Merge tag 'drm-intel-next-2014-10-24' of git://anongit.freedesktop.org/drm-intel...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164                     struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_init *args = data;
168
169         if (drm_core_check_feature(dev, DRIVER_MODESET))
170                 return -ENODEV;
171
172         if (args->gtt_start >= args->gtt_end ||
173             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174                 return -EINVAL;
175
176         /* GEM with user mode setting was never supported on ilk and later. */
177         if (INTEL_INFO(dev)->gen >= 5)
178                 return -ENODEV;
179
180         mutex_lock(&dev->struct_mutex);
181         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182                                   args->gtt_end);
183         dev_priv->gtt.mappable_end = args->gtt_end;
184         mutex_unlock(&dev->struct_mutex);
185
186         return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191                             struct drm_file *file)
192 {
193         struct drm_i915_private *dev_priv = dev->dev_private;
194         struct drm_i915_gem_get_aperture *args = data;
195         struct drm_i915_gem_object *obj;
196         size_t pinned;
197
198         pinned = 0;
199         mutex_lock(&dev->struct_mutex);
200         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201                 if (i915_gem_obj_is_pinned(obj))
202                         pinned += i915_gem_obj_ggtt_size(obj);
203         mutex_unlock(&dev->struct_mutex);
204
205         args->aper_size = dev_priv->gtt.base.total;
206         args->aper_available_size = args->aper_size - pinned;
207
208         return 0;
209 }
210
211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213         drm_dma_handle_t *phys = obj->phys_handle;
214
215         if (!phys)
216                 return;
217
218         if (obj->madv == I915_MADV_WILLNEED) {
219                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220                 char *vaddr = phys->vaddr;
221                 int i;
222
223                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224                         struct page *page = shmem_read_mapping_page(mapping, i);
225                         if (!IS_ERR(page)) {
226                                 char *dst = kmap_atomic(page);
227                                 memcpy(dst, vaddr, PAGE_SIZE);
228                                 drm_clflush_virt_range(dst, PAGE_SIZE);
229                                 kunmap_atomic(dst);
230
231                                 set_page_dirty(page);
232                                 mark_page_accessed(page);
233                                 page_cache_release(page);
234                         }
235                         vaddr += PAGE_SIZE;
236                 }
237                 i915_gem_chipset_flush(obj->base.dev);
238         }
239
240 #ifdef CONFIG_X86
241         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243         drm_pci_free(obj->base.dev, phys);
244         obj->phys_handle = NULL;
245 }
246
247 int
248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249                             int align)
250 {
251         drm_dma_handle_t *phys;
252         struct address_space *mapping;
253         char *vaddr;
254         int i;
255
256         if (obj->phys_handle) {
257                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258                         return -EBUSY;
259
260                 return 0;
261         }
262
263         if (obj->madv != I915_MADV_WILLNEED)
264                 return -EFAULT;
265
266         if (obj->base.filp == NULL)
267                 return -EINVAL;
268
269         /* create a new object */
270         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271         if (!phys)
272                 return -ENOMEM;
273
274         vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278         mapping = file_inode(obj->base.filp)->i_mapping;
279         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280                 struct page *page;
281                 char *src;
282
283                 page = shmem_read_mapping_page(mapping, i);
284                 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288                         drm_pci_free(obj->base.dev, phys);
289                         return PTR_ERR(page);
290                 }
291
292                 src = kmap_atomic(page);
293                 memcpy(vaddr, src, PAGE_SIZE);
294                 kunmap_atomic(src);
295
296                 mark_page_accessed(page);
297                 page_cache_release(page);
298
299                 vaddr += PAGE_SIZE;
300         }
301
302         obj->phys_handle = phys;
303         return 0;
304 }
305
306 static int
307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308                      struct drm_i915_gem_pwrite *args,
309                      struct drm_file *file_priv)
310 {
311         struct drm_device *dev = obj->base.dev;
312         void *vaddr = obj->phys_handle->vaddr + args->offset;
313         char __user *user_data = to_user_ptr(args->data_ptr);
314
315         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316                 unsigned long unwritten;
317
318                 /* The physical object once assigned is fixed for the lifetime
319                  * of the obj, so we can safely drop the lock and continue
320                  * to access vaddr.
321                  */
322                 mutex_unlock(&dev->struct_mutex);
323                 unwritten = copy_from_user(vaddr, user_data, args->size);
324                 mutex_lock(&dev->struct_mutex);
325                 if (unwritten)
326                         return -EFAULT;
327         }
328
329         i915_gem_chipset_flush(dev);
330         return 0;
331 }
332
333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342         kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
346 i915_gem_create(struct drm_file *file,
347                 struct drm_device *dev,
348                 uint64_t size,
349                 uint32_t *handle_p)
350 {
351         struct drm_i915_gem_object *obj;
352         int ret;
353         u32 handle;
354
355         size = roundup(size, PAGE_SIZE);
356         if (size == 0)
357                 return -EINVAL;
358
359         /* Allocate the new object */
360         obj = i915_gem_alloc_object(dev, size);
361         if (obj == NULL)
362                 return -ENOMEM;
363
364         ret = drm_gem_handle_create(file, &obj->base, &handle);
365         /* drop reference from allocate - handle holds it now */
366         drm_gem_object_unreference_unlocked(&obj->base);
367         if (ret)
368                 return ret;
369
370         *handle_p = handle;
371         return 0;
372 }
373
374 int
375 i915_gem_dumb_create(struct drm_file *file,
376                      struct drm_device *dev,
377                      struct drm_mode_create_dumb *args)
378 {
379         /* have to work out size/pitch and return them */
380         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381         args->size = args->pitch * args->height;
382         return i915_gem_create(file, dev,
383                                args->size, &args->handle);
384 }
385
386 /**
387  * Creates a new mm object and returns a handle to it.
388  */
389 int
390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391                       struct drm_file *file)
392 {
393         struct drm_i915_gem_create *args = data;
394
395         return i915_gem_create(file, dev,
396                                args->size, &args->handle);
397 }
398
399 static inline int
400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401                         const char *gpu_vaddr, int gpu_offset,
402                         int length)
403 {
404         int ret, cpu_offset = 0;
405
406         while (length > 0) {
407                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408                 int this_length = min(cacheline_end - gpu_offset, length);
409                 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412                                      gpu_vaddr + swizzled_gpu_offset,
413                                      this_length);
414                 if (ret)
415                         return ret + length;
416
417                 cpu_offset += this_length;
418                 gpu_offset += this_length;
419                 length -= this_length;
420         }
421
422         return 0;
423 }
424
425 static inline int
426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427                           const char __user *cpu_vaddr,
428                           int length)
429 {
430         int ret, cpu_offset = 0;
431
432         while (length > 0) {
433                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434                 int this_length = min(cacheline_end - gpu_offset, length);
435                 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438                                        cpu_vaddr + cpu_offset,
439                                        this_length);
440                 if (ret)
441                         return ret + length;
442
443                 cpu_offset += this_length;
444                 gpu_offset += this_length;
445                 length -= this_length;
446         }
447
448         return 0;
449 }
450
451 /*
452  * Pins the specified object's pages and synchronizes the object with
453  * GPU accesses. Sets needs_clflush to non-zero if the caller should
454  * flush the object from the CPU cache.
455  */
456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457                                     int *needs_clflush)
458 {
459         int ret;
460
461         *needs_clflush = 0;
462
463         if (!obj->base.filp)
464                 return -EINVAL;
465
466         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467                 /* If we're not in the cpu read domain, set ourself into the gtt
468                  * read domain and manually flush cachelines (if required). This
469                  * optimizes for the case when the gpu will dirty the data
470                  * anyway again before the next pread happens. */
471                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472                                                         obj->cache_level);
473                 ret = i915_gem_object_wait_rendering(obj, true);
474                 if (ret)
475                         return ret;
476
477                 i915_gem_object_retire(obj);
478         }
479
480         ret = i915_gem_object_get_pages(obj);
481         if (ret)
482                 return ret;
483
484         i915_gem_object_pin_pages(obj);
485
486         return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490  * Flushes invalid cachelines before reading the target if
491  * needs_clflush is set. */
492 static int
493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494                  char __user *user_data,
495                  bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497         char *vaddr;
498         int ret;
499
500         if (unlikely(page_do_bit17_swizzling))
501                 return -EINVAL;
502
503         vaddr = kmap_atomic(page);
504         if (needs_clflush)
505                 drm_clflush_virt_range(vaddr + shmem_page_offset,
506                                        page_length);
507         ret = __copy_to_user_inatomic(user_data,
508                                       vaddr + shmem_page_offset,
509                                       page_length);
510         kunmap_atomic(vaddr);
511
512         return ret ? -EFAULT : 0;
513 }
514
515 static void
516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517                              bool swizzled)
518 {
519         if (unlikely(swizzled)) {
520                 unsigned long start = (unsigned long) addr;
521                 unsigned long end = (unsigned long) addr + length;
522
523                 /* For swizzling simply ensure that we always flush both
524                  * channels. Lame, but simple and it works. Swizzled
525                  * pwrite/pread is far from a hotpath - current userspace
526                  * doesn't use it at all. */
527                 start = round_down(start, 128);
528                 end = round_up(end, 128);
529
530                 drm_clflush_virt_range((void *)start, end - start);
531         } else {
532                 drm_clflush_virt_range(addr, length);
533         }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538  * and uses non-atomic copy and kmap functions. */
539 static int
540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541                  char __user *user_data,
542                  bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544         char *vaddr;
545         int ret;
546
547         vaddr = kmap(page);
548         if (needs_clflush)
549                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550                                              page_length,
551                                              page_do_bit17_swizzling);
552
553         if (page_do_bit17_swizzling)
554                 ret = __copy_to_user_swizzled(user_data,
555                                               vaddr, shmem_page_offset,
556                                               page_length);
557         else
558                 ret = __copy_to_user(user_data,
559                                      vaddr + shmem_page_offset,
560                                      page_length);
561         kunmap(page);
562
563         return ret ? - EFAULT : 0;
564 }
565
566 static int
567 i915_gem_shmem_pread(struct drm_device *dev,
568                      struct drm_i915_gem_object *obj,
569                      struct drm_i915_gem_pread *args,
570                      struct drm_file *file)
571 {
572         char __user *user_data;
573         ssize_t remain;
574         loff_t offset;
575         int shmem_page_offset, page_length, ret = 0;
576         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577         int prefaulted = 0;
578         int needs_clflush = 0;
579         struct sg_page_iter sg_iter;
580
581         user_data = to_user_ptr(args->data_ptr);
582         remain = args->size;
583
584         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587         if (ret)
588                 return ret;
589
590         offset = args->offset;
591
592         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593                          offset >> PAGE_SHIFT) {
594                 struct page *page = sg_page_iter_page(&sg_iter);
595
596                 if (remain <= 0)
597                         break;
598
599                 /* Operation in this page
600                  *
601                  * shmem_page_offset = offset within page in shmem file
602                  * page_length = bytes to copy for this page
603                  */
604                 shmem_page_offset = offset_in_page(offset);
605                 page_length = remain;
606                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607                         page_length = PAGE_SIZE - shmem_page_offset;
608
609                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610                         (page_to_phys(page) & (1 << 17)) != 0;
611
612                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613                                        user_data, page_do_bit17_swizzling,
614                                        needs_clflush);
615                 if (ret == 0)
616                         goto next_page;
617
618                 mutex_unlock(&dev->struct_mutex);
619
620                 if (likely(!i915.prefault_disable) && !prefaulted) {
621                         ret = fault_in_multipages_writeable(user_data, remain);
622                         /* Userspace is tricking us, but we've already clobbered
623                          * its pages with the prefault and promised to write the
624                          * data up to the first fault. Hence ignore any errors
625                          * and just continue. */
626                         (void)ret;
627                         prefaulted = 1;
628                 }
629
630                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631                                        user_data, page_do_bit17_swizzling,
632                                        needs_clflush);
633
634                 mutex_lock(&dev->struct_mutex);
635
636                 if (ret)
637                         goto out;
638
639 next_page:
640                 remain -= page_length;
641                 user_data += page_length;
642                 offset += page_length;
643         }
644
645 out:
646         i915_gem_object_unpin_pages(obj);
647
648         return ret;
649 }
650
651 /**
652  * Reads data from the object referenced by handle.
653  *
654  * On error, the contents of *data are undefined.
655  */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658                      struct drm_file *file)
659 {
660         struct drm_i915_gem_pread *args = data;
661         struct drm_i915_gem_object *obj;
662         int ret = 0;
663
664         if (args->size == 0)
665                 return 0;
666
667         if (!access_ok(VERIFY_WRITE,
668                        to_user_ptr(args->data_ptr),
669                        args->size))
670                 return -EFAULT;
671
672         ret = i915_mutex_lock_interruptible(dev);
673         if (ret)
674                 return ret;
675
676         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677         if (&obj->base == NULL) {
678                 ret = -ENOENT;
679                 goto unlock;
680         }
681
682         /* Bounds check source.  */
683         if (args->offset > obj->base.size ||
684             args->size > obj->base.size - args->offset) {
685                 ret = -EINVAL;
686                 goto out;
687         }
688
689         /* prime objects have no backing filp to GEM pread/pwrite
690          * pages from.
691          */
692         if (!obj->base.filp) {
693                 ret = -EINVAL;
694                 goto out;
695         }
696
697         trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699         ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702         drm_gem_object_unreference(&obj->base);
703 unlock:
704         mutex_unlock(&dev->struct_mutex);
705         return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709  * page faults in the source data
710  */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714                 loff_t page_base, int page_offset,
715                 char __user *user_data,
716                 int length)
717 {
718         void __iomem *vaddr_atomic;
719         void *vaddr;
720         unsigned long unwritten;
721
722         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723         /* We can use the cpu mem copy function because this is X86. */
724         vaddr = (void __force*)vaddr_atomic + page_offset;
725         unwritten = __copy_from_user_inatomic_nocache(vaddr,
726                                                       user_data, length);
727         io_mapping_unmap_atomic(vaddr_atomic);
728         return unwritten;
729 }
730
731 /**
732  * This is the fast pwrite path, where we copy the data directly from the
733  * user into the GTT, uncached.
734  */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737                          struct drm_i915_gem_object *obj,
738                          struct drm_i915_gem_pwrite *args,
739                          struct drm_file *file)
740 {
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         ssize_t remain;
743         loff_t offset, page_base;
744         char __user *user_data;
745         int page_offset, page_length, ret;
746
747         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748         if (ret)
749                 goto out;
750
751         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752         if (ret)
753                 goto out_unpin;
754
755         ret = i915_gem_object_put_fence(obj);
756         if (ret)
757                 goto out_unpin;
758
759         user_data = to_user_ptr(args->data_ptr);
760         remain = args->size;
761
762         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = offset & PAGE_MASK;
772                 page_offset = offset_in_page(offset);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 /* If we get a fault while copying data, then (presumably) our
778                  * source page isn't available.  Return the error and we'll
779                  * retry in the slow path.
780                  */
781                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782                                     page_offset, user_data, page_length)) {
783                         ret = -EFAULT;
784                         goto out_unpin;
785                 }
786
787                 remain -= page_length;
788                 user_data += page_length;
789                 offset += page_length;
790         }
791
792 out_unpin:
793         i915_gem_object_ggtt_unpin(obj);
794 out:
795         return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799  * Flushes invalid cachelines before writing to the target if
800  * needs_clflush_before is set and flushes out any written cachelines after
801  * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804                   char __user *user_data,
805                   bool page_do_bit17_swizzling,
806                   bool needs_clflush_before,
807                   bool needs_clflush_after)
808 {
809         char *vaddr;
810         int ret;
811
812         if (unlikely(page_do_bit17_swizzling))
813                 return -EINVAL;
814
815         vaddr = kmap_atomic(page);
816         if (needs_clflush_before)
817                 drm_clflush_virt_range(vaddr + shmem_page_offset,
818                                        page_length);
819         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820                                         user_data, page_length);
821         if (needs_clflush_after)
822                 drm_clflush_virt_range(vaddr + shmem_page_offset,
823                                        page_length);
824         kunmap_atomic(vaddr);
825
826         return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830  * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833                   char __user *user_data,
834                   bool page_do_bit17_swizzling,
835                   bool needs_clflush_before,
836                   bool needs_clflush_after)
837 {
838         char *vaddr;
839         int ret;
840
841         vaddr = kmap(page);
842         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844                                              page_length,
845                                              page_do_bit17_swizzling);
846         if (page_do_bit17_swizzling)
847                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848                                                 user_data,
849                                                 page_length);
850         else
851                 ret = __copy_from_user(vaddr + shmem_page_offset,
852                                        user_data,
853                                        page_length);
854         if (needs_clflush_after)
855                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856                                              page_length,
857                                              page_do_bit17_swizzling);
858         kunmap(page);
859
860         return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865                       struct drm_i915_gem_object *obj,
866                       struct drm_i915_gem_pwrite *args,
867                       struct drm_file *file)
868 {
869         ssize_t remain;
870         loff_t offset;
871         char __user *user_data;
872         int shmem_page_offset, page_length, ret = 0;
873         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874         int hit_slowpath = 0;
875         int needs_clflush_after = 0;
876         int needs_clflush_before = 0;
877         struct sg_page_iter sg_iter;
878
879         user_data = to_user_ptr(args->data_ptr);
880         remain = args->size;
881
882         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885                 /* If we're not in the cpu write domain, set ourself into the gtt
886                  * write domain and manually flush cachelines (if required). This
887                  * optimizes for the case when the gpu will use the data
888                  * right away and we therefore have to clflush anyway. */
889                 needs_clflush_after = cpu_write_needs_clflush(obj);
890                 ret = i915_gem_object_wait_rendering(obj, false);
891                 if (ret)
892                         return ret;
893
894                 i915_gem_object_retire(obj);
895         }
896         /* Same trick applies to invalidate partially written cachelines read
897          * before writing. */
898         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899                 needs_clflush_before =
900                         !cpu_cache_is_coherent(dev, obj->cache_level);
901
902         ret = i915_gem_object_get_pages(obj);
903         if (ret)
904                 return ret;
905
906         i915_gem_object_pin_pages(obj);
907
908         offset = args->offset;
909         obj->dirty = 1;
910
911         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912                          offset >> PAGE_SHIFT) {
913                 struct page *page = sg_page_iter_page(&sg_iter);
914                 int partial_cacheline_write;
915
916                 if (remain <= 0)
917                         break;
918
919                 /* Operation in this page
920                  *
921                  * shmem_page_offset = offset within page in shmem file
922                  * page_length = bytes to copy for this page
923                  */
924                 shmem_page_offset = offset_in_page(offset);
925
926                 page_length = remain;
927                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928                         page_length = PAGE_SIZE - shmem_page_offset;
929
930                 /* If we don't overwrite a cacheline completely we need to be
931                  * careful to have up-to-date data by first clflushing. Don't
932                  * overcomplicate things and flush the entire patch. */
933                 partial_cacheline_write = needs_clflush_before &&
934                         ((shmem_page_offset | page_length)
935                                 & (boot_cpu_data.x86_clflush_size - 1));
936
937                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938                         (page_to_phys(page) & (1 << 17)) != 0;
939
940                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941                                         user_data, page_do_bit17_swizzling,
942                                         partial_cacheline_write,
943                                         needs_clflush_after);
944                 if (ret == 0)
945                         goto next_page;
946
947                 hit_slowpath = 1;
948                 mutex_unlock(&dev->struct_mutex);
949                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950                                         user_data, page_do_bit17_swizzling,
951                                         partial_cacheline_write,
952                                         needs_clflush_after);
953
954                 mutex_lock(&dev->struct_mutex);
955
956                 if (ret)
957                         goto out;
958
959 next_page:
960                 remain -= page_length;
961                 user_data += page_length;
962                 offset += page_length;
963         }
964
965 out:
966         i915_gem_object_unpin_pages(obj);
967
968         if (hit_slowpath) {
969                 /*
970                  * Fixup: Flush cpu caches in case we didn't flush the dirty
971                  * cachelines in-line while writing and the object moved
972                  * out of the cpu write domain while we've dropped the lock.
973                  */
974                 if (!needs_clflush_after &&
975                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976                         if (i915_gem_clflush_object(obj, obj->pin_display))
977                                 i915_gem_chipset_flush(dev);
978                 }
979         }
980
981         if (needs_clflush_after)
982                 i915_gem_chipset_flush(dev);
983
984         return ret;
985 }
986
987 /**
988  * Writes data to the object referenced by handle.
989  *
990  * On error, the contents of the buffer that were to be modified are undefined.
991  */
992 int
993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994                       struct drm_file *file)
995 {
996         struct drm_i915_gem_pwrite *args = data;
997         struct drm_i915_gem_object *obj;
998         int ret;
999
1000         if (args->size == 0)
1001                 return 0;
1002
1003         if (!access_ok(VERIFY_READ,
1004                        to_user_ptr(args->data_ptr),
1005                        args->size))
1006                 return -EFAULT;
1007
1008         if (likely(!i915.prefault_disable)) {
1009                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010                                                    args->size);
1011                 if (ret)
1012                         return -EFAULT;
1013         }
1014
1015         ret = i915_mutex_lock_interruptible(dev);
1016         if (ret)
1017                 return ret;
1018
1019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020         if (&obj->base == NULL) {
1021                 ret = -ENOENT;
1022                 goto unlock;
1023         }
1024
1025         /* Bounds check destination. */
1026         if (args->offset > obj->base.size ||
1027             args->size > obj->base.size - args->offset) {
1028                 ret = -EINVAL;
1029                 goto out;
1030         }
1031
1032         /* prime objects have no backing filp to GEM pread/pwrite
1033          * pages from.
1034          */
1035         if (!obj->base.filp) {
1036                 ret = -EINVAL;
1037                 goto out;
1038         }
1039
1040         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042         ret = -EFAULT;
1043         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044          * it would end up going through the fenced access, and we'll get
1045          * different detiling behavior between reading and writing.
1046          * pread/pwrite currently are reading and writing from the CPU
1047          * perspective, requiring manual detiling by the client.
1048          */
1049         if (obj->phys_handle) {
1050                 ret = i915_gem_phys_pwrite(obj, args, file);
1051                 goto out;
1052         }
1053
1054         if (obj->tiling_mode == I915_TILING_NONE &&
1055             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056             cpu_write_needs_clflush(obj)) {
1057                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058                 /* Note that the gtt paths might fail with non-page-backed user
1059                  * pointers (e.g. gtt mappings when moving data between
1060                  * textures). Fallback to the shmem path in that case. */
1061         }
1062
1063         if (ret == -EFAULT || ret == -ENOSPC)
1064                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067         drm_gem_object_unreference(&obj->base);
1068 unlock:
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 int
1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075                      bool interruptible)
1076 {
1077         if (i915_reset_in_progress(error)) {
1078                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079                  * -EIO unconditionally for these. */
1080                 if (!interruptible)
1081                         return -EIO;
1082
1083                 /* Recovery complete, but the reset failed ... */
1084                 if (i915_terminally_wedged(error))
1085                         return -EIO;
1086
1087                 /*
1088                  * Check if GPU Reset is in progress - we need intel_ring_begin
1089                  * to work properly to reinit the hw state while the gpu is
1090                  * still marked as reset-in-progress. Handle this with a flag.
1091                  */
1092                 if (!error->reload_in_reset)
1093                         return -EAGAIN;
1094         }
1095
1096         return 0;
1097 }
1098
1099 /*
1100  * Compare seqno against outstanding lazy request. Emit a request if they are
1101  * equal.
1102  */
1103 int
1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106         int ret;
1107
1108         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110         ret = 0;
1111         if (seqno == ring->outstanding_lazy_seqno)
1112                 ret = i915_add_request(ring, NULL);
1113
1114         return ret;
1115 }
1116
1117 static void fake_irq(unsigned long data)
1118 {
1119         wake_up_process((struct task_struct *)data);
1120 }
1121
1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123                        struct intel_engine_cs *ring)
1124 {
1125         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130         if (file_priv == NULL)
1131                 return true;
1132
1133         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137  * __wait_seqno - wait until execution of seqno has finished
1138  * @ring: the ring expected to report seqno
1139  * @seqno: duh!
1140  * @reset_counter: reset sequence associated with the given seqno
1141  * @interruptible: do an interruptible wait (normally yes)
1142  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143  *
1144  * Note: It is of utmost importance that the passed in seqno and reset_counter
1145  * values have been read by the caller in an smp safe manner. Where read-side
1146  * locks are involved, it is sufficient to read the reset_counter before
1147  * unlocking the lock that protects the seqno. For lockless tricks, the
1148  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149  * inserted.
1150  *
1151  * Returns 0 if the seqno was found within the alloted time. Else returns the
1152  * errno with remaining time filled in timeout argument.
1153  */
1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155                         unsigned reset_counter,
1156                         bool interruptible,
1157                         s64 *timeout,
1158                         struct drm_i915_file_private *file_priv)
1159 {
1160         struct drm_device *dev = ring->dev;
1161         struct drm_i915_private *dev_priv = dev->dev_private;
1162         const bool irq_test_in_progress =
1163                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164         DEFINE_WAIT(wait);
1165         unsigned long timeout_expire;
1166         s64 before, now;
1167         int ret;
1168
1169         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172                 return 0;
1173
1174         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177                 gen6_rps_boost(dev_priv);
1178                 if (file_priv)
1179                         mod_delayed_work(dev_priv->wq,
1180                                          &file_priv->mm.idle_work,
1181                                          msecs_to_jiffies(100));
1182         }
1183
1184         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185                 return -ENODEV;
1186
1187         /* Record current time in case interrupted by signal, or wedged */
1188         trace_i915_gem_request_wait_begin(ring, seqno);
1189         before = ktime_get_raw_ns();
1190         for (;;) {
1191                 struct timer_list timer;
1192
1193                 prepare_to_wait(&ring->irq_queue, &wait,
1194                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196                 /* We need to check whether any gpu reset happened in between
1197                  * the caller grabbing the seqno and now ... */
1198                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200                          * is truely gone. */
1201                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202                         if (ret == 0)
1203                                 ret = -EAGAIN;
1204                         break;
1205                 }
1206
1207                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208                         ret = 0;
1209                         break;
1210                 }
1211
1212                 if (interruptible && signal_pending(current)) {
1213                         ret = -ERESTARTSYS;
1214                         break;
1215                 }
1216
1217                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218                         ret = -ETIME;
1219                         break;
1220                 }
1221
1222                 timer.function = NULL;
1223                 if (timeout || missed_irq(dev_priv, ring)) {
1224                         unsigned long expire;
1225
1226                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228                         mod_timer(&timer, expire);
1229                 }
1230
1231                 io_schedule();
1232
1233                 if (timer.function) {
1234                         del_singleshot_timer_sync(&timer);
1235                         destroy_timer_on_stack(&timer);
1236                 }
1237         }
1238         now = ktime_get_raw_ns();
1239         trace_i915_gem_request_wait_end(ring, seqno);
1240
1241         if (!irq_test_in_progress)
1242                 ring->irq_put(ring);
1243
1244         finish_wait(&ring->irq_queue, &wait);
1245
1246         if (timeout) {
1247                 s64 tres = *timeout - (now - before);
1248
1249                 *timeout = tres < 0 ? 0 : tres;
1250         }
1251
1252         return ret;
1253 }
1254
1255 /**
1256  * Waits for a sequence number to be signaled, and cleans up the
1257  * request and object lists appropriately for that event.
1258  */
1259 int
1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262         struct drm_device *dev = ring->dev;
1263         struct drm_i915_private *dev_priv = dev->dev_private;
1264         bool interruptible = dev_priv->mm.interruptible;
1265         int ret;
1266
1267         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268         BUG_ON(seqno == 0);
1269
1270         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271         if (ret)
1272                 return ret;
1273
1274         ret = i915_gem_check_olr(ring, seqno);
1275         if (ret)
1276                 return ret;
1277
1278         return __wait_seqno(ring, seqno,
1279                             atomic_read(&dev_priv->gpu_error.reset_counter),
1280                             interruptible, NULL, NULL);
1281 }
1282
1283 static int
1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285                                      struct intel_engine_cs *ring)
1286 {
1287         if (!obj->active)
1288                 return 0;
1289
1290         /* Manually manage the write flush as we may have not yet
1291          * retired the buffer.
1292          *
1293          * Note that the last_write_seqno is always the earlier of
1294          * the two (read/write) seqno, so if we haved successfully waited,
1295          * we know we have passed the last write.
1296          */
1297         obj->last_write_seqno = 0;
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * Ensures that all rendering to the object has completed and the object is
1304  * safe to unbind from the GTT or access from the CPU.
1305  */
1306 static __must_check int
1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308                                bool readonly)
1309 {
1310         struct intel_engine_cs *ring = obj->ring;
1311         u32 seqno;
1312         int ret;
1313
1314         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315         if (seqno == 0)
1316                 return 0;
1317
1318         ret = i915_wait_seqno(ring, seqno);
1319         if (ret)
1320                 return ret;
1321
1322         return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326  * as the object state may change during this call.
1327  */
1328 static __must_check int
1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330                                             struct drm_i915_file_private *file_priv,
1331                                             bool readonly)
1332 {
1333         struct drm_device *dev = obj->base.dev;
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         struct intel_engine_cs *ring = obj->ring;
1336         unsigned reset_counter;
1337         u32 seqno;
1338         int ret;
1339
1340         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341         BUG_ON(!dev_priv->mm.interruptible);
1342
1343         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344         if (seqno == 0)
1345                 return 0;
1346
1347         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348         if (ret)
1349                 return ret;
1350
1351         ret = i915_gem_check_olr(ring, seqno);
1352         if (ret)
1353                 return ret;
1354
1355         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356         mutex_unlock(&dev->struct_mutex);
1357         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358         mutex_lock(&dev->struct_mutex);
1359         if (ret)
1360                 return ret;
1361
1362         return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366  * Called when user space prepares to use an object with the CPU, either
1367  * through the mmap ioctl's mapping or a GTT mapping.
1368  */
1369 int
1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371                           struct drm_file *file)
1372 {
1373         struct drm_i915_gem_set_domain *args = data;
1374         struct drm_i915_gem_object *obj;
1375         uint32_t read_domains = args->read_domains;
1376         uint32_t write_domain = args->write_domain;
1377         int ret;
1378
1379         /* Only handle setting domains to types used by the CPU. */
1380         if (write_domain & I915_GEM_GPU_DOMAINS)
1381                 return -EINVAL;
1382
1383         if (read_domains & I915_GEM_GPU_DOMAINS)
1384                 return -EINVAL;
1385
1386         /* Having something in the write domain implies it's in the read
1387          * domain, and only that read domain.  Enforce that in the request.
1388          */
1389         if (write_domain != 0 && read_domains != write_domain)
1390                 return -EINVAL;
1391
1392         ret = i915_mutex_lock_interruptible(dev);
1393         if (ret)
1394                 return ret;
1395
1396         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397         if (&obj->base == NULL) {
1398                 ret = -ENOENT;
1399                 goto unlock;
1400         }
1401
1402         /* Try to flush the object off the GPU without holding the lock.
1403          * We will repeat the flush holding the lock in the normal manner
1404          * to catch cases where we are gazumped.
1405          */
1406         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407                                                           file->driver_priv,
1408                                                           !write_domain);
1409         if (ret)
1410                 goto unref;
1411
1412         if (read_domains & I915_GEM_DOMAIN_GTT) {
1413                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415                 /* Silently promote "you're not bound, there was nothing to do"
1416                  * to success, since the client was just asking us to
1417                  * make sure everything was done.
1418                  */
1419                 if (ret == -EINVAL)
1420                         ret = 0;
1421         } else {
1422                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423         }
1424
1425 unref:
1426         drm_gem_object_unreference(&obj->base);
1427 unlock:
1428         mutex_unlock(&dev->struct_mutex);
1429         return ret;
1430 }
1431
1432 /**
1433  * Called when user space has done writes to this buffer
1434  */
1435 int
1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437                          struct drm_file *file)
1438 {
1439         struct drm_i915_gem_sw_finish *args = data;
1440         struct drm_i915_gem_object *obj;
1441         int ret = 0;
1442
1443         ret = i915_mutex_lock_interruptible(dev);
1444         if (ret)
1445                 return ret;
1446
1447         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448         if (&obj->base == NULL) {
1449                 ret = -ENOENT;
1450                 goto unlock;
1451         }
1452
1453         /* Pinned buffers may be scanout, so flush the cache */
1454         if (obj->pin_display)
1455                 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457         drm_gem_object_unreference(&obj->base);
1458 unlock:
1459         mutex_unlock(&dev->struct_mutex);
1460         return ret;
1461 }
1462
1463 /**
1464  * Maps the contents of an object, returning the address it is mapped
1465  * into.
1466  *
1467  * While the mapping holds a reference on the contents of the object, it doesn't
1468  * imply a ref on the object itself.
1469  *
1470  * IMPORTANT:
1471  *
1472  * DRM driver writers who look a this function as an example for how to do GEM
1473  * mmap support, please don't implement mmap support like here. The modern way
1474  * to implement DRM mmap support is with an mmap offset ioctl (like
1475  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1476  * That way debug tooling like valgrind will understand what's going on, hiding
1477  * the mmap call in a driver private ioctl will break that. The i915 driver only
1478  * does cpu mmaps this way because we didn't know better.
1479  */
1480 int
1481 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1482                     struct drm_file *file)
1483 {
1484         struct drm_i915_gem_mmap *args = data;
1485         struct drm_gem_object *obj;
1486         unsigned long addr;
1487
1488         obj = drm_gem_object_lookup(dev, file, args->handle);
1489         if (obj == NULL)
1490                 return -ENOENT;
1491
1492         /* prime objects have no backing filp to GEM mmap
1493          * pages from.
1494          */
1495         if (!obj->filp) {
1496                 drm_gem_object_unreference_unlocked(obj);
1497                 return -EINVAL;
1498         }
1499
1500         addr = vm_mmap(obj->filp, 0, args->size,
1501                        PROT_READ | PROT_WRITE, MAP_SHARED,
1502                        args->offset);
1503         drm_gem_object_unreference_unlocked(obj);
1504         if (IS_ERR((void *)addr))
1505                 return addr;
1506
1507         args->addr_ptr = (uint64_t) addr;
1508
1509         return 0;
1510 }
1511
1512 /**
1513  * i915_gem_fault - fault a page into the GTT
1514  * vma: VMA in question
1515  * vmf: fault info
1516  *
1517  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1518  * from userspace.  The fault handler takes care of binding the object to
1519  * the GTT (if needed), allocating and programming a fence register (again,
1520  * only if needed based on whether the old reg is still valid or the object
1521  * is tiled) and inserting a new PTE into the faulting process.
1522  *
1523  * Note that the faulting process may involve evicting existing objects
1524  * from the GTT and/or fence registers to make room.  So performance may
1525  * suffer if the GTT working set is large or there are few fence registers
1526  * left.
1527  */
1528 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1529 {
1530         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1531         struct drm_device *dev = obj->base.dev;
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         pgoff_t page_offset;
1534         unsigned long pfn;
1535         int ret = 0;
1536         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1537
1538         intel_runtime_pm_get(dev_priv);
1539
1540         /* We don't use vmf->pgoff since that has the fake offset */
1541         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1542                 PAGE_SHIFT;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto out;
1547
1548         trace_i915_gem_object_fault(obj, page_offset, true, write);
1549
1550         /* Try to flush the object off the GPU first without holding the lock.
1551          * Upon reacquiring the lock, we will perform our sanity checks and then
1552          * repeat the flush holding the lock in the normal manner to catch cases
1553          * where we are gazumped.
1554          */
1555         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1556         if (ret)
1557                 goto unlock;
1558
1559         /* Access to snoopable pages through the GTT is incoherent. */
1560         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1561                 ret = -EFAULT;
1562                 goto unlock;
1563         }
1564
1565         /* Now bind it into the GTT if needed */
1566         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1567         if (ret)
1568                 goto unlock;
1569
1570         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1571         if (ret)
1572                 goto unpin;
1573
1574         ret = i915_gem_object_get_fence(obj);
1575         if (ret)
1576                 goto unpin;
1577
1578         /* Finally, remap it using the new GTT offset */
1579         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1580         pfn >>= PAGE_SHIFT;
1581
1582         if (!obj->fault_mappable) {
1583                 unsigned long size = min_t(unsigned long,
1584                                            vma->vm_end - vma->vm_start,
1585                                            obj->base.size);
1586                 int i;
1587
1588                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1589                         ret = vm_insert_pfn(vma,
1590                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1591                                             pfn + i);
1592                         if (ret)
1593                                 break;
1594                 }
1595
1596                 obj->fault_mappable = true;
1597         } else
1598                 ret = vm_insert_pfn(vma,
1599                                     (unsigned long)vmf->virtual_address,
1600                                     pfn + page_offset);
1601 unpin:
1602         i915_gem_object_ggtt_unpin(obj);
1603 unlock:
1604         mutex_unlock(&dev->struct_mutex);
1605 out:
1606         switch (ret) {
1607         case -EIO:
1608                 /*
1609                  * We eat errors when the gpu is terminally wedged to avoid
1610                  * userspace unduly crashing (gl has no provisions for mmaps to
1611                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1612                  * and so needs to be reported.
1613                  */
1614                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1615                         ret = VM_FAULT_SIGBUS;
1616                         break;
1617                 }
1618         case -EAGAIN:
1619                 /*
1620                  * EAGAIN means the gpu is hung and we'll wait for the error
1621                  * handler to reset everything when re-faulting in
1622                  * i915_mutex_lock_interruptible.
1623                  */
1624         case 0:
1625         case -ERESTARTSYS:
1626         case -EINTR:
1627         case -EBUSY:
1628                 /*
1629                  * EBUSY is ok: this just means that another thread
1630                  * already did the job.
1631                  */
1632                 ret = VM_FAULT_NOPAGE;
1633                 break;
1634         case -ENOMEM:
1635                 ret = VM_FAULT_OOM;
1636                 break;
1637         case -ENOSPC:
1638         case -EFAULT:
1639                 ret = VM_FAULT_SIGBUS;
1640                 break;
1641         default:
1642                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1643                 ret = VM_FAULT_SIGBUS;
1644                 break;
1645         }
1646
1647         intel_runtime_pm_put(dev_priv);
1648         return ret;
1649 }
1650
1651 /**
1652  * i915_gem_release_mmap - remove physical page mappings
1653  * @obj: obj in question
1654  *
1655  * Preserve the reservation of the mmapping with the DRM core code, but
1656  * relinquish ownership of the pages back to the system.
1657  *
1658  * It is vital that we remove the page mapping if we have mapped a tiled
1659  * object through the GTT and then lose the fence register due to
1660  * resource pressure. Similarly if the object has been moved out of the
1661  * aperture, than pages mapped into userspace must be revoked. Removing the
1662  * mapping will then trigger a page fault on the next user access, allowing
1663  * fixup by i915_gem_fault().
1664  */
1665 void
1666 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1667 {
1668         if (!obj->fault_mappable)
1669                 return;
1670
1671         drm_vma_node_unmap(&obj->base.vma_node,
1672                            obj->base.dev->anon_inode->i_mapping);
1673         obj->fault_mappable = false;
1674 }
1675
1676 void
1677 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1678 {
1679         struct drm_i915_gem_object *obj;
1680
1681         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1682                 i915_gem_release_mmap(obj);
1683 }
1684
1685 uint32_t
1686 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1687 {
1688         uint32_t gtt_size;
1689
1690         if (INTEL_INFO(dev)->gen >= 4 ||
1691             tiling_mode == I915_TILING_NONE)
1692                 return size;
1693
1694         /* Previous chips need a power-of-two fence region when tiling */
1695         if (INTEL_INFO(dev)->gen == 3)
1696                 gtt_size = 1024*1024;
1697         else
1698                 gtt_size = 512*1024;
1699
1700         while (gtt_size < size)
1701                 gtt_size <<= 1;
1702
1703         return gtt_size;
1704 }
1705
1706 /**
1707  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1708  * @obj: object to check
1709  *
1710  * Return the required GTT alignment for an object, taking into account
1711  * potential fence register mapping.
1712  */
1713 uint32_t
1714 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1715                            int tiling_mode, bool fenced)
1716 {
1717         /*
1718          * Minimum alignment is 4k (GTT page size), but might be greater
1719          * if a fence register is needed for the object.
1720          */
1721         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1722             tiling_mode == I915_TILING_NONE)
1723                 return 4096;
1724
1725         /*
1726          * Previous chips need to be aligned to the size of the smallest
1727          * fence register that can contain the object.
1728          */
1729         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1730 }
1731
1732 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1733 {
1734         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1735         int ret;
1736
1737         if (drm_vma_node_has_offset(&obj->base.vma_node))
1738                 return 0;
1739
1740         dev_priv->mm.shrinker_no_lock_stealing = true;
1741
1742         ret = drm_gem_create_mmap_offset(&obj->base);
1743         if (ret != -ENOSPC)
1744                 goto out;
1745
1746         /* Badly fragmented mmap space? The only way we can recover
1747          * space is by destroying unwanted objects. We can't randomly release
1748          * mmap_offsets as userspace expects them to be persistent for the
1749          * lifetime of the objects. The closest we can is to release the
1750          * offsets on purgeable objects by truncating it and marking it purged,
1751          * which prevents userspace from ever using that object again.
1752          */
1753         i915_gem_shrink(dev_priv,
1754                         obj->base.size >> PAGE_SHIFT,
1755                         I915_SHRINK_BOUND |
1756                         I915_SHRINK_UNBOUND |
1757                         I915_SHRINK_PURGEABLE);
1758         ret = drm_gem_create_mmap_offset(&obj->base);
1759         if (ret != -ENOSPC)
1760                 goto out;
1761
1762         i915_gem_shrink_all(dev_priv);
1763         ret = drm_gem_create_mmap_offset(&obj->base);
1764 out:
1765         dev_priv->mm.shrinker_no_lock_stealing = false;
1766
1767         return ret;
1768 }
1769
1770 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1771 {
1772         drm_gem_free_mmap_offset(&obj->base);
1773 }
1774
1775 int
1776 i915_gem_mmap_gtt(struct drm_file *file,
1777                   struct drm_device *dev,
1778                   uint32_t handle,
1779                   uint64_t *offset)
1780 {
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         struct drm_i915_gem_object *obj;
1783         int ret;
1784
1785         ret = i915_mutex_lock_interruptible(dev);
1786         if (ret)
1787                 return ret;
1788
1789         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1790         if (&obj->base == NULL) {
1791                 ret = -ENOENT;
1792                 goto unlock;
1793         }
1794
1795         if (obj->base.size > dev_priv->gtt.mappable_end) {
1796                 ret = -E2BIG;
1797                 goto out;
1798         }
1799
1800         if (obj->madv != I915_MADV_WILLNEED) {
1801                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1802                 ret = -EFAULT;
1803                 goto out;
1804         }
1805
1806         ret = i915_gem_object_create_mmap_offset(obj);
1807         if (ret)
1808                 goto out;
1809
1810         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1811
1812 out:
1813         drm_gem_object_unreference(&obj->base);
1814 unlock:
1815         mutex_unlock(&dev->struct_mutex);
1816         return ret;
1817 }
1818
1819 /**
1820  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1821  * @dev: DRM device
1822  * @data: GTT mapping ioctl data
1823  * @file: GEM object info
1824  *
1825  * Simply returns the fake offset to userspace so it can mmap it.
1826  * The mmap call will end up in drm_gem_mmap(), which will set things
1827  * up so we can get faults in the handler above.
1828  *
1829  * The fault handler will take care of binding the object into the GTT
1830  * (since it may have been evicted to make room for something), allocating
1831  * a fence register, and mapping the appropriate aperture address into
1832  * userspace.
1833  */
1834 int
1835 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1836                         struct drm_file *file)
1837 {
1838         struct drm_i915_gem_mmap_gtt *args = data;
1839
1840         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1841 }
1842
1843 static inline int
1844 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1845 {
1846         return obj->madv == I915_MADV_DONTNEED;
1847 }
1848
1849 /* Immediately discard the backing storage */
1850 static void
1851 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1852 {
1853         i915_gem_object_free_mmap_offset(obj);
1854
1855         if (obj->base.filp == NULL)
1856                 return;
1857
1858         /* Our goal here is to return as much of the memory as
1859          * is possible back to the system as we are called from OOM.
1860          * To do this we must instruct the shmfs to drop all of its
1861          * backing pages, *now*.
1862          */
1863         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1864         obj->madv = __I915_MADV_PURGED;
1865 }
1866
1867 /* Try to discard unwanted pages */
1868 static void
1869 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1870 {
1871         struct address_space *mapping;
1872
1873         switch (obj->madv) {
1874         case I915_MADV_DONTNEED:
1875                 i915_gem_object_truncate(obj);
1876         case __I915_MADV_PURGED:
1877                 return;
1878         }
1879
1880         if (obj->base.filp == NULL)
1881                 return;
1882
1883         mapping = file_inode(obj->base.filp)->i_mapping,
1884         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1885 }
1886
1887 static void
1888 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1889 {
1890         struct sg_page_iter sg_iter;
1891         int ret;
1892
1893         BUG_ON(obj->madv == __I915_MADV_PURGED);
1894
1895         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1896         if (ret) {
1897                 /* In the event of a disaster, abandon all caches and
1898                  * hope for the best.
1899                  */
1900                 WARN_ON(ret != -EIO);
1901                 i915_gem_clflush_object(obj, true);
1902                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1903         }
1904
1905         if (i915_gem_object_needs_bit17_swizzle(obj))
1906                 i915_gem_object_save_bit_17_swizzle(obj);
1907
1908         if (obj->madv == I915_MADV_DONTNEED)
1909                 obj->dirty = 0;
1910
1911         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1912                 struct page *page = sg_page_iter_page(&sg_iter);
1913
1914                 if (obj->dirty)
1915                         set_page_dirty(page);
1916
1917                 if (obj->madv == I915_MADV_WILLNEED)
1918                         mark_page_accessed(page);
1919
1920                 page_cache_release(page);
1921         }
1922         obj->dirty = 0;
1923
1924         sg_free_table(obj->pages);
1925         kfree(obj->pages);
1926 }
1927
1928 int
1929 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1930 {
1931         const struct drm_i915_gem_object_ops *ops = obj->ops;
1932
1933         if (obj->pages == NULL)
1934                 return 0;
1935
1936         if (obj->pages_pin_count)
1937                 return -EBUSY;
1938
1939         BUG_ON(i915_gem_obj_bound_any(obj));
1940
1941         /* ->put_pages might need to allocate memory for the bit17 swizzle
1942          * array, hence protect them from being reaped by removing them from gtt
1943          * lists early. */
1944         list_del(&obj->global_list);
1945
1946         ops->put_pages(obj);
1947         obj->pages = NULL;
1948
1949         i915_gem_object_invalidate(obj);
1950
1951         return 0;
1952 }
1953
1954 unsigned long
1955 i915_gem_shrink(struct drm_i915_private *dev_priv,
1956                 long target, unsigned flags)
1957 {
1958         const struct {
1959                 struct list_head *list;
1960                 unsigned int bit;
1961         } phases[] = {
1962                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
1963                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
1964                 { NULL, 0 },
1965         }, *phase;
1966         unsigned long count = 0;
1967
1968         /*
1969          * As we may completely rewrite the (un)bound list whilst unbinding
1970          * (due to retiring requests) we have to strictly process only
1971          * one element of the list at the time, and recheck the list
1972          * on every iteration.
1973          *
1974          * In particular, we must hold a reference whilst removing the
1975          * object as we may end up waiting for and/or retiring the objects.
1976          * This might release the final reference (held by the active list)
1977          * and result in the object being freed from under us. This is
1978          * similar to the precautions the eviction code must take whilst
1979          * removing objects.
1980          *
1981          * Also note that although these lists do not hold a reference to
1982          * the object we can safely grab one here: The final object
1983          * unreferencing and the bound_list are both protected by the
1984          * dev->struct_mutex and so we won't ever be able to observe an
1985          * object on the bound_list with a reference count equals 0.
1986          */
1987         for (phase = phases; phase->list; phase++) {
1988                 struct list_head still_in_list;
1989
1990                 if ((flags & phase->bit) == 0)
1991                         continue;
1992
1993                 INIT_LIST_HEAD(&still_in_list);
1994                 while (count < target && !list_empty(phase->list)) {
1995                         struct drm_i915_gem_object *obj;
1996                         struct i915_vma *vma, *v;
1997
1998                         obj = list_first_entry(phase->list,
1999                                                typeof(*obj), global_list);
2000                         list_move_tail(&obj->global_list, &still_in_list);
2001
2002                         if (flags & I915_SHRINK_PURGEABLE &&
2003                             !i915_gem_object_is_purgeable(obj))
2004                                 continue;
2005
2006                         drm_gem_object_reference(&obj->base);
2007
2008                         /* For the unbound phase, this should be a no-op! */
2009                         list_for_each_entry_safe(vma, v,
2010                                                  &obj->vma_list, vma_link)
2011                                 if (i915_vma_unbind(vma))
2012                                         break;
2013
2014                         if (i915_gem_object_put_pages(obj) == 0)
2015                                 count += obj->base.size >> PAGE_SHIFT;
2016
2017                         drm_gem_object_unreference(&obj->base);
2018                 }
2019                 list_splice(&still_in_list, phase->list);
2020         }
2021
2022         return count;
2023 }
2024
2025 static unsigned long
2026 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2027 {
2028         i915_gem_evict_everything(dev_priv->dev);
2029         return i915_gem_shrink(dev_priv, LONG_MAX,
2030                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2031 }
2032
2033 static int
2034 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2035 {
2036         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2037         int page_count, i;
2038         struct address_space *mapping;
2039         struct sg_table *st;
2040         struct scatterlist *sg;
2041         struct sg_page_iter sg_iter;
2042         struct page *page;
2043         unsigned long last_pfn = 0;     /* suppress gcc warning */
2044         gfp_t gfp;
2045
2046         /* Assert that the object is not currently in any GPU domain. As it
2047          * wasn't in the GTT, there shouldn't be any way it could have been in
2048          * a GPU cache
2049          */
2050         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2051         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2052
2053         st = kmalloc(sizeof(*st), GFP_KERNEL);
2054         if (st == NULL)
2055                 return -ENOMEM;
2056
2057         page_count = obj->base.size / PAGE_SIZE;
2058         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2059                 kfree(st);
2060                 return -ENOMEM;
2061         }
2062
2063         /* Get the list of pages out of our struct file.  They'll be pinned
2064          * at this point until we release them.
2065          *
2066          * Fail silently without starting the shrinker
2067          */
2068         mapping = file_inode(obj->base.filp)->i_mapping;
2069         gfp = mapping_gfp_mask(mapping);
2070         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2071         gfp &= ~(__GFP_IO | __GFP_WAIT);
2072         sg = st->sgl;
2073         st->nents = 0;
2074         for (i = 0; i < page_count; i++) {
2075                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2076                 if (IS_ERR(page)) {
2077                         i915_gem_shrink(dev_priv,
2078                                         page_count,
2079                                         I915_SHRINK_BOUND |
2080                                         I915_SHRINK_UNBOUND |
2081                                         I915_SHRINK_PURGEABLE);
2082                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2083                 }
2084                 if (IS_ERR(page)) {
2085                         /* We've tried hard to allocate the memory by reaping
2086                          * our own buffer, now let the real VM do its job and
2087                          * go down in flames if truly OOM.
2088                          */
2089                         i915_gem_shrink_all(dev_priv);
2090                         page = shmem_read_mapping_page(mapping, i);
2091                         if (IS_ERR(page))
2092                                 goto err_pages;
2093                 }
2094 #ifdef CONFIG_SWIOTLB
2095                 if (swiotlb_nr_tbl()) {
2096                         st->nents++;
2097                         sg_set_page(sg, page, PAGE_SIZE, 0);
2098                         sg = sg_next(sg);
2099                         continue;
2100                 }
2101 #endif
2102                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2103                         if (i)
2104                                 sg = sg_next(sg);
2105                         st->nents++;
2106                         sg_set_page(sg, page, PAGE_SIZE, 0);
2107                 } else {
2108                         sg->length += PAGE_SIZE;
2109                 }
2110                 last_pfn = page_to_pfn(page);
2111
2112                 /* Check that the i965g/gm workaround works. */
2113                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2114         }
2115 #ifdef CONFIG_SWIOTLB
2116         if (!swiotlb_nr_tbl())
2117 #endif
2118                 sg_mark_end(sg);
2119         obj->pages = st;
2120
2121         if (i915_gem_object_needs_bit17_swizzle(obj))
2122                 i915_gem_object_do_bit_17_swizzle(obj);
2123
2124         return 0;
2125
2126 err_pages:
2127         sg_mark_end(sg);
2128         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2129                 page_cache_release(sg_page_iter_page(&sg_iter));
2130         sg_free_table(st);
2131         kfree(st);
2132
2133         /* shmemfs first checks if there is enough memory to allocate the page
2134          * and reports ENOSPC should there be insufficient, along with the usual
2135          * ENOMEM for a genuine allocation failure.
2136          *
2137          * We use ENOSPC in our driver to mean that we have run out of aperture
2138          * space and so want to translate the error from shmemfs back to our
2139          * usual understanding of ENOMEM.
2140          */
2141         if (PTR_ERR(page) == -ENOSPC)
2142                 return -ENOMEM;
2143         else
2144                 return PTR_ERR(page);
2145 }
2146
2147 /* Ensure that the associated pages are gathered from the backing storage
2148  * and pinned into our object. i915_gem_object_get_pages() may be called
2149  * multiple times before they are released by a single call to
2150  * i915_gem_object_put_pages() - once the pages are no longer referenced
2151  * either as a result of memory pressure (reaping pages under the shrinker)
2152  * or as the object is itself released.
2153  */
2154 int
2155 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2156 {
2157         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158         const struct drm_i915_gem_object_ops *ops = obj->ops;
2159         int ret;
2160
2161         if (obj->pages)
2162                 return 0;
2163
2164         if (obj->madv != I915_MADV_WILLNEED) {
2165                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2166                 return -EFAULT;
2167         }
2168
2169         BUG_ON(obj->pages_pin_count);
2170
2171         ret = ops->get_pages(obj);
2172         if (ret)
2173                 return ret;
2174
2175         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2176         return 0;
2177 }
2178
2179 static void
2180 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2181                                struct intel_engine_cs *ring)
2182 {
2183         u32 seqno = intel_ring_get_seqno(ring);
2184
2185         BUG_ON(ring == NULL);
2186         if (obj->ring != ring && obj->last_write_seqno) {
2187                 /* Keep the seqno relative to the current ring */
2188                 obj->last_write_seqno = seqno;
2189         }
2190         obj->ring = ring;
2191
2192         /* Add a reference if we're newly entering the active list. */
2193         if (!obj->active) {
2194                 drm_gem_object_reference(&obj->base);
2195                 obj->active = 1;
2196         }
2197
2198         list_move_tail(&obj->ring_list, &ring->active_list);
2199
2200         obj->last_read_seqno = seqno;
2201 }
2202
2203 void i915_vma_move_to_active(struct i915_vma *vma,
2204                              struct intel_engine_cs *ring)
2205 {
2206         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2207         return i915_gem_object_move_to_active(vma->obj, ring);
2208 }
2209
2210 static void
2211 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2212 {
2213         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2214         struct i915_address_space *vm;
2215         struct i915_vma *vma;
2216
2217         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2218         BUG_ON(!obj->active);
2219
2220         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2221                 vma = i915_gem_obj_to_vma(obj, vm);
2222                 if (vma && !list_empty(&vma->mm_list))
2223                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2224         }
2225
2226         intel_fb_obj_flush(obj, true);
2227
2228         list_del_init(&obj->ring_list);
2229         obj->ring = NULL;
2230
2231         obj->last_read_seqno = 0;
2232         obj->last_write_seqno = 0;
2233         obj->base.write_domain = 0;
2234
2235         obj->last_fenced_seqno = 0;
2236
2237         obj->active = 0;
2238         drm_gem_object_unreference(&obj->base);
2239
2240         WARN_ON(i915_verify_lists(dev));
2241 }
2242
2243 static void
2244 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2245 {
2246         struct intel_engine_cs *ring = obj->ring;
2247
2248         if (ring == NULL)
2249                 return;
2250
2251         if (i915_seqno_passed(ring->get_seqno(ring, true),
2252                               obj->last_read_seqno))
2253                 i915_gem_object_move_to_inactive(obj);
2254 }
2255
2256 static int
2257 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2258 {
2259         struct drm_i915_private *dev_priv = dev->dev_private;
2260         struct intel_engine_cs *ring;
2261         int ret, i, j;
2262
2263         /* Carefully retire all requests without writing to the rings */
2264         for_each_ring(ring, dev_priv, i) {
2265                 ret = intel_ring_idle(ring);
2266                 if (ret)
2267                         return ret;
2268         }
2269         i915_gem_retire_requests(dev);
2270
2271         /* Finally reset hw state */
2272         for_each_ring(ring, dev_priv, i) {
2273                 intel_ring_init_seqno(ring, seqno);
2274
2275                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2276                         ring->semaphore.sync_seqno[j] = 0;
2277         }
2278
2279         return 0;
2280 }
2281
2282 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         int ret;
2286
2287         if (seqno == 0)
2288                 return -EINVAL;
2289
2290         /* HWS page needs to be set less than what we
2291          * will inject to ring
2292          */
2293         ret = i915_gem_init_seqno(dev, seqno - 1);
2294         if (ret)
2295                 return ret;
2296
2297         /* Carefully set the last_seqno value so that wrap
2298          * detection still works
2299          */
2300         dev_priv->next_seqno = seqno;
2301         dev_priv->last_seqno = seqno - 1;
2302         if (dev_priv->last_seqno == 0)
2303                 dev_priv->last_seqno--;
2304
2305         return 0;
2306 }
2307
2308 int
2309 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2310 {
2311         struct drm_i915_private *dev_priv = dev->dev_private;
2312
2313         /* reserve 0 for non-seqno */
2314         if (dev_priv->next_seqno == 0) {
2315                 int ret = i915_gem_init_seqno(dev, 0);
2316                 if (ret)
2317                         return ret;
2318
2319                 dev_priv->next_seqno = 1;
2320         }
2321
2322         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2323         return 0;
2324 }
2325
2326 int __i915_add_request(struct intel_engine_cs *ring,
2327                        struct drm_file *file,
2328                        struct drm_i915_gem_object *obj,
2329                        u32 *out_seqno)
2330 {
2331         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2332         struct drm_i915_gem_request *request;
2333         struct intel_ringbuffer *ringbuf;
2334         u32 request_ring_position, request_start;
2335         int ret;
2336
2337         request = ring->preallocated_lazy_request;
2338         if (WARN_ON(request == NULL))
2339                 return -ENOMEM;
2340
2341         if (i915.enable_execlists) {
2342                 struct intel_context *ctx = request->ctx;
2343                 ringbuf = ctx->engine[ring->id].ringbuf;
2344         } else
2345                 ringbuf = ring->buffer;
2346
2347         request_start = intel_ring_get_tail(ringbuf);
2348         /*
2349          * Emit any outstanding flushes - execbuf can fail to emit the flush
2350          * after having emitted the batchbuffer command. Hence we need to fix
2351          * things up similar to emitting the lazy request. The difference here
2352          * is that the flush _must_ happen before the next request, no matter
2353          * what.
2354          */
2355         if (i915.enable_execlists) {
2356                 ret = logical_ring_flush_all_caches(ringbuf);
2357                 if (ret)
2358                         return ret;
2359         } else {
2360                 ret = intel_ring_flush_all_caches(ring);
2361                 if (ret)
2362                         return ret;
2363         }
2364
2365         /* Record the position of the start of the request so that
2366          * should we detect the updated seqno part-way through the
2367          * GPU processing the request, we never over-estimate the
2368          * position of the head.
2369          */
2370         request_ring_position = intel_ring_get_tail(ringbuf);
2371
2372         if (i915.enable_execlists) {
2373                 ret = ring->emit_request(ringbuf);
2374                 if (ret)
2375                         return ret;
2376         } else {
2377                 ret = ring->add_request(ring);
2378                 if (ret)
2379                         return ret;
2380         }
2381
2382         request->seqno = intel_ring_get_seqno(ring);
2383         request->ring = ring;
2384         request->head = request_start;
2385         request->tail = request_ring_position;
2386
2387         /* Whilst this request exists, batch_obj will be on the
2388          * active_list, and so will hold the active reference. Only when this
2389          * request is retired will the the batch_obj be moved onto the
2390          * inactive_list and lose its active reference. Hence we do not need
2391          * to explicitly hold another reference here.
2392          */
2393         request->batch_obj = obj;
2394
2395         if (!i915.enable_execlists) {
2396                 /* Hold a reference to the current context so that we can inspect
2397                  * it later in case a hangcheck error event fires.
2398                  */
2399                 request->ctx = ring->last_context;
2400                 if (request->ctx)
2401                         i915_gem_context_reference(request->ctx);
2402         }
2403
2404         request->emitted_jiffies = jiffies;
2405         list_add_tail(&request->list, &ring->request_list);
2406         request->file_priv = NULL;
2407
2408         if (file) {
2409                 struct drm_i915_file_private *file_priv = file->driver_priv;
2410
2411                 spin_lock(&file_priv->mm.lock);
2412                 request->file_priv = file_priv;
2413                 list_add_tail(&request->client_list,
2414                               &file_priv->mm.request_list);
2415                 spin_unlock(&file_priv->mm.lock);
2416         }
2417
2418         trace_i915_gem_request_add(ring, request->seqno);
2419         ring->outstanding_lazy_seqno = 0;
2420         ring->preallocated_lazy_request = NULL;
2421
2422         if (!dev_priv->ums.mm_suspended) {
2423                 i915_queue_hangcheck(ring->dev);
2424
2425                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2426                 queue_delayed_work(dev_priv->wq,
2427                                    &dev_priv->mm.retire_work,
2428                                    round_jiffies_up_relative(HZ));
2429                 intel_mark_busy(dev_priv->dev);
2430         }
2431
2432         if (out_seqno)
2433                 *out_seqno = request->seqno;
2434         return 0;
2435 }
2436
2437 static inline void
2438 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2439 {
2440         struct drm_i915_file_private *file_priv = request->file_priv;
2441
2442         if (!file_priv)
2443                 return;
2444
2445         spin_lock(&file_priv->mm.lock);
2446         list_del(&request->client_list);
2447         request->file_priv = NULL;
2448         spin_unlock(&file_priv->mm.lock);
2449 }
2450
2451 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2452                                    const struct intel_context *ctx)
2453 {
2454         unsigned long elapsed;
2455
2456         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2457
2458         if (ctx->hang_stats.banned)
2459                 return true;
2460
2461         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2462                 if (!i915_gem_context_is_default(ctx)) {
2463                         DRM_DEBUG("context hanging too fast, banning!\n");
2464                         return true;
2465                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2466                         if (i915_stop_ring_allow_warn(dev_priv))
2467                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2468                         return true;
2469                 }
2470         }
2471
2472         return false;
2473 }
2474
2475 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2476                                   struct intel_context *ctx,
2477                                   const bool guilty)
2478 {
2479         struct i915_ctx_hang_stats *hs;
2480
2481         if (WARN_ON(!ctx))
2482                 return;
2483
2484         hs = &ctx->hang_stats;
2485
2486         if (guilty) {
2487                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2488                 hs->batch_active++;
2489                 hs->guilty_ts = get_seconds();
2490         } else {
2491                 hs->batch_pending++;
2492         }
2493 }
2494
2495 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2496 {
2497         list_del(&request->list);
2498         i915_gem_request_remove_from_client(request);
2499
2500         if (request->ctx)
2501                 i915_gem_context_unreference(request->ctx);
2502
2503         kfree(request);
2504 }
2505
2506 struct drm_i915_gem_request *
2507 i915_gem_find_active_request(struct intel_engine_cs *ring)
2508 {
2509         struct drm_i915_gem_request *request;
2510         u32 completed_seqno;
2511
2512         completed_seqno = ring->get_seqno(ring, false);
2513
2514         list_for_each_entry(request, &ring->request_list, list) {
2515                 if (i915_seqno_passed(completed_seqno, request->seqno))
2516                         continue;
2517
2518                 return request;
2519         }
2520
2521         return NULL;
2522 }
2523
2524 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2525                                        struct intel_engine_cs *ring)
2526 {
2527         struct drm_i915_gem_request *request;
2528         bool ring_hung;
2529
2530         request = i915_gem_find_active_request(ring);
2531
2532         if (request == NULL)
2533                 return;
2534
2535         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2536
2537         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2538
2539         list_for_each_entry_continue(request, &ring->request_list, list)
2540                 i915_set_reset_status(dev_priv, request->ctx, false);
2541 }
2542
2543 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2544                                         struct intel_engine_cs *ring)
2545 {
2546         while (!list_empty(&ring->active_list)) {
2547                 struct drm_i915_gem_object *obj;
2548
2549                 obj = list_first_entry(&ring->active_list,
2550                                        struct drm_i915_gem_object,
2551                                        ring_list);
2552
2553                 i915_gem_object_move_to_inactive(obj);
2554         }
2555
2556         /*
2557          * We must free the requests after all the corresponding objects have
2558          * been moved off active lists. Which is the same order as the normal
2559          * retire_requests function does. This is important if object hold
2560          * implicit references on things like e.g. ppgtt address spaces through
2561          * the request.
2562          */
2563         while (!list_empty(&ring->request_list)) {
2564                 struct drm_i915_gem_request *request;
2565
2566                 request = list_first_entry(&ring->request_list,
2567                                            struct drm_i915_gem_request,
2568                                            list);
2569
2570                 i915_gem_free_request(request);
2571         }
2572
2573         while (!list_empty(&ring->execlist_queue)) {
2574                 struct intel_ctx_submit_request *submit_req;
2575
2576                 submit_req = list_first_entry(&ring->execlist_queue,
2577                                 struct intel_ctx_submit_request,
2578                                 execlist_link);
2579                 list_del(&submit_req->execlist_link);
2580                 intel_runtime_pm_put(dev_priv);
2581                 i915_gem_context_unreference(submit_req->ctx);
2582                 kfree(submit_req);
2583         }
2584
2585         /* These may not have been flush before the reset, do so now */
2586         kfree(ring->preallocated_lazy_request);
2587         ring->preallocated_lazy_request = NULL;
2588         ring->outstanding_lazy_seqno = 0;
2589 }
2590
2591 void i915_gem_restore_fences(struct drm_device *dev)
2592 {
2593         struct drm_i915_private *dev_priv = dev->dev_private;
2594         int i;
2595
2596         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2597                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2598
2599                 /*
2600                  * Commit delayed tiling changes if we have an object still
2601                  * attached to the fence, otherwise just clear the fence.
2602                  */
2603                 if (reg->obj) {
2604                         i915_gem_object_update_fence(reg->obj, reg,
2605                                                      reg->obj->tiling_mode);
2606                 } else {
2607                         i915_gem_write_fence(dev, i, NULL);
2608                 }
2609         }
2610 }
2611
2612 void i915_gem_reset(struct drm_device *dev)
2613 {
2614         struct drm_i915_private *dev_priv = dev->dev_private;
2615         struct intel_engine_cs *ring;
2616         int i;
2617
2618         /*
2619          * Before we free the objects from the requests, we need to inspect
2620          * them for finding the guilty party. As the requests only borrow
2621          * their reference to the objects, the inspection must be done first.
2622          */
2623         for_each_ring(ring, dev_priv, i)
2624                 i915_gem_reset_ring_status(dev_priv, ring);
2625
2626         for_each_ring(ring, dev_priv, i)
2627                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2628
2629         i915_gem_context_reset(dev);
2630
2631         i915_gem_restore_fences(dev);
2632 }
2633
2634 /**
2635  * This function clears the request list as sequence numbers are passed.
2636  */
2637 void
2638 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2639 {
2640         uint32_t seqno;
2641
2642         if (list_empty(&ring->request_list))
2643                 return;
2644
2645         WARN_ON(i915_verify_lists(ring->dev));
2646
2647         seqno = ring->get_seqno(ring, true);
2648
2649         /* Move any buffers on the active list that are no longer referenced
2650          * by the ringbuffer to the flushing/inactive lists as appropriate,
2651          * before we free the context associated with the requests.
2652          */
2653         while (!list_empty(&ring->active_list)) {
2654                 struct drm_i915_gem_object *obj;
2655
2656                 obj = list_first_entry(&ring->active_list,
2657                                       struct drm_i915_gem_object,
2658                                       ring_list);
2659
2660                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2661                         break;
2662
2663                 i915_gem_object_move_to_inactive(obj);
2664         }
2665
2666
2667         while (!list_empty(&ring->request_list)) {
2668                 struct drm_i915_gem_request *request;
2669                 struct intel_ringbuffer *ringbuf;
2670
2671                 request = list_first_entry(&ring->request_list,
2672                                            struct drm_i915_gem_request,
2673                                            list);
2674
2675                 if (!i915_seqno_passed(seqno, request->seqno))
2676                         break;
2677
2678                 trace_i915_gem_request_retire(ring, request->seqno);
2679
2680                 /* This is one of the few common intersection points
2681                  * between legacy ringbuffer submission and execlists:
2682                  * we need to tell them apart in order to find the correct
2683                  * ringbuffer to which the request belongs to.
2684                  */
2685                 if (i915.enable_execlists) {
2686                         struct intel_context *ctx = request->ctx;
2687                         ringbuf = ctx->engine[ring->id].ringbuf;
2688                 } else
2689                         ringbuf = ring->buffer;
2690
2691                 /* We know the GPU must have read the request to have
2692                  * sent us the seqno + interrupt, so use the position
2693                  * of tail of the request to update the last known position
2694                  * of the GPU head.
2695                  */
2696                 ringbuf->last_retired_head = request->tail;
2697
2698                 i915_gem_free_request(request);
2699         }
2700
2701         if (unlikely(ring->trace_irq_seqno &&
2702                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2703                 ring->irq_put(ring);
2704                 ring->trace_irq_seqno = 0;
2705         }
2706
2707         WARN_ON(i915_verify_lists(ring->dev));
2708 }
2709
2710 bool
2711 i915_gem_retire_requests(struct drm_device *dev)
2712 {
2713         struct drm_i915_private *dev_priv = dev->dev_private;
2714         struct intel_engine_cs *ring;
2715         bool idle = true;
2716         int i;
2717
2718         for_each_ring(ring, dev_priv, i) {
2719                 i915_gem_retire_requests_ring(ring);
2720                 idle &= list_empty(&ring->request_list);
2721         }
2722
2723         if (idle)
2724                 mod_delayed_work(dev_priv->wq,
2725                                    &dev_priv->mm.idle_work,
2726                                    msecs_to_jiffies(100));
2727
2728         return idle;
2729 }
2730
2731 static void
2732 i915_gem_retire_work_handler(struct work_struct *work)
2733 {
2734         struct drm_i915_private *dev_priv =
2735                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2736         struct drm_device *dev = dev_priv->dev;
2737         bool idle;
2738
2739         /* Come back later if the device is busy... */
2740         idle = false;
2741         if (mutex_trylock(&dev->struct_mutex)) {
2742                 idle = i915_gem_retire_requests(dev);
2743                 mutex_unlock(&dev->struct_mutex);
2744         }
2745         if (!idle)
2746                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2747                                    round_jiffies_up_relative(HZ));
2748 }
2749
2750 static void
2751 i915_gem_idle_work_handler(struct work_struct *work)
2752 {
2753         struct drm_i915_private *dev_priv =
2754                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2755
2756         intel_mark_idle(dev_priv->dev);
2757 }
2758
2759 /**
2760  * Ensures that an object will eventually get non-busy by flushing any required
2761  * write domains, emitting any outstanding lazy request and retiring and
2762  * completed requests.
2763  */
2764 static int
2765 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2766 {
2767         int ret;
2768
2769         if (obj->active) {
2770                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2771                 if (ret)
2772                         return ret;
2773
2774                 i915_gem_retire_requests_ring(obj->ring);
2775         }
2776
2777         return 0;
2778 }
2779
2780 /**
2781  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2782  * @DRM_IOCTL_ARGS: standard ioctl arguments
2783  *
2784  * Returns 0 if successful, else an error is returned with the remaining time in
2785  * the timeout parameter.
2786  *  -ETIME: object is still busy after timeout
2787  *  -ERESTARTSYS: signal interrupted the wait
2788  *  -ENONENT: object doesn't exist
2789  * Also possible, but rare:
2790  *  -EAGAIN: GPU wedged
2791  *  -ENOMEM: damn
2792  *  -ENODEV: Internal IRQ fail
2793  *  -E?: The add request failed
2794  *
2795  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2796  * non-zero timeout parameter the wait ioctl will wait for the given number of
2797  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2798  * without holding struct_mutex the object may become re-busied before this
2799  * function completes. A similar but shorter * race condition exists in the busy
2800  * ioctl
2801  */
2802 int
2803 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2804 {
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806         struct drm_i915_gem_wait *args = data;
2807         struct drm_i915_gem_object *obj;
2808         struct intel_engine_cs *ring = NULL;
2809         unsigned reset_counter;
2810         u32 seqno = 0;
2811         int ret = 0;
2812
2813         if (args->flags != 0)
2814                 return -EINVAL;
2815
2816         ret = i915_mutex_lock_interruptible(dev);
2817         if (ret)
2818                 return ret;
2819
2820         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2821         if (&obj->base == NULL) {
2822                 mutex_unlock(&dev->struct_mutex);
2823                 return -ENOENT;
2824         }
2825
2826         /* Need to make sure the object gets inactive eventually. */
2827         ret = i915_gem_object_flush_active(obj);
2828         if (ret)
2829                 goto out;
2830
2831         if (obj->active) {
2832                 seqno = obj->last_read_seqno;
2833                 ring = obj->ring;
2834         }
2835
2836         if (seqno == 0)
2837                  goto out;
2838
2839         /* Do this after OLR check to make sure we make forward progress polling
2840          * on this IOCTL with a timeout <=0 (like busy ioctl)
2841          */
2842         if (args->timeout_ns <= 0) {
2843                 ret = -ETIME;
2844                 goto out;
2845         }
2846
2847         drm_gem_object_unreference(&obj->base);
2848         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2849         mutex_unlock(&dev->struct_mutex);
2850
2851         return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2852                             file->driver_priv);
2853
2854 out:
2855         drm_gem_object_unreference(&obj->base);
2856         mutex_unlock(&dev->struct_mutex);
2857         return ret;
2858 }
2859
2860 /**
2861  * i915_gem_object_sync - sync an object to a ring.
2862  *
2863  * @obj: object which may be in use on another ring.
2864  * @to: ring we wish to use the object on. May be NULL.
2865  *
2866  * This code is meant to abstract object synchronization with the GPU.
2867  * Calling with NULL implies synchronizing the object with the CPU
2868  * rather than a particular GPU ring.
2869  *
2870  * Returns 0 if successful, else propagates up the lower layer error.
2871  */
2872 int
2873 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2874                      struct intel_engine_cs *to)
2875 {
2876         struct intel_engine_cs *from = obj->ring;
2877         u32 seqno;
2878         int ret, idx;
2879
2880         if (from == NULL || to == from)
2881                 return 0;
2882
2883         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2884                 return i915_gem_object_wait_rendering(obj, false);
2885
2886         idx = intel_ring_sync_index(from, to);
2887
2888         seqno = obj->last_read_seqno;
2889         /* Optimization: Avoid semaphore sync when we are sure we already
2890          * waited for an object with higher seqno */
2891         if (seqno <= from->semaphore.sync_seqno[idx])
2892                 return 0;
2893
2894         ret = i915_gem_check_olr(obj->ring, seqno);
2895         if (ret)
2896                 return ret;
2897
2898         trace_i915_gem_ring_sync_to(from, to, seqno);
2899         ret = to->semaphore.sync_to(to, from, seqno);
2900         if (!ret)
2901                 /* We use last_read_seqno because sync_to()
2902                  * might have just caused seqno wrap under
2903                  * the radar.
2904                  */
2905                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2906
2907         return ret;
2908 }
2909
2910 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2911 {
2912         u32 old_write_domain, old_read_domains;
2913
2914         /* Force a pagefault for domain tracking on next user access */
2915         i915_gem_release_mmap(obj);
2916
2917         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2918                 return;
2919
2920         /* Wait for any direct GTT access to complete */
2921         mb();
2922
2923         old_read_domains = obj->base.read_domains;
2924         old_write_domain = obj->base.write_domain;
2925
2926         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2927         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2928
2929         trace_i915_gem_object_change_domain(obj,
2930                                             old_read_domains,
2931                                             old_write_domain);
2932 }
2933
2934 int i915_vma_unbind(struct i915_vma *vma)
2935 {
2936         struct drm_i915_gem_object *obj = vma->obj;
2937         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2938         int ret;
2939
2940         if (list_empty(&vma->vma_link))
2941                 return 0;
2942
2943         if (!drm_mm_node_allocated(&vma->node)) {
2944                 i915_gem_vma_destroy(vma);
2945                 return 0;
2946         }
2947
2948         if (vma->pin_count)
2949                 return -EBUSY;
2950
2951         BUG_ON(obj->pages == NULL);
2952
2953         ret = i915_gem_object_finish_gpu(obj);
2954         if (ret)
2955                 return ret;
2956         /* Continue on if we fail due to EIO, the GPU is hung so we
2957          * should be safe and we need to cleanup or else we might
2958          * cause memory corruption through use-after-free.
2959          */
2960
2961         /* Throw away the active reference before moving to the unbound list */
2962         i915_gem_object_retire(obj);
2963
2964         if (i915_is_ggtt(vma->vm)) {
2965                 i915_gem_object_finish_gtt(obj);
2966
2967                 /* release the fence reg _after_ flushing */
2968                 ret = i915_gem_object_put_fence(obj);
2969                 if (ret)
2970                         return ret;
2971         }
2972
2973         trace_i915_vma_unbind(vma);
2974
2975         vma->unbind_vma(vma);
2976
2977         list_del_init(&vma->mm_list);
2978         if (i915_is_ggtt(vma->vm))
2979                 obj->map_and_fenceable = false;
2980
2981         drm_mm_remove_node(&vma->node);
2982         i915_gem_vma_destroy(vma);
2983
2984         /* Since the unbound list is global, only move to that list if
2985          * no more VMAs exist. */
2986         if (list_empty(&obj->vma_list)) {
2987                 i915_gem_gtt_finish_object(obj);
2988                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2989         }
2990
2991         /* And finally now the object is completely decoupled from this vma,
2992          * we can drop its hold on the backing storage and allow it to be
2993          * reaped by the shrinker.
2994          */
2995         i915_gem_object_unpin_pages(obj);
2996
2997         return 0;
2998 }
2999
3000 int i915_gpu_idle(struct drm_device *dev)
3001 {
3002         struct drm_i915_private *dev_priv = dev->dev_private;
3003         struct intel_engine_cs *ring;
3004         int ret, i;
3005
3006         /* Flush everything onto the inactive list. */
3007         for_each_ring(ring, dev_priv, i) {
3008                 if (!i915.enable_execlists) {
3009                         ret = i915_switch_context(ring, ring->default_context);
3010                         if (ret)
3011                                 return ret;
3012                 }
3013
3014                 ret = intel_ring_idle(ring);
3015                 if (ret)
3016                         return ret;
3017         }
3018
3019         return 0;
3020 }
3021
3022 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3023                                  struct drm_i915_gem_object *obj)
3024 {
3025         struct drm_i915_private *dev_priv = dev->dev_private;
3026         int fence_reg;
3027         int fence_pitch_shift;
3028
3029         if (INTEL_INFO(dev)->gen >= 6) {
3030                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3031                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3032         } else {
3033                 fence_reg = FENCE_REG_965_0;
3034                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3035         }
3036
3037         fence_reg += reg * 8;
3038
3039         /* To w/a incoherency with non-atomic 64-bit register updates,
3040          * we split the 64-bit update into two 32-bit writes. In order
3041          * for a partial fence not to be evaluated between writes, we
3042          * precede the update with write to turn off the fence register,
3043          * and only enable the fence as the last step.
3044          *
3045          * For extra levels of paranoia, we make sure each step lands
3046          * before applying the next step.
3047          */
3048         I915_WRITE(fence_reg, 0);
3049         POSTING_READ(fence_reg);
3050
3051         if (obj) {
3052                 u32 size = i915_gem_obj_ggtt_size(obj);
3053                 uint64_t val;
3054
3055                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3056                                  0xfffff000) << 32;
3057                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3058                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3059                 if (obj->tiling_mode == I915_TILING_Y)
3060                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3061                 val |= I965_FENCE_REG_VALID;
3062
3063                 I915_WRITE(fence_reg + 4, val >> 32);
3064                 POSTING_READ(fence_reg + 4);
3065
3066                 I915_WRITE(fence_reg + 0, val);
3067                 POSTING_READ(fence_reg);
3068         } else {
3069                 I915_WRITE(fence_reg + 4, 0);
3070                 POSTING_READ(fence_reg + 4);
3071         }
3072 }
3073
3074 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3075                                  struct drm_i915_gem_object *obj)
3076 {
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         u32 val;
3079
3080         if (obj) {
3081                 u32 size = i915_gem_obj_ggtt_size(obj);
3082                 int pitch_val;
3083                 int tile_width;
3084
3085                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3086                      (size & -size) != size ||
3087                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3088                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3089                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3090
3091                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3092                         tile_width = 128;
3093                 else
3094                         tile_width = 512;
3095
3096                 /* Note: pitch better be a power of two tile widths */
3097                 pitch_val = obj->stride / tile_width;
3098                 pitch_val = ffs(pitch_val) - 1;
3099
3100                 val = i915_gem_obj_ggtt_offset(obj);
3101                 if (obj->tiling_mode == I915_TILING_Y)
3102                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3103                 val |= I915_FENCE_SIZE_BITS(size);
3104                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3105                 val |= I830_FENCE_REG_VALID;
3106         } else
3107                 val = 0;
3108
3109         if (reg < 8)
3110                 reg = FENCE_REG_830_0 + reg * 4;
3111         else
3112                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3113
3114         I915_WRITE(reg, val);
3115         POSTING_READ(reg);
3116 }
3117
3118 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3119                                 struct drm_i915_gem_object *obj)
3120 {
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122         uint32_t val;
3123
3124         if (obj) {
3125                 u32 size = i915_gem_obj_ggtt_size(obj);
3126                 uint32_t pitch_val;
3127
3128                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3129                      (size & -size) != size ||
3130                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3131                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3132                      i915_gem_obj_ggtt_offset(obj), size);
3133
3134                 pitch_val = obj->stride / 128;
3135                 pitch_val = ffs(pitch_val) - 1;
3136
3137                 val = i915_gem_obj_ggtt_offset(obj);
3138                 if (obj->tiling_mode == I915_TILING_Y)
3139                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3140                 val |= I830_FENCE_SIZE_BITS(size);
3141                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3142                 val |= I830_FENCE_REG_VALID;
3143         } else
3144                 val = 0;
3145
3146         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3147         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3148 }
3149
3150 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3151 {
3152         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3153 }
3154
3155 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3156                                  struct drm_i915_gem_object *obj)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160         /* Ensure that all CPU reads are completed before installing a fence
3161          * and all writes before removing the fence.
3162          */
3163         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3164                 mb();
3165
3166         WARN(obj && (!obj->stride || !obj->tiling_mode),
3167              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3168              obj->stride, obj->tiling_mode);
3169
3170         switch (INTEL_INFO(dev)->gen) {
3171         case 9:
3172         case 8:
3173         case 7:
3174         case 6:
3175         case 5:
3176         case 4: i965_write_fence_reg(dev, reg, obj); break;
3177         case 3: i915_write_fence_reg(dev, reg, obj); break;
3178         case 2: i830_write_fence_reg(dev, reg, obj); break;
3179         default: BUG();
3180         }
3181
3182         /* And similarly be paranoid that no direct access to this region
3183          * is reordered to before the fence is installed.
3184          */
3185         if (i915_gem_object_needs_mb(obj))
3186                 mb();
3187 }
3188
3189 static inline int fence_number(struct drm_i915_private *dev_priv,
3190                                struct drm_i915_fence_reg *fence)
3191 {
3192         return fence - dev_priv->fence_regs;
3193 }
3194
3195 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3196                                          struct drm_i915_fence_reg *fence,
3197                                          bool enable)
3198 {
3199         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3200         int reg = fence_number(dev_priv, fence);
3201
3202         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3203
3204         if (enable) {
3205                 obj->fence_reg = reg;
3206                 fence->obj = obj;
3207                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3208         } else {
3209                 obj->fence_reg = I915_FENCE_REG_NONE;
3210                 fence->obj = NULL;
3211                 list_del_init(&fence->lru_list);
3212         }
3213         obj->fence_dirty = false;
3214 }
3215
3216 static int
3217 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3218 {
3219         if (obj->last_fenced_seqno) {
3220                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3221                 if (ret)
3222                         return ret;
3223
3224                 obj->last_fenced_seqno = 0;
3225         }
3226
3227         return 0;
3228 }
3229
3230 int
3231 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3232 {
3233         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3234         struct drm_i915_fence_reg *fence;
3235         int ret;
3236
3237         ret = i915_gem_object_wait_fence(obj);
3238         if (ret)
3239                 return ret;
3240
3241         if (obj->fence_reg == I915_FENCE_REG_NONE)
3242                 return 0;
3243
3244         fence = &dev_priv->fence_regs[obj->fence_reg];
3245
3246         if (WARN_ON(fence->pin_count))
3247                 return -EBUSY;
3248
3249         i915_gem_object_fence_lost(obj);
3250         i915_gem_object_update_fence(obj, fence, false);
3251
3252         return 0;
3253 }
3254
3255 static struct drm_i915_fence_reg *
3256 i915_find_fence_reg(struct drm_device *dev)
3257 {
3258         struct drm_i915_private *dev_priv = dev->dev_private;
3259         struct drm_i915_fence_reg *reg, *avail;
3260         int i;
3261
3262         /* First try to find a free reg */
3263         avail = NULL;
3264         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3265                 reg = &dev_priv->fence_regs[i];
3266                 if (!reg->obj)
3267                         return reg;
3268
3269                 if (!reg->pin_count)
3270                         avail = reg;
3271         }
3272
3273         if (avail == NULL)
3274                 goto deadlock;
3275
3276         /* None available, try to steal one or wait for a user to finish */
3277         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3278                 if (reg->pin_count)
3279                         continue;
3280
3281                 return reg;
3282         }
3283
3284 deadlock:
3285         /* Wait for completion of pending flips which consume fences */
3286         if (intel_has_pending_fb_unpin(dev))
3287                 return ERR_PTR(-EAGAIN);
3288
3289         return ERR_PTR(-EDEADLK);
3290 }
3291
3292 /**
3293  * i915_gem_object_get_fence - set up fencing for an object
3294  * @obj: object to map through a fence reg
3295  *
3296  * When mapping objects through the GTT, userspace wants to be able to write
3297  * to them without having to worry about swizzling if the object is tiled.
3298  * This function walks the fence regs looking for a free one for @obj,
3299  * stealing one if it can't find any.
3300  *
3301  * It then sets up the reg based on the object's properties: address, pitch
3302  * and tiling format.
3303  *
3304  * For an untiled surface, this removes any existing fence.
3305  */
3306 int
3307 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3308 {
3309         struct drm_device *dev = obj->base.dev;
3310         struct drm_i915_private *dev_priv = dev->dev_private;
3311         bool enable = obj->tiling_mode != I915_TILING_NONE;
3312         struct drm_i915_fence_reg *reg;
3313         int ret;
3314
3315         /* Have we updated the tiling parameters upon the object and so
3316          * will need to serialise the write to the associated fence register?
3317          */
3318         if (obj->fence_dirty) {
3319                 ret = i915_gem_object_wait_fence(obj);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         /* Just update our place in the LRU if our fence is getting reused. */
3325         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3326                 reg = &dev_priv->fence_regs[obj->fence_reg];
3327                 if (!obj->fence_dirty) {
3328                         list_move_tail(&reg->lru_list,
3329                                        &dev_priv->mm.fence_list);
3330                         return 0;
3331                 }
3332         } else if (enable) {
3333                 if (WARN_ON(!obj->map_and_fenceable))
3334                         return -EINVAL;
3335
3336                 reg = i915_find_fence_reg(dev);
3337                 if (IS_ERR(reg))
3338                         return PTR_ERR(reg);
3339
3340                 if (reg->obj) {
3341                         struct drm_i915_gem_object *old = reg->obj;
3342
3343                         ret = i915_gem_object_wait_fence(old);
3344                         if (ret)
3345                                 return ret;
3346
3347                         i915_gem_object_fence_lost(old);
3348                 }
3349         } else
3350                 return 0;
3351
3352         i915_gem_object_update_fence(obj, reg, enable);
3353
3354         return 0;
3355 }
3356
3357 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3358                                      unsigned long cache_level)
3359 {
3360         struct drm_mm_node *gtt_space = &vma->node;
3361         struct drm_mm_node *other;
3362
3363         /*
3364          * On some machines we have to be careful when putting differing types
3365          * of snoopable memory together to avoid the prefetcher crossing memory
3366          * domains and dying. During vm initialisation, we decide whether or not
3367          * these constraints apply and set the drm_mm.color_adjust
3368          * appropriately.
3369          */
3370         if (vma->vm->mm.color_adjust == NULL)
3371                 return true;
3372
3373         if (!drm_mm_node_allocated(gtt_space))
3374                 return true;
3375
3376         if (list_empty(&gtt_space->node_list))
3377                 return true;
3378
3379         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3380         if (other->allocated && !other->hole_follows && other->color != cache_level)
3381                 return false;
3382
3383         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3384         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3385                 return false;
3386
3387         return true;
3388 }
3389
3390 /**
3391  * Finds free space in the GTT aperture and binds the object there.
3392  */
3393 static struct i915_vma *
3394 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3395                            struct i915_address_space *vm,
3396                            unsigned alignment,
3397                            uint64_t flags)
3398 {
3399         struct drm_device *dev = obj->base.dev;
3400         struct drm_i915_private *dev_priv = dev->dev_private;
3401         u32 size, fence_size, fence_alignment, unfenced_alignment;
3402         unsigned long start =
3403                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3404         unsigned long end =
3405                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3406         struct i915_vma *vma;
3407         int ret;
3408
3409         fence_size = i915_gem_get_gtt_size(dev,
3410                                            obj->base.size,
3411                                            obj->tiling_mode);
3412         fence_alignment = i915_gem_get_gtt_alignment(dev,
3413                                                      obj->base.size,
3414                                                      obj->tiling_mode, true);
3415         unfenced_alignment =
3416                 i915_gem_get_gtt_alignment(dev,
3417                                            obj->base.size,
3418                                            obj->tiling_mode, false);
3419
3420         if (alignment == 0)
3421                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3422                                                 unfenced_alignment;
3423         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3424                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3425                 return ERR_PTR(-EINVAL);
3426         }
3427
3428         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3429
3430         /* If the object is bigger than the entire aperture, reject it early
3431          * before evicting everything in a vain attempt to find space.
3432          */
3433         if (obj->base.size > end) {
3434                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3435                           obj->base.size,
3436                           flags & PIN_MAPPABLE ? "mappable" : "total",
3437                           end);
3438                 return ERR_PTR(-E2BIG);
3439         }
3440
3441         ret = i915_gem_object_get_pages(obj);
3442         if (ret)
3443                 return ERR_PTR(ret);
3444
3445         i915_gem_object_pin_pages(obj);
3446
3447         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3448         if (IS_ERR(vma))
3449                 goto err_unpin;
3450
3451 search_free:
3452         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3453                                                   size, alignment,
3454                                                   obj->cache_level,
3455                                                   start, end,
3456                                                   DRM_MM_SEARCH_DEFAULT,
3457                                                   DRM_MM_CREATE_DEFAULT);
3458         if (ret) {
3459                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3460                                                obj->cache_level,
3461                                                start, end,
3462                                                flags);
3463                 if (ret == 0)
3464                         goto search_free;
3465
3466                 goto err_free_vma;
3467         }
3468         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3469                 ret = -EINVAL;
3470                 goto err_remove_node;
3471         }
3472
3473         ret = i915_gem_gtt_prepare_object(obj);
3474         if (ret)
3475                 goto err_remove_node;
3476
3477         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3478         list_add_tail(&vma->mm_list, &vm->inactive_list);
3479
3480         if (i915_is_ggtt(vm)) {
3481                 bool mappable, fenceable;
3482
3483                 fenceable = (vma->node.size == fence_size &&
3484                              (vma->node.start & (fence_alignment - 1)) == 0);
3485
3486                 mappable = (vma->node.start + obj->base.size <=
3487                             dev_priv->gtt.mappable_end);
3488
3489                 obj->map_and_fenceable = mappable && fenceable;
3490         }
3491
3492         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3493
3494         trace_i915_vma_bind(vma, flags);
3495         vma->bind_vma(vma, obj->cache_level,
3496                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3497
3498         return vma;
3499
3500 err_remove_node:
3501         drm_mm_remove_node(&vma->node);
3502 err_free_vma:
3503         i915_gem_vma_destroy(vma);
3504         vma = ERR_PTR(ret);
3505 err_unpin:
3506         i915_gem_object_unpin_pages(obj);
3507         return vma;
3508 }
3509
3510 bool
3511 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3512                         bool force)
3513 {
3514         /* If we don't have a page list set up, then we're not pinned
3515          * to GPU, and we can ignore the cache flush because it'll happen
3516          * again at bind time.
3517          */
3518         if (obj->pages == NULL)
3519                 return false;
3520
3521         /*
3522          * Stolen memory is always coherent with the GPU as it is explicitly
3523          * marked as wc by the system, or the system is cache-coherent.
3524          */
3525         if (obj->stolen)
3526                 return false;
3527
3528         /* If the GPU is snooping the contents of the CPU cache,
3529          * we do not need to manually clear the CPU cache lines.  However,
3530          * the caches are only snooped when the render cache is
3531          * flushed/invalidated.  As we always have to emit invalidations
3532          * and flushes when moving into and out of the RENDER domain, correct
3533          * snooping behaviour occurs naturally as the result of our domain
3534          * tracking.
3535          */
3536         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3537                 return false;
3538
3539         trace_i915_gem_object_clflush(obj);
3540         drm_clflush_sg(obj->pages);
3541
3542         return true;
3543 }
3544
3545 /** Flushes the GTT write domain for the object if it's dirty. */
3546 static void
3547 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3548 {
3549         uint32_t old_write_domain;
3550
3551         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3552                 return;
3553
3554         /* No actual flushing is required for the GTT write domain.  Writes
3555          * to it immediately go to main memory as far as we know, so there's
3556          * no chipset flush.  It also doesn't land in render cache.
3557          *
3558          * However, we do have to enforce the order so that all writes through
3559          * the GTT land before any writes to the device, such as updates to
3560          * the GATT itself.
3561          */
3562         wmb();
3563
3564         old_write_domain = obj->base.write_domain;
3565         obj->base.write_domain = 0;
3566
3567         intel_fb_obj_flush(obj, false);
3568
3569         trace_i915_gem_object_change_domain(obj,
3570                                             obj->base.read_domains,
3571                                             old_write_domain);
3572 }
3573
3574 /** Flushes the CPU write domain for the object if it's dirty. */
3575 static void
3576 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3577                                        bool force)
3578 {
3579         uint32_t old_write_domain;
3580
3581         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3582                 return;
3583
3584         if (i915_gem_clflush_object(obj, force))
3585                 i915_gem_chipset_flush(obj->base.dev);
3586
3587         old_write_domain = obj->base.write_domain;
3588         obj->base.write_domain = 0;
3589
3590         intel_fb_obj_flush(obj, false);
3591
3592         trace_i915_gem_object_change_domain(obj,
3593                                             obj->base.read_domains,
3594                                             old_write_domain);
3595 }
3596
3597 /**
3598  * Moves a single object to the GTT read, and possibly write domain.
3599  *
3600  * This function returns when the move is complete, including waiting on
3601  * flushes to occur.
3602  */
3603 int
3604 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3605 {
3606         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3607         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3608         uint32_t old_write_domain, old_read_domains;
3609         int ret;
3610
3611         /* Not valid to be called on unbound objects. */
3612         if (vma == NULL)
3613                 return -EINVAL;
3614
3615         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3616                 return 0;
3617
3618         ret = i915_gem_object_wait_rendering(obj, !write);
3619         if (ret)
3620                 return ret;
3621
3622         i915_gem_object_retire(obj);
3623         i915_gem_object_flush_cpu_write_domain(obj, false);
3624
3625         /* Serialise direct access to this object with the barriers for
3626          * coherent writes from the GPU, by effectively invalidating the
3627          * GTT domain upon first access.
3628          */
3629         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3630                 mb();
3631
3632         old_write_domain = obj->base.write_domain;
3633         old_read_domains = obj->base.read_domains;
3634
3635         /* It should now be out of any other write domains, and we can update
3636          * the domain values for our changes.
3637          */
3638         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3639         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3640         if (write) {
3641                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3642                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3643                 obj->dirty = 1;
3644         }
3645
3646         if (write)
3647                 intel_fb_obj_invalidate(obj, NULL);
3648
3649         trace_i915_gem_object_change_domain(obj,
3650                                             old_read_domains,
3651                                             old_write_domain);
3652
3653         /* And bump the LRU for this access */
3654         if (i915_gem_object_is_inactive(obj))
3655                 list_move_tail(&vma->mm_list,
3656                                &dev_priv->gtt.base.inactive_list);
3657
3658         return 0;
3659 }
3660
3661 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3662                                     enum i915_cache_level cache_level)
3663 {
3664         struct drm_device *dev = obj->base.dev;
3665         struct i915_vma *vma, *next;
3666         int ret;
3667
3668         if (obj->cache_level == cache_level)
3669                 return 0;
3670
3671         if (i915_gem_obj_is_pinned(obj)) {
3672                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3673                 return -EBUSY;
3674         }
3675
3676         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3677                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3678                         ret = i915_vma_unbind(vma);
3679                         if (ret)
3680                                 return ret;
3681                 }
3682         }
3683
3684         if (i915_gem_obj_bound_any(obj)) {
3685                 ret = i915_gem_object_finish_gpu(obj);
3686                 if (ret)
3687                         return ret;
3688
3689                 i915_gem_object_finish_gtt(obj);
3690
3691                 /* Before SandyBridge, you could not use tiling or fence
3692                  * registers with snooped memory, so relinquish any fences
3693                  * currently pointing to our region in the aperture.
3694                  */
3695                 if (INTEL_INFO(dev)->gen < 6) {
3696                         ret = i915_gem_object_put_fence(obj);
3697                         if (ret)
3698                                 return ret;
3699                 }
3700
3701                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3702                         if (drm_mm_node_allocated(&vma->node))
3703                                 vma->bind_vma(vma, cache_level,
3704                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3705         }
3706
3707         list_for_each_entry(vma, &obj->vma_list, vma_link)
3708                 vma->node.color = cache_level;
3709         obj->cache_level = cache_level;
3710
3711         if (cpu_write_needs_clflush(obj)) {
3712                 u32 old_read_domains, old_write_domain;
3713
3714                 /* If we're coming from LLC cached, then we haven't
3715                  * actually been tracking whether the data is in the
3716                  * CPU cache or not, since we only allow one bit set
3717                  * in obj->write_domain and have been skipping the clflushes.
3718                  * Just set it to the CPU cache for now.
3719                  */
3720                 i915_gem_object_retire(obj);
3721                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3722
3723                 old_read_domains = obj->base.read_domains;
3724                 old_write_domain = obj->base.write_domain;
3725
3726                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3727                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3728
3729                 trace_i915_gem_object_change_domain(obj,
3730                                                     old_read_domains,
3731                                                     old_write_domain);
3732         }
3733
3734         return 0;
3735 }
3736
3737 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3738                                struct drm_file *file)
3739 {
3740         struct drm_i915_gem_caching *args = data;
3741         struct drm_i915_gem_object *obj;
3742         int ret;
3743
3744         ret = i915_mutex_lock_interruptible(dev);
3745         if (ret)
3746                 return ret;
3747
3748         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3749         if (&obj->base == NULL) {
3750                 ret = -ENOENT;
3751                 goto unlock;
3752         }
3753
3754         switch (obj->cache_level) {
3755         case I915_CACHE_LLC:
3756         case I915_CACHE_L3_LLC:
3757                 args->caching = I915_CACHING_CACHED;
3758                 break;
3759
3760         case I915_CACHE_WT:
3761                 args->caching = I915_CACHING_DISPLAY;
3762                 break;
3763
3764         default:
3765                 args->caching = I915_CACHING_NONE;
3766                 break;
3767         }
3768
3769         drm_gem_object_unreference(&obj->base);
3770 unlock:
3771         mutex_unlock(&dev->struct_mutex);
3772         return ret;
3773 }
3774
3775 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3776                                struct drm_file *file)
3777 {
3778         struct drm_i915_gem_caching *args = data;
3779         struct drm_i915_gem_object *obj;
3780         enum i915_cache_level level;
3781         int ret;
3782
3783         switch (args->caching) {
3784         case I915_CACHING_NONE:
3785                 level = I915_CACHE_NONE;
3786                 break;
3787         case I915_CACHING_CACHED:
3788                 level = I915_CACHE_LLC;
3789                 break;
3790         case I915_CACHING_DISPLAY:
3791                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3792                 break;
3793         default:
3794                 return -EINVAL;
3795         }
3796
3797         ret = i915_mutex_lock_interruptible(dev);
3798         if (ret)
3799                 return ret;
3800
3801         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3802         if (&obj->base == NULL) {
3803                 ret = -ENOENT;
3804                 goto unlock;
3805         }
3806
3807         ret = i915_gem_object_set_cache_level(obj, level);
3808
3809         drm_gem_object_unreference(&obj->base);
3810 unlock:
3811         mutex_unlock(&dev->struct_mutex);
3812         return ret;
3813 }
3814
3815 static bool is_pin_display(struct drm_i915_gem_object *obj)
3816 {
3817         struct i915_vma *vma;
3818
3819         vma = i915_gem_obj_to_ggtt(obj);
3820         if (!vma)
3821                 return false;
3822
3823         /* There are 3 sources that pin objects:
3824          *   1. The display engine (scanouts, sprites, cursors);
3825          *   2. Reservations for execbuffer;
3826          *   3. The user.
3827          *
3828          * We can ignore reservations as we hold the struct_mutex and
3829          * are only called outside of the reservation path.  The user
3830          * can only increment pin_count once, and so if after
3831          * subtracting the potential reference by the user, any pin_count
3832          * remains, it must be due to another use by the display engine.
3833          */
3834         return vma->pin_count - !!obj->user_pin_count;
3835 }
3836
3837 /*
3838  * Prepare buffer for display plane (scanout, cursors, etc).
3839  * Can be called from an uninterruptible phase (modesetting) and allows
3840  * any flushes to be pipelined (for pageflips).
3841  */
3842 int
3843 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3844                                      u32 alignment,
3845                                      struct intel_engine_cs *pipelined)
3846 {
3847         u32 old_read_domains, old_write_domain;
3848         bool was_pin_display;
3849         int ret;
3850
3851         if (pipelined != obj->ring) {
3852                 ret = i915_gem_object_sync(obj, pipelined);
3853                 if (ret)
3854                         return ret;
3855         }
3856
3857         /* Mark the pin_display early so that we account for the
3858          * display coherency whilst setting up the cache domains.
3859          */
3860         was_pin_display = obj->pin_display;
3861         obj->pin_display = true;
3862
3863         /* The display engine is not coherent with the LLC cache on gen6.  As
3864          * a result, we make sure that the pinning that is about to occur is
3865          * done with uncached PTEs. This is lowest common denominator for all
3866          * chipsets.
3867          *
3868          * However for gen6+, we could do better by using the GFDT bit instead
3869          * of uncaching, which would allow us to flush all the LLC-cached data
3870          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3871          */
3872         ret = i915_gem_object_set_cache_level(obj,
3873                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3874         if (ret)
3875                 goto err_unpin_display;
3876
3877         /* As the user may map the buffer once pinned in the display plane
3878          * (e.g. libkms for the bootup splash), we have to ensure that we
3879          * always use map_and_fenceable for all scanout buffers.
3880          */
3881         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3882         if (ret)
3883                 goto err_unpin_display;
3884
3885         i915_gem_object_flush_cpu_write_domain(obj, true);
3886
3887         old_write_domain = obj->base.write_domain;
3888         old_read_domains = obj->base.read_domains;
3889
3890         /* It should now be out of any other write domains, and we can update
3891          * the domain values for our changes.
3892          */
3893         obj->base.write_domain = 0;
3894         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3895
3896         trace_i915_gem_object_change_domain(obj,
3897                                             old_read_domains,
3898                                             old_write_domain);
3899
3900         return 0;
3901
3902 err_unpin_display:
3903         WARN_ON(was_pin_display != is_pin_display(obj));
3904         obj->pin_display = was_pin_display;
3905         return ret;
3906 }
3907
3908 void
3909 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3910 {
3911         i915_gem_object_ggtt_unpin(obj);
3912         obj->pin_display = is_pin_display(obj);
3913 }
3914
3915 int
3916 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3917 {
3918         int ret;
3919
3920         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3921                 return 0;
3922
3923         ret = i915_gem_object_wait_rendering(obj, false);
3924         if (ret)
3925                 return ret;
3926
3927         /* Ensure that we invalidate the GPU's caches and TLBs. */
3928         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3929         return 0;
3930 }
3931
3932 /**
3933  * Moves a single object to the CPU read, and possibly write domain.
3934  *
3935  * This function returns when the move is complete, including waiting on
3936  * flushes to occur.
3937  */
3938 int
3939 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3940 {
3941         uint32_t old_write_domain, old_read_domains;
3942         int ret;
3943
3944         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3945                 return 0;
3946
3947         ret = i915_gem_object_wait_rendering(obj, !write);
3948         if (ret)
3949                 return ret;
3950
3951         i915_gem_object_retire(obj);
3952         i915_gem_object_flush_gtt_write_domain(obj);
3953
3954         old_write_domain = obj->base.write_domain;
3955         old_read_domains = obj->base.read_domains;
3956
3957         /* Flush the CPU cache if it's still invalid. */
3958         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3959                 i915_gem_clflush_object(obj, false);
3960
3961                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3962         }
3963
3964         /* It should now be out of any other write domains, and we can update
3965          * the domain values for our changes.
3966          */
3967         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3968
3969         /* If we're writing through the CPU, then the GPU read domains will
3970          * need to be invalidated at next use.
3971          */
3972         if (write) {
3973                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3974                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3975         }
3976
3977         if (write)
3978                 intel_fb_obj_invalidate(obj, NULL);
3979
3980         trace_i915_gem_object_change_domain(obj,
3981                                             old_read_domains,
3982                                             old_write_domain);
3983
3984         return 0;
3985 }
3986
3987 /* Throttle our rendering by waiting until the ring has completed our requests
3988  * emitted over 20 msec ago.
3989  *
3990  * Note that if we were to use the current jiffies each time around the loop,
3991  * we wouldn't escape the function with any frames outstanding if the time to
3992  * render a frame was over 20ms.
3993  *
3994  * This should get us reasonable parallelism between CPU and GPU but also
3995  * relatively low latency when blocking on a particular request to finish.
3996  */
3997 static int
3998 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3999 {
4000         struct drm_i915_private *dev_priv = dev->dev_private;
4001         struct drm_i915_file_private *file_priv = file->driver_priv;
4002         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4003         struct drm_i915_gem_request *request;
4004         struct intel_engine_cs *ring = NULL;
4005         unsigned reset_counter;
4006         u32 seqno = 0;
4007         int ret;
4008
4009         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4010         if (ret)
4011                 return ret;
4012
4013         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4014         if (ret)
4015                 return ret;
4016
4017         spin_lock(&file_priv->mm.lock);
4018         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4019                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4020                         break;
4021
4022                 ring = request->ring;
4023                 seqno = request->seqno;
4024         }
4025         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4026         spin_unlock(&file_priv->mm.lock);
4027
4028         if (seqno == 0)
4029                 return 0;
4030
4031         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4032         if (ret == 0)
4033                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4034
4035         return ret;
4036 }
4037
4038 static bool
4039 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4040 {
4041         struct drm_i915_gem_object *obj = vma->obj;
4042
4043         if (alignment &&
4044             vma->node.start & (alignment - 1))
4045                 return true;
4046
4047         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4048                 return true;
4049
4050         if (flags & PIN_OFFSET_BIAS &&
4051             vma->node.start < (flags & PIN_OFFSET_MASK))
4052                 return true;
4053
4054         return false;
4055 }
4056
4057 int
4058 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4059                     struct i915_address_space *vm,
4060                     uint32_t alignment,
4061                     uint64_t flags)
4062 {
4063         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4064         struct i915_vma *vma;
4065         int ret;
4066
4067         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4068                 return -ENODEV;
4069
4070         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4071                 return -EINVAL;
4072
4073         vma = i915_gem_obj_to_vma(obj, vm);
4074         if (vma) {
4075                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4076                         return -EBUSY;
4077
4078                 if (i915_vma_misplaced(vma, alignment, flags)) {
4079                         WARN(vma->pin_count,
4080                              "bo is already pinned with incorrect alignment:"
4081                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4082                              " obj->map_and_fenceable=%d\n",
4083                              i915_gem_obj_offset(obj, vm), alignment,
4084                              !!(flags & PIN_MAPPABLE),
4085                              obj->map_and_fenceable);
4086                         ret = i915_vma_unbind(vma);
4087                         if (ret)
4088                                 return ret;
4089
4090                         vma = NULL;
4091                 }
4092         }
4093
4094         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4095                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4096                 if (IS_ERR(vma))
4097                         return PTR_ERR(vma);
4098         }
4099
4100         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4101                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4102
4103         vma->pin_count++;
4104         if (flags & PIN_MAPPABLE)
4105                 obj->pin_mappable |= true;
4106
4107         return 0;
4108 }
4109
4110 void
4111 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4112 {
4113         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4114
4115         BUG_ON(!vma);
4116         BUG_ON(vma->pin_count == 0);
4117         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4118
4119         if (--vma->pin_count == 0)
4120                 obj->pin_mappable = false;
4121 }
4122
4123 bool
4124 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4125 {
4126         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4127                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4128                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4129
4130                 WARN_ON(!ggtt_vma ||
4131                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4132                         ggtt_vma->pin_count);
4133                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4134                 return true;
4135         } else
4136                 return false;
4137 }
4138
4139 void
4140 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4141 {
4142         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4143                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4144                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4145                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4146         }
4147 }
4148
4149 int
4150 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4151                    struct drm_file *file)
4152 {
4153         struct drm_i915_gem_pin *args = data;
4154         struct drm_i915_gem_object *obj;
4155         int ret;
4156
4157         if (INTEL_INFO(dev)->gen >= 6)
4158                 return -ENODEV;
4159
4160         ret = i915_mutex_lock_interruptible(dev);
4161         if (ret)
4162                 return ret;
4163
4164         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4165         if (&obj->base == NULL) {
4166                 ret = -ENOENT;
4167                 goto unlock;
4168         }
4169
4170         if (obj->madv != I915_MADV_WILLNEED) {
4171                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4172                 ret = -EFAULT;
4173                 goto out;
4174         }
4175
4176         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4177                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4178                           args->handle);
4179                 ret = -EINVAL;
4180                 goto out;
4181         }
4182
4183         if (obj->user_pin_count == ULONG_MAX) {
4184                 ret = -EBUSY;
4185                 goto out;
4186         }
4187
4188         if (obj->user_pin_count == 0) {
4189                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4190                 if (ret)
4191                         goto out;
4192         }
4193
4194         obj->user_pin_count++;
4195         obj->pin_filp = file;
4196
4197         args->offset = i915_gem_obj_ggtt_offset(obj);
4198 out:
4199         drm_gem_object_unreference(&obj->base);
4200 unlock:
4201         mutex_unlock(&dev->struct_mutex);
4202         return ret;
4203 }
4204
4205 int
4206 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4207                      struct drm_file *file)
4208 {
4209         struct drm_i915_gem_pin *args = data;
4210         struct drm_i915_gem_object *obj;
4211         int ret;
4212
4213         ret = i915_mutex_lock_interruptible(dev);
4214         if (ret)
4215                 return ret;
4216
4217         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4218         if (&obj->base == NULL) {
4219                 ret = -ENOENT;
4220                 goto unlock;
4221         }
4222
4223         if (obj->pin_filp != file) {
4224                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4225                           args->handle);
4226                 ret = -EINVAL;
4227                 goto out;
4228         }
4229         obj->user_pin_count--;
4230         if (obj->user_pin_count == 0) {
4231                 obj->pin_filp = NULL;
4232                 i915_gem_object_ggtt_unpin(obj);
4233         }
4234
4235 out:
4236         drm_gem_object_unreference(&obj->base);
4237 unlock:
4238         mutex_unlock(&dev->struct_mutex);
4239         return ret;
4240 }
4241
4242 int
4243 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4244                     struct drm_file *file)
4245 {
4246         struct drm_i915_gem_busy *args = data;
4247         struct drm_i915_gem_object *obj;
4248         int ret;
4249
4250         ret = i915_mutex_lock_interruptible(dev);
4251         if (ret)
4252                 return ret;
4253
4254         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4255         if (&obj->base == NULL) {
4256                 ret = -ENOENT;
4257                 goto unlock;
4258         }
4259
4260         /* Count all active objects as busy, even if they are currently not used
4261          * by the gpu. Users of this interface expect objects to eventually
4262          * become non-busy without any further actions, therefore emit any
4263          * necessary flushes here.
4264          */
4265         ret = i915_gem_object_flush_active(obj);
4266
4267         args->busy = obj->active;
4268         if (obj->ring) {
4269                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4270                 args->busy |= intel_ring_flag(obj->ring) << 16;
4271         }
4272
4273         drm_gem_object_unreference(&obj->base);
4274 unlock:
4275         mutex_unlock(&dev->struct_mutex);
4276         return ret;
4277 }
4278
4279 int
4280 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4281                         struct drm_file *file_priv)
4282 {
4283         return i915_gem_ring_throttle(dev, file_priv);
4284 }
4285
4286 int
4287 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4288                        struct drm_file *file_priv)
4289 {
4290         struct drm_i915_gem_madvise *args = data;
4291         struct drm_i915_gem_object *obj;
4292         int ret;
4293
4294         switch (args->madv) {
4295         case I915_MADV_DONTNEED:
4296         case I915_MADV_WILLNEED:
4297             break;
4298         default:
4299             return -EINVAL;
4300         }
4301
4302         ret = i915_mutex_lock_interruptible(dev);
4303         if (ret)
4304                 return ret;
4305
4306         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4307         if (&obj->base == NULL) {
4308                 ret = -ENOENT;
4309                 goto unlock;
4310         }
4311
4312         if (i915_gem_obj_is_pinned(obj)) {
4313                 ret = -EINVAL;
4314                 goto out;
4315         }
4316
4317         if (obj->madv != __I915_MADV_PURGED)
4318                 obj->madv = args->madv;
4319
4320         /* if the object is no longer attached, discard its backing storage */
4321         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4322                 i915_gem_object_truncate(obj);
4323
4324         args->retained = obj->madv != __I915_MADV_PURGED;
4325
4326 out:
4327         drm_gem_object_unreference(&obj->base);
4328 unlock:
4329         mutex_unlock(&dev->struct_mutex);
4330         return ret;
4331 }
4332
4333 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4334                           const struct drm_i915_gem_object_ops *ops)
4335 {
4336         INIT_LIST_HEAD(&obj->global_list);
4337         INIT_LIST_HEAD(&obj->ring_list);
4338         INIT_LIST_HEAD(&obj->obj_exec_link);
4339         INIT_LIST_HEAD(&obj->vma_list);
4340
4341         obj->ops = ops;
4342
4343         obj->fence_reg = I915_FENCE_REG_NONE;
4344         obj->madv = I915_MADV_WILLNEED;
4345
4346         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4347 }
4348
4349 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4350         .get_pages = i915_gem_object_get_pages_gtt,
4351         .put_pages = i915_gem_object_put_pages_gtt,
4352 };
4353
4354 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4355                                                   size_t size)
4356 {
4357         struct drm_i915_gem_object *obj;
4358         struct address_space *mapping;
4359         gfp_t mask;
4360
4361         obj = i915_gem_object_alloc(dev);
4362         if (obj == NULL)
4363                 return NULL;
4364
4365         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4366                 i915_gem_object_free(obj);
4367                 return NULL;
4368         }
4369
4370         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4371         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4372                 /* 965gm cannot relocate objects above 4GiB. */
4373                 mask &= ~__GFP_HIGHMEM;
4374                 mask |= __GFP_DMA32;
4375         }
4376
4377         mapping = file_inode(obj->base.filp)->i_mapping;
4378         mapping_set_gfp_mask(mapping, mask);
4379
4380         i915_gem_object_init(obj, &i915_gem_object_ops);
4381
4382         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4383         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4384
4385         if (HAS_LLC(dev)) {
4386                 /* On some devices, we can have the GPU use the LLC (the CPU
4387                  * cache) for about a 10% performance improvement
4388                  * compared to uncached.  Graphics requests other than
4389                  * display scanout are coherent with the CPU in
4390                  * accessing this cache.  This means in this mode we
4391                  * don't need to clflush on the CPU side, and on the
4392                  * GPU side we only need to flush internal caches to
4393                  * get data visible to the CPU.
4394                  *
4395                  * However, we maintain the display planes as UC, and so
4396                  * need to rebind when first used as such.
4397                  */
4398                 obj->cache_level = I915_CACHE_LLC;
4399         } else
4400                 obj->cache_level = I915_CACHE_NONE;
4401
4402         trace_i915_gem_object_create(obj);
4403
4404         return obj;
4405 }
4406
4407 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4408 {
4409         /* If we are the last user of the backing storage (be it shmemfs
4410          * pages or stolen etc), we know that the pages are going to be
4411          * immediately released. In this case, we can then skip copying
4412          * back the contents from the GPU.
4413          */
4414
4415         if (obj->madv != I915_MADV_WILLNEED)
4416                 return false;
4417
4418         if (obj->base.filp == NULL)
4419                 return true;
4420
4421         /* At first glance, this looks racy, but then again so would be
4422          * userspace racing mmap against close. However, the first external
4423          * reference to the filp can only be obtained through the
4424          * i915_gem_mmap_ioctl() which safeguards us against the user
4425          * acquiring such a reference whilst we are in the middle of
4426          * freeing the object.
4427          */
4428         return atomic_long_read(&obj->base.filp->f_count) == 1;
4429 }
4430
4431 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4432 {
4433         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4434         struct drm_device *dev = obj->base.dev;
4435         struct drm_i915_private *dev_priv = dev->dev_private;
4436         struct i915_vma *vma, *next;
4437
4438         intel_runtime_pm_get(dev_priv);
4439
4440         trace_i915_gem_object_destroy(obj);
4441
4442         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4443                 int ret;
4444
4445                 vma->pin_count = 0;
4446                 ret = i915_vma_unbind(vma);
4447                 if (WARN_ON(ret == -ERESTARTSYS)) {
4448                         bool was_interruptible;
4449
4450                         was_interruptible = dev_priv->mm.interruptible;
4451                         dev_priv->mm.interruptible = false;
4452
4453                         WARN_ON(i915_vma_unbind(vma));
4454
4455                         dev_priv->mm.interruptible = was_interruptible;
4456                 }
4457         }
4458
4459         i915_gem_object_detach_phys(obj);
4460
4461         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4462          * before progressing. */
4463         if (obj->stolen)
4464                 i915_gem_object_unpin_pages(obj);
4465
4466         WARN_ON(obj->frontbuffer_bits);
4467
4468         if (WARN_ON(obj->pages_pin_count))
4469                 obj->pages_pin_count = 0;
4470         if (discard_backing_storage(obj))
4471                 obj->madv = I915_MADV_DONTNEED;
4472         i915_gem_object_put_pages(obj);
4473         i915_gem_object_free_mmap_offset(obj);
4474
4475         BUG_ON(obj->pages);
4476
4477         if (obj->base.import_attach)
4478                 drm_prime_gem_destroy(&obj->base, NULL);
4479
4480         if (obj->ops->release)
4481                 obj->ops->release(obj);
4482
4483         drm_gem_object_release(&obj->base);
4484         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4485
4486         kfree(obj->bit_17);
4487         i915_gem_object_free(obj);
4488
4489         intel_runtime_pm_put(dev_priv);
4490 }
4491
4492 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4493                                      struct i915_address_space *vm)
4494 {
4495         struct i915_vma *vma;
4496         list_for_each_entry(vma, &obj->vma_list, vma_link)
4497                 if (vma->vm == vm)
4498                         return vma;
4499
4500         return NULL;
4501 }
4502
4503 void i915_gem_vma_destroy(struct i915_vma *vma)
4504 {
4505         struct i915_address_space *vm = NULL;
4506         WARN_ON(vma->node.allocated);
4507
4508         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4509         if (!list_empty(&vma->exec_list))
4510                 return;
4511
4512         vm = vma->vm;
4513
4514         if (!i915_is_ggtt(vm))
4515                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4516
4517         list_del(&vma->vma_link);
4518
4519         kfree(vma);
4520 }
4521
4522 static void
4523 i915_gem_stop_ringbuffers(struct drm_device *dev)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526         struct intel_engine_cs *ring;
4527         int i;
4528
4529         for_each_ring(ring, dev_priv, i)
4530                 dev_priv->gt.stop_ring(ring);
4531 }
4532
4533 int
4534 i915_gem_suspend(struct drm_device *dev)
4535 {
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         int ret = 0;
4538
4539         mutex_lock(&dev->struct_mutex);
4540         if (dev_priv->ums.mm_suspended)
4541                 goto err;
4542
4543         ret = i915_gpu_idle(dev);
4544         if (ret)
4545                 goto err;
4546
4547         i915_gem_retire_requests(dev);
4548
4549         /* Under UMS, be paranoid and evict. */
4550         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4551                 i915_gem_evict_everything(dev);
4552
4553         i915_kernel_lost_context(dev);
4554         i915_gem_stop_ringbuffers(dev);
4555
4556         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4557          * We need to replace this with a semaphore, or something.
4558          * And not confound ums.mm_suspended!
4559          */
4560         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4561                                                              DRIVER_MODESET);
4562         mutex_unlock(&dev->struct_mutex);
4563
4564         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4565         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4566         flush_delayed_work(&dev_priv->mm.idle_work);
4567
4568         return 0;
4569
4570 err:
4571         mutex_unlock(&dev->struct_mutex);
4572         return ret;
4573 }
4574
4575 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4576 {
4577         struct drm_device *dev = ring->dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4580         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4581         int i, ret;
4582
4583         if (!HAS_L3_DPF(dev) || !remap_info)
4584                 return 0;
4585
4586         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4587         if (ret)
4588                 return ret;
4589
4590         /*
4591          * Note: We do not worry about the concurrent register cacheline hang
4592          * here because no other code should access these registers other than
4593          * at initialization time.
4594          */
4595         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4596                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4597                 intel_ring_emit(ring, reg_base + i);
4598                 intel_ring_emit(ring, remap_info[i/4]);
4599         }
4600
4601         intel_ring_advance(ring);
4602
4603         return ret;
4604 }
4605
4606 void i915_gem_init_swizzling(struct drm_device *dev)
4607 {
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610         if (INTEL_INFO(dev)->gen < 5 ||
4611             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4612                 return;
4613
4614         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4615                                  DISP_TILE_SURFACE_SWIZZLING);
4616
4617         if (IS_GEN5(dev))
4618                 return;
4619
4620         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621         if (IS_GEN6(dev))
4622                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623         else if (IS_GEN7(dev))
4624                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625         else if (IS_GEN8(dev))
4626                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627         else
4628                 BUG();
4629 }
4630
4631 static bool
4632 intel_enable_blt(struct drm_device *dev)
4633 {
4634         if (!HAS_BLT(dev))
4635                 return false;
4636
4637         /* The blitter was dysfunctional on early prototypes */
4638         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4639                 DRM_INFO("BLT not supported on this pre-production hardware;"
4640                          " graphics performance will be degraded.\n");
4641                 return false;
4642         }
4643
4644         return true;
4645 }
4646
4647 static void init_unused_ring(struct drm_device *dev, u32 base)
4648 {
4649         struct drm_i915_private *dev_priv = dev->dev_private;
4650
4651         I915_WRITE(RING_CTL(base), 0);
4652         I915_WRITE(RING_HEAD(base), 0);
4653         I915_WRITE(RING_TAIL(base), 0);
4654         I915_WRITE(RING_START(base), 0);
4655 }
4656
4657 static void init_unused_rings(struct drm_device *dev)
4658 {
4659         if (IS_I830(dev)) {
4660                 init_unused_ring(dev, PRB1_BASE);
4661                 init_unused_ring(dev, SRB0_BASE);
4662                 init_unused_ring(dev, SRB1_BASE);
4663                 init_unused_ring(dev, SRB2_BASE);
4664                 init_unused_ring(dev, SRB3_BASE);
4665         } else if (IS_GEN2(dev)) {
4666                 init_unused_ring(dev, SRB0_BASE);
4667                 init_unused_ring(dev, SRB1_BASE);
4668         } else if (IS_GEN3(dev)) {
4669                 init_unused_ring(dev, PRB1_BASE);
4670                 init_unused_ring(dev, PRB2_BASE);
4671         }
4672 }
4673
4674 int i915_gem_init_rings(struct drm_device *dev)
4675 {
4676         struct drm_i915_private *dev_priv = dev->dev_private;
4677         int ret;
4678
4679         /*
4680          * At least 830 can leave some of the unused rings
4681          * "active" (ie. head != tail) after resume which
4682          * will prevent c3 entry. Makes sure all unused rings
4683          * are totally idle.
4684          */
4685         init_unused_rings(dev);
4686
4687         ret = intel_init_render_ring_buffer(dev);
4688         if (ret)
4689                 return ret;
4690
4691         if (HAS_BSD(dev)) {
4692                 ret = intel_init_bsd_ring_buffer(dev);
4693                 if (ret)
4694                         goto cleanup_render_ring;
4695         }
4696
4697         if (intel_enable_blt(dev)) {
4698                 ret = intel_init_blt_ring_buffer(dev);
4699                 if (ret)
4700                         goto cleanup_bsd_ring;
4701         }
4702
4703         if (HAS_VEBOX(dev)) {
4704                 ret = intel_init_vebox_ring_buffer(dev);
4705                 if (ret)
4706                         goto cleanup_blt_ring;
4707         }
4708
4709         if (HAS_BSD2(dev)) {
4710                 ret = intel_init_bsd2_ring_buffer(dev);
4711                 if (ret)
4712                         goto cleanup_vebox_ring;
4713         }
4714
4715         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4716         if (ret)
4717                 goto cleanup_bsd2_ring;
4718
4719         return 0;
4720
4721 cleanup_bsd2_ring:
4722         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4723 cleanup_vebox_ring:
4724         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4725 cleanup_blt_ring:
4726         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4727 cleanup_bsd_ring:
4728         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4729 cleanup_render_ring:
4730         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4731
4732         return ret;
4733 }
4734
4735 int
4736 i915_gem_init_hw(struct drm_device *dev)
4737 {
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         int ret, i;
4740
4741         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4742                 return -EIO;
4743
4744         if (dev_priv->ellc_size)
4745                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4746
4747         if (IS_HASWELL(dev))
4748                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4749                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4750
4751         if (HAS_PCH_NOP(dev)) {
4752                 if (IS_IVYBRIDGE(dev)) {
4753                         u32 temp = I915_READ(GEN7_MSG_CTL);
4754                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4755                         I915_WRITE(GEN7_MSG_CTL, temp);
4756                 } else if (INTEL_INFO(dev)->gen >= 7) {
4757                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4758                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4759                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4760                 }
4761         }
4762
4763         i915_gem_init_swizzling(dev);
4764
4765         ret = dev_priv->gt.init_rings(dev);
4766         if (ret)
4767                 return ret;
4768
4769         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4770                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4771
4772         /*
4773          * XXX: Contexts should only be initialized once. Doing a switch to the
4774          * default context switch however is something we'd like to do after
4775          * reset or thaw (the latter may not actually be necessary for HW, but
4776          * goes with our code better). Context switching requires rings (for
4777          * the do_switch), but before enabling PPGTT. So don't move this.
4778          */
4779         ret = i915_gem_context_enable(dev_priv);
4780         if (ret && ret != -EIO) {
4781                 DRM_ERROR("Context enable failed %d\n", ret);
4782                 i915_gem_cleanup_ringbuffer(dev);
4783
4784                 return ret;
4785         }
4786
4787         ret = i915_ppgtt_init_hw(dev);
4788         if (ret && ret != -EIO) {
4789                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4790                 i915_gem_cleanup_ringbuffer(dev);
4791         }
4792
4793         return ret;
4794 }
4795
4796 int i915_gem_init(struct drm_device *dev)
4797 {
4798         struct drm_i915_private *dev_priv = dev->dev_private;
4799         int ret;
4800
4801         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4802                         i915.enable_execlists);
4803
4804         mutex_lock(&dev->struct_mutex);
4805
4806         if (IS_VALLEYVIEW(dev)) {
4807                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4808                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4809                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4810                               VLV_GTLC_ALLOWWAKEACK), 10))
4811                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4812         }
4813
4814         if (!i915.enable_execlists) {
4815                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4816                 dev_priv->gt.init_rings = i915_gem_init_rings;
4817                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4818                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4819         } else {
4820                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4821                 dev_priv->gt.init_rings = intel_logical_rings_init;
4822                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4823                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4824         }
4825
4826         ret = i915_gem_init_userptr(dev);
4827         if (ret) {
4828                 mutex_unlock(&dev->struct_mutex);
4829                 return ret;
4830         }
4831
4832         i915_gem_init_global_gtt(dev);
4833
4834         ret = i915_gem_context_init(dev);
4835         if (ret) {
4836                 mutex_unlock(&dev->struct_mutex);
4837                 return ret;
4838         }
4839
4840         ret = i915_gem_init_hw(dev);
4841         if (ret == -EIO) {
4842                 /* Allow ring initialisation to fail by marking the GPU as
4843                  * wedged. But we only want to do this where the GPU is angry,
4844                  * for all other failure, such as an allocation failure, bail.
4845                  */
4846                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4847                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4848                 ret = 0;
4849         }
4850         mutex_unlock(&dev->struct_mutex);
4851
4852         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4853         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4854                 dev_priv->dri1.allow_batchbuffer = 1;
4855         return ret;
4856 }
4857
4858 void
4859 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4860 {
4861         struct drm_i915_private *dev_priv = dev->dev_private;
4862         struct intel_engine_cs *ring;
4863         int i;
4864
4865         for_each_ring(ring, dev_priv, i)
4866                 dev_priv->gt.cleanup_ring(ring);
4867 }
4868
4869 int
4870 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4871                        struct drm_file *file_priv)
4872 {
4873         struct drm_i915_private *dev_priv = dev->dev_private;
4874         int ret;
4875
4876         if (drm_core_check_feature(dev, DRIVER_MODESET))
4877                 return 0;
4878
4879         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4880                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4881                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4882         }
4883
4884         mutex_lock(&dev->struct_mutex);
4885         dev_priv->ums.mm_suspended = 0;
4886
4887         ret = i915_gem_init_hw(dev);
4888         if (ret != 0) {
4889                 mutex_unlock(&dev->struct_mutex);
4890                 return ret;
4891         }
4892
4893         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4894
4895         ret = drm_irq_install(dev, dev->pdev->irq);
4896         if (ret)
4897                 goto cleanup_ringbuffer;
4898         mutex_unlock(&dev->struct_mutex);
4899
4900         return 0;
4901
4902 cleanup_ringbuffer:
4903         i915_gem_cleanup_ringbuffer(dev);
4904         dev_priv->ums.mm_suspended = 1;
4905         mutex_unlock(&dev->struct_mutex);
4906
4907         return ret;
4908 }
4909
4910 int
4911 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4912                        struct drm_file *file_priv)
4913 {
4914         if (drm_core_check_feature(dev, DRIVER_MODESET))
4915                 return 0;
4916
4917         mutex_lock(&dev->struct_mutex);
4918         drm_irq_uninstall(dev);
4919         mutex_unlock(&dev->struct_mutex);
4920
4921         return i915_gem_suspend(dev);
4922 }
4923
4924 void
4925 i915_gem_lastclose(struct drm_device *dev)
4926 {
4927         int ret;
4928
4929         if (drm_core_check_feature(dev, DRIVER_MODESET))
4930                 return;
4931
4932         ret = i915_gem_suspend(dev);
4933         if (ret)
4934                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4935 }
4936
4937 static void
4938 init_ring_lists(struct intel_engine_cs *ring)
4939 {
4940         INIT_LIST_HEAD(&ring->active_list);
4941         INIT_LIST_HEAD(&ring->request_list);
4942 }
4943
4944 void i915_init_vm(struct drm_i915_private *dev_priv,
4945                   struct i915_address_space *vm)
4946 {
4947         if (!i915_is_ggtt(vm))
4948                 drm_mm_init(&vm->mm, vm->start, vm->total);
4949         vm->dev = dev_priv->dev;
4950         INIT_LIST_HEAD(&vm->active_list);
4951         INIT_LIST_HEAD(&vm->inactive_list);
4952         INIT_LIST_HEAD(&vm->global_link);
4953         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4954 }
4955
4956 void
4957 i915_gem_load(struct drm_device *dev)
4958 {
4959         struct drm_i915_private *dev_priv = dev->dev_private;
4960         int i;
4961
4962         dev_priv->slab =
4963                 kmem_cache_create("i915_gem_object",
4964                                   sizeof(struct drm_i915_gem_object), 0,
4965                                   SLAB_HWCACHE_ALIGN,
4966                                   NULL);
4967
4968         INIT_LIST_HEAD(&dev_priv->vm_list);
4969         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4970
4971         INIT_LIST_HEAD(&dev_priv->context_list);
4972         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4973         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4974         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4975         for (i = 0; i < I915_NUM_RINGS; i++)
4976                 init_ring_lists(&dev_priv->ring[i]);
4977         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4978                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4979         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4980                           i915_gem_retire_work_handler);
4981         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4982                           i915_gem_idle_work_handler);
4983         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4984
4985         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4986         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4987                 I915_WRITE(MI_ARB_STATE,
4988                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4989         }
4990
4991         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4992
4993         /* Old X drivers will take 0-2 for front, back, depth buffers */
4994         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4995                 dev_priv->fence_reg_start = 3;
4996
4997         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4998                 dev_priv->num_fence_regs = 32;
4999         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5000                 dev_priv->num_fence_regs = 16;
5001         else
5002                 dev_priv->num_fence_regs = 8;
5003
5004         /* Initialize fence registers to zero */
5005         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5006         i915_gem_restore_fences(dev);
5007
5008         i915_gem_detect_bit_6_swizzle(dev);
5009         init_waitqueue_head(&dev_priv->pending_flip_queue);
5010
5011         dev_priv->mm.interruptible = true;
5012
5013         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5014         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5015         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5016         register_shrinker(&dev_priv->mm.shrinker);
5017
5018         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5019         register_oom_notifier(&dev_priv->mm.oom_notifier);
5020
5021         mutex_init(&dev_priv->fb_tracking.lock);
5022 }
5023
5024 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5025 {
5026         struct drm_i915_file_private *file_priv = file->driver_priv;
5027
5028         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
5030         /* Clean up our request list when the client is going away, so that
5031          * later retire_requests won't dereference our soon-to-be-gone
5032          * file_priv.
5033          */
5034         spin_lock(&file_priv->mm.lock);
5035         while (!list_empty(&file_priv->mm.request_list)) {
5036                 struct drm_i915_gem_request *request;
5037
5038                 request = list_first_entry(&file_priv->mm.request_list,
5039                                            struct drm_i915_gem_request,
5040                                            client_list);
5041                 list_del(&request->client_list);
5042                 request->file_priv = NULL;
5043         }
5044         spin_unlock(&file_priv->mm.lock);
5045 }
5046
5047 static void
5048 i915_gem_file_idle_work_handler(struct work_struct *work)
5049 {
5050         struct drm_i915_file_private *file_priv =
5051                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053         atomic_set(&file_priv->rps_wait_boost, false);
5054 }
5055
5056 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057 {
5058         struct drm_i915_file_private *file_priv;
5059         int ret;
5060
5061         DRM_DEBUG_DRIVER("\n");
5062
5063         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064         if (!file_priv)
5065                 return -ENOMEM;
5066
5067         file->driver_priv = file_priv;
5068         file_priv->dev_priv = dev->dev_private;
5069         file_priv->file = file;
5070
5071         spin_lock_init(&file_priv->mm.lock);
5072         INIT_LIST_HEAD(&file_priv->mm.request_list);
5073         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074                           i915_gem_file_idle_work_handler);
5075
5076         ret = i915_gem_context_open(dev, file);
5077         if (ret)
5078                 kfree(file_priv);
5079
5080         return ret;
5081 }
5082
5083 /**
5084  * i915_gem_track_fb - update frontbuffer tracking
5085  * old: current GEM buffer for the frontbuffer slots
5086  * new: new GEM buffer for the frontbuffer slots
5087  * frontbuffer_bits: bitmask of frontbuffer slots
5088  *
5089  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090  * from @old and setting them in @new. Both @old and @new can be NULL.
5091  */
5092 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093                        struct drm_i915_gem_object *new,
5094                        unsigned frontbuffer_bits)
5095 {
5096         if (old) {
5097                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099                 old->frontbuffer_bits &= ~frontbuffer_bits;
5100         }
5101
5102         if (new) {
5103                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105                 new->frontbuffer_bits |= frontbuffer_bits;
5106         }
5107 }
5108
5109 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110 {
5111         if (!mutex_is_locked(mutex))
5112                 return false;
5113
5114 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5115         return mutex->owner == task;
5116 #else
5117         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118         return false;
5119 #endif
5120 }
5121
5122 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123 {
5124         if (!mutex_trylock(&dev->struct_mutex)) {
5125                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126                         return false;
5127
5128                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129                         return false;
5130
5131                 *unlock = false;
5132         } else
5133                 *unlock = true;
5134
5135         return true;
5136 }
5137
5138 static int num_vma_bound(struct drm_i915_gem_object *obj)
5139 {
5140         struct i915_vma *vma;
5141         int count = 0;
5142
5143         list_for_each_entry(vma, &obj->vma_list, vma_link)
5144                 if (drm_mm_node_allocated(&vma->node))
5145                         count++;
5146
5147         return count;
5148 }
5149
5150 static unsigned long
5151 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5152 {
5153         struct drm_i915_private *dev_priv =
5154                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5155         struct drm_device *dev = dev_priv->dev;
5156         struct drm_i915_gem_object *obj;
5157         unsigned long count;
5158         bool unlock;
5159
5160         if (!i915_gem_shrinker_lock(dev, &unlock))
5161                 return 0;
5162
5163         count = 0;
5164         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5165                 if (obj->pages_pin_count == 0)
5166                         count += obj->base.size >> PAGE_SHIFT;
5167
5168         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5169                 if (!i915_gem_obj_is_pinned(obj) &&
5170                     obj->pages_pin_count == num_vma_bound(obj))
5171                         count += obj->base.size >> PAGE_SHIFT;
5172         }
5173
5174         if (unlock)
5175                 mutex_unlock(&dev->struct_mutex);
5176
5177         return count;
5178 }
5179
5180 /* All the new VM stuff */
5181 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5182                                   struct i915_address_space *vm)
5183 {
5184         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5185         struct i915_vma *vma;
5186
5187         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5188
5189         list_for_each_entry(vma, &o->vma_list, vma_link) {
5190                 if (vma->vm == vm)
5191                         return vma->node.start;
5192
5193         }
5194         WARN(1, "%s vma for this object not found.\n",
5195              i915_is_ggtt(vm) ? "global" : "ppgtt");
5196         return -1;
5197 }
5198
5199 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5200                         struct i915_address_space *vm)
5201 {
5202         struct i915_vma *vma;
5203
5204         list_for_each_entry(vma, &o->vma_list, vma_link)
5205                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5206                         return true;
5207
5208         return false;
5209 }
5210
5211 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5212 {
5213         struct i915_vma *vma;
5214
5215         list_for_each_entry(vma, &o->vma_list, vma_link)
5216                 if (drm_mm_node_allocated(&vma->node))
5217                         return true;
5218
5219         return false;
5220 }
5221
5222 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5223                                 struct i915_address_space *vm)
5224 {
5225         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5226         struct i915_vma *vma;
5227
5228         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5229
5230         BUG_ON(list_empty(&o->vma_list));
5231
5232         list_for_each_entry(vma, &o->vma_list, vma_link)
5233                 if (vma->vm == vm)
5234                         return vma->node.size;
5235
5236         return 0;
5237 }
5238
5239 static unsigned long
5240 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5241 {
5242         struct drm_i915_private *dev_priv =
5243                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5244         struct drm_device *dev = dev_priv->dev;
5245         unsigned long freed;
5246         bool unlock;
5247
5248         if (!i915_gem_shrinker_lock(dev, &unlock))
5249                 return SHRINK_STOP;
5250
5251         freed = i915_gem_shrink(dev_priv,
5252                                 sc->nr_to_scan,
5253                                 I915_SHRINK_BOUND |
5254                                 I915_SHRINK_UNBOUND |
5255                                 I915_SHRINK_PURGEABLE);
5256         if (freed < sc->nr_to_scan)
5257                 freed += i915_gem_shrink(dev_priv,
5258                                          sc->nr_to_scan - freed,
5259                                          I915_SHRINK_BOUND |
5260                                          I915_SHRINK_UNBOUND);
5261         if (unlock)
5262                 mutex_unlock(&dev->struct_mutex);
5263
5264         return freed;
5265 }
5266
5267 static int
5268 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5269 {
5270         struct drm_i915_private *dev_priv =
5271                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5272         struct drm_device *dev = dev_priv->dev;
5273         struct drm_i915_gem_object *obj;
5274         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5275         unsigned long pinned, bound, unbound, freed_pages;
5276         bool was_interruptible;
5277         bool unlock;
5278
5279         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5280                 schedule_timeout_killable(1);
5281                 if (fatal_signal_pending(current))
5282                         return NOTIFY_DONE;
5283         }
5284         if (timeout == 0) {
5285                 pr_err("Unable to purge GPU memory due lock contention.\n");
5286                 return NOTIFY_DONE;
5287         }
5288
5289         was_interruptible = dev_priv->mm.interruptible;
5290         dev_priv->mm.interruptible = false;
5291
5292         freed_pages = i915_gem_shrink_all(dev_priv);
5293
5294         dev_priv->mm.interruptible = was_interruptible;
5295
5296         /* Because we may be allocating inside our own driver, we cannot
5297          * assert that there are no objects with pinned pages that are not
5298          * being pointed to by hardware.
5299          */
5300         unbound = bound = pinned = 0;
5301         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5302                 if (!obj->base.filp) /* not backed by a freeable object */
5303                         continue;
5304
5305                 if (obj->pages_pin_count)
5306                         pinned += obj->base.size;
5307                 else
5308                         unbound += obj->base.size;
5309         }
5310         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5311                 if (!obj->base.filp)
5312                         continue;
5313
5314                 if (obj->pages_pin_count)
5315                         pinned += obj->base.size;
5316                 else
5317                         bound += obj->base.size;
5318         }
5319
5320         if (unlock)
5321                 mutex_unlock(&dev->struct_mutex);
5322
5323         if (freed_pages || unbound || bound)
5324                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5325                         freed_pages << PAGE_SHIFT, pinned);
5326         if (unbound || bound)
5327                 pr_err("%lu and %lu bytes still available in the "
5328                        "bound and unbound GPU page lists.\n",
5329                        bound, unbound);
5330
5331         *(unsigned long *)ptr += freed_pages;
5332         return NOTIFY_DONE;
5333 }
5334
5335 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5336 {
5337         struct i915_vma *vma;
5338
5339         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5340         if (vma->vm != i915_obj_to_ggtt(obj))
5341                 return NULL;
5342
5343         return vma;
5344 }