regulator: ltc3589: Staticize ltc3589_reg_defaults
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link)
145                 if (vma->pin_count > 0)
146                         pin_count++;
147                 seq_printf(m, " (pinned x %d)", pin_count);
148         if (obj->pin_display)
149                 seq_printf(m, " (display)");
150         if (obj->fence_reg != I915_FENCE_REG_NONE)
151                 seq_printf(m, " (fence: %d)", obj->fence_reg);
152         list_for_each_entry(vma, &obj->vma_list, vma_link) {
153                 if (!i915_is_ggtt(vma->vm))
154                         seq_puts(m, " (pp");
155                 else
156                         seq_puts(m, " (g");
157                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
158                            vma->node.start, vma->node.size);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->ring != NULL)
172                 seq_printf(m, " (%s)", obj->ring->name);
173 }
174
175 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
176 {
177         seq_putc(m, ctx->is_initialized ? 'I' : 'i');
178         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
179         seq_putc(m, ' ');
180 }
181
182 static int i915_gem_object_list_info(struct seq_file *m, void *data)
183 {
184         struct drm_info_node *node = m->private;
185         uintptr_t list = (uintptr_t) node->info_ent->data;
186         struct list_head *head;
187         struct drm_device *dev = node->minor->dev;
188         struct drm_i915_private *dev_priv = dev->dev_private;
189         struct i915_address_space *vm = &dev_priv->gtt.base;
190         struct i915_vma *vma;
191         size_t total_obj_size, total_gtt_size;
192         int count, ret;
193
194         ret = mutex_lock_interruptible(&dev->struct_mutex);
195         if (ret)
196                 return ret;
197
198         /* FIXME: the user of this interface might want more than just GGTT */
199         switch (list) {
200         case ACTIVE_LIST:
201                 seq_puts(m, "Active:\n");
202                 head = &vm->active_list;
203                 break;
204         case INACTIVE_LIST:
205                 seq_puts(m, "Inactive:\n");
206                 head = &vm->inactive_list;
207                 break;
208         default:
209                 mutex_unlock(&dev->struct_mutex);
210                 return -EINVAL;
211         }
212
213         total_obj_size = total_gtt_size = count = 0;
214         list_for_each_entry(vma, head, mm_list) {
215                 seq_printf(m, "   ");
216                 describe_obj(m, vma->obj);
217                 seq_printf(m, "\n");
218                 total_obj_size += vma->obj->base.size;
219                 total_gtt_size += vma->node.size;
220                 count++;
221         }
222         mutex_unlock(&dev->struct_mutex);
223
224         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
225                    count, total_obj_size, total_gtt_size);
226         return 0;
227 }
228
229 static int obj_rank_by_stolen(void *priv,
230                               struct list_head *A, struct list_head *B)
231 {
232         struct drm_i915_gem_object *a =
233                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
234         struct drm_i915_gem_object *b =
235                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
236
237         return a->stolen->start - b->stolen->start;
238 }
239
240 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
241 {
242         struct drm_info_node *node = m->private;
243         struct drm_device *dev = node->minor->dev;
244         struct drm_i915_private *dev_priv = dev->dev_private;
245         struct drm_i915_gem_object *obj;
246         size_t total_obj_size, total_gtt_size;
247         LIST_HEAD(stolen);
248         int count, ret;
249
250         ret = mutex_lock_interruptible(&dev->struct_mutex);
251         if (ret)
252                 return ret;
253
254         total_obj_size = total_gtt_size = count = 0;
255         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
256                 if (obj->stolen == NULL)
257                         continue;
258
259                 list_add(&obj->obj_exec_link, &stolen);
260
261                 total_obj_size += obj->base.size;
262                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
263                 count++;
264         }
265         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
266                 if (obj->stolen == NULL)
267                         continue;
268
269                 list_add(&obj->obj_exec_link, &stolen);
270
271                 total_obj_size += obj->base.size;
272                 count++;
273         }
274         list_sort(NULL, &stolen, obj_rank_by_stolen);
275         seq_puts(m, "Stolen:\n");
276         while (!list_empty(&stolen)) {
277                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
278                 seq_puts(m, "   ");
279                 describe_obj(m, obj);
280                 seq_putc(m, '\n');
281                 list_del_init(&obj->obj_exec_link);
282         }
283         mutex_unlock(&dev->struct_mutex);
284
285         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
286                    count, total_obj_size, total_gtt_size);
287         return 0;
288 }
289
290 #define count_objects(list, member) do { \
291         list_for_each_entry(obj, list, member) { \
292                 size += i915_gem_obj_ggtt_size(obj); \
293                 ++count; \
294                 if (obj->map_and_fenceable) { \
295                         mappable_size += i915_gem_obj_ggtt_size(obj); \
296                         ++mappable_count; \
297                 } \
298         } \
299 } while (0)
300
301 struct file_stats {
302         struct drm_i915_file_private *file_priv;
303         int count;
304         size_t total, unbound;
305         size_t global, shared;
306         size_t active, inactive;
307 };
308
309 static int per_file_stats(int id, void *ptr, void *data)
310 {
311         struct drm_i915_gem_object *obj = ptr;
312         struct file_stats *stats = data;
313         struct i915_vma *vma;
314
315         stats->count++;
316         stats->total += obj->base.size;
317
318         if (obj->base.name || obj->base.dma_buf)
319                 stats->shared += obj->base.size;
320
321         if (USES_FULL_PPGTT(obj->base.dev)) {
322                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
323                         struct i915_hw_ppgtt *ppgtt;
324
325                         if (!drm_mm_node_allocated(&vma->node))
326                                 continue;
327
328                         if (i915_is_ggtt(vma->vm)) {
329                                 stats->global += obj->base.size;
330                                 continue;
331                         }
332
333                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
334                         if (ppgtt->ctx && ppgtt->ctx->file_priv != stats->file_priv)
335                                 continue;
336
337                         if (obj->ring) /* XXX per-vma statistic */
338                                 stats->active += obj->base.size;
339                         else
340                                 stats->inactive += obj->base.size;
341
342                         return 0;
343                 }
344         } else {
345                 if (i915_gem_obj_ggtt_bound(obj)) {
346                         stats->global += obj->base.size;
347                         if (obj->ring)
348                                 stats->active += obj->base.size;
349                         else
350                                 stats->inactive += obj->base.size;
351                         return 0;
352                 }
353         }
354
355         if (!list_empty(&obj->global_list))
356                 stats->unbound += obj->base.size;
357
358         return 0;
359 }
360
361 #define count_vmas(list, member) do { \
362         list_for_each_entry(vma, list, member) { \
363                 size += i915_gem_obj_ggtt_size(vma->obj); \
364                 ++count; \
365                 if (vma->obj->map_and_fenceable) { \
366                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
367                         ++mappable_count; \
368                 } \
369         } \
370 } while (0)
371
372 static int i915_gem_object_info(struct seq_file *m, void* data)
373 {
374         struct drm_info_node *node = m->private;
375         struct drm_device *dev = node->minor->dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         u32 count, mappable_count, purgeable_count;
378         size_t size, mappable_size, purgeable_size;
379         struct drm_i915_gem_object *obj;
380         struct i915_address_space *vm = &dev_priv->gtt.base;
381         struct drm_file *file;
382         struct i915_vma *vma;
383         int ret;
384
385         ret = mutex_lock_interruptible(&dev->struct_mutex);
386         if (ret)
387                 return ret;
388
389         seq_printf(m, "%u objects, %zu bytes\n",
390                    dev_priv->mm.object_count,
391                    dev_priv->mm.object_memory);
392
393         size = count = mappable_size = mappable_count = 0;
394         count_objects(&dev_priv->mm.bound_list, global_list);
395         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
396                    count, mappable_count, size, mappable_size);
397
398         size = count = mappable_size = mappable_count = 0;
399         count_vmas(&vm->active_list, mm_list);
400         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
401                    count, mappable_count, size, mappable_size);
402
403         size = count = mappable_size = mappable_count = 0;
404         count_vmas(&vm->inactive_list, mm_list);
405         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
406                    count, mappable_count, size, mappable_size);
407
408         size = count = purgeable_size = purgeable_count = 0;
409         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
410                 size += obj->base.size, ++count;
411                 if (obj->madv == I915_MADV_DONTNEED)
412                         purgeable_size += obj->base.size, ++purgeable_count;
413         }
414         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
415
416         size = count = mappable_size = mappable_count = 0;
417         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
418                 if (obj->fault_mappable) {
419                         size += i915_gem_obj_ggtt_size(obj);
420                         ++count;
421                 }
422                 if (obj->pin_mappable) {
423                         mappable_size += i915_gem_obj_ggtt_size(obj);
424                         ++mappable_count;
425                 }
426                 if (obj->madv == I915_MADV_DONTNEED) {
427                         purgeable_size += obj->base.size;
428                         ++purgeable_count;
429                 }
430         }
431         seq_printf(m, "%u purgeable objects, %zu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
434                    mappable_count, mappable_size);
435         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
436                    count, size);
437
438         seq_printf(m, "%zu [%lu] gtt total\n",
439                    dev_priv->gtt.base.total,
440                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
441
442         seq_putc(m, '\n');
443         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
444                 struct file_stats stats;
445                 struct task_struct *task;
446
447                 memset(&stats, 0, sizeof(stats));
448                 stats.file_priv = file->driver_priv;
449                 idr_for_each(&file->object_idr, per_file_stats, &stats);
450                 /*
451                  * Although we have a valid reference on file->pid, that does
452                  * not guarantee that the task_struct who called get_pid() is
453                  * still alive (e.g. get_pid(current) => fork() => exit()).
454                  * Therefore, we need to protect this ->comm access using RCU.
455                  */
456                 rcu_read_lock();
457                 task = pid_task(file->pid, PIDTYPE_PID);
458                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
459                            task ? task->comm : "<unknown>",
460                            stats.count,
461                            stats.total,
462                            stats.active,
463                            stats.inactive,
464                            stats.global,
465                            stats.shared,
466                            stats.unbound);
467                 rcu_read_unlock();
468         }
469
470         mutex_unlock(&dev->struct_mutex);
471
472         return 0;
473 }
474
475 static int i915_gem_gtt_info(struct seq_file *m, void *data)
476 {
477         struct drm_info_node *node = m->private;
478         struct drm_device *dev = node->minor->dev;
479         uintptr_t list = (uintptr_t) node->info_ent->data;
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         struct drm_i915_gem_object *obj;
482         size_t total_obj_size, total_gtt_size;
483         int count, ret;
484
485         ret = mutex_lock_interruptible(&dev->struct_mutex);
486         if (ret)
487                 return ret;
488
489         total_obj_size = total_gtt_size = count = 0;
490         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
491                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
492                         continue;
493
494                 seq_puts(m, "   ");
495                 describe_obj(m, obj);
496                 seq_putc(m, '\n');
497                 total_obj_size += obj->base.size;
498                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
499                 count++;
500         }
501
502         mutex_unlock(&dev->struct_mutex);
503
504         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
505                    count, total_obj_size, total_gtt_size);
506
507         return 0;
508 }
509
510 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
511 {
512         struct drm_info_node *node = m->private;
513         struct drm_device *dev = node->minor->dev;
514         unsigned long flags;
515         struct intel_crtc *crtc;
516
517         for_each_intel_crtc(dev, crtc) {
518                 const char pipe = pipe_name(crtc->pipe);
519                 const char plane = plane_name(crtc->plane);
520                 struct intel_unpin_work *work;
521
522                 spin_lock_irqsave(&dev->event_lock, flags);
523                 work = crtc->unpin_work;
524                 if (work == NULL) {
525                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
526                                    pipe, plane);
527                 } else {
528                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
529                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
530                                            pipe, plane);
531                         } else {
532                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
533                                            pipe, plane);
534                         }
535                         if (work->enable_stall_check)
536                                 seq_puts(m, "Stall check enabled, ");
537                         else
538                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
539                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
540
541                         if (work->old_fb_obj) {
542                                 struct drm_i915_gem_object *obj = work->old_fb_obj;
543                                 if (obj)
544                                         seq_printf(m, "Old framebuffer gtt_offset 0x%08lx\n",
545                                                    i915_gem_obj_ggtt_offset(obj));
546                         }
547                         if (work->pending_flip_obj) {
548                                 struct drm_i915_gem_object *obj = work->pending_flip_obj;
549                                 if (obj)
550                                         seq_printf(m, "New framebuffer gtt_offset 0x%08lx\n",
551                                                    i915_gem_obj_ggtt_offset(obj));
552                         }
553                 }
554                 spin_unlock_irqrestore(&dev->event_lock, flags);
555         }
556
557         return 0;
558 }
559
560 static int i915_gem_request_info(struct seq_file *m, void *data)
561 {
562         struct drm_info_node *node = m->private;
563         struct drm_device *dev = node->minor->dev;
564         struct drm_i915_private *dev_priv = dev->dev_private;
565         struct intel_engine_cs *ring;
566         struct drm_i915_gem_request *gem_request;
567         int ret, count, i;
568
569         ret = mutex_lock_interruptible(&dev->struct_mutex);
570         if (ret)
571                 return ret;
572
573         count = 0;
574         for_each_ring(ring, dev_priv, i) {
575                 if (list_empty(&ring->request_list))
576                         continue;
577
578                 seq_printf(m, "%s requests:\n", ring->name);
579                 list_for_each_entry(gem_request,
580                                     &ring->request_list,
581                                     list) {
582                         seq_printf(m, "    %d @ %d\n",
583                                    gem_request->seqno,
584                                    (int) (jiffies - gem_request->emitted_jiffies));
585                 }
586                 count++;
587         }
588         mutex_unlock(&dev->struct_mutex);
589
590         if (count == 0)
591                 seq_puts(m, "No requests\n");
592
593         return 0;
594 }
595
596 static void i915_ring_seqno_info(struct seq_file *m,
597                                  struct intel_engine_cs *ring)
598 {
599         if (ring->get_seqno) {
600                 seq_printf(m, "Current sequence (%s): %u\n",
601                            ring->name, ring->get_seqno(ring, false));
602         }
603 }
604
605 static int i915_gem_seqno_info(struct seq_file *m, void *data)
606 {
607         struct drm_info_node *node = m->private;
608         struct drm_device *dev = node->minor->dev;
609         struct drm_i915_private *dev_priv = dev->dev_private;
610         struct intel_engine_cs *ring;
611         int ret, i;
612
613         ret = mutex_lock_interruptible(&dev->struct_mutex);
614         if (ret)
615                 return ret;
616         intel_runtime_pm_get(dev_priv);
617
618         for_each_ring(ring, dev_priv, i)
619                 i915_ring_seqno_info(m, ring);
620
621         intel_runtime_pm_put(dev_priv);
622         mutex_unlock(&dev->struct_mutex);
623
624         return 0;
625 }
626
627
628 static int i915_interrupt_info(struct seq_file *m, void *data)
629 {
630         struct drm_info_node *node = m->private;
631         struct drm_device *dev = node->minor->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         struct intel_engine_cs *ring;
634         int ret, i, pipe;
635
636         ret = mutex_lock_interruptible(&dev->struct_mutex);
637         if (ret)
638                 return ret;
639         intel_runtime_pm_get(dev_priv);
640
641         if (IS_CHERRYVIEW(dev)) {
642                 int i;
643                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
644                            I915_READ(GEN8_MASTER_IRQ));
645
646                 seq_printf(m, "Display IER:\t%08x\n",
647                            I915_READ(VLV_IER));
648                 seq_printf(m, "Display IIR:\t%08x\n",
649                            I915_READ(VLV_IIR));
650                 seq_printf(m, "Display IIR_RW:\t%08x\n",
651                            I915_READ(VLV_IIR_RW));
652                 seq_printf(m, "Display IMR:\t%08x\n",
653                            I915_READ(VLV_IMR));
654                 for_each_pipe(pipe)
655                         seq_printf(m, "Pipe %c stat:\t%08x\n",
656                                    pipe_name(pipe),
657                                    I915_READ(PIPESTAT(pipe)));
658
659                 seq_printf(m, "Port hotplug:\t%08x\n",
660                            I915_READ(PORT_HOTPLUG_EN));
661                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
662                            I915_READ(VLV_DPFLIPSTAT));
663                 seq_printf(m, "DPINVGTT:\t%08x\n",
664                            I915_READ(DPINVGTT));
665
666                 for (i = 0; i < 4; i++) {
667                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
668                                    i, I915_READ(GEN8_GT_IMR(i)));
669                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
670                                    i, I915_READ(GEN8_GT_IIR(i)));
671                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
672                                    i, I915_READ(GEN8_GT_IER(i)));
673                 }
674
675                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
676                            I915_READ(GEN8_PCU_IMR));
677                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
678                            I915_READ(GEN8_PCU_IIR));
679                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
680                            I915_READ(GEN8_PCU_IER));
681         } else if (INTEL_INFO(dev)->gen >= 8) {
682                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
683                            I915_READ(GEN8_MASTER_IRQ));
684
685                 for (i = 0; i < 4; i++) {
686                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
687                                    i, I915_READ(GEN8_GT_IMR(i)));
688                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
689                                    i, I915_READ(GEN8_GT_IIR(i)));
690                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
691                                    i, I915_READ(GEN8_GT_IER(i)));
692                 }
693
694                 for_each_pipe(pipe) {
695                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
696                                    pipe_name(pipe),
697                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
698                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
699                                    pipe_name(pipe),
700                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
701                         seq_printf(m, "Pipe %c IER:\t%08x\n",
702                                    pipe_name(pipe),
703                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
704                 }
705
706                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
707                            I915_READ(GEN8_DE_PORT_IMR));
708                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
709                            I915_READ(GEN8_DE_PORT_IIR));
710                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
711                            I915_READ(GEN8_DE_PORT_IER));
712
713                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
714                            I915_READ(GEN8_DE_MISC_IMR));
715                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
716                            I915_READ(GEN8_DE_MISC_IIR));
717                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
718                            I915_READ(GEN8_DE_MISC_IER));
719
720                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
721                            I915_READ(GEN8_PCU_IMR));
722                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
723                            I915_READ(GEN8_PCU_IIR));
724                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
725                            I915_READ(GEN8_PCU_IER));
726         } else if (IS_VALLEYVIEW(dev)) {
727                 seq_printf(m, "Display IER:\t%08x\n",
728                            I915_READ(VLV_IER));
729                 seq_printf(m, "Display IIR:\t%08x\n",
730                            I915_READ(VLV_IIR));
731                 seq_printf(m, "Display IIR_RW:\t%08x\n",
732                            I915_READ(VLV_IIR_RW));
733                 seq_printf(m, "Display IMR:\t%08x\n",
734                            I915_READ(VLV_IMR));
735                 for_each_pipe(pipe)
736                         seq_printf(m, "Pipe %c stat:\t%08x\n",
737                                    pipe_name(pipe),
738                                    I915_READ(PIPESTAT(pipe)));
739
740                 seq_printf(m, "Master IER:\t%08x\n",
741                            I915_READ(VLV_MASTER_IER));
742
743                 seq_printf(m, "Render IER:\t%08x\n",
744                            I915_READ(GTIER));
745                 seq_printf(m, "Render IIR:\t%08x\n",
746                            I915_READ(GTIIR));
747                 seq_printf(m, "Render IMR:\t%08x\n",
748                            I915_READ(GTIMR));
749
750                 seq_printf(m, "PM IER:\t\t%08x\n",
751                            I915_READ(GEN6_PMIER));
752                 seq_printf(m, "PM IIR:\t\t%08x\n",
753                            I915_READ(GEN6_PMIIR));
754                 seq_printf(m, "PM IMR:\t\t%08x\n",
755                            I915_READ(GEN6_PMIMR));
756
757                 seq_printf(m, "Port hotplug:\t%08x\n",
758                            I915_READ(PORT_HOTPLUG_EN));
759                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
760                            I915_READ(VLV_DPFLIPSTAT));
761                 seq_printf(m, "DPINVGTT:\t%08x\n",
762                            I915_READ(DPINVGTT));
763
764         } else if (!HAS_PCH_SPLIT(dev)) {
765                 seq_printf(m, "Interrupt enable:    %08x\n",
766                            I915_READ(IER));
767                 seq_printf(m, "Interrupt identity:  %08x\n",
768                            I915_READ(IIR));
769                 seq_printf(m, "Interrupt mask:      %08x\n",
770                            I915_READ(IMR));
771                 for_each_pipe(pipe)
772                         seq_printf(m, "Pipe %c stat:         %08x\n",
773                                    pipe_name(pipe),
774                                    I915_READ(PIPESTAT(pipe)));
775         } else {
776                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
777                            I915_READ(DEIER));
778                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
779                            I915_READ(DEIIR));
780                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
781                            I915_READ(DEIMR));
782                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
783                            I915_READ(SDEIER));
784                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
785                            I915_READ(SDEIIR));
786                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
787                            I915_READ(SDEIMR));
788                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
789                            I915_READ(GTIER));
790                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
791                            I915_READ(GTIIR));
792                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
793                            I915_READ(GTIMR));
794         }
795         for_each_ring(ring, dev_priv, i) {
796                 if (INTEL_INFO(dev)->gen >= 6) {
797                         seq_printf(m,
798                                    "Graphics Interrupt mask (%s):       %08x\n",
799                                    ring->name, I915_READ_IMR(ring));
800                 }
801                 i915_ring_seqno_info(m, ring);
802         }
803         intel_runtime_pm_put(dev_priv);
804         mutex_unlock(&dev->struct_mutex);
805
806         return 0;
807 }
808
809 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
810 {
811         struct drm_info_node *node = m->private;
812         struct drm_device *dev = node->minor->dev;
813         struct drm_i915_private *dev_priv = dev->dev_private;
814         int i, ret;
815
816         ret = mutex_lock_interruptible(&dev->struct_mutex);
817         if (ret)
818                 return ret;
819
820         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
821         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
822         for (i = 0; i < dev_priv->num_fence_regs; i++) {
823                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
824
825                 seq_printf(m, "Fence %d, pin count = %d, object = ",
826                            i, dev_priv->fence_regs[i].pin_count);
827                 if (obj == NULL)
828                         seq_puts(m, "unused");
829                 else
830                         describe_obj(m, obj);
831                 seq_putc(m, '\n');
832         }
833
834         mutex_unlock(&dev->struct_mutex);
835         return 0;
836 }
837
838 static int i915_hws_info(struct seq_file *m, void *data)
839 {
840         struct drm_info_node *node = m->private;
841         struct drm_device *dev = node->minor->dev;
842         struct drm_i915_private *dev_priv = dev->dev_private;
843         struct intel_engine_cs *ring;
844         const u32 *hws;
845         int i;
846
847         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
848         hws = ring->status_page.page_addr;
849         if (hws == NULL)
850                 return 0;
851
852         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
853                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
854                            i * 4,
855                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
856         }
857         return 0;
858 }
859
860 static ssize_t
861 i915_error_state_write(struct file *filp,
862                        const char __user *ubuf,
863                        size_t cnt,
864                        loff_t *ppos)
865 {
866         struct i915_error_state_file_priv *error_priv = filp->private_data;
867         struct drm_device *dev = error_priv->dev;
868         int ret;
869
870         DRM_DEBUG_DRIVER("Resetting error state\n");
871
872         ret = mutex_lock_interruptible(&dev->struct_mutex);
873         if (ret)
874                 return ret;
875
876         i915_destroy_error_state(dev);
877         mutex_unlock(&dev->struct_mutex);
878
879         return cnt;
880 }
881
882 static int i915_error_state_open(struct inode *inode, struct file *file)
883 {
884         struct drm_device *dev = inode->i_private;
885         struct i915_error_state_file_priv *error_priv;
886
887         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
888         if (!error_priv)
889                 return -ENOMEM;
890
891         error_priv->dev = dev;
892
893         i915_error_state_get(dev, error_priv);
894
895         file->private_data = error_priv;
896
897         return 0;
898 }
899
900 static int i915_error_state_release(struct inode *inode, struct file *file)
901 {
902         struct i915_error_state_file_priv *error_priv = file->private_data;
903
904         i915_error_state_put(error_priv);
905         kfree(error_priv);
906
907         return 0;
908 }
909
910 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
911                                      size_t count, loff_t *pos)
912 {
913         struct i915_error_state_file_priv *error_priv = file->private_data;
914         struct drm_i915_error_state_buf error_str;
915         loff_t tmp_pos = 0;
916         ssize_t ret_count = 0;
917         int ret;
918
919         ret = i915_error_state_buf_init(&error_str, count, *pos);
920         if (ret)
921                 return ret;
922
923         ret = i915_error_state_to_str(&error_str, error_priv);
924         if (ret)
925                 goto out;
926
927         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
928                                             error_str.buf,
929                                             error_str.bytes);
930
931         if (ret_count < 0)
932                 ret = ret_count;
933         else
934                 *pos = error_str.start + ret_count;
935 out:
936         i915_error_state_buf_release(&error_str);
937         return ret ?: ret_count;
938 }
939
940 static const struct file_operations i915_error_state_fops = {
941         .owner = THIS_MODULE,
942         .open = i915_error_state_open,
943         .read = i915_error_state_read,
944         .write = i915_error_state_write,
945         .llseek = default_llseek,
946         .release = i915_error_state_release,
947 };
948
949 static int
950 i915_next_seqno_get(void *data, u64 *val)
951 {
952         struct drm_device *dev = data;
953         struct drm_i915_private *dev_priv = dev->dev_private;
954         int ret;
955
956         ret = mutex_lock_interruptible(&dev->struct_mutex);
957         if (ret)
958                 return ret;
959
960         *val = dev_priv->next_seqno;
961         mutex_unlock(&dev->struct_mutex);
962
963         return 0;
964 }
965
966 static int
967 i915_next_seqno_set(void *data, u64 val)
968 {
969         struct drm_device *dev = data;
970         int ret;
971
972         ret = mutex_lock_interruptible(&dev->struct_mutex);
973         if (ret)
974                 return ret;
975
976         ret = i915_gem_set_seqno(dev, val);
977         mutex_unlock(&dev->struct_mutex);
978
979         return ret;
980 }
981
982 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
983                         i915_next_seqno_get, i915_next_seqno_set,
984                         "0x%llx\n");
985
986 static int i915_rstdby_delays(struct seq_file *m, void *unused)
987 {
988         struct drm_info_node *node = m->private;
989         struct drm_device *dev = node->minor->dev;
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         u16 crstanddelay;
992         int ret;
993
994         ret = mutex_lock_interruptible(&dev->struct_mutex);
995         if (ret)
996                 return ret;
997         intel_runtime_pm_get(dev_priv);
998
999         crstanddelay = I915_READ16(CRSTANDVID);
1000
1001         intel_runtime_pm_put(dev_priv);
1002         mutex_unlock(&dev->struct_mutex);
1003
1004         seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
1005
1006         return 0;
1007 }
1008
1009 static int i915_frequency_info(struct seq_file *m, void *unused)
1010 {
1011         struct drm_info_node *node = m->private;
1012         struct drm_device *dev = node->minor->dev;
1013         struct drm_i915_private *dev_priv = dev->dev_private;
1014         int ret = 0;
1015
1016         intel_runtime_pm_get(dev_priv);
1017
1018         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1019
1020         if (IS_GEN5(dev)) {
1021                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1022                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1023
1024                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1025                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1026                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1027                            MEMSTAT_VID_SHIFT);
1028                 seq_printf(m, "Current P-state: %d\n",
1029                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1030         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
1031                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1032                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1033                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1034                 u32 rpmodectl, rpinclimit, rpdeclimit;
1035                 u32 rpstat, cagf, reqf;
1036                 u32 rpupei, rpcurup, rpprevup;
1037                 u32 rpdownei, rpcurdown, rpprevdown;
1038                 int max_freq;
1039
1040                 /* RPSTAT1 is in the GT power well */
1041                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1042                 if (ret)
1043                         goto out;
1044
1045                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1046
1047                 reqf = I915_READ(GEN6_RPNSWREQ);
1048                 reqf &= ~GEN6_TURBO_DISABLE;
1049                 if (IS_HASWELL(dev))
1050                         reqf >>= 24;
1051                 else
1052                         reqf >>= 25;
1053                 reqf *= GT_FREQUENCY_MULTIPLIER;
1054
1055                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1056                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1057                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1058
1059                 rpstat = I915_READ(GEN6_RPSTAT1);
1060                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1061                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1062                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1063                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1064                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1065                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1066                 if (IS_HASWELL(dev))
1067                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1068                 else
1069                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1070                 cagf *= GT_FREQUENCY_MULTIPLIER;
1071
1072                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1073                 mutex_unlock(&dev->struct_mutex);
1074
1075                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1076                            I915_READ(GEN6_PMIER),
1077                            I915_READ(GEN6_PMIMR),
1078                            I915_READ(GEN6_PMISR),
1079                            I915_READ(GEN6_PMIIR),
1080                            I915_READ(GEN6_PMINTRMSK));
1081                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1082                 seq_printf(m, "Render p-state ratio: %d\n",
1083                            (gt_perf_status & 0xff00) >> 8);
1084                 seq_printf(m, "Render p-state VID: %d\n",
1085                            gt_perf_status & 0xff);
1086                 seq_printf(m, "Render p-state limit: %d\n",
1087                            rp_state_limits & 0xff);
1088                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1089                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1090                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1091                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1092                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1093                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1094                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1095                            GEN6_CURICONT_MASK);
1096                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1097                            GEN6_CURBSYTAVG_MASK);
1098                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1099                            GEN6_CURBSYTAVG_MASK);
1100                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1101                            GEN6_CURIAVG_MASK);
1102                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1103                            GEN6_CURBSYTAVG_MASK);
1104                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1105                            GEN6_CURBSYTAVG_MASK);
1106
1107                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1108                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1109                            max_freq * GT_FREQUENCY_MULTIPLIER);
1110
1111                 max_freq = (rp_state_cap & 0xff00) >> 8;
1112                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1113                            max_freq * GT_FREQUENCY_MULTIPLIER);
1114
1115                 max_freq = rp_state_cap & 0xff;
1116                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1117                            max_freq * GT_FREQUENCY_MULTIPLIER);
1118
1119                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1120                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1121         } else if (IS_VALLEYVIEW(dev)) {
1122                 u32 freq_sts, val;
1123
1124                 mutex_lock(&dev_priv->rps.hw_lock);
1125                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1126                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1127                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1128
1129                 val = valleyview_rps_max_freq(dev_priv);
1130                 seq_printf(m, "max GPU freq: %d MHz\n",
1131                            vlv_gpu_freq(dev_priv, val));
1132
1133                 val = valleyview_rps_min_freq(dev_priv);
1134                 seq_printf(m, "min GPU freq: %d MHz\n",
1135                            vlv_gpu_freq(dev_priv, val));
1136
1137                 seq_printf(m, "current GPU freq: %d MHz\n",
1138                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1139                 mutex_unlock(&dev_priv->rps.hw_lock);
1140         } else {
1141                 seq_puts(m, "no P-state info available\n");
1142         }
1143
1144 out:
1145         intel_runtime_pm_put(dev_priv);
1146         return ret;
1147 }
1148
1149 static int i915_delayfreq_table(struct seq_file *m, void *unused)
1150 {
1151         struct drm_info_node *node = m->private;
1152         struct drm_device *dev = node->minor->dev;
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         u32 delayfreq;
1155         int ret, i;
1156
1157         ret = mutex_lock_interruptible(&dev->struct_mutex);
1158         if (ret)
1159                 return ret;
1160         intel_runtime_pm_get(dev_priv);
1161
1162         for (i = 0; i < 16; i++) {
1163                 delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
1164                 seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
1165                            (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
1166         }
1167
1168         intel_runtime_pm_put(dev_priv);
1169
1170         mutex_unlock(&dev->struct_mutex);
1171
1172         return 0;
1173 }
1174
1175 static inline int MAP_TO_MV(int map)
1176 {
1177         return 1250 - (map * 25);
1178 }
1179
1180 static int i915_inttoext_table(struct seq_file *m, void *unused)
1181 {
1182         struct drm_info_node *node = m->private;
1183         struct drm_device *dev = node->minor->dev;
1184         struct drm_i915_private *dev_priv = dev->dev_private;
1185         u32 inttoext;
1186         int ret, i;
1187
1188         ret = mutex_lock_interruptible(&dev->struct_mutex);
1189         if (ret)
1190                 return ret;
1191         intel_runtime_pm_get(dev_priv);
1192
1193         for (i = 1; i <= 32; i++) {
1194                 inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
1195                 seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
1196         }
1197
1198         intel_runtime_pm_put(dev_priv);
1199         mutex_unlock(&dev->struct_mutex);
1200
1201         return 0;
1202 }
1203
1204 static int ironlake_drpc_info(struct seq_file *m)
1205 {
1206         struct drm_info_node *node = m->private;
1207         struct drm_device *dev = node->minor->dev;
1208         struct drm_i915_private *dev_priv = dev->dev_private;
1209         u32 rgvmodectl, rstdbyctl;
1210         u16 crstandvid;
1211         int ret;
1212
1213         ret = mutex_lock_interruptible(&dev->struct_mutex);
1214         if (ret)
1215                 return ret;
1216         intel_runtime_pm_get(dev_priv);
1217
1218         rgvmodectl = I915_READ(MEMMODECTL);
1219         rstdbyctl = I915_READ(RSTDBYCTL);
1220         crstandvid = I915_READ16(CRSTANDVID);
1221
1222         intel_runtime_pm_put(dev_priv);
1223         mutex_unlock(&dev->struct_mutex);
1224
1225         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1226                    "yes" : "no");
1227         seq_printf(m, "Boost freq: %d\n",
1228                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1229                    MEMMODE_BOOST_FREQ_SHIFT);
1230         seq_printf(m, "HW control enabled: %s\n",
1231                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1232         seq_printf(m, "SW control enabled: %s\n",
1233                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1234         seq_printf(m, "Gated voltage change: %s\n",
1235                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1236         seq_printf(m, "Starting frequency: P%d\n",
1237                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1238         seq_printf(m, "Max P-state: P%d\n",
1239                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1240         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1241         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1242         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1243         seq_printf(m, "Render standby enabled: %s\n",
1244                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1245         seq_puts(m, "Current RS state: ");
1246         switch (rstdbyctl & RSX_STATUS_MASK) {
1247         case RSX_STATUS_ON:
1248                 seq_puts(m, "on\n");
1249                 break;
1250         case RSX_STATUS_RC1:
1251                 seq_puts(m, "RC1\n");
1252                 break;
1253         case RSX_STATUS_RC1E:
1254                 seq_puts(m, "RC1E\n");
1255                 break;
1256         case RSX_STATUS_RS1:
1257                 seq_puts(m, "RS1\n");
1258                 break;
1259         case RSX_STATUS_RS2:
1260                 seq_puts(m, "RS2 (RC6)\n");
1261                 break;
1262         case RSX_STATUS_RS3:
1263                 seq_puts(m, "RC3 (RC6+)\n");
1264                 break;
1265         default:
1266                 seq_puts(m, "unknown\n");
1267                 break;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static int vlv_drpc_info(struct seq_file *m)
1274 {
1275
1276         struct drm_info_node *node = m->private;
1277         struct drm_device *dev = node->minor->dev;
1278         struct drm_i915_private *dev_priv = dev->dev_private;
1279         u32 rpmodectl1, rcctl1;
1280         unsigned fw_rendercount = 0, fw_mediacount = 0;
1281
1282         intel_runtime_pm_get(dev_priv);
1283
1284         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1285         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1286
1287         intel_runtime_pm_put(dev_priv);
1288
1289         seq_printf(m, "Video Turbo Mode: %s\n",
1290                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1291         seq_printf(m, "Turbo enabled: %s\n",
1292                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1293         seq_printf(m, "HW control enabled: %s\n",
1294                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1295         seq_printf(m, "SW control enabled: %s\n",
1296                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1297                           GEN6_RP_MEDIA_SW_MODE));
1298         seq_printf(m, "RC6 Enabled: %s\n",
1299                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1300                                         GEN6_RC_CTL_EI_MODE(1))));
1301         seq_printf(m, "Render Power Well: %s\n",
1302                         (I915_READ(VLV_GTLC_PW_STATUS) &
1303                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1304         seq_printf(m, "Media Power Well: %s\n",
1305                         (I915_READ(VLV_GTLC_PW_STATUS) &
1306                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1307
1308         seq_printf(m, "Render RC6 residency since boot: %u\n",
1309                    I915_READ(VLV_GT_RENDER_RC6));
1310         seq_printf(m, "Media RC6 residency since boot: %u\n",
1311                    I915_READ(VLV_GT_MEDIA_RC6));
1312
1313         spin_lock_irq(&dev_priv->uncore.lock);
1314         fw_rendercount = dev_priv->uncore.fw_rendercount;
1315         fw_mediacount = dev_priv->uncore.fw_mediacount;
1316         spin_unlock_irq(&dev_priv->uncore.lock);
1317
1318         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1319         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1320
1321
1322         return 0;
1323 }
1324
1325
1326 static int gen6_drpc_info(struct seq_file *m)
1327 {
1328
1329         struct drm_info_node *node = m->private;
1330         struct drm_device *dev = node->minor->dev;
1331         struct drm_i915_private *dev_priv = dev->dev_private;
1332         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1333         unsigned forcewake_count;
1334         int count = 0, ret;
1335
1336         ret = mutex_lock_interruptible(&dev->struct_mutex);
1337         if (ret)
1338                 return ret;
1339         intel_runtime_pm_get(dev_priv);
1340
1341         spin_lock_irq(&dev_priv->uncore.lock);
1342         forcewake_count = dev_priv->uncore.forcewake_count;
1343         spin_unlock_irq(&dev_priv->uncore.lock);
1344
1345         if (forcewake_count) {
1346                 seq_puts(m, "RC information inaccurate because somebody "
1347                             "holds a forcewake reference \n");
1348         } else {
1349                 /* NB: we cannot use forcewake, else we read the wrong values */
1350                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1351                         udelay(10);
1352                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1353         }
1354
1355         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1356         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1357
1358         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1359         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1360         mutex_unlock(&dev->struct_mutex);
1361         mutex_lock(&dev_priv->rps.hw_lock);
1362         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1363         mutex_unlock(&dev_priv->rps.hw_lock);
1364
1365         intel_runtime_pm_put(dev_priv);
1366
1367         seq_printf(m, "Video Turbo Mode: %s\n",
1368                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1369         seq_printf(m, "HW control enabled: %s\n",
1370                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1371         seq_printf(m, "SW control enabled: %s\n",
1372                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1373                           GEN6_RP_MEDIA_SW_MODE));
1374         seq_printf(m, "RC1e Enabled: %s\n",
1375                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1376         seq_printf(m, "RC6 Enabled: %s\n",
1377                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1378         seq_printf(m, "Deep RC6 Enabled: %s\n",
1379                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1380         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1381                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1382         seq_puts(m, "Current RC state: ");
1383         switch (gt_core_status & GEN6_RCn_MASK) {
1384         case GEN6_RC0:
1385                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1386                         seq_puts(m, "Core Power Down\n");
1387                 else
1388                         seq_puts(m, "on\n");
1389                 break;
1390         case GEN6_RC3:
1391                 seq_puts(m, "RC3\n");
1392                 break;
1393         case GEN6_RC6:
1394                 seq_puts(m, "RC6\n");
1395                 break;
1396         case GEN6_RC7:
1397                 seq_puts(m, "RC7\n");
1398                 break;
1399         default:
1400                 seq_puts(m, "Unknown\n");
1401                 break;
1402         }
1403
1404         seq_printf(m, "Core Power Down: %s\n",
1405                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1406
1407         /* Not exactly sure what this is */
1408         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1409                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1410         seq_printf(m, "RC6 residency since boot: %u\n",
1411                    I915_READ(GEN6_GT_GFX_RC6));
1412         seq_printf(m, "RC6+ residency since boot: %u\n",
1413                    I915_READ(GEN6_GT_GFX_RC6p));
1414         seq_printf(m, "RC6++ residency since boot: %u\n",
1415                    I915_READ(GEN6_GT_GFX_RC6pp));
1416
1417         seq_printf(m, "RC6   voltage: %dmV\n",
1418                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1419         seq_printf(m, "RC6+  voltage: %dmV\n",
1420                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1421         seq_printf(m, "RC6++ voltage: %dmV\n",
1422                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1423         return 0;
1424 }
1425
1426 static int i915_drpc_info(struct seq_file *m, void *unused)
1427 {
1428         struct drm_info_node *node = m->private;
1429         struct drm_device *dev = node->minor->dev;
1430
1431         if (IS_VALLEYVIEW(dev))
1432                 return vlv_drpc_info(m);
1433         else if (IS_GEN6(dev) || IS_GEN7(dev))
1434                 return gen6_drpc_info(m);
1435         else
1436                 return ironlake_drpc_info(m);
1437 }
1438
1439 static int i915_fbc_status(struct seq_file *m, void *unused)
1440 {
1441         struct drm_info_node *node = m->private;
1442         struct drm_device *dev = node->minor->dev;
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444
1445         if (!HAS_FBC(dev)) {
1446                 seq_puts(m, "FBC unsupported on this chipset\n");
1447                 return 0;
1448         }
1449
1450         intel_runtime_pm_get(dev_priv);
1451
1452         if (intel_fbc_enabled(dev)) {
1453                 seq_puts(m, "FBC enabled\n");
1454         } else {
1455                 seq_puts(m, "FBC disabled: ");
1456                 switch (dev_priv->fbc.no_fbc_reason) {
1457                 case FBC_OK:
1458                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1459                         break;
1460                 case FBC_UNSUPPORTED:
1461                         seq_puts(m, "unsupported by this chipset");
1462                         break;
1463                 case FBC_NO_OUTPUT:
1464                         seq_puts(m, "no outputs");
1465                         break;
1466                 case FBC_STOLEN_TOO_SMALL:
1467                         seq_puts(m, "not enough stolen memory");
1468                         break;
1469                 case FBC_UNSUPPORTED_MODE:
1470                         seq_puts(m, "mode not supported");
1471                         break;
1472                 case FBC_MODE_TOO_LARGE:
1473                         seq_puts(m, "mode too large");
1474                         break;
1475                 case FBC_BAD_PLANE:
1476                         seq_puts(m, "FBC unsupported on plane");
1477                         break;
1478                 case FBC_NOT_TILED:
1479                         seq_puts(m, "scanout buffer not tiled");
1480                         break;
1481                 case FBC_MULTIPLE_PIPES:
1482                         seq_puts(m, "multiple pipes are enabled");
1483                         break;
1484                 case FBC_MODULE_PARAM:
1485                         seq_puts(m, "disabled per module param (default off)");
1486                         break;
1487                 case FBC_CHIP_DEFAULT:
1488                         seq_puts(m, "disabled per chip default");
1489                         break;
1490                 default:
1491                         seq_puts(m, "unknown reason");
1492                 }
1493                 seq_putc(m, '\n');
1494         }
1495
1496         intel_runtime_pm_put(dev_priv);
1497
1498         return 0;
1499 }
1500
1501 static int i915_ips_status(struct seq_file *m, void *unused)
1502 {
1503         struct drm_info_node *node = m->private;
1504         struct drm_device *dev = node->minor->dev;
1505         struct drm_i915_private *dev_priv = dev->dev_private;
1506
1507         if (!HAS_IPS(dev)) {
1508                 seq_puts(m, "not supported\n");
1509                 return 0;
1510         }
1511
1512         intel_runtime_pm_get(dev_priv);
1513
1514         if (IS_BROADWELL(dev) || I915_READ(IPS_CTL) & IPS_ENABLE)
1515                 seq_puts(m, "enabled\n");
1516         else
1517                 seq_puts(m, "disabled\n");
1518
1519         intel_runtime_pm_put(dev_priv);
1520
1521         return 0;
1522 }
1523
1524 static int i915_sr_status(struct seq_file *m, void *unused)
1525 {
1526         struct drm_info_node *node = m->private;
1527         struct drm_device *dev = node->minor->dev;
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529         bool sr_enabled = false;
1530
1531         intel_runtime_pm_get(dev_priv);
1532
1533         if (HAS_PCH_SPLIT(dev))
1534                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1535         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1536                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1537         else if (IS_I915GM(dev))
1538                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1539         else if (IS_PINEVIEW(dev))
1540                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1541
1542         intel_runtime_pm_put(dev_priv);
1543
1544         seq_printf(m, "self-refresh: %s\n",
1545                    sr_enabled ? "enabled" : "disabled");
1546
1547         return 0;
1548 }
1549
1550 static int i915_emon_status(struct seq_file *m, void *unused)
1551 {
1552         struct drm_info_node *node = m->private;
1553         struct drm_device *dev = node->minor->dev;
1554         struct drm_i915_private *dev_priv = dev->dev_private;
1555         unsigned long temp, chipset, gfx;
1556         int ret;
1557
1558         if (!IS_GEN5(dev))
1559                 return -ENODEV;
1560
1561         ret = mutex_lock_interruptible(&dev->struct_mutex);
1562         if (ret)
1563                 return ret;
1564
1565         temp = i915_mch_val(dev_priv);
1566         chipset = i915_chipset_val(dev_priv);
1567         gfx = i915_gfx_val(dev_priv);
1568         mutex_unlock(&dev->struct_mutex);
1569
1570         seq_printf(m, "GMCH temp: %ld\n", temp);
1571         seq_printf(m, "Chipset power: %ld\n", chipset);
1572         seq_printf(m, "GFX power: %ld\n", gfx);
1573         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1574
1575         return 0;
1576 }
1577
1578 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1579 {
1580         struct drm_info_node *node = m->private;
1581         struct drm_device *dev = node->minor->dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         int ret = 0;
1584         int gpu_freq, ia_freq;
1585
1586         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1587                 seq_puts(m, "unsupported on this chipset\n");
1588                 return 0;
1589         }
1590
1591         intel_runtime_pm_get(dev_priv);
1592
1593         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1594
1595         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1596         if (ret)
1597                 goto out;
1598
1599         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1600
1601         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1602              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1603              gpu_freq++) {
1604                 ia_freq = gpu_freq;
1605                 sandybridge_pcode_read(dev_priv,
1606                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1607                                        &ia_freq);
1608                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1609                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1610                            ((ia_freq >> 0) & 0xff) * 100,
1611                            ((ia_freq >> 8) & 0xff) * 100);
1612         }
1613
1614         mutex_unlock(&dev_priv->rps.hw_lock);
1615
1616 out:
1617         intel_runtime_pm_put(dev_priv);
1618         return ret;
1619 }
1620
1621 static int i915_gfxec(struct seq_file *m, void *unused)
1622 {
1623         struct drm_info_node *node = m->private;
1624         struct drm_device *dev = node->minor->dev;
1625         struct drm_i915_private *dev_priv = dev->dev_private;
1626         int ret;
1627
1628         ret = mutex_lock_interruptible(&dev->struct_mutex);
1629         if (ret)
1630                 return ret;
1631         intel_runtime_pm_get(dev_priv);
1632
1633         seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
1634         intel_runtime_pm_put(dev_priv);
1635
1636         mutex_unlock(&dev->struct_mutex);
1637
1638         return 0;
1639 }
1640
1641 static int i915_opregion(struct seq_file *m, void *unused)
1642 {
1643         struct drm_info_node *node = m->private;
1644         struct drm_device *dev = node->minor->dev;
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646         struct intel_opregion *opregion = &dev_priv->opregion;
1647         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1648         int ret;
1649
1650         if (data == NULL)
1651                 return -ENOMEM;
1652
1653         ret = mutex_lock_interruptible(&dev->struct_mutex);
1654         if (ret)
1655                 goto out;
1656
1657         if (opregion->header) {
1658                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1659                 seq_write(m, data, OPREGION_SIZE);
1660         }
1661
1662         mutex_unlock(&dev->struct_mutex);
1663
1664 out:
1665         kfree(data);
1666         return 0;
1667 }
1668
1669 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1670 {
1671         struct drm_info_node *node = m->private;
1672         struct drm_device *dev = node->minor->dev;
1673         struct intel_fbdev *ifbdev = NULL;
1674         struct intel_framebuffer *fb;
1675
1676 #ifdef CONFIG_DRM_I915_FBDEV
1677         struct drm_i915_private *dev_priv = dev->dev_private;
1678         int ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1679         if (ret)
1680                 return ret;
1681
1682         ifbdev = dev_priv->fbdev;
1683         fb = to_intel_framebuffer(ifbdev->helper.fb);
1684
1685         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1686                    fb->base.width,
1687                    fb->base.height,
1688                    fb->base.depth,
1689                    fb->base.bits_per_pixel,
1690                    atomic_read(&fb->base.refcount.refcount));
1691         describe_obj(m, fb->obj);
1692         seq_putc(m, '\n');
1693         mutex_unlock(&dev->mode_config.mutex);
1694 #endif
1695
1696         mutex_lock(&dev->mode_config.fb_lock);
1697         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1698                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1699                         continue;
1700
1701                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1702                            fb->base.width,
1703                            fb->base.height,
1704                            fb->base.depth,
1705                            fb->base.bits_per_pixel,
1706                            atomic_read(&fb->base.refcount.refcount));
1707                 describe_obj(m, fb->obj);
1708                 seq_putc(m, '\n');
1709         }
1710         mutex_unlock(&dev->mode_config.fb_lock);
1711
1712         return 0;
1713 }
1714
1715 static int i915_context_status(struct seq_file *m, void *unused)
1716 {
1717         struct drm_info_node *node = m->private;
1718         struct drm_device *dev = node->minor->dev;
1719         struct drm_i915_private *dev_priv = dev->dev_private;
1720         struct intel_engine_cs *ring;
1721         struct intel_context *ctx;
1722         int ret, i;
1723
1724         ret = mutex_lock_interruptible(&dev->mode_config.mutex);
1725         if (ret)
1726                 return ret;
1727
1728         if (dev_priv->ips.pwrctx) {
1729                 seq_puts(m, "power context ");
1730                 describe_obj(m, dev_priv->ips.pwrctx);
1731                 seq_putc(m, '\n');
1732         }
1733
1734         if (dev_priv->ips.renderctx) {
1735                 seq_puts(m, "render context ");
1736                 describe_obj(m, dev_priv->ips.renderctx);
1737                 seq_putc(m, '\n');
1738         }
1739
1740         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1741                 if (ctx->obj == NULL)
1742                         continue;
1743
1744                 seq_puts(m, "HW context ");
1745                 describe_ctx(m, ctx);
1746                 for_each_ring(ring, dev_priv, i)
1747                         if (ring->default_context == ctx)
1748                                 seq_printf(m, "(default context %s) ", ring->name);
1749
1750                 describe_obj(m, ctx->obj);
1751                 seq_putc(m, '\n');
1752         }
1753
1754         mutex_unlock(&dev->mode_config.mutex);
1755
1756         return 0;
1757 }
1758
1759 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1760 {
1761         struct drm_info_node *node = m->private;
1762         struct drm_device *dev = node->minor->dev;
1763         struct drm_i915_private *dev_priv = dev->dev_private;
1764         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1765
1766         spin_lock_irq(&dev_priv->uncore.lock);
1767         if (IS_VALLEYVIEW(dev)) {
1768                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1769                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1770         } else
1771                 forcewake_count = dev_priv->uncore.forcewake_count;
1772         spin_unlock_irq(&dev_priv->uncore.lock);
1773
1774         if (IS_VALLEYVIEW(dev)) {
1775                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1776                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1777         } else
1778                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1779
1780         return 0;
1781 }
1782
1783 static const char *swizzle_string(unsigned swizzle)
1784 {
1785         switch (swizzle) {
1786         case I915_BIT_6_SWIZZLE_NONE:
1787                 return "none";
1788         case I915_BIT_6_SWIZZLE_9:
1789                 return "bit9";
1790         case I915_BIT_6_SWIZZLE_9_10:
1791                 return "bit9/bit10";
1792         case I915_BIT_6_SWIZZLE_9_11:
1793                 return "bit9/bit11";
1794         case I915_BIT_6_SWIZZLE_9_10_11:
1795                 return "bit9/bit10/bit11";
1796         case I915_BIT_6_SWIZZLE_9_17:
1797                 return "bit9/bit17";
1798         case I915_BIT_6_SWIZZLE_9_10_17:
1799                 return "bit9/bit10/bit17";
1800         case I915_BIT_6_SWIZZLE_UNKNOWN:
1801                 return "unknown";
1802         }
1803
1804         return "bug";
1805 }
1806
1807 static int i915_swizzle_info(struct seq_file *m, void *data)
1808 {
1809         struct drm_info_node *node = m->private;
1810         struct drm_device *dev = node->minor->dev;
1811         struct drm_i915_private *dev_priv = dev->dev_private;
1812         int ret;
1813
1814         ret = mutex_lock_interruptible(&dev->struct_mutex);
1815         if (ret)
1816                 return ret;
1817         intel_runtime_pm_get(dev_priv);
1818
1819         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1820                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1821         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1822                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1823
1824         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1825                 seq_printf(m, "DDC = 0x%08x\n",
1826                            I915_READ(DCC));
1827                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1828                            I915_READ16(C0DRB3));
1829                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1830                            I915_READ16(C1DRB3));
1831         } else if (INTEL_INFO(dev)->gen >= 6) {
1832                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1833                            I915_READ(MAD_DIMM_C0));
1834                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1835                            I915_READ(MAD_DIMM_C1));
1836                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1837                            I915_READ(MAD_DIMM_C2));
1838                 seq_printf(m, "TILECTL = 0x%08x\n",
1839                            I915_READ(TILECTL));
1840                 if (IS_GEN8(dev))
1841                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1842                                    I915_READ(GAMTARBMODE));
1843                 else
1844                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1845                                    I915_READ(ARB_MODE));
1846                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1847                            I915_READ(DISP_ARB_CTL));
1848         }
1849         intel_runtime_pm_put(dev_priv);
1850         mutex_unlock(&dev->struct_mutex);
1851
1852         return 0;
1853 }
1854
1855 static int per_file_ctx(int id, void *ptr, void *data)
1856 {
1857         struct intel_context *ctx = ptr;
1858         struct seq_file *m = data;
1859         struct i915_hw_ppgtt *ppgtt = ctx_to_ppgtt(ctx);
1860
1861         if (i915_gem_context_is_default(ctx))
1862                 seq_puts(m, "  default context:\n");
1863         else
1864                 seq_printf(m, "  context %d:\n", ctx->id);
1865         ppgtt->debug_dump(ppgtt, m);
1866
1867         return 0;
1868 }
1869
1870 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1871 {
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873         struct intel_engine_cs *ring;
1874         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1875         int unused, i;
1876
1877         if (!ppgtt)
1878                 return;
1879
1880         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
1881         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
1882         for_each_ring(ring, dev_priv, unused) {
1883                 seq_printf(m, "%s\n", ring->name);
1884                 for (i = 0; i < 4; i++) {
1885                         u32 offset = 0x270 + i * 8;
1886                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
1887                         pdp <<= 32;
1888                         pdp |= I915_READ(ring->mmio_base + offset);
1889                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
1890                 }
1891         }
1892 }
1893
1894 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
1895 {
1896         struct drm_i915_private *dev_priv = dev->dev_private;
1897         struct intel_engine_cs *ring;
1898         struct drm_file *file;
1899         int i;
1900
1901         if (INTEL_INFO(dev)->gen == 6)
1902                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
1903
1904         for_each_ring(ring, dev_priv, i) {
1905                 seq_printf(m, "%s\n", ring->name);
1906                 if (INTEL_INFO(dev)->gen == 7)
1907                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
1908                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
1909                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
1910                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
1911         }
1912         if (dev_priv->mm.aliasing_ppgtt) {
1913                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1914
1915                 seq_puts(m, "aliasing PPGTT:\n");
1916                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
1917
1918                 ppgtt->debug_dump(ppgtt, m);
1919         } else
1920                 return;
1921
1922         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
1923                 struct drm_i915_file_private *file_priv = file->driver_priv;
1924
1925                 seq_printf(m, "proc: %s\n",
1926                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
1927                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
1928         }
1929         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
1930 }
1931
1932 static int i915_ppgtt_info(struct seq_file *m, void *data)
1933 {
1934         struct drm_info_node *node = m->private;
1935         struct drm_device *dev = node->minor->dev;
1936         struct drm_i915_private *dev_priv = dev->dev_private;
1937
1938         int ret = mutex_lock_interruptible(&dev->struct_mutex);
1939         if (ret)
1940                 return ret;
1941         intel_runtime_pm_get(dev_priv);
1942
1943         if (INTEL_INFO(dev)->gen >= 8)
1944                 gen8_ppgtt_info(m, dev);
1945         else if (INTEL_INFO(dev)->gen >= 6)
1946                 gen6_ppgtt_info(m, dev);
1947
1948         intel_runtime_pm_put(dev_priv);
1949         mutex_unlock(&dev->struct_mutex);
1950
1951         return 0;
1952 }
1953
1954 static int i915_llc(struct seq_file *m, void *data)
1955 {
1956         struct drm_info_node *node = m->private;
1957         struct drm_device *dev = node->minor->dev;
1958         struct drm_i915_private *dev_priv = dev->dev_private;
1959
1960         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
1961         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
1962         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
1963
1964         return 0;
1965 }
1966
1967 static int i915_edp_psr_status(struct seq_file *m, void *data)
1968 {
1969         struct drm_info_node *node = m->private;
1970         struct drm_device *dev = node->minor->dev;
1971         struct drm_i915_private *dev_priv = dev->dev_private;
1972         u32 psrperf = 0;
1973         bool enabled = false;
1974
1975         intel_runtime_pm_get(dev_priv);
1976
1977         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
1978         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
1979
1980         enabled = HAS_PSR(dev) &&
1981                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1982         seq_printf(m, "Enabled: %s\n", yesno(enabled));
1983
1984         if (HAS_PSR(dev))
1985                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
1986                         EDP_PSR_PERF_CNT_MASK;
1987         seq_printf(m, "Performance_Counter: %u\n", psrperf);
1988
1989         intel_runtime_pm_put(dev_priv);
1990         return 0;
1991 }
1992
1993 static int i915_sink_crc(struct seq_file *m, void *data)
1994 {
1995         struct drm_info_node *node = m->private;
1996         struct drm_device *dev = node->minor->dev;
1997         struct intel_encoder *encoder;
1998         struct intel_connector *connector;
1999         struct intel_dp *intel_dp = NULL;
2000         int ret;
2001         u8 crc[6];
2002
2003         drm_modeset_lock_all(dev);
2004         list_for_each_entry(connector, &dev->mode_config.connector_list,
2005                             base.head) {
2006
2007                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2008                         continue;
2009
2010                 if (!connector->base.encoder)
2011                         continue;
2012
2013                 encoder = to_intel_encoder(connector->base.encoder);
2014                 if (encoder->type != INTEL_OUTPUT_EDP)
2015                         continue;
2016
2017                 intel_dp = enc_to_intel_dp(&encoder->base);
2018
2019                 ret = intel_dp_sink_crc(intel_dp, crc);
2020                 if (ret)
2021                         goto out;
2022
2023                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2024                            crc[0], crc[1], crc[2],
2025                            crc[3], crc[4], crc[5]);
2026                 goto out;
2027         }
2028         ret = -ENODEV;
2029 out:
2030         drm_modeset_unlock_all(dev);
2031         return ret;
2032 }
2033
2034 static int i915_energy_uJ(struct seq_file *m, void *data)
2035 {
2036         struct drm_info_node *node = m->private;
2037         struct drm_device *dev = node->minor->dev;
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         u64 power;
2040         u32 units;
2041
2042         if (INTEL_INFO(dev)->gen < 6)
2043                 return -ENODEV;
2044
2045         intel_runtime_pm_get(dev_priv);
2046
2047         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2048         power = (power & 0x1f00) >> 8;
2049         units = 1000000 / (1 << power); /* convert to uJ */
2050         power = I915_READ(MCH_SECP_NRG_STTS);
2051         power *= units;
2052
2053         intel_runtime_pm_put(dev_priv);
2054
2055         seq_printf(m, "%llu", (long long unsigned)power);
2056
2057         return 0;
2058 }
2059
2060 static int i915_pc8_status(struct seq_file *m, void *unused)
2061 {
2062         struct drm_info_node *node = m->private;
2063         struct drm_device *dev = node->minor->dev;
2064         struct drm_i915_private *dev_priv = dev->dev_private;
2065
2066         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2067                 seq_puts(m, "not supported\n");
2068                 return 0;
2069         }
2070
2071         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2072         seq_printf(m, "IRQs disabled: %s\n",
2073                    yesno(dev_priv->pm.irqs_disabled));
2074
2075         return 0;
2076 }
2077
2078 static const char *power_domain_str(enum intel_display_power_domain domain)
2079 {
2080         switch (domain) {
2081         case POWER_DOMAIN_PIPE_A:
2082                 return "PIPE_A";
2083         case POWER_DOMAIN_PIPE_B:
2084                 return "PIPE_B";
2085         case POWER_DOMAIN_PIPE_C:
2086                 return "PIPE_C";
2087         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2088                 return "PIPE_A_PANEL_FITTER";
2089         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2090                 return "PIPE_B_PANEL_FITTER";
2091         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2092                 return "PIPE_C_PANEL_FITTER";
2093         case POWER_DOMAIN_TRANSCODER_A:
2094                 return "TRANSCODER_A";
2095         case POWER_DOMAIN_TRANSCODER_B:
2096                 return "TRANSCODER_B";
2097         case POWER_DOMAIN_TRANSCODER_C:
2098                 return "TRANSCODER_C";
2099         case POWER_DOMAIN_TRANSCODER_EDP:
2100                 return "TRANSCODER_EDP";
2101         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2102                 return "PORT_DDI_A_2_LANES";
2103         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2104                 return "PORT_DDI_A_4_LANES";
2105         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2106                 return "PORT_DDI_B_2_LANES";
2107         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2108                 return "PORT_DDI_B_4_LANES";
2109         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2110                 return "PORT_DDI_C_2_LANES";
2111         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2112                 return "PORT_DDI_C_4_LANES";
2113         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2114                 return "PORT_DDI_D_2_LANES";
2115         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2116                 return "PORT_DDI_D_4_LANES";
2117         case POWER_DOMAIN_PORT_DSI:
2118                 return "PORT_DSI";
2119         case POWER_DOMAIN_PORT_CRT:
2120                 return "PORT_CRT";
2121         case POWER_DOMAIN_PORT_OTHER:
2122                 return "PORT_OTHER";
2123         case POWER_DOMAIN_VGA:
2124                 return "VGA";
2125         case POWER_DOMAIN_AUDIO:
2126                 return "AUDIO";
2127         case POWER_DOMAIN_INIT:
2128                 return "INIT";
2129         default:
2130                 WARN_ON(1);
2131                 return "?";
2132         }
2133 }
2134
2135 static int i915_power_domain_info(struct seq_file *m, void *unused)
2136 {
2137         struct drm_info_node *node = m->private;
2138         struct drm_device *dev = node->minor->dev;
2139         struct drm_i915_private *dev_priv = dev->dev_private;
2140         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2141         int i;
2142
2143         mutex_lock(&power_domains->lock);
2144
2145         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2146         for (i = 0; i < power_domains->power_well_count; i++) {
2147                 struct i915_power_well *power_well;
2148                 enum intel_display_power_domain power_domain;
2149
2150                 power_well = &power_domains->power_wells[i];
2151                 seq_printf(m, "%-25s %d\n", power_well->name,
2152                            power_well->count);
2153
2154                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2155                      power_domain++) {
2156                         if (!(BIT(power_domain) & power_well->domains))
2157                                 continue;
2158
2159                         seq_printf(m, "  %-23s %d\n",
2160                                  power_domain_str(power_domain),
2161                                  power_domains->domain_use_count[power_domain]);
2162                 }
2163         }
2164
2165         mutex_unlock(&power_domains->lock);
2166
2167         return 0;
2168 }
2169
2170 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2171                                  struct drm_display_mode *mode)
2172 {
2173         int i;
2174
2175         for (i = 0; i < tabs; i++)
2176                 seq_putc(m, '\t');
2177
2178         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2179                    mode->base.id, mode->name,
2180                    mode->vrefresh, mode->clock,
2181                    mode->hdisplay, mode->hsync_start,
2182                    mode->hsync_end, mode->htotal,
2183                    mode->vdisplay, mode->vsync_start,
2184                    mode->vsync_end, mode->vtotal,
2185                    mode->type, mode->flags);
2186 }
2187
2188 static void intel_encoder_info(struct seq_file *m,
2189                                struct intel_crtc *intel_crtc,
2190                                struct intel_encoder *intel_encoder)
2191 {
2192         struct drm_info_node *node = m->private;
2193         struct drm_device *dev = node->minor->dev;
2194         struct drm_crtc *crtc = &intel_crtc->base;
2195         struct intel_connector *intel_connector;
2196         struct drm_encoder *encoder;
2197
2198         encoder = &intel_encoder->base;
2199         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2200                    encoder->base.id, encoder->name);
2201         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2202                 struct drm_connector *connector = &intel_connector->base;
2203                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2204                            connector->base.id,
2205                            connector->name,
2206                            drm_get_connector_status_name(connector->status));
2207                 if (connector->status == connector_status_connected) {
2208                         struct drm_display_mode *mode = &crtc->mode;
2209                         seq_printf(m, ", mode:\n");
2210                         intel_seq_print_mode(m, 2, mode);
2211                 } else {
2212                         seq_putc(m, '\n');
2213                 }
2214         }
2215 }
2216
2217 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2218 {
2219         struct drm_info_node *node = m->private;
2220         struct drm_device *dev = node->minor->dev;
2221         struct drm_crtc *crtc = &intel_crtc->base;
2222         struct intel_encoder *intel_encoder;
2223
2224         seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2225                    crtc->primary->fb->base.id, crtc->x, crtc->y,
2226                    crtc->primary->fb->width, crtc->primary->fb->height);
2227         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2228                 intel_encoder_info(m, intel_crtc, intel_encoder);
2229 }
2230
2231 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2232 {
2233         struct drm_display_mode *mode = panel->fixed_mode;
2234
2235         seq_printf(m, "\tfixed mode:\n");
2236         intel_seq_print_mode(m, 2, mode);
2237 }
2238
2239 static void intel_dp_info(struct seq_file *m,
2240                           struct intel_connector *intel_connector)
2241 {
2242         struct intel_encoder *intel_encoder = intel_connector->encoder;
2243         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2244
2245         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2246         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2247                    "no");
2248         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2249                 intel_panel_info(m, &intel_connector->panel);
2250 }
2251
2252 static void intel_hdmi_info(struct seq_file *m,
2253                             struct intel_connector *intel_connector)
2254 {
2255         struct intel_encoder *intel_encoder = intel_connector->encoder;
2256         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2257
2258         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2259                    "no");
2260 }
2261
2262 static void intel_lvds_info(struct seq_file *m,
2263                             struct intel_connector *intel_connector)
2264 {
2265         intel_panel_info(m, &intel_connector->panel);
2266 }
2267
2268 static void intel_connector_info(struct seq_file *m,
2269                                  struct drm_connector *connector)
2270 {
2271         struct intel_connector *intel_connector = to_intel_connector(connector);
2272         struct intel_encoder *intel_encoder = intel_connector->encoder;
2273         struct drm_display_mode *mode;
2274
2275         seq_printf(m, "connector %d: type %s, status: %s\n",
2276                    connector->base.id, connector->name,
2277                    drm_get_connector_status_name(connector->status));
2278         if (connector->status == connector_status_connected) {
2279                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2280                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2281                            connector->display_info.width_mm,
2282                            connector->display_info.height_mm);
2283                 seq_printf(m, "\tsubpixel order: %s\n",
2284                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2285                 seq_printf(m, "\tCEA rev: %d\n",
2286                            connector->display_info.cea_rev);
2287         }
2288         if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2289             intel_encoder->type == INTEL_OUTPUT_EDP)
2290                 intel_dp_info(m, intel_connector);
2291         else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2292                 intel_hdmi_info(m, intel_connector);
2293         else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2294                 intel_lvds_info(m, intel_connector);
2295
2296         seq_printf(m, "\tmodes:\n");
2297         list_for_each_entry(mode, &connector->modes, head)
2298                 intel_seq_print_mode(m, 2, mode);
2299 }
2300
2301 static bool cursor_active(struct drm_device *dev, int pipe)
2302 {
2303         struct drm_i915_private *dev_priv = dev->dev_private;
2304         u32 state;
2305
2306         if (IS_845G(dev) || IS_I865G(dev))
2307                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2308         else
2309                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2310
2311         return state;
2312 }
2313
2314 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2315 {
2316         struct drm_i915_private *dev_priv = dev->dev_private;
2317         u32 pos;
2318
2319         pos = I915_READ(CURPOS(pipe));
2320
2321         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2322         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2323                 *x = -*x;
2324
2325         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2326         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2327                 *y = -*y;
2328
2329         return cursor_active(dev, pipe);
2330 }
2331
2332 static int i915_display_info(struct seq_file *m, void *unused)
2333 {
2334         struct drm_info_node *node = m->private;
2335         struct drm_device *dev = node->minor->dev;
2336         struct drm_i915_private *dev_priv = dev->dev_private;
2337         struct intel_crtc *crtc;
2338         struct drm_connector *connector;
2339
2340         intel_runtime_pm_get(dev_priv);
2341         drm_modeset_lock_all(dev);
2342         seq_printf(m, "CRTC info\n");
2343         seq_printf(m, "---------\n");
2344         for_each_intel_crtc(dev, crtc) {
2345                 bool active;
2346                 int x, y;
2347
2348                 seq_printf(m, "CRTC %d: pipe: %c, active: %s\n",
2349                            crtc->base.base.id, pipe_name(crtc->pipe),
2350                            yesno(crtc->active));
2351                 if (crtc->active) {
2352                         intel_crtc_info(m, crtc);
2353
2354                         active = cursor_position(dev, crtc->pipe, &x, &y);
2355                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), addr 0x%08x, active? %s\n",
2356                                    yesno(crtc->cursor_base),
2357                                    x, y, crtc->cursor_addr,
2358                                    yesno(active));
2359                 }
2360
2361                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2362                            yesno(!crtc->cpu_fifo_underrun_disabled),
2363                            yesno(!crtc->pch_fifo_underrun_disabled));
2364         }
2365
2366         seq_printf(m, "\n");
2367         seq_printf(m, "Connector info\n");
2368         seq_printf(m, "--------------\n");
2369         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2370                 intel_connector_info(m, connector);
2371         }
2372         drm_modeset_unlock_all(dev);
2373         intel_runtime_pm_put(dev_priv);
2374
2375         return 0;
2376 }
2377
2378 struct pipe_crc_info {
2379         const char *name;
2380         struct drm_device *dev;
2381         enum pipe pipe;
2382 };
2383
2384 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2385 {
2386         struct pipe_crc_info *info = inode->i_private;
2387         struct drm_i915_private *dev_priv = info->dev->dev_private;
2388         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2389
2390         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2391                 return -ENODEV;
2392
2393         spin_lock_irq(&pipe_crc->lock);
2394
2395         if (pipe_crc->opened) {
2396                 spin_unlock_irq(&pipe_crc->lock);
2397                 return -EBUSY; /* already open */
2398         }
2399
2400         pipe_crc->opened = true;
2401         filep->private_data = inode->i_private;
2402
2403         spin_unlock_irq(&pipe_crc->lock);
2404
2405         return 0;
2406 }
2407
2408 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2409 {
2410         struct pipe_crc_info *info = inode->i_private;
2411         struct drm_i915_private *dev_priv = info->dev->dev_private;
2412         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2413
2414         spin_lock_irq(&pipe_crc->lock);
2415         pipe_crc->opened = false;
2416         spin_unlock_irq(&pipe_crc->lock);
2417
2418         return 0;
2419 }
2420
2421 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2422 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2423 /* account for \'0' */
2424 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2425
2426 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2427 {
2428         assert_spin_locked(&pipe_crc->lock);
2429         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2430                         INTEL_PIPE_CRC_ENTRIES_NR);
2431 }
2432
2433 static ssize_t
2434 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2435                    loff_t *pos)
2436 {
2437         struct pipe_crc_info *info = filep->private_data;
2438         struct drm_device *dev = info->dev;
2439         struct drm_i915_private *dev_priv = dev->dev_private;
2440         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2441         char buf[PIPE_CRC_BUFFER_LEN];
2442         int head, tail, n_entries, n;
2443         ssize_t bytes_read;
2444
2445         /*
2446          * Don't allow user space to provide buffers not big enough to hold
2447          * a line of data.
2448          */
2449         if (count < PIPE_CRC_LINE_LEN)
2450                 return -EINVAL;
2451
2452         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2453                 return 0;
2454
2455         /* nothing to read */
2456         spin_lock_irq(&pipe_crc->lock);
2457         while (pipe_crc_data_count(pipe_crc) == 0) {
2458                 int ret;
2459
2460                 if (filep->f_flags & O_NONBLOCK) {
2461                         spin_unlock_irq(&pipe_crc->lock);
2462                         return -EAGAIN;
2463                 }
2464
2465                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2466                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2467                 if (ret) {
2468                         spin_unlock_irq(&pipe_crc->lock);
2469                         return ret;
2470                 }
2471         }
2472
2473         /* We now have one or more entries to read */
2474         head = pipe_crc->head;
2475         tail = pipe_crc->tail;
2476         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2477                         count / PIPE_CRC_LINE_LEN);
2478         spin_unlock_irq(&pipe_crc->lock);
2479
2480         bytes_read = 0;
2481         n = 0;
2482         do {
2483                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2484                 int ret;
2485
2486                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2487                                        "%8u %8x %8x %8x %8x %8x\n",
2488                                        entry->frame, entry->crc[0],
2489                                        entry->crc[1], entry->crc[2],
2490                                        entry->crc[3], entry->crc[4]);
2491
2492                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2493                                    buf, PIPE_CRC_LINE_LEN);
2494                 if (ret == PIPE_CRC_LINE_LEN)
2495                         return -EFAULT;
2496
2497                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2498                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2499                 n++;
2500         } while (--n_entries);
2501
2502         spin_lock_irq(&pipe_crc->lock);
2503         pipe_crc->tail = tail;
2504         spin_unlock_irq(&pipe_crc->lock);
2505
2506         return bytes_read;
2507 }
2508
2509 static const struct file_operations i915_pipe_crc_fops = {
2510         .owner = THIS_MODULE,
2511         .open = i915_pipe_crc_open,
2512         .read = i915_pipe_crc_read,
2513         .release = i915_pipe_crc_release,
2514 };
2515
2516 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2517         {
2518                 .name = "i915_pipe_A_crc",
2519                 .pipe = PIPE_A,
2520         },
2521         {
2522                 .name = "i915_pipe_B_crc",
2523                 .pipe = PIPE_B,
2524         },
2525         {
2526                 .name = "i915_pipe_C_crc",
2527                 .pipe = PIPE_C,
2528         },
2529 };
2530
2531 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2532                                 enum pipe pipe)
2533 {
2534         struct drm_device *dev = minor->dev;
2535         struct dentry *ent;
2536         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2537
2538         info->dev = dev;
2539         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2540                                   &i915_pipe_crc_fops);
2541         if (!ent)
2542                 return -ENOMEM;
2543
2544         return drm_add_fake_info_node(minor, ent, info);
2545 }
2546
2547 static const char * const pipe_crc_sources[] = {
2548         "none",
2549         "plane1",
2550         "plane2",
2551         "pf",
2552         "pipe",
2553         "TV",
2554         "DP-B",
2555         "DP-C",
2556         "DP-D",
2557         "auto",
2558 };
2559
2560 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2561 {
2562         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2563         return pipe_crc_sources[source];
2564 }
2565
2566 static int display_crc_ctl_show(struct seq_file *m, void *data)
2567 {
2568         struct drm_device *dev = m->private;
2569         struct drm_i915_private *dev_priv = dev->dev_private;
2570         int i;
2571
2572         for (i = 0; i < I915_MAX_PIPES; i++)
2573                 seq_printf(m, "%c %s\n", pipe_name(i),
2574                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2575
2576         return 0;
2577 }
2578
2579 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2580 {
2581         struct drm_device *dev = inode->i_private;
2582
2583         return single_open(file, display_crc_ctl_show, dev);
2584 }
2585
2586 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2587                                  uint32_t *val)
2588 {
2589         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2590                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2591
2592         switch (*source) {
2593         case INTEL_PIPE_CRC_SOURCE_PIPE:
2594                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2595                 break;
2596         case INTEL_PIPE_CRC_SOURCE_NONE:
2597                 *val = 0;
2598                 break;
2599         default:
2600                 return -EINVAL;
2601         }
2602
2603         return 0;
2604 }
2605
2606 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2607                                      enum intel_pipe_crc_source *source)
2608 {
2609         struct intel_encoder *encoder;
2610         struct intel_crtc *crtc;
2611         struct intel_digital_port *dig_port;
2612         int ret = 0;
2613
2614         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2615
2616         drm_modeset_lock_all(dev);
2617         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2618                             base.head) {
2619                 if (!encoder->base.crtc)
2620                         continue;
2621
2622                 crtc = to_intel_crtc(encoder->base.crtc);
2623
2624                 if (crtc->pipe != pipe)
2625                         continue;
2626
2627                 switch (encoder->type) {
2628                 case INTEL_OUTPUT_TVOUT:
2629                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2630                         break;
2631                 case INTEL_OUTPUT_DISPLAYPORT:
2632                 case INTEL_OUTPUT_EDP:
2633                         dig_port = enc_to_dig_port(&encoder->base);
2634                         switch (dig_port->port) {
2635                         case PORT_B:
2636                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2637                                 break;
2638                         case PORT_C:
2639                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2640                                 break;
2641                         case PORT_D:
2642                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2643                                 break;
2644                         default:
2645                                 WARN(1, "nonexisting DP port %c\n",
2646                                      port_name(dig_port->port));
2647                                 break;
2648                         }
2649                         break;
2650                 }
2651         }
2652         drm_modeset_unlock_all(dev);
2653
2654         return ret;
2655 }
2656
2657 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2658                                 enum pipe pipe,
2659                                 enum intel_pipe_crc_source *source,
2660                                 uint32_t *val)
2661 {
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663         bool need_stable_symbols = false;
2664
2665         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2666                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2667                 if (ret)
2668                         return ret;
2669         }
2670
2671         switch (*source) {
2672         case INTEL_PIPE_CRC_SOURCE_PIPE:
2673                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2674                 break;
2675         case INTEL_PIPE_CRC_SOURCE_DP_B:
2676                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
2677                 need_stable_symbols = true;
2678                 break;
2679         case INTEL_PIPE_CRC_SOURCE_DP_C:
2680                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
2681                 need_stable_symbols = true;
2682                 break;
2683         case INTEL_PIPE_CRC_SOURCE_NONE:
2684                 *val = 0;
2685                 break;
2686         default:
2687                 return -EINVAL;
2688         }
2689
2690         /*
2691          * When the pipe CRC tap point is after the transcoders we need
2692          * to tweak symbol-level features to produce a deterministic series of
2693          * symbols for a given frame. We need to reset those features only once
2694          * a frame (instead of every nth symbol):
2695          *   - DC-balance: used to ensure a better clock recovery from the data
2696          *     link (SDVO)
2697          *   - DisplayPort scrambling: used for EMI reduction
2698          */
2699         if (need_stable_symbols) {
2700                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2701
2702                 tmp |= DC_BALANCE_RESET_VLV;
2703                 if (pipe == PIPE_A)
2704                         tmp |= PIPE_A_SCRAMBLE_RESET;
2705                 else
2706                         tmp |= PIPE_B_SCRAMBLE_RESET;
2707
2708                 I915_WRITE(PORT_DFT2_G4X, tmp);
2709         }
2710
2711         return 0;
2712 }
2713
2714 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
2715                                  enum pipe pipe,
2716                                  enum intel_pipe_crc_source *source,
2717                                  uint32_t *val)
2718 {
2719         struct drm_i915_private *dev_priv = dev->dev_private;
2720         bool need_stable_symbols = false;
2721
2722         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2723                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2724                 if (ret)
2725                         return ret;
2726         }
2727
2728         switch (*source) {
2729         case INTEL_PIPE_CRC_SOURCE_PIPE:
2730                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
2731                 break;
2732         case INTEL_PIPE_CRC_SOURCE_TV:
2733                 if (!SUPPORTS_TV(dev))
2734                         return -EINVAL;
2735                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
2736                 break;
2737         case INTEL_PIPE_CRC_SOURCE_DP_B:
2738                 if (!IS_G4X(dev))
2739                         return -EINVAL;
2740                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
2741                 need_stable_symbols = true;
2742                 break;
2743         case INTEL_PIPE_CRC_SOURCE_DP_C:
2744                 if (!IS_G4X(dev))
2745                         return -EINVAL;
2746                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
2747                 need_stable_symbols = true;
2748                 break;
2749         case INTEL_PIPE_CRC_SOURCE_DP_D:
2750                 if (!IS_G4X(dev))
2751                         return -EINVAL;
2752                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
2753                 need_stable_symbols = true;
2754                 break;
2755         case INTEL_PIPE_CRC_SOURCE_NONE:
2756                 *val = 0;
2757                 break;
2758         default:
2759                 return -EINVAL;
2760         }
2761
2762         /*
2763          * When the pipe CRC tap point is after the transcoders we need
2764          * to tweak symbol-level features to produce a deterministic series of
2765          * symbols for a given frame. We need to reset those features only once
2766          * a frame (instead of every nth symbol):
2767          *   - DC-balance: used to ensure a better clock recovery from the data
2768          *     link (SDVO)
2769          *   - DisplayPort scrambling: used for EMI reduction
2770          */
2771         if (need_stable_symbols) {
2772                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2773
2774                 WARN_ON(!IS_G4X(dev));
2775
2776                 I915_WRITE(PORT_DFT_I9XX,
2777                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
2778
2779                 if (pipe == PIPE_A)
2780                         tmp |= PIPE_A_SCRAMBLE_RESET;
2781                 else
2782                         tmp |= PIPE_B_SCRAMBLE_RESET;
2783
2784                 I915_WRITE(PORT_DFT2_G4X, tmp);
2785         }
2786
2787         return 0;
2788 }
2789
2790 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
2791                                          enum pipe pipe)
2792 {
2793         struct drm_i915_private *dev_priv = dev->dev_private;
2794         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2795
2796         if (pipe == PIPE_A)
2797                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2798         else
2799                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2800         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
2801                 tmp &= ~DC_BALANCE_RESET_VLV;
2802         I915_WRITE(PORT_DFT2_G4X, tmp);
2803
2804 }
2805
2806 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
2807                                          enum pipe pipe)
2808 {
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
2811
2812         if (pipe == PIPE_A)
2813                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
2814         else
2815                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
2816         I915_WRITE(PORT_DFT2_G4X, tmp);
2817
2818         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
2819                 I915_WRITE(PORT_DFT_I9XX,
2820                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
2821         }
2822 }
2823
2824 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2825                                 uint32_t *val)
2826 {
2827         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2828                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2829
2830         switch (*source) {
2831         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2832                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
2833                 break;
2834         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2835                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
2836                 break;
2837         case INTEL_PIPE_CRC_SOURCE_PIPE:
2838                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
2839                 break;
2840         case INTEL_PIPE_CRC_SOURCE_NONE:
2841                 *val = 0;
2842                 break;
2843         default:
2844                 return -EINVAL;
2845         }
2846
2847         return 0;
2848 }
2849
2850 static int ivb_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2851                                 uint32_t *val)
2852 {
2853         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2854                 *source = INTEL_PIPE_CRC_SOURCE_PF;
2855
2856         switch (*source) {
2857         case INTEL_PIPE_CRC_SOURCE_PLANE1:
2858                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
2859                 break;
2860         case INTEL_PIPE_CRC_SOURCE_PLANE2:
2861                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
2862                 break;
2863         case INTEL_PIPE_CRC_SOURCE_PF:
2864                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
2865                 break;
2866         case INTEL_PIPE_CRC_SOURCE_NONE:
2867                 *val = 0;
2868                 break;
2869         default:
2870                 return -EINVAL;
2871         }
2872
2873         return 0;
2874 }
2875
2876 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
2877                                enum intel_pipe_crc_source source)
2878 {
2879         struct drm_i915_private *dev_priv = dev->dev_private;
2880         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
2881         u32 val = 0; /* shut up gcc */
2882         int ret;
2883
2884         if (pipe_crc->source == source)
2885                 return 0;
2886
2887         /* forbid changing the source without going back to 'none' */
2888         if (pipe_crc->source && source)
2889                 return -EINVAL;
2890
2891         if (IS_GEN2(dev))
2892                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
2893         else if (INTEL_INFO(dev)->gen < 5)
2894                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
2895         else if (IS_VALLEYVIEW(dev))
2896                 ret = vlv_pipe_crc_ctl_reg(dev,pipe, &source, &val);
2897         else if (IS_GEN5(dev) || IS_GEN6(dev))
2898                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
2899         else
2900                 ret = ivb_pipe_crc_ctl_reg(&source, &val);
2901
2902         if (ret != 0)
2903                 return ret;
2904
2905         /* none -> real source transition */
2906         if (source) {
2907                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
2908                                  pipe_name(pipe), pipe_crc_source_name(source));
2909
2910                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
2911                                             INTEL_PIPE_CRC_ENTRIES_NR,
2912                                             GFP_KERNEL);
2913                 if (!pipe_crc->entries)
2914                         return -ENOMEM;
2915
2916                 spin_lock_irq(&pipe_crc->lock);
2917                 pipe_crc->head = 0;
2918                 pipe_crc->tail = 0;
2919                 spin_unlock_irq(&pipe_crc->lock);
2920         }
2921
2922         pipe_crc->source = source;
2923
2924         I915_WRITE(PIPE_CRC_CTL(pipe), val);
2925         POSTING_READ(PIPE_CRC_CTL(pipe));
2926
2927         /* real source -> none transition */
2928         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
2929                 struct intel_pipe_crc_entry *entries;
2930
2931                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
2932                                  pipe_name(pipe));
2933
2934                 intel_wait_for_vblank(dev, pipe);
2935
2936                 spin_lock_irq(&pipe_crc->lock);
2937                 entries = pipe_crc->entries;
2938                 pipe_crc->entries = NULL;
2939                 spin_unlock_irq(&pipe_crc->lock);
2940
2941                 kfree(entries);
2942
2943                 if (IS_G4X(dev))
2944                         g4x_undo_pipe_scramble_reset(dev, pipe);
2945                 else if (IS_VALLEYVIEW(dev))
2946                         vlv_undo_pipe_scramble_reset(dev, pipe);
2947         }
2948
2949         return 0;
2950 }
2951
2952 /*
2953  * Parse pipe CRC command strings:
2954  *   command: wsp* object wsp+ name wsp+ source wsp*
2955  *   object: 'pipe'
2956  *   name: (A | B | C)
2957  *   source: (none | plane1 | plane2 | pf)
2958  *   wsp: (#0x20 | #0x9 | #0xA)+
2959  *
2960  * eg.:
2961  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
2962  *  "pipe A none"    ->  Stop CRC
2963  */
2964 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
2965 {
2966         int n_words = 0;
2967
2968         while (*buf) {
2969                 char *end;
2970
2971                 /* skip leading white space */
2972                 buf = skip_spaces(buf);
2973                 if (!*buf)
2974                         break;  /* end of buffer */
2975
2976                 /* find end of word */
2977                 for (end = buf; *end && !isspace(*end); end++)
2978                         ;
2979
2980                 if (n_words == max_words) {
2981                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
2982                                          max_words);
2983                         return -EINVAL; /* ran out of words[] before bytes */
2984                 }
2985
2986                 if (*end)
2987                         *end++ = '\0';
2988                 words[n_words++] = buf;
2989                 buf = end;
2990         }
2991
2992         return n_words;
2993 }
2994
2995 enum intel_pipe_crc_object {
2996         PIPE_CRC_OBJECT_PIPE,
2997 };
2998
2999 static const char * const pipe_crc_objects[] = {
3000         "pipe",
3001 };
3002
3003 static int
3004 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3005 {
3006         int i;
3007
3008         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3009                 if (!strcmp(buf, pipe_crc_objects[i])) {
3010                         *o = i;
3011                         return 0;
3012                     }
3013
3014         return -EINVAL;
3015 }
3016
3017 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3018 {
3019         const char name = buf[0];
3020
3021         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3022                 return -EINVAL;
3023
3024         *pipe = name - 'A';
3025
3026         return 0;
3027 }
3028
3029 static int
3030 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3031 {
3032         int i;
3033
3034         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3035                 if (!strcmp(buf, pipe_crc_sources[i])) {
3036                         *s = i;
3037                         return 0;
3038                     }
3039
3040         return -EINVAL;
3041 }
3042
3043 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3044 {
3045 #define N_WORDS 3
3046         int n_words;
3047         char *words[N_WORDS];
3048         enum pipe pipe;
3049         enum intel_pipe_crc_object object;
3050         enum intel_pipe_crc_source source;
3051
3052         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3053         if (n_words != N_WORDS) {
3054                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3055                                  N_WORDS);
3056                 return -EINVAL;
3057         }
3058
3059         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3060                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3061                 return -EINVAL;
3062         }
3063
3064         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3065                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3066                 return -EINVAL;
3067         }
3068
3069         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3070                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3071                 return -EINVAL;
3072         }
3073
3074         return pipe_crc_set_source(dev, pipe, source);
3075 }
3076
3077 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3078                                      size_t len, loff_t *offp)
3079 {
3080         struct seq_file *m = file->private_data;
3081         struct drm_device *dev = m->private;
3082         char *tmpbuf;
3083         int ret;
3084
3085         if (len == 0)
3086                 return 0;
3087
3088         if (len > PAGE_SIZE - 1) {
3089                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3090                                  PAGE_SIZE);
3091                 return -E2BIG;
3092         }
3093
3094         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3095         if (!tmpbuf)
3096                 return -ENOMEM;
3097
3098         if (copy_from_user(tmpbuf, ubuf, len)) {
3099                 ret = -EFAULT;
3100                 goto out;
3101         }
3102         tmpbuf[len] = '\0';
3103
3104         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3105
3106 out:
3107         kfree(tmpbuf);
3108         if (ret < 0)
3109                 return ret;
3110
3111         *offp += len;
3112         return len;
3113 }
3114
3115 static const struct file_operations i915_display_crc_ctl_fops = {
3116         .owner = THIS_MODULE,
3117         .open = display_crc_ctl_open,
3118         .read = seq_read,
3119         .llseek = seq_lseek,
3120         .release = single_release,
3121         .write = display_crc_ctl_write
3122 };
3123
3124 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3125 {
3126         struct drm_device *dev = m->private;
3127         int num_levels = ilk_wm_max_level(dev) + 1;
3128         int level;
3129
3130         drm_modeset_lock_all(dev);
3131
3132         for (level = 0; level < num_levels; level++) {
3133                 unsigned int latency = wm[level];
3134
3135                 /* WM1+ latency values in 0.5us units */
3136                 if (level > 0)
3137                         latency *= 5;
3138
3139                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3140                            level, wm[level],
3141                            latency / 10, latency % 10);
3142         }
3143
3144         drm_modeset_unlock_all(dev);
3145 }
3146
3147 static int pri_wm_latency_show(struct seq_file *m, void *data)
3148 {
3149         struct drm_device *dev = m->private;
3150
3151         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3152
3153         return 0;
3154 }
3155
3156 static int spr_wm_latency_show(struct seq_file *m, void *data)
3157 {
3158         struct drm_device *dev = m->private;
3159
3160         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3161
3162         return 0;
3163 }
3164
3165 static int cur_wm_latency_show(struct seq_file *m, void *data)
3166 {
3167         struct drm_device *dev = m->private;
3168
3169         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3170
3171         return 0;
3172 }
3173
3174 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3175 {
3176         struct drm_device *dev = inode->i_private;
3177
3178         if (!HAS_PCH_SPLIT(dev))
3179                 return -ENODEV;
3180
3181         return single_open(file, pri_wm_latency_show, dev);
3182 }
3183
3184 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3185 {
3186         struct drm_device *dev = inode->i_private;
3187
3188         if (!HAS_PCH_SPLIT(dev))
3189                 return -ENODEV;
3190
3191         return single_open(file, spr_wm_latency_show, dev);
3192 }
3193
3194 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3195 {
3196         struct drm_device *dev = inode->i_private;
3197
3198         if (!HAS_PCH_SPLIT(dev))
3199                 return -ENODEV;
3200
3201         return single_open(file, cur_wm_latency_show, dev);
3202 }
3203
3204 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3205                                 size_t len, loff_t *offp, uint16_t wm[5])
3206 {
3207         struct seq_file *m = file->private_data;
3208         struct drm_device *dev = m->private;
3209         uint16_t new[5] = { 0 };
3210         int num_levels = ilk_wm_max_level(dev) + 1;
3211         int level;
3212         int ret;
3213         char tmp[32];
3214
3215         if (len >= sizeof(tmp))
3216                 return -EINVAL;
3217
3218         if (copy_from_user(tmp, ubuf, len))
3219                 return -EFAULT;
3220
3221         tmp[len] = '\0';
3222
3223         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3224         if (ret != num_levels)
3225                 return -EINVAL;
3226
3227         drm_modeset_lock_all(dev);
3228
3229         for (level = 0; level < num_levels; level++)
3230                 wm[level] = new[level];
3231
3232         drm_modeset_unlock_all(dev);
3233
3234         return len;
3235 }
3236
3237
3238 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3239                                     size_t len, loff_t *offp)
3240 {
3241         struct seq_file *m = file->private_data;
3242         struct drm_device *dev = m->private;
3243
3244         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3245 }
3246
3247 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3248                                     size_t len, loff_t *offp)
3249 {
3250         struct seq_file *m = file->private_data;
3251         struct drm_device *dev = m->private;
3252
3253         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3254 }
3255
3256 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3257                                     size_t len, loff_t *offp)
3258 {
3259         struct seq_file *m = file->private_data;
3260         struct drm_device *dev = m->private;
3261
3262         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3263 }
3264
3265 static const struct file_operations i915_pri_wm_latency_fops = {
3266         .owner = THIS_MODULE,
3267         .open = pri_wm_latency_open,
3268         .read = seq_read,
3269         .llseek = seq_lseek,
3270         .release = single_release,
3271         .write = pri_wm_latency_write
3272 };
3273
3274 static const struct file_operations i915_spr_wm_latency_fops = {
3275         .owner = THIS_MODULE,
3276         .open = spr_wm_latency_open,
3277         .read = seq_read,
3278         .llseek = seq_lseek,
3279         .release = single_release,
3280         .write = spr_wm_latency_write
3281 };
3282
3283 static const struct file_operations i915_cur_wm_latency_fops = {
3284         .owner = THIS_MODULE,
3285         .open = cur_wm_latency_open,
3286         .read = seq_read,
3287         .llseek = seq_lseek,
3288         .release = single_release,
3289         .write = cur_wm_latency_write
3290 };
3291
3292 static int
3293 i915_wedged_get(void *data, u64 *val)
3294 {
3295         struct drm_device *dev = data;
3296         struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3299
3300         return 0;
3301 }
3302
3303 static int
3304 i915_wedged_set(void *data, u64 val)
3305 {
3306         struct drm_device *dev = data;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308
3309         intel_runtime_pm_get(dev_priv);
3310
3311         i915_handle_error(dev, val,
3312                           "Manually setting wedged to %llu", val);
3313
3314         intel_runtime_pm_put(dev_priv);
3315
3316         return 0;
3317 }
3318
3319 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3320                         i915_wedged_get, i915_wedged_set,
3321                         "%llu\n");
3322
3323 static int
3324 i915_ring_stop_get(void *data, u64 *val)
3325 {
3326         struct drm_device *dev = data;
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329         *val = dev_priv->gpu_error.stop_rings;
3330
3331         return 0;
3332 }
3333
3334 static int
3335 i915_ring_stop_set(void *data, u64 val)
3336 {
3337         struct drm_device *dev = data;
3338         struct drm_i915_private *dev_priv = dev->dev_private;
3339         int ret;
3340
3341         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3342
3343         ret = mutex_lock_interruptible(&dev->struct_mutex);
3344         if (ret)
3345                 return ret;
3346
3347         dev_priv->gpu_error.stop_rings = val;
3348         mutex_unlock(&dev->struct_mutex);
3349
3350         return 0;
3351 }
3352
3353 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3354                         i915_ring_stop_get, i915_ring_stop_set,
3355                         "0x%08llx\n");
3356
3357 static int
3358 i915_ring_missed_irq_get(void *data, u64 *val)
3359 {
3360         struct drm_device *dev = data;
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362
3363         *val = dev_priv->gpu_error.missed_irq_rings;
3364         return 0;
3365 }
3366
3367 static int
3368 i915_ring_missed_irq_set(void *data, u64 val)
3369 {
3370         struct drm_device *dev = data;
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372         int ret;
3373
3374         /* Lock against concurrent debugfs callers */
3375         ret = mutex_lock_interruptible(&dev->struct_mutex);
3376         if (ret)
3377                 return ret;
3378         dev_priv->gpu_error.missed_irq_rings = val;
3379         mutex_unlock(&dev->struct_mutex);
3380
3381         return 0;
3382 }
3383
3384 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3385                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3386                         "0x%08llx\n");
3387
3388 static int
3389 i915_ring_test_irq_get(void *data, u64 *val)
3390 {
3391         struct drm_device *dev = data;
3392         struct drm_i915_private *dev_priv = dev->dev_private;
3393
3394         *val = dev_priv->gpu_error.test_irq_rings;
3395
3396         return 0;
3397 }
3398
3399 static int
3400 i915_ring_test_irq_set(void *data, u64 val)
3401 {
3402         struct drm_device *dev = data;
3403         struct drm_i915_private *dev_priv = dev->dev_private;
3404         int ret;
3405
3406         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3407
3408         /* Lock against concurrent debugfs callers */
3409         ret = mutex_lock_interruptible(&dev->struct_mutex);
3410         if (ret)
3411                 return ret;
3412
3413         dev_priv->gpu_error.test_irq_rings = val;
3414         mutex_unlock(&dev->struct_mutex);
3415
3416         return 0;
3417 }
3418
3419 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3420                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3421                         "0x%08llx\n");
3422
3423 #define DROP_UNBOUND 0x1
3424 #define DROP_BOUND 0x2
3425 #define DROP_RETIRE 0x4
3426 #define DROP_ACTIVE 0x8
3427 #define DROP_ALL (DROP_UNBOUND | \
3428                   DROP_BOUND | \
3429                   DROP_RETIRE | \
3430                   DROP_ACTIVE)
3431 static int
3432 i915_drop_caches_get(void *data, u64 *val)
3433 {
3434         *val = DROP_ALL;
3435
3436         return 0;
3437 }
3438
3439 static int
3440 i915_drop_caches_set(void *data, u64 val)
3441 {
3442         struct drm_device *dev = data;
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444         struct drm_i915_gem_object *obj, *next;
3445         struct i915_address_space *vm;
3446         struct i915_vma *vma, *x;
3447         int ret;
3448
3449         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3450
3451         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3452          * on ioctls on -EAGAIN. */
3453         ret = mutex_lock_interruptible(&dev->struct_mutex);
3454         if (ret)
3455                 return ret;
3456
3457         if (val & DROP_ACTIVE) {
3458                 ret = i915_gpu_idle(dev);
3459                 if (ret)
3460                         goto unlock;
3461         }
3462
3463         if (val & (DROP_RETIRE | DROP_ACTIVE))
3464                 i915_gem_retire_requests(dev);
3465
3466         if (val & DROP_BOUND) {
3467                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3468                         list_for_each_entry_safe(vma, x, &vm->inactive_list,
3469                                                  mm_list) {
3470                                 if (vma->pin_count)
3471                                         continue;
3472
3473                                 ret = i915_vma_unbind(vma);
3474                                 if (ret)
3475                                         goto unlock;
3476                         }
3477                 }
3478         }
3479
3480         if (val & DROP_UNBOUND) {
3481                 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
3482                                          global_list)
3483                         if (obj->pages_pin_count == 0) {
3484                                 ret = i915_gem_object_put_pages(obj);
3485                                 if (ret)
3486                                         goto unlock;
3487                         }
3488         }
3489
3490 unlock:
3491         mutex_unlock(&dev->struct_mutex);
3492
3493         return ret;
3494 }
3495
3496 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3497                         i915_drop_caches_get, i915_drop_caches_set,
3498                         "0x%08llx\n");
3499
3500 static int
3501 i915_max_freq_get(void *data, u64 *val)
3502 {
3503         struct drm_device *dev = data;
3504         struct drm_i915_private *dev_priv = dev->dev_private;
3505         int ret;
3506
3507         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3508                 return -ENODEV;
3509
3510         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3511
3512         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3513         if (ret)
3514                 return ret;
3515
3516         if (IS_VALLEYVIEW(dev))
3517                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3518         else
3519                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3520         mutex_unlock(&dev_priv->rps.hw_lock);
3521
3522         return 0;
3523 }
3524
3525 static int
3526 i915_max_freq_set(void *data, u64 val)
3527 {
3528         struct drm_device *dev = data;
3529         struct drm_i915_private *dev_priv = dev->dev_private;
3530         u32 rp_state_cap, hw_max, hw_min;
3531         int ret;
3532
3533         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3534                 return -ENODEV;
3535
3536         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3537
3538         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3539
3540         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3541         if (ret)
3542                 return ret;
3543
3544         /*
3545          * Turbo will still be enabled, but won't go above the set value.
3546          */
3547         if (IS_VALLEYVIEW(dev)) {
3548                 val = vlv_freq_opcode(dev_priv, val);
3549
3550                 hw_max = valleyview_rps_max_freq(dev_priv);
3551                 hw_min = valleyview_rps_min_freq(dev_priv);
3552         } else {
3553                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3554
3555                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3556                 hw_max = dev_priv->rps.max_freq;
3557                 hw_min = (rp_state_cap >> 16) & 0xff;
3558         }
3559
3560         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3561                 mutex_unlock(&dev_priv->rps.hw_lock);
3562                 return -EINVAL;
3563         }
3564
3565         dev_priv->rps.max_freq_softlimit = val;
3566
3567         if (IS_VALLEYVIEW(dev))
3568                 valleyview_set_rps(dev, val);
3569         else
3570                 gen6_set_rps(dev, val);
3571
3572         mutex_unlock(&dev_priv->rps.hw_lock);
3573
3574         return 0;
3575 }
3576
3577 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3578                         i915_max_freq_get, i915_max_freq_set,
3579                         "%llu\n");
3580
3581 static int
3582 i915_min_freq_get(void *data, u64 *val)
3583 {
3584         struct drm_device *dev = data;
3585         struct drm_i915_private *dev_priv = dev->dev_private;
3586         int ret;
3587
3588         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3589                 return -ENODEV;
3590
3591         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3592
3593         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3594         if (ret)
3595                 return ret;
3596
3597         if (IS_VALLEYVIEW(dev))
3598                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3599         else
3600                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3601         mutex_unlock(&dev_priv->rps.hw_lock);
3602
3603         return 0;
3604 }
3605
3606 static int
3607 i915_min_freq_set(void *data, u64 val)
3608 {
3609         struct drm_device *dev = data;
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         u32 rp_state_cap, hw_max, hw_min;
3612         int ret;
3613
3614         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3615                 return -ENODEV;
3616
3617         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3618
3619         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3620
3621         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3622         if (ret)
3623                 return ret;
3624
3625         /*
3626          * Turbo will still be enabled, but won't go below the set value.
3627          */
3628         if (IS_VALLEYVIEW(dev)) {
3629                 val = vlv_freq_opcode(dev_priv, val);
3630
3631                 hw_max = valleyview_rps_max_freq(dev_priv);
3632                 hw_min = valleyview_rps_min_freq(dev_priv);
3633         } else {
3634                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3635
3636                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3637                 hw_max = dev_priv->rps.max_freq;
3638                 hw_min = (rp_state_cap >> 16) & 0xff;
3639         }
3640
3641         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
3642                 mutex_unlock(&dev_priv->rps.hw_lock);
3643                 return -EINVAL;
3644         }
3645
3646         dev_priv->rps.min_freq_softlimit = val;
3647
3648         if (IS_VALLEYVIEW(dev))
3649                 valleyview_set_rps(dev, val);
3650         else
3651                 gen6_set_rps(dev, val);
3652
3653         mutex_unlock(&dev_priv->rps.hw_lock);
3654
3655         return 0;
3656 }
3657
3658 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
3659                         i915_min_freq_get, i915_min_freq_set,
3660                         "%llu\n");
3661
3662 static int
3663 i915_cache_sharing_get(void *data, u64 *val)
3664 {
3665         struct drm_device *dev = data;
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667         u32 snpcr;
3668         int ret;
3669
3670         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3671                 return -ENODEV;
3672
3673         ret = mutex_lock_interruptible(&dev->struct_mutex);
3674         if (ret)
3675                 return ret;
3676         intel_runtime_pm_get(dev_priv);
3677
3678         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3679
3680         intel_runtime_pm_put(dev_priv);
3681         mutex_unlock(&dev_priv->dev->struct_mutex);
3682
3683         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
3684
3685         return 0;
3686 }
3687
3688 static int
3689 i915_cache_sharing_set(void *data, u64 val)
3690 {
3691         struct drm_device *dev = data;
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693         u32 snpcr;
3694
3695         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
3696                 return -ENODEV;
3697
3698         if (val > 3)
3699                 return -EINVAL;
3700
3701         intel_runtime_pm_get(dev_priv);
3702         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
3703
3704         /* Update the cache sharing policy here as well */
3705         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3706         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3707         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
3708         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3709
3710         intel_runtime_pm_put(dev_priv);
3711         return 0;
3712 }
3713
3714 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
3715                         i915_cache_sharing_get, i915_cache_sharing_set,
3716                         "%llu\n");
3717
3718 static int i915_forcewake_open(struct inode *inode, struct file *file)
3719 {
3720         struct drm_device *dev = inode->i_private;
3721         struct drm_i915_private *dev_priv = dev->dev_private;
3722
3723         if (INTEL_INFO(dev)->gen < 6)
3724                 return 0;
3725
3726         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3727
3728         return 0;
3729 }
3730
3731 static int i915_forcewake_release(struct inode *inode, struct file *file)
3732 {
3733         struct drm_device *dev = inode->i_private;
3734         struct drm_i915_private *dev_priv = dev->dev_private;
3735
3736         if (INTEL_INFO(dev)->gen < 6)
3737                 return 0;
3738
3739         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3740
3741         return 0;
3742 }
3743
3744 static const struct file_operations i915_forcewake_fops = {
3745         .owner = THIS_MODULE,
3746         .open = i915_forcewake_open,
3747         .release = i915_forcewake_release,
3748 };
3749
3750 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
3751 {
3752         struct drm_device *dev = minor->dev;
3753         struct dentry *ent;
3754
3755         ent = debugfs_create_file("i915_forcewake_user",
3756                                   S_IRUSR,
3757                                   root, dev,
3758                                   &i915_forcewake_fops);
3759         if (!ent)
3760                 return -ENOMEM;
3761
3762         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
3763 }
3764
3765 static int i915_debugfs_create(struct dentry *root,
3766                                struct drm_minor *minor,
3767                                const char *name,
3768                                const struct file_operations *fops)
3769 {
3770         struct drm_device *dev = minor->dev;
3771         struct dentry *ent;
3772
3773         ent = debugfs_create_file(name,
3774                                   S_IRUGO | S_IWUSR,
3775                                   root, dev,
3776                                   fops);
3777         if (!ent)
3778                 return -ENOMEM;
3779
3780         return drm_add_fake_info_node(minor, ent, fops);
3781 }
3782
3783 static const struct drm_info_list i915_debugfs_list[] = {
3784         {"i915_capabilities", i915_capabilities, 0},
3785         {"i915_gem_objects", i915_gem_object_info, 0},
3786         {"i915_gem_gtt", i915_gem_gtt_info, 0},
3787         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
3788         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
3789         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
3790         {"i915_gem_stolen", i915_gem_stolen_list_info },
3791         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
3792         {"i915_gem_request", i915_gem_request_info, 0},
3793         {"i915_gem_seqno", i915_gem_seqno_info, 0},
3794         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
3795         {"i915_gem_interrupt", i915_interrupt_info, 0},
3796         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
3797         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
3798         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
3799         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
3800         {"i915_rstdby_delays", i915_rstdby_delays, 0},
3801         {"i915_frequency_info", i915_frequency_info, 0},
3802         {"i915_delayfreq_table", i915_delayfreq_table, 0},
3803         {"i915_inttoext_table", i915_inttoext_table, 0},
3804         {"i915_drpc_info", i915_drpc_info, 0},
3805         {"i915_emon_status", i915_emon_status, 0},
3806         {"i915_ring_freq_table", i915_ring_freq_table, 0},
3807         {"i915_gfxec", i915_gfxec, 0},
3808         {"i915_fbc_status", i915_fbc_status, 0},
3809         {"i915_ips_status", i915_ips_status, 0},
3810         {"i915_sr_status", i915_sr_status, 0},
3811         {"i915_opregion", i915_opregion, 0},
3812         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
3813         {"i915_context_status", i915_context_status, 0},
3814         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
3815         {"i915_swizzle_info", i915_swizzle_info, 0},
3816         {"i915_ppgtt_info", i915_ppgtt_info, 0},
3817         {"i915_llc", i915_llc, 0},
3818         {"i915_edp_psr_status", i915_edp_psr_status, 0},
3819         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
3820         {"i915_energy_uJ", i915_energy_uJ, 0},
3821         {"i915_pc8_status", i915_pc8_status, 0},
3822         {"i915_power_domain_info", i915_power_domain_info, 0},
3823         {"i915_display_info", i915_display_info, 0},
3824 };
3825 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
3826
3827 static const struct i915_debugfs_files {
3828         const char *name;
3829         const struct file_operations *fops;
3830 } i915_debugfs_files[] = {
3831         {"i915_wedged", &i915_wedged_fops},
3832         {"i915_max_freq", &i915_max_freq_fops},
3833         {"i915_min_freq", &i915_min_freq_fops},
3834         {"i915_cache_sharing", &i915_cache_sharing_fops},
3835         {"i915_ring_stop", &i915_ring_stop_fops},
3836         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
3837         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
3838         {"i915_gem_drop_caches", &i915_drop_caches_fops},
3839         {"i915_error_state", &i915_error_state_fops},
3840         {"i915_next_seqno", &i915_next_seqno_fops},
3841         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
3842         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
3843         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
3844         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
3845 };
3846
3847 void intel_display_crc_init(struct drm_device *dev)
3848 {
3849         struct drm_i915_private *dev_priv = dev->dev_private;
3850         enum pipe pipe;
3851
3852         for_each_pipe(pipe) {
3853                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3854
3855                 pipe_crc->opened = false;
3856                 spin_lock_init(&pipe_crc->lock);
3857                 init_waitqueue_head(&pipe_crc->wq);
3858         }
3859 }
3860
3861 int i915_debugfs_init(struct drm_minor *minor)
3862 {
3863         int ret, i;
3864
3865         ret = i915_forcewake_create(minor->debugfs_root, minor);
3866         if (ret)
3867                 return ret;
3868
3869         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3870                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
3871                 if (ret)
3872                         return ret;
3873         }
3874
3875         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3876                 ret = i915_debugfs_create(minor->debugfs_root, minor,
3877                                           i915_debugfs_files[i].name,
3878                                           i915_debugfs_files[i].fops);
3879                 if (ret)
3880                         return ret;
3881         }
3882
3883         return drm_debugfs_create_files(i915_debugfs_list,
3884                                         I915_DEBUGFS_ENTRIES,
3885                                         minor->debugfs_root, minor);
3886 }
3887
3888 void i915_debugfs_cleanup(struct drm_minor *minor)
3889 {
3890         int i;
3891
3892         drm_debugfs_remove_files(i915_debugfs_list,
3893                                  I915_DEBUGFS_ENTRIES, minor);
3894
3895         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
3896                                  1, minor);
3897
3898         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
3899                 struct drm_info_list *info_list =
3900                         (struct drm_info_list *)&i915_pipe_crc_data[i];
3901
3902                 drm_debugfs_remove_files(info_list, 1, minor);
3903         }
3904
3905         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
3906                 struct drm_info_list *info_list =
3907                         (struct drm_info_list *) i915_debugfs_files[i].fops;
3908
3909                 drm_debugfs_remove_files(info_list, 1, minor);
3910         }
3911 }