drm/i915: Convert 'i915_seqno_passed' calls into 'i915_gem_request_completed'
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66                                   enum i915_cache_level level)
67 {
68         return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74                 return true;
75
76         return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81         if (obj->tiling_mode)
82                 i915_gem_release_mmap(obj);
83
84         /* As we do not have an associated fence register, we will force
85          * a tiling change if we ever need to acquire one.
86          */
87         obj->fence_dirty = false;
88         obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93                                   size_t size)
94 {
95         spin_lock(&dev_priv->mm.object_stat_lock);
96         dev_priv->mm.object_count++;
97         dev_priv->mm.object_memory += size;
98         spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102                                      size_t size)
103 {
104         spin_lock(&dev_priv->mm.object_stat_lock);
105         dev_priv->mm.object_count--;
106         dev_priv->mm.object_memory -= size;
107         spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113         int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116                    i915_terminally_wedged(error))
117         if (EXIT_COND)
118                 return 0;
119
120         /*
121          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122          * userspace. If it takes that long something really bad is going on and
123          * we should simply try to bail out and fail as gracefully as possible.
124          */
125         ret = wait_event_interruptible_timeout(error->reset_queue,
126                                                EXIT_COND,
127                                                10*HZ);
128         if (ret == 0) {
129                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130                 return -EIO;
131         } else if (ret < 0) {
132                 return ret;
133         }
134 #undef EXIT_COND
135
136         return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141         struct drm_i915_private *dev_priv = dev->dev_private;
142         int ret;
143
144         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145         if (ret)
146                 return ret;
147
148         ret = mutex_lock_interruptible(&dev->struct_mutex);
149         if (ret)
150                 return ret;
151
152         WARN_ON(i915_verify_lists(dev));
153         return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159         return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164                             struct drm_file *file)
165 {
166         struct drm_i915_private *dev_priv = dev->dev_private;
167         struct drm_i915_gem_get_aperture *args = data;
168         struct drm_i915_gem_object *obj;
169         size_t pinned;
170
171         pinned = 0;
172         mutex_lock(&dev->struct_mutex);
173         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174                 if (i915_gem_obj_is_pinned(obj))
175                         pinned += i915_gem_obj_ggtt_size(obj);
176         mutex_unlock(&dev->struct_mutex);
177
178         args->aper_size = dev_priv->gtt.base.total;
179         args->aper_available_size = args->aper_size - pinned;
180
181         return 0;
182 }
183
184 static int
185 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186 {
187         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188         char *vaddr = obj->phys_handle->vaddr;
189         struct sg_table *st;
190         struct scatterlist *sg;
191         int i;
192
193         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194                 return -EINVAL;
195
196         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197                 struct page *page;
198                 char *src;
199
200                 page = shmem_read_mapping_page(mapping, i);
201                 if (IS_ERR(page))
202                         return PTR_ERR(page);
203
204                 src = kmap_atomic(page);
205                 memcpy(vaddr, src, PAGE_SIZE);
206                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207                 kunmap_atomic(src);
208
209                 page_cache_release(page);
210                 vaddr += PAGE_SIZE;
211         }
212
213         i915_gem_chipset_flush(obj->base.dev);
214
215         st = kmalloc(sizeof(*st), GFP_KERNEL);
216         if (st == NULL)
217                 return -ENOMEM;
218
219         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220                 kfree(st);
221                 return -ENOMEM;
222         }
223
224         sg = st->sgl;
225         sg->offset = 0;
226         sg->length = obj->base.size;
227
228         sg_dma_address(sg) = obj->phys_handle->busaddr;
229         sg_dma_len(sg) = obj->base.size;
230
231         obj->pages = st;
232         obj->has_dma_mapping = true;
233         return 0;
234 }
235
236 static void
237 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238 {
239         int ret;
240
241         BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243         ret = i915_gem_object_set_to_cpu_domain(obj, true);
244         if (ret) {
245                 /* In the event of a disaster, abandon all caches and
246                  * hope for the best.
247                  */
248                 WARN_ON(ret != -EIO);
249                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250         }
251
252         if (obj->madv == I915_MADV_DONTNEED)
253                 obj->dirty = 0;
254
255         if (obj->dirty) {
256                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257                 char *vaddr = obj->phys_handle->vaddr;
258                 int i;
259
260                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261                         struct page *page;
262                         char *dst;
263
264                         page = shmem_read_mapping_page(mapping, i);
265                         if (IS_ERR(page))
266                                 continue;
267
268                         dst = kmap_atomic(page);
269                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
270                         memcpy(dst, vaddr, PAGE_SIZE);
271                         kunmap_atomic(dst);
272
273                         set_page_dirty(page);
274                         if (obj->madv == I915_MADV_WILLNEED)
275                                 mark_page_accessed(page);
276                         page_cache_release(page);
277                         vaddr += PAGE_SIZE;
278                 }
279                 obj->dirty = 0;
280         }
281
282         sg_free_table(obj->pages);
283         kfree(obj->pages);
284
285         obj->has_dma_mapping = false;
286 }
287
288 static void
289 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290 {
291         drm_pci_free(obj->base.dev, obj->phys_handle);
292 }
293
294 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295         .get_pages = i915_gem_object_get_pages_phys,
296         .put_pages = i915_gem_object_put_pages_phys,
297         .release = i915_gem_object_release_phys,
298 };
299
300 static int
301 drop_pages(struct drm_i915_gem_object *obj)
302 {
303         struct i915_vma *vma, *next;
304         int ret;
305
306         drm_gem_object_reference(&obj->base);
307         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308                 if (i915_vma_unbind(vma))
309                         break;
310
311         ret = i915_gem_object_put_pages(obj);
312         drm_gem_object_unreference(&obj->base);
313
314         return ret;
315 }
316
317 int
318 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319                             int align)
320 {
321         drm_dma_handle_t *phys;
322         int ret;
323
324         if (obj->phys_handle) {
325                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326                         return -EBUSY;
327
328                 return 0;
329         }
330
331         if (obj->madv != I915_MADV_WILLNEED)
332                 return -EFAULT;
333
334         if (obj->base.filp == NULL)
335                 return -EINVAL;
336
337         ret = drop_pages(obj);
338         if (ret)
339                 return ret;
340
341         /* create a new object */
342         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343         if (!phys)
344                 return -ENOMEM;
345
346         obj->phys_handle = phys;
347         obj->ops = &i915_gem_phys_ops;
348
349         return i915_gem_object_get_pages(obj);
350 }
351
352 static int
353 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354                      struct drm_i915_gem_pwrite *args,
355                      struct drm_file *file_priv)
356 {
357         struct drm_device *dev = obj->base.dev;
358         void *vaddr = obj->phys_handle->vaddr + args->offset;
359         char __user *user_data = to_user_ptr(args->data_ptr);
360         int ret;
361
362         /* We manually control the domain here and pretend that it
363          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364          */
365         ret = i915_gem_object_wait_rendering(obj, false);
366         if (ret)
367                 return ret;
368
369         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370                 unsigned long unwritten;
371
372                 /* The physical object once assigned is fixed for the lifetime
373                  * of the obj, so we can safely drop the lock and continue
374                  * to access vaddr.
375                  */
376                 mutex_unlock(&dev->struct_mutex);
377                 unwritten = copy_from_user(vaddr, user_data, args->size);
378                 mutex_lock(&dev->struct_mutex);
379                 if (unwritten)
380                         return -EFAULT;
381         }
382
383         drm_clflush_virt_range(vaddr, args->size);
384         i915_gem_chipset_flush(dev);
385         return 0;
386 }
387
388 void *i915_gem_object_alloc(struct drm_device *dev)
389 {
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392 }
393
394 void i915_gem_object_free(struct drm_i915_gem_object *obj)
395 {
396         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397         kmem_cache_free(dev_priv->slab, obj);
398 }
399
400 static int
401 i915_gem_create(struct drm_file *file,
402                 struct drm_device *dev,
403                 uint64_t size,
404                 bool dumb,
405                 uint32_t *handle_p)
406 {
407         struct drm_i915_gem_object *obj;
408         int ret;
409         u32 handle;
410
411         size = roundup(size, PAGE_SIZE);
412         if (size == 0)
413                 return -EINVAL;
414
415         /* Allocate the new object */
416         obj = i915_gem_alloc_object(dev, size);
417         if (obj == NULL)
418                 return -ENOMEM;
419
420         obj->base.dumb = dumb;
421         ret = drm_gem_handle_create(file, &obj->base, &handle);
422         /* drop reference from allocate - handle holds it now */
423         drm_gem_object_unreference_unlocked(&obj->base);
424         if (ret)
425                 return ret;
426
427         *handle_p = handle;
428         return 0;
429 }
430
431 int
432 i915_gem_dumb_create(struct drm_file *file,
433                      struct drm_device *dev,
434                      struct drm_mode_create_dumb *args)
435 {
436         /* have to work out size/pitch and return them */
437         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
438         args->size = args->pitch * args->height;
439         return i915_gem_create(file, dev,
440                                args->size, true, &args->handle);
441 }
442
443 /**
444  * Creates a new mm object and returns a handle to it.
445  */
446 int
447 i915_gem_create_ioctl(struct drm_device *dev, void *data,
448                       struct drm_file *file)
449 {
450         struct drm_i915_gem_create *args = data;
451
452         return i915_gem_create(file, dev,
453                                args->size, false, &args->handle);
454 }
455
456 static inline int
457 __copy_to_user_swizzled(char __user *cpu_vaddr,
458                         const char *gpu_vaddr, int gpu_offset,
459                         int length)
460 {
461         int ret, cpu_offset = 0;
462
463         while (length > 0) {
464                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465                 int this_length = min(cacheline_end - gpu_offset, length);
466                 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469                                      gpu_vaddr + swizzled_gpu_offset,
470                                      this_length);
471                 if (ret)
472                         return ret + length;
473
474                 cpu_offset += this_length;
475                 gpu_offset += this_length;
476                 length -= this_length;
477         }
478
479         return 0;
480 }
481
482 static inline int
483 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484                           const char __user *cpu_vaddr,
485                           int length)
486 {
487         int ret, cpu_offset = 0;
488
489         while (length > 0) {
490                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491                 int this_length = min(cacheline_end - gpu_offset, length);
492                 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495                                        cpu_vaddr + cpu_offset,
496                                        this_length);
497                 if (ret)
498                         return ret + length;
499
500                 cpu_offset += this_length;
501                 gpu_offset += this_length;
502                 length -= this_length;
503         }
504
505         return 0;
506 }
507
508 /*
509  * Pins the specified object's pages and synchronizes the object with
510  * GPU accesses. Sets needs_clflush to non-zero if the caller should
511  * flush the object from the CPU cache.
512  */
513 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514                                     int *needs_clflush)
515 {
516         int ret;
517
518         *needs_clflush = 0;
519
520         if (!obj->base.filp)
521                 return -EINVAL;
522
523         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524                 /* If we're not in the cpu read domain, set ourself into the gtt
525                  * read domain and manually flush cachelines (if required). This
526                  * optimizes for the case when the gpu will dirty the data
527                  * anyway again before the next pread happens. */
528                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529                                                         obj->cache_level);
530                 ret = i915_gem_object_wait_rendering(obj, true);
531                 if (ret)
532                         return ret;
533
534                 i915_gem_object_retire(obj);
535         }
536
537         ret = i915_gem_object_get_pages(obj);
538         if (ret)
539                 return ret;
540
541         i915_gem_object_pin_pages(obj);
542
543         return ret;
544 }
545
546 /* Per-page copy function for the shmem pread fastpath.
547  * Flushes invalid cachelines before reading the target if
548  * needs_clflush is set. */
549 static int
550 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551                  char __user *user_data,
552                  bool page_do_bit17_swizzling, bool needs_clflush)
553 {
554         char *vaddr;
555         int ret;
556
557         if (unlikely(page_do_bit17_swizzling))
558                 return -EINVAL;
559
560         vaddr = kmap_atomic(page);
561         if (needs_clflush)
562                 drm_clflush_virt_range(vaddr + shmem_page_offset,
563                                        page_length);
564         ret = __copy_to_user_inatomic(user_data,
565                                       vaddr + shmem_page_offset,
566                                       page_length);
567         kunmap_atomic(vaddr);
568
569         return ret ? -EFAULT : 0;
570 }
571
572 static void
573 shmem_clflush_swizzled_range(char *addr, unsigned long length,
574                              bool swizzled)
575 {
576         if (unlikely(swizzled)) {
577                 unsigned long start = (unsigned long) addr;
578                 unsigned long end = (unsigned long) addr + length;
579
580                 /* For swizzling simply ensure that we always flush both
581                  * channels. Lame, but simple and it works. Swizzled
582                  * pwrite/pread is far from a hotpath - current userspace
583                  * doesn't use it at all. */
584                 start = round_down(start, 128);
585                 end = round_up(end, 128);
586
587                 drm_clflush_virt_range((void *)start, end - start);
588         } else {
589                 drm_clflush_virt_range(addr, length);
590         }
591
592 }
593
594 /* Only difference to the fast-path function is that this can handle bit17
595  * and uses non-atomic copy and kmap functions. */
596 static int
597 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598                  char __user *user_data,
599                  bool page_do_bit17_swizzling, bool needs_clflush)
600 {
601         char *vaddr;
602         int ret;
603
604         vaddr = kmap(page);
605         if (needs_clflush)
606                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607                                              page_length,
608                                              page_do_bit17_swizzling);
609
610         if (page_do_bit17_swizzling)
611                 ret = __copy_to_user_swizzled(user_data,
612                                               vaddr, shmem_page_offset,
613                                               page_length);
614         else
615                 ret = __copy_to_user(user_data,
616                                      vaddr + shmem_page_offset,
617                                      page_length);
618         kunmap(page);
619
620         return ret ? - EFAULT : 0;
621 }
622
623 static int
624 i915_gem_shmem_pread(struct drm_device *dev,
625                      struct drm_i915_gem_object *obj,
626                      struct drm_i915_gem_pread *args,
627                      struct drm_file *file)
628 {
629         char __user *user_data;
630         ssize_t remain;
631         loff_t offset;
632         int shmem_page_offset, page_length, ret = 0;
633         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
634         int prefaulted = 0;
635         int needs_clflush = 0;
636         struct sg_page_iter sg_iter;
637
638         user_data = to_user_ptr(args->data_ptr);
639         remain = args->size;
640
641         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
642
643         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
644         if (ret)
645                 return ret;
646
647         offset = args->offset;
648
649         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650                          offset >> PAGE_SHIFT) {
651                 struct page *page = sg_page_iter_page(&sg_iter);
652
653                 if (remain <= 0)
654                         break;
655
656                 /* Operation in this page
657                  *
658                  * shmem_page_offset = offset within page in shmem file
659                  * page_length = bytes to copy for this page
660                  */
661                 shmem_page_offset = offset_in_page(offset);
662                 page_length = remain;
663                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664                         page_length = PAGE_SIZE - shmem_page_offset;
665
666                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667                         (page_to_phys(page) & (1 << 17)) != 0;
668
669                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670                                        user_data, page_do_bit17_swizzling,
671                                        needs_clflush);
672                 if (ret == 0)
673                         goto next_page;
674
675                 mutex_unlock(&dev->struct_mutex);
676
677                 if (likely(!i915.prefault_disable) && !prefaulted) {
678                         ret = fault_in_multipages_writeable(user_data, remain);
679                         /* Userspace is tricking us, but we've already clobbered
680                          * its pages with the prefault and promised to write the
681                          * data up to the first fault. Hence ignore any errors
682                          * and just continue. */
683                         (void)ret;
684                         prefaulted = 1;
685                 }
686
687                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688                                        user_data, page_do_bit17_swizzling,
689                                        needs_clflush);
690
691                 mutex_lock(&dev->struct_mutex);
692
693                 if (ret)
694                         goto out;
695
696 next_page:
697                 remain -= page_length;
698                 user_data += page_length;
699                 offset += page_length;
700         }
701
702 out:
703         i915_gem_object_unpin_pages(obj);
704
705         return ret;
706 }
707
708 /**
709  * Reads data from the object referenced by handle.
710  *
711  * On error, the contents of *data are undefined.
712  */
713 int
714 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
715                      struct drm_file *file)
716 {
717         struct drm_i915_gem_pread *args = data;
718         struct drm_i915_gem_object *obj;
719         int ret = 0;
720
721         if (args->size == 0)
722                 return 0;
723
724         if (!access_ok(VERIFY_WRITE,
725                        to_user_ptr(args->data_ptr),
726                        args->size))
727                 return -EFAULT;
728
729         ret = i915_mutex_lock_interruptible(dev);
730         if (ret)
731                 return ret;
732
733         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
734         if (&obj->base == NULL) {
735                 ret = -ENOENT;
736                 goto unlock;
737         }
738
739         /* Bounds check source.  */
740         if (args->offset > obj->base.size ||
741             args->size > obj->base.size - args->offset) {
742                 ret = -EINVAL;
743                 goto out;
744         }
745
746         /* prime objects have no backing filp to GEM pread/pwrite
747          * pages from.
748          */
749         if (!obj->base.filp) {
750                 ret = -EINVAL;
751                 goto out;
752         }
753
754         trace_i915_gem_object_pread(obj, args->offset, args->size);
755
756         ret = i915_gem_shmem_pread(dev, obj, args, file);
757
758 out:
759         drm_gem_object_unreference(&obj->base);
760 unlock:
761         mutex_unlock(&dev->struct_mutex);
762         return ret;
763 }
764
765 /* This is the fast write path which cannot handle
766  * page faults in the source data
767  */
768
769 static inline int
770 fast_user_write(struct io_mapping *mapping,
771                 loff_t page_base, int page_offset,
772                 char __user *user_data,
773                 int length)
774 {
775         void __iomem *vaddr_atomic;
776         void *vaddr;
777         unsigned long unwritten;
778
779         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
780         /* We can use the cpu mem copy function because this is X86. */
781         vaddr = (void __force*)vaddr_atomic + page_offset;
782         unwritten = __copy_from_user_inatomic_nocache(vaddr,
783                                                       user_data, length);
784         io_mapping_unmap_atomic(vaddr_atomic);
785         return unwritten;
786 }
787
788 /**
789  * This is the fast pwrite path, where we copy the data directly from the
790  * user into the GTT, uncached.
791  */
792 static int
793 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794                          struct drm_i915_gem_object *obj,
795                          struct drm_i915_gem_pwrite *args,
796                          struct drm_file *file)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         ssize_t remain;
800         loff_t offset, page_base;
801         char __user *user_data;
802         int page_offset, page_length, ret;
803
804         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
805         if (ret)
806                 goto out;
807
808         ret = i915_gem_object_set_to_gtt_domain(obj, true);
809         if (ret)
810                 goto out_unpin;
811
812         ret = i915_gem_object_put_fence(obj);
813         if (ret)
814                 goto out_unpin;
815
816         user_data = to_user_ptr(args->data_ptr);
817         remain = args->size;
818
819         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
820
821         while (remain > 0) {
822                 /* Operation in this page
823                  *
824                  * page_base = page offset within aperture
825                  * page_offset = offset within page
826                  * page_length = bytes to copy for this page
827                  */
828                 page_base = offset & PAGE_MASK;
829                 page_offset = offset_in_page(offset);
830                 page_length = remain;
831                 if ((page_offset + remain) > PAGE_SIZE)
832                         page_length = PAGE_SIZE - page_offset;
833
834                 /* If we get a fault while copying data, then (presumably) our
835                  * source page isn't available.  Return the error and we'll
836                  * retry in the slow path.
837                  */
838                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
839                                     page_offset, user_data, page_length)) {
840                         ret = -EFAULT;
841                         goto out_unpin;
842                 }
843
844                 remain -= page_length;
845                 user_data += page_length;
846                 offset += page_length;
847         }
848
849 out_unpin:
850         i915_gem_object_ggtt_unpin(obj);
851 out:
852         return ret;
853 }
854
855 /* Per-page copy function for the shmem pwrite fastpath.
856  * Flushes invalid cachelines before writing to the target if
857  * needs_clflush_before is set and flushes out any written cachelines after
858  * writing if needs_clflush is set. */
859 static int
860 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861                   char __user *user_data,
862                   bool page_do_bit17_swizzling,
863                   bool needs_clflush_before,
864                   bool needs_clflush_after)
865 {
866         char *vaddr;
867         int ret;
868
869         if (unlikely(page_do_bit17_swizzling))
870                 return -EINVAL;
871
872         vaddr = kmap_atomic(page);
873         if (needs_clflush_before)
874                 drm_clflush_virt_range(vaddr + shmem_page_offset,
875                                        page_length);
876         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877                                         user_data, page_length);
878         if (needs_clflush_after)
879                 drm_clflush_virt_range(vaddr + shmem_page_offset,
880                                        page_length);
881         kunmap_atomic(vaddr);
882
883         return ret ? -EFAULT : 0;
884 }
885
886 /* Only difference to the fast-path function is that this can handle bit17
887  * and uses non-atomic copy and kmap functions. */
888 static int
889 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890                   char __user *user_data,
891                   bool page_do_bit17_swizzling,
892                   bool needs_clflush_before,
893                   bool needs_clflush_after)
894 {
895         char *vaddr;
896         int ret;
897
898         vaddr = kmap(page);
899         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
900                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901                                              page_length,
902                                              page_do_bit17_swizzling);
903         if (page_do_bit17_swizzling)
904                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
905                                                 user_data,
906                                                 page_length);
907         else
908                 ret = __copy_from_user(vaddr + shmem_page_offset,
909                                        user_data,
910                                        page_length);
911         if (needs_clflush_after)
912                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913                                              page_length,
914                                              page_do_bit17_swizzling);
915         kunmap(page);
916
917         return ret ? -EFAULT : 0;
918 }
919
920 static int
921 i915_gem_shmem_pwrite(struct drm_device *dev,
922                       struct drm_i915_gem_object *obj,
923                       struct drm_i915_gem_pwrite *args,
924                       struct drm_file *file)
925 {
926         ssize_t remain;
927         loff_t offset;
928         char __user *user_data;
929         int shmem_page_offset, page_length, ret = 0;
930         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
931         int hit_slowpath = 0;
932         int needs_clflush_after = 0;
933         int needs_clflush_before = 0;
934         struct sg_page_iter sg_iter;
935
936         user_data = to_user_ptr(args->data_ptr);
937         remain = args->size;
938
939         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
940
941         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942                 /* If we're not in the cpu write domain, set ourself into the gtt
943                  * write domain and manually flush cachelines (if required). This
944                  * optimizes for the case when the gpu will use the data
945                  * right away and we therefore have to clflush anyway. */
946                 needs_clflush_after = cpu_write_needs_clflush(obj);
947                 ret = i915_gem_object_wait_rendering(obj, false);
948                 if (ret)
949                         return ret;
950
951                 i915_gem_object_retire(obj);
952         }
953         /* Same trick applies to invalidate partially written cachelines read
954          * before writing. */
955         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956                 needs_clflush_before =
957                         !cpu_cache_is_coherent(dev, obj->cache_level);
958
959         ret = i915_gem_object_get_pages(obj);
960         if (ret)
961                 return ret;
962
963         i915_gem_object_pin_pages(obj);
964
965         offset = args->offset;
966         obj->dirty = 1;
967
968         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969                          offset >> PAGE_SHIFT) {
970                 struct page *page = sg_page_iter_page(&sg_iter);
971                 int partial_cacheline_write;
972
973                 if (remain <= 0)
974                         break;
975
976                 /* Operation in this page
977                  *
978                  * shmem_page_offset = offset within page in shmem file
979                  * page_length = bytes to copy for this page
980                  */
981                 shmem_page_offset = offset_in_page(offset);
982
983                 page_length = remain;
984                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985                         page_length = PAGE_SIZE - shmem_page_offset;
986
987                 /* If we don't overwrite a cacheline completely we need to be
988                  * careful to have up-to-date data by first clflushing. Don't
989                  * overcomplicate things and flush the entire patch. */
990                 partial_cacheline_write = needs_clflush_before &&
991                         ((shmem_page_offset | page_length)
992                                 & (boot_cpu_data.x86_clflush_size - 1));
993
994                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995                         (page_to_phys(page) & (1 << 17)) != 0;
996
997                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998                                         user_data, page_do_bit17_swizzling,
999                                         partial_cacheline_write,
1000                                         needs_clflush_after);
1001                 if (ret == 0)
1002                         goto next_page;
1003
1004                 hit_slowpath = 1;
1005                 mutex_unlock(&dev->struct_mutex);
1006                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007                                         user_data, page_do_bit17_swizzling,
1008                                         partial_cacheline_write,
1009                                         needs_clflush_after);
1010
1011                 mutex_lock(&dev->struct_mutex);
1012
1013                 if (ret)
1014                         goto out;
1015
1016 next_page:
1017                 remain -= page_length;
1018                 user_data += page_length;
1019                 offset += page_length;
1020         }
1021
1022 out:
1023         i915_gem_object_unpin_pages(obj);
1024
1025         if (hit_slowpath) {
1026                 /*
1027                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1028                  * cachelines in-line while writing and the object moved
1029                  * out of the cpu write domain while we've dropped the lock.
1030                  */
1031                 if (!needs_clflush_after &&
1032                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1033                         if (i915_gem_clflush_object(obj, obj->pin_display))
1034                                 i915_gem_chipset_flush(dev);
1035                 }
1036         }
1037
1038         if (needs_clflush_after)
1039                 i915_gem_chipset_flush(dev);
1040
1041         return ret;
1042 }
1043
1044 /**
1045  * Writes data to the object referenced by handle.
1046  *
1047  * On error, the contents of the buffer that were to be modified are undefined.
1048  */
1049 int
1050 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file)
1052 {
1053         struct drm_i915_gem_pwrite *args = data;
1054         struct drm_i915_gem_object *obj;
1055         int ret;
1056
1057         if (args->size == 0)
1058                 return 0;
1059
1060         if (!access_ok(VERIFY_READ,
1061                        to_user_ptr(args->data_ptr),
1062                        args->size))
1063                 return -EFAULT;
1064
1065         if (likely(!i915.prefault_disable)) {
1066                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067                                                    args->size);
1068                 if (ret)
1069                         return -EFAULT;
1070         }
1071
1072         ret = i915_mutex_lock_interruptible(dev);
1073         if (ret)
1074                 return ret;
1075
1076         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1077         if (&obj->base == NULL) {
1078                 ret = -ENOENT;
1079                 goto unlock;
1080         }
1081
1082         /* Bounds check destination. */
1083         if (args->offset > obj->base.size ||
1084             args->size > obj->base.size - args->offset) {
1085                 ret = -EINVAL;
1086                 goto out;
1087         }
1088
1089         /* prime objects have no backing filp to GEM pread/pwrite
1090          * pages from.
1091          */
1092         if (!obj->base.filp) {
1093                 ret = -EINVAL;
1094                 goto out;
1095         }
1096
1097         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
1099         ret = -EFAULT;
1100         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101          * it would end up going through the fenced access, and we'll get
1102          * different detiling behavior between reading and writing.
1103          * pread/pwrite currently are reading and writing from the CPU
1104          * perspective, requiring manual detiling by the client.
1105          */
1106         if (obj->tiling_mode == I915_TILING_NONE &&
1107             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108             cpu_write_needs_clflush(obj)) {
1109                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1110                 /* Note that the gtt paths might fail with non-page-backed user
1111                  * pointers (e.g. gtt mappings when moving data between
1112                  * textures). Fallback to the shmem path in that case. */
1113         }
1114
1115         if (ret == -EFAULT || ret == -ENOSPC) {
1116                 if (obj->phys_handle)
1117                         ret = i915_gem_phys_pwrite(obj, args, file);
1118                 else
1119                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120         }
1121
1122 out:
1123         drm_gem_object_unreference(&obj->base);
1124 unlock:
1125         mutex_unlock(&dev->struct_mutex);
1126         return ret;
1127 }
1128
1129 int
1130 i915_gem_check_wedge(struct i915_gpu_error *error,
1131                      bool interruptible)
1132 {
1133         if (i915_reset_in_progress(error)) {
1134                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135                  * -EIO unconditionally for these. */
1136                 if (!interruptible)
1137                         return -EIO;
1138
1139                 /* Recovery complete, but the reset failed ... */
1140                 if (i915_terminally_wedged(error))
1141                         return -EIO;
1142
1143                 /*
1144                  * Check if GPU Reset is in progress - we need intel_ring_begin
1145                  * to work properly to reinit the hw state while the gpu is
1146                  * still marked as reset-in-progress. Handle this with a flag.
1147                  */
1148                 if (!error->reload_in_reset)
1149                         return -EAGAIN;
1150         }
1151
1152         return 0;
1153 }
1154
1155 /*
1156  * Compare arbitrary request against outstanding lazy request. Emit on match.
1157  */
1158 int
1159 i915_gem_check_olr(struct drm_i915_gem_request *req)
1160 {
1161         int ret;
1162
1163         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1164
1165         ret = 0;
1166         if (req == req->ring->outstanding_lazy_request)
1167                 ret = i915_add_request(req->ring);
1168
1169         return ret;
1170 }
1171
1172 static void fake_irq(unsigned long data)
1173 {
1174         wake_up_process((struct task_struct *)data);
1175 }
1176
1177 static bool missed_irq(struct drm_i915_private *dev_priv,
1178                        struct intel_engine_cs *ring)
1179 {
1180         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1181 }
1182
1183 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1184 {
1185         if (file_priv == NULL)
1186                 return true;
1187
1188         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1189 }
1190
1191 /**
1192  * __i915_wait_request - wait until execution of request has finished
1193  * @req: duh!
1194  * @reset_counter: reset sequence associated with the given request
1195  * @interruptible: do an interruptible wait (normally yes)
1196  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1197  *
1198  * Note: It is of utmost importance that the passed in seqno and reset_counter
1199  * values have been read by the caller in an smp safe manner. Where read-side
1200  * locks are involved, it is sufficient to read the reset_counter before
1201  * unlocking the lock that protects the seqno. For lockless tricks, the
1202  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1203  * inserted.
1204  *
1205  * Returns 0 if the request was found within the alloted time. Else returns the
1206  * errno with remaining time filled in timeout argument.
1207  */
1208 int __i915_wait_request(struct drm_i915_gem_request *req,
1209                         unsigned reset_counter,
1210                         bool interruptible,
1211                         s64 *timeout,
1212                         struct drm_i915_file_private *file_priv)
1213 {
1214         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1215         struct drm_device *dev = ring->dev;
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         const bool irq_test_in_progress =
1218                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1219         DEFINE_WAIT(wait);
1220         unsigned long timeout_expire;
1221         s64 before, now;
1222         int ret;
1223
1224         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1225
1226         if (i915_gem_request_completed(req, true))
1227                 return 0;
1228
1229         timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1230
1231         if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1232                 gen6_rps_boost(dev_priv);
1233                 if (file_priv)
1234                         mod_delayed_work(dev_priv->wq,
1235                                          &file_priv->mm.idle_work,
1236                                          msecs_to_jiffies(100));
1237         }
1238
1239         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1240                 return -ENODEV;
1241
1242         /* Record current time in case interrupted by signal, or wedged */
1243         trace_i915_gem_request_wait_begin(req);
1244         before = ktime_get_raw_ns();
1245         for (;;) {
1246                 struct timer_list timer;
1247
1248                 prepare_to_wait(&ring->irq_queue, &wait,
1249                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1250
1251                 /* We need to check whether any gpu reset happened in between
1252                  * the caller grabbing the seqno and now ... */
1253                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1254                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1255                          * is truely gone. */
1256                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1257                         if (ret == 0)
1258                                 ret = -EAGAIN;
1259                         break;
1260                 }
1261
1262                 if (i915_gem_request_completed(req, false)) {
1263                         ret = 0;
1264                         break;
1265                 }
1266
1267                 if (interruptible && signal_pending(current)) {
1268                         ret = -ERESTARTSYS;
1269                         break;
1270                 }
1271
1272                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1273                         ret = -ETIME;
1274                         break;
1275                 }
1276
1277                 timer.function = NULL;
1278                 if (timeout || missed_irq(dev_priv, ring)) {
1279                         unsigned long expire;
1280
1281                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1282                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1283                         mod_timer(&timer, expire);
1284                 }
1285
1286                 io_schedule();
1287
1288                 if (timer.function) {
1289                         del_singleshot_timer_sync(&timer);
1290                         destroy_timer_on_stack(&timer);
1291                 }
1292         }
1293         now = ktime_get_raw_ns();
1294         trace_i915_gem_request_wait_end(req);
1295
1296         if (!irq_test_in_progress)
1297                 ring->irq_put(ring);
1298
1299         finish_wait(&ring->irq_queue, &wait);
1300
1301         if (timeout) {
1302                 s64 tres = *timeout - (now - before);
1303
1304                 *timeout = tres < 0 ? 0 : tres;
1305         }
1306
1307         return ret;
1308 }
1309
1310 /**
1311  * Waits for a request to be signaled, and cleans up the
1312  * request and object lists appropriately for that event.
1313  */
1314 int
1315 i915_wait_request(struct drm_i915_gem_request *req)
1316 {
1317         struct drm_device *dev;
1318         struct drm_i915_private *dev_priv;
1319         bool interruptible;
1320         unsigned reset_counter;
1321         int ret;
1322
1323         BUG_ON(req == NULL);
1324
1325         dev = req->ring->dev;
1326         dev_priv = dev->dev_private;
1327         interruptible = dev_priv->mm.interruptible;
1328
1329         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1330
1331         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1332         if (ret)
1333                 return ret;
1334
1335         ret = i915_gem_check_olr(req);
1336         if (ret)
1337                 return ret;
1338
1339         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1340         i915_gem_request_reference(req);
1341         ret = __i915_wait_request(req, reset_counter,
1342                                   interruptible, NULL, NULL);
1343         i915_gem_request_unreference(req);
1344         return ret;
1345 }
1346
1347 static int
1348 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1349 {
1350         if (!obj->active)
1351                 return 0;
1352
1353         /* Manually manage the write flush as we may have not yet
1354          * retired the buffer.
1355          *
1356          * Note that the last_write_req is always the earlier of
1357          * the two (read/write) requests, so if we haved successfully waited,
1358          * we know we have passed the last write.
1359          */
1360         i915_gem_request_assign(&obj->last_write_req, NULL);
1361
1362         return 0;
1363 }
1364
1365 /**
1366  * Ensures that all rendering to the object has completed and the object is
1367  * safe to unbind from the GTT or access from the CPU.
1368  */
1369 static __must_check int
1370 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1371                                bool readonly)
1372 {
1373         struct drm_i915_gem_request *req;
1374         int ret;
1375
1376         req = readonly ? obj->last_write_req : obj->last_read_req;
1377         if (!req)
1378                 return 0;
1379
1380         ret = i915_wait_request(req);
1381         if (ret)
1382                 return ret;
1383
1384         return i915_gem_object_wait_rendering__tail(obj);
1385 }
1386
1387 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1388  * as the object state may change during this call.
1389  */
1390 static __must_check int
1391 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1392                                             struct drm_i915_file_private *file_priv,
1393                                             bool readonly)
1394 {
1395         struct drm_i915_gem_request *req;
1396         struct drm_device *dev = obj->base.dev;
1397         struct drm_i915_private *dev_priv = dev->dev_private;
1398         unsigned reset_counter;
1399         int ret;
1400
1401         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402         BUG_ON(!dev_priv->mm.interruptible);
1403
1404         req = readonly ? obj->last_write_req : obj->last_read_req;
1405         if (!req)
1406                 return 0;
1407
1408         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1409         if (ret)
1410                 return ret;
1411
1412         ret = i915_gem_check_olr(req);
1413         if (ret)
1414                 return ret;
1415
1416         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1417         i915_gem_request_reference(req);
1418         mutex_unlock(&dev->struct_mutex);
1419         ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1420         mutex_lock(&dev->struct_mutex);
1421         i915_gem_request_unreference(req);
1422         if (ret)
1423                 return ret;
1424
1425         return i915_gem_object_wait_rendering__tail(obj);
1426 }
1427
1428 /**
1429  * Called when user space prepares to use an object with the CPU, either
1430  * through the mmap ioctl's mapping or a GTT mapping.
1431  */
1432 int
1433 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1434                           struct drm_file *file)
1435 {
1436         struct drm_i915_gem_set_domain *args = data;
1437         struct drm_i915_gem_object *obj;
1438         uint32_t read_domains = args->read_domains;
1439         uint32_t write_domain = args->write_domain;
1440         int ret;
1441
1442         /* Only handle setting domains to types used by the CPU. */
1443         if (write_domain & I915_GEM_GPU_DOMAINS)
1444                 return -EINVAL;
1445
1446         if (read_domains & I915_GEM_GPU_DOMAINS)
1447                 return -EINVAL;
1448
1449         /* Having something in the write domain implies it's in the read
1450          * domain, and only that read domain.  Enforce that in the request.
1451          */
1452         if (write_domain != 0 && read_domains != write_domain)
1453                 return -EINVAL;
1454
1455         ret = i915_mutex_lock_interruptible(dev);
1456         if (ret)
1457                 return ret;
1458
1459         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1460         if (&obj->base == NULL) {
1461                 ret = -ENOENT;
1462                 goto unlock;
1463         }
1464
1465         /* Try to flush the object off the GPU without holding the lock.
1466          * We will repeat the flush holding the lock in the normal manner
1467          * to catch cases where we are gazumped.
1468          */
1469         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1470                                                           file->driver_priv,
1471                                                           !write_domain);
1472         if (ret)
1473                 goto unref;
1474
1475         if (read_domains & I915_GEM_DOMAIN_GTT) {
1476                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1477
1478                 /* Silently promote "you're not bound, there was nothing to do"
1479                  * to success, since the client was just asking us to
1480                  * make sure everything was done.
1481                  */
1482                 if (ret == -EINVAL)
1483                         ret = 0;
1484         } else {
1485                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1486         }
1487
1488 unref:
1489         drm_gem_object_unreference(&obj->base);
1490 unlock:
1491         mutex_unlock(&dev->struct_mutex);
1492         return ret;
1493 }
1494
1495 /**
1496  * Called when user space has done writes to this buffer
1497  */
1498 int
1499 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1500                          struct drm_file *file)
1501 {
1502         struct drm_i915_gem_sw_finish *args = data;
1503         struct drm_i915_gem_object *obj;
1504         int ret = 0;
1505
1506         ret = i915_mutex_lock_interruptible(dev);
1507         if (ret)
1508                 return ret;
1509
1510         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1511         if (&obj->base == NULL) {
1512                 ret = -ENOENT;
1513                 goto unlock;
1514         }
1515
1516         /* Pinned buffers may be scanout, so flush the cache */
1517         if (obj->pin_display)
1518                 i915_gem_object_flush_cpu_write_domain(obj, true);
1519
1520         drm_gem_object_unreference(&obj->base);
1521 unlock:
1522         mutex_unlock(&dev->struct_mutex);
1523         return ret;
1524 }
1525
1526 /**
1527  * Maps the contents of an object, returning the address it is mapped
1528  * into.
1529  *
1530  * While the mapping holds a reference on the contents of the object, it doesn't
1531  * imply a ref on the object itself.
1532  *
1533  * IMPORTANT:
1534  *
1535  * DRM driver writers who look a this function as an example for how to do GEM
1536  * mmap support, please don't implement mmap support like here. The modern way
1537  * to implement DRM mmap support is with an mmap offset ioctl (like
1538  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1539  * That way debug tooling like valgrind will understand what's going on, hiding
1540  * the mmap call in a driver private ioctl will break that. The i915 driver only
1541  * does cpu mmaps this way because we didn't know better.
1542  */
1543 int
1544 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1545                     struct drm_file *file)
1546 {
1547         struct drm_i915_gem_mmap *args = data;
1548         struct drm_gem_object *obj;
1549         unsigned long addr;
1550
1551         obj = drm_gem_object_lookup(dev, file, args->handle);
1552         if (obj == NULL)
1553                 return -ENOENT;
1554
1555         /* prime objects have no backing filp to GEM mmap
1556          * pages from.
1557          */
1558         if (!obj->filp) {
1559                 drm_gem_object_unreference_unlocked(obj);
1560                 return -EINVAL;
1561         }
1562
1563         addr = vm_mmap(obj->filp, 0, args->size,
1564                        PROT_READ | PROT_WRITE, MAP_SHARED,
1565                        args->offset);
1566         drm_gem_object_unreference_unlocked(obj);
1567         if (IS_ERR((void *)addr))
1568                 return addr;
1569
1570         args->addr_ptr = (uint64_t) addr;
1571
1572         return 0;
1573 }
1574
1575 /**
1576  * i915_gem_fault - fault a page into the GTT
1577  * vma: VMA in question
1578  * vmf: fault info
1579  *
1580  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1581  * from userspace.  The fault handler takes care of binding the object to
1582  * the GTT (if needed), allocating and programming a fence register (again,
1583  * only if needed based on whether the old reg is still valid or the object
1584  * is tiled) and inserting a new PTE into the faulting process.
1585  *
1586  * Note that the faulting process may involve evicting existing objects
1587  * from the GTT and/or fence registers to make room.  So performance may
1588  * suffer if the GTT working set is large or there are few fence registers
1589  * left.
1590  */
1591 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1592 {
1593         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1594         struct drm_device *dev = obj->base.dev;
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596         pgoff_t page_offset;
1597         unsigned long pfn;
1598         int ret = 0;
1599         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1600
1601         intel_runtime_pm_get(dev_priv);
1602
1603         /* We don't use vmf->pgoff since that has the fake offset */
1604         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1605                 PAGE_SHIFT;
1606
1607         ret = i915_mutex_lock_interruptible(dev);
1608         if (ret)
1609                 goto out;
1610
1611         trace_i915_gem_object_fault(obj, page_offset, true, write);
1612
1613         /* Try to flush the object off the GPU first without holding the lock.
1614          * Upon reacquiring the lock, we will perform our sanity checks and then
1615          * repeat the flush holding the lock in the normal manner to catch cases
1616          * where we are gazumped.
1617          */
1618         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1619         if (ret)
1620                 goto unlock;
1621
1622         /* Access to snoopable pages through the GTT is incoherent. */
1623         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1624                 ret = -EFAULT;
1625                 goto unlock;
1626         }
1627
1628         /* Now bind it into the GTT if needed */
1629         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1630         if (ret)
1631                 goto unlock;
1632
1633         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1634         if (ret)
1635                 goto unpin;
1636
1637         ret = i915_gem_object_get_fence(obj);
1638         if (ret)
1639                 goto unpin;
1640
1641         /* Finally, remap it using the new GTT offset */
1642         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1643         pfn >>= PAGE_SHIFT;
1644
1645         if (!obj->fault_mappable) {
1646                 unsigned long size = min_t(unsigned long,
1647                                            vma->vm_end - vma->vm_start,
1648                                            obj->base.size);
1649                 int i;
1650
1651                 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1652                         ret = vm_insert_pfn(vma,
1653                                             (unsigned long)vma->vm_start + i * PAGE_SIZE,
1654                                             pfn + i);
1655                         if (ret)
1656                                 break;
1657                 }
1658
1659                 obj->fault_mappable = true;
1660         } else
1661                 ret = vm_insert_pfn(vma,
1662                                     (unsigned long)vmf->virtual_address,
1663                                     pfn + page_offset);
1664 unpin:
1665         i915_gem_object_ggtt_unpin(obj);
1666 unlock:
1667         mutex_unlock(&dev->struct_mutex);
1668 out:
1669         switch (ret) {
1670         case -EIO:
1671                 /*
1672                  * We eat errors when the gpu is terminally wedged to avoid
1673                  * userspace unduly crashing (gl has no provisions for mmaps to
1674                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1675                  * and so needs to be reported.
1676                  */
1677                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1678                         ret = VM_FAULT_SIGBUS;
1679                         break;
1680                 }
1681         case -EAGAIN:
1682                 /*
1683                  * EAGAIN means the gpu is hung and we'll wait for the error
1684                  * handler to reset everything when re-faulting in
1685                  * i915_mutex_lock_interruptible.
1686                  */
1687         case 0:
1688         case -ERESTARTSYS:
1689         case -EINTR:
1690         case -EBUSY:
1691                 /*
1692                  * EBUSY is ok: this just means that another thread
1693                  * already did the job.
1694                  */
1695                 ret = VM_FAULT_NOPAGE;
1696                 break;
1697         case -ENOMEM:
1698                 ret = VM_FAULT_OOM;
1699                 break;
1700         case -ENOSPC:
1701         case -EFAULT:
1702                 ret = VM_FAULT_SIGBUS;
1703                 break;
1704         default:
1705                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1706                 ret = VM_FAULT_SIGBUS;
1707                 break;
1708         }
1709
1710         intel_runtime_pm_put(dev_priv);
1711         return ret;
1712 }
1713
1714 /**
1715  * i915_gem_release_mmap - remove physical page mappings
1716  * @obj: obj in question
1717  *
1718  * Preserve the reservation of the mmapping with the DRM core code, but
1719  * relinquish ownership of the pages back to the system.
1720  *
1721  * It is vital that we remove the page mapping if we have mapped a tiled
1722  * object through the GTT and then lose the fence register due to
1723  * resource pressure. Similarly if the object has been moved out of the
1724  * aperture, than pages mapped into userspace must be revoked. Removing the
1725  * mapping will then trigger a page fault on the next user access, allowing
1726  * fixup by i915_gem_fault().
1727  */
1728 void
1729 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1730 {
1731         if (!obj->fault_mappable)
1732                 return;
1733
1734         drm_vma_node_unmap(&obj->base.vma_node,
1735                            obj->base.dev->anon_inode->i_mapping);
1736         obj->fault_mappable = false;
1737 }
1738
1739 void
1740 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1741 {
1742         struct drm_i915_gem_object *obj;
1743
1744         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1745                 i915_gem_release_mmap(obj);
1746 }
1747
1748 uint32_t
1749 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1750 {
1751         uint32_t gtt_size;
1752
1753         if (INTEL_INFO(dev)->gen >= 4 ||
1754             tiling_mode == I915_TILING_NONE)
1755                 return size;
1756
1757         /* Previous chips need a power-of-two fence region when tiling */
1758         if (INTEL_INFO(dev)->gen == 3)
1759                 gtt_size = 1024*1024;
1760         else
1761                 gtt_size = 512*1024;
1762
1763         while (gtt_size < size)
1764                 gtt_size <<= 1;
1765
1766         return gtt_size;
1767 }
1768
1769 /**
1770  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1771  * @obj: object to check
1772  *
1773  * Return the required GTT alignment for an object, taking into account
1774  * potential fence register mapping.
1775  */
1776 uint32_t
1777 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1778                            int tiling_mode, bool fenced)
1779 {
1780         /*
1781          * Minimum alignment is 4k (GTT page size), but might be greater
1782          * if a fence register is needed for the object.
1783          */
1784         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1785             tiling_mode == I915_TILING_NONE)
1786                 return 4096;
1787
1788         /*
1789          * Previous chips need to be aligned to the size of the smallest
1790          * fence register that can contain the object.
1791          */
1792         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1793 }
1794
1795 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1796 {
1797         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1798         int ret;
1799
1800         if (drm_vma_node_has_offset(&obj->base.vma_node))
1801                 return 0;
1802
1803         dev_priv->mm.shrinker_no_lock_stealing = true;
1804
1805         ret = drm_gem_create_mmap_offset(&obj->base);
1806         if (ret != -ENOSPC)
1807                 goto out;
1808
1809         /* Badly fragmented mmap space? The only way we can recover
1810          * space is by destroying unwanted objects. We can't randomly release
1811          * mmap_offsets as userspace expects them to be persistent for the
1812          * lifetime of the objects. The closest we can is to release the
1813          * offsets on purgeable objects by truncating it and marking it purged,
1814          * which prevents userspace from ever using that object again.
1815          */
1816         i915_gem_shrink(dev_priv,
1817                         obj->base.size >> PAGE_SHIFT,
1818                         I915_SHRINK_BOUND |
1819                         I915_SHRINK_UNBOUND |
1820                         I915_SHRINK_PURGEABLE);
1821         ret = drm_gem_create_mmap_offset(&obj->base);
1822         if (ret != -ENOSPC)
1823                 goto out;
1824
1825         i915_gem_shrink_all(dev_priv);
1826         ret = drm_gem_create_mmap_offset(&obj->base);
1827 out:
1828         dev_priv->mm.shrinker_no_lock_stealing = false;
1829
1830         return ret;
1831 }
1832
1833 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1834 {
1835         drm_gem_free_mmap_offset(&obj->base);
1836 }
1837
1838 static int
1839 i915_gem_mmap_gtt(struct drm_file *file,
1840                   struct drm_device *dev,
1841                   uint32_t handle, bool dumb,
1842                   uint64_t *offset)
1843 {
1844         struct drm_i915_private *dev_priv = dev->dev_private;
1845         struct drm_i915_gem_object *obj;
1846         int ret;
1847
1848         ret = i915_mutex_lock_interruptible(dev);
1849         if (ret)
1850                 return ret;
1851
1852         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1853         if (&obj->base == NULL) {
1854                 ret = -ENOENT;
1855                 goto unlock;
1856         }
1857
1858         /*
1859          * We don't allow dumb mmaps on objects created using another
1860          * interface.
1861          */
1862         WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1863                   "Illegal dumb map of accelerated buffer.\n");
1864
1865         if (obj->base.size > dev_priv->gtt.mappable_end) {
1866                 ret = -E2BIG;
1867                 goto out;
1868         }
1869
1870         if (obj->madv != I915_MADV_WILLNEED) {
1871                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1872                 ret = -EFAULT;
1873                 goto out;
1874         }
1875
1876         ret = i915_gem_object_create_mmap_offset(obj);
1877         if (ret)
1878                 goto out;
1879
1880         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1881
1882 out:
1883         drm_gem_object_unreference(&obj->base);
1884 unlock:
1885         mutex_unlock(&dev->struct_mutex);
1886         return ret;
1887 }
1888
1889 int
1890 i915_gem_dumb_map_offset(struct drm_file *file,
1891                          struct drm_device *dev,
1892                          uint32_t handle,
1893                          uint64_t *offset)
1894 {
1895         return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1896 }
1897
1898 /**
1899  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1900  * @dev: DRM device
1901  * @data: GTT mapping ioctl data
1902  * @file: GEM object info
1903  *
1904  * Simply returns the fake offset to userspace so it can mmap it.
1905  * The mmap call will end up in drm_gem_mmap(), which will set things
1906  * up so we can get faults in the handler above.
1907  *
1908  * The fault handler will take care of binding the object into the GTT
1909  * (since it may have been evicted to make room for something), allocating
1910  * a fence register, and mapping the appropriate aperture address into
1911  * userspace.
1912  */
1913 int
1914 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1915                         struct drm_file *file)
1916 {
1917         struct drm_i915_gem_mmap_gtt *args = data;
1918
1919         return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
1920 }
1921
1922 static inline int
1923 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1924 {
1925         return obj->madv == I915_MADV_DONTNEED;
1926 }
1927
1928 /* Immediately discard the backing storage */
1929 static void
1930 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1931 {
1932         i915_gem_object_free_mmap_offset(obj);
1933
1934         if (obj->base.filp == NULL)
1935                 return;
1936
1937         /* Our goal here is to return as much of the memory as
1938          * is possible back to the system as we are called from OOM.
1939          * To do this we must instruct the shmfs to drop all of its
1940          * backing pages, *now*.
1941          */
1942         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1943         obj->madv = __I915_MADV_PURGED;
1944 }
1945
1946 /* Try to discard unwanted pages */
1947 static void
1948 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1949 {
1950         struct address_space *mapping;
1951
1952         switch (obj->madv) {
1953         case I915_MADV_DONTNEED:
1954                 i915_gem_object_truncate(obj);
1955         case __I915_MADV_PURGED:
1956                 return;
1957         }
1958
1959         if (obj->base.filp == NULL)
1960                 return;
1961
1962         mapping = file_inode(obj->base.filp)->i_mapping,
1963         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1964 }
1965
1966 static void
1967 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1968 {
1969         struct sg_page_iter sg_iter;
1970         int ret;
1971
1972         BUG_ON(obj->madv == __I915_MADV_PURGED);
1973
1974         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1975         if (ret) {
1976                 /* In the event of a disaster, abandon all caches and
1977                  * hope for the best.
1978                  */
1979                 WARN_ON(ret != -EIO);
1980                 i915_gem_clflush_object(obj, true);
1981                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1982         }
1983
1984         if (i915_gem_object_needs_bit17_swizzle(obj))
1985                 i915_gem_object_save_bit_17_swizzle(obj);
1986
1987         if (obj->madv == I915_MADV_DONTNEED)
1988                 obj->dirty = 0;
1989
1990         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1991                 struct page *page = sg_page_iter_page(&sg_iter);
1992
1993                 if (obj->dirty)
1994                         set_page_dirty(page);
1995
1996                 if (obj->madv == I915_MADV_WILLNEED)
1997                         mark_page_accessed(page);
1998
1999                 page_cache_release(page);
2000         }
2001         obj->dirty = 0;
2002
2003         sg_free_table(obj->pages);
2004         kfree(obj->pages);
2005 }
2006
2007 int
2008 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2009 {
2010         const struct drm_i915_gem_object_ops *ops = obj->ops;
2011
2012         if (obj->pages == NULL)
2013                 return 0;
2014
2015         if (obj->pages_pin_count)
2016                 return -EBUSY;
2017
2018         BUG_ON(i915_gem_obj_bound_any(obj));
2019
2020         /* ->put_pages might need to allocate memory for the bit17 swizzle
2021          * array, hence protect them from being reaped by removing them from gtt
2022          * lists early. */
2023         list_del(&obj->global_list);
2024
2025         ops->put_pages(obj);
2026         obj->pages = NULL;
2027
2028         i915_gem_object_invalidate(obj);
2029
2030         return 0;
2031 }
2032
2033 unsigned long
2034 i915_gem_shrink(struct drm_i915_private *dev_priv,
2035                 long target, unsigned flags)
2036 {
2037         const struct {
2038                 struct list_head *list;
2039                 unsigned int bit;
2040         } phases[] = {
2041                 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2042                 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2043                 { NULL, 0 },
2044         }, *phase;
2045         unsigned long count = 0;
2046
2047         /*
2048          * As we may completely rewrite the (un)bound list whilst unbinding
2049          * (due to retiring requests) we have to strictly process only
2050          * one element of the list at the time, and recheck the list
2051          * on every iteration.
2052          *
2053          * In particular, we must hold a reference whilst removing the
2054          * object as we may end up waiting for and/or retiring the objects.
2055          * This might release the final reference (held by the active list)
2056          * and result in the object being freed from under us. This is
2057          * similar to the precautions the eviction code must take whilst
2058          * removing objects.
2059          *
2060          * Also note that although these lists do not hold a reference to
2061          * the object we can safely grab one here: The final object
2062          * unreferencing and the bound_list are both protected by the
2063          * dev->struct_mutex and so we won't ever be able to observe an
2064          * object on the bound_list with a reference count equals 0.
2065          */
2066         for (phase = phases; phase->list; phase++) {
2067                 struct list_head still_in_list;
2068
2069                 if ((flags & phase->bit) == 0)
2070                         continue;
2071
2072                 INIT_LIST_HEAD(&still_in_list);
2073                 while (count < target && !list_empty(phase->list)) {
2074                         struct drm_i915_gem_object *obj;
2075                         struct i915_vma *vma, *v;
2076
2077                         obj = list_first_entry(phase->list,
2078                                                typeof(*obj), global_list);
2079                         list_move_tail(&obj->global_list, &still_in_list);
2080
2081                         if (flags & I915_SHRINK_PURGEABLE &&
2082                             !i915_gem_object_is_purgeable(obj))
2083                                 continue;
2084
2085                         drm_gem_object_reference(&obj->base);
2086
2087                         /* For the unbound phase, this should be a no-op! */
2088                         list_for_each_entry_safe(vma, v,
2089                                                  &obj->vma_list, vma_link)
2090                                 if (i915_vma_unbind(vma))
2091                                         break;
2092
2093                         if (i915_gem_object_put_pages(obj) == 0)
2094                                 count += obj->base.size >> PAGE_SHIFT;
2095
2096                         drm_gem_object_unreference(&obj->base);
2097                 }
2098                 list_splice(&still_in_list, phase->list);
2099         }
2100
2101         return count;
2102 }
2103
2104 static unsigned long
2105 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2106 {
2107         i915_gem_evict_everything(dev_priv->dev);
2108         return i915_gem_shrink(dev_priv, LONG_MAX,
2109                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2110 }
2111
2112 static int
2113 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2114 {
2115         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2116         int page_count, i;
2117         struct address_space *mapping;
2118         struct sg_table *st;
2119         struct scatterlist *sg;
2120         struct sg_page_iter sg_iter;
2121         struct page *page;
2122         unsigned long last_pfn = 0;     /* suppress gcc warning */
2123         gfp_t gfp;
2124
2125         /* Assert that the object is not currently in any GPU domain. As it
2126          * wasn't in the GTT, there shouldn't be any way it could have been in
2127          * a GPU cache
2128          */
2129         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2130         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2131
2132         st = kmalloc(sizeof(*st), GFP_KERNEL);
2133         if (st == NULL)
2134                 return -ENOMEM;
2135
2136         page_count = obj->base.size / PAGE_SIZE;
2137         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2138                 kfree(st);
2139                 return -ENOMEM;
2140         }
2141
2142         /* Get the list of pages out of our struct file.  They'll be pinned
2143          * at this point until we release them.
2144          *
2145          * Fail silently without starting the shrinker
2146          */
2147         mapping = file_inode(obj->base.filp)->i_mapping;
2148         gfp = mapping_gfp_mask(mapping);
2149         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2150         gfp &= ~(__GFP_IO | __GFP_WAIT);
2151         sg = st->sgl;
2152         st->nents = 0;
2153         for (i = 0; i < page_count; i++) {
2154                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155                 if (IS_ERR(page)) {
2156                         i915_gem_shrink(dev_priv,
2157                                         page_count,
2158                                         I915_SHRINK_BOUND |
2159                                         I915_SHRINK_UNBOUND |
2160                                         I915_SHRINK_PURGEABLE);
2161                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2162                 }
2163                 if (IS_ERR(page)) {
2164                         /* We've tried hard to allocate the memory by reaping
2165                          * our own buffer, now let the real VM do its job and
2166                          * go down in flames if truly OOM.
2167                          */
2168                         i915_gem_shrink_all(dev_priv);
2169                         page = shmem_read_mapping_page(mapping, i);
2170                         if (IS_ERR(page))
2171                                 goto err_pages;
2172                 }
2173 #ifdef CONFIG_SWIOTLB
2174                 if (swiotlb_nr_tbl()) {
2175                         st->nents++;
2176                         sg_set_page(sg, page, PAGE_SIZE, 0);
2177                         sg = sg_next(sg);
2178                         continue;
2179                 }
2180 #endif
2181                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2182                         if (i)
2183                                 sg = sg_next(sg);
2184                         st->nents++;
2185                         sg_set_page(sg, page, PAGE_SIZE, 0);
2186                 } else {
2187                         sg->length += PAGE_SIZE;
2188                 }
2189                 last_pfn = page_to_pfn(page);
2190
2191                 /* Check that the i965g/gm workaround works. */
2192                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2193         }
2194 #ifdef CONFIG_SWIOTLB
2195         if (!swiotlb_nr_tbl())
2196 #endif
2197                 sg_mark_end(sg);
2198         obj->pages = st;
2199
2200         if (i915_gem_object_needs_bit17_swizzle(obj))
2201                 i915_gem_object_do_bit_17_swizzle(obj);
2202
2203         if (obj->tiling_mode != I915_TILING_NONE &&
2204             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2205                 i915_gem_object_pin_pages(obj);
2206
2207         return 0;
2208
2209 err_pages:
2210         sg_mark_end(sg);
2211         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2212                 page_cache_release(sg_page_iter_page(&sg_iter));
2213         sg_free_table(st);
2214         kfree(st);
2215
2216         /* shmemfs first checks if there is enough memory to allocate the page
2217          * and reports ENOSPC should there be insufficient, along with the usual
2218          * ENOMEM for a genuine allocation failure.
2219          *
2220          * We use ENOSPC in our driver to mean that we have run out of aperture
2221          * space and so want to translate the error from shmemfs back to our
2222          * usual understanding of ENOMEM.
2223          */
2224         if (PTR_ERR(page) == -ENOSPC)
2225                 return -ENOMEM;
2226         else
2227                 return PTR_ERR(page);
2228 }
2229
2230 /* Ensure that the associated pages are gathered from the backing storage
2231  * and pinned into our object. i915_gem_object_get_pages() may be called
2232  * multiple times before they are released by a single call to
2233  * i915_gem_object_put_pages() - once the pages are no longer referenced
2234  * either as a result of memory pressure (reaping pages under the shrinker)
2235  * or as the object is itself released.
2236  */
2237 int
2238 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2239 {
2240         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2241         const struct drm_i915_gem_object_ops *ops = obj->ops;
2242         int ret;
2243
2244         if (obj->pages)
2245                 return 0;
2246
2247         if (obj->madv != I915_MADV_WILLNEED) {
2248                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2249                 return -EFAULT;
2250         }
2251
2252         BUG_ON(obj->pages_pin_count);
2253
2254         ret = ops->get_pages(obj);
2255         if (ret)
2256                 return ret;
2257
2258         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2259         return 0;
2260 }
2261
2262 static void
2263 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2264                                struct intel_engine_cs *ring)
2265 {
2266         struct drm_i915_gem_request *req = intel_ring_get_request(ring);
2267
2268         BUG_ON(ring == NULL);
2269         if (obj->ring != ring && obj->last_write_req) {
2270                 /* Keep the request relative to the current ring */
2271                 i915_gem_request_assign(&obj->last_write_req, req);
2272         }
2273         obj->ring = ring;
2274
2275         /* Add a reference if we're newly entering the active list. */
2276         if (!obj->active) {
2277                 drm_gem_object_reference(&obj->base);
2278                 obj->active = 1;
2279         }
2280
2281         list_move_tail(&obj->ring_list, &ring->active_list);
2282
2283         i915_gem_request_assign(&obj->last_read_req, req);
2284 }
2285
2286 void i915_vma_move_to_active(struct i915_vma *vma,
2287                              struct intel_engine_cs *ring)
2288 {
2289         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2290         return i915_gem_object_move_to_active(vma->obj, ring);
2291 }
2292
2293 static void
2294 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2295 {
2296         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2297         struct i915_address_space *vm;
2298         struct i915_vma *vma;
2299
2300         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2301         BUG_ON(!obj->active);
2302
2303         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2304                 vma = i915_gem_obj_to_vma(obj, vm);
2305                 if (vma && !list_empty(&vma->mm_list))
2306                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2307         }
2308
2309         intel_fb_obj_flush(obj, true);
2310
2311         list_del_init(&obj->ring_list);
2312         obj->ring = NULL;
2313
2314         i915_gem_request_assign(&obj->last_read_req, NULL);
2315         i915_gem_request_assign(&obj->last_write_req, NULL);
2316         obj->base.write_domain = 0;
2317
2318         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2319
2320         obj->active = 0;
2321         drm_gem_object_unreference(&obj->base);
2322
2323         WARN_ON(i915_verify_lists(dev));
2324 }
2325
2326 static void
2327 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2328 {
2329         struct intel_engine_cs *ring = obj->ring;
2330
2331         if (ring == NULL)
2332                 return;
2333
2334         if (i915_gem_request_completed(obj->last_read_req, true))
2335                 i915_gem_object_move_to_inactive(obj);
2336 }
2337
2338 static int
2339 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2340 {
2341         struct drm_i915_private *dev_priv = dev->dev_private;
2342         struct intel_engine_cs *ring;
2343         int ret, i, j;
2344
2345         /* Carefully retire all requests without writing to the rings */
2346         for_each_ring(ring, dev_priv, i) {
2347                 ret = intel_ring_idle(ring);
2348                 if (ret)
2349                         return ret;
2350         }
2351         i915_gem_retire_requests(dev);
2352
2353         /* Finally reset hw state */
2354         for_each_ring(ring, dev_priv, i) {
2355                 intel_ring_init_seqno(ring, seqno);
2356
2357                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2358                         ring->semaphore.sync_seqno[j] = 0;
2359         }
2360
2361         return 0;
2362 }
2363
2364 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2365 {
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         int ret;
2368
2369         if (seqno == 0)
2370                 return -EINVAL;
2371
2372         /* HWS page needs to be set less than what we
2373          * will inject to ring
2374          */
2375         ret = i915_gem_init_seqno(dev, seqno - 1);
2376         if (ret)
2377                 return ret;
2378
2379         /* Carefully set the last_seqno value so that wrap
2380          * detection still works
2381          */
2382         dev_priv->next_seqno = seqno;
2383         dev_priv->last_seqno = seqno - 1;
2384         if (dev_priv->last_seqno == 0)
2385                 dev_priv->last_seqno--;
2386
2387         return 0;
2388 }
2389
2390 int
2391 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2392 {
2393         struct drm_i915_private *dev_priv = dev->dev_private;
2394
2395         /* reserve 0 for non-seqno */
2396         if (dev_priv->next_seqno == 0) {
2397                 int ret = i915_gem_init_seqno(dev, 0);
2398                 if (ret)
2399                         return ret;
2400
2401                 dev_priv->next_seqno = 1;
2402         }
2403
2404         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2405         return 0;
2406 }
2407
2408 int __i915_add_request(struct intel_engine_cs *ring,
2409                        struct drm_file *file,
2410                        struct drm_i915_gem_object *obj)
2411 {
2412         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2413         struct drm_i915_gem_request *request;
2414         struct intel_ringbuffer *ringbuf;
2415         u32 request_ring_position, request_start;
2416         int ret;
2417
2418         request = ring->outstanding_lazy_request;
2419         if (WARN_ON(request == NULL))
2420                 return -ENOMEM;
2421
2422         if (i915.enable_execlists) {
2423                 struct intel_context *ctx = request->ctx;
2424                 ringbuf = ctx->engine[ring->id].ringbuf;
2425         } else
2426                 ringbuf = ring->buffer;
2427
2428         request_start = intel_ring_get_tail(ringbuf);
2429         /*
2430          * Emit any outstanding flushes - execbuf can fail to emit the flush
2431          * after having emitted the batchbuffer command. Hence we need to fix
2432          * things up similar to emitting the lazy request. The difference here
2433          * is that the flush _must_ happen before the next request, no matter
2434          * what.
2435          */
2436         if (i915.enable_execlists) {
2437                 ret = logical_ring_flush_all_caches(ringbuf);
2438                 if (ret)
2439                         return ret;
2440         } else {
2441                 ret = intel_ring_flush_all_caches(ring);
2442                 if (ret)
2443                         return ret;
2444         }
2445
2446         /* Record the position of the start of the request so that
2447          * should we detect the updated seqno part-way through the
2448          * GPU processing the request, we never over-estimate the
2449          * position of the head.
2450          */
2451         request_ring_position = intel_ring_get_tail(ringbuf);
2452
2453         if (i915.enable_execlists) {
2454                 ret = ring->emit_request(ringbuf);
2455                 if (ret)
2456                         return ret;
2457         } else {
2458                 ret = ring->add_request(ring);
2459                 if (ret)
2460                         return ret;
2461         }
2462
2463         request->head = request_start;
2464         request->tail = request_ring_position;
2465
2466         /* Whilst this request exists, batch_obj will be on the
2467          * active_list, and so will hold the active reference. Only when this
2468          * request is retired will the the batch_obj be moved onto the
2469          * inactive_list and lose its active reference. Hence we do not need
2470          * to explicitly hold another reference here.
2471          */
2472         request->batch_obj = obj;
2473
2474         if (!i915.enable_execlists) {
2475                 /* Hold a reference to the current context so that we can inspect
2476                  * it later in case a hangcheck error event fires.
2477                  */
2478                 request->ctx = ring->last_context;
2479                 if (request->ctx)
2480                         i915_gem_context_reference(request->ctx);
2481         }
2482
2483         request->emitted_jiffies = jiffies;
2484         list_add_tail(&request->list, &ring->request_list);
2485         request->file_priv = NULL;
2486
2487         if (file) {
2488                 struct drm_i915_file_private *file_priv = file->driver_priv;
2489
2490                 spin_lock(&file_priv->mm.lock);
2491                 request->file_priv = file_priv;
2492                 list_add_tail(&request->client_list,
2493                               &file_priv->mm.request_list);
2494                 spin_unlock(&file_priv->mm.lock);
2495         }
2496
2497         trace_i915_gem_request_add(request);
2498         ring->outstanding_lazy_request = NULL;
2499
2500         i915_queue_hangcheck(ring->dev);
2501
2502         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2503         queue_delayed_work(dev_priv->wq,
2504                            &dev_priv->mm.retire_work,
2505                            round_jiffies_up_relative(HZ));
2506         intel_mark_busy(dev_priv->dev);
2507
2508         return 0;
2509 }
2510
2511 static inline void
2512 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513 {
2514         struct drm_i915_file_private *file_priv = request->file_priv;
2515
2516         if (!file_priv)
2517                 return;
2518
2519         spin_lock(&file_priv->mm.lock);
2520         list_del(&request->client_list);
2521         request->file_priv = NULL;
2522         spin_unlock(&file_priv->mm.lock);
2523 }
2524
2525 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526                                    const struct intel_context *ctx)
2527 {
2528         unsigned long elapsed;
2529
2530         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532         if (ctx->hang_stats.banned)
2533                 return true;
2534
2535         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2536                 if (!i915_gem_context_is_default(ctx)) {
2537                         DRM_DEBUG("context hanging too fast, banning!\n");
2538                         return true;
2539                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2540                         if (i915_stop_ring_allow_warn(dev_priv))
2541                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2542                         return true;
2543                 }
2544         }
2545
2546         return false;
2547 }
2548
2549 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2550                                   struct intel_context *ctx,
2551                                   const bool guilty)
2552 {
2553         struct i915_ctx_hang_stats *hs;
2554
2555         if (WARN_ON(!ctx))
2556                 return;
2557
2558         hs = &ctx->hang_stats;
2559
2560         if (guilty) {
2561                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2562                 hs->batch_active++;
2563                 hs->guilty_ts = get_seconds();
2564         } else {
2565                 hs->batch_pending++;
2566         }
2567 }
2568
2569 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2570 {
2571         list_del(&request->list);
2572         i915_gem_request_remove_from_client(request);
2573
2574         i915_gem_request_unreference(request);
2575 }
2576
2577 void i915_gem_request_free(struct kref *req_ref)
2578 {
2579         struct drm_i915_gem_request *req = container_of(req_ref,
2580                                                  typeof(*req), ref);
2581         struct intel_context *ctx = req->ctx;
2582
2583         if (ctx) {
2584                 if (i915.enable_execlists) {
2585                         struct intel_engine_cs *ring = req->ring;
2586
2587                         if (ctx != ring->default_context)
2588                                 intel_lr_context_unpin(ring, ctx);
2589                 }
2590
2591                 i915_gem_context_unreference(ctx);
2592         }
2593
2594         kfree(req);
2595 }
2596
2597 struct drm_i915_gem_request *
2598 i915_gem_find_active_request(struct intel_engine_cs *ring)
2599 {
2600         struct drm_i915_gem_request *request;
2601
2602         list_for_each_entry(request, &ring->request_list, list) {
2603                 if (i915_gem_request_completed(request, false))
2604                         continue;
2605
2606                 return request;
2607         }
2608
2609         return NULL;
2610 }
2611
2612 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2613                                        struct intel_engine_cs *ring)
2614 {
2615         struct drm_i915_gem_request *request;
2616         bool ring_hung;
2617
2618         request = i915_gem_find_active_request(ring);
2619
2620         if (request == NULL)
2621                 return;
2622
2623         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2624
2625         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2626
2627         list_for_each_entry_continue(request, &ring->request_list, list)
2628                 i915_set_reset_status(dev_priv, request->ctx, false);
2629 }
2630
2631 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2632                                         struct intel_engine_cs *ring)
2633 {
2634         while (!list_empty(&ring->active_list)) {
2635                 struct drm_i915_gem_object *obj;
2636
2637                 obj = list_first_entry(&ring->active_list,
2638                                        struct drm_i915_gem_object,
2639                                        ring_list);
2640
2641                 i915_gem_object_move_to_inactive(obj);
2642         }
2643
2644         /*
2645          * Clear the execlists queue up before freeing the requests, as those
2646          * are the ones that keep the context and ringbuffer backing objects
2647          * pinned in place.
2648          */
2649         while (!list_empty(&ring->execlist_queue)) {
2650                 struct intel_ctx_submit_request *submit_req;
2651
2652                 submit_req = list_first_entry(&ring->execlist_queue,
2653                                 struct intel_ctx_submit_request,
2654                                 execlist_link);
2655                 list_del(&submit_req->execlist_link);
2656                 intel_runtime_pm_put(dev_priv);
2657                 i915_gem_context_unreference(submit_req->ctx);
2658                 kfree(submit_req);
2659         }
2660
2661         /*
2662          * We must free the requests after all the corresponding objects have
2663          * been moved off active lists. Which is the same order as the normal
2664          * retire_requests function does. This is important if object hold
2665          * implicit references on things like e.g. ppgtt address spaces through
2666          * the request.
2667          */
2668         while (!list_empty(&ring->request_list)) {
2669                 struct drm_i915_gem_request *request;
2670
2671                 request = list_first_entry(&ring->request_list,
2672                                            struct drm_i915_gem_request,
2673                                            list);
2674
2675                 i915_gem_free_request(request);
2676         }
2677
2678         /* This may not have been flushed before the reset, so clean it now */
2679         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2680 }
2681
2682 void i915_gem_restore_fences(struct drm_device *dev)
2683 {
2684         struct drm_i915_private *dev_priv = dev->dev_private;
2685         int i;
2686
2687         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2688                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2689
2690                 /*
2691                  * Commit delayed tiling changes if we have an object still
2692                  * attached to the fence, otherwise just clear the fence.
2693                  */
2694                 if (reg->obj) {
2695                         i915_gem_object_update_fence(reg->obj, reg,
2696                                                      reg->obj->tiling_mode);
2697                 } else {
2698                         i915_gem_write_fence(dev, i, NULL);
2699                 }
2700         }
2701 }
2702
2703 void i915_gem_reset(struct drm_device *dev)
2704 {
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         struct intel_engine_cs *ring;
2707         int i;
2708
2709         /*
2710          * Before we free the objects from the requests, we need to inspect
2711          * them for finding the guilty party. As the requests only borrow
2712          * their reference to the objects, the inspection must be done first.
2713          */
2714         for_each_ring(ring, dev_priv, i)
2715                 i915_gem_reset_ring_status(dev_priv, ring);
2716
2717         for_each_ring(ring, dev_priv, i)
2718                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2719
2720         i915_gem_context_reset(dev);
2721
2722         i915_gem_restore_fences(dev);
2723 }
2724
2725 /**
2726  * This function clears the request list as sequence numbers are passed.
2727  */
2728 void
2729 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2730 {
2731         if (list_empty(&ring->request_list))
2732                 return;
2733
2734         WARN_ON(i915_verify_lists(ring->dev));
2735
2736         /* Move any buffers on the active list that are no longer referenced
2737          * by the ringbuffer to the flushing/inactive lists as appropriate,
2738          * before we free the context associated with the requests.
2739          */
2740         while (!list_empty(&ring->active_list)) {
2741                 struct drm_i915_gem_object *obj;
2742
2743                 obj = list_first_entry(&ring->active_list,
2744                                       struct drm_i915_gem_object,
2745                                       ring_list);
2746
2747                 if (!i915_gem_request_completed(obj->last_read_req, true))
2748                         break;
2749
2750                 i915_gem_object_move_to_inactive(obj);
2751         }
2752
2753
2754         while (!list_empty(&ring->request_list)) {
2755                 struct drm_i915_gem_request *request;
2756                 struct intel_ringbuffer *ringbuf;
2757
2758                 request = list_first_entry(&ring->request_list,
2759                                            struct drm_i915_gem_request,
2760                                            list);
2761
2762                 if (!i915_gem_request_completed(request, true))
2763                         break;
2764
2765                 trace_i915_gem_request_retire(request);
2766
2767                 /* This is one of the few common intersection points
2768                  * between legacy ringbuffer submission and execlists:
2769                  * we need to tell them apart in order to find the correct
2770                  * ringbuffer to which the request belongs to.
2771                  */
2772                 if (i915.enable_execlists) {
2773                         struct intel_context *ctx = request->ctx;
2774                         ringbuf = ctx->engine[ring->id].ringbuf;
2775                 } else
2776                         ringbuf = ring->buffer;
2777
2778                 /* We know the GPU must have read the request to have
2779                  * sent us the seqno + interrupt, so use the position
2780                  * of tail of the request to update the last known position
2781                  * of the GPU head.
2782                  */
2783                 ringbuf->last_retired_head = request->tail;
2784
2785                 i915_gem_free_request(request);
2786         }
2787
2788         if (unlikely(ring->trace_irq_seqno &&
2789                      i915_seqno_passed(ring->get_seqno(ring, true),
2790                                        ring->trace_irq_seqno))) {
2791                 ring->irq_put(ring);
2792                 ring->trace_irq_seqno = 0;
2793         }
2794
2795         WARN_ON(i915_verify_lists(ring->dev));
2796 }
2797
2798 bool
2799 i915_gem_retire_requests(struct drm_device *dev)
2800 {
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_engine_cs *ring;
2803         bool idle = true;
2804         int i;
2805
2806         for_each_ring(ring, dev_priv, i) {
2807                 i915_gem_retire_requests_ring(ring);
2808                 idle &= list_empty(&ring->request_list);
2809                 if (i915.enable_execlists) {
2810                         unsigned long flags;
2811
2812                         spin_lock_irqsave(&ring->execlist_lock, flags);
2813                         idle &= list_empty(&ring->execlist_queue);
2814                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2815
2816                         intel_execlists_retire_requests(ring);
2817                 }
2818         }
2819
2820         if (idle)
2821                 mod_delayed_work(dev_priv->wq,
2822                                    &dev_priv->mm.idle_work,
2823                                    msecs_to_jiffies(100));
2824
2825         return idle;
2826 }
2827
2828 static void
2829 i915_gem_retire_work_handler(struct work_struct *work)
2830 {
2831         struct drm_i915_private *dev_priv =
2832                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2833         struct drm_device *dev = dev_priv->dev;
2834         bool idle;
2835
2836         /* Come back later if the device is busy... */
2837         idle = false;
2838         if (mutex_trylock(&dev->struct_mutex)) {
2839                 idle = i915_gem_retire_requests(dev);
2840                 mutex_unlock(&dev->struct_mutex);
2841         }
2842         if (!idle)
2843                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2844                                    round_jiffies_up_relative(HZ));
2845 }
2846
2847 static void
2848 i915_gem_idle_work_handler(struct work_struct *work)
2849 {
2850         struct drm_i915_private *dev_priv =
2851                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2852
2853         intel_mark_idle(dev_priv->dev);
2854 }
2855
2856 /**
2857  * Ensures that an object will eventually get non-busy by flushing any required
2858  * write domains, emitting any outstanding lazy request and retiring and
2859  * completed requests.
2860  */
2861 static int
2862 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2863 {
2864         int ret;
2865
2866         if (obj->active) {
2867                 ret = i915_gem_check_olr(obj->last_read_req);
2868                 if (ret)
2869                         return ret;
2870
2871                 i915_gem_retire_requests_ring(obj->ring);
2872         }
2873
2874         return 0;
2875 }
2876
2877 /**
2878  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2879  * @DRM_IOCTL_ARGS: standard ioctl arguments
2880  *
2881  * Returns 0 if successful, else an error is returned with the remaining time in
2882  * the timeout parameter.
2883  *  -ETIME: object is still busy after timeout
2884  *  -ERESTARTSYS: signal interrupted the wait
2885  *  -ENONENT: object doesn't exist
2886  * Also possible, but rare:
2887  *  -EAGAIN: GPU wedged
2888  *  -ENOMEM: damn
2889  *  -ENODEV: Internal IRQ fail
2890  *  -E?: The add request failed
2891  *
2892  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2893  * non-zero timeout parameter the wait ioctl will wait for the given number of
2894  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2895  * without holding struct_mutex the object may become re-busied before this
2896  * function completes. A similar but shorter * race condition exists in the busy
2897  * ioctl
2898  */
2899 int
2900 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2901 {
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         struct drm_i915_gem_wait *args = data;
2904         struct drm_i915_gem_object *obj;
2905         struct drm_i915_gem_request *req;
2906         unsigned reset_counter;
2907         int ret = 0;
2908
2909         if (args->flags != 0)
2910                 return -EINVAL;
2911
2912         ret = i915_mutex_lock_interruptible(dev);
2913         if (ret)
2914                 return ret;
2915
2916         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2917         if (&obj->base == NULL) {
2918                 mutex_unlock(&dev->struct_mutex);
2919                 return -ENOENT;
2920         }
2921
2922         /* Need to make sure the object gets inactive eventually. */
2923         ret = i915_gem_object_flush_active(obj);
2924         if (ret)
2925                 goto out;
2926
2927         if (!obj->active || !obj->last_read_req)
2928                 goto out;
2929
2930         req = obj->last_read_req;
2931
2932         /* Do this after OLR check to make sure we make forward progress polling
2933          * on this IOCTL with a timeout <=0 (like busy ioctl)
2934          */
2935         if (args->timeout_ns <= 0) {
2936                 ret = -ETIME;
2937                 goto out;
2938         }
2939
2940         drm_gem_object_unreference(&obj->base);
2941         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2942         i915_gem_request_reference(req);
2943         mutex_unlock(&dev->struct_mutex);
2944
2945         ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2946                                   file->driver_priv);
2947         mutex_lock(&dev->struct_mutex);
2948         i915_gem_request_unreference(req);
2949         mutex_unlock(&dev->struct_mutex);
2950         return ret;
2951
2952 out:
2953         drm_gem_object_unreference(&obj->base);
2954         mutex_unlock(&dev->struct_mutex);
2955         return ret;
2956 }
2957
2958 /**
2959  * i915_gem_object_sync - sync an object to a ring.
2960  *
2961  * @obj: object which may be in use on another ring.
2962  * @to: ring we wish to use the object on. May be NULL.
2963  *
2964  * This code is meant to abstract object synchronization with the GPU.
2965  * Calling with NULL implies synchronizing the object with the CPU
2966  * rather than a particular GPU ring.
2967  *
2968  * Returns 0 if successful, else propagates up the lower layer error.
2969  */
2970 int
2971 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2972                      struct intel_engine_cs *to)
2973 {
2974         struct intel_engine_cs *from = obj->ring;
2975         u32 seqno;
2976         int ret, idx;
2977
2978         if (from == NULL || to == from)
2979                 return 0;
2980
2981         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2982                 return i915_gem_object_wait_rendering(obj, false);
2983
2984         idx = intel_ring_sync_index(from, to);
2985
2986         seqno = i915_gem_request_get_seqno(obj->last_read_req);
2987         /* Optimization: Avoid semaphore sync when we are sure we already
2988          * waited for an object with higher seqno */
2989         if (seqno <= from->semaphore.sync_seqno[idx])
2990                 return 0;
2991
2992         ret = i915_gem_check_olr(obj->last_read_req);
2993         if (ret)
2994                 return ret;
2995
2996         trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2997         ret = to->semaphore.sync_to(to, from, seqno);
2998         if (!ret)
2999                 /* We use last_read_req because sync_to()
3000                  * might have just caused seqno wrap under
3001                  * the radar.
3002                  */
3003                 from->semaphore.sync_seqno[idx] =
3004                                 i915_gem_request_get_seqno(obj->last_read_req);
3005
3006         return ret;
3007 }
3008
3009 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3010 {
3011         u32 old_write_domain, old_read_domains;
3012
3013         /* Force a pagefault for domain tracking on next user access */
3014         i915_gem_release_mmap(obj);
3015
3016         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3017                 return;
3018
3019         /* Wait for any direct GTT access to complete */
3020         mb();
3021
3022         old_read_domains = obj->base.read_domains;
3023         old_write_domain = obj->base.write_domain;
3024
3025         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3026         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3027
3028         trace_i915_gem_object_change_domain(obj,
3029                                             old_read_domains,
3030                                             old_write_domain);
3031 }
3032
3033 int i915_vma_unbind(struct i915_vma *vma)
3034 {
3035         struct drm_i915_gem_object *obj = vma->obj;
3036         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3037         int ret;
3038
3039         if (list_empty(&vma->vma_link))
3040                 return 0;
3041
3042         if (!drm_mm_node_allocated(&vma->node)) {
3043                 i915_gem_vma_destroy(vma);
3044                 return 0;
3045         }
3046
3047         if (vma->pin_count)
3048                 return -EBUSY;
3049
3050         BUG_ON(obj->pages == NULL);
3051
3052         ret = i915_gem_object_finish_gpu(obj);
3053         if (ret)
3054                 return ret;
3055         /* Continue on if we fail due to EIO, the GPU is hung so we
3056          * should be safe and we need to cleanup or else we might
3057          * cause memory corruption through use-after-free.
3058          */
3059
3060         /* Throw away the active reference before moving to the unbound list */
3061         i915_gem_object_retire(obj);
3062
3063         if (i915_is_ggtt(vma->vm)) {
3064                 i915_gem_object_finish_gtt(obj);
3065
3066                 /* release the fence reg _after_ flushing */
3067                 ret = i915_gem_object_put_fence(obj);
3068                 if (ret)
3069                         return ret;
3070         }
3071
3072         trace_i915_vma_unbind(vma);
3073
3074         vma->unbind_vma(vma);
3075
3076         list_del_init(&vma->mm_list);
3077         if (i915_is_ggtt(vma->vm))
3078                 obj->map_and_fenceable = false;
3079
3080         drm_mm_remove_node(&vma->node);
3081         i915_gem_vma_destroy(vma);
3082
3083         /* Since the unbound list is global, only move to that list if
3084          * no more VMAs exist. */
3085         if (list_empty(&obj->vma_list)) {
3086                 i915_gem_gtt_finish_object(obj);
3087                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3088         }
3089
3090         /* And finally now the object is completely decoupled from this vma,
3091          * we can drop its hold on the backing storage and allow it to be
3092          * reaped by the shrinker.
3093          */
3094         i915_gem_object_unpin_pages(obj);
3095
3096         return 0;
3097 }
3098
3099 int i915_gpu_idle(struct drm_device *dev)
3100 {
3101         struct drm_i915_private *dev_priv = dev->dev_private;
3102         struct intel_engine_cs *ring;
3103         int ret, i;
3104
3105         /* Flush everything onto the inactive list. */
3106         for_each_ring(ring, dev_priv, i) {
3107                 if (!i915.enable_execlists) {
3108                         ret = i915_switch_context(ring, ring->default_context);
3109                         if (ret)
3110                                 return ret;
3111                 }
3112
3113                 ret = intel_ring_idle(ring);
3114                 if (ret)
3115                         return ret;
3116         }
3117
3118         return 0;
3119 }
3120
3121 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3122                                  struct drm_i915_gem_object *obj)
3123 {
3124         struct drm_i915_private *dev_priv = dev->dev_private;
3125         int fence_reg;
3126         int fence_pitch_shift;
3127
3128         if (INTEL_INFO(dev)->gen >= 6) {
3129                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3130                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3131         } else {
3132                 fence_reg = FENCE_REG_965_0;
3133                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3134         }
3135
3136         fence_reg += reg * 8;
3137
3138         /* To w/a incoherency with non-atomic 64-bit register updates,
3139          * we split the 64-bit update into two 32-bit writes. In order
3140          * for a partial fence not to be evaluated between writes, we
3141          * precede the update with write to turn off the fence register,
3142          * and only enable the fence as the last step.
3143          *
3144          * For extra levels of paranoia, we make sure each step lands
3145          * before applying the next step.
3146          */
3147         I915_WRITE(fence_reg, 0);
3148         POSTING_READ(fence_reg);
3149
3150         if (obj) {
3151                 u32 size = i915_gem_obj_ggtt_size(obj);
3152                 uint64_t val;
3153
3154                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3155                                  0xfffff000) << 32;
3156                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3157                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3158                 if (obj->tiling_mode == I915_TILING_Y)
3159                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3160                 val |= I965_FENCE_REG_VALID;
3161
3162                 I915_WRITE(fence_reg + 4, val >> 32);
3163                 POSTING_READ(fence_reg + 4);
3164
3165                 I915_WRITE(fence_reg + 0, val);
3166                 POSTING_READ(fence_reg);
3167         } else {
3168                 I915_WRITE(fence_reg + 4, 0);
3169                 POSTING_READ(fence_reg + 4);
3170         }
3171 }
3172
3173 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3174                                  struct drm_i915_gem_object *obj)
3175 {
3176         struct drm_i915_private *dev_priv = dev->dev_private;
3177         u32 val;
3178
3179         if (obj) {
3180                 u32 size = i915_gem_obj_ggtt_size(obj);
3181                 int pitch_val;
3182                 int tile_width;
3183
3184                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3185                      (size & -size) != size ||
3186                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3187                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3188                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3189
3190                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3191                         tile_width = 128;
3192                 else
3193                         tile_width = 512;
3194
3195                 /* Note: pitch better be a power of two tile widths */
3196                 pitch_val = obj->stride / tile_width;
3197                 pitch_val = ffs(pitch_val) - 1;
3198
3199                 val = i915_gem_obj_ggtt_offset(obj);
3200                 if (obj->tiling_mode == I915_TILING_Y)
3201                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3202                 val |= I915_FENCE_SIZE_BITS(size);
3203                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3204                 val |= I830_FENCE_REG_VALID;
3205         } else
3206                 val = 0;
3207
3208         if (reg < 8)
3209                 reg = FENCE_REG_830_0 + reg * 4;
3210         else
3211                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3212
3213         I915_WRITE(reg, val);
3214         POSTING_READ(reg);
3215 }
3216
3217 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3218                                 struct drm_i915_gem_object *obj)
3219 {
3220         struct drm_i915_private *dev_priv = dev->dev_private;
3221         uint32_t val;
3222
3223         if (obj) {
3224                 u32 size = i915_gem_obj_ggtt_size(obj);
3225                 uint32_t pitch_val;
3226
3227                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3228                      (size & -size) != size ||
3229                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3230                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3231                      i915_gem_obj_ggtt_offset(obj), size);
3232
3233                 pitch_val = obj->stride / 128;
3234                 pitch_val = ffs(pitch_val) - 1;
3235
3236                 val = i915_gem_obj_ggtt_offset(obj);
3237                 if (obj->tiling_mode == I915_TILING_Y)
3238                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3239                 val |= I830_FENCE_SIZE_BITS(size);
3240                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3241                 val |= I830_FENCE_REG_VALID;
3242         } else
3243                 val = 0;
3244
3245         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3246         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3247 }
3248
3249 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3250 {
3251         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3252 }
3253
3254 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3255                                  struct drm_i915_gem_object *obj)
3256 {
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258
3259         /* Ensure that all CPU reads are completed before installing a fence
3260          * and all writes before removing the fence.
3261          */
3262         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3263                 mb();
3264
3265         WARN(obj && (!obj->stride || !obj->tiling_mode),
3266              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3267              obj->stride, obj->tiling_mode);
3268
3269         switch (INTEL_INFO(dev)->gen) {
3270         case 9:
3271         case 8:
3272         case 7:
3273         case 6:
3274         case 5:
3275         case 4: i965_write_fence_reg(dev, reg, obj); break;
3276         case 3: i915_write_fence_reg(dev, reg, obj); break;
3277         case 2: i830_write_fence_reg(dev, reg, obj); break;
3278         default: BUG();
3279         }
3280
3281         /* And similarly be paranoid that no direct access to this region
3282          * is reordered to before the fence is installed.
3283          */
3284         if (i915_gem_object_needs_mb(obj))
3285                 mb();
3286 }
3287
3288 static inline int fence_number(struct drm_i915_private *dev_priv,
3289                                struct drm_i915_fence_reg *fence)
3290 {
3291         return fence - dev_priv->fence_regs;
3292 }
3293
3294 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3295                                          struct drm_i915_fence_reg *fence,
3296                                          bool enable)
3297 {
3298         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3299         int reg = fence_number(dev_priv, fence);
3300
3301         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3302
3303         if (enable) {
3304                 obj->fence_reg = reg;
3305                 fence->obj = obj;
3306                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3307         } else {
3308                 obj->fence_reg = I915_FENCE_REG_NONE;
3309                 fence->obj = NULL;
3310                 list_del_init(&fence->lru_list);
3311         }
3312         obj->fence_dirty = false;
3313 }
3314
3315 static int
3316 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3317 {
3318         if (obj->last_fenced_req) {
3319                 int ret = i915_wait_request(obj->last_fenced_req);
3320                 if (ret)
3321                         return ret;
3322
3323                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3324         }
3325
3326         return 0;
3327 }
3328
3329 int
3330 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3331 {
3332         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3333         struct drm_i915_fence_reg *fence;
3334         int ret;
3335
3336         ret = i915_gem_object_wait_fence(obj);
3337         if (ret)
3338                 return ret;
3339
3340         if (obj->fence_reg == I915_FENCE_REG_NONE)
3341                 return 0;
3342
3343         fence = &dev_priv->fence_regs[obj->fence_reg];
3344
3345         if (WARN_ON(fence->pin_count))
3346                 return -EBUSY;
3347
3348         i915_gem_object_fence_lost(obj);
3349         i915_gem_object_update_fence(obj, fence, false);
3350
3351         return 0;
3352 }
3353
3354 static struct drm_i915_fence_reg *
3355 i915_find_fence_reg(struct drm_device *dev)
3356 {
3357         struct drm_i915_private *dev_priv = dev->dev_private;
3358         struct drm_i915_fence_reg *reg, *avail;
3359         int i;
3360
3361         /* First try to find a free reg */
3362         avail = NULL;
3363         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3364                 reg = &dev_priv->fence_regs[i];
3365                 if (!reg->obj)
3366                         return reg;
3367
3368                 if (!reg->pin_count)
3369                         avail = reg;
3370         }
3371
3372         if (avail == NULL)
3373                 goto deadlock;
3374
3375         /* None available, try to steal one or wait for a user to finish */
3376         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3377                 if (reg->pin_count)
3378                         continue;
3379
3380                 return reg;
3381         }
3382
3383 deadlock:
3384         /* Wait for completion of pending flips which consume fences */
3385         if (intel_has_pending_fb_unpin(dev))
3386                 return ERR_PTR(-EAGAIN);
3387
3388         return ERR_PTR(-EDEADLK);
3389 }
3390
3391 /**
3392  * i915_gem_object_get_fence - set up fencing for an object
3393  * @obj: object to map through a fence reg
3394  *
3395  * When mapping objects through the GTT, userspace wants to be able to write
3396  * to them without having to worry about swizzling if the object is tiled.
3397  * This function walks the fence regs looking for a free one for @obj,
3398  * stealing one if it can't find any.
3399  *
3400  * It then sets up the reg based on the object's properties: address, pitch
3401  * and tiling format.
3402  *
3403  * For an untiled surface, this removes any existing fence.
3404  */
3405 int
3406 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3407 {
3408         struct drm_device *dev = obj->base.dev;
3409         struct drm_i915_private *dev_priv = dev->dev_private;
3410         bool enable = obj->tiling_mode != I915_TILING_NONE;
3411         struct drm_i915_fence_reg *reg;
3412         int ret;
3413
3414         /* Have we updated the tiling parameters upon the object and so
3415          * will need to serialise the write to the associated fence register?
3416          */
3417         if (obj->fence_dirty) {
3418                 ret = i915_gem_object_wait_fence(obj);
3419                 if (ret)
3420                         return ret;
3421         }
3422
3423         /* Just update our place in the LRU if our fence is getting reused. */
3424         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3425                 reg = &dev_priv->fence_regs[obj->fence_reg];
3426                 if (!obj->fence_dirty) {
3427                         list_move_tail(&reg->lru_list,
3428                                        &dev_priv->mm.fence_list);
3429                         return 0;
3430                 }
3431         } else if (enable) {
3432                 if (WARN_ON(!obj->map_and_fenceable))
3433                         return -EINVAL;
3434
3435                 reg = i915_find_fence_reg(dev);
3436                 if (IS_ERR(reg))
3437                         return PTR_ERR(reg);
3438
3439                 if (reg->obj) {
3440                         struct drm_i915_gem_object *old = reg->obj;
3441
3442                         ret = i915_gem_object_wait_fence(old);
3443                         if (ret)
3444                                 return ret;
3445
3446                         i915_gem_object_fence_lost(old);
3447                 }
3448         } else
3449                 return 0;
3450
3451         i915_gem_object_update_fence(obj, reg, enable);
3452
3453         return 0;
3454 }
3455
3456 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3457                                      unsigned long cache_level)
3458 {
3459         struct drm_mm_node *gtt_space = &vma->node;
3460         struct drm_mm_node *other;
3461
3462         /*
3463          * On some machines we have to be careful when putting differing types
3464          * of snoopable memory together to avoid the prefetcher crossing memory
3465          * domains and dying. During vm initialisation, we decide whether or not
3466          * these constraints apply and set the drm_mm.color_adjust
3467          * appropriately.
3468          */
3469         if (vma->vm->mm.color_adjust == NULL)
3470                 return true;
3471
3472         if (!drm_mm_node_allocated(gtt_space))
3473                 return true;
3474
3475         if (list_empty(&gtt_space->node_list))
3476                 return true;
3477
3478         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479         if (other->allocated && !other->hole_follows && other->color != cache_level)
3480                 return false;
3481
3482         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484                 return false;
3485
3486         return true;
3487 }
3488
3489 /**
3490  * Finds free space in the GTT aperture and binds the object there.
3491  */
3492 static struct i915_vma *
3493 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3494                            struct i915_address_space *vm,
3495                            unsigned alignment,
3496                            uint64_t flags)
3497 {
3498         struct drm_device *dev = obj->base.dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         u32 size, fence_size, fence_alignment, unfenced_alignment;
3501         unsigned long start =
3502                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3503         unsigned long end =
3504                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3505         struct i915_vma *vma;
3506         int ret;
3507
3508         fence_size = i915_gem_get_gtt_size(dev,
3509                                            obj->base.size,
3510                                            obj->tiling_mode);
3511         fence_alignment = i915_gem_get_gtt_alignment(dev,
3512                                                      obj->base.size,
3513                                                      obj->tiling_mode, true);
3514         unfenced_alignment =
3515                 i915_gem_get_gtt_alignment(dev,
3516                                            obj->base.size,
3517                                            obj->tiling_mode, false);
3518
3519         if (alignment == 0)
3520                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3521                                                 unfenced_alignment;
3522         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3523                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3524                 return ERR_PTR(-EINVAL);
3525         }
3526
3527         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3528
3529         /* If the object is bigger than the entire aperture, reject it early
3530          * before evicting everything in a vain attempt to find space.
3531          */
3532         if (obj->base.size > end) {
3533                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3534                           obj->base.size,
3535                           flags & PIN_MAPPABLE ? "mappable" : "total",
3536                           end);
3537                 return ERR_PTR(-E2BIG);
3538         }
3539
3540         ret = i915_gem_object_get_pages(obj);
3541         if (ret)
3542                 return ERR_PTR(ret);
3543
3544         i915_gem_object_pin_pages(obj);
3545
3546         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3547         if (IS_ERR(vma))
3548                 goto err_unpin;
3549
3550 search_free:
3551         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3552                                                   size, alignment,
3553                                                   obj->cache_level,
3554                                                   start, end,
3555                                                   DRM_MM_SEARCH_DEFAULT,
3556                                                   DRM_MM_CREATE_DEFAULT);
3557         if (ret) {
3558                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3559                                                obj->cache_level,
3560                                                start, end,
3561                                                flags);
3562                 if (ret == 0)
3563                         goto search_free;
3564
3565                 goto err_free_vma;
3566         }
3567         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3568                 ret = -EINVAL;
3569                 goto err_remove_node;
3570         }
3571
3572         ret = i915_gem_gtt_prepare_object(obj);
3573         if (ret)
3574                 goto err_remove_node;
3575
3576         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3577         list_add_tail(&vma->mm_list, &vm->inactive_list);
3578
3579         trace_i915_vma_bind(vma, flags);
3580         vma->bind_vma(vma, obj->cache_level,
3581                       flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3582
3583         return vma;
3584
3585 err_remove_node:
3586         drm_mm_remove_node(&vma->node);
3587 err_free_vma:
3588         i915_gem_vma_destroy(vma);
3589         vma = ERR_PTR(ret);
3590 err_unpin:
3591         i915_gem_object_unpin_pages(obj);
3592         return vma;
3593 }
3594
3595 bool
3596 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3597                         bool force)
3598 {
3599         /* If we don't have a page list set up, then we're not pinned
3600          * to GPU, and we can ignore the cache flush because it'll happen
3601          * again at bind time.
3602          */
3603         if (obj->pages == NULL)
3604                 return false;
3605
3606         /*
3607          * Stolen memory is always coherent with the GPU as it is explicitly
3608          * marked as wc by the system, or the system is cache-coherent.
3609          */
3610         if (obj->stolen || obj->phys_handle)
3611                 return false;
3612
3613         /* If the GPU is snooping the contents of the CPU cache,
3614          * we do not need to manually clear the CPU cache lines.  However,
3615          * the caches are only snooped when the render cache is
3616          * flushed/invalidated.  As we always have to emit invalidations
3617          * and flushes when moving into and out of the RENDER domain, correct
3618          * snooping behaviour occurs naturally as the result of our domain
3619          * tracking.
3620          */
3621         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3622                 return false;
3623
3624         trace_i915_gem_object_clflush(obj);
3625         drm_clflush_sg(obj->pages);
3626
3627         return true;
3628 }
3629
3630 /** Flushes the GTT write domain for the object if it's dirty. */
3631 static void
3632 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3633 {
3634         uint32_t old_write_domain;
3635
3636         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3637                 return;
3638
3639         /* No actual flushing is required for the GTT write domain.  Writes
3640          * to it immediately go to main memory as far as we know, so there's
3641          * no chipset flush.  It also doesn't land in render cache.
3642          *
3643          * However, we do have to enforce the order so that all writes through
3644          * the GTT land before any writes to the device, such as updates to
3645          * the GATT itself.
3646          */
3647         wmb();
3648
3649         old_write_domain = obj->base.write_domain;
3650         obj->base.write_domain = 0;
3651
3652         intel_fb_obj_flush(obj, false);
3653
3654         trace_i915_gem_object_change_domain(obj,
3655                                             obj->base.read_domains,
3656                                             old_write_domain);
3657 }
3658
3659 /** Flushes the CPU write domain for the object if it's dirty. */
3660 static void
3661 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3662                                        bool force)
3663 {
3664         uint32_t old_write_domain;
3665
3666         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3667                 return;
3668
3669         if (i915_gem_clflush_object(obj, force))
3670                 i915_gem_chipset_flush(obj->base.dev);
3671
3672         old_write_domain = obj->base.write_domain;
3673         obj->base.write_domain = 0;
3674
3675         intel_fb_obj_flush(obj, false);
3676
3677         trace_i915_gem_object_change_domain(obj,
3678                                             obj->base.read_domains,
3679                                             old_write_domain);
3680 }
3681
3682 /**
3683  * Moves a single object to the GTT read, and possibly write domain.
3684  *
3685  * This function returns when the move is complete, including waiting on
3686  * flushes to occur.
3687  */
3688 int
3689 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3690 {
3691         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3692         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3693         uint32_t old_write_domain, old_read_domains;
3694         int ret;
3695
3696         /* Not valid to be called on unbound objects. */
3697         if (vma == NULL)
3698                 return -EINVAL;
3699
3700         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701                 return 0;
3702
3703         ret = i915_gem_object_wait_rendering(obj, !write);
3704         if (ret)
3705                 return ret;
3706
3707         i915_gem_object_retire(obj);
3708         i915_gem_object_flush_cpu_write_domain(obj, false);
3709
3710         /* Serialise direct access to this object with the barriers for
3711          * coherent writes from the GPU, by effectively invalidating the
3712          * GTT domain upon first access.
3713          */
3714         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3715                 mb();
3716
3717         old_write_domain = obj->base.write_domain;
3718         old_read_domains = obj->base.read_domains;
3719
3720         /* It should now be out of any other write domains, and we can update
3721          * the domain values for our changes.
3722          */
3723         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3724         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3725         if (write) {
3726                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3727                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3728                 obj->dirty = 1;
3729         }
3730
3731         if (write)
3732                 intel_fb_obj_invalidate(obj, NULL);
3733
3734         trace_i915_gem_object_change_domain(obj,
3735                                             old_read_domains,
3736                                             old_write_domain);
3737
3738         /* And bump the LRU for this access */
3739         if (i915_gem_object_is_inactive(obj))
3740                 list_move_tail(&vma->mm_list,
3741                                &dev_priv->gtt.base.inactive_list);
3742
3743         return 0;
3744 }
3745
3746 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3747                                     enum i915_cache_level cache_level)
3748 {
3749         struct drm_device *dev = obj->base.dev;
3750         struct i915_vma *vma, *next;
3751         int ret;
3752
3753         if (obj->cache_level == cache_level)
3754                 return 0;
3755
3756         if (i915_gem_obj_is_pinned(obj)) {
3757                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3758                 return -EBUSY;
3759         }
3760
3761         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3762                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3763                         ret = i915_vma_unbind(vma);
3764                         if (ret)
3765                                 return ret;
3766                 }
3767         }
3768
3769         if (i915_gem_obj_bound_any(obj)) {
3770                 ret = i915_gem_object_finish_gpu(obj);
3771                 if (ret)
3772                         return ret;
3773
3774                 i915_gem_object_finish_gtt(obj);
3775
3776                 /* Before SandyBridge, you could not use tiling or fence
3777                  * registers with snooped memory, so relinquish any fences
3778                  * currently pointing to our region in the aperture.
3779                  */
3780                 if (INTEL_INFO(dev)->gen < 6) {
3781                         ret = i915_gem_object_put_fence(obj);
3782                         if (ret)
3783                                 return ret;
3784                 }
3785
3786                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3787                         if (drm_mm_node_allocated(&vma->node))
3788                                 vma->bind_vma(vma, cache_level,
3789                                                 vma->bound & GLOBAL_BIND);
3790         }
3791
3792         list_for_each_entry(vma, &obj->vma_list, vma_link)
3793                 vma->node.color = cache_level;
3794         obj->cache_level = cache_level;
3795
3796         if (cpu_write_needs_clflush(obj)) {
3797                 u32 old_read_domains, old_write_domain;
3798
3799                 /* If we're coming from LLC cached, then we haven't
3800                  * actually been tracking whether the data is in the
3801                  * CPU cache or not, since we only allow one bit set
3802                  * in obj->write_domain and have been skipping the clflushes.
3803                  * Just set it to the CPU cache for now.
3804                  */
3805                 i915_gem_object_retire(obj);
3806                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3807
3808                 old_read_domains = obj->base.read_domains;
3809                 old_write_domain = obj->base.write_domain;
3810
3811                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3812                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3813
3814                 trace_i915_gem_object_change_domain(obj,
3815                                                     old_read_domains,
3816                                                     old_write_domain);
3817         }
3818
3819         return 0;
3820 }
3821
3822 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3823                                struct drm_file *file)
3824 {
3825         struct drm_i915_gem_caching *args = data;
3826         struct drm_i915_gem_object *obj;
3827         int ret;
3828
3829         ret = i915_mutex_lock_interruptible(dev);
3830         if (ret)
3831                 return ret;
3832
3833         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3834         if (&obj->base == NULL) {
3835                 ret = -ENOENT;
3836                 goto unlock;
3837         }
3838
3839         switch (obj->cache_level) {
3840         case I915_CACHE_LLC:
3841         case I915_CACHE_L3_LLC:
3842                 args->caching = I915_CACHING_CACHED;
3843                 break;
3844
3845         case I915_CACHE_WT:
3846                 args->caching = I915_CACHING_DISPLAY;
3847                 break;
3848
3849         default:
3850                 args->caching = I915_CACHING_NONE;
3851                 break;
3852         }
3853
3854         drm_gem_object_unreference(&obj->base);
3855 unlock:
3856         mutex_unlock(&dev->struct_mutex);
3857         return ret;
3858 }
3859
3860 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3861                                struct drm_file *file)
3862 {
3863         struct drm_i915_gem_caching *args = data;
3864         struct drm_i915_gem_object *obj;
3865         enum i915_cache_level level;
3866         int ret;
3867
3868         switch (args->caching) {
3869         case I915_CACHING_NONE:
3870                 level = I915_CACHE_NONE;
3871                 break;
3872         case I915_CACHING_CACHED:
3873                 level = I915_CACHE_LLC;
3874                 break;
3875         case I915_CACHING_DISPLAY:
3876                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3877                 break;
3878         default:
3879                 return -EINVAL;
3880         }
3881
3882         ret = i915_mutex_lock_interruptible(dev);
3883         if (ret)
3884                 return ret;
3885
3886         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3887         if (&obj->base == NULL) {
3888                 ret = -ENOENT;
3889                 goto unlock;
3890         }
3891
3892         ret = i915_gem_object_set_cache_level(obj, level);
3893
3894         drm_gem_object_unreference(&obj->base);
3895 unlock:
3896         mutex_unlock(&dev->struct_mutex);
3897         return ret;
3898 }
3899
3900 static bool is_pin_display(struct drm_i915_gem_object *obj)
3901 {
3902         struct i915_vma *vma;
3903
3904         vma = i915_gem_obj_to_ggtt(obj);
3905         if (!vma)
3906                 return false;
3907
3908         /* There are 2 sources that pin objects:
3909          *   1. The display engine (scanouts, sprites, cursors);
3910          *   2. Reservations for execbuffer;
3911          *
3912          * We can ignore reservations as we hold the struct_mutex and
3913          * are only called outside of the reservation path.
3914          */
3915         return vma->pin_count;
3916 }
3917
3918 /*
3919  * Prepare buffer for display plane (scanout, cursors, etc).
3920  * Can be called from an uninterruptible phase (modesetting) and allows
3921  * any flushes to be pipelined (for pageflips).
3922  */
3923 int
3924 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3925                                      u32 alignment,
3926                                      struct intel_engine_cs *pipelined)
3927 {
3928         u32 old_read_domains, old_write_domain;
3929         bool was_pin_display;
3930         int ret;
3931
3932         if (pipelined != obj->ring) {
3933                 ret = i915_gem_object_sync(obj, pipelined);
3934                 if (ret)
3935                         return ret;
3936         }
3937
3938         /* Mark the pin_display early so that we account for the
3939          * display coherency whilst setting up the cache domains.
3940          */
3941         was_pin_display = obj->pin_display;
3942         obj->pin_display = true;
3943
3944         /* The display engine is not coherent with the LLC cache on gen6.  As
3945          * a result, we make sure that the pinning that is about to occur is
3946          * done with uncached PTEs. This is lowest common denominator for all
3947          * chipsets.
3948          *
3949          * However for gen6+, we could do better by using the GFDT bit instead
3950          * of uncaching, which would allow us to flush all the LLC-cached data
3951          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3952          */
3953         ret = i915_gem_object_set_cache_level(obj,
3954                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3955         if (ret)
3956                 goto err_unpin_display;
3957
3958         /* As the user may map the buffer once pinned in the display plane
3959          * (e.g. libkms for the bootup splash), we have to ensure that we
3960          * always use map_and_fenceable for all scanout buffers.
3961          */
3962         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3963         if (ret)
3964                 goto err_unpin_display;
3965
3966         i915_gem_object_flush_cpu_write_domain(obj, true);
3967
3968         old_write_domain = obj->base.write_domain;
3969         old_read_domains = obj->base.read_domains;
3970
3971         /* It should now be out of any other write domains, and we can update
3972          * the domain values for our changes.
3973          */
3974         obj->base.write_domain = 0;
3975         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3976
3977         trace_i915_gem_object_change_domain(obj,
3978                                             old_read_domains,
3979                                             old_write_domain);
3980
3981         return 0;
3982
3983 err_unpin_display:
3984         WARN_ON(was_pin_display != is_pin_display(obj));
3985         obj->pin_display = was_pin_display;
3986         return ret;
3987 }
3988
3989 void
3990 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3991 {
3992         i915_gem_object_ggtt_unpin(obj);
3993         obj->pin_display = is_pin_display(obj);
3994 }
3995
3996 int
3997 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3998 {
3999         int ret;
4000
4001         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4002                 return 0;
4003
4004         ret = i915_gem_object_wait_rendering(obj, false);
4005         if (ret)
4006                 return ret;
4007
4008         /* Ensure that we invalidate the GPU's caches and TLBs. */
4009         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4010         return 0;
4011 }
4012
4013 /**
4014  * Moves a single object to the CPU read, and possibly write domain.
4015  *
4016  * This function returns when the move is complete, including waiting on
4017  * flushes to occur.
4018  */
4019 int
4020 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4021 {
4022         uint32_t old_write_domain, old_read_domains;
4023         int ret;
4024
4025         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4026                 return 0;
4027
4028         ret = i915_gem_object_wait_rendering(obj, !write);
4029         if (ret)
4030                 return ret;
4031
4032         i915_gem_object_retire(obj);
4033         i915_gem_object_flush_gtt_write_domain(obj);
4034
4035         old_write_domain = obj->base.write_domain;
4036         old_read_domains = obj->base.read_domains;
4037
4038         /* Flush the CPU cache if it's still invalid. */
4039         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4040                 i915_gem_clflush_object(obj, false);
4041
4042                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4043         }
4044
4045         /* It should now be out of any other write domains, and we can update
4046          * the domain values for our changes.
4047          */
4048         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4049
4050         /* If we're writing through the CPU, then the GPU read domains will
4051          * need to be invalidated at next use.
4052          */
4053         if (write) {
4054                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4055                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4056         }
4057
4058         if (write)
4059                 intel_fb_obj_invalidate(obj, NULL);
4060
4061         trace_i915_gem_object_change_domain(obj,
4062                                             old_read_domains,
4063                                             old_write_domain);
4064
4065         return 0;
4066 }
4067
4068 /* Throttle our rendering by waiting until the ring has completed our requests
4069  * emitted over 20 msec ago.
4070  *
4071  * Note that if we were to use the current jiffies each time around the loop,
4072  * we wouldn't escape the function with any frames outstanding if the time to
4073  * render a frame was over 20ms.
4074  *
4075  * This should get us reasonable parallelism between CPU and GPU but also
4076  * relatively low latency when blocking on a particular request to finish.
4077  */
4078 static int
4079 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4080 {
4081         struct drm_i915_private *dev_priv = dev->dev_private;
4082         struct drm_i915_file_private *file_priv = file->driver_priv;
4083         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4084         struct drm_i915_gem_request *request, *target = NULL;
4085         unsigned reset_counter;
4086         int ret;
4087
4088         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4089         if (ret)
4090                 return ret;
4091
4092         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4093         if (ret)
4094                 return ret;
4095
4096         spin_lock(&file_priv->mm.lock);
4097         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4098                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4099                         break;
4100
4101                 target = request;
4102         }
4103         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4104         if (target)
4105                 i915_gem_request_reference(target);
4106         spin_unlock(&file_priv->mm.lock);
4107
4108         if (target == NULL)
4109                 return 0;
4110
4111         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4112         if (ret == 0)
4113                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4114
4115         mutex_lock(&dev->struct_mutex);
4116         i915_gem_request_unreference(target);
4117         mutex_unlock(&dev->struct_mutex);
4118
4119         return ret;
4120 }
4121
4122 static bool
4123 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4124 {
4125         struct drm_i915_gem_object *obj = vma->obj;
4126
4127         if (alignment &&
4128             vma->node.start & (alignment - 1))
4129                 return true;
4130
4131         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4132                 return true;
4133
4134         if (flags & PIN_OFFSET_BIAS &&
4135             vma->node.start < (flags & PIN_OFFSET_MASK))
4136                 return true;
4137
4138         return false;
4139 }
4140
4141 int
4142 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4143                     struct i915_address_space *vm,
4144                     uint32_t alignment,
4145                     uint64_t flags)
4146 {
4147         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4148         struct i915_vma *vma;
4149         unsigned bound;
4150         int ret;
4151
4152         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4153                 return -ENODEV;
4154
4155         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4156                 return -EINVAL;
4157
4158         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4159                 return -EINVAL;
4160
4161         vma = i915_gem_obj_to_vma(obj, vm);
4162         if (vma) {
4163                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4164                         return -EBUSY;
4165
4166                 if (i915_vma_misplaced(vma, alignment, flags)) {
4167                         WARN(vma->pin_count,
4168                              "bo is already pinned with incorrect alignment:"
4169                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4170                              " obj->map_and_fenceable=%d\n",
4171                              i915_gem_obj_offset(obj, vm), alignment,
4172                              !!(flags & PIN_MAPPABLE),
4173                              obj->map_and_fenceable);
4174                         ret = i915_vma_unbind(vma);
4175                         if (ret)
4176                                 return ret;
4177
4178                         vma = NULL;
4179                 }
4180         }
4181
4182         bound = vma ? vma->bound : 0;
4183         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4184                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4185                 if (IS_ERR(vma))
4186                         return PTR_ERR(vma);
4187         }
4188
4189         if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4190                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4191
4192         if ((bound ^ vma->bound) & GLOBAL_BIND) {
4193                 bool mappable, fenceable;
4194                 u32 fence_size, fence_alignment;
4195
4196                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4197                                                    obj->base.size,
4198                                                    obj->tiling_mode);
4199                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4200                                                              obj->base.size,
4201                                                              obj->tiling_mode,
4202                                                              true);
4203
4204                 fenceable = (vma->node.size == fence_size &&
4205                              (vma->node.start & (fence_alignment - 1)) == 0);
4206
4207                 mappable = (vma->node.start + obj->base.size <=
4208                             dev_priv->gtt.mappable_end);
4209
4210                 obj->map_and_fenceable = mappable && fenceable;
4211         }
4212
4213         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4214
4215         vma->pin_count++;
4216         if (flags & PIN_MAPPABLE)
4217                 obj->pin_mappable |= true;
4218
4219         return 0;
4220 }
4221
4222 void
4223 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4224 {
4225         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4226
4227         BUG_ON(!vma);
4228         BUG_ON(vma->pin_count == 0);
4229         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4230
4231         if (--vma->pin_count == 0)
4232                 obj->pin_mappable = false;
4233 }
4234
4235 bool
4236 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4237 {
4238         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4239                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4240                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4241
4242                 WARN_ON(!ggtt_vma ||
4243                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4244                         ggtt_vma->pin_count);
4245                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4246                 return true;
4247         } else
4248                 return false;
4249 }
4250
4251 void
4252 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4253 {
4254         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4255                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4256                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4257                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4258         }
4259 }
4260
4261 int
4262 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4263                     struct drm_file *file)
4264 {
4265         struct drm_i915_gem_busy *args = data;
4266         struct drm_i915_gem_object *obj;
4267         int ret;
4268
4269         ret = i915_mutex_lock_interruptible(dev);
4270         if (ret)
4271                 return ret;
4272
4273         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4274         if (&obj->base == NULL) {
4275                 ret = -ENOENT;
4276                 goto unlock;
4277         }
4278
4279         /* Count all active objects as busy, even if they are currently not used
4280          * by the gpu. Users of this interface expect objects to eventually
4281          * become non-busy without any further actions, therefore emit any
4282          * necessary flushes here.
4283          */
4284         ret = i915_gem_object_flush_active(obj);
4285
4286         args->busy = obj->active;
4287         if (obj->ring) {
4288                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4289                 args->busy |= intel_ring_flag(obj->ring) << 16;
4290         }
4291
4292         drm_gem_object_unreference(&obj->base);
4293 unlock:
4294         mutex_unlock(&dev->struct_mutex);
4295         return ret;
4296 }
4297
4298 int
4299 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4300                         struct drm_file *file_priv)
4301 {
4302         return i915_gem_ring_throttle(dev, file_priv);
4303 }
4304
4305 int
4306 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4307                        struct drm_file *file_priv)
4308 {
4309         struct drm_i915_private *dev_priv = dev->dev_private;
4310         struct drm_i915_gem_madvise *args = data;
4311         struct drm_i915_gem_object *obj;
4312         int ret;
4313
4314         switch (args->madv) {
4315         case I915_MADV_DONTNEED:
4316         case I915_MADV_WILLNEED:
4317             break;
4318         default:
4319             return -EINVAL;
4320         }
4321
4322         ret = i915_mutex_lock_interruptible(dev);
4323         if (ret)
4324                 return ret;
4325
4326         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4327         if (&obj->base == NULL) {
4328                 ret = -ENOENT;
4329                 goto unlock;
4330         }
4331
4332         if (i915_gem_obj_is_pinned(obj)) {
4333                 ret = -EINVAL;
4334                 goto out;
4335         }
4336
4337         if (obj->pages &&
4338             obj->tiling_mode != I915_TILING_NONE &&
4339             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4340                 if (obj->madv == I915_MADV_WILLNEED)
4341                         i915_gem_object_unpin_pages(obj);
4342                 if (args->madv == I915_MADV_WILLNEED)
4343                         i915_gem_object_pin_pages(obj);
4344         }
4345
4346         if (obj->madv != __I915_MADV_PURGED)
4347                 obj->madv = args->madv;
4348
4349         /* if the object is no longer attached, discard its backing storage */
4350         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4351                 i915_gem_object_truncate(obj);
4352
4353         args->retained = obj->madv != __I915_MADV_PURGED;
4354
4355 out:
4356         drm_gem_object_unreference(&obj->base);
4357 unlock:
4358         mutex_unlock(&dev->struct_mutex);
4359         return ret;
4360 }
4361
4362 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4363                           const struct drm_i915_gem_object_ops *ops)
4364 {
4365         INIT_LIST_HEAD(&obj->global_list);
4366         INIT_LIST_HEAD(&obj->ring_list);
4367         INIT_LIST_HEAD(&obj->obj_exec_link);
4368         INIT_LIST_HEAD(&obj->vma_list);
4369
4370         obj->ops = ops;
4371
4372         obj->fence_reg = I915_FENCE_REG_NONE;
4373         obj->madv = I915_MADV_WILLNEED;
4374
4375         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4376 }
4377
4378 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4379         .get_pages = i915_gem_object_get_pages_gtt,
4380         .put_pages = i915_gem_object_put_pages_gtt,
4381 };
4382
4383 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4384                                                   size_t size)
4385 {
4386         struct drm_i915_gem_object *obj;
4387         struct address_space *mapping;
4388         gfp_t mask;
4389
4390         obj = i915_gem_object_alloc(dev);
4391         if (obj == NULL)
4392                 return NULL;
4393
4394         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4395                 i915_gem_object_free(obj);
4396                 return NULL;
4397         }
4398
4399         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4400         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4401                 /* 965gm cannot relocate objects above 4GiB. */
4402                 mask &= ~__GFP_HIGHMEM;
4403                 mask |= __GFP_DMA32;
4404         }
4405
4406         mapping = file_inode(obj->base.filp)->i_mapping;
4407         mapping_set_gfp_mask(mapping, mask);
4408
4409         i915_gem_object_init(obj, &i915_gem_object_ops);
4410
4411         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4412         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4413
4414         if (HAS_LLC(dev)) {
4415                 /* On some devices, we can have the GPU use the LLC (the CPU
4416                  * cache) for about a 10% performance improvement
4417                  * compared to uncached.  Graphics requests other than
4418                  * display scanout are coherent with the CPU in
4419                  * accessing this cache.  This means in this mode we
4420                  * don't need to clflush on the CPU side, and on the
4421                  * GPU side we only need to flush internal caches to
4422                  * get data visible to the CPU.
4423                  *
4424                  * However, we maintain the display planes as UC, and so
4425                  * need to rebind when first used as such.
4426                  */
4427                 obj->cache_level = I915_CACHE_LLC;
4428         } else
4429                 obj->cache_level = I915_CACHE_NONE;
4430
4431         trace_i915_gem_object_create(obj);
4432
4433         return obj;
4434 }
4435
4436 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4437 {
4438         /* If we are the last user of the backing storage (be it shmemfs
4439          * pages or stolen etc), we know that the pages are going to be
4440          * immediately released. In this case, we can then skip copying
4441          * back the contents from the GPU.
4442          */
4443
4444         if (obj->madv != I915_MADV_WILLNEED)
4445                 return false;
4446
4447         if (obj->base.filp == NULL)
4448                 return true;
4449
4450         /* At first glance, this looks racy, but then again so would be
4451          * userspace racing mmap against close. However, the first external
4452          * reference to the filp can only be obtained through the
4453          * i915_gem_mmap_ioctl() which safeguards us against the user
4454          * acquiring such a reference whilst we are in the middle of
4455          * freeing the object.
4456          */
4457         return atomic_long_read(&obj->base.filp->f_count) == 1;
4458 }
4459
4460 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4461 {
4462         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4463         struct drm_device *dev = obj->base.dev;
4464         struct drm_i915_private *dev_priv = dev->dev_private;
4465         struct i915_vma *vma, *next;
4466
4467         intel_runtime_pm_get(dev_priv);
4468
4469         trace_i915_gem_object_destroy(obj);
4470
4471         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4472                 int ret;
4473
4474                 vma->pin_count = 0;
4475                 ret = i915_vma_unbind(vma);
4476                 if (WARN_ON(ret == -ERESTARTSYS)) {
4477                         bool was_interruptible;
4478
4479                         was_interruptible = dev_priv->mm.interruptible;
4480                         dev_priv->mm.interruptible = false;
4481
4482                         WARN_ON(i915_vma_unbind(vma));
4483
4484                         dev_priv->mm.interruptible = was_interruptible;
4485                 }
4486         }
4487
4488         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4489          * before progressing. */
4490         if (obj->stolen)
4491                 i915_gem_object_unpin_pages(obj);
4492
4493         WARN_ON(obj->frontbuffer_bits);
4494
4495         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4496             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4497             obj->tiling_mode != I915_TILING_NONE)
4498                 i915_gem_object_unpin_pages(obj);
4499
4500         if (WARN_ON(obj->pages_pin_count))
4501                 obj->pages_pin_count = 0;
4502         if (discard_backing_storage(obj))
4503                 obj->madv = I915_MADV_DONTNEED;
4504         i915_gem_object_put_pages(obj);
4505         i915_gem_object_free_mmap_offset(obj);
4506
4507         BUG_ON(obj->pages);
4508
4509         if (obj->base.import_attach)
4510                 drm_prime_gem_destroy(&obj->base, NULL);
4511
4512         if (obj->ops->release)
4513                 obj->ops->release(obj);
4514
4515         drm_gem_object_release(&obj->base);
4516         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4517
4518         kfree(obj->bit_17);
4519         i915_gem_object_free(obj);
4520
4521         intel_runtime_pm_put(dev_priv);
4522 }
4523
4524 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4525                                      struct i915_address_space *vm)
4526 {
4527         struct i915_vma *vma;
4528         list_for_each_entry(vma, &obj->vma_list, vma_link)
4529                 if (vma->vm == vm)
4530                         return vma;
4531
4532         return NULL;
4533 }
4534
4535 void i915_gem_vma_destroy(struct i915_vma *vma)
4536 {
4537         struct i915_address_space *vm = NULL;
4538         WARN_ON(vma->node.allocated);
4539
4540         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4541         if (!list_empty(&vma->exec_list))
4542                 return;
4543
4544         vm = vma->vm;
4545
4546         if (!i915_is_ggtt(vm))
4547                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4548
4549         list_del(&vma->vma_link);
4550
4551         kfree(vma);
4552 }
4553
4554 static void
4555 i915_gem_stop_ringbuffers(struct drm_device *dev)
4556 {
4557         struct drm_i915_private *dev_priv = dev->dev_private;
4558         struct intel_engine_cs *ring;
4559         int i;
4560
4561         for_each_ring(ring, dev_priv, i)
4562                 dev_priv->gt.stop_ring(ring);
4563 }
4564
4565 int
4566 i915_gem_suspend(struct drm_device *dev)
4567 {
4568         struct drm_i915_private *dev_priv = dev->dev_private;
4569         int ret = 0;
4570
4571         mutex_lock(&dev->struct_mutex);
4572         ret = i915_gpu_idle(dev);
4573         if (ret)
4574                 goto err;
4575
4576         i915_gem_retire_requests(dev);
4577
4578         /* Under UMS, be paranoid and evict. */
4579         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4580                 i915_gem_evict_everything(dev);
4581
4582         i915_gem_stop_ringbuffers(dev);
4583         mutex_unlock(&dev->struct_mutex);
4584
4585         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4586         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4587         flush_delayed_work(&dev_priv->mm.idle_work);
4588
4589         /* Assert that we sucessfully flushed all the work and
4590          * reset the GPU back to its idle, low power state.
4591          */
4592         WARN_ON(dev_priv->mm.busy);
4593
4594         return 0;
4595
4596 err:
4597         mutex_unlock(&dev->struct_mutex);
4598         return ret;
4599 }
4600
4601 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4602 {
4603         struct drm_device *dev = ring->dev;
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4606         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4607         int i, ret;
4608
4609         if (!HAS_L3_DPF(dev) || !remap_info)
4610                 return 0;
4611
4612         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4613         if (ret)
4614                 return ret;
4615
4616         /*
4617          * Note: We do not worry about the concurrent register cacheline hang
4618          * here because no other code should access these registers other than
4619          * at initialization time.
4620          */
4621         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4622                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4623                 intel_ring_emit(ring, reg_base + i);
4624                 intel_ring_emit(ring, remap_info[i/4]);
4625         }
4626
4627         intel_ring_advance(ring);
4628
4629         return ret;
4630 }
4631
4632 void i915_gem_init_swizzling(struct drm_device *dev)
4633 {
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635
4636         if (INTEL_INFO(dev)->gen < 5 ||
4637             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4638                 return;
4639
4640         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4641                                  DISP_TILE_SURFACE_SWIZZLING);
4642
4643         if (IS_GEN5(dev))
4644                 return;
4645
4646         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4647         if (IS_GEN6(dev))
4648                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4649         else if (IS_GEN7(dev))
4650                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4651         else if (IS_GEN8(dev))
4652                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4653         else
4654                 BUG();
4655 }
4656
4657 static bool
4658 intel_enable_blt(struct drm_device *dev)
4659 {
4660         if (!HAS_BLT(dev))
4661                 return false;
4662
4663         /* The blitter was dysfunctional on early prototypes */
4664         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4665                 DRM_INFO("BLT not supported on this pre-production hardware;"
4666                          " graphics performance will be degraded.\n");
4667                 return false;
4668         }
4669
4670         return true;
4671 }
4672
4673 static void init_unused_ring(struct drm_device *dev, u32 base)
4674 {
4675         struct drm_i915_private *dev_priv = dev->dev_private;
4676
4677         I915_WRITE(RING_CTL(base), 0);
4678         I915_WRITE(RING_HEAD(base), 0);
4679         I915_WRITE(RING_TAIL(base), 0);
4680         I915_WRITE(RING_START(base), 0);
4681 }
4682
4683 static void init_unused_rings(struct drm_device *dev)
4684 {
4685         if (IS_I830(dev)) {
4686                 init_unused_ring(dev, PRB1_BASE);
4687                 init_unused_ring(dev, SRB0_BASE);
4688                 init_unused_ring(dev, SRB1_BASE);
4689                 init_unused_ring(dev, SRB2_BASE);
4690                 init_unused_ring(dev, SRB3_BASE);
4691         } else if (IS_GEN2(dev)) {
4692                 init_unused_ring(dev, SRB0_BASE);
4693                 init_unused_ring(dev, SRB1_BASE);
4694         } else if (IS_GEN3(dev)) {
4695                 init_unused_ring(dev, PRB1_BASE);
4696                 init_unused_ring(dev, PRB2_BASE);
4697         }
4698 }
4699
4700 int i915_gem_init_rings(struct drm_device *dev)
4701 {
4702         struct drm_i915_private *dev_priv = dev->dev_private;
4703         int ret;
4704
4705         /*
4706          * At least 830 can leave some of the unused rings
4707          * "active" (ie. head != tail) after resume which
4708          * will prevent c3 entry. Makes sure all unused rings
4709          * are totally idle.
4710          */
4711         init_unused_rings(dev);
4712
4713         ret = intel_init_render_ring_buffer(dev);
4714         if (ret)
4715                 return ret;
4716
4717         if (HAS_BSD(dev)) {
4718                 ret = intel_init_bsd_ring_buffer(dev);
4719                 if (ret)
4720                         goto cleanup_render_ring;
4721         }
4722
4723         if (intel_enable_blt(dev)) {
4724                 ret = intel_init_blt_ring_buffer(dev);
4725                 if (ret)
4726                         goto cleanup_bsd_ring;
4727         }
4728
4729         if (HAS_VEBOX(dev)) {
4730                 ret = intel_init_vebox_ring_buffer(dev);
4731                 if (ret)
4732                         goto cleanup_blt_ring;
4733         }
4734
4735         if (HAS_BSD2(dev)) {
4736                 ret = intel_init_bsd2_ring_buffer(dev);
4737                 if (ret)
4738                         goto cleanup_vebox_ring;
4739         }
4740
4741         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4742         if (ret)
4743                 goto cleanup_bsd2_ring;
4744
4745         return 0;
4746
4747 cleanup_bsd2_ring:
4748         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4749 cleanup_vebox_ring:
4750         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4751 cleanup_blt_ring:
4752         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4753 cleanup_bsd_ring:
4754         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4755 cleanup_render_ring:
4756         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4757
4758         return ret;
4759 }
4760
4761 int
4762 i915_gem_init_hw(struct drm_device *dev)
4763 {
4764         struct drm_i915_private *dev_priv = dev->dev_private;
4765         int ret, i;
4766
4767         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4768                 return -EIO;
4769
4770         if (dev_priv->ellc_size)
4771                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4772
4773         if (IS_HASWELL(dev))
4774                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4775                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4776
4777         if (HAS_PCH_NOP(dev)) {
4778                 if (IS_IVYBRIDGE(dev)) {
4779                         u32 temp = I915_READ(GEN7_MSG_CTL);
4780                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4781                         I915_WRITE(GEN7_MSG_CTL, temp);
4782                 } else if (INTEL_INFO(dev)->gen >= 7) {
4783                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4784                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4785                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4786                 }
4787         }
4788
4789         i915_gem_init_swizzling(dev);
4790
4791         ret = dev_priv->gt.init_rings(dev);
4792         if (ret)
4793                 return ret;
4794
4795         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4796                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4797
4798         /*
4799          * XXX: Contexts should only be initialized once. Doing a switch to the
4800          * default context switch however is something we'd like to do after
4801          * reset or thaw (the latter may not actually be necessary for HW, but
4802          * goes with our code better). Context switching requires rings (for
4803          * the do_switch), but before enabling PPGTT. So don't move this.
4804          */
4805         ret = i915_gem_context_enable(dev_priv);
4806         if (ret && ret != -EIO) {
4807                 DRM_ERROR("Context enable failed %d\n", ret);
4808                 i915_gem_cleanup_ringbuffer(dev);
4809
4810                 return ret;
4811         }
4812
4813         ret = i915_ppgtt_init_hw(dev);
4814         if (ret && ret != -EIO) {
4815                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4816                 i915_gem_cleanup_ringbuffer(dev);
4817         }
4818
4819         return ret;
4820 }
4821
4822 int i915_gem_init(struct drm_device *dev)
4823 {
4824         struct drm_i915_private *dev_priv = dev->dev_private;
4825         int ret;
4826
4827         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4828                         i915.enable_execlists);
4829
4830         mutex_lock(&dev->struct_mutex);
4831
4832         if (IS_VALLEYVIEW(dev)) {
4833                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4834                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4835                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4836                               VLV_GTLC_ALLOWWAKEACK), 10))
4837                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4838         }
4839
4840         if (!i915.enable_execlists) {
4841                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4842                 dev_priv->gt.init_rings = i915_gem_init_rings;
4843                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4844                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4845         } else {
4846                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4847                 dev_priv->gt.init_rings = intel_logical_rings_init;
4848                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4849                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4850         }
4851
4852         ret = i915_gem_init_userptr(dev);
4853         if (ret) {
4854                 mutex_unlock(&dev->struct_mutex);
4855                 return ret;
4856         }
4857
4858         i915_gem_init_global_gtt(dev);
4859
4860         ret = i915_gem_context_init(dev);
4861         if (ret) {
4862                 mutex_unlock(&dev->struct_mutex);
4863                 return ret;
4864         }
4865
4866         ret = i915_gem_init_hw(dev);
4867         if (ret == -EIO) {
4868                 /* Allow ring initialisation to fail by marking the GPU as
4869                  * wedged. But we only want to do this where the GPU is angry,
4870                  * for all other failure, such as an allocation failure, bail.
4871                  */
4872                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4873                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4874                 ret = 0;
4875         }
4876         mutex_unlock(&dev->struct_mutex);
4877
4878         return ret;
4879 }
4880
4881 void
4882 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4883 {
4884         struct drm_i915_private *dev_priv = dev->dev_private;
4885         struct intel_engine_cs *ring;
4886         int i;
4887
4888         for_each_ring(ring, dev_priv, i)
4889                 dev_priv->gt.cleanup_ring(ring);
4890 }
4891
4892 static void
4893 init_ring_lists(struct intel_engine_cs *ring)
4894 {
4895         INIT_LIST_HEAD(&ring->active_list);
4896         INIT_LIST_HEAD(&ring->request_list);
4897 }
4898
4899 void i915_init_vm(struct drm_i915_private *dev_priv,
4900                   struct i915_address_space *vm)
4901 {
4902         if (!i915_is_ggtt(vm))
4903                 drm_mm_init(&vm->mm, vm->start, vm->total);
4904         vm->dev = dev_priv->dev;
4905         INIT_LIST_HEAD(&vm->active_list);
4906         INIT_LIST_HEAD(&vm->inactive_list);
4907         INIT_LIST_HEAD(&vm->global_link);
4908         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4909 }
4910
4911 void
4912 i915_gem_load(struct drm_device *dev)
4913 {
4914         struct drm_i915_private *dev_priv = dev->dev_private;
4915         int i;
4916
4917         dev_priv->slab =
4918                 kmem_cache_create("i915_gem_object",
4919                                   sizeof(struct drm_i915_gem_object), 0,
4920                                   SLAB_HWCACHE_ALIGN,
4921                                   NULL);
4922
4923         INIT_LIST_HEAD(&dev_priv->vm_list);
4924         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4925
4926         INIT_LIST_HEAD(&dev_priv->context_list);
4927         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4928         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4929         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4930         for (i = 0; i < I915_NUM_RINGS; i++)
4931                 init_ring_lists(&dev_priv->ring[i]);
4932         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4933                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4934         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4935                           i915_gem_retire_work_handler);
4936         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4937                           i915_gem_idle_work_handler);
4938         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4939
4940         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4941         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4942                 I915_WRITE(MI_ARB_STATE,
4943                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4944         }
4945
4946         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4947
4948         /* Old X drivers will take 0-2 for front, back, depth buffers */
4949         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4950                 dev_priv->fence_reg_start = 3;
4951
4952         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4953                 dev_priv->num_fence_regs = 32;
4954         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4955                 dev_priv->num_fence_regs = 16;
4956         else
4957                 dev_priv->num_fence_regs = 8;
4958
4959         /* Initialize fence registers to zero */
4960         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4961         i915_gem_restore_fences(dev);
4962
4963         i915_gem_detect_bit_6_swizzle(dev);
4964         init_waitqueue_head(&dev_priv->pending_flip_queue);
4965
4966         dev_priv->mm.interruptible = true;
4967
4968         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4969         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4970         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4971         register_shrinker(&dev_priv->mm.shrinker);
4972
4973         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4974         register_oom_notifier(&dev_priv->mm.oom_notifier);
4975
4976         mutex_init(&dev_priv->fb_tracking.lock);
4977 }
4978
4979 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4980 {
4981         struct drm_i915_file_private *file_priv = file->driver_priv;
4982
4983         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4984
4985         /* Clean up our request list when the client is going away, so that
4986          * later retire_requests won't dereference our soon-to-be-gone
4987          * file_priv.
4988          */
4989         spin_lock(&file_priv->mm.lock);
4990         while (!list_empty(&file_priv->mm.request_list)) {
4991                 struct drm_i915_gem_request *request;
4992
4993                 request = list_first_entry(&file_priv->mm.request_list,
4994                                            struct drm_i915_gem_request,
4995                                            client_list);
4996                 list_del(&request->client_list);
4997                 request->file_priv = NULL;
4998         }
4999         spin_unlock(&file_priv->mm.lock);
5000 }
5001
5002 static void
5003 i915_gem_file_idle_work_handler(struct work_struct *work)
5004 {
5005         struct drm_i915_file_private *file_priv =
5006                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5007
5008         atomic_set(&file_priv->rps_wait_boost, false);
5009 }
5010
5011 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5012 {
5013         struct drm_i915_file_private *file_priv;
5014         int ret;
5015
5016         DRM_DEBUG_DRIVER("\n");
5017
5018         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5019         if (!file_priv)
5020                 return -ENOMEM;
5021
5022         file->driver_priv = file_priv;
5023         file_priv->dev_priv = dev->dev_private;
5024         file_priv->file = file;
5025
5026         spin_lock_init(&file_priv->mm.lock);
5027         INIT_LIST_HEAD(&file_priv->mm.request_list);
5028         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5029                           i915_gem_file_idle_work_handler);
5030
5031         ret = i915_gem_context_open(dev, file);
5032         if (ret)
5033                 kfree(file_priv);
5034
5035         return ret;
5036 }
5037
5038 /**
5039  * i915_gem_track_fb - update frontbuffer tracking
5040  * old: current GEM buffer for the frontbuffer slots
5041  * new: new GEM buffer for the frontbuffer slots
5042  * frontbuffer_bits: bitmask of frontbuffer slots
5043  *
5044  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5045  * from @old and setting them in @new. Both @old and @new can be NULL.
5046  */
5047 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5048                        struct drm_i915_gem_object *new,
5049                        unsigned frontbuffer_bits)
5050 {
5051         if (old) {
5052                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5053                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5054                 old->frontbuffer_bits &= ~frontbuffer_bits;
5055         }
5056
5057         if (new) {
5058                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5059                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5060                 new->frontbuffer_bits |= frontbuffer_bits;
5061         }
5062 }
5063
5064 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5065 {
5066         if (!mutex_is_locked(mutex))
5067                 return false;
5068
5069 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5070         return mutex->owner == task;
5071 #else
5072         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5073         return false;
5074 #endif
5075 }
5076
5077 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5078 {
5079         if (!mutex_trylock(&dev->struct_mutex)) {
5080                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5081                         return false;
5082
5083                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5084                         return false;
5085
5086                 *unlock = false;
5087         } else
5088                 *unlock = true;
5089
5090         return true;
5091 }
5092
5093 static int num_vma_bound(struct drm_i915_gem_object *obj)
5094 {
5095         struct i915_vma *vma;
5096         int count = 0;
5097
5098         list_for_each_entry(vma, &obj->vma_list, vma_link)
5099                 if (drm_mm_node_allocated(&vma->node))
5100                         count++;
5101
5102         return count;
5103 }
5104
5105 static unsigned long
5106 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5107 {
5108         struct drm_i915_private *dev_priv =
5109                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5110         struct drm_device *dev = dev_priv->dev;
5111         struct drm_i915_gem_object *obj;
5112         unsigned long count;
5113         bool unlock;
5114
5115         if (!i915_gem_shrinker_lock(dev, &unlock))
5116                 return 0;
5117
5118         count = 0;
5119         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5120                 if (obj->pages_pin_count == 0)
5121                         count += obj->base.size >> PAGE_SHIFT;
5122
5123         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5124                 if (!i915_gem_obj_is_pinned(obj) &&
5125                     obj->pages_pin_count == num_vma_bound(obj))
5126                         count += obj->base.size >> PAGE_SHIFT;
5127         }
5128
5129         if (unlock)
5130                 mutex_unlock(&dev->struct_mutex);
5131
5132         return count;
5133 }
5134
5135 /* All the new VM stuff */
5136 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5137                                   struct i915_address_space *vm)
5138 {
5139         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5140         struct i915_vma *vma;
5141
5142         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5143
5144         list_for_each_entry(vma, &o->vma_list, vma_link) {
5145                 if (vma->vm == vm)
5146                         return vma->node.start;
5147
5148         }
5149         WARN(1, "%s vma for this object not found.\n",
5150              i915_is_ggtt(vm) ? "global" : "ppgtt");
5151         return -1;
5152 }
5153
5154 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5155                         struct i915_address_space *vm)
5156 {
5157         struct i915_vma *vma;
5158
5159         list_for_each_entry(vma, &o->vma_list, vma_link)
5160                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5161                         return true;
5162
5163         return false;
5164 }
5165
5166 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5167 {
5168         struct i915_vma *vma;
5169
5170         list_for_each_entry(vma, &o->vma_list, vma_link)
5171                 if (drm_mm_node_allocated(&vma->node))
5172                         return true;
5173
5174         return false;
5175 }
5176
5177 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5178                                 struct i915_address_space *vm)
5179 {
5180         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5181         struct i915_vma *vma;
5182
5183         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5184
5185         BUG_ON(list_empty(&o->vma_list));
5186
5187         list_for_each_entry(vma, &o->vma_list, vma_link)
5188                 if (vma->vm == vm)
5189                         return vma->node.size;
5190
5191         return 0;
5192 }
5193
5194 static unsigned long
5195 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5196 {
5197         struct drm_i915_private *dev_priv =
5198                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5199         struct drm_device *dev = dev_priv->dev;
5200         unsigned long freed;
5201         bool unlock;
5202
5203         if (!i915_gem_shrinker_lock(dev, &unlock))
5204                 return SHRINK_STOP;
5205
5206         freed = i915_gem_shrink(dev_priv,
5207                                 sc->nr_to_scan,
5208                                 I915_SHRINK_BOUND |
5209                                 I915_SHRINK_UNBOUND |
5210                                 I915_SHRINK_PURGEABLE);
5211         if (freed < sc->nr_to_scan)
5212                 freed += i915_gem_shrink(dev_priv,
5213                                          sc->nr_to_scan - freed,
5214                                          I915_SHRINK_BOUND |
5215                                          I915_SHRINK_UNBOUND);
5216         if (unlock)
5217                 mutex_unlock(&dev->struct_mutex);
5218
5219         return freed;
5220 }
5221
5222 static int
5223 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5224 {
5225         struct drm_i915_private *dev_priv =
5226                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5227         struct drm_device *dev = dev_priv->dev;
5228         struct drm_i915_gem_object *obj;
5229         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5230         unsigned long pinned, bound, unbound, freed_pages;
5231         bool was_interruptible;
5232         bool unlock;
5233
5234         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5235                 schedule_timeout_killable(1);
5236                 if (fatal_signal_pending(current))
5237                         return NOTIFY_DONE;
5238         }
5239         if (timeout == 0) {
5240                 pr_err("Unable to purge GPU memory due lock contention.\n");
5241                 return NOTIFY_DONE;
5242         }
5243
5244         was_interruptible = dev_priv->mm.interruptible;
5245         dev_priv->mm.interruptible = false;
5246
5247         freed_pages = i915_gem_shrink_all(dev_priv);
5248
5249         dev_priv->mm.interruptible = was_interruptible;
5250
5251         /* Because we may be allocating inside our own driver, we cannot
5252          * assert that there are no objects with pinned pages that are not
5253          * being pointed to by hardware.
5254          */
5255         unbound = bound = pinned = 0;
5256         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5257                 if (!obj->base.filp) /* not backed by a freeable object */
5258                         continue;
5259
5260                 if (obj->pages_pin_count)
5261                         pinned += obj->base.size;
5262                 else
5263                         unbound += obj->base.size;
5264         }
5265         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5266                 if (!obj->base.filp)
5267                         continue;
5268
5269                 if (obj->pages_pin_count)
5270                         pinned += obj->base.size;
5271                 else
5272                         bound += obj->base.size;
5273         }
5274
5275         if (unlock)
5276                 mutex_unlock(&dev->struct_mutex);
5277
5278         if (freed_pages || unbound || bound)
5279                 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5280                         freed_pages << PAGE_SHIFT, pinned);
5281         if (unbound || bound)
5282                 pr_err("%lu and %lu bytes still available in the "
5283                        "bound and unbound GPU page lists.\n",
5284                        bound, unbound);
5285
5286         *(unsigned long *)ptr += freed_pages;
5287         return NOTIFY_DONE;
5288 }
5289
5290 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5291 {
5292         struct i915_vma *vma;
5293
5294         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5295         if (vma->vm != i915_obj_to_ggtt(obj))
5296                 return NULL;
5297
5298         return vma;
5299 }