* Flush the CPU cache if it's still invalid. */
3946         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3947                 i915_gem_clflush_object(obj, false);
3948
3949                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3950         }
3951
3952         /* It should now be out of any other write domains, and we can update
3953          * the domain values for our changes.
3954          */
3955         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3956
3957         /* If we're writing through the CPU, then the GPU read domains will
3958          * need to be invalidated at next use.
3959          */
3960         if (write) {
3961                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3962                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3963         }
3964
3965         trace_i915_gem_object_change_domain(obj,
3966                                             old_read_domains,
3967                                             old_write_domain);
3968
3969         return 0;
3970 }
3971
3972 /* Throttle our rendering by waiting until the ring has completed our requests
3973  * emitted over 20 msec ago.
3974  *
3975  * Note that if we were to use the current jiffies each time around the loop,
3976  * we wouldn't escape the function with any frames outstanding if the time to
3977  * render a frame was over 20ms.
3978  *
3979  * This should get us reasonable parallelism between CPU and GPU but also
3980  * relatively low latency when blocking on a particular request to finish.
3981  */
3982 static int
3983 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3984 {
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         struct drm_i915_file_private *file_priv = file->driver_priv;
3987         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3988         struct drm_i915_gem_request *request;
3989         struct intel_engine_cs *ring = NULL;
3990         unsigned reset_counter;
3991         u32 seqno = 0;
3992         int ret;
3993
3994         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3995         if (ret)
3996                 return ret;
3997
3998         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3999         if (ret)
4000                 return ret;
4001
4002         spin_lock(&file_priv->mm.lock);
4003         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4004                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4005                         break;
4006
4007                 ring = request->ring;
4008                 seqno = request->seqno;
4009         }
4010         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4011         spin_unlock(&file_priv->mm.lock);
4012
4013         if (seqno == 0)
4014                 return 0;
4015
4016         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4017         if (ret == 0)
4018                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4019
4020         return ret;
4021 }
4022
4023 static bool
4024 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4025 {
4026         struct drm_i915_gem_object *obj = vma->obj;
4027
4028         if (alignment &&
4029             vma->node.start & (alignment - 1))
4030                 return true;
4031
4032         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4033                 return true;
4034
4035         if (flags & PIN_OFFSET_BIAS &&
4036             vma->node.start < (flags & PIN_OFFSET_MASK))
4037                 return true;
4038
4039         return false;
4040 }
4041
4042 int
4043 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4044                     struct i915_address_space *vm,
4045                     uint32_t alignment,
4046                     uint64_t flags)
4047 {
4048         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4049         struct i915_vma *vma;
4050         int ret;
4051
4052         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4053                 return -ENODEV;
4054
4055         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4056                 return -EINVAL;
4057
4058         vma = i915_gem_obj_to_vma(obj, vm);
4059         if (vma) {
4060                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4061                         return -EBUSY;
4062
4063                 if (i915_vma_misplaced(vma, alignment, flags)) {
4064                         WARN(vma->pin_count,
4065                              "bo is already pinned with incorrect alignment:"
4066                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4067                              " obj->map_and_fenceable=%d\n",
4068                              i915_gem_obj_offset(obj, vm), alignment,
4069                              !!(flags & PIN_MAPPABLE),
4070                              obj->map_and_fenceable);
4071                         ret = i915_vma_unbind(vma);
4072                         if (ret)
4073                                 return ret;
4074
4075                         vma = NULL;
4076                 }
4077         }
4078
4079         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4080                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4081                 if (IS_ERR(vma))
4082                         return PTR_ERR(vma);
4083         }
4084
4085         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4086                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4087
4088         vma->pin_count++;
4089         if (flags & PIN_MAPPABLE)
4090                 obj->pin_mappable |= true;
4091
4092         return 0;
4093 }
4094
4095 void
4096 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4097 {
4098         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4099
4100         BUG_ON(!vma);
4101         BUG_ON(vma->pin_count == 0);
4102         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4103
4104         if (--vma->pin_count == 0)
4105                 obj->pin_mappable = false;
4106 }
4107
4108 bool
4109 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4110 {
4111         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4112                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4113                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4114
4115                 WARN_ON(!ggtt_vma ||
4116                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4117                         ggtt_vma->pin_count);
4118                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4119                 return true;
4120         } else
4121                 return false;
4122 }
4123
4124 void
4125 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4126 {
4127         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4128                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4129                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4130                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4131         }
4132 }
4133
4134 int
4135 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4136                    struct drm_file *file)
4137 {
4138         struct drm_i915_gem_pin *args = data;
4139         struct drm_i915_gem_object *obj;
4140         int ret;
4141
4142         if (INTEL_INFO(dev)->gen >= 6)
4143                 return -ENODEV;
4144
4145         ret = i915_mutex_lock_interruptible(dev);
4146         if (ret)
4147                 return ret;
4148
4149         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4150         if (&obj->base == NULL) {
4151                 ret = -ENOENT;
4152                 goto unlock;
4153         }
4154
4155         if (obj->madv != I915_MADV_WILLNEED) {
4156                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4157                 ret = -EFAULT;
4158                 goto out;
4159         }
4160
4161         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4162                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4163                           args->handle);
4164                 ret = -EINVAL;
4165                 goto out;
4166         }
4167
4168         if (obj->user_pin_count == ULONG_MAX) {
4169                 ret = -EBUSY;
4170                 goto out;
4171         }
4172
4173         if (obj->user_pin_count == 0) {
4174                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4175                 if (ret)
4176                         goto out;
4177         }
4178
4179         obj->user_pin_count++;
4180         obj->pin_filp = file;
4181
4182         args->offset = i915_gem_obj_ggtt_offset(obj);
4183 out:
4184         drm_gem_object_unreference(&obj->base);
4185 unlock:
4186         mutex_unlock(&dev->struct_mutex);
4187         return ret;
4188 }
4189
4190 int
4191 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4192                      struct drm_file *file)
4193 {
4194         struct drm_i915_gem_pin *args = data;
4195         struct drm_i915_gem_object *obj;
4196         int ret;
4197
4198         ret = i915_mutex_lock_interruptible(dev);
4199         if (ret)
4200                 return ret;
4201
4202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4203         if (&obj->base == NULL) {
4204                 ret = -ENOENT;
4205                 goto unlock;
4206         }
4207
4208         if (obj->pin_filp != file) {
4209                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4210                           args->handle);
4211                 ret = -EINVAL;
4212                 goto out;
4213         }
4214         obj->user_pin_count--;
4215         if (obj->user_pin_count == 0) {
4216                 obj->pin_filp = NULL;
4217                 i915_gem_object_ggtt_unpin(obj);
4218         }
4219
4220 out:
4221         drm_gem_object_unreference(&obj->base);
4222 unlock:
4223         mutex_unlock(&dev->struct_mutex);
4224         return ret;
4225 }
4226
4227 int
4228 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4229                     struct drm_file *file)
4230 {
4231         struct drm_i915_gem_busy *args = data;
4232         struct drm_i915_gem_object *obj;
4233         int ret;
4234
4235         ret = i915_mutex_lock_interruptible(dev);
4236         if (ret)
4237                 return ret;
4238
4239         intel_edp_psr_exit(dev);
4240
4241         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4242         if (&obj->base == NULL) {
4243                 ret = -ENOENT;
4244                 goto unlock;
4245         }
4246
4247         /* Count all active objects as busy, even if they are currently not used
4248          * by the gpu. Users of this interface expect objects to eventually
4249          * become non-busy without any further actions, therefore emit any
4250          * necessary flushes here.
4251          */
4252         ret = i915_gem_object_flush_active(obj);
4253
4254         args->busy = obj->active;
4255         if (obj->ring) {
4256                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4257                 args->busy |= intel_ring_flag(obj->ring) << 16;
4258         }
4259
4260         drm_gem_object_unreference(&obj->base);
4261 unlock:
4262         mutex_unlock(&dev->struct_mutex);
4263         return ret;
4264 }
4265
4266 int
4267 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4268                         struct drm_file *file_priv)
4269 {
4270         return i915_gem_ring_throttle(dev, file_priv);
4271 }
4272
4273 int
4274 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4275                        struct drm_file *file_priv)
4276 {
4277         struct drm_i915_gem_madvise *args = data;
4278         struct drm_i915_gem_object *obj;
4279         int ret;
4280
4281         switch (args->madv) {
4282         case I915_MADV_DONTNEED:
4283         case I915_MADV_WILLNEED:
4284             break;
4285         default:
4286             return -EINVAL;
4287         }
4288
4289         ret = i915_mutex_lock_interruptible(dev);
4290         if (ret)
4291                 return ret;
4292
4293         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4294         if (&obj->base == NULL) {
4295                 ret = -ENOENT;
4296                 goto unlock;
4297         }
4298
4299         if (i915_gem_obj_is_pinned(obj)) {
4300                 ret = -EINVAL;
4301                 goto out;
4302         }
4303
4304         if (obj->madv != __I915_MADV_PURGED)
4305                 obj->madv = args->madv;
4306
4307         /* if the object is no longer attached, discard its backing storage */
4308         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4309                 i915_gem_object_truncate(obj);
4310
4311         args->retained = obj->madv != __I915_MADV_PURGED;
4312
4313 out:
4314         drm_gem_object_unreference(&obj->base);
4315 unlock:
4316         mutex_unlock(&dev->struct_mutex);
4317         return ret;
4318 }
4319
4320 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4321                           const struct drm_i915_gem_object_ops *ops)
4322 {
4323         INIT_LIST_HEAD(&obj->global_list);
4324         INIT_LIST_HEAD(&obj->ring_list);
4325         INIT_LIST_HEAD(&obj->obj_exec_link);
4326         INIT_LIST_HEAD(&obj->vma_list);
4327
4328         obj->ops = ops;
4329
4330         obj->fence_reg = I915_FENCE_REG_NONE;
4331         obj->madv = I915_MADV_WILLNEED;
4332         /* Avoid an unnecessary call to unbind on the first bind. */
4333         obj->map_and_fenceable = true;
4334
4335         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4336 }
4337
4338 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4339         .get_pages = i915_gem_object_get_pages_gtt,
4340         .put_pages = i915_gem_object_put_pages_gtt,
4341 };
4342
4343 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4344                                                   size_t size)
4345 {
4346         struct drm_i915_gem_object *obj;
4347         struct address_space *mapping;
4348         gfp_t mask;
4349
4350         obj = i915_gem_object_alloc(dev);
4351         if (obj == NULL)
4352                 return NULL;
4353
4354         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4355                 i915_gem_object_free(obj);
4356                 return NULL;
4357         }
4358
4359         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4360         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4361                 /* 965gm cannot relocate objects above 4GiB. */
4362                 mask &= ~__GFP_HIGHMEM;
4363                 mask |= __GFP_DMA32;
4364         }
4365
4366         mapping = file_inode(obj->base.filp)->i_mapping;
4367         mapping_set_gfp_mask(mapping, mask);
4368
4369         i915_gem_object_init(obj, &i915_gem_object_ops);
4370
4371         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4372         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4373
4374         if (HAS_LLC(dev)) {
4375                 /* On some devices, we can have the GPU use the LLC (the CPU
4376                  * cache) for about a 10% performance improvement
4377                  * compared to uncached.  Graphics requests other than
4378                  * display scanout are coherent with the CPU in
4379                  * accessing this cache.  This means in this mode we
4380                  * don't need to clflush on the CPU side, and on the
4381                  * GPU side we only need to flush internal caches to
4382                  * get data visible to the CPU.
4383                  *
4384                  * However, we maintain the display planes as UC, and so
4385                  * need to rebind when first used as such.
4386                  */
4387                 obj->cache_level = I915_CACHE_LLC;
4388         } else
4389                 obj->cache_level = I915_CACHE_NONE;
4390
4391         trace_i915_gem_object_create(obj);
4392
4393         return obj;
4394 }
4395
4396 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4397 {
4398         /* If we are the last user of the backing storage (be it shmemfs
4399          * pages or stolen etc), we know that the pages are going to be
4400          * immediately released. In this case, we can then skip copying
4401          * back the contents from the GPU.
4402          */
4403
4404         if (obj->madv != I915_MADV_WILLNEED)
4405                 return false;
4406
4407         if (obj->base.filp == NULL)
4408                 return true;
4409
4410         /* At first glance, this looks racy, but then again so would be
4411          * userspace racing mmap against close. However, the first external
4412          * reference to the filp can only be obtained through the
4413          * i915_gem_mmap_ioctl() which safeguards us against the user
4414          * acquiring such a reference whilst we are in the middle of
4415          * freeing the object.
4416          */
4417         return atomic_long_read(&obj->base.filp->f_count) == 1;
4418 }
4419
4420 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4421 {
4422         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4423         struct drm_device *dev = obj->base.dev;
4424         struct drm_i915_private *dev_priv = dev->dev_private;
4425         struct i915_vma *vma, *next;
4426
4427         intel_runtime_pm_get(dev_priv);
4428
4429         trace_i915_gem_object_destroy(obj);
4430
4431         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4432                 int ret;
4433
4434                 vma->pin_count = 0;
4435                 ret = i915_vma_unbind(vma);
4436                 if (WARN_ON(ret == -ERESTARTSYS)) {
4437                         bool was_interruptible;
4438
4439                         was_interruptible = dev_priv->mm.interruptible;
4440                         dev_priv->mm.interruptible = false;
4441
4442                         WARN_ON(i915_vma_unbind(vma));
4443
4444                         dev_priv->mm.interruptible = was_interruptible;
4445                 }
4446         }
4447
4448         i915_gem_object_detach_phys(obj);
4449
4450         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4451          * before progressing. */
4452         if (obj->stolen)
4453                 i915_gem_object_unpin_pages(obj);
4454
4455         if (WARN_ON(obj->pages_pin_count))
4456                 obj->pages_pin_count = 0;
4457         if (discard_backing_storage(obj))
4458                 obj->madv = I915_MADV_DONTNEED;
4459         i915_gem_object_put_pages(obj);
4460         i915_gem_object_free_mmap_offset(obj);
4461
4462         BUG_ON(obj->pages);
4463
4464         if (obj->base.import_attach)
4465                 drm_prime_gem_destroy(&obj->base, NULL);
4466
4467         if (obj->ops->release)
4468                 obj->ops->release(obj);
4469
4470         drm_gem_object_release(&obj->base);
4471         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4472
4473         kfree(obj->bit_17);
4474         i915_gem_object_free(obj);
4475
4476         intel_runtime_pm_put(dev_priv);
4477 }
4478
4479 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4480                                      struct i915_address_space *vm)
4481 {
4482         struct i915_vma *vma;
4483         list_for_each_entry(vma, &obj->vma_list, vma_link)
4484                 if (vma->vm == vm)
4485                         return vma;
4486
4487         return NULL;
4488 }
4489
4490 void i915_gem_vma_destroy(struct i915_vma *vma)
4491 {
4492         WARN_ON(vma->node.allocated);
4493
4494         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4495         if (!list_empty(&vma->exec_list))
4496                 return;
4497
4498         list_del(&vma->vma_link);
4499
4500         kfree(vma);
4501 }
4502
4503 static void
4504 i915_gem_stop_ringbuffers(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         struct intel_engine_cs *ring;
4508         int i;
4509
4510         for_each_ring(ring, dev_priv, i)
4511                 intel_stop_ring_buffer(ring);
4512 }
4513
4514 int
4515 i915_gem_suspend(struct drm_device *dev)
4516 {
4517         struct drm_i915_private *dev_priv = dev->dev_private;
4518         int ret = 0;
4519
4520         mutex_lock(&dev->struct_mutex);
4521         if (dev_priv->ums.mm_suspended)
4522                 goto err;
4523
4524         ret = i915_gpu_idle(dev);
4525         if (ret)
4526                 goto err;
4527
4528         i915_gem_retire_requests(dev);
4529
4530         /* Under UMS, be paranoid and evict. */
4531         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4532                 i915_gem_evict_everything(dev);
4533
4534         i915_kernel_lost_context(dev);
4535         i915_gem_stop_ringbuffers(dev);
4536
4537         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4538          * We need to replace this with a semaphore, or something.
4539          * And not confound ums.mm_suspended!
4540          */
4541         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4542                                                              DRIVER_MODESET);
4543         mutex_unlock(&dev->struct_mutex);
4544
4545         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4546         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4547         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4548
4549         return 0;
4550
4551 err:
4552         mutex_unlock(&dev->struct_mutex);
4553         return ret;
4554 }
4555
4556 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4557 {
4558         struct drm_device *dev = ring->dev;
4559         struct drm_i915_private *dev_priv = dev->dev_private;
4560         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4561         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4562         int i, ret;
4563
4564         if (!HAS_L3_DPF(dev) || !remap_info)
4565                 return 0;
4566
4567         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4568         if (ret)
4569                 return ret;
4570
4571         /*
4572          * Note: We do not worry about the concurrent register cacheline hang
4573          * here because no other code should access these registers other than
4574          * at initialization time.
4575          */
4576         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4577                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4578                 intel_ring_emit(ring, reg_base + i);
4579                 intel_ring_emit(ring, remap_info[i/4]);
4580         }
4581
4582         intel_ring_advance(ring);
4583
4584         return ret;
4585 }
4586
4587 void i915_gem_init_swizzling(struct drm_device *dev)
4588 {
4589         struct drm_i915_private *dev_priv = dev->dev_private;
4590
4591         if (INTEL_INFO(dev)->gen < 5 ||
4592             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4593                 return;
4594
4595         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4596                                  DISP_TILE_SURFACE_SWIZZLING);
4597
4598         if (IS_GEN5(dev))
4599                 return;
4600
4601         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4602         if (IS_GEN6(dev))
4603                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4604         else if (IS_GEN7(dev))
4605                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4606         else if (IS_GEN8(dev))
4607                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4608         else
4609                 BUG();
4610 }
4611
4612 static bool
4613 intel_enable_blt(struct drm_device *dev)
4614 {
4615         if (!HAS_BLT(dev))
4616                 return false;
4617
4618         /* The blitter was dysfunctional on early prototypes */
4619         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4620                 DRM_INFO("BLT not supported on this pre-production hardware;"
4621                          " graphics performance will be degraded.\n");
4622                 return false;
4623         }
4624
4625         return true;
4626 }
4627
4628 static int i915_gem_init_rings(struct drm_device *dev)
4629 {
4630         struct drm_i915_private *dev_priv = dev->dev_private;
4631         int ret;
4632
4633         ret = intel_init_render_ring_buffer(dev);
4634         if (ret)
4635                 return ret;
4636
4637         if (HAS_BSD(dev)) {
4638                 ret = intel_init_bsd_ring_buffer(dev);
4639                 if (ret)
4640                         goto cleanup_render_ring;
4641         }
4642
4643         if (intel_enable_blt(dev)) {
4644                 ret = intel_init_blt_ring_buffer(dev);
4645                 if (ret)
4646                         goto cleanup_bsd_ring;
4647         }
4648
4649         if (HAS_VEBOX(dev)) {
4650                 ret = intel_init_vebox_ring_buffer(dev);
4651                 if (ret)
4652                         goto cleanup_blt_ring;
4653         }
4654
4655         if (HAS_BSD2(dev)) {
4656                 ret = intel_init_bsd2_ring_buffer(dev);
4657                 if (ret)
4658                         goto cleanup_vebox_ring;
4659         }
4660
4661         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4662         if (ret)
4663                 goto cleanup_bsd2_ring;
4664
4665         return 0;
4666
4667 cleanup_bsd2_ring:
4668         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4669 cleanup_vebox_ring:
4670         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4671 cleanup_blt_ring:
4672         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4673 cleanup_bsd_ring:
4674         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4675 cleanup_render_ring:
4676         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4677
4678         return ret;
4679 }
4680
4681 int
4682 i915_gem_init_hw(struct drm_device *dev)
4683 {
4684         struct drm_i915_private *dev_priv = dev->dev_private;
4685         int ret, i;
4686
4687         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4688                 return -EIO;
4689
4690         if (dev_priv->ellc_size)
4691                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4692
4693         if (IS_HASWELL(dev))
4694                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4695                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4696
4697         if (HAS_PCH_NOP(dev)) {
4698                 if (IS_IVYBRIDGE(dev)) {
4699                         u32 temp = I915_READ(GEN7_MSG_CTL);
4700                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4701                         I915_WRITE(GEN7_MSG_CTL, temp);
4702                 } else if (INTEL_INFO(dev)->gen >= 7) {
4703                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4704                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4705                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4706                 }
4707         }
4708
4709         i915_gem_init_swizzling(dev);
4710
4711         ret = i915_gem_init_rings(dev);
4712         if (ret)
4713                 return ret;
4714
4715         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4716                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4717
4718         /*
4719          * XXX: Contexts should only be initialized once. Doing a switch to the
4720          * default context switch however is something we'd like to do after
4721          * reset or thaw (the latter may not actually be necessary for HW, but
4722          * goes with our code better). Context switching requires rings (for
4723          * the do_switch), but before enabling PPGTT. So don't move this.
4724          */
4725         ret = i915_gem_context_enable(dev_priv);
4726         if (ret && ret != -EIO) {
4727                 DRM_ERROR("Context enable failed %d\n", ret);
4728                 i915_gem_cleanup_ringbuffer(dev);
4729         }
4730
4731         return ret;
4732 }
4733
4734 int i915_gem_init(struct drm_device *dev)
4735 {
4736         struct drm_i915_private *dev_priv = dev->dev_private;
4737         int ret;
4738
4739         mutex_lock(&dev->struct_mutex);
4740
4741         if (IS_VALLEYVIEW(dev)) {
4742                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4743                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4744                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4745                               VLV_GTLC_ALLOWWAKEACK), 10))
4746                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4747         }
4748
4749         i915_gem_init_userptr(dev);
4750         i915_gem_init_global_gtt(dev);
4751
4752         ret = i915_gem_context_init(dev);
4753         if (ret) {
4754                 mutex_unlock(&dev->struct_mutex);
4755                 return ret;
4756         }
4757
4758         ret = i915_gem_init_hw(dev);
4759         if (ret == -EIO) {
4760                 /* Allow ring initialisation to fail by marking the GPU as
4761                  * wedged. But we only want to do this where the GPU is angry,
4762                  * for all other failure, such as an allocation failure, bail.
4763                  */
4764                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4765                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4766                 ret = 0;
4767         }
4768         mutex_unlock(&dev->struct_mutex);
4769
4770         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4771         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4772                 dev_priv->dri1.allow_batchbuffer = 1;
4773         return ret;
4774 }
4775
4776 void
4777 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4778 {
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780         struct intel_engine_cs *ring;
4781         int i;
4782
4783         for_each_ring(ring, dev_priv, i)
4784                 intel_cleanup_ring_buffer(ring);
4785 }
4786
4787 int
4788 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4789                        struct drm_file *file_priv)
4790 {
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         int ret;
4793
4794         if (drm_core_check_feature(dev, DRIVER_MODESET))
4795                 return 0;
4796
4797         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4798                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4799                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4800         }
4801
4802         mutex_lock(&dev->struct_mutex);
4803         dev_priv->ums.mm_suspended = 0;
4804
4805         ret = i915_gem_init_hw(dev);
4806         if (ret != 0) {
4807                 mutex_unlock(&dev->struct_mutex);
4808                 return ret;
4809         }
4810
4811         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4812
4813         ret = drm_irq_install(dev, dev->pdev->irq);
4814         if (ret)
4815                 goto cleanup_ringbuffer;
4816         mutex_unlock(&dev->struct_mutex);
4817
4818         return 0;
4819
4820 cleanup_ringbuffer:
4821         i915_gem_cleanup_ringbuffer(dev);
4822         dev_priv->ums.mm_suspended = 1;
4823         mutex_unlock(&dev->struct_mutex);
4824
4825         return ret;
4826 }
4827
4828 int
4829 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4830                        struct drm_file *file_priv)
4831 {
4832         if (drm_core_check_feature(dev, DRIVER_MODESET))
4833                 return 0;
4834
4835         mutex_lock(&dev->struct_mutex);
4836         drm_irq_uninstall(dev);
4837         mutex_unlock(&dev->struct_mutex);
4838
4839         return i915_gem_suspend(dev);
4840 }
4841
4842 void
4843 i915_gem_lastclose(struct drm_device *dev)
4844 {
4845         int ret;
4846
4847         if (drm_core_check_feature(dev, DRIVER_MODESET))
4848                 return;
4849
4850         ret = i915_gem_suspend(dev);
4851         if (ret)
4852                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4853 }
4854
4855 static void
4856 init_ring_lists(struct intel_engine_cs *ring)
4857 {
4858         INIT_LIST_HEAD(&ring->active_list);
4859         INIT_LIST_HEAD(&ring->request_list);
4860 }
4861
4862 void i915_init_vm(struct drm_i915_private *dev_priv,
4863                   struct i915_address_space *vm)
4864 {
4865         if (!i915_is_ggtt(vm))
4866                 drm_mm_init(&vm->mm, vm->start, vm->total);
4867         vm->dev = dev_priv->dev;
4868         INIT_LIST_HEAD(&vm->active_list);
4869         INIT_LIST_HEAD(&vm->inactive_list);
4870         INIT_LIST_HEAD(&vm->global_link);
4871         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4872 }
4873
4874 void
4875 i915_gem_load(struct drm_device *dev)
4876 {
4877         struct drm_i915_private *dev_priv = dev->dev_private;
4878         int i;
4879
4880         dev_priv->slab =
4881                 kmem_cache_create("i915_gem_object",
4882                                   sizeof(struct drm_i915_gem_object), 0,
4883                                   SLAB_HWCACHE_ALIGN,
4884                                   NULL);
4885
4886         INIT_LIST_HEAD(&dev_priv->vm_list);
4887         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4888
4889         INIT_LIST_HEAD(&dev_priv->context_list);
4890         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4891         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4892         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4893         for (i = 0; i < I915_NUM_RINGS; i++)
4894                 init_ring_lists(&dev_priv->ring[i]);
4895         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4896                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4897         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4898                           i915_gem_retire_work_handler);
4899         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4900                           i915_gem_idle_work_handler);
4901         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4902
4903         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4904         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4905                 I915_WRITE(MI_ARB_STATE,
4906                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4907         }
4908
4909         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4910
4911         /* Old X drivers will take 0-2 for front, back, depth buffers */
4912         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4913                 dev_priv->fence_reg_start = 3;
4914
4915         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4916                 dev_priv->num_fence_regs = 32;
4917         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4918                 dev_priv->num_fence_regs = 16;
4919         else
4920                 dev_priv->num_fence_regs = 8;
4921
4922         /* Initialize fence registers to zero */
4923         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4924         i915_gem_restore_fences(dev);
4925
4926         i915_gem_detect_bit_6_swizzle(dev);
4927         init_waitqueue_head(&dev_priv->pending_flip_queue);
4928
4929         dev_priv->mm.interruptible = true;
4930
4931         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4932         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4933         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4934         register_shrinker(&dev_priv->mm.shrinker);
4935
4936         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4937         register_oom_notifier(&dev_priv->mm.oom_notifier);
4938 }
4939
4940 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4941 {
4942         struct drm_i915_file_private *file_priv = file->driver_priv;
4943
4944         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4945
4946         /* Clean up our request list when the client is going away, so that
4947          * later retire_requests won't dereference our soon-to-be-gone
4948          * file_priv.
4949          */
4950         spin_lock(&file_priv->mm.lock);
4951         while (!list_empty(&file_priv->mm.request_list)) {
4952                 struct drm_i915_gem_request *request;
4953
4954                 request = list_first_entry(&file_priv->mm.request_list,
4955                                            struct drm_i915_gem_request,
4956                                            client_list);
4957                 list_del(&request->client_list);
4958                 request->file_priv = NULL;
4959         }
4960         spin_unlock(&file_priv->mm.lock);
4961 }
4962
4963 static void
4964 i915_gem_file_idle_work_handler(struct work_struct *work)
4965 {
4966         struct drm_i915_file_private *file_priv =
4967                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4968
4969         atomic_set(&file_priv->rps_wait_boost, false);
4970 }
4971
4972 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4973 {
4974         struct drm_i915_file_private *file_priv;
4975         int ret;
4976
4977         DRM_DEBUG_DRIVER("\n");
4978
4979         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4980         if (!file_priv)
4981                 return -ENOMEM;
4982
4983         file->driver_priv = file_priv;
4984         file_priv->dev_priv = dev->dev_private;
4985         file_priv->file = file;
4986
4987         spin_lock_init(&file_priv->mm.lock);
4988         INIT_LIST_HEAD(&file_priv->mm.request_list);
4989         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4990                           i915_gem_file_idle_work_handler);
4991
4992         ret = i915_gem_context_open(dev, file);
4993         if (ret)
4994                 kfree(file_priv);
4995
4996         return ret;
4997 }
4998
4999 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5000 {
5001         if (!mutex_is_locked(mutex))
5002                 return false;
5003
5004 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5005         return mutex->owner == task;
5006 #else
5007         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5008         return false;
5009 #endif
5010 }
5011
5012 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5013 {
5014         if (!mutex_trylock(&dev->struct_mutex)) {
5015                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5016                         return false;
5017
5018                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5019                         return false;
5020
5021                 *unlock = false;
5022         } else
5023                 *unlock = true;
5024
5025         return true;
5026 }
5027
5028 static int num_vma_bound(struct drm_i915_gem_object *obj)
5029 {
5030         struct i915_vma *vma;
5031         int count = 0;
5032
5033         list_for_each_entry(vma, &obj->vma_list, vma_link)
5034                 if (drm_mm_node_allocated(&vma->node))
5035                         count++;
5036
5037         return count;
5038 }
5039
5040 static unsigned long
5041 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5042 {
5043         struct drm_i915_private *dev_priv =
5044                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5045         struct drm_device *dev = dev_priv->dev;
5046         struct drm_i915_gem_object *obj;
5047         unsigned long count;
5048         bool unlock;
5049
5050         if (!i915_gem_shrinker_lock(dev, &unlock))
5051                 return 0;
5052
5053         count = 0;
5054         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5055                 if (obj->pages_pin_count == 0)
5056                         count += obj->base.size >> PAGE_SHIFT;
5057
5058         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5059                 if (!i915_gem_obj_is_pinned(obj) &&
5060                     obj->pages_pin_count == num_vma_bound(obj))
5061                         count += obj->base.size >> PAGE_SHIFT;
5062         }
5063
5064         if (unlock)
5065                 mutex_unlock(&dev->struct_mutex);
5066
5067         return count;
5068 }
5069
5070 /* All the new VM stuff */
5071 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5072                                   struct i915_address_space *vm)
5073 {
5074         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5075         struct i915_vma *vma;
5076
5077         if (!dev_priv->mm.aliasing_ppgtt ||
5078             vm == &dev_priv->mm.aliasing_ppgtt->base)
5079                 vm = &dev_priv->gtt.base;
5080
5081         list_for_each_entry(vma, &o->vma_list, vma_link) {
5082                 if (vma->vm == vm)
5083                         return vma->node.start;
5084
5085         }
5086         WARN(1, "%s vma for this object not found.\n",
5087              i915_is_ggtt(vm) ? "global" : "ppgtt");
5088         return -1;
5089 }
5090
5091 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5092                         struct i915_address_space *vm)
5093 {
5094         struct i915_vma *vma;
5095
5096         list_for_each_entry(vma, &o->vma_list, vma_link)
5097                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5098                         return true;
5099
5100         return false;
5101 }
5102
5103 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5104 {
5105         struct i915_vma *vma;
5106
5107         list_for_each_entry(vma, &o->vma_list, vma_link)
5108                 if (drm_mm_node_allocated(&vma->node))
5109                         return true;
5110
5111         return false;
5112 }
5113
5114 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5115                                 struct i915_address_space *vm)
5116 {
5117         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5118         struct i915_vma *vma;
5119
5120         if (!dev_priv->mm.aliasing_ppgtt ||
5121             vm == &dev_priv->mm.aliasing_ppgtt->base)
5122                 vm = &dev_priv->gtt.base;
5123
5124         BUG_ON(list_empty(&o->vma_list));
5125
5126         list_for_each_entry(vma, &o->vma_list, vma_link)
5127                 if (vma->vm == vm)
5128                         return vma->node.size;
5129
5130         return 0;
5131 }
5132
5133 static unsigned long
5134 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5135 {
5136         struct drm_i915_private *dev_priv =
5137                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5138         struct drm_device *dev = dev_priv->dev;
5139         unsigned long freed;
5140         bool unlock;
5141
5142         if (!i915_gem_shrinker_lock(dev, &unlock))
5143                 return SHRINK_STOP;
5144
5145         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5146         if (freed < sc->nr_to_scan)
5147                 freed += __i915_gem_shrink(dev_priv,
5148                                            sc->nr_to_scan - freed,
5149                                            false);
5150         if (unlock)
5151                 mutex_unlock(&dev->struct_mutex);
5152
5153         return freed;
5154 }
5155
5156 static int
5157 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5158 {
5159         struct drm_i915_private *dev_priv =
5160                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5161         struct drm_device *dev = dev_priv->dev;
5162         struct drm_i915_gem_object *obj;
5163         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5164         unsigned long pinned, bound, unbound, freed;
5165         bool was_interruptible;
5166         bool unlock;
5167
5168         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5169                 schedule_timeout_killable(1);
5170         if (timeout == 0) {
5171                 pr_err("Unable to purge GPU memory due lock contention.\n");
5172                 return NOTIFY_DONE;
5173         }
5174
5175         was_interruptible = dev_priv->mm.interruptible;
5176         dev_priv->mm.interruptible = false;
5177
5178         freed = i915_gem_shrink_all(dev_priv);
5179
5180         dev_priv->mm.interruptible = was_interruptible;
5181
5182         /* Because we may be allocating inside our own driver, we cannot
5183          * assert that there are no objects with pinned pages that are not
5184          * being pointed to by hardware.
5185          */
5186         unbound = bound = pinned = 0;
5187         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5188                 if (!obj->base.filp) /* not backed by a freeable object */
5189                         continue;
5190
5191                 if (obj->pages_pin_count)
5192                         pinned += obj->base.size;
5193                 else
5194                         unbound += obj->base.size;
5195         }
5196         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5197                 if (!obj->base.filp)
5198                         continue;
5199
5200                 if (obj->pages_pin_count)
5201                         pinned += obj->base.size;
5202                 else
5203                         bound += obj->base.size;
5204         }
5205
5206         if (unlock)
5207                 mutex_unlock(&dev->struct_mutex);
5208
5209         pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5210                 freed, pinned);
5211         if (unbound || bound)
5212                 pr_err("%lu and %lu bytes still available in the "
5213                        "bound and unbound GPU page lists.\n",
5214                        bound, unbound);
5215
5216         *(unsigned long *)ptr += freed;
5217         return NOTIFY_DONE;
5218 }
5219
5220 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5221 {
5222         struct i915_vma *vma;
5223
5224         /* This WARN has probably outlived its usefulness (callers already
5225          * WARN if they don't find the GGTT vma they expect). When removing,
5226          * remember to remove the pre-check in is_pin_display() as well */
5227         if (WARN_ON(list_empty(&obj->vma_list)))
5228                 return NULL;
5229
5230         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5231         if (vma->vm != obj_to_ggtt(obj))
5232                 return NULL;
5233
5234         return vma;
5235 }