drm/i915: Remove obj->pin_mappable
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50                                  struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52                                          struct drm_i915_fence_reg *fence,
53                                          bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56                                   enum i915_cache_level level)
57 {
58         return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64                 return true;
65
66         return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71         if (obj->tiling_mode)
72                 i915_gem_release_mmap(obj);
73
74         /* As we do not have an associated fence register, we will force
75          * a tiling change if we ever need to acquire one.
76          */
77         obj->fence_dirty = false;
78         obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83                                   size_t size)
84 {
85         spin_lock(&dev_priv->mm.object_stat_lock);
86         dev_priv->mm.object_count++;
87         dev_priv->mm.object_memory += size;
88         spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92                                      size_t size)
93 {
94         spin_lock(&dev_priv->mm.object_stat_lock);
95         dev_priv->mm.object_count--;
96         dev_priv->mm.object_memory -= size;
97         spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103         int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106                    i915_terminally_wedged(error))
107         if (EXIT_COND)
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                EXIT_COND,
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         }
124 #undef EXIT_COND
125
126         return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_i915_gem_get_aperture *args = data;
152         struct drm_i915_gem_object *obj;
153         size_t pinned;
154
155         pinned = 0;
156         mutex_lock(&dev->struct_mutex);
157         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158                 if (i915_gem_obj_is_pinned(obj))
159                         pinned += i915_gem_obj_ggtt_size(obj);
160         mutex_unlock(&dev->struct_mutex);
161
162         args->aper_size = dev_priv->gtt.base.total;
163         args->aper_available_size = args->aper_size - pinned;
164
165         return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172         char *vaddr = obj->phys_handle->vaddr;
173         struct sg_table *st;
174         struct scatterlist *sg;
175         int i;
176
177         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178                 return -EINVAL;
179
180         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181                 struct page *page;
182                 char *src;
183
184                 page = shmem_read_mapping_page(mapping, i);
185                 if (IS_ERR(page))
186                         return PTR_ERR(page);
187
188                 src = kmap_atomic(page);
189                 memcpy(vaddr, src, PAGE_SIZE);
190                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191                 kunmap_atomic(src);
192
193                 page_cache_release(page);
194                 vaddr += PAGE_SIZE;
195         }
196
197         i915_gem_chipset_flush(obj->base.dev);
198
199         st = kmalloc(sizeof(*st), GFP_KERNEL);
200         if (st == NULL)
201                 return -ENOMEM;
202
203         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204                 kfree(st);
205                 return -ENOMEM;
206         }
207
208         sg = st->sgl;
209         sg->offset = 0;
210         sg->length = obj->base.size;
211
212         sg_dma_address(sg) = obj->phys_handle->busaddr;
213         sg_dma_len(sg) = obj->base.size;
214
215         obj->pages = st;
216         obj->has_dma_mapping = true;
217         return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223         int ret;
224
225         BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227         ret = i915_gem_object_set_to_cpu_domain(obj, true);
228         if (ret) {
229                 /* In the event of a disaster, abandon all caches and
230                  * hope for the best.
231                  */
232                 WARN_ON(ret != -EIO);
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         page_cache_release(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268
269         obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(dev);
372
373 out:
374         intel_fb_obj_flush(obj, false);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = dev->dev_private;
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_alloc_object(dev, size);
406         if (obj == NULL)
407                 return -ENOMEM;
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436                       struct drm_file *file)
437 {
438         struct drm_i915_gem_create *args = data;
439
440         return i915_gem_create(file, dev,
441                                args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446                         const char *gpu_vaddr, int gpu_offset,
447                         int length)
448 {
449         int ret, cpu_offset = 0;
450
451         while (length > 0) {
452                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453                 int this_length = min(cacheline_end - gpu_offset, length);
454                 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457                                      gpu_vaddr + swizzled_gpu_offset,
458                                      this_length);
459                 if (ret)
460                         return ret + length;
461
462                 cpu_offset += this_length;
463                 gpu_offset += this_length;
464                 length -= this_length;
465         }
466
467         return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472                           const char __user *cpu_vaddr,
473                           int length)
474 {
475         int ret, cpu_offset = 0;
476
477         while (length > 0) {
478                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479                 int this_length = min(cacheline_end - gpu_offset, length);
480                 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483                                        cpu_vaddr + cpu_offset,
484                                        this_length);
485                 if (ret)
486                         return ret + length;
487
488                 cpu_offset += this_length;
489                 gpu_offset += this_length;
490                 length -= this_length;
491         }
492
493         return 0;
494 }
495
496 /*
497  * Pins the specified object's pages and synchronizes the object with
498  * GPU accesses. Sets needs_clflush to non-zero if the caller should
499  * flush the object from the CPU cache.
500  */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502                                     int *needs_clflush)
503 {
504         int ret;
505
506         *needs_clflush = 0;
507
508         if (!obj->base.filp)
509                 return -EINVAL;
510
511         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512                 /* If we're not in the cpu read domain, set ourself into the gtt
513                  * read domain and manually flush cachelines (if required). This
514                  * optimizes for the case when the gpu will dirty the data
515                  * anyway again before the next pread happens. */
516                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517                                                         obj->cache_level);
518                 ret = i915_gem_object_wait_rendering(obj, true);
519                 if (ret)
520                         return ret;
521
522                 i915_gem_object_retire(obj);
523         }
524
525         ret = i915_gem_object_get_pages(obj);
526         if (ret)
527                 return ret;
528
529         i915_gem_object_pin_pages(obj);
530
531         return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535  * Flushes invalid cachelines before reading the target if
536  * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539                  char __user *user_data,
540                  bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542         char *vaddr;
543         int ret;
544
545         if (unlikely(page_do_bit17_swizzling))
546                 return -EINVAL;
547
548         vaddr = kmap_atomic(page);
549         if (needs_clflush)
550                 drm_clflush_virt_range(vaddr + shmem_page_offset,
551                                        page_length);
552         ret = __copy_to_user_inatomic(user_data,
553                                       vaddr + shmem_page_offset,
554                                       page_length);
555         kunmap_atomic(vaddr);
556
557         return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562                              bool swizzled)
563 {
564         if (unlikely(swizzled)) {
565                 unsigned long start = (unsigned long) addr;
566                 unsigned long end = (unsigned long) addr + length;
567
568                 /* For swizzling simply ensure that we always flush both
569                  * channels. Lame, but simple and it works. Swizzled
570                  * pwrite/pread is far from a hotpath - current userspace
571                  * doesn't use it at all. */
572                 start = round_down(start, 128);
573                 end = round_up(end, 128);
574
575                 drm_clflush_virt_range((void *)start, end - start);
576         } else {
577                 drm_clflush_virt_range(addr, length);
578         }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583  * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586                  char __user *user_data,
587                  bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589         char *vaddr;
590         int ret;
591
592         vaddr = kmap(page);
593         if (needs_clflush)
594                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595                                              page_length,
596                                              page_do_bit17_swizzling);
597
598         if (page_do_bit17_swizzling)
599                 ret = __copy_to_user_swizzled(user_data,
600                                               vaddr, shmem_page_offset,
601                                               page_length);
602         else
603                 ret = __copy_to_user(user_data,
604                                      vaddr + shmem_page_offset,
605                                      page_length);
606         kunmap(page);
607
608         return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613                      struct drm_i915_gem_object *obj,
614                      struct drm_i915_gem_pread *args,
615                      struct drm_file *file)
616 {
617         char __user *user_data;
618         ssize_t remain;
619         loff_t offset;
620         int shmem_page_offset, page_length, ret = 0;
621         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622         int prefaulted = 0;
623         int needs_clflush = 0;
624         struct sg_page_iter sg_iter;
625
626         user_data = to_user_ptr(args->data_ptr);
627         remain = args->size;
628
629         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632         if (ret)
633                 return ret;
634
635         offset = args->offset;
636
637         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638                          offset >> PAGE_SHIFT) {
639                 struct page *page = sg_page_iter_page(&sg_iter);
640
641                 if (remain <= 0)
642                         break;
643
644                 /* Operation in this page
645                  *
646                  * shmem_page_offset = offset within page in shmem file
647                  * page_length = bytes to copy for this page
648                  */
649                 shmem_page_offset = offset_in_page(offset);
650                 page_length = remain;
651                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652                         page_length = PAGE_SIZE - shmem_page_offset;
653
654                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655                         (page_to_phys(page) & (1 << 17)) != 0;
656
657                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660                 if (ret == 0)
661                         goto next_page;
662
663                 mutex_unlock(&dev->struct_mutex);
664
665                 if (likely(!i915.prefault_disable) && !prefaulted) {
666                         ret = fault_in_multipages_writeable(user_data, remain);
667                         /* Userspace is tricking us, but we've already clobbered
668                          * its pages with the prefault and promised to write the
669                          * data up to the first fault. Hence ignore any errors
670                          * and just continue. */
671                         (void)ret;
672                         prefaulted = 1;
673                 }
674
675                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676                                        user_data, page_do_bit17_swizzling,
677                                        needs_clflush);
678
679                 mutex_lock(&dev->struct_mutex);
680
681                 if (ret)
682                         goto out;
683
684 next_page:
685                 remain -= page_length;
686                 user_data += page_length;
687                 offset += page_length;
688         }
689
690 out:
691         i915_gem_object_unpin_pages(obj);
692
693         return ret;
694 }
695
696 /**
697  * Reads data from the object referenced by handle.
698  *
699  * On error, the contents of *data are undefined.
700  */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703                      struct drm_file *file)
704 {
705         struct drm_i915_gem_pread *args = data;
706         struct drm_i915_gem_object *obj;
707         int ret = 0;
708
709         if (args->size == 0)
710                 return 0;
711
712         if (!access_ok(VERIFY_WRITE,
713                        to_user_ptr(args->data_ptr),
714                        args->size))
715                 return -EFAULT;
716
717         ret = i915_mutex_lock_interruptible(dev);
718         if (ret)
719                 return ret;
720
721         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722         if (&obj->base == NULL) {
723                 ret = -ENOENT;
724                 goto unlock;
725         }
726
727         /* Bounds check source.  */
728         if (args->offset > obj->base.size ||
729             args->size > obj->base.size - args->offset) {
730                 ret = -EINVAL;
731                 goto out;
732         }
733
734         /* prime objects have no backing filp to GEM pread/pwrite
735          * pages from.
736          */
737         if (!obj->base.filp) {
738                 ret = -EINVAL;
739                 goto out;
740         }
741
742         trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744         ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747         drm_gem_object_unreference(&obj->base);
748 unlock:
749         mutex_unlock(&dev->struct_mutex);
750         return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754  * page faults in the source data
755  */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759                 loff_t page_base, int page_offset,
760                 char __user *user_data,
761                 int length)
762 {
763         void __iomem *vaddr_atomic;
764         void *vaddr;
765         unsigned long unwritten;
766
767         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768         /* We can use the cpu mem copy function because this is X86. */
769         vaddr = (void __force*)vaddr_atomic + page_offset;
770         unwritten = __copy_from_user_inatomic_nocache(vaddr,
771                                                       user_data, length);
772         io_mapping_unmap_atomic(vaddr_atomic);
773         return unwritten;
774 }
775
776 /**
777  * This is the fast pwrite path, where we copy the data directly from the
778  * user into the GTT, uncached.
779  */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782                          struct drm_i915_gem_object *obj,
783                          struct drm_i915_gem_pwrite *args,
784                          struct drm_file *file)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         ssize_t remain;
788         loff_t offset, page_base;
789         char __user *user_data;
790         int page_offset, page_length, ret;
791
792         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793         if (ret)
794                 goto out;
795
796         ret = i915_gem_object_set_to_gtt_domain(obj, true);
797         if (ret)
798                 goto out_unpin;
799
800         ret = i915_gem_object_put_fence(obj);
801         if (ret)
802                 goto out_unpin;
803
804         user_data = to_user_ptr(args->data_ptr);
805         remain = args->size;
806
807         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809         intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811         while (remain > 0) {
812                 /* Operation in this page
813                  *
814                  * page_base = page offset within aperture
815                  * page_offset = offset within page
816                  * page_length = bytes to copy for this page
817                  */
818                 page_base = offset & PAGE_MASK;
819                 page_offset = offset_in_page(offset);
820                 page_length = remain;
821                 if ((page_offset + remain) > PAGE_SIZE)
822                         page_length = PAGE_SIZE - page_offset;
823
824                 /* If we get a fault while copying data, then (presumably) our
825                  * source page isn't available.  Return the error and we'll
826                  * retry in the slow path.
827                  */
828                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829                                     page_offset, user_data, page_length)) {
830                         ret = -EFAULT;
831                         goto out_flush;
832                 }
833
834                 remain -= page_length;
835                 user_data += page_length;
836                 offset += page_length;
837         }
838
839 out_flush:
840         intel_fb_obj_flush(obj, false);
841 out_unpin:
842         i915_gem_object_ggtt_unpin(obj);
843 out:
844         return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848  * Flushes invalid cachelines before writing to the target if
849  * needs_clflush_before is set and flushes out any written cachelines after
850  * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853                   char __user *user_data,
854                   bool page_do_bit17_swizzling,
855                   bool needs_clflush_before,
856                   bool needs_clflush_after)
857 {
858         char *vaddr;
859         int ret;
860
861         if (unlikely(page_do_bit17_swizzling))
862                 return -EINVAL;
863
864         vaddr = kmap_atomic(page);
865         if (needs_clflush_before)
866                 drm_clflush_virt_range(vaddr + shmem_page_offset,
867                                        page_length);
868         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869                                         user_data, page_length);
870         if (needs_clflush_after)
871                 drm_clflush_virt_range(vaddr + shmem_page_offset,
872                                        page_length);
873         kunmap_atomic(vaddr);
874
875         return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879  * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882                   char __user *user_data,
883                   bool page_do_bit17_swizzling,
884                   bool needs_clflush_before,
885                   bool needs_clflush_after)
886 {
887         char *vaddr;
888         int ret;
889
890         vaddr = kmap(page);
891         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893                                              page_length,
894                                              page_do_bit17_swizzling);
895         if (page_do_bit17_swizzling)
896                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897                                                 user_data,
898                                                 page_length);
899         else
900                 ret = __copy_from_user(vaddr + shmem_page_offset,
901                                        user_data,
902                                        page_length);
903         if (needs_clflush_after)
904                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905                                              page_length,
906                                              page_do_bit17_swizzling);
907         kunmap(page);
908
909         return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914                       struct drm_i915_gem_object *obj,
915                       struct drm_i915_gem_pwrite *args,
916                       struct drm_file *file)
917 {
918         ssize_t remain;
919         loff_t offset;
920         char __user *user_data;
921         int shmem_page_offset, page_length, ret = 0;
922         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923         int hit_slowpath = 0;
924         int needs_clflush_after = 0;
925         int needs_clflush_before = 0;
926         struct sg_page_iter sg_iter;
927
928         user_data = to_user_ptr(args->data_ptr);
929         remain = args->size;
930
931         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934                 /* If we're not in the cpu write domain, set ourself into the gtt
935                  * write domain and manually flush cachelines (if required). This
936                  * optimizes for the case when the gpu will use the data
937                  * right away and we therefore have to clflush anyway. */
938                 needs_clflush_after = cpu_write_needs_clflush(obj);
939                 ret = i915_gem_object_wait_rendering(obj, false);
940                 if (ret)
941                         return ret;
942
943                 i915_gem_object_retire(obj);
944         }
945         /* Same trick applies to invalidate partially written cachelines read
946          * before writing. */
947         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948                 needs_clflush_before =
949                         !cpu_cache_is_coherent(dev, obj->cache_level);
950
951         ret = i915_gem_object_get_pages(obj);
952         if (ret)
953                 return ret;
954
955         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957         i915_gem_object_pin_pages(obj);
958
959         offset = args->offset;
960         obj->dirty = 1;
961
962         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963                          offset >> PAGE_SHIFT) {
964                 struct page *page = sg_page_iter_page(&sg_iter);
965                 int partial_cacheline_write;
966
967                 if (remain <= 0)
968                         break;
969
970                 /* Operation in this page
971                  *
972                  * shmem_page_offset = offset within page in shmem file
973                  * page_length = bytes to copy for this page
974                  */
975                 shmem_page_offset = offset_in_page(offset);
976
977                 page_length = remain;
978                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979                         page_length = PAGE_SIZE - shmem_page_offset;
980
981                 /* If we don't overwrite a cacheline completely we need to be
982                  * careful to have up-to-date data by first clflushing. Don't
983                  * overcomplicate things and flush the entire patch. */
984                 partial_cacheline_write = needs_clflush_before &&
985                         ((shmem_page_offset | page_length)
986                                 & (boot_cpu_data.x86_clflush_size - 1));
987
988                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989                         (page_to_phys(page) & (1 << 17)) != 0;
990
991                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992                                         user_data, page_do_bit17_swizzling,
993                                         partial_cacheline_write,
994                                         needs_clflush_after);
995                 if (ret == 0)
996                         goto next_page;
997
998                 hit_slowpath = 1;
999                 mutex_unlock(&dev->struct_mutex);
1000                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001                                         user_data, page_do_bit17_swizzling,
1002                                         partial_cacheline_write,
1003                                         needs_clflush_after);
1004
1005                 mutex_lock(&dev->struct_mutex);
1006
1007                 if (ret)
1008                         goto out;
1009
1010 next_page:
1011                 remain -= page_length;
1012                 user_data += page_length;
1013                 offset += page_length;
1014         }
1015
1016 out:
1017         i915_gem_object_unpin_pages(obj);
1018
1019         if (hit_slowpath) {
1020                 /*
1021                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1022                  * cachelines in-line while writing and the object moved
1023                  * out of the cpu write domain while we've dropped the lock.
1024                  */
1025                 if (!needs_clflush_after &&
1026                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027                         if (i915_gem_clflush_object(obj, obj->pin_display))
1028                                 i915_gem_chipset_flush(dev);
1029                 }
1030         }
1031
1032         if (needs_clflush_after)
1033                 i915_gem_chipset_flush(dev);
1034
1035         intel_fb_obj_flush(obj, false);
1036         return ret;
1037 }
1038
1039 /**
1040  * Writes data to the object referenced by handle.
1041  *
1042  * On error, the contents of the buffer that were to be modified are undefined.
1043  */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046                       struct drm_file *file)
1047 {
1048         struct drm_i915_private *dev_priv = dev->dev_private;
1049         struct drm_i915_gem_pwrite *args = data;
1050         struct drm_i915_gem_object *obj;
1051         int ret;
1052
1053         if (args->size == 0)
1054                 return 0;
1055
1056         if (!access_ok(VERIFY_READ,
1057                        to_user_ptr(args->data_ptr),
1058                        args->size))
1059                 return -EFAULT;
1060
1061         if (likely(!i915.prefault_disable)) {
1062                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063                                                    args->size);
1064                 if (ret)
1065                         return -EFAULT;
1066         }
1067
1068         intel_runtime_pm_get(dev_priv);
1069
1070         ret = i915_mutex_lock_interruptible(dev);
1071         if (ret)
1072                 goto put_rpm;
1073
1074         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075         if (&obj->base == NULL) {
1076                 ret = -ENOENT;
1077                 goto unlock;
1078         }
1079
1080         /* Bounds check destination. */
1081         if (args->offset > obj->base.size ||
1082             args->size > obj->base.size - args->offset) {
1083                 ret = -EINVAL;
1084                 goto out;
1085         }
1086
1087         /* prime objects have no backing filp to GEM pread/pwrite
1088          * pages from.
1089          */
1090         if (!obj->base.filp) {
1091                 ret = -EINVAL;
1092                 goto out;
1093         }
1094
1095         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097         ret = -EFAULT;
1098         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099          * it would end up going through the fenced access, and we'll get
1100          * different detiling behavior between reading and writing.
1101          * pread/pwrite currently are reading and writing from the CPU
1102          * perspective, requiring manual detiling by the client.
1103          */
1104         if (obj->tiling_mode == I915_TILING_NONE &&
1105             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106             cpu_write_needs_clflush(obj)) {
1107                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108                 /* Note that the gtt paths might fail with non-page-backed user
1109                  * pointers (e.g. gtt mappings when moving data between
1110                  * textures). Fallback to the shmem path in that case. */
1111         }
1112
1113         if (ret == -EFAULT || ret == -ENOSPC) {
1114                 if (obj->phys_handle)
1115                         ret = i915_gem_phys_pwrite(obj, args, file);
1116                 else
1117                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118         }
1119
1120 out:
1121         drm_gem_object_unreference(&obj->base);
1122 unlock:
1123         mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125         intel_runtime_pm_put(dev_priv);
1126
1127         return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132                      bool interruptible)
1133 {
1134         if (i915_reset_in_progress(error)) {
1135                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136                  * -EIO unconditionally for these. */
1137                 if (!interruptible)
1138                         return -EIO;
1139
1140                 /* Recovery complete, but the reset failed ... */
1141                 if (i915_terminally_wedged(error))
1142                         return -EIO;
1143
1144                 /*
1145                  * Check if GPU Reset is in progress - we need intel_ring_begin
1146                  * to work properly to reinit the hw state while the gpu is
1147                  * still marked as reset-in-progress. Handle this with a flag.
1148                  */
1149                 if (!error->reload_in_reset)
1150                         return -EAGAIN;
1151         }
1152
1153         return 0;
1154 }
1155
1156 /*
1157  * Compare arbitrary request against outstanding lazy request. Emit on match.
1158  */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162         int ret;
1163
1164         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166         ret = 0;
1167         if (req == req->ring->outstanding_lazy_request)
1168                 ret = i915_add_request(req->ring);
1169
1170         return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175         wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179                        struct intel_engine_cs *ring)
1180 {
1181         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185 {
1186         unsigned long timeout;
1187
1188         if (i915_gem_request_get_ring(rq)->irq_refcount)
1189                 return -EBUSY;
1190
1191         timeout = jiffies + 1;
1192         while (!need_resched()) {
1193                 if (i915_gem_request_completed(rq, true))
1194                         return 0;
1195
1196                 if (time_after_eq(jiffies, timeout))
1197                         break;
1198
1199                 cpu_relax_lowlatency();
1200         }
1201         if (i915_gem_request_completed(rq, false))
1202                 return 0;
1203
1204         return -EAGAIN;
1205 }
1206
1207 /**
1208  * __i915_wait_request - wait until execution of request has finished
1209  * @req: duh!
1210  * @reset_counter: reset sequence associated with the given request
1211  * @interruptible: do an interruptible wait (normally yes)
1212  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1213  *
1214  * Note: It is of utmost importance that the passed in seqno and reset_counter
1215  * values have been read by the caller in an smp safe manner. Where read-side
1216  * locks are involved, it is sufficient to read the reset_counter before
1217  * unlocking the lock that protects the seqno. For lockless tricks, the
1218  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1219  * inserted.
1220  *
1221  * Returns 0 if the request was found within the alloted time. Else returns the
1222  * errno with remaining time filled in timeout argument.
1223  */
1224 int __i915_wait_request(struct drm_i915_gem_request *req,
1225                         unsigned reset_counter,
1226                         bool interruptible,
1227                         s64 *timeout,
1228                         struct drm_i915_file_private *file_priv)
1229 {
1230         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231         struct drm_device *dev = ring->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         const bool irq_test_in_progress =
1234                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235         DEFINE_WAIT(wait);
1236         unsigned long timeout_expire;
1237         s64 before, now;
1238         int ret;
1239
1240         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241
1242         if (i915_gem_request_completed(req, true))
1243                 return 0;
1244
1245         timeout_expire = timeout ?
1246                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247
1248         if (INTEL_INFO(dev)->gen >= 6)
1249                 gen6_rps_boost(dev_priv, file_priv);
1250
1251         /* Record current time in case interrupted by signal, or wedged */
1252         trace_i915_gem_request_wait_begin(req);
1253         before = ktime_get_raw_ns();
1254
1255         /* Optimistic spin for the next jiffie before touching IRQs */
1256         ret = __i915_spin_request(req);
1257         if (ret == 0)
1258                 goto out;
1259
1260         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1261                 ret = -ENODEV;
1262                 goto out;
1263         }
1264
1265         for (;;) {
1266                 struct timer_list timer;
1267
1268                 prepare_to_wait(&ring->irq_queue, &wait,
1269                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270
1271                 /* We need to check whether any gpu reset happened in between
1272                  * the caller grabbing the seqno and now ... */
1273                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1274                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1275                          * is truely gone. */
1276                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1277                         if (ret == 0)
1278                                 ret = -EAGAIN;
1279                         break;
1280                 }
1281
1282                 if (i915_gem_request_completed(req, false)) {
1283                         ret = 0;
1284                         break;
1285                 }
1286
1287                 if (interruptible && signal_pending(current)) {
1288                         ret = -ERESTARTSYS;
1289                         break;
1290                 }
1291
1292                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293                         ret = -ETIME;
1294                         break;
1295                 }
1296
1297                 timer.function = NULL;
1298                 if (timeout || missed_irq(dev_priv, ring)) {
1299                         unsigned long expire;
1300
1301                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303                         mod_timer(&timer, expire);
1304                 }
1305
1306                 io_schedule();
1307
1308                 if (timer.function) {
1309                         del_singleshot_timer_sync(&timer);
1310                         destroy_timer_on_stack(&timer);
1311                 }
1312         }
1313         if (!irq_test_in_progress)
1314                 ring->irq_put(ring);
1315
1316         finish_wait(&ring->irq_queue, &wait);
1317
1318 out:
1319         now = ktime_get_raw_ns();
1320         trace_i915_gem_request_wait_end(req);
1321
1322         if (timeout) {
1323                 s64 tres = *timeout - (now - before);
1324
1325                 *timeout = tres < 0 ? 0 : tres;
1326
1327                 /*
1328                  * Apparently ktime isn't accurate enough and occasionally has a
1329                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1330                  * things up to make the test happy. We allow up to 1 jiffy.
1331                  *
1332                  * This is a regrssion from the timespec->ktime conversion.
1333                  */
1334                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1335                         *timeout = 0;
1336         }
1337
1338         return ret;
1339 }
1340
1341 /**
1342  * Waits for a request to be signaled, and cleans up the
1343  * request and object lists appropriately for that event.
1344  */
1345 int
1346 i915_wait_request(struct drm_i915_gem_request *req)
1347 {
1348         struct drm_device *dev;
1349         struct drm_i915_private *dev_priv;
1350         bool interruptible;
1351         unsigned reset_counter;
1352         int ret;
1353
1354         BUG_ON(req == NULL);
1355
1356         dev = req->ring->dev;
1357         dev_priv = dev->dev_private;
1358         interruptible = dev_priv->mm.interruptible;
1359
1360         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1361
1362         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363         if (ret)
1364                 return ret;
1365
1366         ret = i915_gem_check_olr(req);
1367         if (ret)
1368                 return ret;
1369
1370         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371         i915_gem_request_reference(req);
1372         ret = __i915_wait_request(req, reset_counter,
1373                                   interruptible, NULL, NULL);
1374         i915_gem_request_unreference(req);
1375         return ret;
1376 }
1377
1378 static int
1379 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380 {
1381         if (!obj->active)
1382                 return 0;
1383
1384         /* Manually manage the write flush as we may have not yet
1385          * retired the buffer.
1386          *
1387          * Note that the last_write_req is always the earlier of
1388          * the two (read/write) requests, so if we haved successfully waited,
1389          * we know we have passed the last write.
1390          */
1391         i915_gem_request_assign(&obj->last_write_req, NULL);
1392
1393         return 0;
1394 }
1395
1396 /**
1397  * Ensures that all rendering to the object has completed and the object is
1398  * safe to unbind from the GTT or access from the CPU.
1399  */
1400 static __must_check int
1401 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1402                                bool readonly)
1403 {
1404         struct drm_i915_gem_request *req;
1405         int ret;
1406
1407         req = readonly ? obj->last_write_req : obj->last_read_req;
1408         if (!req)
1409                 return 0;
1410
1411         ret = i915_wait_request(req);
1412         if (ret)
1413                 return ret;
1414
1415         return i915_gem_object_wait_rendering__tail(obj);
1416 }
1417
1418 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1419  * as the object state may change during this call.
1420  */
1421 static __must_check int
1422 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423                                             struct drm_i915_file_private *file_priv,
1424                                             bool readonly)
1425 {
1426         struct drm_i915_gem_request *req;
1427         struct drm_device *dev = obj->base.dev;
1428         struct drm_i915_private *dev_priv = dev->dev_private;
1429         unsigned reset_counter;
1430         int ret;
1431
1432         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1433         BUG_ON(!dev_priv->mm.interruptible);
1434
1435         req = readonly ? obj->last_write_req : obj->last_read_req;
1436         if (!req)
1437                 return 0;
1438
1439         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440         if (ret)
1441                 return ret;
1442
1443         ret = i915_gem_check_olr(req);
1444         if (ret)
1445                 return ret;
1446
1447         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448         i915_gem_request_reference(req);
1449         mutex_unlock(&dev->struct_mutex);
1450         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451         mutex_lock(&dev->struct_mutex);
1452         i915_gem_request_unreference(req);
1453         if (ret)
1454                 return ret;
1455
1456         return i915_gem_object_wait_rendering__tail(obj);
1457 }
1458
1459 /**
1460  * Called when user space prepares to use an object with the CPU, either
1461  * through the mmap ioctl's mapping or a GTT mapping.
1462  */
1463 int
1464 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465                           struct drm_file *file)
1466 {
1467         struct drm_i915_gem_set_domain *args = data;
1468         struct drm_i915_gem_object *obj;
1469         uint32_t read_domains = args->read_domains;
1470         uint32_t write_domain = args->write_domain;
1471         int ret;
1472
1473         /* Only handle setting domains to types used by the CPU. */
1474         if (write_domain & I915_GEM_GPU_DOMAINS)
1475                 return -EINVAL;
1476
1477         if (read_domains & I915_GEM_GPU_DOMAINS)
1478                 return -EINVAL;
1479
1480         /* Having something in the write domain implies it's in the read
1481          * domain, and only that read domain.  Enforce that in the request.
1482          */
1483         if (write_domain != 0 && read_domains != write_domain)
1484                 return -EINVAL;
1485
1486         ret = i915_mutex_lock_interruptible(dev);
1487         if (ret)
1488                 return ret;
1489
1490         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491         if (&obj->base == NULL) {
1492                 ret = -ENOENT;
1493                 goto unlock;
1494         }
1495
1496         /* Try to flush the object off the GPU without holding the lock.
1497          * We will repeat the flush holding the lock in the normal manner
1498          * to catch cases where we are gazumped.
1499          */
1500         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1501                                                           file->driver_priv,
1502                                                           !write_domain);
1503         if (ret)
1504                 goto unref;
1505
1506         if (read_domains & I915_GEM_DOMAIN_GTT)
1507                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508         else
1509                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510
1511 unref:
1512         drm_gem_object_unreference(&obj->base);
1513 unlock:
1514         mutex_unlock(&dev->struct_mutex);
1515         return ret;
1516 }
1517
1518 /**
1519  * Called when user space has done writes to this buffer
1520  */
1521 int
1522 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523                          struct drm_file *file)
1524 {
1525         struct drm_i915_gem_sw_finish *args = data;
1526         struct drm_i915_gem_object *obj;
1527         int ret = 0;
1528
1529         ret = i915_mutex_lock_interruptible(dev);
1530         if (ret)
1531                 return ret;
1532
1533         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534         if (&obj->base == NULL) {
1535                 ret = -ENOENT;
1536                 goto unlock;
1537         }
1538
1539         /* Pinned buffers may be scanout, so flush the cache */
1540         if (obj->pin_display)
1541                 i915_gem_object_flush_cpu_write_domain(obj);
1542
1543         drm_gem_object_unreference(&obj->base);
1544 unlock:
1545         mutex_unlock(&dev->struct_mutex);
1546         return ret;
1547 }
1548
1549 /**
1550  * Maps the contents of an object, returning the address it is mapped
1551  * into.
1552  *
1553  * While the mapping holds a reference on the contents of the object, it doesn't
1554  * imply a ref on the object itself.
1555  *
1556  * IMPORTANT:
1557  *
1558  * DRM driver writers who look a this function as an example for how to do GEM
1559  * mmap support, please don't implement mmap support like here. The modern way
1560  * to implement DRM mmap support is with an mmap offset ioctl (like
1561  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1562  * That way debug tooling like valgrind will understand what's going on, hiding
1563  * the mmap call in a driver private ioctl will break that. The i915 driver only
1564  * does cpu mmaps this way because we didn't know better.
1565  */
1566 int
1567 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568                     struct drm_file *file)
1569 {
1570         struct drm_i915_gem_mmap *args = data;
1571         struct drm_gem_object *obj;
1572         unsigned long addr;
1573
1574         if (args->flags & ~(I915_MMAP_WC))
1575                 return -EINVAL;
1576
1577         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1578                 return -ENODEV;
1579
1580         obj = drm_gem_object_lookup(dev, file, args->handle);
1581         if (obj == NULL)
1582                 return -ENOENT;
1583
1584         /* prime objects have no backing filp to GEM mmap
1585          * pages from.
1586          */
1587         if (!obj->filp) {
1588                 drm_gem_object_unreference_unlocked(obj);
1589                 return -EINVAL;
1590         }
1591
1592         addr = vm_mmap(obj->filp, 0, args->size,
1593                        PROT_READ | PROT_WRITE, MAP_SHARED,
1594                        args->offset);
1595         if (args->flags & I915_MMAP_WC) {
1596                 struct mm_struct *mm = current->mm;
1597                 struct vm_area_struct *vma;
1598
1599                 down_write(&mm->mmap_sem);
1600                 vma = find_vma(mm, addr);
1601                 if (vma)
1602                         vma->vm_page_prot =
1603                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1604                 else
1605                         addr = -ENOMEM;
1606                 up_write(&mm->mmap_sem);
1607         }
1608         drm_gem_object_unreference_unlocked(obj);
1609         if (IS_ERR((void *)addr))
1610                 return addr;
1611
1612         args->addr_ptr = (uint64_t) addr;
1613
1614         return 0;
1615 }
1616
1617 /**
1618  * i915_gem_fault - fault a page into the GTT
1619  * vma: VMA in question
1620  * vmf: fault info
1621  *
1622  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1623  * from userspace.  The fault handler takes care of binding the object to
1624  * the GTT (if needed), allocating and programming a fence register (again,
1625  * only if needed based on whether the old reg is still valid or the object
1626  * is tiled) and inserting a new PTE into the faulting process.
1627  *
1628  * Note that the faulting process may involve evicting existing objects
1629  * from the GTT and/or fence registers to make room.  So performance may
1630  * suffer if the GTT working set is large or there are few fence registers
1631  * left.
1632  */
1633 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634 {
1635         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1636         struct drm_device *dev = obj->base.dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         pgoff_t page_offset;
1639         unsigned long pfn;
1640         int ret = 0;
1641         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1642
1643         intel_runtime_pm_get(dev_priv);
1644
1645         /* We don't use vmf->pgoff since that has the fake offset */
1646         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1647                 PAGE_SHIFT;
1648
1649         ret = i915_mutex_lock_interruptible(dev);
1650         if (ret)
1651                 goto out;
1652
1653         trace_i915_gem_object_fault(obj, page_offset, true, write);
1654
1655         /* Try to flush the object off the GPU first without holding the lock.
1656          * Upon reacquiring the lock, we will perform our sanity checks and then
1657          * repeat the flush holding the lock in the normal manner to catch cases
1658          * where we are gazumped.
1659          */
1660         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1661         if (ret)
1662                 goto unlock;
1663
1664         /* Access to snoopable pages through the GTT is incoherent. */
1665         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1666                 ret = -EFAULT;
1667                 goto unlock;
1668         }
1669
1670         /* Now bind it into the GTT if needed */
1671         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1672         if (ret)
1673                 goto unlock;
1674
1675         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1676         if (ret)
1677                 goto unpin;
1678
1679         ret = i915_gem_object_get_fence(obj);
1680         if (ret)
1681                 goto unpin;
1682
1683         /* Finally, remap it using the new GTT offset */
1684         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1685         pfn >>= PAGE_SHIFT;
1686
1687         if (!obj->fault_mappable) {
1688                 unsigned long size = min_t(unsigned long,
1689                                            vma->vm_end - vma->vm_start,
1690                                            obj->base.size);
1691                 int i;
1692
1693                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1694                         ret = vm_insert_pfn(vma,
1695                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1696                                             pfn + i);
1697                         if (ret)
1698                                 break;
1699                 }
1700
1701                 obj->fault_mappable = true;
1702         } else
1703                 ret = vm_insert_pfn(vma,
1704                                     (unsigned long)vmf->virtual_address,
1705                                     pfn + page_offset);
1706 unpin:
1707         i915_gem_object_ggtt_unpin(obj);
1708 unlock:
1709         mutex_unlock(&dev->struct_mutex);
1710 out:
1711         switch (ret) {
1712         case -EIO:
1713                 /*
1714                  * We eat errors when the gpu is terminally wedged to avoid
1715                  * userspace unduly crashing (gl has no provisions for mmaps to
1716                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1717                  * and so needs to be reported.
1718                  */
1719                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1720                         ret = VM_FAULT_SIGBUS;
1721                         break;
1722                 }
1723         case -EAGAIN:
1724                 /*
1725                  * EAGAIN means the gpu is hung and we'll wait for the error
1726                  * handler to reset everything when re-faulting in
1727                  * i915_mutex_lock_interruptible.
1728                  */
1729         case 0:
1730         case -ERESTARTSYS:
1731         case -EINTR:
1732         case -EBUSY:
1733                 /*
1734                  * EBUSY is ok: this just means that another thread
1735                  * already did the job.
1736                  */
1737                 ret = VM_FAULT_NOPAGE;
1738                 break;
1739         case -ENOMEM:
1740                 ret = VM_FAULT_OOM;
1741                 break;
1742         case -ENOSPC:
1743         case -EFAULT:
1744                 ret = VM_FAULT_SIGBUS;
1745                 break;
1746         default:
1747                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748                 ret = VM_FAULT_SIGBUS;
1749                 break;
1750         }
1751
1752         intel_runtime_pm_put(dev_priv);
1753         return ret;
1754 }
1755
1756 /**
1757  * i915_gem_release_mmap - remove physical page mappings
1758  * @obj: obj in question
1759  *
1760  * Preserve the reservation of the mmapping with the DRM core code, but
1761  * relinquish ownership of the pages back to the system.
1762  *
1763  * It is vital that we remove the page mapping if we have mapped a tiled
1764  * object through the GTT and then lose the fence register due to
1765  * resource pressure. Similarly if the object has been moved out of the
1766  * aperture, than pages mapped into userspace must be revoked. Removing the
1767  * mapping will then trigger a page fault on the next user access, allowing
1768  * fixup by i915_gem_fault().
1769  */
1770 void
1771 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772 {
1773         if (!obj->fault_mappable)
1774                 return;
1775
1776         drm_vma_node_unmap(&obj->base.vma_node,
1777                            obj->base.dev->anon_inode->i_mapping);
1778         obj->fault_mappable = false;
1779 }
1780
1781 void
1782 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1783 {
1784         struct drm_i915_gem_object *obj;
1785
1786         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1787                 i915_gem_release_mmap(obj);
1788 }
1789
1790 uint32_t
1791 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792 {
1793         uint32_t gtt_size;
1794
1795         if (INTEL_INFO(dev)->gen >= 4 ||
1796             tiling_mode == I915_TILING_NONE)
1797                 return size;
1798
1799         /* Previous chips need a power-of-two fence region when tiling */
1800         if (INTEL_INFO(dev)->gen == 3)
1801                 gtt_size = 1024*1024;
1802         else
1803                 gtt_size = 512*1024;
1804
1805         while (gtt_size < size)
1806                 gtt_size <<= 1;
1807
1808         return gtt_size;
1809 }
1810
1811 /**
1812  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1813  * @obj: object to check
1814  *
1815  * Return the required GTT alignment for an object, taking into account
1816  * potential fence register mapping.
1817  */
1818 uint32_t
1819 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1820                            int tiling_mode, bool fenced)
1821 {
1822         /*
1823          * Minimum alignment is 4k (GTT page size), but might be greater
1824          * if a fence register is needed for the object.
1825          */
1826         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1827             tiling_mode == I915_TILING_NONE)
1828                 return 4096;
1829
1830         /*
1831          * Previous chips need to be aligned to the size of the smallest
1832          * fence register that can contain the object.
1833          */
1834         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1835 }
1836
1837 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1838 {
1839         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840         int ret;
1841
1842         if (drm_vma_node_has_offset(&obj->base.vma_node))
1843                 return 0;
1844
1845         dev_priv->mm.shrinker_no_lock_stealing = true;
1846
1847         ret = drm_gem_create_mmap_offset(&obj->base);
1848         if (ret != -ENOSPC)
1849                 goto out;
1850
1851         /* Badly fragmented mmap space? The only way we can recover
1852          * space is by destroying unwanted objects. We can't randomly release
1853          * mmap_offsets as userspace expects them to be persistent for the
1854          * lifetime of the objects. The closest we can is to release the
1855          * offsets on purgeable objects by truncating it and marking it purged,
1856          * which prevents userspace from ever using that object again.
1857          */
1858         i915_gem_shrink(dev_priv,
1859                         obj->base.size >> PAGE_SHIFT,
1860                         I915_SHRINK_BOUND |
1861                         I915_SHRINK_UNBOUND |
1862                         I915_SHRINK_PURGEABLE);
1863         ret = drm_gem_create_mmap_offset(&obj->base);
1864         if (ret != -ENOSPC)
1865                 goto out;
1866
1867         i915_gem_shrink_all(dev_priv);
1868         ret = drm_gem_create_mmap_offset(&obj->base);
1869 out:
1870         dev_priv->mm.shrinker_no_lock_stealing = false;
1871
1872         return ret;
1873 }
1874
1875 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1876 {
1877         drm_gem_free_mmap_offset(&obj->base);
1878 }
1879
1880 int
1881 i915_gem_mmap_gtt(struct drm_file *file,
1882                   struct drm_device *dev,
1883                   uint32_t handle,
1884                   uint64_t *offset)
1885 {
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct drm_i915_gem_object *obj;
1888         int ret;
1889
1890         ret = i915_mutex_lock_interruptible(dev);
1891         if (ret)
1892                 return ret;
1893
1894         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1895         if (&obj->base == NULL) {
1896                 ret = -ENOENT;
1897                 goto unlock;
1898         }
1899
1900         if (obj->base.size > dev_priv->gtt.mappable_end) {
1901                 ret = -E2BIG;
1902                 goto out;
1903         }
1904
1905         if (obj->madv != I915_MADV_WILLNEED) {
1906                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1907                 ret = -EFAULT;
1908                 goto out;
1909         }
1910
1911         ret = i915_gem_object_create_mmap_offset(obj);
1912         if (ret)
1913                 goto out;
1914
1915         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1916
1917 out:
1918         drm_gem_object_unreference(&obj->base);
1919 unlock:
1920         mutex_unlock(&dev->struct_mutex);
1921         return ret;
1922 }
1923
1924 /**
1925  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1926  * @dev: DRM device
1927  * @data: GTT mapping ioctl data
1928  * @file: GEM object info
1929  *
1930  * Simply returns the fake offset to userspace so it can mmap it.
1931  * The mmap call will end up in drm_gem_mmap(), which will set things
1932  * up so we can get faults in the handler above.
1933  *
1934  * The fault handler will take care of binding the object into the GTT
1935  * (since it may have been evicted to make room for something), allocating
1936  * a fence register, and mapping the appropriate aperture address into
1937  * userspace.
1938  */
1939 int
1940 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1941                         struct drm_file *file)
1942 {
1943         struct drm_i915_gem_mmap_gtt *args = data;
1944
1945         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1946 }
1947
1948 /* Immediately discard the backing storage */
1949 static void
1950 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_free_mmap_offset(obj);
1953
1954         if (obj->base.filp == NULL)
1955                 return;
1956
1957         /* Our goal here is to return as much of the memory as
1958          * is possible back to the system as we are called from OOM.
1959          * To do this we must instruct the shmfs to drop all of its
1960          * backing pages, *now*.
1961          */
1962         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1963         obj->madv = __I915_MADV_PURGED;
1964 }
1965
1966 /* Try to discard unwanted pages */
1967 static void
1968 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1969 {
1970         struct address_space *mapping;
1971
1972         switch (obj->madv) {
1973         case I915_MADV_DONTNEED:
1974                 i915_gem_object_truncate(obj);
1975         case __I915_MADV_PURGED:
1976                 return;
1977         }
1978
1979         if (obj->base.filp == NULL)
1980                 return;
1981
1982         mapping = file_inode(obj->base.filp)->i_mapping,
1983         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1984 }
1985
1986 static void
1987 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1988 {
1989         struct sg_page_iter sg_iter;
1990         int ret;
1991
1992         BUG_ON(obj->madv == __I915_MADV_PURGED);
1993
1994         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1995         if (ret) {
1996                 /* In the event of a disaster, abandon all caches and
1997                  * hope for the best.
1998                  */
1999                 WARN_ON(ret != -EIO);
2000                 i915_gem_clflush_object(obj, true);
2001                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2002         }
2003
2004         if (i915_gem_object_needs_bit17_swizzle(obj))
2005                 i915_gem_object_save_bit_17_swizzle(obj);
2006
2007         if (obj->madv == I915_MADV_DONTNEED)
2008                 obj->dirty = 0;
2009
2010         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2011                 struct page *page = sg_page_iter_page(&sg_iter);
2012
2013                 if (obj->dirty)
2014                         set_page_dirty(page);
2015
2016                 if (obj->madv == I915_MADV_WILLNEED)
2017                         mark_page_accessed(page);
2018
2019                 page_cache_release(page);
2020         }
2021         obj->dirty = 0;
2022
2023         sg_free_table(obj->pages);
2024         kfree(obj->pages);
2025 }
2026
2027 int
2028 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2029 {
2030         const struct drm_i915_gem_object_ops *ops = obj->ops;
2031
2032         if (obj->pages == NULL)
2033                 return 0;
2034
2035         if (obj->pages_pin_count)
2036                 return -EBUSY;
2037
2038         BUG_ON(i915_gem_obj_bound_any(obj));
2039
2040         /* ->put_pages might need to allocate memory for the bit17 swizzle
2041          * array, hence protect them from being reaped by removing them from gtt
2042          * lists early. */
2043         list_del(&obj->global_list);
2044
2045         ops->put_pages(obj);
2046         obj->pages = NULL;
2047
2048         i915_gem_object_invalidate(obj);
2049
2050         return 0;
2051 }
2052
2053 static int
2054 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2055 {
2056         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2057         int page_count, i;
2058         struct address_space *mapping;
2059         struct sg_table *st;
2060         struct scatterlist *sg;
2061         struct sg_page_iter sg_iter;
2062         struct page *page;
2063         unsigned long last_pfn = 0;     /* suppress gcc warning */
2064         gfp_t gfp;
2065
2066         /* Assert that the object is not currently in any GPU domain. As it
2067          * wasn't in the GTT, there shouldn't be any way it could have been in
2068          * a GPU cache
2069          */
2070         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2071         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2072
2073         st = kmalloc(sizeof(*st), GFP_KERNEL);
2074         if (st == NULL)
2075                 return -ENOMEM;
2076
2077         page_count = obj->base.size / PAGE_SIZE;
2078         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2079                 kfree(st);
2080                 return -ENOMEM;
2081         }
2082
2083         /* Get the list of pages out of our struct file.  They'll be pinned
2084          * at this point until we release them.
2085          *
2086          * Fail silently without starting the shrinker
2087          */
2088         mapping = file_inode(obj->base.filp)->i_mapping;
2089         gfp = mapping_gfp_mask(mapping);
2090         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2091         gfp &= ~(__GFP_IO | __GFP_WAIT);
2092         sg = st->sgl;
2093         st->nents = 0;
2094         for (i = 0; i < page_count; i++) {
2095                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2096                 if (IS_ERR(page)) {
2097                         i915_gem_shrink(dev_priv,
2098                                         page_count,
2099                                         I915_SHRINK_BOUND |
2100                                         I915_SHRINK_UNBOUND |
2101                                         I915_SHRINK_PURGEABLE);
2102                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2103                 }
2104                 if (IS_ERR(page)) {
2105                         /* We've tried hard to allocate the memory by reaping
2106                          * our own buffer, now let the real VM do its job and
2107                          * go down in flames if truly OOM.
2108                          */
2109                         i915_gem_shrink_all(dev_priv);
2110                         page = shmem_read_mapping_page(mapping, i);
2111                         if (IS_ERR(page))
2112                                 goto err_pages;
2113                 }
2114 #ifdef CONFIG_SWIOTLB
2115                 if (swiotlb_nr_tbl()) {
2116                         st->nents++;
2117                         sg_set_page(sg, page, PAGE_SIZE, 0);
2118                         sg = sg_next(sg);
2119                         continue;
2120                 }
2121 #endif
2122                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2123                         if (i)
2124                                 sg = sg_next(sg);
2125                         st->nents++;
2126                         sg_set_page(sg, page, PAGE_SIZE, 0);
2127                 } else {
2128                         sg->length += PAGE_SIZE;
2129                 }
2130                 last_pfn = page_to_pfn(page);
2131
2132                 /* Check that the i965g/gm workaround works. */
2133                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2134         }
2135 #ifdef CONFIG_SWIOTLB
2136         if (!swiotlb_nr_tbl())
2137 #endif
2138                 sg_mark_end(sg);
2139         obj->pages = st;
2140
2141         if (i915_gem_object_needs_bit17_swizzle(obj))
2142                 i915_gem_object_do_bit_17_swizzle(obj);
2143
2144         if (obj->tiling_mode != I915_TILING_NONE &&
2145             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2146                 i915_gem_object_pin_pages(obj);
2147
2148         return 0;
2149
2150 err_pages:
2151         sg_mark_end(sg);
2152         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2153                 page_cache_release(sg_page_iter_page(&sg_iter));
2154         sg_free_table(st);
2155         kfree(st);
2156
2157         /* shmemfs first checks if there is enough memory to allocate the page
2158          * and reports ENOSPC should there be insufficient, along with the usual
2159          * ENOMEM for a genuine allocation failure.
2160          *
2161          * We use ENOSPC in our driver to mean that we have run out of aperture
2162          * space and so want to translate the error from shmemfs back to our
2163          * usual understanding of ENOMEM.
2164          */
2165         if (PTR_ERR(page) == -ENOSPC)
2166                 return -ENOMEM;
2167         else
2168                 return PTR_ERR(page);
2169 }
2170
2171 /* Ensure that the associated pages are gathered from the backing storage
2172  * and pinned into our object. i915_gem_object_get_pages() may be called
2173  * multiple times before they are released by a single call to
2174  * i915_gem_object_put_pages() - once the pages are no longer referenced
2175  * either as a result of memory pressure (reaping pages under the shrinker)
2176  * or as the object is itself released.
2177  */
2178 int
2179 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2180 {
2181         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182         const struct drm_i915_gem_object_ops *ops = obj->ops;
2183         int ret;
2184
2185         if (obj->pages)
2186                 return 0;
2187
2188         if (obj->madv != I915_MADV_WILLNEED) {
2189                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2190                 return -EFAULT;
2191         }
2192
2193         BUG_ON(obj->pages_pin_count);
2194
2195         ret = ops->get_pages(obj);
2196         if (ret)
2197                 return ret;
2198
2199         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2200
2201         obj->get_page.sg = obj->pages->sgl;
2202         obj->get_page.last = 0;
2203
2204         return 0;
2205 }
2206
2207 static void
2208 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2209                                struct intel_engine_cs *ring)
2210 {
2211         struct drm_i915_gem_request *req;
2212         struct intel_engine_cs *old_ring;
2213
2214         BUG_ON(ring == NULL);
2215
2216         req = intel_ring_get_request(ring);
2217         old_ring = i915_gem_request_get_ring(obj->last_read_req);
2218
2219         if (old_ring != ring && obj->last_write_req) {
2220                 /* Keep the request relative to the current ring */
2221                 i915_gem_request_assign(&obj->last_write_req, req);
2222         }
2223
2224         /* Add a reference if we're newly entering the active list. */
2225         if (!obj->active) {
2226                 drm_gem_object_reference(&obj->base);
2227                 obj->active = 1;
2228         }
2229
2230         list_move_tail(&obj->ring_list, &ring->active_list);
2231
2232         i915_gem_request_assign(&obj->last_read_req, req);
2233 }
2234
2235 void i915_vma_move_to_active(struct i915_vma *vma,
2236                              struct intel_engine_cs *ring)
2237 {
2238         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2239         return i915_gem_object_move_to_active(vma->obj, ring);
2240 }
2241
2242 static void
2243 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2244 {
2245         struct i915_vma *vma;
2246
2247         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2248         BUG_ON(!obj->active);
2249
2250         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2251                 if (!list_empty(&vma->mm_list))
2252                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2253         }
2254
2255         intel_fb_obj_flush(obj, true);
2256
2257         list_del_init(&obj->ring_list);
2258
2259         i915_gem_request_assign(&obj->last_read_req, NULL);
2260         i915_gem_request_assign(&obj->last_write_req, NULL);
2261         obj->base.write_domain = 0;
2262
2263         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2264
2265         obj->active = 0;
2266         drm_gem_object_unreference(&obj->base);
2267
2268         WARN_ON(i915_verify_lists(dev));
2269 }
2270
2271 static void
2272 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2273 {
2274         if (obj->last_read_req == NULL)
2275                 return;
2276
2277         if (i915_gem_request_completed(obj->last_read_req, true))
2278                 i915_gem_object_move_to_inactive(obj);
2279 }
2280
2281 static int
2282 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         struct intel_engine_cs *ring;
2286         int ret, i, j;
2287
2288         /* Carefully retire all requests without writing to the rings */
2289         for_each_ring(ring, dev_priv, i) {
2290                 ret = intel_ring_idle(ring);
2291                 if (ret)
2292                         return ret;
2293         }
2294         i915_gem_retire_requests(dev);
2295
2296         /* Finally reset hw state */
2297         for_each_ring(ring, dev_priv, i) {
2298                 intel_ring_init_seqno(ring, seqno);
2299
2300                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2301                         ring->semaphore.sync_seqno[j] = 0;
2302         }
2303
2304         return 0;
2305 }
2306
2307 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2308 {
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         int ret;
2311
2312         if (seqno == 0)
2313                 return -EINVAL;
2314
2315         /* HWS page needs to be set less than what we
2316          * will inject to ring
2317          */
2318         ret = i915_gem_init_seqno(dev, seqno - 1);
2319         if (ret)
2320                 return ret;
2321
2322         /* Carefully set the last_seqno value so that wrap
2323          * detection still works
2324          */
2325         dev_priv->next_seqno = seqno;
2326         dev_priv->last_seqno = seqno - 1;
2327         if (dev_priv->last_seqno == 0)
2328                 dev_priv->last_seqno--;
2329
2330         return 0;
2331 }
2332
2333 int
2334 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2335 {
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337
2338         /* reserve 0 for non-seqno */
2339         if (dev_priv->next_seqno == 0) {
2340                 int ret = i915_gem_init_seqno(dev, 0);
2341                 if (ret)
2342                         return ret;
2343
2344                 dev_priv->next_seqno = 1;
2345         }
2346
2347         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2348         return 0;
2349 }
2350
2351 int __i915_add_request(struct intel_engine_cs *ring,
2352                        struct drm_file *file,
2353                        struct drm_i915_gem_object *obj)
2354 {
2355         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2356         struct drm_i915_gem_request *request;
2357         struct intel_ringbuffer *ringbuf;
2358         u32 request_start;
2359         int ret;
2360
2361         request = ring->outstanding_lazy_request;
2362         if (WARN_ON(request == NULL))
2363                 return -ENOMEM;
2364
2365         if (i915.enable_execlists) {
2366                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2367         } else
2368                 ringbuf = ring->buffer;
2369
2370         request_start = intel_ring_get_tail(ringbuf);
2371         /*
2372          * Emit any outstanding flushes - execbuf can fail to emit the flush
2373          * after having emitted the batchbuffer command. Hence we need to fix
2374          * things up similar to emitting the lazy request. The difference here
2375          * is that the flush _must_ happen before the next request, no matter
2376          * what.
2377          */
2378         if (i915.enable_execlists) {
2379                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2380                 if (ret)
2381                         return ret;
2382         } else {
2383                 ret = intel_ring_flush_all_caches(ring);
2384                 if (ret)
2385                         return ret;
2386         }
2387
2388         /* Record the position of the start of the request so that
2389          * should we detect the updated seqno part-way through the
2390          * GPU processing the request, we never over-estimate the
2391          * position of the head.
2392          */
2393         request->postfix = intel_ring_get_tail(ringbuf);
2394
2395         if (i915.enable_execlists) {
2396                 ret = ring->emit_request(ringbuf, request);
2397                 if (ret)
2398                         return ret;
2399         } else {
2400                 ret = ring->add_request(ring);
2401                 if (ret)
2402                         return ret;
2403         }
2404
2405         request->head = request_start;
2406         request->tail = intel_ring_get_tail(ringbuf);
2407
2408         /* Whilst this request exists, batch_obj will be on the
2409          * active_list, and so will hold the active reference. Only when this
2410          * request is retired will the the batch_obj be moved onto the
2411          * inactive_list and lose its active reference. Hence we do not need
2412          * to explicitly hold another reference here.
2413          */
2414         request->batch_obj = obj;
2415
2416         if (!i915.enable_execlists) {
2417                 /* Hold a reference to the current context so that we can inspect
2418                  * it later in case a hangcheck error event fires.
2419                  */
2420                 request->ctx = ring->last_context;
2421                 if (request->ctx)
2422                         i915_gem_context_reference(request->ctx);
2423         }
2424
2425         request->emitted_jiffies = jiffies;
2426         list_add_tail(&request->list, &ring->request_list);
2427         request->file_priv = NULL;
2428
2429         if (file) {
2430                 struct drm_i915_file_private *file_priv = file->driver_priv;
2431
2432                 spin_lock(&file_priv->mm.lock);
2433                 request->file_priv = file_priv;
2434                 list_add_tail(&request->client_list,
2435                               &file_priv->mm.request_list);
2436                 spin_unlock(&file_priv->mm.lock);
2437
2438                 request->pid = get_pid(task_pid(current));
2439         }
2440
2441         trace_i915_gem_request_add(request);
2442         ring->outstanding_lazy_request = NULL;
2443
2444         i915_queue_hangcheck(ring->dev);
2445
2446         queue_delayed_work(dev_priv->wq,
2447                            &dev_priv->mm.retire_work,
2448                            round_jiffies_up_relative(HZ));
2449         intel_mark_busy(dev_priv->dev);
2450
2451         return 0;
2452 }
2453
2454 static inline void
2455 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2456 {
2457         struct drm_i915_file_private *file_priv = request->file_priv;
2458
2459         if (!file_priv)
2460                 return;
2461
2462         spin_lock(&file_priv->mm.lock);
2463         list_del(&request->client_list);
2464         request->file_priv = NULL;
2465         spin_unlock(&file_priv->mm.lock);
2466 }
2467
2468 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2469                                    const struct intel_context *ctx)
2470 {
2471         unsigned long elapsed;
2472
2473         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2474
2475         if (ctx->hang_stats.banned)
2476                 return true;
2477
2478         if (ctx->hang_stats.ban_period_seconds &&
2479             elapsed <= ctx->hang_stats.ban_period_seconds) {
2480                 if (!i915_gem_context_is_default(ctx)) {
2481                         DRM_DEBUG("context hanging too fast, banning!\n");
2482                         return true;
2483                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2484                         if (i915_stop_ring_allow_warn(dev_priv))
2485                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2486                         return true;
2487                 }
2488         }
2489
2490         return false;
2491 }
2492
2493 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2494                                   struct intel_context *ctx,
2495                                   const bool guilty)
2496 {
2497         struct i915_ctx_hang_stats *hs;
2498
2499         if (WARN_ON(!ctx))
2500                 return;
2501
2502         hs = &ctx->hang_stats;
2503
2504         if (guilty) {
2505                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2506                 hs->batch_active++;
2507                 hs->guilty_ts = get_seconds();
2508         } else {
2509                 hs->batch_pending++;
2510         }
2511 }
2512
2513 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2514 {
2515         list_del(&request->list);
2516         i915_gem_request_remove_from_client(request);
2517
2518         put_pid(request->pid);
2519
2520         i915_gem_request_unreference(request);
2521 }
2522
2523 void i915_gem_request_free(struct kref *req_ref)
2524 {
2525         struct drm_i915_gem_request *req = container_of(req_ref,
2526                                                  typeof(*req), ref);
2527         struct intel_context *ctx = req->ctx;
2528
2529         if (ctx) {
2530                 if (i915.enable_execlists) {
2531                         struct intel_engine_cs *ring = req->ring;
2532
2533                         if (ctx != ring->default_context)
2534                                 intel_lr_context_unpin(ring, ctx);
2535                 }
2536
2537                 i915_gem_context_unreference(ctx);
2538         }
2539
2540         kmem_cache_free(req->i915->requests, req);
2541 }
2542
2543 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2544                            struct intel_context *ctx)
2545 {
2546         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2547         struct drm_i915_gem_request *rq;
2548         int ret;
2549
2550         if (ring->outstanding_lazy_request)
2551                 return 0;
2552
2553         rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2554         if (rq == NULL)
2555                 return -ENOMEM;
2556
2557         kref_init(&rq->ref);
2558         rq->i915 = dev_priv;
2559
2560         ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2561         if (ret) {
2562                 kfree(rq);
2563                 return ret;
2564         }
2565
2566         rq->ring = ring;
2567
2568         if (i915.enable_execlists)
2569                 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2570         else
2571                 ret = intel_ring_alloc_request_extras(rq);
2572         if (ret) {
2573                 kfree(rq);
2574                 return ret;
2575         }
2576
2577         ring->outstanding_lazy_request = rq;
2578         return 0;
2579 }
2580
2581 struct drm_i915_gem_request *
2582 i915_gem_find_active_request(struct intel_engine_cs *ring)
2583 {
2584         struct drm_i915_gem_request *request;
2585
2586         list_for_each_entry(request, &ring->request_list, list) {
2587                 if (i915_gem_request_completed(request, false))
2588                         continue;
2589
2590                 return request;
2591         }
2592
2593         return NULL;
2594 }
2595
2596 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2597                                        struct intel_engine_cs *ring)
2598 {
2599         struct drm_i915_gem_request *request;
2600         bool ring_hung;
2601
2602         request = i915_gem_find_active_request(ring);
2603
2604         if (request == NULL)
2605                 return;
2606
2607         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2608
2609         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2610
2611         list_for_each_entry_continue(request, &ring->request_list, list)
2612                 i915_set_reset_status(dev_priv, request->ctx, false);
2613 }
2614
2615 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2616                                         struct intel_engine_cs *ring)
2617 {
2618         while (!list_empty(&ring->active_list)) {
2619                 struct drm_i915_gem_object *obj;
2620
2621                 obj = list_first_entry(&ring->active_list,
2622                                        struct drm_i915_gem_object,
2623                                        ring_list);
2624
2625                 i915_gem_object_move_to_inactive(obj);
2626         }
2627
2628         /*
2629          * Clear the execlists queue up before freeing the requests, as those
2630          * are the ones that keep the context and ringbuffer backing objects
2631          * pinned in place.
2632          */
2633         while (!list_empty(&ring->execlist_queue)) {
2634                 struct drm_i915_gem_request *submit_req;
2635
2636                 submit_req = list_first_entry(&ring->execlist_queue,
2637                                 struct drm_i915_gem_request,
2638                                 execlist_link);
2639                 list_del(&submit_req->execlist_link);
2640
2641                 if (submit_req->ctx != ring->default_context)
2642                         intel_lr_context_unpin(ring, submit_req->ctx);
2643
2644                 i915_gem_request_unreference(submit_req);
2645         }
2646
2647         /*
2648          * We must free the requests after all the corresponding objects have
2649          * been moved off active lists. Which is the same order as the normal
2650          * retire_requests function does. This is important if object hold
2651          * implicit references on things like e.g. ppgtt address spaces through
2652          * the request.
2653          */
2654         while (!list_empty(&ring->request_list)) {
2655                 struct drm_i915_gem_request *request;
2656
2657                 request = list_first_entry(&ring->request_list,
2658                                            struct drm_i915_gem_request,
2659                                            list);
2660
2661                 i915_gem_free_request(request);
2662         }
2663
2664         /* This may not have been flushed before the reset, so clean it now */
2665         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2666 }
2667
2668 void i915_gem_restore_fences(struct drm_device *dev)
2669 {
2670         struct drm_i915_private *dev_priv = dev->dev_private;
2671         int i;
2672
2673         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2674                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2675
2676                 /*
2677                  * Commit delayed tiling changes if we have an object still
2678                  * attached to the fence, otherwise just clear the fence.
2679                  */
2680                 if (reg->obj) {
2681                         i915_gem_object_update_fence(reg->obj, reg,
2682                                                      reg->obj->tiling_mode);
2683                 } else {
2684                         i915_gem_write_fence(dev, i, NULL);
2685                 }
2686         }
2687 }
2688
2689 void i915_gem_reset(struct drm_device *dev)
2690 {
2691         struct drm_i915_private *dev_priv = dev->dev_private;
2692         struct intel_engine_cs *ring;
2693         int i;
2694
2695         /*
2696          * Before we free the objects from the requests, we need to inspect
2697          * them for finding the guilty party. As the requests only borrow
2698          * their reference to the objects, the inspection must be done first.
2699          */
2700         for_each_ring(ring, dev_priv, i)
2701                 i915_gem_reset_ring_status(dev_priv, ring);
2702
2703         for_each_ring(ring, dev_priv, i)
2704                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2705
2706         i915_gem_context_reset(dev);
2707
2708         i915_gem_restore_fences(dev);
2709 }
2710
2711 /**
2712  * This function clears the request list as sequence numbers are passed.
2713  */
2714 void
2715 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2716 {
2717         if (list_empty(&ring->request_list))
2718                 return;
2719
2720         WARN_ON(i915_verify_lists(ring->dev));
2721
2722         /* Retire requests first as we use it above for the early return.
2723          * If we retire requests last, we may use a later seqno and so clear
2724          * the requests lists without clearing the active list, leading to
2725          * confusion.
2726          */
2727         while (!list_empty(&ring->request_list)) {
2728                 struct drm_i915_gem_request *request;
2729
2730                 request = list_first_entry(&ring->request_list,
2731                                            struct drm_i915_gem_request,
2732                                            list);
2733
2734                 if (!i915_gem_request_completed(request, true))
2735                         break;
2736
2737                 trace_i915_gem_request_retire(request);
2738
2739                 /* We know the GPU must have read the request to have
2740                  * sent us the seqno + interrupt, so use the position
2741                  * of tail of the request to update the last known position
2742                  * of the GPU head.
2743                  */
2744                 request->ringbuf->last_retired_head = request->postfix;
2745
2746                 i915_gem_free_request(request);
2747         }
2748
2749         /* Move any buffers on the active list that are no longer referenced
2750          * by the ringbuffer to the flushing/inactive lists as appropriate,
2751          * before we free the context associated with the requests.
2752          */
2753         while (!list_empty(&ring->active_list)) {
2754                 struct drm_i915_gem_object *obj;
2755
2756                 obj = list_first_entry(&ring->active_list,
2757                                       struct drm_i915_gem_object,
2758                                       ring_list);
2759
2760                 if (!i915_gem_request_completed(obj->last_read_req, true))
2761                         break;
2762
2763                 i915_gem_object_move_to_inactive(obj);
2764         }
2765
2766         if (unlikely(ring->trace_irq_req &&
2767                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2768                 ring->irq_put(ring);
2769                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2770         }
2771
2772         WARN_ON(i915_verify_lists(ring->dev));
2773 }
2774
2775 bool
2776 i915_gem_retire_requests(struct drm_device *dev)
2777 {
2778         struct drm_i915_private *dev_priv = dev->dev_private;
2779         struct intel_engine_cs *ring;
2780         bool idle = true;
2781         int i;
2782
2783         for_each_ring(ring, dev_priv, i) {
2784                 i915_gem_retire_requests_ring(ring);
2785                 idle &= list_empty(&ring->request_list);
2786                 if (i915.enable_execlists) {
2787                         unsigned long flags;
2788
2789                         spin_lock_irqsave(&ring->execlist_lock, flags);
2790                         idle &= list_empty(&ring->execlist_queue);
2791                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2792
2793                         intel_execlists_retire_requests(ring);
2794                 }
2795         }
2796
2797         if (idle)
2798                 mod_delayed_work(dev_priv->wq,
2799                                    &dev_priv->mm.idle_work,
2800                                    msecs_to_jiffies(100));
2801
2802         return idle;
2803 }
2804
2805 static void
2806 i915_gem_retire_work_handler(struct work_struct *work)
2807 {
2808         struct drm_i915_private *dev_priv =
2809                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2810         struct drm_device *dev = dev_priv->dev;
2811         bool idle;
2812
2813         /* Come back later if the device is busy... */
2814         idle = false;
2815         if (mutex_trylock(&dev->struct_mutex)) {
2816                 idle = i915_gem_retire_requests(dev);
2817                 mutex_unlock(&dev->struct_mutex);
2818         }
2819         if (!idle)
2820                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2821                                    round_jiffies_up_relative(HZ));
2822 }
2823
2824 static void
2825 i915_gem_idle_work_handler(struct work_struct *work)
2826 {
2827         struct drm_i915_private *dev_priv =
2828                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2829         struct drm_device *dev = dev_priv->dev;
2830         struct intel_engine_cs *ring;
2831         int i;
2832
2833         for_each_ring(ring, dev_priv, i)
2834                 if (!list_empty(&ring->request_list))
2835                         return;
2836
2837         intel_mark_idle(dev);
2838
2839         if (mutex_trylock(&dev->struct_mutex)) {
2840                 struct intel_engine_cs *ring;
2841                 int i;
2842
2843                 for_each_ring(ring, dev_priv, i)
2844                         i915_gem_batch_pool_fini(&ring->batch_pool);
2845
2846                 mutex_unlock(&dev->struct_mutex);
2847         }
2848 }
2849
2850 /**
2851  * Ensures that an object will eventually get non-busy by flushing any required
2852  * write domains, emitting any outstanding lazy request and retiring and
2853  * completed requests.
2854  */
2855 static int
2856 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2857 {
2858         struct intel_engine_cs *ring;
2859         int ret;
2860
2861         if (obj->active) {
2862                 ring = i915_gem_request_get_ring(obj->last_read_req);
2863
2864                 ret = i915_gem_check_olr(obj->last_read_req);
2865                 if (ret)
2866                         return ret;
2867
2868                 i915_gem_retire_requests_ring(ring);
2869         }
2870
2871         return 0;
2872 }
2873
2874 /**
2875  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2876  * @DRM_IOCTL_ARGS: standard ioctl arguments
2877  *
2878  * Returns 0 if successful, else an error is returned with the remaining time in
2879  * the timeout parameter.
2880  *  -ETIME: object is still busy after timeout
2881  *  -ERESTARTSYS: signal interrupted the wait
2882  *  -ENONENT: object doesn't exist
2883  * Also possible, but rare:
2884  *  -EAGAIN: GPU wedged
2885  *  -ENOMEM: damn
2886  *  -ENODEV: Internal IRQ fail
2887  *  -E?: The add request failed
2888  *
2889  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2890  * non-zero timeout parameter the wait ioctl will wait for the given number of
2891  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2892  * without holding struct_mutex the object may become re-busied before this
2893  * function completes. A similar but shorter * race condition exists in the busy
2894  * ioctl
2895  */
2896 int
2897 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2898 {
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         struct drm_i915_gem_wait *args = data;
2901         struct drm_i915_gem_object *obj;
2902         struct drm_i915_gem_request *req;
2903         unsigned reset_counter;
2904         int ret = 0;
2905
2906         if (args->flags != 0)
2907                 return -EINVAL;
2908
2909         ret = i915_mutex_lock_interruptible(dev);
2910         if (ret)
2911                 return ret;
2912
2913         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2914         if (&obj->base == NULL) {
2915                 mutex_unlock(&dev->struct_mutex);
2916                 return -ENOENT;
2917         }
2918
2919         /* Need to make sure the object gets inactive eventually. */
2920         ret = i915_gem_object_flush_active(obj);
2921         if (ret)
2922                 goto out;
2923
2924         if (!obj->active || !obj->last_read_req)
2925                 goto out;
2926
2927         req = obj->last_read_req;
2928
2929         /* Do this after OLR check to make sure we make forward progress polling
2930          * on this IOCTL with a timeout == 0 (like busy ioctl)
2931          */
2932         if (args->timeout_ns == 0) {
2933                 ret = -ETIME;
2934                 goto out;
2935         }
2936
2937         drm_gem_object_unreference(&obj->base);
2938         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2939         i915_gem_request_reference(req);
2940         mutex_unlock(&dev->struct_mutex);
2941
2942         ret = __i915_wait_request(req, reset_counter, true,
2943                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2944                                   file->driver_priv);
2945         i915_gem_request_unreference__unlocked(req);
2946         return ret;
2947
2948 out:
2949         drm_gem_object_unreference(&obj->base);
2950         mutex_unlock(&dev->struct_mutex);
2951         return ret;
2952 }
2953
2954 /**
2955  * i915_gem_object_sync - sync an object to a ring.
2956  *
2957  * @obj: object which may be in use on another ring.
2958  * @to: ring we wish to use the object on. May be NULL.
2959  *
2960  * This code is meant to abstract object synchronization with the GPU.
2961  * Calling with NULL implies synchronizing the object with the CPU
2962  * rather than a particular GPU ring.
2963  *
2964  * Returns 0 if successful, else propagates up the lower layer error.
2965  */
2966 int
2967 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2968                      struct intel_engine_cs *to)
2969 {
2970         struct intel_engine_cs *from;
2971         u32 seqno;
2972         int ret, idx;
2973
2974         from = i915_gem_request_get_ring(obj->last_read_req);
2975
2976         if (from == NULL || to == from)
2977                 return 0;
2978
2979         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2980                 return i915_gem_object_wait_rendering(obj, false);
2981
2982         idx = intel_ring_sync_index(from, to);
2983
2984         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2985         /* Optimization: Avoid semaphore sync when we are sure we already
2986          * waited for an object with higher seqno */
2987         if (seqno <= from->semaphore.sync_seqno[idx])
2988                 return 0;
2989
2990         ret = i915_gem_check_olr(obj->last_read_req);
2991         if (ret)
2992                 return ret;
2993
2994         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2995         ret = to->semaphore.sync_to(to, from, seqno);
2996         if (!ret)
2997                 /* We use last_read_req because sync_to()
2998                  * might have just caused seqno wrap under
2999                  * the radar.
3000                  */
3001                 from->semaphore.sync_seqno[idx] =
3002                                 i915_gem_request_get_seqno(obj->last_read_req);
3003
3004         return ret;
3005 }
3006
3007 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3008 {
3009         u32 old_write_domain, old_read_domains;
3010
3011         /* Force a pagefault for domain tracking on next user access */
3012         i915_gem_release_mmap(obj);
3013
3014         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3015                 return;
3016
3017         /* Wait for any direct GTT access to complete */
3018         mb();
3019
3020         old_read_domains = obj->base.read_domains;
3021         old_write_domain = obj->base.write_domain;
3022
3023         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3024         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3025
3026         trace_i915_gem_object_change_domain(obj,
3027                                             old_read_domains,
3028                                             old_write_domain);
3029 }
3030
3031 int i915_vma_unbind(struct i915_vma *vma)
3032 {
3033         struct drm_i915_gem_object *obj = vma->obj;
3034         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035         int ret;
3036
3037         if (list_empty(&vma->vma_link))
3038                 return 0;
3039
3040         if (!drm_mm_node_allocated(&vma->node)) {
3041                 i915_gem_vma_destroy(vma);
3042                 return 0;
3043         }
3044
3045         if (vma->pin_count)
3046                 return -EBUSY;
3047
3048         BUG_ON(obj->pages == NULL);
3049
3050         ret = i915_gem_object_finish_gpu(obj);
3051         if (ret)
3052                 return ret;
3053         /* Continue on if we fail due to EIO, the GPU is hung so we
3054          * should be safe and we need to cleanup or else we might
3055          * cause memory corruption through use-after-free.
3056          */
3057
3058         if (i915_is_ggtt(vma->vm) &&
3059             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3060                 i915_gem_object_finish_gtt(obj);
3061
3062                 /* release the fence reg _after_ flushing */
3063                 ret = i915_gem_object_put_fence(obj);
3064                 if (ret)
3065                         return ret;
3066         }
3067
3068         trace_i915_vma_unbind(vma);
3069
3070         vma->unbind_vma(vma);
3071
3072         list_del_init(&vma->mm_list);
3073         if (i915_is_ggtt(vma->vm)) {
3074                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3075                         obj->map_and_fenceable = false;
3076                 } else if (vma->ggtt_view.pages) {
3077                         sg_free_table(vma->ggtt_view.pages);
3078                         kfree(vma->ggtt_view.pages);
3079                         vma->ggtt_view.pages = NULL;
3080                 }
3081         }
3082
3083         drm_mm_remove_node(&vma->node);
3084         i915_gem_vma_destroy(vma);
3085
3086         /* Since the unbound list is global, only move to that list if
3087          * no more VMAs exist. */
3088         if (list_empty(&obj->vma_list)) {
3089                 /* Throw away the active reference before
3090                  * moving to the unbound list. */
3091                 i915_gem_object_retire(obj);
3092
3093                 i915_gem_gtt_finish_object(obj);
3094                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3095         }
3096
3097         /* And finally now the object is completely decoupled from this vma,
3098          * we can drop its hold on the backing storage and allow it to be
3099          * reaped by the shrinker.
3100          */
3101         i915_gem_object_unpin_pages(obj);
3102
3103         return 0;
3104 }
3105
3106 int i915_gpu_idle(struct drm_device *dev)
3107 {
3108         struct drm_i915_private *dev_priv = dev->dev_private;
3109         struct intel_engine_cs *ring;
3110         int ret, i;
3111
3112         /* Flush everything onto the inactive list. */
3113         for_each_ring(ring, dev_priv, i) {
3114                 if (!i915.enable_execlists) {
3115                         ret = i915_switch_context(ring, ring->default_context);
3116                         if (ret)
3117                                 return ret;
3118                 }
3119
3120                 ret = intel_ring_idle(ring);
3121                 if (ret)
3122                         return ret;
3123         }
3124
3125         return 0;
3126 }
3127
3128 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3129                                  struct drm_i915_gem_object *obj)
3130 {
3131         struct drm_i915_private *dev_priv = dev->dev_private;
3132         int fence_reg;
3133         int fence_pitch_shift;
3134
3135         if (INTEL_INFO(dev)->gen >= 6) {
3136                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3137                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3138         } else {
3139                 fence_reg = FENCE_REG_965_0;
3140                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3141         }
3142
3143         fence_reg += reg * 8;
3144
3145         /* To w/a incoherency with non-atomic 64-bit register updates,
3146          * we split the 64-bit update into two 32-bit writes. In order
3147          * for a partial fence not to be evaluated between writes, we
3148          * precede the update with write to turn off the fence register,
3149          * and only enable the fence as the last step.
3150          *
3151          * For extra levels of paranoia, we make sure each step lands
3152          * before applying the next step.
3153          */
3154         I915_WRITE(fence_reg, 0);
3155         POSTING_READ(fence_reg);
3156
3157         if (obj) {
3158                 u32 size = i915_gem_obj_ggtt_size(obj);
3159                 uint64_t val;
3160
3161                 /* Adjust fence size to match tiled area */
3162                 if (obj->tiling_mode != I915_TILING_NONE) {
3163                         uint32_t row_size = obj->stride *
3164                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3165                         size = (size / row_size) * row_size;
3166                 }
3167
3168                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3169                                  0xfffff000) << 32;
3170                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3171                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3172                 if (obj->tiling_mode == I915_TILING_Y)
3173                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3174                 val |= I965_FENCE_REG_VALID;
3175
3176                 I915_WRITE(fence_reg + 4, val >> 32);
3177                 POSTING_READ(fence_reg + 4);
3178
3179                 I915_WRITE(fence_reg + 0, val);
3180                 POSTING_READ(fence_reg);
3181         } else {
3182                 I915_WRITE(fence_reg + 4, 0);
3183                 POSTING_READ(fence_reg + 4);
3184         }
3185 }
3186
3187 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3188                                  struct drm_i915_gem_object *obj)
3189 {
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191         u32 val;
3192
3193         if (obj) {
3194                 u32 size = i915_gem_obj_ggtt_size(obj);
3195                 int pitch_val;
3196                 int tile_width;
3197
3198                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3199                      (size & -size) != size ||
3200                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3201                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3202                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3203
3204                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3205                         tile_width = 128;
3206                 else
3207                         tile_width = 512;
3208
3209                 /* Note: pitch better be a power of two tile widths */
3210                 pitch_val = obj->stride / tile_width;
3211                 pitch_val = ffs(pitch_val) - 1;
3212
3213                 val = i915_gem_obj_ggtt_offset(obj);
3214                 if (obj->tiling_mode == I915_TILING_Y)
3215                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3216                 val |= I915_FENCE_SIZE_BITS(size);
3217                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3218                 val |= I830_FENCE_REG_VALID;
3219         } else
3220                 val = 0;
3221
3222         if (reg < 8)
3223                 reg = FENCE_REG_830_0 + reg * 4;
3224         else
3225                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3226
3227         I915_WRITE(reg, val);
3228         POSTING_READ(reg);
3229 }
3230
3231 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3232                                 struct drm_i915_gem_object *obj)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         uint32_t val;
3236
3237         if (obj) {
3238                 u32 size = i915_gem_obj_ggtt_size(obj);
3239                 uint32_t pitch_val;
3240
3241                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3242                      (size & -size) != size ||
3243                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3244                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3245                      i915_gem_obj_ggtt_offset(obj), size);
3246
3247                 pitch_val = obj->stride / 128;
3248                 pitch_val = ffs(pitch_val) - 1;
3249
3250                 val = i915_gem_obj_ggtt_offset(obj);
3251                 if (obj->tiling_mode == I915_TILING_Y)
3252                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3253                 val |= I830_FENCE_SIZE_BITS(size);
3254                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3255                 val |= I830_FENCE_REG_VALID;
3256         } else
3257                 val = 0;
3258
3259         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3260         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3261 }
3262
3263 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3264 {
3265         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3266 }
3267
3268 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3269                                  struct drm_i915_gem_object *obj)
3270 {
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272
3273         /* Ensure that all CPU reads are completed before installing a fence
3274          * and all writes before removing the fence.
3275          */
3276         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3277                 mb();
3278
3279         WARN(obj && (!obj->stride || !obj->tiling_mode),
3280              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3281              obj->stride, obj->tiling_mode);
3282
3283         if (IS_GEN2(dev))
3284                 i830_write_fence_reg(dev, reg, obj);
3285         else if (IS_GEN3(dev))
3286                 i915_write_fence_reg(dev, reg, obj);
3287         else if (INTEL_INFO(dev)->gen >= 4)
3288                 i965_write_fence_reg(dev, reg, obj);
3289
3290         /* And similarly be paranoid that no direct access to this region
3291          * is reordered to before the fence is installed.
3292          */
3293         if (i915_gem_object_needs_mb(obj))
3294                 mb();
3295 }
3296
3297 static inline int fence_number(struct drm_i915_private *dev_priv,
3298                                struct drm_i915_fence_reg *fence)
3299 {
3300         return fence - dev_priv->fence_regs;
3301 }
3302
3303 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3304                                          struct drm_i915_fence_reg *fence,
3305                                          bool enable)
3306 {
3307         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3308         int reg = fence_number(dev_priv, fence);
3309
3310         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3311
3312         if (enable) {
3313                 obj->fence_reg = reg;
3314                 fence->obj = obj;
3315                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3316         } else {
3317                 obj->fence_reg = I915_FENCE_REG_NONE;
3318                 fence->obj = NULL;
3319                 list_del_init(&fence->lru_list);
3320         }
3321         obj->fence_dirty = false;
3322 }
3323
3324 static int
3325 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3326 {
3327         if (obj->last_fenced_req) {
3328                 int ret = i915_wait_request(obj->last_fenced_req);
3329                 if (ret)
3330                         return ret;
3331
3332                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3333         }
3334
3335         return 0;
3336 }
3337
3338 int
3339 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3340 {
3341         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3342         struct drm_i915_fence_reg *fence;
3343         int ret;
3344
3345         ret = i915_gem_object_wait_fence(obj);
3346         if (ret)
3347                 return ret;
3348
3349         if (obj->fence_reg == I915_FENCE_REG_NONE)
3350                 return 0;
3351
3352         fence = &dev_priv->fence_regs[obj->fence_reg];
3353
3354         if (WARN_ON(fence->pin_count))
3355                 return -EBUSY;
3356
3357         i915_gem_object_fence_lost(obj);
3358         i915_gem_object_update_fence(obj, fence, false);
3359
3360         return 0;
3361 }
3362
3363 static struct drm_i915_fence_reg *
3364 i915_find_fence_reg(struct drm_device *dev)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367         struct drm_i915_fence_reg *reg, *avail;
3368         int i;
3369
3370         /* First try to find a free reg */
3371         avail = NULL;
3372         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3373                 reg = &dev_priv->fence_regs[i];
3374                 if (!reg->obj)
3375                         return reg;
3376
3377                 if (!reg->pin_count)
3378                         avail = reg;
3379         }
3380
3381         if (avail == NULL)
3382                 goto deadlock;
3383
3384         /* None available, try to steal one or wait for a user to finish */
3385         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3386                 if (reg->pin_count)
3387                         continue;
3388
3389                 return reg;
3390         }
3391
3392 deadlock:
3393         /* Wait for completion of pending flips which consume fences */
3394         if (intel_has_pending_fb_unpin(dev))
3395                 return ERR_PTR(-EAGAIN);
3396
3397         return ERR_PTR(-EDEADLK);
3398 }
3399
3400 /**
3401  * i915_gem_object_get_fence - set up fencing for an object
3402  * @obj: object to map through a fence reg
3403  *
3404  * When mapping objects through the GTT, userspace wants to be able to write
3405  * to them without having to worry about swizzling if the object is tiled.
3406  * This function walks the fence regs looking for a free one for @obj,
3407  * stealing one if it can't find any.
3408  *
3409  * It then sets up the reg based on the object's properties: address, pitch
3410  * and tiling format.
3411  *
3412  * For an untiled surface, this removes any existing fence.
3413  */
3414 int
3415 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3416 {
3417         struct drm_device *dev = obj->base.dev;
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         bool enable = obj->tiling_mode != I915_TILING_NONE;
3420         struct drm_i915_fence_reg *reg;
3421         int ret;
3422
3423         /* Have we updated the tiling parameters upon the object and so
3424          * will need to serialise the write to the associated fence register?
3425          */
3426         if (obj->fence_dirty) {
3427                 ret = i915_gem_object_wait_fence(obj);
3428                 if (ret)
3429                         return ret;
3430         }
3431
3432         /* Just update our place in the LRU if our fence is getting reused. */
3433         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3434                 reg = &dev_priv->fence_regs[obj->fence_reg];
3435                 if (!obj->fence_dirty) {
3436                         list_move_tail(&reg->lru_list,
3437                                        &dev_priv->mm.fence_list);
3438                         return 0;
3439                 }
3440         } else if (enable) {
3441                 if (WARN_ON(!obj->map_and_fenceable))
3442                         return -EINVAL;
3443
3444                 reg = i915_find_fence_reg(dev);
3445                 if (IS_ERR(reg))
3446                         return PTR_ERR(reg);
3447
3448                 if (reg->obj) {
3449                         struct drm_i915_gem_object *old = reg->obj;
3450
3451                         ret = i915_gem_object_wait_fence(old);
3452                         if (ret)
3453                                 return ret;
3454
3455                         i915_gem_object_fence_lost(old);
3456                 }
3457         } else
3458                 return 0;
3459
3460         i915_gem_object_update_fence(obj, reg, enable);
3461
3462         return 0;
3463 }
3464
3465 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3466                                      unsigned long cache_level)
3467 {
3468         struct drm_mm_node *gtt_space = &vma->node;
3469         struct drm_mm_node *other;
3470
3471         /*
3472          * On some machines we have to be careful when putting differing types
3473          * of snoopable memory together to avoid the prefetcher crossing memory
3474          * domains and dying. During vm initialisation, we decide whether or not
3475          * these constraints apply and set the drm_mm.color_adjust
3476          * appropriately.
3477          */
3478         if (vma->vm->mm.color_adjust == NULL)
3479                 return true;
3480
3481         if (!drm_mm_node_allocated(gtt_space))
3482                 return true;
3483
3484         if (list_empty(&gtt_space->node_list))
3485                 return true;
3486
3487         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3488         if (other->allocated && !other->hole_follows && other->color != cache_level)
3489                 return false;
3490
3491         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3492         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3493                 return false;
3494
3495         return true;
3496 }
3497
3498 /**
3499  * Finds free space in the GTT aperture and binds the object there.
3500  */
3501 static struct i915_vma *
3502 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3503                            struct i915_address_space *vm,
3504                            const struct i915_ggtt_view *ggtt_view,
3505                            unsigned alignment,
3506                            uint64_t flags)
3507 {
3508         struct drm_device *dev = obj->base.dev;
3509         struct drm_i915_private *dev_priv = dev->dev_private;
3510         u32 size, fence_size, fence_alignment, unfenced_alignment;
3511         unsigned long start =
3512                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3513         unsigned long end =
3514                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3515         struct i915_vma *vma;
3516         int ret;
3517
3518         if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3519                 return ERR_PTR(-EINVAL);
3520
3521         fence_size = i915_gem_get_gtt_size(dev,
3522                                            obj->base.size,
3523                                            obj->tiling_mode);
3524         fence_alignment = i915_gem_get_gtt_alignment(dev,
3525                                                      obj->base.size,
3526                                                      obj->tiling_mode, true);
3527         unfenced_alignment =
3528                 i915_gem_get_gtt_alignment(dev,
3529                                            obj->base.size,
3530                                            obj->tiling_mode, false);
3531
3532         if (alignment == 0)
3533                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3534                                                 unfenced_alignment;
3535         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3536                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3537                 return ERR_PTR(-EINVAL);
3538         }
3539
3540         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3541
3542         /* If the object is bigger than the entire aperture, reject it early
3543          * before evicting everything in a vain attempt to find space.
3544          */
3545         if (obj->base.size > end) {
3546                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3547                           obj->base.size,
3548                           flags & PIN_MAPPABLE ? "mappable" : "total",
3549                           end);
3550                 return ERR_PTR(-E2BIG);
3551         }
3552
3553         ret = i915_gem_object_get_pages(obj);
3554         if (ret)
3555                 return ERR_PTR(ret);
3556
3557         i915_gem_object_pin_pages(obj);
3558
3559         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3560                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3561
3562         if (IS_ERR(vma))
3563                 goto err_unpin;
3564
3565 search_free:
3566         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3567                                                   size, alignment,
3568                                                   obj->cache_level,
3569                                                   start, end,
3570                                                   DRM_MM_SEARCH_DEFAULT,
3571                                                   DRM_MM_CREATE_DEFAULT);
3572         if (ret) {
3573                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3574                                                obj->cache_level,
3575                                                start, end,
3576                                                flags);
3577                 if (ret == 0)
3578                         goto search_free;
3579
3580                 goto err_free_vma;
3581         }
3582         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3583                 ret = -EINVAL;
3584                 goto err_remove_node;
3585         }
3586
3587         ret = i915_gem_gtt_prepare_object(obj);
3588         if (ret)
3589                 goto err_remove_node;
3590
3591         trace_i915_vma_bind(vma, flags);
3592         ret = i915_vma_bind(vma, obj->cache_level,
3593                             flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3594         if (ret)
3595                 goto err_finish_gtt;
3596
3597         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3598         list_add_tail(&vma->mm_list, &vm->inactive_list);
3599
3600         return vma;
3601
3602 err_finish_gtt:
3603         i915_gem_gtt_finish_object(obj);
3604 err_remove_node:
3605         drm_mm_remove_node(&vma->node);
3606 err_free_vma:
3607         i915_gem_vma_destroy(vma);
3608         vma = ERR_PTR(ret);
3609 err_unpin:
3610         i915_gem_object_unpin_pages(obj);
3611         return vma;
3612 }
3613
3614 bool
3615 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3616                         bool force)
3617 {
3618         /* If we don't have a page list set up, then we're not pinned
3619          * to GPU, and we can ignore the cache flush because it'll happen
3620          * again at bind time.
3621          */
3622         if (obj->pages == NULL)
3623                 return false;
3624
3625         /*
3626          * Stolen memory is always coherent with the GPU as it is explicitly
3627          * marked as wc by the system, or the system is cache-coherent.
3628          */
3629         if (obj->stolen || obj->phys_handle)
3630                 return false;
3631
3632         /* If the GPU is snooping the contents of the CPU cache,
3633          * we do not need to manually clear the CPU cache lines.  However,
3634          * the caches are only snooped when the render cache is
3635          * flushed/invalidated.  As we always have to emit invalidations
3636          * and flushes when moving into and out of the RENDER domain, correct
3637          * snooping behaviour occurs naturally as the result of our domain
3638          * tracking.
3639          */
3640         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3641                 obj->cache_dirty = true;
3642                 return false;
3643         }
3644
3645         trace_i915_gem_object_clflush(obj);
3646         drm_clflush_sg(obj->pages);
3647         obj->cache_dirty = false;
3648
3649         return true;
3650 }
3651
3652 /** Flushes the GTT write domain for the object if it's dirty. */
3653 static void
3654 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3655 {
3656         uint32_t old_write_domain;
3657
3658         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3659                 return;
3660
3661         /* No actual flushing is required for the GTT write domain.  Writes
3662          * to it immediately go to main memory as far as we know, so there's
3663          * no chipset flush.  It also doesn't land in render cache.
3664          *
3665          * However, we do have to enforce the order so that all writes through
3666          * the GTT land before any writes to the device, such as updates to
3667          * the GATT itself.
3668          */
3669         wmb();
3670
3671         old_write_domain = obj->base.write_domain;
3672         obj->base.write_domain = 0;
3673
3674         intel_fb_obj_flush(obj, false);
3675
3676         trace_i915_gem_object_change_domain(obj,
3677                                             obj->base.read_domains,
3678                                             old_write_domain);
3679 }
3680
3681 /** Flushes the CPU write domain for the object if it's dirty. */
3682 static void
3683 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3684 {
3685         uint32_t old_write_domain;
3686
3687         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3688                 return;
3689
3690         if (i915_gem_clflush_object(obj, obj->pin_display))
3691                 i915_gem_chipset_flush(obj->base.dev);
3692
3693         old_write_domain = obj->base.write_domain;
3694         obj->base.write_domain = 0;
3695
3696         intel_fb_obj_flush(obj, false);
3697
3698         trace_i915_gem_object_change_domain(obj,
3699                                             obj->base.read_domains,
3700                                             old_write_domain);
3701 }
3702
3703 /**
3704  * Moves a single object to the GTT read, and possibly write domain.
3705  *
3706  * This function returns when the move is complete, including waiting on
3707  * flushes to occur.
3708  */
3709 int
3710 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3711 {
3712         uint32_t old_write_domain, old_read_domains;
3713         struct i915_vma *vma;
3714         int ret;
3715
3716         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717                 return 0;
3718
3719         ret = i915_gem_object_wait_rendering(obj, !write);
3720         if (ret)
3721                 return ret;
3722
3723         i915_gem_object_retire(obj);
3724
3725         /* Flush and acquire obj->pages so that we are coherent through
3726          * direct access in memory with previous cached writes through
3727          * shmemfs and that our cache domain tracking remains valid.
3728          * For example, if the obj->filp was moved to swap without us
3729          * being notified and releasing the pages, we would mistakenly
3730          * continue to assume that the obj remained out of the CPU cached
3731          * domain.
3732          */
3733         ret = i915_gem_object_get_pages(obj);
3734         if (ret)
3735                 return ret;
3736
3737         i915_gem_object_flush_cpu_write_domain(obj);
3738
3739         /* Serialise direct access to this object with the barriers for
3740          * coherent writes from the GPU, by effectively invalidating the
3741          * GTT domain upon first access.
3742          */
3743         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3744                 mb();
3745
3746         old_write_domain = obj->base.write_domain;
3747         old_read_domains = obj->base.read_domains;
3748
3749         /* It should now be out of any other write domains, and we can update
3750          * the domain values for our changes.
3751          */
3752         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3753         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3754         if (write) {
3755                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3756                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3757                 obj->dirty = 1;
3758         }
3759
3760         if (write)
3761                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3762
3763         trace_i915_gem_object_change_domain(obj,
3764                                             old_read_domains,
3765                                             old_write_domain);
3766
3767         /* And bump the LRU for this access */
3768         vma = i915_gem_obj_to_ggtt(obj);
3769         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3770                 list_move_tail(&vma->mm_list,
3771                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3772
3773         return 0;
3774 }
3775
3776 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3777                                     enum i915_cache_level cache_level)
3778 {
3779         struct drm_device *dev = obj->base.dev;
3780         struct i915_vma *vma, *next;
3781         int ret;
3782
3783         if (obj->cache_level == cache_level)
3784                 return 0;
3785
3786         if (i915_gem_obj_is_pinned(obj)) {
3787                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3788                 return -EBUSY;
3789         }
3790
3791         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3792                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3793                         ret = i915_vma_unbind(vma);
3794                         if (ret)
3795                                 return ret;
3796                 }
3797         }
3798
3799         if (i915_gem_obj_bound_any(obj)) {
3800                 ret = i915_gem_object_finish_gpu(obj);
3801                 if (ret)
3802                         return ret;
3803
3804                 i915_gem_object_finish_gtt(obj);
3805
3806                 /* Before SandyBridge, you could not use tiling or fence
3807                  * registers with snooped memory, so relinquish any fences
3808                  * currently pointing to our region in the aperture.
3809                  */
3810                 if (INTEL_INFO(dev)->gen < 6) {
3811                         ret = i915_gem_object_put_fence(obj);
3812                         if (ret)
3813                                 return ret;
3814                 }
3815
3816                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3817                         if (drm_mm_node_allocated(&vma->node)) {
3818                                 ret = i915_vma_bind(vma, cache_level,
3819                                                     vma->bound & GLOBAL_BIND);
3820                                 if (ret)
3821                                         return ret;
3822                         }
3823         }
3824
3825         list_for_each_entry(vma, &obj->vma_list, vma_link)
3826                 vma->node.color = cache_level;
3827         obj->cache_level = cache_level;
3828
3829         if (obj->cache_dirty &&
3830             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3831             cpu_write_needs_clflush(obj)) {
3832                 if (i915_gem_clflush_object(obj, true))
3833                         i915_gem_chipset_flush(obj->base.dev);
3834         }
3835
3836         return 0;
3837 }
3838
3839 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840                                struct drm_file *file)
3841 {
3842         struct drm_i915_gem_caching *args = data;
3843         struct drm_i915_gem_object *obj;
3844         int ret;
3845
3846         ret = i915_mutex_lock_interruptible(dev);
3847         if (ret)
3848                 return ret;
3849
3850         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851         if (&obj->base == NULL) {
3852                 ret = -ENOENT;
3853                 goto unlock;
3854         }
3855
3856         switch (obj->cache_level) {
3857         case I915_CACHE_LLC:
3858         case I915_CACHE_L3_LLC:
3859                 args->caching = I915_CACHING_CACHED;
3860                 break;
3861
3862         case I915_CACHE_WT:
3863                 args->caching = I915_CACHING_DISPLAY;
3864                 break;
3865
3866         default:
3867                 args->caching = I915_CACHING_NONE;
3868                 break;
3869         }
3870
3871         drm_gem_object_unreference(&obj->base);
3872 unlock:
3873         mutex_unlock(&dev->struct_mutex);
3874         return ret;
3875 }
3876
3877 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878                                struct drm_file *file)
3879 {
3880         struct drm_i915_gem_caching *args = data;
3881         struct drm_i915_gem_object *obj;
3882         enum i915_cache_level level;
3883         int ret;
3884
3885         switch (args->caching) {
3886         case I915_CACHING_NONE:
3887                 level = I915_CACHE_NONE;
3888                 break;
3889         case I915_CACHING_CACHED:
3890                 level = I915_CACHE_LLC;
3891                 break;
3892         case I915_CACHING_DISPLAY:
3893                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894                 break;
3895         default:
3896                 return -EINVAL;
3897         }
3898
3899         ret = i915_mutex_lock_interruptible(dev);
3900         if (ret)
3901                 return ret;
3902
3903         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904         if (&obj->base == NULL) {
3905                 ret = -ENOENT;
3906                 goto unlock;
3907         }
3908
3909         ret = i915_gem_object_set_cache_level(obj, level);
3910
3911         drm_gem_object_unreference(&obj->base);
3912 unlock:
3913         mutex_unlock(&dev->struct_mutex);
3914         return ret;
3915 }
3916
3917 static bool is_pin_display(struct drm_i915_gem_object *obj)
3918 {
3919         struct i915_vma *vma;
3920
3921         vma = i915_gem_obj_to_ggtt(obj);
3922         if (!vma)
3923                 return false;
3924
3925         /* There are 2 sources that pin objects:
3926          *   1. The display engine (scanouts, sprites, cursors);
3927          *   2. Reservations for execbuffer;
3928          *
3929          * We can ignore reservations as we hold the struct_mutex and
3930          * are only called outside of the reservation path.
3931          */
3932         return vma->pin_count;
3933 }
3934
3935 /*
3936  * Prepare buffer for display plane (scanout, cursors, etc).
3937  * Can be called from an uninterruptible phase (modesetting) and allows
3938  * any flushes to be pipelined (for pageflips).
3939  */
3940 int
3941 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3942                                      u32 alignment,
3943                                      struct intel_engine_cs *pipelined,
3944                                      const struct i915_ggtt_view *view)
3945 {
3946         u32 old_read_domains, old_write_domain;
3947         bool was_pin_display;
3948         int ret;
3949
3950         if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3951                 ret = i915_gem_object_sync(obj, pipelined);
3952                 if (ret)
3953                         return ret;
3954         }
3955
3956         /* Mark the pin_display early so that we account for the
3957          * display coherency whilst setting up the cache domains.
3958          */
3959         was_pin_display = obj->pin_display;
3960         obj->pin_display = true;
3961
3962         /* The display engine is not coherent with the LLC cache on gen6.  As
3963          * a result, we make sure that the pinning that is about to occur is
3964          * done with uncached PTEs. This is lowest common denominator for all
3965          * chipsets.
3966          *
3967          * However for gen6+, we could do better by using the GFDT bit instead
3968          * of uncaching, which would allow us to flush all the LLC-cached data
3969          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3970          */
3971         ret = i915_gem_object_set_cache_level(obj,
3972                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3973         if (ret)
3974                 goto err_unpin_display;
3975
3976         /* As the user may map the buffer once pinned in the display plane
3977          * (e.g. libkms for the bootup splash), we have to ensure that we
3978          * always use map_and_fenceable for all scanout buffers.
3979          */
3980         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3981                                        view->type == I915_GGTT_VIEW_NORMAL ?
3982                                        PIN_MAPPABLE : 0);
3983         if (ret)
3984                 goto err_unpin_display;
3985
3986         i915_gem_object_flush_cpu_write_domain(obj);
3987
3988         old_write_domain = obj->base.write_domain;
3989         old_read_domains = obj->base.read_domains;
3990
3991         /* It should now be out of any other write domains, and we can update
3992          * the domain values for our changes.
3993          */
3994         obj->base.write_domain = 0;
3995         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3996
3997         trace_i915_gem_object_change_domain(obj,
3998                                             old_read_domains,
3999                                             old_write_domain);
4000
4001         return 0;
4002
4003 err_unpin_display:
4004         WARN_ON(was_pin_display != is_pin_display(obj));
4005         obj->pin_display = was_pin_display;
4006         return ret;
4007 }
4008
4009 void
4010 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4011                                          const struct i915_ggtt_view *view)
4012 {
4013         i915_gem_object_ggtt_unpin_view(obj, view);
4014
4015         obj->pin_display = is_pin_display(obj);
4016 }
4017
4018 int
4019 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4020 {
4021         int ret;
4022
4023         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4024                 return 0;
4025
4026         ret = i915_gem_object_wait_rendering(obj, false);
4027         if (ret)
4028                 return ret;
4029
4030         /* Ensure that we invalidate the GPU's caches and TLBs. */
4031         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4032         return 0;
4033 }
4034
4035 /**
4036  * Moves a single object to the CPU read, and possibly write domain.
4037  *
4038  * This function returns when the move is complete, including waiting on
4039  * flushes to occur.
4040  */
4041 int
4042 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4043 {
4044         uint32_t old_write_domain, old_read_domains;
4045         int ret;
4046
4047         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4048                 return 0;
4049
4050         ret = i915_gem_object_wait_rendering(obj, !write);
4051         if (ret)
4052                 return ret;
4053
4054         i915_gem_object_retire(obj);
4055         i915_gem_object_flush_gtt_write_domain(obj);
4056
4057         old_write_domain = obj->base.write_domain;
4058         old_read_domains = obj->base.read_domains;
4059
4060         /* Flush the CPU cache if it's still invalid. */
4061         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4062                 i915_gem_clflush_object(obj, false);
4063
4064                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4065         }
4066
4067         /* It should now be out of any other write domains, and we can update
4068          * the domain values for our changes.
4069          */
4070         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4071
4072         /* If we're writing through the CPU, then the GPU read domains will
4073          * need to be invalidated at next use.
4074          */
4075         if (write) {
4076                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4078         }
4079
4080         if (write)
4081                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4082
4083         trace_i915_gem_object_change_domain(obj,
4084                                             old_read_domains,
4085                                             old_write_domain);
4086
4087         return 0;
4088 }
4089
4090 /* Throttle our rendering by waiting until the ring has completed our requests
4091  * emitted over 20 msec ago.
4092  *
4093  * Note that if we were to use the current jiffies each time around the loop,
4094  * we wouldn't escape the function with any frames outstanding if the time to
4095  * render a frame was over 20ms.
4096  *
4097  * This should get us reasonable parallelism between CPU and GPU but also
4098  * relatively low latency when blocking on a particular request to finish.
4099  */
4100 static int
4101 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4102 {
4103         struct drm_i915_private *dev_priv = dev->dev_private;
4104         struct drm_i915_file_private *file_priv = file->driver_priv;
4105         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4106         struct drm_i915_gem_request *request, *target = NULL;
4107         unsigned reset_counter;
4108         int ret;
4109
4110         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4111         if (ret)
4112                 return ret;
4113
4114         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4115         if (ret)
4116                 return ret;
4117
4118         spin_lock(&file_priv->mm.lock);
4119         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4120                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4121                         break;
4122
4123                 target = request;
4124         }
4125         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4126         if (target)
4127                 i915_gem_request_reference(target);
4128         spin_unlock(&file_priv->mm.lock);
4129
4130         if (target == NULL)
4131                 return 0;
4132
4133         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4134         if (ret == 0)
4135                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4136
4137         i915_gem_request_unreference__unlocked(target);
4138
4139         return ret;
4140 }
4141
4142 static bool
4143 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4144 {
4145         struct drm_i915_gem_object *obj = vma->obj;
4146
4147         if (alignment &&
4148             vma->node.start & (alignment - 1))
4149                 return true;
4150
4151         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4152                 return true;
4153
4154         if (flags & PIN_OFFSET_BIAS &&
4155             vma->node.start < (flags & PIN_OFFSET_MASK))
4156                 return true;
4157
4158         return false;
4159 }
4160
4161 static int
4162 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4163                        struct i915_address_space *vm,
4164                        const struct i915_ggtt_view *ggtt_view,
4165                        uint32_t alignment,
4166                        uint64_t flags)
4167 {
4168         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4169         struct i915_vma *vma;
4170         unsigned bound;
4171         int ret;
4172
4173         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4174                 return -ENODEV;
4175
4176         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4177                 return -EINVAL;
4178
4179         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4180                 return -EINVAL;
4181
4182         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4183                 return -EINVAL;
4184
4185         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4186                           i915_gem_obj_to_vma(obj, vm);
4187
4188         if (IS_ERR(vma))
4189                 return PTR_ERR(vma);
4190
4191         if (vma) {
4192                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193                         return -EBUSY;
4194
4195                 if (i915_vma_misplaced(vma, alignment, flags)) {
4196                         unsigned long offset;
4197                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4198                                              i915_gem_obj_offset(obj, vm);
4199                         WARN(vma->pin_count,
4200                              "bo is already pinned in %s with incorrect alignment:"
4201                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4202                              " obj->map_and_fenceable=%d\n",
4203                              ggtt_view ? "ggtt" : "ppgtt",
4204                              offset,
4205                              alignment,
4206                              !!(flags & PIN_MAPPABLE),
4207                              obj->map_and_fenceable);
4208                         ret = i915_vma_unbind(vma);
4209                         if (ret)
4210                                 return ret;
4211
4212                         vma = NULL;
4213                 }
4214         }
4215
4216         bound = vma ? vma->bound : 0;
4217         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4218                 /* In true PPGTT, bind has possibly changed PDEs, which
4219                  * means we must do a context switch before the GPU can
4220                  * accurately read some of the VMAs.
4221                  */
4222                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4223                                                  flags);
4224                 if (IS_ERR(vma))
4225                         return PTR_ERR(vma);
4226         }
4227
4228         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4229                 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4230                 if (ret)
4231                         return ret;
4232         }
4233
4234         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4235                 bool mappable, fenceable;
4236                 u32 fence_size, fence_alignment;
4237
4238                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4239                                                    obj->base.size,
4240                                                    obj->tiling_mode);
4241                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4242                                                              obj->base.size,
4243                                                              obj->tiling_mode,
4244                                                              true);
4245
4246                 fenceable = (vma->node.size == fence_size &&
4247                              (vma->node.start & (fence_alignment - 1)) == 0);
4248
4249                 mappable = (vma->node.start + fence_size <=
4250                             dev_priv->gtt.mappable_end);
4251
4252                 obj->map_and_fenceable = mappable && fenceable;
4253         }
4254
4255         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4256
4257         vma->pin_count++;
4258         return 0;
4259 }
4260
4261 int
4262 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4263                     struct i915_address_space *vm,
4264                     uint32_t alignment,
4265                     uint64_t flags)
4266 {
4267         return i915_gem_object_do_pin(obj, vm,
4268                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4269                                       alignment, flags);
4270 }
4271
4272 int
4273 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4274                          const struct i915_ggtt_view *view,
4275                          uint32_t alignment,
4276                          uint64_t flags)
4277 {
4278         if (WARN_ONCE(!view, "no view specified"))
4279                 return -EINVAL;
4280
4281         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4282                                       alignment, flags | PIN_GLOBAL);
4283 }
4284
4285 void
4286 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4287                                 const struct i915_ggtt_view *view)
4288 {
4289         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4290
4291         BUG_ON(!vma);
4292         WARN_ON(vma->pin_count == 0);
4293         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4294
4295         --vma->pin_count;
4296 }
4297
4298 bool
4299 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4300 {
4301         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4302                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4303                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4304
4305                 WARN_ON(!ggtt_vma ||
4306                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4307                         ggtt_vma->pin_count);
4308                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4309                 return true;
4310         } else
4311                 return false;
4312 }
4313
4314 void
4315 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4316 {
4317         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4318                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4319                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4320                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4321         }
4322 }
4323
4324 int
4325 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4326                     struct drm_file *file)
4327 {
4328         struct drm_i915_gem_busy *args = data;
4329         struct drm_i915_gem_object *obj;
4330         int ret;
4331
4332         ret = i915_mutex_lock_interruptible(dev);
4333         if (ret)
4334                 return ret;
4335
4336         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4337         if (&obj->base == NULL) {
4338                 ret = -ENOENT;
4339                 goto unlock;
4340         }
4341
4342         /* Count all active objects as busy, even if they are currently not used
4343          * by the gpu. Users of this interface expect objects to eventually
4344          * become non-busy without any further actions, therefore emit any
4345          * necessary flushes here.
4346          */
4347         ret = i915_gem_object_flush_active(obj);
4348
4349         args->busy = obj->active;
4350         if (obj->last_read_req) {
4351                 struct intel_engine_cs *ring;
4352                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4353                 ring = i915_gem_request_get_ring(obj->last_read_req);
4354                 args->busy |= intel_ring_flag(ring) << 16;
4355         }
4356
4357         drm_gem_object_unreference(&obj->base);
4358 unlock:
4359         mutex_unlock(&dev->struct_mutex);
4360         return ret;
4361 }
4362
4363 int
4364 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4365                         struct drm_file *file_priv)
4366 {
4367         return i915_gem_ring_throttle(dev, file_priv);
4368 }
4369
4370 int
4371 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4372                        struct drm_file *file_priv)
4373 {
4374         struct drm_i915_private *dev_priv = dev->dev_private;
4375         struct drm_i915_gem_madvise *args = data;
4376         struct drm_i915_gem_object *obj;
4377         int ret;
4378
4379         switch (args->madv) {
4380         case I915_MADV_DONTNEED:
4381         case I915_MADV_WILLNEED:
4382             break;
4383         default:
4384             return -EINVAL;
4385         }
4386
4387         ret = i915_mutex_lock_interruptible(dev);
4388         if (ret)
4389                 return ret;
4390
4391         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4392         if (&obj->base == NULL) {
4393                 ret = -ENOENT;
4394                 goto unlock;
4395         }
4396
4397         if (i915_gem_obj_is_pinned(obj)) {
4398                 ret = -EINVAL;
4399                 goto out;
4400         }
4401
4402         if (obj->pages &&
4403             obj->tiling_mode != I915_TILING_NONE &&
4404             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4405                 if (obj->madv == I915_MADV_WILLNEED)
4406                         i915_gem_object_unpin_pages(obj);
4407                 if (args->madv == I915_MADV_WILLNEED)
4408                         i915_gem_object_pin_pages(obj);
4409         }
4410
4411         if (obj->madv != __I915_MADV_PURGED)
4412                 obj->madv = args->madv;
4413
4414         /* if the object is no longer attached, discard its backing storage */
4415         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4416                 i915_gem_object_truncate(obj);
4417
4418         args->retained = obj->madv != __I915_MADV_PURGED;
4419
4420 out:
4421         drm_gem_object_unreference(&obj->base);
4422 unlock:
4423         mutex_unlock(&dev->struct_mutex);
4424         return ret;
4425 }
4426
4427 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4428                           const struct drm_i915_gem_object_ops *ops)
4429 {
4430         INIT_LIST_HEAD(&obj->global_list);
4431         INIT_LIST_HEAD(&obj->ring_list);
4432         INIT_LIST_HEAD(&obj->obj_exec_link);
4433         INIT_LIST_HEAD(&obj->vma_list);
4434         INIT_LIST_HEAD(&obj->batch_pool_link);
4435
4436         obj->ops = ops;
4437
4438         obj->fence_reg = I915_FENCE_REG_NONE;
4439         obj->madv = I915_MADV_WILLNEED;
4440
4441         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4442 }
4443
4444 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4445         .get_pages = i915_gem_object_get_pages_gtt,
4446         .put_pages = i915_gem_object_put_pages_gtt,
4447 };
4448
4449 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4450                                                   size_t size)
4451 {
4452         struct drm_i915_gem_object *obj;
4453         struct address_space *mapping;
4454         gfp_t mask;
4455
4456         obj = i915_gem_object_alloc(dev);
4457         if (obj == NULL)
4458                 return NULL;
4459
4460         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4461                 i915_gem_object_free(obj);
4462                 return NULL;
4463         }
4464
4465         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4466         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4467                 /* 965gm cannot relocate objects above 4GiB. */
4468                 mask &= ~__GFP_HIGHMEM;
4469                 mask |= __GFP_DMA32;
4470         }
4471
4472         mapping = file_inode(obj->base.filp)->i_mapping;
4473         mapping_set_gfp_mask(mapping, mask);
4474
4475         i915_gem_object_init(obj, &i915_gem_object_ops);
4476
4477         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4478         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4479
4480         if (HAS_LLC(dev)) {
4481                 /* On some devices, we can have the GPU use the LLC (the CPU
4482                  * cache) for about a 10% performance improvement
4483                  * compared to uncached.  Graphics requests other than
4484                  * display scanout are coherent with the CPU in
4485                  * accessing this cache.  This means in this mode we
4486                  * don't need to clflush on the CPU side, and on the
4487                  * GPU side we only need to flush internal caches to
4488                  * get data visible to the CPU.
4489                  *
4490                  * However, we maintain the display planes as UC, and so
4491                  * need to rebind when first used as such.
4492                  */
4493                 obj->cache_level = I915_CACHE_LLC;
4494         } else
4495                 obj->cache_level = I915_CACHE_NONE;
4496
4497         trace_i915_gem_object_create(obj);
4498
4499         return obj;
4500 }
4501
4502 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4503 {
4504         /* If we are the last user of the backing storage (be it shmemfs
4505          * pages or stolen etc), we know that the pages are going to be
4506          * immediately released. In this case, we can then skip copying
4507          * back the contents from the GPU.
4508          */
4509
4510         if (obj->madv != I915_MADV_WILLNEED)
4511                 return false;
4512
4513         if (obj->base.filp == NULL)
4514                 return true;
4515
4516         /* At first glance, this looks racy, but then again so would be
4517          * userspace racing mmap against close. However, the first external
4518          * reference to the filp can only be obtained through the
4519          * i915_gem_mmap_ioctl() which safeguards us against the user
4520          * acquiring such a reference whilst we are in the middle of
4521          * freeing the object.
4522          */
4523         return atomic_long_read(&obj->base.filp->f_count) == 1;
4524 }
4525
4526 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4527 {
4528         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4529         struct drm_device *dev = obj->base.dev;
4530         struct drm_i915_private *dev_priv = dev->dev_private;
4531         struct i915_vma *vma, *next;
4532
4533         intel_runtime_pm_get(dev_priv);
4534
4535         trace_i915_gem_object_destroy(obj);
4536
4537         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4538                 int ret;
4539
4540                 vma->pin_count = 0;
4541                 ret = i915_vma_unbind(vma);
4542                 if (WARN_ON(ret == -ERESTARTSYS)) {
4543                         bool was_interruptible;
4544
4545                         was_interruptible = dev_priv->mm.interruptible;
4546                         dev_priv->mm.interruptible = false;
4547
4548                         WARN_ON(i915_vma_unbind(vma));
4549
4550                         dev_priv->mm.interruptible = was_interruptible;
4551                 }
4552         }
4553
4554         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4555          * before progressing. */
4556         if (obj->stolen)
4557                 i915_gem_object_unpin_pages(obj);
4558
4559         WARN_ON(obj->frontbuffer_bits);
4560
4561         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4562             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4563             obj->tiling_mode != I915_TILING_NONE)
4564                 i915_gem_object_unpin_pages(obj);
4565
4566         if (WARN_ON(obj->pages_pin_count))
4567                 obj->pages_pin_count = 0;
4568         if (discard_backing_storage(obj))
4569                 obj->madv = I915_MADV_DONTNEED;
4570         i915_gem_object_put_pages(obj);
4571         i915_gem_object_free_mmap_offset(obj);
4572
4573         BUG_ON(obj->pages);
4574
4575         if (obj->base.import_attach)
4576                 drm_prime_gem_destroy(&obj->base, NULL);
4577
4578         if (obj->ops->release)
4579                 obj->ops->release(obj);
4580
4581         drm_gem_object_release(&obj->base);
4582         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4583
4584         kfree(obj->bit_17);
4585         i915_gem_object_free(obj);
4586
4587         intel_runtime_pm_put(dev_priv);
4588 }
4589
4590 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4591                                      struct i915_address_space *vm)
4592 {
4593         struct i915_vma *vma;
4594         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4595                 if (i915_is_ggtt(vma->vm) &&
4596                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4597                         continue;
4598                 if (vma->vm == vm)
4599                         return vma;
4600         }
4601         return NULL;
4602 }
4603
4604 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4605                                            const struct i915_ggtt_view *view)
4606 {
4607         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4608         struct i915_vma *vma;
4609
4610         if (WARN_ONCE(!view, "no view specified"))
4611                 return ERR_PTR(-EINVAL);
4612
4613         list_for_each_entry(vma, &obj->vma_list, vma_link)
4614                 if (vma->vm == ggtt &&
4615                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4616                         return vma;
4617         return NULL;
4618 }
4619
4620 void i915_gem_vma_destroy(struct i915_vma *vma)
4621 {
4622         struct i915_address_space *vm = NULL;
4623         WARN_ON(vma->node.allocated);
4624
4625         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4626         if (!list_empty(&vma->exec_list))
4627                 return;
4628
4629         vm = vma->vm;
4630
4631         if (!i915_is_ggtt(vm))
4632                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4633
4634         list_del(&vma->vma_link);
4635
4636         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4637 }
4638
4639 static void
4640 i915_gem_stop_ringbuffers(struct drm_device *dev)
4641 {
4642         struct drm_i915_private *dev_priv = dev->dev_private;
4643         struct intel_engine_cs *ring;
4644         int i;
4645
4646         for_each_ring(ring, dev_priv, i)
4647                 dev_priv->gt.stop_ring(ring);
4648 }
4649
4650 int
4651 i915_gem_suspend(struct drm_device *dev)
4652 {
4653         struct drm_i915_private *dev_priv = dev->dev_private;
4654         int ret = 0;
4655
4656         mutex_lock(&dev->struct_mutex);
4657         ret = i915_gpu_idle(dev);
4658         if (ret)
4659                 goto err;
4660
4661         i915_gem_retire_requests(dev);
4662
4663         i915_gem_stop_ringbuffers(dev);
4664         mutex_unlock(&dev->struct_mutex);
4665
4666         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4667         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4668         flush_delayed_work(&dev_priv->mm.idle_work);
4669
4670         /* Assert that we sucessfully flushed all the work and
4671          * reset the GPU back to its idle, low power state.
4672          */
4673         WARN_ON(dev_priv->mm.busy);
4674
4675         return 0;
4676
4677 err:
4678         mutex_unlock(&dev->struct_mutex);
4679         return ret;
4680 }
4681
4682 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4683 {
4684         struct drm_device *dev = ring->dev;
4685         struct drm_i915_private *dev_priv = dev->dev_private;
4686         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4687         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4688         int i, ret;
4689
4690         if (!HAS_L3_DPF(dev) || !remap_info)
4691                 return 0;
4692
4693         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4694         if (ret)
4695                 return ret;
4696
4697         /*
4698          * Note: We do not worry about the concurrent register cacheline hang
4699          * here because no other code should access these registers other than
4700          * at initialization time.
4701          */
4702         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4703                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4704                 intel_ring_emit(ring, reg_base + i);
4705                 intel_ring_emit(ring, remap_info[i/4]);
4706         }
4707
4708         intel_ring_advance(ring);
4709
4710         return ret;
4711 }
4712
4713 void i915_gem_init_swizzling(struct drm_device *dev)
4714 {
4715         struct drm_i915_private *dev_priv = dev->dev_private;
4716
4717         if (INTEL_INFO(dev)->gen < 5 ||
4718             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4719                 return;
4720
4721         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4722                                  DISP_TILE_SURFACE_SWIZZLING);
4723
4724         if (IS_GEN5(dev))
4725                 return;
4726
4727         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4728         if (IS_GEN6(dev))
4729                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4730         else if (IS_GEN7(dev))
4731                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4732         else if (IS_GEN8(dev))
4733                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4734         else
4735                 BUG();
4736 }
4737
4738 static bool
4739 intel_enable_blt(struct drm_device *dev)
4740 {
4741         if (!HAS_BLT(dev))
4742                 return false;
4743
4744         /* The blitter was dysfunctional on early prototypes */
4745         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4746                 DRM_INFO("BLT not supported on this pre-production hardware;"
4747                          " graphics performance will be degraded.\n");
4748                 return false;
4749         }
4750
4751         return true;
4752 }
4753
4754 static void init_unused_ring(struct drm_device *dev, u32 base)
4755 {
4756         struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758         I915_WRITE(RING_CTL(base), 0);
4759         I915_WRITE(RING_HEAD(base), 0);
4760         I915_WRITE(RING_TAIL(base), 0);
4761         I915_WRITE(RING_START(base), 0);
4762 }
4763
4764 static void init_unused_rings(struct drm_device *dev)
4765 {
4766         if (IS_I830(dev)) {
4767                 init_unused_ring(dev, PRB1_BASE);
4768                 init_unused_ring(dev, SRB0_BASE);
4769                 init_unused_ring(dev, SRB1_BASE);
4770                 init_unused_ring(dev, SRB2_BASE);
4771                 init_unused_ring(dev, SRB3_BASE);
4772         } else if (IS_GEN2(dev)) {
4773                 init_unused_ring(dev, SRB0_BASE);
4774                 init_unused_ring(dev, SRB1_BASE);
4775         } else if (IS_GEN3(dev)) {
4776                 init_unused_ring(dev, PRB1_BASE);
4777                 init_unused_ring(dev, PRB2_BASE);
4778         }
4779 }
4780
4781 int i915_gem_init_rings(struct drm_device *dev)
4782 {
4783         struct drm_i915_private *dev_priv = dev->dev_private;
4784         int ret;
4785
4786         ret = intel_init_render_ring_buffer(dev);
4787         if (ret)
4788                 return ret;
4789
4790         if (HAS_BSD(dev)) {
4791                 ret = intel_init_bsd_ring_buffer(dev);
4792                 if (ret)
4793                         goto cleanup_render_ring;
4794         }
4795
4796         if (intel_enable_blt(dev)) {
4797                 ret = intel_init_blt_ring_buffer(dev);
4798                 if (ret)
4799                         goto cleanup_bsd_ring;
4800         }
4801
4802         if (HAS_VEBOX(dev)) {
4803                 ret = intel_init_vebox_ring_buffer(dev);
4804                 if (ret)
4805                         goto cleanup_blt_ring;
4806         }
4807
4808         if (HAS_BSD2(dev)) {
4809                 ret = intel_init_bsd2_ring_buffer(dev);
4810                 if (ret)
4811                         goto cleanup_vebox_ring;
4812         }
4813
4814         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4815         if (ret)
4816                 goto cleanup_bsd2_ring;
4817
4818         return 0;
4819
4820 cleanup_bsd2_ring:
4821         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4822 cleanup_vebox_ring:
4823         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4824 cleanup_blt_ring:
4825         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4826 cleanup_bsd_ring:
4827         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4828 cleanup_render_ring:
4829         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4830
4831         return ret;
4832 }
4833
4834 int
4835 i915_gem_init_hw(struct drm_device *dev)
4836 {
4837         struct drm_i915_private *dev_priv = dev->dev_private;
4838         struct intel_engine_cs *ring;
4839         int ret, i;
4840
4841         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4842                 return -EIO;
4843
4844         /* Double layer security blanket, see i915_gem_init() */
4845         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846
4847         if (dev_priv->ellc_size)
4848                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4849
4850         if (IS_HASWELL(dev))
4851                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4852                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4853
4854         if (HAS_PCH_NOP(dev)) {
4855                 if (IS_IVYBRIDGE(dev)) {
4856                         u32 temp = I915_READ(GEN7_MSG_CTL);
4857                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4858                         I915_WRITE(GEN7_MSG_CTL, temp);
4859                 } else if (INTEL_INFO(dev)->gen >= 7) {
4860                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4861                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4862                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4863                 }
4864         }
4865
4866         i915_gem_init_swizzling(dev);
4867
4868         /*
4869          * At least 830 can leave some of the unused rings
4870          * "active" (ie. head != tail) after resume which
4871          * will prevent c3 entry. Makes sure all unused rings
4872          * are totally idle.
4873          */
4874         init_unused_rings(dev);
4875
4876         for_each_ring(ring, dev_priv, i) {
4877                 ret = ring->init_hw(ring);
4878                 if (ret)
4879                         goto out;
4880         }
4881
4882         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4883                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4884
4885         ret = i915_ppgtt_init_hw(dev);
4886         if (ret && ret != -EIO) {
4887                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4888                 i915_gem_cleanup_ringbuffer(dev);
4889         }
4890
4891         ret = i915_gem_context_enable(dev_priv);
4892         if (ret && ret != -EIO) {
4893                 DRM_ERROR("Context enable failed %d\n", ret);
4894                 i915_gem_cleanup_ringbuffer(dev);
4895
4896                 goto out;
4897         }
4898
4899 out:
4900         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4901         return ret;
4902 }
4903
4904 int i915_gem_init(struct drm_device *dev)
4905 {
4906         struct drm_i915_private *dev_priv = dev->dev_private;
4907         int ret;
4908
4909         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4910                         i915.enable_execlists);
4911
4912         mutex_lock(&dev->struct_mutex);
4913
4914         if (IS_VALLEYVIEW(dev)) {
4915                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4916                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4917                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4918                               VLV_GTLC_ALLOWWAKEACK), 10))
4919                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4920         }
4921
4922         if (!i915.enable_execlists) {
4923                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4924                 dev_priv->gt.init_rings = i915_gem_init_rings;
4925                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4926                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4927         } else {
4928                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4929                 dev_priv->gt.init_rings = intel_logical_rings_init;
4930                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4931                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4932         }
4933
4934         /* This is just a security blanket to placate dragons.
4935          * On some systems, we very sporadically observe that the first TLBs
4936          * used by the CS may be stale, despite us poking the TLB reset. If
4937          * we hold the forcewake during initialisation these problems
4938          * just magically go away.
4939          */
4940         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4941
4942         ret = i915_gem_init_userptr(dev);
4943         if (ret)
4944                 goto out_unlock;
4945
4946         i915_gem_init_global_gtt(dev);
4947
4948         ret = i915_gem_context_init(dev);
4949         if (ret)
4950                 goto out_unlock;
4951
4952         ret = dev_priv->gt.init_rings(dev);
4953         if (ret)
4954                 goto out_unlock;
4955
4956         ret = i915_gem_init_hw(dev);
4957         if (ret == -EIO) {
4958                 /* Allow ring initialisation to fail by marking the GPU as
4959                  * wedged. But we only want to do this where the GPU is angry,
4960                  * for all other failure, such as an allocation failure, bail.
4961                  */
4962                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4963                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4964                 ret = 0;
4965         }
4966
4967 out_unlock:
4968         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4969         mutex_unlock(&dev->struct_mutex);
4970
4971         return ret;
4972 }
4973
4974 void
4975 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4976 {
4977         struct drm_i915_private *dev_priv = dev->dev_private;
4978         struct intel_engine_cs *ring;
4979         int i;
4980
4981         for_each_ring(ring, dev_priv, i)
4982                 dev_priv->gt.cleanup_ring(ring);
4983 }
4984
4985 static void
4986 init_ring_lists(struct intel_engine_cs *ring)
4987 {
4988         INIT_LIST_HEAD(&ring->active_list);
4989         INIT_LIST_HEAD(&ring->request_list);
4990 }
4991
4992 void i915_init_vm(struct drm_i915_private *dev_priv,
4993                   struct i915_address_space *vm)
4994 {
4995         if (!i915_is_ggtt(vm))
4996                 drm_mm_init(&vm->mm, vm->start, vm->total);
4997         vm->dev = dev_priv->dev;
4998         INIT_LIST_HEAD(&vm->active_list);
4999         INIT_LIST_HEAD(&vm->inactive_list);
5000         INIT_LIST_HEAD(&vm->global_link);
5001         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5002 }
5003
5004 void
5005 i915_gem_load(struct drm_device *dev)
5006 {
5007         struct drm_i915_private *dev_priv = dev->dev_private;
5008         int i;
5009
5010         dev_priv->objects =
5011                 kmem_cache_create("i915_gem_object",
5012                                   sizeof(struct drm_i915_gem_object), 0,
5013                                   SLAB_HWCACHE_ALIGN,
5014                                   NULL);
5015         dev_priv->vmas =
5016                 kmem_cache_create("i915_gem_vma",
5017                                   sizeof(struct i915_vma), 0,
5018                                   SLAB_HWCACHE_ALIGN,
5019                                   NULL);
5020         dev_priv->requests =
5021                 kmem_cache_create("i915_gem_request",
5022                                   sizeof(struct drm_i915_gem_request), 0,
5023                                   SLAB_HWCACHE_ALIGN,
5024                                   NULL);
5025
5026         INIT_LIST_HEAD(&dev_priv->vm_list);
5027         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5028
5029         INIT_LIST_HEAD(&dev_priv->context_list);
5030         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5031         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5032         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5033         for (i = 0; i < I915_NUM_RINGS; i++)
5034                 init_ring_lists(&dev_priv->ring[i]);
5035         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5036                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5037         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5038                           i915_gem_retire_work_handler);
5039         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5040                           i915_gem_idle_work_handler);
5041         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5042
5043         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5044
5045         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5046                 dev_priv->num_fence_regs = 32;
5047         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5048                 dev_priv->num_fence_regs = 16;
5049         else
5050                 dev_priv->num_fence_regs = 8;
5051
5052         if (intel_vgpu_active(dev))
5053                 dev_priv->num_fence_regs =
5054                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5055
5056         /* Initialize fence registers to zero */
5057         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058         i915_gem_restore_fences(dev);
5059
5060         i915_gem_detect_bit_6_swizzle(dev);
5061         init_waitqueue_head(&dev_priv->pending_flip_queue);
5062
5063         dev_priv->mm.interruptible = true;
5064
5065         i915_gem_shrinker_init(dev_priv);
5066
5067         mutex_init(&dev_priv->fb_tracking.lock);
5068 }
5069
5070 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5071 {
5072         struct drm_i915_file_private *file_priv = file->driver_priv;
5073
5074         /* Clean up our request list when the client is going away, so that
5075          * later retire_requests won't dereference our soon-to-be-gone
5076          * file_priv.
5077          */
5078         spin_lock(&file_priv->mm.lock);
5079         while (!list_empty(&file_priv->mm.request_list)) {
5080                 struct drm_i915_gem_request *request;
5081
5082                 request = list_first_entry(&file_priv->mm.request_list,
5083                                            struct drm_i915_gem_request,
5084                                            client_list);
5085                 list_del(&request->client_list);
5086                 request->file_priv = NULL;
5087         }
5088         spin_unlock(&file_priv->mm.lock);
5089
5090         if (!list_empty(&file_priv->rps_boost)) {
5091                 mutex_lock(&to_i915(dev)->rps.hw_lock);
5092                 list_del(&file_priv->rps_boost);
5093                 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5094         }
5095 }
5096
5097 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5098 {
5099         struct drm_i915_file_private *file_priv;
5100         int ret;
5101
5102         DRM_DEBUG_DRIVER("\n");
5103
5104         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5105         if (!file_priv)
5106                 return -ENOMEM;
5107
5108         file->driver_priv = file_priv;
5109         file_priv->dev_priv = dev->dev_private;
5110         file_priv->file = file;
5111         INIT_LIST_HEAD(&file_priv->rps_boost);
5112
5113         spin_lock_init(&file_priv->mm.lock);
5114         INIT_LIST_HEAD(&file_priv->mm.request_list);
5115
5116         ret = i915_gem_context_open(dev, file);
5117         if (ret)
5118                 kfree(file_priv);
5119
5120         return ret;
5121 }
5122
5123 /**
5124  * i915_gem_track_fb - update frontbuffer tracking
5125  * old: current GEM buffer for the frontbuffer slots
5126  * new: new GEM buffer for the frontbuffer slots
5127  * frontbuffer_bits: bitmask of frontbuffer slots
5128  *
5129  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5130  * from @old and setting them in @new. Both @old and @new can be NULL.
5131  */
5132 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5133                        struct drm_i915_gem_object *new,
5134                        unsigned frontbuffer_bits)
5135 {
5136         if (old) {
5137                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5138                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5139                 old->frontbuffer_bits &= ~frontbuffer_bits;
5140         }
5141
5142         if (new) {
5143                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5144                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5145                 new->frontbuffer_bits |= frontbuffer_bits;
5146         }
5147 }
5148
5149 /* All the new VM stuff */
5150 unsigned long
5151 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5152                     struct i915_address_space *vm)
5153 {
5154         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5155         struct i915_vma *vma;
5156
5157         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5158
5159         list_for_each_entry(vma, &o->vma_list, vma_link) {
5160                 if (i915_is_ggtt(vma->vm) &&
5161                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5162                         continue;
5163                 if (vma->vm == vm)
5164                         return vma->node.start;
5165         }
5166
5167         WARN(1, "%s vma for this object not found.\n",
5168              i915_is_ggtt(vm) ? "global" : "ppgtt");
5169         return -1;
5170 }
5171
5172 unsigned long
5173 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5174                               const struct i915_ggtt_view *view)
5175 {
5176         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5177         struct i915_vma *vma;
5178
5179         list_for_each_entry(vma, &o->vma_list, vma_link)
5180                 if (vma->vm == ggtt &&
5181                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5182                         return vma->node.start;
5183
5184         WARN(1, "global vma for this object not found.\n");
5185         return -1;
5186 }
5187
5188 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5189                         struct i915_address_space *vm)
5190 {
5191         struct i915_vma *vma;
5192
5193         list_for_each_entry(vma, &o->vma_list, vma_link) {
5194                 if (i915_is_ggtt(vma->vm) &&
5195                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5196                         continue;
5197                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5198                         return true;
5199         }
5200
5201         return false;
5202 }
5203
5204 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5205                                   const struct i915_ggtt_view *view)
5206 {
5207         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5208         struct i915_vma *vma;
5209
5210         list_for_each_entry(vma, &o->vma_list, vma_link)
5211                 if (vma->vm == ggtt &&
5212                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5213                     drm_mm_node_allocated(&vma->node))
5214                         return true;
5215
5216         return false;
5217 }
5218
5219 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5220 {
5221         struct i915_vma *vma;
5222
5223         list_for_each_entry(vma, &o->vma_list, vma_link)
5224                 if (drm_mm_node_allocated(&vma->node))
5225                         return true;
5226
5227         return false;
5228 }
5229
5230 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5231                                 struct i915_address_space *vm)
5232 {
5233         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5234         struct i915_vma *vma;
5235
5236         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5237
5238         BUG_ON(list_empty(&o->vma_list));
5239
5240         list_for_each_entry(vma, &o->vma_list, vma_link) {
5241                 if (i915_is_ggtt(vma->vm) &&
5242                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5243                         continue;
5244                 if (vma->vm == vm)
5245                         return vma->node.size;
5246         }
5247         return 0;
5248 }
5249
5250 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5251 {
5252         struct i915_vma *vma;
5253         list_for_each_entry(vma, &obj->vma_list, vma_link) {
5254                 if (i915_is_ggtt(vma->vm) &&
5255                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5256                         continue;
5257                 if (vma->pin_count > 0)
5258                         return true;
5259         }
5260         return false;
5261 }
5262