e3ce4bef22a3665d77bd1c5888a5e4bb442f07a2
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 bool dumb,
405                 uint32_t *handle_p)
406 {
407         struct drm_i915_gem_object *obj;
408         int ret;
409         u32 handle;
410
411         size = roundup(size, PAGE_SIZE);
412         if (size == 0)
413                 return -EINVAL;
414
415         /* Allocate the new object */
416         obj = i915_gem_alloc_object(dev, size);
417         if (obj == NULL)
418                 return -ENOMEM;
419
420         obj->base.dumb = dumb;
421         ret = drm_gem_handle_create(file, &obj->base, &handle);
422         /* drop reference from allocate - handle holds it now */
423         drm_gem_object_unreference_unlocked(&obj->base);
424         if (ret)
425                 return ret;
426
427         *handle_p = handle;
428         return 0;
429 }
430
431 int
432 i915_gem_dumb_create(struct drm_file *file,
433                      struct drm_device *dev,
434                      struct drm_mode_create_dumb *args)
435 {
436         /* have to work out size/pitch and return them */
437         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438         args->size = args->pitch * args->height;
439         return i915_gem_create(file, dev,
440                                args->size, true, &args->handle);
441 }
442
443 /**
444  * Creates a new mm object and returns a handle to it.
445  */
446 int
447 i915_gem_create_ioctl(struct drm_device *dev, void *data,
448                       struct drm_file *file)
449 {
450         struct drm_i915_gem_create *args = data;
451
452         return i915_gem_create(file, dev,
453                                args->size, false, &args->handle);
454 }
455
456 static inline int
457 __copy_to_user_swizzled(char __user *cpu_vaddr,
458                         const char *gpu_vaddr, int gpu_offset,
459                         int length)
460 {
461         int ret, cpu_offset = 0;
462
463         while (length > 0) {
464                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465                 int this_length = min(cacheline_end - gpu_offset, length);
466                 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469                                      gpu_vaddr + swizzled_gpu_offset,
470                                      this_length);
471                 if (ret)
472                         return ret + length;
473
474                 cpu_offset += this_length;
475                 gpu_offset += this_length;
476                 length -= this_length;
477         }
478
479         return 0;
480 }
481
482 static inline int
483 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484                           const char __user *cpu_vaddr,
485                           int length)
486 {
487         int ret, cpu_offset = 0;
488
489         while (length > 0) {
490                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491                 int this_length = min(cacheline_end - gpu_offset, length);
492                 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495                                        cpu_vaddr + cpu_offset,
496                                        this_length);
497                 if (ret)
498                         return ret + length;
499
500                 cpu_offset += this_length;
501                 gpu_offset += this_length;
502                 length -= this_length;
503         }
504
505         return 0;
506 }
507
508 /*
509  * Pins the specified object's pages and synchronizes the object with
510  * GPU accesses. Sets needs_clflush to non-zero if the caller should
511  * flush the object from the CPU cache.
512  */
513 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514                                     int *needs_clflush)
515 {
516         int ret;
517
518         *needs_clflush = 0;
519
520         if (!obj->base.filp)
521                 return -EINVAL;
522
523         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524                 /* If we're not in the cpu read domain, set ourself into the gtt
525                  * read domain and manually flush cachelines (if required). This
526                  * optimizes for the case when the gpu will dirty the data
527                  * anyway again before the next pread happens. */
528                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529                                                         obj->cache_level);
530                 ret = i915_gem_object_wait_rendering(obj, true);
531                 if (ret)
532                         return ret;
533
534                 i915_gem_object_retire(obj);
535         }
536
537         ret = i915_gem_object_get_pages(obj);
538         if (ret)
539                 return ret;
540
541         i915_gem_object_pin_pages(obj);
542
543         return ret;
544 }
545
546 /* Per-page copy function for the shmem pread fastpath.
547  * Flushes invalid cachelines before reading the target if
548  * needs_clflush is set. */
549 static int
550 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551                  char __user *user_data,
552                  bool page_do_bit17_swizzling, bool needs_clflush)
553 {
554         char *vaddr;
555         int ret;
556
557         if (unlikely(page_do_bit17_swizzling))
558                 return -EINVAL;
559
560         vaddr = kmap_atomic(page);
561         if (needs_clflush)
562                 drm_clflush_virt_range(vaddr + shmem_page_offset,
563                                        page_length);
564         ret = __copy_to_user_inatomic(user_data,
565                                       vaddr + shmem_page_offset,
566                                       page_length);
567         kunmap_atomic(vaddr);
568
569         return ret ? -EFAULT : 0;
570 }
571
572 static void
573 shmem_clflush_swizzled_range(char *addr, unsigned long length,
574                              bool swizzled)
575 {
576         if (unlikely(swizzled)) {
577                 unsigned long start = (unsigned long) addr;
578                 unsigned long end = (unsigned long) addr + length;
579
580                 /* For swizzling simply ensure that we always flush both
581                  * channels. Lame, but simple and it works. Swizzled
582                  * pwrite/pread is far from a hotpath - current userspace
583                  * doesn't use it at all. */
584                 start = round_down(start, 128);
585                 end = round_up(end, 128);
586
587                 drm_clflush_virt_range((void *)start, end - start);
588         } else {
589                 drm_clflush_virt_range(addr, length);
590         }
591
592 }
593
594 /* Only difference to the fast-path function is that this can handle bit17
595  * and uses non-atomic copy and kmap functions. */
596 static int
597 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598                  char __user *user_data,
599                  bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601         char *vaddr;
602         int ret;
603
604         vaddr = kmap(page);
605         if (needs_clflush)
606                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607                                              page_length,
608                                              page_do_bit17_swizzling);
609
610         if (page_do_bit17_swizzling)
611                 ret = __copy_to_user_swizzled(user_data,
612                                               vaddr, shmem_page_offset,
613                                               page_length);
614         else
615                 ret = __copy_to_user(user_data,
616                                      vaddr + shmem_page_offset,
617                                      page_length);
618         kunmap(page);
619
620         return ret ? - EFAULT : 0;
621 }
622
623 static int
624 i915_gem_shmem_pread(struct drm_device *dev,
625                      struct drm_i915_gem_object *obj,
626                      struct drm_i915_gem_pread *args,
627                      struct drm_file *file)
628 {
629         char __user *user_data;
630         ssize_t remain;
631         loff_t offset;
632         int shmem_page_offset, page_length, ret = 0;
633         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634         int prefaulted = 0;
635         int needs_clflush = 0;
636         struct sg_page_iter sg_iter;
637
638         user_data = to_user_ptr(args->data_ptr);
639         remain = args->size;
640
641         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642
643         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644         if (ret)
645                 return ret;
646
647         offset = args->offset;
648
649         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650                          offset >> PAGE_SHIFT) {
651                 struct page *page = sg_page_iter_page(&sg_iter);
652
653                 if (remain <= 0)
654                         break;
655
656                 /* Operation in this page
657                  *
658                  * shmem_page_offset = offset within page in shmem file
659                  * page_length = bytes to copy for this page
660                  */
661                 shmem_page_offset = offset_in_page(offset);
662                 page_length = remain;
663                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664                         page_length = PAGE_SIZE - shmem_page_offset;
665
666                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667                         (page_to_phys(page) & (1 << 17)) != 0;
668
669                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670                                        user_data, page_do_bit17_swizzling,
671                                        needs_clflush);
672                 if (ret == 0)
673                         goto next_page;
674
675                 mutex_unlock(&dev->struct_mutex);
676
677                 if (likely(!i915.prefault_disable) && !prefaulted) {
678                         ret = fault_in_multipages_writeable(user_data, remain);
679                         /* Userspace is tricking us, but we've already clobbered
680                          * its pages with the prefault and promised to write the
681                          * data up to the first fault. Hence ignore any errors
682                          * and just continue. */
683                         (void)ret;
684                         prefaulted = 1;
685                 }
686
687                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688                                        user_data, page_do_bit17_swizzling,
689                                        needs_clflush);
690
691                 mutex_lock(&dev->struct_mutex);
692
693                 if (ret)
694                         goto out;
695
696 next_page:
697                 remain -= page_length;
698                 user_data += page_length;
699                 offset += page_length;
700         }
701
702 out:
703         i915_gem_object_unpin_pages(obj);
704
705         return ret;
706 }
707
708 /**
709  * Reads data from the object referenced by handle.
710  *
711  * On error, the contents of *data are undefined.
712  */
713 int
714 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715                      struct drm_file *file)
716 {
717         struct drm_i915_gem_pread *args = data;
718         struct drm_i915_gem_object *obj;
719         int ret = 0;
720
721         if (args->size == 0)
722                 return 0;
723
724         if (!access_ok(VERIFY_WRITE,
725                        to_user_ptr(args->data_ptr),
726                        args->size))
727                 return -EFAULT;
728
729         ret = i915_mutex_lock_interruptible(dev);
730         if (ret)
731                 return ret;
732
733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734         if (&obj->base == NULL) {
735                 ret = -ENOENT;
736                 goto unlock;
737         }
738
739         /* Bounds check source.  */
740         if (args->offset > obj->base.size ||
741             args->size > obj->base.size - args->offset) {
742                 ret = -EINVAL;
743                 goto out;
744         }
745
746         /* prime objects have no backing filp to GEM pread/pwrite
747          * pages from.
748          */
749         if (!obj->base.filp) {
750                 ret = -EINVAL;
751                 goto out;
752         }
753
754         trace_i915_gem_object_pread(obj, args->offset, args->size);
755
756         ret = i915_gem_shmem_pread(dev, obj, args, file);
757
758 out:
759         drm_gem_object_unreference(&obj->base);
760 unlock:
761         mutex_unlock(&dev->struct_mutex);
762         return ret;
763 }
764
765 /* This is the fast write path which cannot handle
766  * page faults in the source data
767  */
768
769 static inline int
770 fast_user_write(struct io_mapping *mapping,
771                 loff_t page_base, int page_offset,
772                 char __user *user_data,
773                 int length)
774 {
775         void __iomem *vaddr_atomic;
776         void *vaddr;
777         unsigned long unwritten;
778
779         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780         /* We can use the cpu mem copy function because this is X86. */
781         vaddr = (void __force*)vaddr_atomic + page_offset;
782         unwritten = __copy_from_user_inatomic_nocache(vaddr,
783                                                       user_data, length);
784         io_mapping_unmap_atomic(vaddr_atomic);
785         return unwritten;
786 }
787
788 /**
789  * This is the fast pwrite path, where we copy the data directly from the
790  * user into the GTT, uncached.
791  */
792 static int
793 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794                          struct drm_i915_gem_object *obj,
795                          struct drm_i915_gem_pwrite *args,
796                          struct drm_file *file)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         ssize_t remain;
800         loff_t offset, page_base;
801         char __user *user_data;
802         int page_offset, page_length, ret;
803
804         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
805         if (ret)
806                 goto out;
807
808         ret = i915_gem_object_set_to_gtt_domain(obj, true);
809         if (ret)
810                 goto out_unpin;
811
812         ret = i915_gem_object_put_fence(obj);
813         if (ret)
814                 goto out_unpin;
815
816         user_data = to_user_ptr(args->data_ptr);
817         remain = args->size;
818
819         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820
821         while (remain > 0) {
822                 /* Operation in this page
823                  *
824                  * page_base = page offset within aperture
825                  * page_offset = offset within page
826                  * page_length = bytes to copy for this page
827                  */
828                 page_base = offset & PAGE_MASK;
829                 page_offset = offset_in_page(offset);
830                 page_length = remain;
831                 if ((page_offset + remain) > PAGE_SIZE)
832                         page_length = PAGE_SIZE - page_offset;
833
834                 /* If we get a fault while copying data, then (presumably) our
835                  * source page isn't available.  Return the error and we'll
836                  * retry in the slow path.
837                  */
838                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839                                     page_offset, user_data, page_length)) {
840                         ret = -EFAULT;
841                         goto out_unpin;
842                 }
843
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out_unpin:
850         i915_gem_object_ggtt_unpin(obj);
851 out:
852         return ret;
853 }
854
855 /* Per-page copy function for the shmem pwrite fastpath.
856  * Flushes invalid cachelines before writing to the target if
857  * needs_clflush_before is set and flushes out any written cachelines after
858  * writing if needs_clflush is set. */
859 static int
860 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861                   char __user *user_data,
862                   bool page_do_bit17_swizzling,
863                   bool needs_clflush_before,
864                   bool needs_clflush_after)
865 {
866         char *vaddr;
867         int ret;
868
869         if (unlikely(page_do_bit17_swizzling))
870                 return -EINVAL;
871
872         vaddr = kmap_atomic(page);
873         if (needs_clflush_before)
874                 drm_clflush_virt_range(vaddr + shmem_page_offset,
875                                        page_length);
876         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877                                         user_data, page_length);
878         if (needs_clflush_after)
879                 drm_clflush_virt_range(vaddr + shmem_page_offset,
880                                        page_length);
881         kunmap_atomic(vaddr);
882
883         return ret ? -EFAULT : 0;
884 }
885
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890                   char __user *user_data,
891                   bool page_do_bit17_swizzling,
892                   bool needs_clflush_before,
893                   bool needs_clflush_after)
894 {
895         char *vaddr;
896         int ret;
897
898         vaddr = kmap(page);
899         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901                                              page_length,
902                                              page_do_bit17_swizzling);
903         if (page_do_bit17_swizzling)
904                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905                                                 user_data,
906                                                 page_length);
907         else
908                 ret = __copy_from_user(vaddr + shmem_page_offset,
909                                        user_data,
910                                        page_length);
911         if (needs_clflush_after)
912                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913                                              page_length,
914                                              page_do_bit17_swizzling);
915         kunmap(page);
916
917         return ret ? -EFAULT : 0;
918 }
919
920 static int
921 i915_gem_shmem_pwrite(struct drm_device *dev,
922                       struct drm_i915_gem_object *obj,
923                       struct drm_i915_gem_pwrite *args,
924                       struct drm_file *file)
925 {
926         ssize_t remain;
927         loff_t offset;
928         char __user *user_data;
929         int shmem_page_offset, page_length, ret = 0;
930         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931         int hit_slowpath = 0;
932         int needs_clflush_after = 0;
933         int needs_clflush_before = 0;
934         struct sg_page_iter sg_iter;
935
936         user_data = to_user_ptr(args->data_ptr);
937         remain = args->size;
938
939         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940
941         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942                 /* If we're not in the cpu write domain, set ourself into the gtt
943                  * write domain and manually flush cachelines (if required). This
944                  * optimizes for the case when the gpu will use the data
945                  * right away and we therefore have to clflush anyway. */
946                 needs_clflush_after = cpu_write_needs_clflush(obj);
947                 ret = i915_gem_object_wait_rendering(obj, false);
948                 if (ret)
949                         return ret;
950
951                 i915_gem_object_retire(obj);
952         }
953         /* Same trick applies to invalidate partially written cachelines read
954          * before writing. */
955         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956                 needs_clflush_before =
957                         !cpu_cache_is_coherent(dev, obj->cache_level);
958
959         ret = i915_gem_object_get_pages(obj);
960         if (ret)
961                 return ret;
962
963         i915_gem_object_pin_pages(obj);
964
965         offset = args->offset;
966         obj->dirty = 1;
967
968         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969                          offset >> PAGE_SHIFT) {
970                 struct page *page = sg_page_iter_page(&sg_iter);
971                 int partial_cacheline_write;
972
973                 if (remain <= 0)
974                         break;
975
976                 /* Operation in this page
977                  *
978                  * shmem_page_offset = offset within page in shmem file
979                  * page_length = bytes to copy for this page
980                  */
981                 shmem_page_offset = offset_in_page(offset);
982
983                 page_length = remain;
984                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985                         page_length = PAGE_SIZE - shmem_page_offset;
986
987                 /* If we don't overwrite a cacheline completely we need to be
988                  * careful to have up-to-date data by first clflushing. Don't
989                  * overcomplicate things and flush the entire patch. */
990                 partial_cacheline_write = needs_clflush_before &&
991                         ((shmem_page_offset | page_length)
992                                 & (boot_cpu_data.x86_clflush_size - 1));
993
994                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995                         (page_to_phys(page) & (1 << 17)) != 0;
996
997                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998                                         user_data, page_do_bit17_swizzling,
999                                         partial_cacheline_write,
1000                                         needs_clflush_after);
1001                 if (ret == 0)
1002                         goto next_page;
1003
1004                 hit_slowpath = 1;
1005                 mutex_unlock(&dev->struct_mutex);
1006                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007                                         user_data, page_do_bit17_swizzling,
1008                                         partial_cacheline_write,
1009                                         needs_clflush_after);
1010
1011                 mutex_lock(&dev->struct_mutex);
1012
1013                 if (ret)
1014                         goto out;
1015
1016 next_page:
1017                 remain -= page_length;
1018                 user_data += page_length;
1019                 offset += page_length;
1020         }
1021
1022 out:
1023         i915_gem_object_unpin_pages(obj);
1024
1025         if (hit_slowpath) {
1026                 /*
1027                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1028                  * cachelines in-line while writing and the object moved
1029                  * out of the cpu write domain while we've dropped the lock.
1030                  */
1031                 if (!needs_clflush_after &&
1032                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033                         if (i915_gem_clflush_object(obj, obj->pin_display))
1034                                 i915_gem_chipset_flush(dev);
1035                 }
1036         }
1037
1038         if (needs_clflush_after)
1039                 i915_gem_chipset_flush(dev);
1040
1041         return ret;
1042 }
1043
1044 /**
1045  * Writes data to the object referenced by handle.
1046  *
1047  * On error, the contents of the buffer that were to be modified are undefined.
1048  */
1049 int
1050 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file)
1052 {
1053         struct drm_i915_gem_pwrite *args = data;
1054         struct drm_i915_gem_object *obj;
1055         int ret;
1056
1057         if (args->size == 0)
1058                 return 0;
1059
1060         if (!access_ok(VERIFY_READ,
1061                        to_user_ptr(args->data_ptr),
1062                        args->size))
1063                 return -EFAULT;
1064
1065         if (likely(!i915.prefault_disable)) {
1066                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067                                                    args->size);
1068                 if (ret)
1069                         return -EFAULT;
1070         }
1071
1072         ret = i915_mutex_lock_interruptible(dev);
1073         if (ret)
1074                 return ret;
1075
1076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077         if (&obj->base == NULL) {
1078                 ret = -ENOENT;
1079                 goto unlock;
1080         }
1081
1082         /* Bounds check destination. */
1083         if (args->offset > obj->base.size ||
1084             args->size > obj->base.size - args->offset) {
1085                 ret = -EINVAL;
1086                 goto out;
1087         }
1088
1089         /* prime objects have no backing filp to GEM pread/pwrite
1090          * pages from.
1091          */
1092         if (!obj->base.filp) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
1099         ret = -EFAULT;
1100         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101          * it would end up going through the fenced access, and we'll get
1102          * different detiling behavior between reading and writing.
1103          * pread/pwrite currently are reading and writing from the CPU
1104          * perspective, requiring manual detiling by the client.
1105          */
1106         if (obj->tiling_mode == I915_TILING_NONE &&
1107             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108             cpu_write_needs_clflush(obj)) {
1109                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1110                 /* Note that the gtt paths might fail with non-page-backed user
1111                  * pointers (e.g. gtt mappings when moving data between
1112                  * textures). Fallback to the shmem path in that case. */
1113         }
1114
1115         if (ret == -EFAULT || ret == -ENOSPC) {
1116                 if (obj->phys_handle)
1117                         ret = i915_gem_phys_pwrite(obj, args, file);
1118                 else
1119                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120         }
1121
1122 out:
1123         drm_gem_object_unreference(&obj->base);
1124 unlock:
1125         mutex_unlock(&dev->struct_mutex);
1126         return ret;
1127 }
1128
1129 int
1130 i915_gem_check_wedge(struct i915_gpu_error *error,
1131                      bool interruptible)
1132 {
1133         if (i915_reset_in_progress(error)) {
1134                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135                  * -EIO unconditionally for these. */
1136                 if (!interruptible)
1137                         return -EIO;
1138
1139                 /* Recovery complete, but the reset failed ... */
1140                 if (i915_terminally_wedged(error))
1141                         return -EIO;
1142
1143                 /*
1144                  * Check if GPU Reset is in progress - we need intel_ring_begin
1145                  * to work properly to reinit the hw state while the gpu is
1146                  * still marked as reset-in-progress. Handle this with a flag.
1147                  */
1148                 if (!error->reload_in_reset)
1149                         return -EAGAIN;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Compare arbitrary request against outstanding lazy request. Emit on match.
1157  */
1158 int
1159 i915_gem_check_olr(struct drm_i915_gem_request *req)
1160 {
1161         int ret;
1162
1163         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1164
1165         ret = 0;
1166         if (req == req->ring->outstanding_lazy_request)
1167                 ret = i915_add_request(req->ring);
1168
1169         return ret;
1170 }
1171
1172 static void fake_irq(unsigned long data)
1173 {
1174         wake_up_process((struct task_struct *)data);
1175 }
1176
1177 static bool missed_irq(struct drm_i915_private *dev_priv,
1178                        struct intel_engine_cs *ring)
1179 {
1180         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1181 }
1182
1183 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1184 {
1185         if (file_priv == NULL)
1186                 return true;
1187
1188         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1189 }
1190
1191 /**
1192  * __i915_wait_request - wait until execution of request has finished
1193  * @req: duh!
1194  * @reset_counter: reset sequence associated with the given request
1195  * @interruptible: do an interruptible wait (normally yes)
1196  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197  *
1198  * Note: It is of utmost importance that the passed in seqno and reset_counter
1199  * values have been read by the caller in an smp safe manner. Where read-side
1200  * locks are involved, it is sufficient to read the reset_counter before
1201  * unlocking the lock that protects the seqno. For lockless tricks, the
1202  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203  * inserted.
1204  *
1205  * Returns 0 if the request was found within the alloted time. Else returns the
1206  * errno with remaining time filled in timeout argument.
1207  */
1208 int __i915_wait_request(struct drm_i915_gem_request *req,
1209                         unsigned reset_counter,
1210                         bool interruptible,
1211                         s64 *timeout,
1212                         struct drm_i915_file_private *file_priv)
1213 {
1214         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1215         struct drm_device *dev = ring->dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         const bool irq_test_in_progress =
1218                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1219         DEFINE_WAIT(wait);
1220         unsigned long timeout_expire;
1221         s64 before, now;
1222         int ret;
1223
1224         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1225
1226         if (i915_gem_request_completed(req, true))
1227                 return 0;
1228
1229         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1230
1231         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1232                 gen6_rps_boost(dev_priv);
1233                 if (file_priv)
1234                         mod_delayed_work(dev_priv->wq,
1235                                          &file_priv->mm.idle_work,
1236                                          msecs_to_jiffies(100));
1237         }
1238
1239         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1240                 return -ENODEV;
1241
1242         /* Record current time in case interrupted by signal, or wedged */
1243         trace_i915_gem_request_wait_begin(req);
1244         before = ktime_get_raw_ns();
1245         for (;;) {
1246                 struct timer_list timer;
1247
1248                 prepare_to_wait(&ring->irq_queue, &wait,
1249                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1250
1251                 /* We need to check whether any gpu reset happened in between
1252                  * the caller grabbing the seqno and now ... */
1253                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1254                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1255                          * is truely gone. */
1256                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1257                         if (ret == 0)
1258                                 ret = -EAGAIN;
1259                         break;
1260                 }
1261
1262                 if (i915_gem_request_completed(req, false)) {
1263                         ret = 0;
1264                         break;
1265                 }
1266
1267                 if (interruptible && signal_pending(current)) {
1268                         ret = -ERESTARTSYS;
1269                         break;
1270                 }
1271
1272                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1273                         ret = -ETIME;
1274                         break;
1275                 }
1276
1277                 timer.function = NULL;
1278                 if (timeout || missed_irq(dev_priv, ring)) {
1279                         unsigned long expire;
1280
1281                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1282                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1283                         mod_timer(&timer, expire);
1284                 }
1285
1286                 io_schedule();
1287
1288                 if (timer.function) {
1289                         del_singleshot_timer_sync(&timer);
1290                         destroy_timer_on_stack(&timer);
1291                 }
1292         }
1293         now = ktime_get_raw_ns();
1294         trace_i915_gem_request_wait_end(req);
1295
1296         if (!irq_test_in_progress)
1297                 ring->irq_put(ring);
1298
1299         finish_wait(&ring->irq_queue, &wait);
1300
1301         if (timeout) {
1302                 s64 tres = *timeout - (now - before);
1303
1304                 *timeout = tres < 0 ? 0 : tres;
1305         }
1306
1307         return ret;
1308 }
1309
1310 /**
1311  * Waits for a request to be signaled, and cleans up the
1312  * request and object lists appropriately for that event.
1313  */
1314 int
1315 i915_wait_request(struct drm_i915_gem_request *req)
1316 {
1317         struct drm_device *dev;
1318         struct drm_i915_private *dev_priv;
1319         bool interruptible;
1320         unsigned reset_counter;
1321         int ret;
1322
1323         BUG_ON(req == NULL);
1324
1325         dev = req->ring->dev;
1326         dev_priv = dev->dev_private;
1327         interruptible = dev_priv->mm.interruptible;
1328
1329         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1330
1331         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1332         if (ret)
1333                 return ret;
1334
1335         ret = i915_gem_check_olr(req);
1336         if (ret)
1337                 return ret;
1338
1339         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1340         i915_gem_request_reference(req);
1341         ret = __i915_wait_request(req, reset_counter,
1342                                   interruptible, NULL, NULL);
1343         i915_gem_request_unreference(req);
1344         return ret;
1345 }
1346
1347 static int
1348 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1349 {
1350         if (!obj->active)
1351                 return 0;
1352
1353         /* Manually manage the write flush as we may have not yet
1354          * retired the buffer.
1355          *
1356          * Note that the last_write_req is always the earlier of
1357          * the two (read/write) requests, so if we haved successfully waited,
1358          * we know we have passed the last write.
1359          */
1360         i915_gem_request_assign(&obj->last_write_req, NULL);
1361
1362         return 0;
1363 }
1364
1365 /**
1366  * Ensures that all rendering to the object has completed and the object is
1367  * safe to unbind from the GTT or access from the CPU.
1368  */
1369 static __must_check int
1370 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1371                                bool readonly)
1372 {
1373         struct drm_i915_gem_request *req;
1374         int ret;
1375
1376         req = readonly ? obj->last_write_req : obj->last_read_req;
1377         if (!req)
1378                 return 0;
1379
1380         ret = i915_wait_request(req);
1381         if (ret)
1382                 return ret;
1383
1384         return i915_gem_object_wait_rendering__tail(obj);
1385 }
1386
1387 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1388  * as the object state may change during this call.
1389  */
1390 static __must_check int
1391 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392                                             struct drm_i915_file_private *file_priv,
1393                                             bool readonly)
1394 {
1395         struct drm_i915_gem_request *req;
1396         struct drm_device *dev = obj->base.dev;
1397         struct drm_i915_private *dev_priv = dev->dev_private;
1398         unsigned reset_counter;
1399         int ret;
1400
1401         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402         BUG_ON(!dev_priv->mm.interruptible);
1403
1404         req = readonly ? obj->last_write_req : obj->last_read_req;
1405         if (!req)
1406                 return 0;
1407
1408         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1409         if (ret)
1410                 return ret;
1411
1412         ret = i915_gem_check_olr(req);
1413         if (ret)
1414                 return ret;
1415
1416         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1417         i915_gem_request_reference(req);
1418         mutex_unlock(&dev->struct_mutex);
1419         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1420         mutex_lock(&dev->struct_mutex);
1421         i915_gem_request_unreference(req);
1422         if (ret)
1423                 return ret;
1424
1425         return i915_gem_object_wait_rendering__tail(obj);
1426 }
1427
1428 /**
1429  * Called when user space prepares to use an object with the CPU, either
1430  * through the mmap ioctl's mapping or a GTT mapping.
1431  */
1432 int
1433 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1434                           struct drm_file *file)
1435 {
1436         struct drm_i915_gem_set_domain *args = data;
1437         struct drm_i915_gem_object *obj;
1438         uint32_t read_domains = args->read_domains;
1439         uint32_t write_domain = args->write_domain;
1440         int ret;
1441
1442         /* Only handle setting domains to types used by the CPU. */
1443         if (write_domain & I915_GEM_GPU_DOMAINS)
1444                 return -EINVAL;
1445
1446         if (read_domains & I915_GEM_GPU_DOMAINS)
1447                 return -EINVAL;
1448
1449         /* Having something in the write domain implies it's in the read
1450          * domain, and only that read domain.  Enforce that in the request.
1451          */
1452         if (write_domain != 0 && read_domains != write_domain)
1453                 return -EINVAL;
1454
1455         ret = i915_mutex_lock_interruptible(dev);
1456         if (ret)
1457                 return ret;
1458
1459         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1460         if (&obj->base == NULL) {
1461                 ret = -ENOENT;
1462                 goto unlock;
1463         }
1464
1465         /* Try to flush the object off the GPU without holding the lock.
1466          * We will repeat the flush holding the lock in the normal manner
1467          * to catch cases where we are gazumped.
1468          */
1469         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1470                                                           file->driver_priv,
1471                                                           !write_domain);
1472         if (ret)
1473                 goto unref;
1474
1475         if (read_domains & I915_GEM_DOMAIN_GTT) {
1476                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1477
1478                 /* Silently promote "you're not bound, there was nothing to do"
1479                  * to success, since the client was just asking us to
1480                  * make sure everything was done.
1481                  */
1482                 if (ret == -EINVAL)
1483                         ret = 0;
1484         } else {
1485                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1486         }
1487
1488 unref:
1489         drm_gem_object_unreference(&obj->base);
1490 unlock:
1491         mutex_unlock(&dev->struct_mutex);
1492         return ret;
1493 }
1494
1495 /**
1496  * Called when user space has done writes to this buffer
1497  */
1498 int
1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500                          struct drm_file *file)
1501 {
1502         struct drm_i915_gem_sw_finish *args = data;
1503         struct drm_i915_gem_object *obj;
1504         int ret = 0;
1505
1506         ret = i915_mutex_lock_interruptible(dev);
1507         if (ret)
1508                 return ret;
1509
1510         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511         if (&obj->base == NULL) {
1512                 ret = -ENOENT;
1513                 goto unlock;
1514         }
1515
1516         /* Pinned buffers may be scanout, so flush the cache */
1517         if (obj->pin_display)
1518                 i915_gem_object_flush_cpu_write_domain(obj, true);
1519
1520         drm_gem_object_unreference(&obj->base);
1521 unlock:
1522         mutex_unlock(&dev->struct_mutex);
1523         return ret;
1524 }
1525
1526 /**
1527  * Maps the contents of an object, returning the address it is mapped
1528  * into.
1529  *
1530  * While the mapping holds a reference on the contents of the object, it doesn't
1531  * imply a ref on the object itself.
1532  *
1533  * IMPORTANT:
1534  *
1535  * DRM driver writers who look a this function as an example for how to do GEM
1536  * mmap support, please don't implement mmap support like here. The modern way
1537  * to implement DRM mmap support is with an mmap offset ioctl (like
1538  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539  * That way debug tooling like valgrind will understand what's going on, hiding
1540  * the mmap call in a driver private ioctl will break that. The i915 driver only
1541  * does cpu mmaps this way because we didn't know better.
1542  */
1543 int
1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545                     struct drm_file *file)
1546 {
1547         struct drm_i915_gem_mmap *args = data;
1548         struct drm_gem_object *obj;
1549         unsigned long addr;
1550
1551         obj = drm_gem_object_lookup(dev, file, args->handle);
1552         if (obj == NULL)
1553                 return -ENOENT;
1554
1555         /* prime objects have no backing filp to GEM mmap
1556          * pages from.
1557          */
1558         if (!obj->filp) {
1559                 drm_gem_object_unreference_unlocked(obj);
1560                 return -EINVAL;
1561         }
1562
1563         addr = vm_mmap(obj->filp, 0, args->size,
1564                        PROT_READ | PROT_WRITE, MAP_SHARED,
1565                        args->offset);
1566         drm_gem_object_unreference_unlocked(obj);
1567         if (IS_ERR((void *)addr))
1568                 return addr;
1569
1570         args->addr_ptr = (uint64_t) addr;
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * i915_gem_fault - fault a page into the GTT
1577  * vma: VMA in question
1578  * vmf: fault info
1579  *
1580  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1581  * from userspace.  The fault handler takes care of binding the object to
1582  * the GTT (if needed), allocating and programming a fence register (again,
1583  * only if needed based on whether the old reg is still valid or the object
1584  * is tiled) and inserting a new PTE into the faulting process.
1585  *
1586  * Note that the faulting process may involve evicting existing objects
1587  * from the GTT and/or fence registers to make room.  So performance may
1588  * suffer if the GTT working set is large or there are few fence registers
1589  * left.
1590  */
1591 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592 {
1593         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1594         struct drm_device *dev = obj->base.dev;
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596         pgoff_t page_offset;
1597         unsigned long pfn;
1598         int ret = 0;
1599         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1600
1601         intel_runtime_pm_get(dev_priv);
1602
1603         /* We don't use vmf->pgoff since that has the fake offset */
1604         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1605                 PAGE_SHIFT;
1606
1607         ret = i915_mutex_lock_interruptible(dev);
1608         if (ret)
1609                 goto out;
1610
1611         trace_i915_gem_object_fault(obj, page_offset, true, write);
1612
1613         /* Try to flush the object off the GPU first without holding the lock.
1614          * Upon reacquiring the lock, we will perform our sanity checks and then
1615          * repeat the flush holding the lock in the normal manner to catch cases
1616          * where we are gazumped.
1617          */
1618         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1619         if (ret)
1620                 goto unlock;
1621
1622         /* Access to snoopable pages through the GTT is incoherent. */
1623         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1624                 ret = -EFAULT;
1625                 goto unlock;
1626         }
1627
1628         /* Now bind it into the GTT if needed */
1629         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1630         if (ret)
1631                 goto unlock;
1632
1633         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1634         if (ret)
1635                 goto unpin;
1636
1637         ret = i915_gem_object_get_fence(obj);
1638         if (ret)
1639                 goto unpin;
1640
1641         /* Finally, remap it using the new GTT offset */
1642         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1643         pfn >>= PAGE_SHIFT;
1644
1645         if (!obj->fault_mappable) {
1646                 unsigned long size = min_t(unsigned long,
1647                                            vma->vm_end - vma->vm_start,
1648                                            obj->base.size);
1649                 int i;
1650
1651                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1652                         ret = vm_insert_pfn(vma,
1653                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1654                                             pfn + i);
1655                         if (ret)
1656                                 break;
1657                 }
1658
1659                 obj->fault_mappable = true;
1660         } else
1661                 ret = vm_insert_pfn(vma,
1662                                     (unsigned long)vmf->virtual_address,
1663                                     pfn + page_offset);
1664 unpin:
1665         i915_gem_object_ggtt_unpin(obj);
1666 unlock:
1667         mutex_unlock(&dev->struct_mutex);
1668 out:
1669         switch (ret) {
1670         case -EIO:
1671                 /*
1672                  * We eat errors when the gpu is terminally wedged to avoid
1673                  * userspace unduly crashing (gl has no provisions for mmaps to
1674                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1675                  * and so needs to be reported.
1676                  */
1677                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1678                         ret = VM_FAULT_SIGBUS;
1679                         break;
1680                 }
1681         case -EAGAIN:
1682                 /*
1683                  * EAGAIN means the gpu is hung and we'll wait for the error
1684                  * handler to reset everything when re-faulting in
1685                  * i915_mutex_lock_interruptible.
1686                  */
1687         case 0:
1688         case -ERESTARTSYS:
1689         case -EINTR:
1690         case -EBUSY:
1691                 /*
1692                  * EBUSY is ok: this just means that another thread
1693                  * already did the job.
1694                  */
1695                 ret = VM_FAULT_NOPAGE;
1696                 break;
1697         case -ENOMEM:
1698                 ret = VM_FAULT_OOM;
1699                 break;
1700         case -ENOSPC:
1701         case -EFAULT:
1702                 ret = VM_FAULT_SIGBUS;
1703                 break;
1704         default:
1705                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1706                 ret = VM_FAULT_SIGBUS;
1707                 break;
1708         }
1709
1710         intel_runtime_pm_put(dev_priv);
1711         return ret;
1712 }
1713
1714 /**
1715  * i915_gem_release_mmap - remove physical page mappings
1716  * @obj: obj in question
1717  *
1718  * Preserve the reservation of the mmapping with the DRM core code, but
1719  * relinquish ownership of the pages back to the system.
1720  *
1721  * It is vital that we remove the page mapping if we have mapped a tiled
1722  * object through the GTT and then lose the fence register due to
1723  * resource pressure. Similarly if the object has been moved out of the
1724  * aperture, than pages mapped into userspace must be revoked. Removing the
1725  * mapping will then trigger a page fault on the next user access, allowing
1726  * fixup by i915_gem_fault().
1727  */
1728 void
1729 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1730 {
1731         if (!obj->fault_mappable)
1732                 return;
1733
1734         drm_vma_node_unmap(&obj->base.vma_node,
1735                            obj->base.dev->anon_inode->i_mapping);
1736         obj->fault_mappable = false;
1737 }
1738
1739 void
1740 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1741 {
1742         struct drm_i915_gem_object *obj;
1743
1744         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1745                 i915_gem_release_mmap(obj);
1746 }
1747
1748 uint32_t
1749 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1750 {
1751         uint32_t gtt_size;
1752
1753         if (INTEL_INFO(dev)->gen >= 4 ||
1754             tiling_mode == I915_TILING_NONE)
1755                 return size;
1756
1757         /* Previous chips need a power-of-two fence region when tiling */
1758         if (INTEL_INFO(dev)->gen == 3)
1759                 gtt_size = 1024*1024;
1760         else
1761                 gtt_size = 512*1024;
1762
1763         while (gtt_size < size)
1764                 gtt_size <<= 1;
1765
1766         return gtt_size;
1767 }
1768
1769 /**
1770  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1771  * @obj: object to check
1772  *
1773  * Return the required GTT alignment for an object, taking into account
1774  * potential fence register mapping.
1775  */
1776 uint32_t
1777 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1778                            int tiling_mode, bool fenced)
1779 {
1780         /*
1781          * Minimum alignment is 4k (GTT page size), but might be greater
1782          * if a fence register is needed for the object.
1783          */
1784         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1785             tiling_mode == I915_TILING_NONE)
1786                 return 4096;
1787
1788         /*
1789          * Previous chips need to be aligned to the size of the smallest
1790          * fence register that can contain the object.
1791          */
1792         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1793 }
1794
1795 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1796 {
1797         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1798         int ret;
1799
1800         if (drm_vma_node_has_offset(&obj->base.vma_node))
1801                 return 0;
1802
1803         dev_priv->mm.shrinker_no_lock_stealing = true;
1804
1805         ret = drm_gem_create_mmap_offset(&obj->base);
1806         if (ret != -ENOSPC)
1807                 goto out;
1808
1809         /* Badly fragmented mmap space? The only way we can recover
1810          * space is by destroying unwanted objects. We can't randomly release
1811          * mmap_offsets as userspace expects them to be persistent for the
1812          * lifetime of the objects. The closest we can is to release the
1813          * offsets on purgeable objects by truncating it and marking it purged,
1814          * which prevents userspace from ever using that object again.
1815          */
1816         i915_gem_shrink(dev_priv,
1817                         obj->base.size >> PAGE_SHIFT,
1818                         I915_SHRINK_BOUND |
1819                         I915_SHRINK_UNBOUND |
1820                         I915_SHRINK_PURGEABLE);
1821         ret = drm_gem_create_mmap_offset(&obj->base);
1822         if (ret != -ENOSPC)
1823                 goto out;
1824
1825         i915_gem_shrink_all(dev_priv);
1826         ret = drm_gem_create_mmap_offset(&obj->base);
1827 out:
1828         dev_priv->mm.shrinker_no_lock_stealing = false;
1829
1830         return ret;
1831 }
1832
1833 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1834 {
1835         drm_gem_free_mmap_offset(&obj->base);
1836 }
1837
1838 static int
1839 i915_gem_mmap_gtt(struct drm_file *file,
1840                   struct drm_device *dev,
1841                   uint32_t handle, bool dumb,
1842                   uint64_t *offset)
1843 {
1844         struct drm_i915_private *dev_priv = dev->dev_private;
1845         struct drm_i915_gem_object *obj;
1846         int ret;
1847
1848         ret = i915_mutex_lock_interruptible(dev);
1849         if (ret)
1850                 return ret;
1851
1852         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1853         if (&obj->base == NULL) {
1854                 ret = -ENOENT;
1855                 goto unlock;
1856         }
1857
1858         /*
1859          * We don't allow dumb mmaps on objects created using another
1860          * interface.
1861          */
1862         WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1863                   "Illegal dumb map of accelerated buffer.\n");
1864
1865         if (obj->base.size > dev_priv->gtt.mappable_end) {
1866                 ret = -E2BIG;
1867                 goto out;
1868         }
1869
1870         if (obj->madv != I915_MADV_WILLNEED) {
1871                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1872                 ret = -EFAULT;
1873                 goto out;
1874         }
1875
1876         ret = i915_gem_object_create_mmap_offset(obj);
1877         if (ret)
1878                 goto out;
1879
1880         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1881
1882 out:
1883         drm_gem_object_unreference(&obj->base);
1884 unlock:
1885         mutex_unlock(&dev->struct_mutex);
1886         return ret;
1887 }
1888
1889 int
1890 i915_gem_dumb_map_offset(struct drm_file *file,
1891                          struct drm_device *dev,
1892                          uint32_t handle,
1893                          uint64_t *offset)
1894 {
1895         return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1896 }
1897
1898 /**
1899  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1900  * @dev: DRM device
1901  * @data: GTT mapping ioctl data
1902  * @file: GEM object info
1903  *
1904  * Simply returns the fake offset to userspace so it can mmap it.
1905  * The mmap call will end up in drm_gem_mmap(), which will set things
1906  * up so we can get faults in the handler above.
1907  *
1908  * The fault handler will take care of binding the object into the GTT
1909  * (since it may have been evicted to make room for something), allocating
1910  * a fence register, and mapping the appropriate aperture address into
1911  * userspace.
1912  */
1913 int
1914 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1915                         struct drm_file *file)
1916 {
1917         struct drm_i915_gem_mmap_gtt *args = data;
1918
1919         return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1920 }
1921
1922 static inline int
1923 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1924 {
1925         return obj->madv == I915_MADV_DONTNEED;
1926 }
1927
1928 /* Immediately discard the backing storage */
1929 static void
1930 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1931 {
1932         i915_gem_object_free_mmap_offset(obj);
1933
1934         if (obj->base.filp == NULL)
1935                 return;
1936
1937         /* Our goal here is to return as much of the memory as
1938          * is possible back to the system as we are called from OOM.
1939          * To do this we must instruct the shmfs to drop all of its
1940          * backing pages, *now*.
1941          */
1942         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1943         obj->madv = __I915_MADV_PURGED;
1944 }
1945
1946 /* Try to discard unwanted pages */
1947 static void
1948 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1949 {
1950         struct address_space *mapping;
1951
1952         switch (obj->madv) {
1953         case I915_MADV_DONTNEED:
1954                 i915_gem_object_truncate(obj);
1955         case __I915_MADV_PURGED:
1956                 return;
1957         }
1958
1959         if (obj->base.filp == NULL)
1960                 return;
1961
1962         mapping = file_inode(obj->base.filp)->i_mapping,
1963         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1964 }
1965
1966 static void
1967 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1968 {
1969         struct sg_page_iter sg_iter;
1970         int ret;
1971
1972         BUG_ON(obj->madv == __I915_MADV_PURGED);
1973
1974         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1975         if (ret) {
1976                 /* In the event of a disaster, abandon all caches and
1977                  * hope for the best.
1978                  */
1979                 WARN_ON(ret != -EIO);
1980                 i915_gem_clflush_object(obj, true);
1981                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1982         }
1983
1984         if (i915_gem_object_needs_bit17_swizzle(obj))
1985                 i915_gem_object_save_bit_17_swizzle(obj);
1986
1987         if (obj->madv == I915_MADV_DONTNEED)
1988                 obj->dirty = 0;
1989
1990         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1991                 struct page *page = sg_page_iter_page(&sg_iter);
1992
1993                 if (obj->dirty)
1994                         set_page_dirty(page);
1995
1996                 if (obj->madv == I915_MADV_WILLNEED)
1997                         mark_page_accessed(page);
1998
1999                 page_cache_release(page);
2000         }
2001         obj->dirty = 0;
2002
2003         sg_free_table(obj->pages);
2004         kfree(obj->pages);
2005 }
2006
2007 int
2008 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2009 {
2010         const struct drm_i915_gem_object_ops *ops = obj->ops;
2011
2012         if (obj->pages == NULL)
2013                 return 0;
2014
2015         if (obj->pages_pin_count)
2016                 return -EBUSY;
2017
2018         BUG_ON(i915_gem_obj_bound_any(obj));
2019
2020         /* ->put_pages might need to allocate memory for the bit17 swizzle
2021          * array, hence protect them from being reaped by removing them from gtt
2022          * lists early. */
2023         list_del(&obj->global_list);
2024
2025         ops->put_pages(obj);
2026         obj->pages = NULL;
2027
2028         i915_gem_object_invalidate(obj);
2029
2030         return 0;
2031 }
2032
2033 unsigned long
2034 i915_gem_shrink(struct drm_i915_private *dev_priv,
2035                 long target, unsigned flags)
2036 {
2037         const struct {
2038                 struct list_head *list;
2039                 unsigned int bit;
2040         } phases[] = {
2041                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2042                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2043                 { NULL, 0 },
2044         }, *phase;
2045         unsigned long count = 0;
2046
2047         /*
2048          * As we may completely rewrite the (un)bound list whilst unbinding
2049          * (due to retiring requests) we have to strictly process only
2050          * one element of the list at the time, and recheck the list
2051          * on every iteration.
2052          *
2053          * In particular, we must hold a reference whilst removing the
2054          * object as we may end up waiting for and/or retiring the objects.
2055          * This might release the final reference (held by the active list)
2056          * and result in the object being freed from under us. This is
2057          * similar to the precautions the eviction code must take whilst
2058          * removing objects.
2059          *
2060          * Also note that although these lists do not hold a reference to
2061          * the object we can safely grab one here: The final object
2062          * unreferencing and the bound_list are both protected by the
2063          * dev->struct_mutex and so we won't ever be able to observe an
2064          * object on the bound_list with a reference count equals 0.
2065          */
2066         for (phase = phases; phase->list; phase++) {
2067                 struct list_head still_in_list;
2068
2069                 if ((flags & phase->bit) == 0)
2070                         continue;
2071
2072                 INIT_LIST_HEAD(&still_in_list);
2073                 while (count < target && !list_empty(phase->list)) {
2074                         struct drm_i915_gem_object *obj;
2075                         struct i915_vma *vma, *v;
2076
2077                         obj = list_first_entry(phase->list,
2078                                                typeof(*obj), global_list);
2079                         list_move_tail(&obj->global_list, &still_in_list);
2080
2081                         if (flags & I915_SHRINK_PURGEABLE &&
2082                             !i915_gem_object_is_purgeable(obj))
2083                                 continue;
2084
2085                         drm_gem_object_reference(&obj->base);
2086
2087                         /* For the unbound phase, this should be a no-op! */
2088                         list_for_each_entry_safe(vma, v,
2089                                                  &obj->vma_list, vma_link)
2090                                 if (i915_vma_unbind(vma))
2091                                         break;
2092
2093                         if (i915_gem_object_put_pages(obj) == 0)
2094                                 count += obj->base.size >> PAGE_SHIFT;
2095
2096                         drm_gem_object_unreference(&obj->base);
2097                 }
2098                 list_splice(&still_in_list, phase->list);
2099         }
2100
2101         return count;
2102 }
2103
2104 static unsigned long
2105 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2106 {
2107         i915_gem_evict_everything(dev_priv->dev);
2108         return i915_gem_shrink(dev_priv, LONG_MAX,
2109                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2110 }
2111
2112 static int
2113 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2114 {
2115         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2116         int page_count, i;
2117         struct address_space *mapping;
2118         struct sg_table *st;
2119         struct scatterlist *sg;
2120         struct sg_page_iter sg_iter;
2121         struct page *page;
2122         unsigned long last_pfn = 0;     /* suppress gcc warning */
2123         gfp_t gfp;
2124
2125         /* Assert that the object is not currently in any GPU domain. As it
2126          * wasn't in the GTT, there shouldn't be any way it could have been in
2127          * a GPU cache
2128          */
2129         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2130         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2131
2132         st = kmalloc(sizeof(*st), GFP_KERNEL);
2133         if (st == NULL)
2134                 return -ENOMEM;
2135
2136         page_count = obj->base.size / PAGE_SIZE;
2137         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2138                 kfree(st);
2139                 return -ENOMEM;
2140         }
2141
2142         /* Get the list of pages out of our struct file.  They'll be pinned
2143          * at this point until we release them.
2144          *
2145          * Fail silently without starting the shrinker
2146          */
2147         mapping = file_inode(obj->base.filp)->i_mapping;
2148         gfp = mapping_gfp_mask(mapping);
2149         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2150         gfp &= ~(__GFP_IO | __GFP_WAIT);
2151         sg = st->sgl;
2152         st->nents = 0;
2153         for (i = 0; i < page_count; i++) {
2154                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155                 if (IS_ERR(page)) {
2156                         i915_gem_shrink(dev_priv,
2157                                         page_count,
2158                                         I915_SHRINK_BOUND |
2159                                         I915_SHRINK_UNBOUND |
2160                                         I915_SHRINK_PURGEABLE);
2161                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2162                 }
2163                 if (IS_ERR(page)) {
2164                         /* We've tried hard to allocate the memory by reaping
2165                          * our own buffer, now let the real VM do its job and
2166                          * go down in flames if truly OOM.
2167                          */
2168                         i915_gem_shrink_all(dev_priv);
2169                         page = shmem_read_mapping_page(mapping, i);
2170                         if (IS_ERR(page))
2171                                 goto err_pages;
2172                 }
2173 #ifdef CONFIG_SWIOTLB
2174                 if (swiotlb_nr_tbl()) {
2175                         st->nents++;
2176                         sg_set_page(sg, page, PAGE_SIZE, 0);
2177                         sg = sg_next(sg);
2178                         continue;
2179                 }
2180 #endif
2181                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2182                         if (i)
2183                                 sg = sg_next(sg);
2184                         st->nents++;
2185                         sg_set_page(sg, page, PAGE_SIZE, 0);
2186                 } else {
2187                         sg->length += PAGE_SIZE;
2188                 }
2189                 last_pfn = page_to_pfn(page);
2190
2191                 /* Check that the i965g/gm workaround works. */
2192                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2193         }
2194 #ifdef CONFIG_SWIOTLB
2195         if (!swiotlb_nr_tbl())
2196 #endif
2197                 sg_mark_end(sg);
2198         obj->pages = st;
2199
2200         if (i915_gem_object_needs_bit17_swizzle(obj))
2201                 i915_gem_object_do_bit_17_swizzle(obj);
2202
2203         if (obj->tiling_mode != I915_TILING_NONE &&
2204             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2205                 i915_gem_object_pin_pages(obj);
2206
2207         return 0;
2208
2209 err_pages:
2210         sg_mark_end(sg);
2211         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2212                 page_cache_release(sg_page_iter_page(&sg_iter));
2213         sg_free_table(st);
2214         kfree(st);
2215
2216         /* shmemfs first checks if there is enough memory to allocate the page
2217          * and reports ENOSPC should there be insufficient, along with the usual
2218          * ENOMEM for a genuine allocation failure.
2219          *
2220          * We use ENOSPC in our driver to mean that we have run out of aperture
2221          * space and so want to translate the error from shmemfs back to our
2222          * usual understanding of ENOMEM.
2223          */
2224         if (PTR_ERR(page) == -ENOSPC)
2225                 return -ENOMEM;
2226         else
2227                 return PTR_ERR(page);
2228 }
2229
2230 /* Ensure that the associated pages are gathered from the backing storage
2231  * and pinned into our object. i915_gem_object_get_pages() may be called
2232  * multiple times before they are released by a single call to
2233  * i915_gem_object_put_pages() - once the pages are no longer referenced
2234  * either as a result of memory pressure (reaping pages under the shrinker)
2235  * or as the object is itself released.
2236  */
2237 int
2238 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2239 {
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         const struct drm_i915_gem_object_ops *ops = obj->ops;
2242         int ret;
2243
2244         if (obj->pages)
2245                 return 0;
2246
2247         if (obj->madv != I915_MADV_WILLNEED) {
2248                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2249                 return -EFAULT;
2250         }
2251
2252         BUG_ON(obj->pages_pin_count);
2253
2254         ret = ops->get_pages(obj);
2255         if (ret)
2256                 return ret;
2257
2258         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2259         return 0;
2260 }
2261
2262 static void
2263 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2264                                struct intel_engine_cs *ring)
2265 {
2266         struct drm_i915_gem_request *req;
2267         struct intel_engine_cs *old_ring;
2268
2269         BUG_ON(ring == NULL);
2270
2271         req = intel_ring_get_request(ring);
2272         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2273
2274         if (old_ring != ring && obj->last_write_req) {
2275                 /* Keep the request relative to the current ring */
2276                 i915_gem_request_assign(&obj->last_write_req, req);
2277         }
2278
2279         /* Add a reference if we're newly entering the active list. */
2280         if (!obj->active) {
2281                 drm_gem_object_reference(&obj->base);
2282                 obj->active = 1;
2283         }
2284
2285         list_move_tail(&obj->ring_list, &ring->active_list);
2286
2287         i915_gem_request_assign(&obj->last_read_req, req);
2288 }
2289
2290 void i915_vma_move_to_active(struct i915_vma *vma,
2291                              struct intel_engine_cs *ring)
2292 {
2293         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2294         return i915_gem_object_move_to_active(vma->obj, ring);
2295 }
2296
2297 static void
2298 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2299 {
2300         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2301         struct i915_address_space *vm;
2302         struct i915_vma *vma;
2303
2304         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2305         BUG_ON(!obj->active);
2306
2307         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2308                 vma = i915_gem_obj_to_vma(obj, vm);
2309                 if (vma && !list_empty(&vma->mm_list))
2310                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2311         }
2312
2313         intel_fb_obj_flush(obj, true);
2314
2315         list_del_init(&obj->ring_list);
2316
2317         i915_gem_request_assign(&obj->last_read_req, NULL);
2318         i915_gem_request_assign(&obj->last_write_req, NULL);
2319         obj->base.write_domain = 0;
2320
2321         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2322
2323         obj->active = 0;
2324         drm_gem_object_unreference(&obj->base);
2325
2326         WARN_ON(i915_verify_lists(dev));
2327 }
2328
2329 static void
2330 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2331 {
2332         if (obj->last_read_req == NULL)
2333                 return;
2334
2335         if (i915_gem_request_completed(obj->last_read_req, true))
2336                 i915_gem_object_move_to_inactive(obj);
2337 }
2338
2339 static int
2340 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2341 {
2342         struct drm_i915_private *dev_priv = dev->dev_private;
2343         struct intel_engine_cs *ring;
2344         int ret, i, j;
2345
2346         /* Carefully retire all requests without writing to the rings */
2347         for_each_ring(ring, dev_priv, i) {
2348                 ret = intel_ring_idle(ring);
2349                 if (ret)
2350                         return ret;
2351         }
2352         i915_gem_retire_requests(dev);
2353
2354         /* Finally reset hw state */
2355         for_each_ring(ring, dev_priv, i) {
2356                 intel_ring_init_seqno(ring, seqno);
2357
2358                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2359                         ring->semaphore.sync_seqno[j] = 0;
2360         }
2361
2362         return 0;
2363 }
2364
2365 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2366 {
2367         struct drm_i915_private *dev_priv = dev->dev_private;
2368         int ret;
2369
2370         if (seqno == 0)
2371                 return -EINVAL;
2372
2373         /* HWS page needs to be set less than what we
2374          * will inject to ring
2375          */
2376         ret = i915_gem_init_seqno(dev, seqno - 1);
2377         if (ret)
2378                 return ret;
2379
2380         /* Carefully set the last_seqno value so that wrap
2381          * detection still works
2382          */
2383         dev_priv->next_seqno = seqno;
2384         dev_priv->last_seqno = seqno - 1;
2385         if (dev_priv->last_seqno == 0)
2386                 dev_priv->last_seqno--;
2387
2388         return 0;
2389 }
2390
2391 int
2392 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2393 {
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395
2396         /* reserve 0 for non-seqno */
2397         if (dev_priv->next_seqno == 0) {
2398                 int ret = i915_gem_init_seqno(dev, 0);
2399                 if (ret)
2400                         return ret;
2401
2402                 dev_priv->next_seqno = 1;
2403         }
2404
2405         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2406         return 0;
2407 }
2408
2409 int __i915_add_request(struct intel_engine_cs *ring,
2410                        struct drm_file *file,
2411                        struct drm_i915_gem_object *obj)
2412 {
2413         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2414         struct drm_i915_gem_request *request;
2415         struct intel_ringbuffer *ringbuf;
2416         u32 request_ring_position, request_start;
2417         int ret;
2418
2419         request = ring->outstanding_lazy_request;
2420         if (WARN_ON(request == NULL))
2421                 return -ENOMEM;
2422
2423         if (i915.enable_execlists) {
2424                 struct intel_context *ctx = request->ctx;
2425                 ringbuf = ctx->engine[ring->id].ringbuf;
2426         } else
2427                 ringbuf = ring->buffer;
2428
2429         request_start = intel_ring_get_tail(ringbuf);
2430         /*
2431          * Emit any outstanding flushes - execbuf can fail to emit the flush
2432          * after having emitted the batchbuffer command. Hence we need to fix
2433          * things up similar to emitting the lazy request. The difference here
2434          * is that the flush _must_ happen before the next request, no matter
2435          * what.
2436          */
2437         if (i915.enable_execlists) {
2438                 ret = logical_ring_flush_all_caches(ringbuf);
2439                 if (ret)
2440                         return ret;
2441         } else {
2442                 ret = intel_ring_flush_all_caches(ring);
2443                 if (ret)
2444                         return ret;
2445         }
2446
2447         /* Record the position of the start of the request so that
2448          * should we detect the updated seqno part-way through the
2449          * GPU processing the request, we never over-estimate the
2450          * position of the head.
2451          */
2452         request_ring_position = intel_ring_get_tail(ringbuf);
2453
2454         if (i915.enable_execlists) {
2455                 ret = ring->emit_request(ringbuf);
2456                 if (ret)
2457                         return ret;
2458         } else {
2459                 ret = ring->add_request(ring);
2460                 if (ret)
2461                         return ret;
2462         }
2463
2464         request->head = request_start;
2465         request->tail = request_ring_position;
2466
2467         /* Whilst this request exists, batch_obj will be on the
2468          * active_list, and so will hold the active reference. Only when this
2469          * request is retired will the the batch_obj be moved onto the
2470          * inactive_list and lose its active reference. Hence we do not need
2471          * to explicitly hold another reference here.
2472          */
2473         request->batch_obj = obj;
2474
2475         if (!i915.enable_execlists) {
2476                 /* Hold a reference to the current context so that we can inspect
2477                  * it later in case a hangcheck error event fires.
2478                  */
2479                 request->ctx = ring->last_context;
2480                 if (request->ctx)
2481                         i915_gem_context_reference(request->ctx);
2482         }
2483
2484         request->emitted_jiffies = jiffies;
2485         list_add_tail(&request->list, &ring->request_list);
2486         request->file_priv = NULL;
2487
2488         if (file) {
2489                 struct drm_i915_file_private *file_priv = file->driver_priv;
2490
2491                 spin_lock(&file_priv->mm.lock);
2492                 request->file_priv = file_priv;
2493                 list_add_tail(&request->client_list,
2494                               &file_priv->mm.request_list);
2495                 spin_unlock(&file_priv->mm.lock);
2496         }
2497
2498         trace_i915_gem_request_add(request);
2499         ring->outstanding_lazy_request = NULL;
2500
2501         i915_queue_hangcheck(ring->dev);
2502
2503         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2504         queue_delayed_work(dev_priv->wq,
2505                            &dev_priv->mm.retire_work,
2506                            round_jiffies_up_relative(HZ));
2507         intel_mark_busy(dev_priv->dev);
2508
2509         return 0;
2510 }
2511
2512 static inline void
2513 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2514 {
2515         struct drm_i915_file_private *file_priv = request->file_priv;
2516
2517         if (!file_priv)
2518                 return;
2519
2520         spin_lock(&file_priv->mm.lock);
2521         list_del(&request->client_list);
2522         request->file_priv = NULL;
2523         spin_unlock(&file_priv->mm.lock);
2524 }
2525
2526 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2527                                    const struct intel_context *ctx)
2528 {
2529         unsigned long elapsed;
2530
2531         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2532
2533         if (ctx->hang_stats.banned)
2534                 return true;
2535
2536         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2537                 if (!i915_gem_context_is_default(ctx)) {
2538                         DRM_DEBUG("context hanging too fast, banning!\n");
2539                         return true;
2540                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2541                         if (i915_stop_ring_allow_warn(dev_priv))
2542                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2543                         return true;
2544                 }
2545         }
2546
2547         return false;
2548 }
2549
2550 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2551                                   struct intel_context *ctx,
2552                                   const bool guilty)
2553 {
2554         struct i915_ctx_hang_stats *hs;
2555
2556         if (WARN_ON(!ctx))
2557                 return;
2558
2559         hs = &ctx->hang_stats;
2560
2561         if (guilty) {
2562                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2563                 hs->batch_active++;
2564                 hs->guilty_ts = get_seconds();
2565         } else {
2566                 hs->batch_pending++;
2567         }
2568 }
2569
2570 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2571 {
2572         list_del(&request->list);
2573         i915_gem_request_remove_from_client(request);
2574
2575         i915_gem_request_unreference(request);
2576 }
2577
2578 void i915_gem_request_free(struct kref *req_ref)
2579 {
2580         struct drm_i915_gem_request *req = container_of(req_ref,
2581                                                  typeof(*req), ref);
2582         struct intel_context *ctx = req->ctx;
2583
2584         if (ctx) {
2585                 if (i915.enable_execlists) {
2586                         struct intel_engine_cs *ring = req->ring;
2587
2588                         if (ctx != ring->default_context)
2589                                 intel_lr_context_unpin(ring, ctx);
2590                 }
2591
2592                 i915_gem_context_unreference(ctx);
2593         }
2594
2595         kfree(req);
2596 }
2597
2598 struct drm_i915_gem_request *
2599 i915_gem_find_active_request(struct intel_engine_cs *ring)
2600 {
2601         struct drm_i915_gem_request *request;
2602
2603         list_for_each_entry(request, &ring->request_list, list) {
2604                 if (i915_gem_request_completed(request, false))
2605                         continue;
2606
2607                 return request;
2608         }
2609
2610         return NULL;
2611 }
2612
2613 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2614                                        struct intel_engine_cs *ring)
2615 {
2616         struct drm_i915_gem_request *request;
2617         bool ring_hung;
2618
2619         request = i915_gem_find_active_request(ring);
2620
2621         if (request == NULL)
2622                 return;
2623
2624         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2625
2626         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2627
2628         list_for_each_entry_continue(request, &ring->request_list, list)
2629                 i915_set_reset_status(dev_priv, request->ctx, false);
2630 }
2631
2632 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2633                                         struct intel_engine_cs *ring)
2634 {
2635         while (!list_empty(&ring->active_list)) {
2636                 struct drm_i915_gem_object *obj;
2637
2638                 obj = list_first_entry(&ring->active_list,
2639                                        struct drm_i915_gem_object,
2640                                        ring_list);
2641
2642                 i915_gem_object_move_to_inactive(obj);
2643         }
2644
2645         /*
2646          * Clear the execlists queue up before freeing the requests, as those
2647          * are the ones that keep the context and ringbuffer backing objects
2648          * pinned in place.
2649          */
2650         while (!list_empty(&ring->execlist_queue)) {
2651                 struct intel_ctx_submit_request *submit_req;
2652
2653                 submit_req = list_first_entry(&ring->execlist_queue,
2654                                 struct intel_ctx_submit_request,
2655                                 execlist_link);
2656                 list_del(&submit_req->execlist_link);
2657                 intel_runtime_pm_put(dev_priv);
2658                 i915_gem_context_unreference(submit_req->ctx);
2659                 kfree(submit_req);
2660         }
2661
2662         /*
2663          * We must free the requests after all the corresponding objects have
2664          * been moved off active lists. Which is the same order as the normal
2665          * retire_requests function does. This is important if object hold
2666          * implicit references on things like e.g. ppgtt address spaces through
2667          * the request.
2668          */
2669         while (!list_empty(&ring->request_list)) {
2670                 struct drm_i915_gem_request *request;
2671
2672                 request = list_first_entry(&ring->request_list,
2673                                            struct drm_i915_gem_request,
2674                                            list);
2675
2676                 i915_gem_free_request(request);
2677         }
2678
2679         /* This may not have been flushed before the reset, so clean it now */
2680         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2681 }
2682
2683 void i915_gem_restore_fences(struct drm_device *dev)
2684 {
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         int i;
2687
2688         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2689                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2690
2691                 /*
2692                  * Commit delayed tiling changes if we have an object still
2693                  * attached to the fence, otherwise just clear the fence.
2694                  */
2695                 if (reg->obj) {
2696                         i915_gem_object_update_fence(reg->obj, reg,
2697                                                      reg->obj->tiling_mode);
2698                 } else {
2699                         i915_gem_write_fence(dev, i, NULL);
2700                 }
2701         }
2702 }
2703
2704 void i915_gem_reset(struct drm_device *dev)
2705 {
2706         struct drm_i915_private *dev_priv = dev->dev_private;
2707         struct intel_engine_cs *ring;
2708         int i;
2709
2710         /*
2711          * Before we free the objects from the requests, we need to inspect
2712          * them for finding the guilty party. As the requests only borrow
2713          * their reference to the objects, the inspection must be done first.
2714          */
2715         for_each_ring(ring, dev_priv, i)
2716                 i915_gem_reset_ring_status(dev_priv, ring);
2717
2718         for_each_ring(ring, dev_priv, i)
2719                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2720
2721         i915_gem_context_reset(dev);
2722
2723         i915_gem_restore_fences(dev);
2724 }
2725
2726 /**
2727  * This function clears the request list as sequence numbers are passed.
2728  */
2729 void
2730 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2731 {
2732         if (list_empty(&ring->request_list))
2733                 return;
2734
2735         WARN_ON(i915_verify_lists(ring->dev));
2736
2737         /* Move any buffers on the active list that are no longer referenced
2738          * by the ringbuffer to the flushing/inactive lists as appropriate,
2739          * before we free the context associated with the requests.
2740          */
2741         while (!list_empty(&ring->active_list)) {
2742                 struct drm_i915_gem_object *obj;
2743
2744                 obj = list_first_entry(&ring->active_list,
2745                                       struct drm_i915_gem_object,
2746                                       ring_list);
2747
2748                 if (!i915_gem_request_completed(obj->last_read_req, true))
2749                         break;
2750
2751                 i915_gem_object_move_to_inactive(obj);
2752         }
2753
2754
2755         while (!list_empty(&ring->request_list)) {
2756                 struct drm_i915_gem_request *request;
2757                 struct intel_ringbuffer *ringbuf;
2758
2759                 request = list_first_entry(&ring->request_list,
2760                                            struct drm_i915_gem_request,
2761                                            list);
2762
2763                 if (!i915_gem_request_completed(request, true))
2764                         break;
2765
2766                 trace_i915_gem_request_retire(request);
2767
2768                 /* This is one of the few common intersection points
2769                  * between legacy ringbuffer submission and execlists:
2770                  * we need to tell them apart in order to find the correct
2771                  * ringbuffer to which the request belongs to.
2772                  */
2773                 if (i915.enable_execlists) {
2774                         struct intel_context *ctx = request->ctx;
2775                         ringbuf = ctx->engine[ring->id].ringbuf;
2776                 } else
2777                         ringbuf = ring->buffer;
2778
2779                 /* We know the GPU must have read the request to have
2780                  * sent us the seqno + interrupt, so use the position
2781                  * of tail of the request to update the last known position
2782                  * of the GPU head.
2783                  */
2784                 ringbuf->last_retired_head = request->tail;
2785
2786                 i915_gem_free_request(request);
2787         }
2788
2789         if (unlikely(ring->trace_irq_req &&
2790                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2791                 ring->irq_put(ring);
2792                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2793         }
2794
2795         WARN_ON(i915_verify_lists(ring->dev));
2796 }
2797
2798 bool
2799 i915_gem_retire_requests(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_engine_cs *ring;
2803         bool idle = true;
2804         int i;
2805
2806         for_each_ring(ring, dev_priv, i) {
2807                 i915_gem_retire_requests_ring(ring);
2808                 idle &= list_empty(&ring->request_list);
2809                 if (i915.enable_execlists) {
2810                         unsigned long flags;
2811
2812                         spin_lock_irqsave(&ring->execlist_lock, flags);
2813                         idle &= list_empty(&ring->execlist_queue);
2814                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2815
2816                         intel_execlists_retire_requests(ring);
2817                 }
2818         }
2819
2820         if (idle)
2821                 mod_delayed_work(dev_priv->wq,
2822                                    &dev_priv->mm.idle_work,
2823                                    msecs_to_jiffies(100));
2824
2825         return idle;
2826 }
2827
2828 static void
2829 i915_gem_retire_work_handler(struct work_struct *work)
2830 {
2831         struct drm_i915_private *dev_priv =
2832                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2833         struct drm_device *dev = dev_priv->dev;
2834         bool idle;
2835
2836         /* Come back later if the device is busy... */
2837         idle = false;
2838         if (mutex_trylock(&dev->struct_mutex)) {
2839                 idle = i915_gem_retire_requests(dev);
2840                 mutex_unlock(&dev->struct_mutex);
2841         }
2842         if (!idle)
2843                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2844                                    round_jiffies_up_relative(HZ));
2845 }
2846
2847 static void
2848 i915_gem_idle_work_handler(struct work_struct *work)
2849 {
2850         struct drm_i915_private *dev_priv =
2851                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2852
2853         intel_mark_idle(dev_priv->dev);
2854 }
2855
2856 /**
2857  * Ensures that an object will eventually get non-busy by flushing any required
2858  * write domains, emitting any outstanding lazy request and retiring and
2859  * completed requests.
2860  */
2861 static int
2862 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2863 {
2864         struct intel_engine_cs *ring;
2865         int ret;
2866
2867         if (obj->active) {
2868                 ring = i915_gem_request_get_ring(obj->last_read_req);
2869
2870                 ret = i915_gem_check_olr(obj->last_read_req);
2871                 if (ret)
2872                         return ret;
2873
2874                 i915_gem_retire_requests_ring(ring);
2875         }
2876
2877         return 0;
2878 }
2879
2880 /**
2881  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2882  * @DRM_IOCTL_ARGS: standard ioctl arguments
2883  *
2884  * Returns 0 if successful, else an error is returned with the remaining time in
2885  * the timeout parameter.
2886  *  -ETIME: object is still busy after timeout
2887  *  -ERESTARTSYS: signal interrupted the wait
2888  *  -ENONENT: object doesn't exist
2889  * Also possible, but rare:
2890  *  -EAGAIN: GPU wedged
2891  *  -ENOMEM: damn
2892  *  -ENODEV: Internal IRQ fail
2893  *  -E?: The add request failed
2894  *
2895  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2896  * non-zero timeout parameter the wait ioctl will wait for the given number of
2897  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2898  * without holding struct_mutex the object may become re-busied before this
2899  * function completes. A similar but shorter * race condition exists in the busy
2900  * ioctl
2901  */
2902 int
2903 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2904 {
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         struct drm_i915_gem_wait *args = data;
2907         struct drm_i915_gem_object *obj;
2908         struct drm_i915_gem_request *req;
2909         unsigned reset_counter;
2910         int ret = 0;
2911
2912         if (args->flags != 0)
2913                 return -EINVAL;
2914
2915         ret = i915_mutex_lock_interruptible(dev);
2916         if (ret)
2917                 return ret;
2918
2919         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2920         if (&obj->base == NULL) {
2921                 mutex_unlock(&dev->struct_mutex);
2922                 return -ENOENT;
2923         }
2924
2925         /* Need to make sure the object gets inactive eventually. */
2926         ret = i915_gem_object_flush_active(obj);
2927         if (ret)
2928                 goto out;
2929
2930         if (!obj->active || !obj->last_read_req)
2931                 goto out;
2932
2933         req = obj->last_read_req;
2934
2935         /* Do this after OLR check to make sure we make forward progress polling
2936          * on this IOCTL with a timeout <=0 (like busy ioctl)
2937          */
2938         if (args->timeout_ns <= 0) {
2939                 ret = -ETIME;
2940                 goto out;
2941         }
2942
2943         drm_gem_object_unreference(&obj->base);
2944         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2945         i915_gem_request_reference(req);
2946         mutex_unlock(&dev->struct_mutex);
2947
2948         ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2949                                   file->driver_priv);
2950         mutex_lock(&dev->struct_mutex);
2951         i915_gem_request_unreference(req);
2952         mutex_unlock(&dev->struct_mutex);
2953         return ret;
2954
2955 out:
2956         drm_gem_object_unreference(&obj->base);
2957         mutex_unlock(&dev->struct_mutex);
2958         return ret;
2959 }
2960
2961 /**
2962  * i915_gem_object_sync - sync an object to a ring.
2963  *
2964  * @obj: object which may be in use on another ring.
2965  * @to: ring we wish to use the object on. May be NULL.
2966  *
2967  * This code is meant to abstract object synchronization with the GPU.
2968  * Calling with NULL implies synchronizing the object with the CPU
2969  * rather than a particular GPU ring.
2970  *
2971  * Returns 0 if successful, else propagates up the lower layer error.
2972  */
2973 int
2974 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2975                      struct intel_engine_cs *to)
2976 {
2977         struct intel_engine_cs *from;
2978         u32 seqno;
2979         int ret, idx;
2980
2981         from = i915_gem_request_get_ring(obj->last_read_req);
2982
2983         if (from == NULL || to == from)
2984                 return 0;
2985
2986         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2987                 return i915_gem_object_wait_rendering(obj, false);
2988
2989         idx = intel_ring_sync_index(from, to);
2990
2991         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2992         /* Optimization: Avoid semaphore sync when we are sure we already
2993          * waited for an object with higher seqno */
2994         if (seqno <= from->semaphore.sync_seqno[idx])
2995                 return 0;
2996
2997         ret = i915_gem_check_olr(obj->last_read_req);
2998         if (ret)
2999                 return ret;
3000
3001         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3002         ret = to->semaphore.sync_to(to, from, seqno);
3003         if (!ret)
3004                 /* We use last_read_req because sync_to()
3005                  * might have just caused seqno wrap under
3006                  * the radar.
3007                  */
3008                 from->semaphore.sync_seqno[idx] =
3009                                 i915_gem_request_get_seqno(obj->last_read_req);
3010
3011         return ret;
3012 }
3013
3014 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3015 {
3016         u32 old_write_domain, old_read_domains;
3017
3018         /* Force a pagefault for domain tracking on next user access */
3019         i915_gem_release_mmap(obj);
3020
3021         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3022                 return;
3023
3024         /* Wait for any direct GTT access to complete */
3025         mb();
3026
3027         old_read_domains = obj->base.read_domains;
3028         old_write_domain = obj->base.write_domain;
3029
3030         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3031         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3032
3033         trace_i915_gem_object_change_domain(obj,
3034                                             old_read_domains,
3035                                             old_write_domain);
3036 }
3037
3038 int i915_vma_unbind(struct i915_vma *vma)
3039 {
3040         struct drm_i915_gem_object *obj = vma->obj;
3041         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3042         int ret;
3043
3044         if (list_empty(&vma->vma_link))
3045                 return 0;
3046
3047         if (!drm_mm_node_allocated(&vma->node)) {
3048                 i915_gem_vma_destroy(vma);
3049                 return 0;
3050         }
3051
3052         if (vma->pin_count)
3053                 return -EBUSY;
3054
3055         BUG_ON(obj->pages == NULL);
3056
3057         ret = i915_gem_object_finish_gpu(obj);
3058         if (ret)
3059                 return ret;
3060         /* Continue on if we fail due to EIO, the GPU is hung so we
3061          * should be safe and we need to cleanup or else we might
3062          * cause memory corruption through use-after-free.
3063          */
3064
3065         /* Throw away the active reference before moving to the unbound list */
3066         i915_gem_object_retire(obj);
3067
3068         if (i915_is_ggtt(vma->vm)) {
3069                 i915_gem_object_finish_gtt(obj);
3070
3071                 /* release the fence reg _after_ flushing */
3072                 ret = i915_gem_object_put_fence(obj);
3073                 if (ret)
3074                         return ret;
3075         }
3076
3077         trace_i915_vma_unbind(vma);
3078
3079         vma->unbind_vma(vma);
3080
3081         list_del_init(&vma->mm_list);
3082         if (i915_is_ggtt(vma->vm))
3083                 obj->map_and_fenceable = false;
3084
3085         drm_mm_remove_node(&vma->node);
3086         i915_gem_vma_destroy(vma);
3087
3088         /* Since the unbound list is global, only move to that list if
3089          * no more VMAs exist. */
3090         if (list_empty(&obj->vma_list)) {
3091                 i915_gem_gtt_finish_object(obj);
3092                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3093         }
3094
3095         /* And finally now the object is completely decoupled from this vma,
3096          * we can drop its hold on the backing storage and allow it to be
3097          * reaped by the shrinker.
3098          */
3099         i915_gem_object_unpin_pages(obj);
3100
3101         return 0;
3102 }
3103
3104 int i915_gpu_idle(struct drm_device *dev)
3105 {
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107         struct intel_engine_cs *ring;
3108         int ret, i;
3109
3110         /* Flush everything onto the inactive list. */
3111         for_each_ring(ring, dev_priv, i) {
3112                 if (!i915.enable_execlists) {
3113                         ret = i915_switch_context(ring, ring->default_context);
3114                         if (ret)
3115                                 return ret;
3116                 }
3117
3118                 ret = intel_ring_idle(ring);
3119                 if (ret)
3120                         return ret;
3121         }
3122
3123         return 0;
3124 }
3125
3126 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3127                                  struct drm_i915_gem_object *obj)
3128 {
3129         struct drm_i915_private *dev_priv = dev->dev_private;
3130         int fence_reg;
3131         int fence_pitch_shift;
3132
3133         if (INTEL_INFO(dev)->gen >= 6) {
3134                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3135                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3136         } else {
3137                 fence_reg = FENCE_REG_965_0;
3138                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3139         }
3140
3141         fence_reg += reg * 8;
3142
3143         /* To w/a incoherency with non-atomic 64-bit register updates,
3144          * we split the 64-bit update into two 32-bit writes. In order
3145          * for a partial fence not to be evaluated between writes, we
3146          * precede the update with write to turn off the fence register,
3147          * and only enable the fence as the last step.
3148          *
3149          * For extra levels of paranoia, we make sure each step lands
3150          * before applying the next step.
3151          */
3152         I915_WRITE(fence_reg, 0);
3153         POSTING_READ(fence_reg);
3154
3155         if (obj) {
3156                 u32 size = i915_gem_obj_ggtt_size(obj);
3157                 uint64_t val;
3158
3159                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3160                                  0xfffff000) << 32;
3161                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3162                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3163                 if (obj->tiling_mode == I915_TILING_Y)
3164                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3165                 val |= I965_FENCE_REG_VALID;
3166
3167                 I915_WRITE(fence_reg + 4, val >> 32);
3168                 POSTING_READ(fence_reg + 4);
3169
3170                 I915_WRITE(fence_reg + 0, val);
3171                 POSTING_READ(fence_reg);
3172         } else {
3173                 I915_WRITE(fence_reg + 4, 0);
3174                 POSTING_READ(fence_reg + 4);
3175         }
3176 }
3177
3178 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3179                                  struct drm_i915_gem_object *obj)
3180 {
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182         u32 val;
3183
3184         if (obj) {
3185                 u32 size = i915_gem_obj_ggtt_size(obj);
3186                 int pitch_val;
3187                 int tile_width;
3188
3189                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3190                      (size & -size) != size ||
3191                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3192                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3193                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3194
3195                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3196                         tile_width = 128;
3197                 else
3198                         tile_width = 512;
3199
3200                 /* Note: pitch better be a power of two tile widths */
3201                 pitch_val = obj->stride / tile_width;
3202                 pitch_val = ffs(pitch_val) - 1;
3203
3204                 val = i915_gem_obj_ggtt_offset(obj);
3205                 if (obj->tiling_mode == I915_TILING_Y)
3206                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3207                 val |= I915_FENCE_SIZE_BITS(size);
3208                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3209                 val |= I830_FENCE_REG_VALID;
3210         } else
3211                 val = 0;
3212
3213         if (reg < 8)
3214                 reg = FENCE_REG_830_0 + reg * 4;
3215         else
3216                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3217
3218         I915_WRITE(reg, val);
3219         POSTING_READ(reg);
3220 }
3221
3222 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3223                                 struct drm_i915_gem_object *obj)
3224 {
3225         struct drm_i915_private *dev_priv = dev->dev_private;
3226         uint32_t val;
3227
3228         if (obj) {
3229                 u32 size = i915_gem_obj_ggtt_size(obj);
3230                 uint32_t pitch_val;
3231
3232                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3233                      (size & -size) != size ||
3234                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3235                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3236                      i915_gem_obj_ggtt_offset(obj), size);
3237
3238                 pitch_val = obj->stride / 128;
3239                 pitch_val = ffs(pitch_val) - 1;
3240
3241                 val = i915_gem_obj_ggtt_offset(obj);
3242                 if (obj->tiling_mode == I915_TILING_Y)
3243                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3244                 val |= I830_FENCE_SIZE_BITS(size);
3245                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3246                 val |= I830_FENCE_REG_VALID;
3247         } else
3248                 val = 0;
3249
3250         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3251         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3252 }
3253
3254 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3255 {
3256         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3257 }
3258
3259 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3260                                  struct drm_i915_gem_object *obj)
3261 {
3262         struct drm_i915_private *dev_priv = dev->dev_private;
3263
3264         /* Ensure that all CPU reads are completed before installing a fence
3265          * and all writes before removing the fence.
3266          */
3267         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3268                 mb();
3269
3270         WARN(obj && (!obj->stride || !obj->tiling_mode),
3271              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3272              obj->stride, obj->tiling_mode);
3273
3274         switch (INTEL_INFO(dev)->gen) {
3275         case 9:
3276         case 8:
3277         case 7:
3278         case 6:
3279         case 5:
3280         case 4: i965_write_fence_reg(dev, reg, obj); break;
3281         case 3: i915_write_fence_reg(dev, reg, obj); break;
3282         case 2: i830_write_fence_reg(dev, reg, obj); break;
3283         default: BUG();
3284         }
3285
3286         /* And similarly be paranoid that no direct access to this region
3287          * is reordered to before the fence is installed.
3288          */
3289         if (i915_gem_object_needs_mb(obj))
3290                 mb();
3291 }
3292
3293 static inline int fence_number(struct drm_i915_private *dev_priv,
3294                                struct drm_i915_fence_reg *fence)
3295 {
3296         return fence - dev_priv->fence_regs;
3297 }
3298
3299 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3300                                          struct drm_i915_fence_reg *fence,
3301                                          bool enable)
3302 {
3303         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3304         int reg = fence_number(dev_priv, fence);
3305
3306         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3307
3308         if (enable) {
3309                 obj->fence_reg = reg;
3310                 fence->obj = obj;
3311                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3312         } else {
3313                 obj->fence_reg = I915_FENCE_REG_NONE;
3314                 fence->obj = NULL;
3315                 list_del_init(&fence->lru_list);
3316         }
3317         obj->fence_dirty = false;
3318 }
3319
3320 static int
3321 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3322 {
3323         if (obj->last_fenced_req) {
3324                 int ret = i915_wait_request(obj->last_fenced_req);
3325                 if (ret)
3326                         return ret;
3327
3328                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3329         }
3330
3331         return 0;
3332 }
3333
3334 int
3335 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3336 {
3337         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3338         struct drm_i915_fence_reg *fence;
3339         int ret;
3340
3341         ret = i915_gem_object_wait_fence(obj);
3342         if (ret)
3343                 return ret;
3344
3345         if (obj->fence_reg == I915_FENCE_REG_NONE)
3346                 return 0;
3347
3348         fence = &dev_priv->fence_regs[obj->fence_reg];
3349
3350         if (WARN_ON(fence->pin_count))
3351                 return -EBUSY;
3352
3353         i915_gem_object_fence_lost(obj);
3354         i915_gem_object_update_fence(obj, fence, false);
3355
3356         return 0;
3357 }
3358
3359 static struct drm_i915_fence_reg *
3360 i915_find_fence_reg(struct drm_device *dev)
3361 {
3362         struct drm_i915_private *dev_priv = dev->dev_private;
3363         struct drm_i915_fence_reg *reg, *avail;
3364         int i;
3365
3366         /* First try to find a free reg */
3367         avail = NULL;
3368         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3369                 reg = &dev_priv->fence_regs[i];
3370                 if (!reg->obj)
3371                         return reg;
3372
3373                 if (!reg->pin_count)
3374                         avail = reg;
3375         }
3376
3377         if (avail == NULL)
3378                 goto deadlock;
3379
3380         /* None available, try to steal one or wait for a user to finish */
3381         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3382                 if (reg->pin_count)
3383                         continue;
3384
3385                 return reg;
3386         }
3387
3388 deadlock:
3389         /* Wait for completion of pending flips which consume fences */
3390         if (intel_has_pending_fb_unpin(dev))
3391                 return ERR_PTR(-EAGAIN);
3392
3393         return ERR_PTR(-EDEADLK);
3394 }
3395
3396 /**
3397  * i915_gem_object_get_fence - set up fencing for an object
3398  * @obj: object to map through a fence reg
3399  *
3400  * When mapping objects through the GTT, userspace wants to be able to write
3401  * to them without having to worry about swizzling if the object is tiled.
3402  * This function walks the fence regs looking for a free one for @obj,
3403  * stealing one if it can't find any.
3404  *
3405  * It then sets up the reg based on the object's properties: address, pitch
3406  * and tiling format.
3407  *
3408  * For an untiled surface, this removes any existing fence.
3409  */
3410 int
3411 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3412 {
3413         struct drm_device *dev = obj->base.dev;
3414         struct drm_i915_private *dev_priv = dev->dev_private;
3415         bool enable = obj->tiling_mode != I915_TILING_NONE;
3416         struct drm_i915_fence_reg *reg;
3417         int ret;
3418
3419         /* Have we updated the tiling parameters upon the object and so
3420          * will need to serialise the write to the associated fence register?
3421          */
3422         if (obj->fence_dirty) {
3423                 ret = i915_gem_object_wait_fence(obj);
3424                 if (ret)
3425                         return ret;
3426         }
3427
3428         /* Just update our place in the LRU if our fence is getting reused. */
3429         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3430                 reg = &dev_priv->fence_regs[obj->fence_reg];
3431                 if (!obj->fence_dirty) {
3432                         list_move_tail(&reg->lru_list,
3433                                        &dev_priv->mm.fence_list);
3434                         return 0;
3435                 }
3436         } else if (enable) {
3437                 if (WARN_ON(!obj->map_and_fenceable))
3438                         return -EINVAL;
3439
3440                 reg = i915_find_fence_reg(dev);
3441                 if (IS_ERR(reg))
3442                         return PTR_ERR(reg);
3443
3444                 if (reg->obj) {
3445                         struct drm_i915_gem_object *old = reg->obj;
3446
3447                         ret = i915_gem_object_wait_fence(old);
3448                         if (ret)
3449                                 return ret;
3450
3451                         i915_gem_object_fence_lost(old);
3452                 }
3453         } else
3454                 return 0;
3455
3456         i915_gem_object_update_fence(obj, reg, enable);
3457
3458         return 0;
3459 }
3460
3461 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3462                                      unsigned long cache_level)
3463 {
3464         struct drm_mm_node *gtt_space = &vma->node;
3465         struct drm_mm_node *other;
3466
3467         /*
3468          * On some machines we have to be careful when putting differing types
3469          * of snoopable memory together to avoid the prefetcher crossing memory
3470          * domains and dying. During vm initialisation, we decide whether or not
3471          * these constraints apply and set the drm_mm.color_adjust
3472          * appropriately.
3473          */
3474         if (vma->vm->mm.color_adjust == NULL)
3475                 return true;
3476
3477         if (!drm_mm_node_allocated(gtt_space))
3478                 return true;
3479
3480         if (list_empty(&gtt_space->node_list))
3481                 return true;
3482
3483         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3484         if (other->allocated && !other->hole_follows && other->color != cache_level)
3485                 return false;
3486
3487         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3488         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3489                 return false;
3490
3491         return true;
3492 }
3493
3494 /**
3495  * Finds free space in the GTT aperture and binds the object there.
3496  */
3497 static struct i915_vma *
3498 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3499                            struct i915_address_space *vm,
3500                            unsigned alignment,
3501                            uint64_t flags)
3502 {
3503         struct drm_device *dev = obj->base.dev;
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         u32 size, fence_size, fence_alignment, unfenced_alignment;
3506         unsigned long start =
3507                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3508         unsigned long end =
3509                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3510         struct i915_vma *vma;
3511         int ret;
3512
3513         fence_size = i915_gem_get_gtt_size(dev,
3514                                            obj->base.size,
3515                                            obj->tiling_mode);
3516         fence_alignment = i915_gem_get_gtt_alignment(dev,
3517                                                      obj->base.size,
3518                                                      obj->tiling_mode, true);
3519         unfenced_alignment =
3520                 i915_gem_get_gtt_alignment(dev,
3521                                            obj->base.size,
3522                                            obj->tiling_mode, false);
3523
3524         if (alignment == 0)
3525                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3526                                                 unfenced_alignment;
3527         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3528                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3529                 return ERR_PTR(-EINVAL);
3530         }
3531
3532         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3533
3534         /* If the object is bigger than the entire aperture, reject it early
3535          * before evicting everything in a vain attempt to find space.
3536          */
3537         if (obj->base.size > end) {
3538                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3539                           obj->base.size,
3540                           flags & PIN_MAPPABLE ? "mappable" : "total",
3541                           end);
3542                 return ERR_PTR(-E2BIG);
3543         }
3544
3545         ret = i915_gem_object_get_pages(obj);
3546         if (ret)
3547                 return ERR_PTR(ret);
3548
3549         i915_gem_object_pin_pages(obj);
3550
3551         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3552         if (IS_ERR(vma))
3553                 goto err_unpin;
3554
3555 search_free:
3556         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3557                                                   size, alignment,
3558                                                   obj->cache_level,
3559                                                   start, end,
3560                                                   DRM_MM_SEARCH_DEFAULT,
3561                                                   DRM_MM_CREATE_DEFAULT);
3562         if (ret) {
3563                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3564                                                obj->cache_level,
3565                                                start, end,
3566                                                flags);
3567                 if (ret == 0)
3568                         goto search_free;
3569
3570                 goto err_free_vma;
3571         }
3572         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3573                 ret = -EINVAL;
3574                 goto err_remove_node;
3575         }
3576
3577         ret = i915_gem_gtt_prepare_object(obj);
3578         if (ret)
3579                 goto err_remove_node;
3580
3581         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3582         list_add_tail(&vma->mm_list, &vm->inactive_list);
3583
3584         trace_i915_vma_bind(vma, flags);
3585         vma->bind_vma(vma, obj->cache_level,
3586                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3587
3588         return vma;
3589
3590 err_remove_node:
3591         drm_mm_remove_node(&vma->node);
3592 err_free_vma:
3593         i915_gem_vma_destroy(vma);
3594         vma = ERR_PTR(ret);
3595 err_unpin:
3596         i915_gem_object_unpin_pages(obj);
3597         return vma;
3598 }
3599
3600 bool
3601 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3602                         bool force)
3603 {
3604         /* If we don't have a page list set up, then we're not pinned
3605          * to GPU, and we can ignore the cache flush because it'll happen
3606          * again at bind time.
3607          */
3608         if (obj->pages == NULL)
3609                 return false;
3610
3611         /*
3612          * Stolen memory is always coherent with the GPU as it is explicitly
3613          * marked as wc by the system, or the system is cache-coherent.
3614          */
3615         if (obj->stolen || obj->phys_handle)
3616                 return false;
3617
3618         /* If the GPU is snooping the contents of the CPU cache,
3619          * we do not need to manually clear the CPU cache lines.  However,
3620          * the caches are only snooped when the render cache is
3621          * flushed/invalidated.  As we always have to emit invalidations
3622          * and flushes when moving into and out of the RENDER domain, correct
3623          * snooping behaviour occurs naturally as the result of our domain
3624          * tracking.
3625          */
3626         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3627                 return false;
3628
3629         trace_i915_gem_object_clflush(obj);
3630         drm_clflush_sg(obj->pages);
3631
3632         return true;
3633 }
3634
3635 /** Flushes the GTT write domain for the object if it's dirty. */
3636 static void
3637 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3638 {
3639         uint32_t old_write_domain;
3640
3641         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3642                 return;
3643
3644         /* No actual flushing is required for the GTT write domain.  Writes
3645          * to it immediately go to main memory as far as we know, so there's
3646          * no chipset flush.  It also doesn't land in render cache.
3647          *
3648          * However, we do have to enforce the order so that all writes through
3649          * the GTT land before any writes to the device, such as updates to
3650          * the GATT itself.
3651          */
3652         wmb();
3653
3654         old_write_domain = obj->base.write_domain;
3655         obj->base.write_domain = 0;
3656
3657         intel_fb_obj_flush(obj, false);
3658
3659         trace_i915_gem_object_change_domain(obj,
3660                                             obj->base.read_domains,
3661                                             old_write_domain);
3662 }
3663
3664 /** Flushes the CPU write domain for the object if it's dirty. */
3665 static void
3666 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3667                                        bool force)
3668 {
3669         uint32_t old_write_domain;
3670
3671         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3672                 return;
3673
3674         if (i915_gem_clflush_object(obj, force))
3675                 i915_gem_chipset_flush(obj->base.dev);
3676
3677         old_write_domain = obj->base.write_domain;
3678         obj->base.write_domain = 0;
3679
3680         intel_fb_obj_flush(obj, false);
3681
3682         trace_i915_gem_object_change_domain(obj,
3683                                             obj->base.read_domains,
3684                                             old_write_domain);
3685 }
3686
3687 /**
3688  * Moves a single object to the GTT read, and possibly write domain.
3689  *
3690  * This function returns when the move is complete, including waiting on
3691  * flushes to occur.
3692  */
3693 int
3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3695 {
3696         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3697         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3698         uint32_t old_write_domain, old_read_domains;
3699         int ret;
3700
3701         /* Not valid to be called on unbound objects. */
3702         if (vma == NULL)
3703                 return -EINVAL;
3704
3705         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3706                 return 0;
3707
3708         ret = i915_gem_object_wait_rendering(obj, !write);
3709         if (ret)
3710                 return ret;
3711
3712         i915_gem_object_retire(obj);
3713         i915_gem_object_flush_cpu_write_domain(obj, false);
3714
3715         /* Serialise direct access to this object with the barriers for
3716          * coherent writes from the GPU, by effectively invalidating the
3717          * GTT domain upon first access.
3718          */
3719         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3720                 mb();
3721
3722         old_write_domain = obj->base.write_domain;
3723         old_read_domains = obj->base.read_domains;
3724
3725         /* It should now be out of any other write domains, and we can update
3726          * the domain values for our changes.
3727          */
3728         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3729         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3730         if (write) {
3731                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3732                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3733                 obj->dirty = 1;
3734         }
3735
3736         if (write)
3737                 intel_fb_obj_invalidate(obj, NULL);
3738
3739         trace_i915_gem_object_change_domain(obj,
3740                                             old_read_domains,
3741                                             old_write_domain);
3742
3743         /* And bump the LRU for this access */
3744         if (i915_gem_object_is_inactive(obj))
3745                 list_move_tail(&vma->mm_list,
3746                                &dev_priv->gtt.base.inactive_list);
3747
3748         return 0;
3749 }
3750
3751 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3752                                     enum i915_cache_level cache_level)
3753 {
3754         struct drm_device *dev = obj->base.dev;
3755         struct i915_vma *vma, *next;
3756         int ret;
3757
3758         if (obj->cache_level == cache_level)
3759                 return 0;
3760
3761         if (i915_gem_obj_is_pinned(obj)) {
3762                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3763                 return -EBUSY;
3764         }
3765
3766         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3767                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3768                         ret = i915_vma_unbind(vma);
3769                         if (ret)
3770                                 return ret;
3771                 }
3772         }
3773
3774         if (i915_gem_obj_bound_any(obj)) {
3775                 ret = i915_gem_object_finish_gpu(obj);
3776                 if (ret)
3777                         return ret;
3778
3779                 i915_gem_object_finish_gtt(obj);
3780
3781                 /* Before SandyBridge, you could not use tiling or fence
3782                  * registers with snooped memory, so relinquish any fences
3783                  * currently pointing to our region in the aperture.
3784                  */
3785                 if (INTEL_INFO(dev)->gen < 6) {
3786                         ret = i915_gem_object_put_fence(obj);
3787                         if (ret)
3788                                 return ret;
3789                 }
3790
3791                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3792                         if (drm_mm_node_allocated(&vma->node))
3793                                 vma->bind_vma(vma, cache_level,
3794                                                 vma->bound & GLOBAL_BIND);
3795         }
3796
3797         list_for_each_entry(vma, &obj->vma_list, vma_link)
3798                 vma->node.color = cache_level;
3799         obj->cache_level = cache_level;
3800
3801         if (cpu_write_needs_clflush(obj)) {
3802                 u32 old_read_domains, old_write_domain;
3803
3804                 /* If we're coming from LLC cached, then we haven't
3805                  * actually been tracking whether the data is in the
3806                  * CPU cache or not, since we only allow one bit set
3807                  * in obj->write_domain and have been skipping the clflushes.
3808                  * Just set it to the CPU cache for now.
3809                  */
3810                 i915_gem_object_retire(obj);
3811                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3812
3813                 old_read_domains = obj->base.read_domains;
3814                 old_write_domain = obj->base.write_domain;
3815
3816                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3817                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3818
3819                 trace_i915_gem_object_change_domain(obj,
3820                                                     old_read_domains,
3821                                                     old_write_domain);
3822         }
3823
3824         return 0;
3825 }
3826
3827 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3828                                struct drm_file *file)
3829 {
3830         struct drm_i915_gem_caching *args = data;
3831         struct drm_i915_gem_object *obj;
3832         int ret;
3833
3834         ret = i915_mutex_lock_interruptible(dev);
3835         if (ret)
3836                 return ret;
3837
3838         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3839         if (&obj->base == NULL) {
3840                 ret = -ENOENT;
3841                 goto unlock;
3842         }
3843
3844         switch (obj->cache_level) {
3845         case I915_CACHE_LLC:
3846         case I915_CACHE_L3_LLC:
3847                 args->caching = I915_CACHING_CACHED;
3848                 break;
3849
3850         case I915_CACHE_WT:
3851                 args->caching = I915_CACHING_DISPLAY;
3852                 break;
3853
3854         default:
3855                 args->caching = I915_CACHING_NONE;
3856                 break;
3857         }
3858
3859         drm_gem_object_unreference(&obj->base);
3860 unlock:
3861         mutex_unlock(&dev->struct_mutex);
3862         return ret;
3863 }
3864
3865 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3866                                struct drm_file *file)
3867 {
3868         struct drm_i915_gem_caching *args = data;
3869         struct drm_i915_gem_object *obj;
3870         enum i915_cache_level level;
3871         int ret;
3872
3873         switch (args->caching) {
3874         case I915_CACHING_NONE:
3875                 level = I915_CACHE_NONE;
3876                 break;
3877         case I915_CACHING_CACHED:
3878                 level = I915_CACHE_LLC;
3879                 break;
3880         case I915_CACHING_DISPLAY:
3881                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3882                 break;
3883         default:
3884                 return -EINVAL;
3885         }
3886
3887         ret = i915_mutex_lock_interruptible(dev);
3888         if (ret)
3889                 return ret;
3890
3891         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3892         if (&obj->base == NULL) {
3893                 ret = -ENOENT;
3894                 goto unlock;
3895         }
3896
3897         ret = i915_gem_object_set_cache_level(obj, level);
3898
3899         drm_gem_object_unreference(&obj->base);
3900 unlock:
3901         mutex_unlock(&dev->struct_mutex);
3902         return ret;
3903 }
3904
3905 static bool is_pin_display(struct drm_i915_gem_object *obj)
3906 {
3907         struct i915_vma *vma;
3908
3909         vma = i915_gem_obj_to_ggtt(obj);
3910         if (!vma)
3911                 return false;
3912
3913         /* There are 2 sources that pin objects:
3914          *   1. The display engine (scanouts, sprites, cursors);
3915          *   2. Reservations for execbuffer;
3916          *
3917          * We can ignore reservations as we hold the struct_mutex and
3918          * are only called outside of the reservation path.
3919          */
3920         return vma->pin_count;
3921 }
3922
3923 /*
3924  * Prepare buffer for display plane (scanout, cursors, etc).
3925  * Can be called from an uninterruptible phase (modesetting) and allows
3926  * any flushes to be pipelined (for pageflips).
3927  */
3928 int
3929 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3930                                      u32 alignment,
3931                                      struct intel_engine_cs *pipelined)
3932 {
3933         u32 old_read_domains, old_write_domain;
3934         bool was_pin_display;
3935         int ret;
3936
3937         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3938                 ret = i915_gem_object_sync(obj, pipelined);
3939                 if (ret)
3940                         return ret;
3941         }
3942
3943         /* Mark the pin_display early so that we account for the
3944          * display coherency whilst setting up the cache domains.
3945          */
3946         was_pin_display = obj->pin_display;
3947         obj->pin_display = true;
3948
3949         /* The display engine is not coherent with the LLC cache on gen6.  As
3950          * a result, we make sure that the pinning that is about to occur is
3951          * done with uncached PTEs. This is lowest common denominator for all
3952          * chipsets.
3953          *
3954          * However for gen6+, we could do better by using the GFDT bit instead
3955          * of uncaching, which would allow us to flush all the LLC-cached data
3956          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3957          */
3958         ret = i915_gem_object_set_cache_level(obj,
3959                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3960         if (ret)
3961                 goto err_unpin_display;
3962
3963         /* As the user may map the buffer once pinned in the display plane
3964          * (e.g. libkms for the bootup splash), we have to ensure that we
3965          * always use map_and_fenceable for all scanout buffers.
3966          */
3967         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3968         if (ret)
3969                 goto err_unpin_display;
3970
3971         i915_gem_object_flush_cpu_write_domain(obj, true);
3972
3973         old_write_domain = obj->base.write_domain;
3974         old_read_domains = obj->base.read_domains;
3975
3976         /* It should now be out of any other write domains, and we can update
3977          * the domain values for our changes.
3978          */
3979         obj->base.write_domain = 0;
3980         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3981
3982         trace_i915_gem_object_change_domain(obj,
3983                                             old_read_domains,
3984                                             old_write_domain);
3985
3986         return 0;
3987
3988 err_unpin_display:
3989         WARN_ON(was_pin_display != is_pin_display(obj));
3990         obj->pin_display = was_pin_display;
3991         return ret;
3992 }
3993
3994 void
3995 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3996 {
3997         i915_gem_object_ggtt_unpin(obj);
3998         obj->pin_display = is_pin_display(obj);
3999 }
4000
4001 int
4002 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4003 {
4004         int ret;
4005
4006         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4007                 return 0;
4008
4009         ret = i915_gem_object_wait_rendering(obj, false);
4010         if (ret)
4011                 return ret;
4012
4013         /* Ensure that we invalidate the GPU's caches and TLBs. */
4014         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4015         return 0;
4016 }
4017
4018 /**
4019  * Moves a single object to the CPU read, and possibly write domain.
4020  *
4021  * This function returns when the move is complete, including waiting on
4022  * flushes to occur.
4023  */
4024 int
4025 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4026 {
4027         uint32_t old_write_domain, old_read_domains;
4028         int ret;
4029
4030         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4031                 return 0;
4032
4033         ret = i915_gem_object_wait_rendering(obj, !write);
4034         if (ret)
4035                 return ret;
4036
4037         i915_gem_object_retire(obj);
4038         i915_gem_object_flush_gtt_write_domain(obj);
4039
4040         old_write_domain = obj->base.write_domain;
4041         old_read_domains = obj->base.read_domains;
4042
4043         /* Flush the CPU cache if it's still invalid. */
4044         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4045                 i915_gem_clflush_object(obj, false);
4046
4047                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4048         }
4049
4050         /* It should now be out of any other write domains, and we can update
4051          * the domain values for our changes.
4052          */
4053         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4054
4055         /* If we're writing through the CPU, then the GPU read domains will
4056          * need to be invalidated at next use.
4057          */
4058         if (write) {
4059                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4060                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4061         }
4062
4063         if (write)
4064                 intel_fb_obj_invalidate(obj, NULL);
4065
4066         trace_i915_gem_object_change_domain(obj,
4067                                             old_read_domains,
4068                                             old_write_domain);
4069
4070         return 0;
4071 }
4072
4073 /* Throttle our rendering by waiting until the ring has completed our requests
4074  * emitted over 20 msec ago.
4075  *
4076  * Note that if we were to use the current jiffies each time around the loop,
4077  * we wouldn't escape the function with any frames outstanding if the time to
4078  * render a frame was over 20ms.
4079  *
4080  * This should get us reasonable parallelism between CPU and GPU but also
4081  * relatively low latency when blocking on a particular request to finish.
4082  */
4083 static int
4084 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4085 {
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087         struct drm_i915_file_private *file_priv = file->driver_priv;
4088         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4089         struct drm_i915_gem_request *request, *target = NULL;
4090         unsigned reset_counter;
4091         int ret;
4092
4093         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4094         if (ret)
4095                 return ret;
4096
4097         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4098         if (ret)
4099                 return ret;
4100
4101         spin_lock(&file_priv->mm.lock);
4102         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4103                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4104                         break;
4105
4106                 target = request;
4107         }
4108         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4109         if (target)
4110                 i915_gem_request_reference(target);
4111         spin_unlock(&file_priv->mm.lock);
4112
4113         if (target == NULL)
4114                 return 0;
4115
4116         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4117         if (ret == 0)
4118                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4119
4120         mutex_lock(&dev->struct_mutex);
4121         i915_gem_request_unreference(target);
4122         mutex_unlock(&dev->struct_mutex);
4123
4124         return ret;
4125 }
4126
4127 static bool
4128 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4129 {
4130         struct drm_i915_gem_object *obj = vma->obj;
4131
4132         if (alignment &&
4133             vma->node.start & (alignment - 1))
4134                 return true;
4135
4136         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4137                 return true;
4138
4139         if (flags & PIN_OFFSET_BIAS &&
4140             vma->node.start < (flags & PIN_OFFSET_MASK))
4141                 return true;
4142
4143         return false;
4144 }
4145
4146 int
4147 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4148                     struct i915_address_space *vm,
4149                     uint32_t alignment,
4150                     uint64_t flags)
4151 {
4152         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4153         struct i915_vma *vma;
4154         unsigned bound;
4155         int ret;
4156
4157         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4158                 return -ENODEV;
4159
4160         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4161                 return -EINVAL;
4162
4163         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4164                 return -EINVAL;
4165
4166         vma = i915_gem_obj_to_vma(obj, vm);
4167         if (vma) {
4168                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4169                         return -EBUSY;
4170
4171                 if (i915_vma_misplaced(vma, alignment, flags)) {
4172                         WARN(vma->pin_count,
4173                              "bo is already pinned with incorrect alignment:"
4174                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4175                              " obj->map_and_fenceable=%d\n",
4176                              i915_gem_obj_offset(obj, vm), alignment,
4177                              !!(flags & PIN_MAPPABLE),
4178                              obj->map_and_fenceable);
4179                         ret = i915_vma_unbind(vma);
4180                         if (ret)
4181                                 return ret;
4182
4183                         vma = NULL;
4184                 }
4185         }
4186
4187         bound = vma ? vma->bound : 0;
4188         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4189                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4190                 if (IS_ERR(vma))
4191                         return PTR_ERR(vma);
4192         }
4193
4194         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4195                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4196
4197         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4198                 bool mappable, fenceable;
4199                 u32 fence_size, fence_alignment;
4200
4201                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4202                                                    obj->base.size,
4203                                                    obj->tiling_mode);
4204                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4205                                                              obj->base.size,
4206                                                              obj->tiling_mode,
4207                                                              true);
4208
4209                 fenceable = (vma->node.size == fence_size &&
4210                              (vma->node.start & (fence_alignment - 1)) == 0);
4211
4212                 mappable = (vma->node.start + obj->base.size <=
4213                             dev_priv->gtt.mappable_end);
4214
4215                 obj->map_and_fenceable = mappable && fenceable;
4216         }
4217
4218         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4219
4220         vma->pin_count++;
4221         if (flags & PIN_MAPPABLE)
4222                 obj->pin_mappable |= true;
4223
4224         return 0;
4225 }
4226
4227 void
4228 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4229 {
4230         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4231
4232         BUG_ON(!vma);
4233         BUG_ON(vma->pin_count == 0);
4234         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4235
4236         if (--vma->pin_count == 0)
4237                 obj->pin_mappable = false;
4238 }
4239
4240 bool
4241 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4242 {
4243         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4244                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4245                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4246
4247                 WARN_ON(!ggtt_vma ||
4248                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4249                         ggtt_vma->pin_count);
4250                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4251                 return true;
4252         } else
4253                 return false;
4254 }
4255
4256 void
4257 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4258 {
4259         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4260                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4261                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4262                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4263         }
4264 }
4265
4266 int
4267 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4268                     struct drm_file *file)
4269 {
4270         struct drm_i915_gem_busy *args = data;
4271         struct drm_i915_gem_object *obj;
4272         int ret;
4273
4274         ret = i915_mutex_lock_interruptible(dev);
4275         if (ret)
4276                 return ret;
4277
4278         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4279         if (&obj->base == NULL) {
4280                 ret = -ENOENT;
4281                 goto unlock;
4282         }
4283
4284         /* Count all active objects as busy, even if they are currently not used
4285          * by the gpu. Users of this interface expect objects to eventually
4286          * become non-busy without any further actions, therefore emit any
4287          * necessary flushes here.
4288          */
4289         ret = i915_gem_object_flush_active(obj);
4290
4291         args->busy = obj->active;
4292         if (obj->last_read_req) {
4293                 struct intel_engine_cs *ring;
4294                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4295                 ring = i915_gem_request_get_ring(obj->last_read_req);
4296                 args->busy |= intel_ring_flag(ring) << 16;
4297         }
4298
4299         drm_gem_object_unreference(&obj->base);
4300 unlock:
4301         mutex_unlock(&dev->struct_mutex);
4302         return ret;
4303 }
4304
4305 int
4306 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4307                         struct drm_file *file_priv)
4308 {
4309         return i915_gem_ring_throttle(dev, file_priv);
4310 }
4311
4312 int
4313 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4314                        struct drm_file *file_priv)
4315 {
4316         struct drm_i915_private *dev_priv = dev->dev_private;
4317         struct drm_i915_gem_madvise *args = data;
4318         struct drm_i915_gem_object *obj;
4319         int ret;
4320
4321         switch (args->madv) {
4322         case I915_MADV_DONTNEED:
4323         case I915_MADV_WILLNEED:
4324             break;
4325         default:
4326             return -EINVAL;
4327         }
4328
4329         ret = i915_mutex_lock_interruptible(dev);
4330         if (ret)
4331                 return ret;
4332
4333         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4334         if (&obj->base == NULL) {
4335                 ret = -ENOENT;
4336                 goto unlock;
4337         }
4338
4339         if (i915_gem_obj_is_pinned(obj)) {
4340                 ret = -EINVAL;
4341                 goto out;
4342         }
4343
4344         if (obj->pages &&
4345             obj->tiling_mode != I915_TILING_NONE &&
4346             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4347                 if (obj->madv == I915_MADV_WILLNEED)
4348                         i915_gem_object_unpin_pages(obj);
4349                 if (args->madv == I915_MADV_WILLNEED)
4350                         i915_gem_object_pin_pages(obj);
4351         }
4352
4353         if (obj->madv != __I915_MADV_PURGED)
4354                 obj->madv = args->madv;
4355
4356         /* if the object is no longer attached, discard its backing storage */
4357         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4358                 i915_gem_object_truncate(obj);
4359
4360         args->retained = obj->madv != __I915_MADV_PURGED;
4361
4362 out:
4363         drm_gem_object_unreference(&obj->base);
4364 unlock:
4365         mutex_unlock(&dev->struct_mutex);
4366         return ret;
4367 }
4368
4369 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4370                           const struct drm_i915_gem_object_ops *ops)
4371 {
4372         INIT_LIST_HEAD(&obj->global_list);
4373         INIT_LIST_HEAD(&obj->ring_list);
4374         INIT_LIST_HEAD(&obj->obj_exec_link);
4375         INIT_LIST_HEAD(&obj->vma_list);
4376
4377         obj->ops = ops;
4378
4379         obj->fence_reg = I915_FENCE_REG_NONE;
4380         obj->madv = I915_MADV_WILLNEED;
4381
4382         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4383 }
4384
4385 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4386         .get_pages = i915_gem_object_get_pages_gtt,
4387         .put_pages = i915_gem_object_put_pages_gtt,
4388 };
4389
4390 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4391                                                   size_t size)
4392 {
4393         struct drm_i915_gem_object *obj;
4394         struct address_space *mapping;
4395         gfp_t mask;
4396
4397         obj = i915_gem_object_alloc(dev);
4398         if (obj == NULL)
4399                 return NULL;
4400
4401         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4402                 i915_gem_object_free(obj);
4403                 return NULL;
4404         }
4405
4406         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4407         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4408                 /* 965gm cannot relocate objects above 4GiB. */
4409                 mask &= ~__GFP_HIGHMEM;
4410                 mask |= __GFP_DMA32;
4411         }
4412
4413         mapping = file_inode(obj->base.filp)->i_mapping;
4414         mapping_set_gfp_mask(mapping, mask);
4415
4416         i915_gem_object_init(obj, &i915_gem_object_ops);
4417
4418         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4419         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4420
4421         if (HAS_LLC(dev)) {
4422                 /* On some devices, we can have the GPU use the LLC (the CPU
4423                  * cache) for about a 10% performance improvement
4424                  * compared to uncached.  Graphics requests other than
4425                  * display scanout are coherent with the CPU in
4426                  * accessing this cache.  This means in this mode we
4427                  * don't need to clflush on the CPU side, and on the
4428                  * GPU side we only need to flush internal caches to
4429                  * get data visible to the CPU.
4430                  *
4431                  * However, we maintain the display planes as UC, and so
4432                  * need to rebind when first used as such.
4433                  */
4434                 obj->cache_level = I915_CACHE_LLC;
4435         } else
4436                 obj->cache_level = I915_CACHE_NONE;
4437
4438         trace_i915_gem_object_create(obj);
4439
4440         return obj;
4441 }
4442
4443 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4444 {
4445         /* If we are the last user of the backing storage (be it shmemfs
4446          * pages or stolen etc), we know that the pages are going to be
4447          * immediately released. In this case, we can then skip copying
4448          * back the contents from the GPU.
4449          */
4450
4451         if (obj->madv != I915_MADV_WILLNEED)
4452                 return false;
4453
4454         if (obj->base.filp == NULL)
4455                 return true;
4456
4457         /* At first glance, this looks racy, but then again so would be
4458          * userspace racing mmap against close. However, the first external
4459          * reference to the filp can only be obtained through the
4460          * i915_gem_mmap_ioctl() which safeguards us against the user
4461          * acquiring such a reference whilst we are in the middle of
4462          * freeing the object.
4463          */
4464         return atomic_long_read(&obj->base.filp->f_count) == 1;
4465 }
4466
4467 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4468 {
4469         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4470         struct drm_device *dev = obj->base.dev;
4471         struct drm_i915_private *dev_priv = dev->dev_private;
4472         struct i915_vma *vma, *next;
4473
4474         intel_runtime_pm_get(dev_priv);
4475
4476         trace_i915_gem_object_destroy(obj);
4477
4478         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4479                 int ret;
4480
4481                 vma->pin_count = 0;
4482                 ret = i915_vma_unbind(vma);
4483                 if (WARN_ON(ret == -ERESTARTSYS)) {
4484                         bool was_interruptible;
4485
4486                         was_interruptible = dev_priv->mm.interruptible;
4487                         dev_priv->mm.interruptible = false;
4488
4489                         WARN_ON(i915_vma_unbind(vma));
4490
4491                         dev_priv->mm.interruptible = was_interruptible;
4492                 }
4493         }
4494
4495         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4496          * before progressing. */
4497         if (obj->stolen)
4498                 i915_gem_object_unpin_pages(obj);
4499
4500         WARN_ON(obj->frontbuffer_bits);
4501
4502         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4503             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4504             obj->tiling_mode != I915_TILING_NONE)
4505                 i915_gem_object_unpin_pages(obj);
4506
4507         if (WARN_ON(obj->pages_pin_count))
4508                 obj->pages_pin_count = 0;
4509         if (discard_backing_storage(obj))
4510                 obj->madv = I915_MADV_DONTNEED;
4511         i915_gem_object_put_pages(obj);
4512         i915_gem_object_free_mmap_offset(obj);
4513
4514         BUG_ON(obj->pages);
4515
4516         if (obj->base.import_attach)
4517                 drm_prime_gem_destroy(&obj->base, NULL);
4518
4519         if (obj->ops->release)
4520                 obj->ops->release(obj);
4521
4522         drm_gem_object_release(&obj->base);
4523         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4524
4525         kfree(obj->bit_17);
4526         i915_gem_object_free(obj);
4527
4528         intel_runtime_pm_put(dev_priv);
4529 }
4530
4531 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4532                                      struct i915_address_space *vm)
4533 {
4534         struct i915_vma *vma;
4535         list_for_each_entry(vma, &obj->vma_list, vma_link)
4536                 if (vma->vm == vm)
4537                         return vma;
4538
4539         return NULL;
4540 }
4541
4542 void i915_gem_vma_destroy(struct i915_vma *vma)
4543 {
4544         struct i915_address_space *vm = NULL;
4545         WARN_ON(vma->node.allocated);
4546
4547         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4548         if (!list_empty(&vma->exec_list))
4549                 return;
4550
4551         vm = vma->vm;
4552
4553         if (!i915_is_ggtt(vm))
4554                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4555
4556         list_del(&vma->vma_link);
4557
4558         kfree(vma);
4559 }
4560
4561 static void
4562 i915_gem_stop_ringbuffers(struct drm_device *dev)
4563 {
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct intel_engine_cs *ring;
4566         int i;
4567
4568         for_each_ring(ring, dev_priv, i)
4569                 dev_priv->gt.stop_ring(ring);
4570 }
4571
4572 int
4573 i915_gem_suspend(struct drm_device *dev)
4574 {
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576         int ret = 0;
4577
4578         mutex_lock(&dev->struct_mutex);
4579         ret = i915_gpu_idle(dev);
4580         if (ret)
4581                 goto err;
4582
4583         i915_gem_retire_requests(dev);
4584
4585         /* Under UMS, be paranoid and evict. */
4586         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4587                 i915_gem_evict_everything(dev);
4588
4589         i915_gem_stop_ringbuffers(dev);
4590         mutex_unlock(&dev->struct_mutex);
4591
4592         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4593         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4594         flush_delayed_work(&dev_priv->mm.idle_work);
4595
4596         /* Assert that we sucessfully flushed all the work and
4597          * reset the GPU back to its idle, low power state.
4598          */
4599         WARN_ON(dev_priv->mm.busy);
4600
4601         return 0;
4602
4603 err:
4604         mutex_unlock(&dev->struct_mutex);
4605         return ret;
4606 }
4607
4608 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4609 {
4610         struct drm_device *dev = ring->dev;
4611         struct drm_i915_private *dev_priv = dev->dev_private;
4612         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4613         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4614         int i, ret;
4615
4616         if (!HAS_L3_DPF(dev) || !remap_info)
4617                 return 0;
4618
4619         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4620         if (ret)
4621                 return ret;
4622
4623         /*
4624          * Note: We do not worry about the concurrent register cacheline hang
4625          * here because no other code should access these registers other than
4626          * at initialization time.
4627          */
4628         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4629                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4630                 intel_ring_emit(ring, reg_base + i);
4631                 intel_ring_emit(ring, remap_info[i/4]);
4632         }
4633
4634         intel_ring_advance(ring);
4635
4636         return ret;
4637 }
4638
4639 void i915_gem_init_swizzling(struct drm_device *dev)
4640 {
4641         struct drm_i915_private *dev_priv = dev->dev_private;
4642
4643         if (INTEL_INFO(dev)->gen < 5 ||
4644             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4645                 return;
4646
4647         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4648                                  DISP_TILE_SURFACE_SWIZZLING);
4649
4650         if (IS_GEN5(dev))
4651                 return;
4652
4653         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4654         if (IS_GEN6(dev))
4655                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4656         else if (IS_GEN7(dev))
4657                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4658         else if (IS_GEN8(dev))
4659                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4660         else
4661                 BUG();
4662 }
4663
4664 static bool
4665 intel_enable_blt(struct drm_device *dev)
4666 {
4667         if (!HAS_BLT(dev))
4668                 return false;
4669
4670         /* The blitter was dysfunctional on early prototypes */
4671         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4672                 DRM_INFO("BLT not supported on this pre-production hardware;"
4673                          " graphics performance will be degraded.\n");
4674                 return false;
4675         }
4676
4677         return true;
4678 }
4679
4680 static void init_unused_ring(struct drm_device *dev, u32 base)
4681 {
4682         struct drm_i915_private *dev_priv = dev->dev_private;
4683
4684         I915_WRITE(RING_CTL(base), 0);
4685         I915_WRITE(RING_HEAD(base), 0);
4686         I915_WRITE(RING_TAIL(base), 0);
4687         I915_WRITE(RING_START(base), 0);
4688 }
4689
4690 static void init_unused_rings(struct drm_device *dev)
4691 {
4692         if (IS_I830(dev)) {
4693                 init_unused_ring(dev, PRB1_BASE);
4694                 init_unused_ring(dev, SRB0_BASE);
4695                 init_unused_ring(dev, SRB1_BASE);
4696                 init_unused_ring(dev, SRB2_BASE);
4697                 init_unused_ring(dev, SRB3_BASE);
4698         } else if (IS_GEN2(dev)) {
4699                 init_unused_ring(dev, SRB0_BASE);
4700                 init_unused_ring(dev, SRB1_BASE);
4701         } else if (IS_GEN3(dev)) {
4702                 init_unused_ring(dev, PRB1_BASE);
4703                 init_unused_ring(dev, PRB2_BASE);
4704         }
4705 }
4706
4707 int i915_gem_init_rings(struct drm_device *dev)
4708 {
4709         struct drm_i915_private *dev_priv = dev->dev_private;
4710         int ret;
4711
4712         ret = intel_init_render_ring_buffer(dev);
4713         if (ret)
4714                 return ret;
4715
4716         if (HAS_BSD(dev)) {
4717                 ret = intel_init_bsd_ring_buffer(dev);
4718                 if (ret)
4719                         goto cleanup_render_ring;
4720         }
4721
4722         if (intel_enable_blt(dev)) {
4723                 ret = intel_init_blt_ring_buffer(dev);
4724                 if (ret)
4725                         goto cleanup_bsd_ring;
4726         }
4727
4728         if (HAS_VEBOX(dev)) {
4729                 ret = intel_init_vebox_ring_buffer(dev);
4730                 if (ret)
4731                         goto cleanup_blt_ring;
4732         }
4733
4734         if (HAS_BSD2(dev)) {
4735                 ret = intel_init_bsd2_ring_buffer(dev);
4736                 if (ret)
4737                         goto cleanup_vebox_ring;
4738         }
4739
4740         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4741         if (ret)
4742                 goto cleanup_bsd2_ring;
4743
4744         return 0;
4745
4746 cleanup_bsd2_ring:
4747         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4748 cleanup_vebox_ring:
4749         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4750 cleanup_blt_ring:
4751         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4752 cleanup_bsd_ring:
4753         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4754 cleanup_render_ring:
4755         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4756
4757         return ret;
4758 }
4759
4760 int
4761 i915_gem_init_hw(struct drm_device *dev)
4762 {
4763         struct drm_i915_private *dev_priv = dev->dev_private;
4764         struct intel_engine_cs *ring;
4765         int ret, i;
4766
4767         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4768                 return -EIO;
4769
4770         if (dev_priv->ellc_size)
4771                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4772
4773         if (IS_HASWELL(dev))
4774                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4775                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4776
4777         if (HAS_PCH_NOP(dev)) {
4778                 if (IS_IVYBRIDGE(dev)) {
4779                         u32 temp = I915_READ(GEN7_MSG_CTL);
4780                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4781                         I915_WRITE(GEN7_MSG_CTL, temp);
4782                 } else if (INTEL_INFO(dev)->gen >= 7) {
4783                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4784                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4785                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4786                 }
4787         }
4788
4789         i915_gem_init_swizzling(dev);
4790
4791         /*
4792          * At least 830 can leave some of the unused rings
4793          * "active" (ie. head != tail) after resume which
4794          * will prevent c3 entry. Makes sure all unused rings
4795          * are totally idle.
4796          */
4797         init_unused_rings(dev);
4798
4799         for_each_ring(ring, dev_priv, i) {
4800                 ret = ring->init_hw(ring);
4801                 if (ret)
4802                         return ret;
4803         }
4804
4805         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4806                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4807
4808         /*
4809          * XXX: Contexts should only be initialized once. Doing a switch to the
4810          * default context switch however is something we'd like to do after
4811          * reset or thaw (the latter may not actually be necessary for HW, but
4812          * goes with our code better). Context switching requires rings (for
4813          * the do_switch), but before enabling PPGTT. So don't move this.
4814          */
4815         ret = i915_gem_context_enable(dev_priv);
4816         if (ret && ret != -EIO) {
4817                 DRM_ERROR("Context enable failed %d\n", ret);
4818                 i915_gem_cleanup_ringbuffer(dev);
4819
4820                 return ret;
4821         }
4822
4823         ret = i915_ppgtt_init_hw(dev);
4824         if (ret && ret != -EIO) {
4825                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4826                 i915_gem_cleanup_ringbuffer(dev);
4827         }
4828
4829         return ret;
4830 }
4831
4832 int i915_gem_init(struct drm_device *dev)
4833 {
4834         struct drm_i915_private *dev_priv = dev->dev_private;
4835         int ret;
4836
4837         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4838                         i915.enable_execlists);
4839
4840         mutex_lock(&dev->struct_mutex);
4841
4842         if (IS_VALLEYVIEW(dev)) {
4843                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4844                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4845                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4846                               VLV_GTLC_ALLOWWAKEACK), 10))
4847                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4848         }
4849
4850         if (!i915.enable_execlists) {
4851                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4852                 dev_priv->gt.init_rings = i915_gem_init_rings;
4853                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4854                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4855         } else {
4856                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4857                 dev_priv->gt.init_rings = intel_logical_rings_init;
4858                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4859                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4860         }
4861
4862         ret = i915_gem_init_userptr(dev);
4863         if (ret)
4864                 goto out_unlock;
4865
4866         i915_gem_init_global_gtt(dev);
4867
4868         ret = i915_gem_context_init(dev);
4869         if (ret)
4870                 goto out_unlock;
4871
4872         ret = dev_priv->gt.init_rings(dev);
4873         if (ret)
4874                 goto out_unlock;
4875
4876         ret = i915_gem_init_hw(dev);
4877         if (ret == -EIO) {
4878                 /* Allow ring initialisation to fail by marking the GPU as
4879                  * wedged. But we only want to do this where the GPU is angry,
4880                  * for all other failure, such as an allocation failure, bail.
4881                  */
4882                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4883                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4884                 ret = 0;
4885         }
4886
4887 out_unlock:
4888         mutex_unlock(&dev->struct_mutex);
4889
4890         return ret;
4891 }
4892
4893 void
4894 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4895 {
4896         struct drm_i915_private *dev_priv = dev->dev_private;
4897         struct intel_engine_cs *ring;
4898         int i;
4899
4900         for_each_ring(ring, dev_priv, i)
4901                 dev_priv->gt.cleanup_ring(ring);
4902 }
4903
4904 static void
4905 init_ring_lists(struct intel_engine_cs *ring)
4906 {
4907         INIT_LIST_HEAD(&ring->active_list);
4908         INIT_LIST_HEAD(&ring->request_list);
4909 }
4910
4911 void i915_init_vm(struct drm_i915_private *dev_priv,
4912                   struct i915_address_space *vm)
4913 {
4914         if (!i915_is_ggtt(vm))
4915                 drm_mm_init(&vm->mm, vm->start, vm->total);
4916         vm->dev = dev_priv->dev;
4917         INIT_LIST_HEAD(&vm->active_list);
4918         INIT_LIST_HEAD(&vm->inactive_list);
4919         INIT_LIST_HEAD(&vm->global_link);
4920         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4921 }
4922
4923 void
4924 i915_gem_load(struct drm_device *dev)
4925 {
4926         struct drm_i915_private *dev_priv = dev->dev_private;
4927         int i;
4928
4929         dev_priv->slab =
4930                 kmem_cache_create("i915_gem_object",
4931                                   sizeof(struct drm_i915_gem_object), 0,
4932                                   SLAB_HWCACHE_ALIGN,
4933                                   NULL);
4934
4935         INIT_LIST_HEAD(&dev_priv->vm_list);
4936         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4937
4938         INIT_LIST_HEAD(&dev_priv->context_list);
4939         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4940         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4941         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4942         for (i = 0; i < I915_NUM_RINGS; i++)
4943                 init_ring_lists(&dev_priv->ring[i]);
4944         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4945                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4946         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4947                           i915_gem_retire_work_handler);
4948         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4949                           i915_gem_idle_work_handler);
4950         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4951
4952         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4953         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4954                 I915_WRITE(MI_ARB_STATE,
4955                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4956         }
4957
4958         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4959
4960         /* Old X drivers will take 0-2 for front, back, depth buffers */
4961         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4962                 dev_priv->fence_reg_start = 3;
4963
4964         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4965                 dev_priv->num_fence_regs = 32;
4966         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4967                 dev_priv->num_fence_regs = 16;
4968         else
4969                 dev_priv->num_fence_regs = 8;
4970
4971         /* Initialize fence registers to zero */
4972         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4973         i915_gem_restore_fences(dev);
4974
4975         i915_gem_detect_bit_6_swizzle(dev);
4976         init_waitqueue_head(&dev_priv->pending_flip_queue);
4977
4978         dev_priv->mm.interruptible = true;
4979
4980         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4981         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4982         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4983         register_shrinker(&dev_priv->mm.shrinker);
4984
4985         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4986         register_oom_notifier(&dev_priv->mm.oom_notifier);
4987
4988         mutex_init(&dev_priv->fb_tracking.lock);
4989 }
4990
4991 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4992 {
4993         struct drm_i915_file_private *file_priv = file->driver_priv;
4994
4995         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4996
4997         /* Clean up our request list when the client is going away, so that
4998          * later retire_requests won't dereference our soon-to-be-gone
4999          * file_priv.
5000          */
5001         spin_lock(&file_priv->mm.lock);
5002         while (!list_empty(&file_priv->mm.request_list)) {
5003                 struct drm_i915_gem_request *request;
5004
5005                 request = list_first_entry(&file_priv->mm.request_list,
5006                                            struct drm_i915_gem_request,
5007                                            client_list);
5008                 list_del(&request->client_list);
5009                 request->file_priv = NULL;
5010         }
5011         spin_unlock(&file_priv->mm.lock);
5012 }
5013
5014 static void
5015 i915_gem_file_idle_work_handler(struct work_struct *work)
5016 {
5017         struct drm_i915_file_private *file_priv =
5018                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5019
5020         atomic_set(&file_priv->rps_wait_boost, false);
5021 }
5022
5023 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5024 {
5025         struct drm_i915_file_private *file_priv;
5026         int ret;
5027
5028         DRM_DEBUG_DRIVER("\n");
5029
5030         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5031         if (!file_priv)
5032                 return -ENOMEM;
5033
5034         file->driver_priv = file_priv;
5035         file_priv->dev_priv = dev->dev_private;
5036         file_priv->file = file;
5037
5038         spin_lock_init(&file_priv->mm.lock);
5039         INIT_LIST_HEAD(&file_priv->mm.request_list);
5040         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5041                           i915_gem_file_idle_work_handler);
5042
5043         ret = i915_gem_context_open(dev, file);
5044         if (ret)
5045                 kfree(file_priv);
5046
5047         return ret;
5048 }
5049
5050 /**
5051  * i915_gem_track_fb - update frontbuffer tracking
5052  * old: current GEM buffer for the frontbuffer slots
5053  * new: new GEM buffer for the frontbuffer slots
5054  * frontbuffer_bits: bitmask of frontbuffer slots
5055  *
5056  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5057  * from @old and setting them in @new. Both @old and @new can be NULL.
5058  */
5059 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5060                        struct drm_i915_gem_object *new,
5061                        unsigned frontbuffer_bits)
5062 {
5063         if (old) {
5064                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5065                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5066                 old->frontbuffer_bits &= ~frontbuffer_bits;
5067         }
5068
5069         if (new) {
5070                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5071                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5072                 new->frontbuffer_bits |= frontbuffer_bits;
5073         }
5074 }
5075
5076 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5077 {
5078         if (!mutex_is_locked(mutex))
5079                 return false;
5080
5081 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5082         return mutex->owner == task;
5083 #else
5084         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5085         return false;
5086 #endif
5087 }
5088
5089 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5090 {
5091         if (!mutex_trylock(&dev->struct_mutex)) {
5092                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5093                         return false;
5094
5095                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5096                         return false;
5097
5098                 *unlock = false;
5099         } else
5100                 *unlock = true;
5101
5102         return true;
5103 }
5104
5105 static int num_vma_bound(struct drm_i915_gem_object *obj)
5106 {
5107         struct i915_vma *vma;
5108         int count = 0;
5109
5110         list_for_each_entry(vma, &obj->vma_list, vma_link)
5111                 if (drm_mm_node_allocated(&vma->node))
5112                         count++;
5113
5114         return count;
5115 }
5116
5117 static unsigned long
5118 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5119 {
5120         struct drm_i915_private *dev_priv =
5121                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5122         struct drm_device *dev = dev_priv->dev;
5123         struct drm_i915_gem_object *obj;
5124         unsigned long count;
5125         bool unlock;
5126
5127         if (!i915_gem_shrinker_lock(dev, &unlock))
5128                 return 0;
5129
5130         count = 0;
5131         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5132                 if (obj->pages_pin_count == 0)
5133                         count += obj->base.size >> PAGE_SHIFT;
5134
5135         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5136                 if (!i915_gem_obj_is_pinned(obj) &&
5137                     obj->pages_pin_count == num_vma_bound(obj))
5138                         count += obj->base.size >> PAGE_SHIFT;
5139         }
5140
5141         if (unlock)
5142                 mutex_unlock(&dev->struct_mutex);
5143
5144         return count;
5145 }
5146
5147 /* All the new VM stuff */
5148 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5149                                   struct i915_address_space *vm)
5150 {
5151         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5152         struct i915_vma *vma;
5153
5154         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5155
5156         list_for_each_entry(vma, &o->vma_list, vma_link) {
5157                 if (vma->vm == vm)
5158                         return vma->node.start;
5159
5160         }
5161         WARN(1, "%s vma for this object not found.\n",
5162              i915_is_ggtt(vm) ? "global" : "ppgtt");
5163         return -1;
5164 }
5165
5166 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5167                         struct i915_address_space *vm)
5168 {
5169         struct i915_vma *vma;
5170
5171         list_for_each_entry(vma, &o->vma_list, vma_link)
5172                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5173                         return true;
5174
5175         return false;
5176 }
5177
5178 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5179 {
5180         struct i915_vma *vma;
5181
5182         list_for_each_entry(vma, &o->vma_list, vma_link)
5183                 if (drm_mm_node_allocated(&vma->node))
5184                         return true;
5185
5186         return false;
5187 }
5188
5189 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5190                                 struct i915_address_space *vm)
5191 {
5192         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5193         struct i915_vma *vma;
5194
5195         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5196
5197         BUG_ON(list_empty(&o->vma_list));
5198
5199         list_for_each_entry(vma, &o->vma_list, vma_link)
5200                 if (vma->vm == vm)
5201                         return vma->node.size;
5202
5203         return 0;
5204 }
5205
5206 static unsigned long
5207 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5208 {
5209         struct drm_i915_private *dev_priv =
5210                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5211         struct drm_device *dev = dev_priv->dev;
5212         unsigned long freed;
5213         bool unlock;
5214
5215         if (!i915_gem_shrinker_lock(dev, &unlock))
5216                 return SHRINK_STOP;
5217
5218         freed = i915_gem_shrink(dev_priv,
5219                                 sc->nr_to_scan,
5220                                 I915_SHRINK_BOUND |
5221                                 I915_SHRINK_UNBOUND |
5222                                 I915_SHRINK_PURGEABLE);
5223         if (freed < sc->nr_to_scan)
5224                 freed += i915_gem_shrink(dev_priv,
5225                                          sc->nr_to_scan - freed,
5226                                          I915_SHRINK_BOUND |
5227                                          I915_SHRINK_UNBOUND);
5228         if (unlock)
5229                 mutex_unlock(&dev->struct_mutex);
5230
5231         return freed;
5232 }
5233
5234 static int
5235 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5236 {
5237         struct drm_i915_private *dev_priv =
5238                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5239         struct drm_device *dev = dev_priv->dev;
5240         struct drm_i915_gem_object *obj;
5241         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5242         unsigned long pinned, bound, unbound, freed_pages;
5243         bool was_interruptible;
5244         bool unlock;
5245
5246         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5247                 schedule_timeout_killable(1);
5248                 if (fatal_signal_pending(current))
5249                         return NOTIFY_DONE;
5250         }
5251         if (timeout == 0) {
5252                 pr_err("Unable to purge GPU memory due lock contention.\n");
5253                 return NOTIFY_DONE;
5254         }
5255
5256         was_interruptible = dev_priv->mm.interruptible;
5257         dev_priv->mm.interruptible = false;
5258
5259         freed_pages = i915_gem_shrink_all(dev_priv);
5260
5261         dev_priv->mm.interruptible = was_interruptible;
5262
5263         /* Because we may be allocating inside our own driver, we cannot
5264          * assert that there are no objects with pinned pages that are not
5265          * being pointed to by hardware.
5266          */
5267         unbound = bound = pinned = 0;
5268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5269                 if (!obj->base.filp) /* not backed by a freeable object */
5270                         continue;
5271
5272                 if (obj->pages_pin_count)
5273                         pinned += obj->base.size;
5274                 else
5275                         unbound += obj->base.size;
5276         }
5277         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5278                 if (!obj->base.filp)
5279                         continue;
5280
5281                 if (obj->pages_pin_count)
5282                         pinned += obj->base.size;
5283                 else
5284                         bound += obj->base.size;
5285         }
5286
5287         if (unlock)
5288                 mutex_unlock(&dev->struct_mutex);
5289
5290         if (freed_pages || unbound || bound)
5291                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5292                         freed_pages << PAGE_SHIFT, pinned);
5293         if (unbound || bound)
5294                 pr_err("%lu and %lu bytes still available in the "
5295                        "bound and unbound GPU page lists.\n",
5296                        bound, unbound);
5297
5298         *(unsigned long *)ptr += freed_pages;
5299         return NOTIFY_DONE;
5300 }
5301
5302 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5303 {
5304         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5305         struct i915_vma *vma;
5306
5307         list_for_each_entry(vma, &obj->vma_list, vma_link) {
5308                 if (vma->vm == ggtt)
5309                         return vma;
5310         }
5311
5312         return NULL;
5313 }