b564b1aae52f9c277b1353babcb433dc13aa6cd8
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         u32 version;
175         __iomem char *registers;
176         dma_addr_t self_id_bus;
177         __le32 *self_id_cpu;
178         struct tasklet_struct bus_reset_tasklet;
179         int node_id;
180         int generation;
181         int request_generation;
182         u32 bus_seconds;
183         bool old_uninorth;
184
185         /*
186          * Spinlock for accessing fw_ohci data.  Never call out of
187          * this driver with this lock held.
188          */
189         spinlock_t lock;
190         u32 self_id_buffer[512];
191
192         /* Config rom buffers */
193         __be32 *config_rom;
194         dma_addr_t config_rom_bus;
195         __be32 *next_config_rom;
196         dma_addr_t next_config_rom_bus;
197         u32 next_header;
198
199         struct ar_context ar_request_ctx;
200         struct ar_context ar_response_ctx;
201         struct context at_request_ctx;
202         struct context at_response_ctx;
203
204         u32 it_context_mask;
205         struct iso_context *it_context_list;
206         u32 ir_context_mask;
207         struct iso_context *ir_context_list;
208 };
209
210 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
211 {
212         return container_of(card, struct fw_ohci, card);
213 }
214
215 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
216 #define IR_CONTEXT_BUFFER_FILL          0x80000000
217 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
218 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
219 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
220 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
221
222 #define CONTEXT_RUN     0x8000
223 #define CONTEXT_WAKE    0x1000
224 #define CONTEXT_DEAD    0x0800
225 #define CONTEXT_ACTIVE  0x0400
226
227 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
228 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
229 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
230
231 #define FW_OHCI_MAJOR                   240
232 #define OHCI1394_REGISTER_SIZE          0x800
233 #define OHCI_LOOP_COUNT                 500
234 #define OHCI1394_PCI_HCI_Control        0x40
235 #define SELF_ID_BUF_SIZE                0x800
236 #define OHCI_TCODE_PHY_PACKET           0x0e
237 #define OHCI_VERSION_1_1                0x010010
238
239 static char ohci_driver_name[] = KBUILD_MODNAME;
240
241 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
242
243 #define OHCI_PARAM_DEBUG_IRQS           1
244 #define OHCI_PARAM_DEBUG_SELFIDS        2
245 #define OHCI_PARAM_DEBUG_AT_AR          4
246
247 static int param_debug;
248 module_param_named(debug, param_debug, int, 0644);
249 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
250         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
251         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
252         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
253         ", or a combination, or all = -1)");
254
255 static void log_irqs(u32 evt)
256 {
257         if (likely(!(param_debug & OHCI_PARAM_DEBUG_IRQS)))
258                 return;
259
260         printk(KERN_DEBUG KBUILD_MODNAME ": IRQ %08x%s%s%s%s%s%s%s%s%s%s%s\n",
261                evt,
262                evt & OHCI1394_selfIDComplete    ? " selfID"             : "",
263                evt & OHCI1394_RQPkt             ? " AR_req"             : "",
264                evt & OHCI1394_RSPkt             ? " AR_resp"            : "",
265                evt & OHCI1394_reqTxComplete     ? " AT_req"             : "",
266                evt & OHCI1394_respTxComplete    ? " AT_resp"            : "",
267                evt & OHCI1394_isochRx           ? " IR"                 : "",
268                evt & OHCI1394_isochTx           ? " IT"                 : "",
269                evt & OHCI1394_postedWriteErr    ? " postedWriteErr"     : "",
270                evt & OHCI1394_cycleTooLong      ? " cycleTooLong"       : "",
271                evt & OHCI1394_cycle64Seconds    ? " cycle64Seconds"     : "",
272                evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
273                        OHCI1394_RSPkt | OHCI1394_reqTxComplete |
274                        OHCI1394_respTxComplete | OHCI1394_isochRx |
275                        OHCI1394_isochTx | OHCI1394_postedWriteErr |
276                        OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds)
277                                                 ? " ?"                  : "");
278 }
279
280 static const char *speed[] = {
281         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
282 };
283 static const char *power[] = {
284         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
285         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
286 };
287 static const char port[] = { '.', '-', 'p', 'c', };
288
289 static char _p(u32 *s, int shift)
290 {
291         return port[*s >> shift & 3];
292 }
293
294 static void log_selfids(int generation, int self_id_count, u32 *s)
295 {
296         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
297                 return;
298
299         printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d\n",
300                self_id_count, generation);
301
302         for (; self_id_count--; ++s)
303                 if ((*s & 1 << 23) == 0)
304                         printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
305                                "%s gc=%d %s %s%s%s\n",
306                                *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
307                                speed[*s >> 14 & 3], *s >> 16 & 63,
308                                power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
309                                *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
310                 else
311                         printk(KERN_DEBUG "selfID n: %08x, phy %d "
312                                "[%c%c%c%c%c%c%c%c]\n",
313                                *s, *s >> 24 & 63,
314                                _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
315                                _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
316 }
317
318 static const char *evts[] = {
319         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
320         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
321         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
322         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
323         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
324         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
325         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
326         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
327         [0x10] = "-reserved-",          [0x11] = "ack_complete",
328         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
329         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
330         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
331         [0x18] = "-reserved-",          [0x19] = "-reserved-",
332         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
333         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
334         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
335         [0x20] = "pending/cancelled",
336 };
337 static const char *tcodes[] = {
338         [0x0] = "QW req",               [0x1] = "BW req",
339         [0x2] = "W resp",               [0x3] = "-reserved-",
340         [0x4] = "QR req",               [0x5] = "BR req",
341         [0x6] = "QR resp",              [0x7] = "BR resp",
342         [0x8] = "cycle start",          [0x9] = "Lk req",
343         [0xa] = "async stream packet",  [0xb] = "Lk resp",
344         [0xc] = "-reserved-",           [0xd] = "-reserved-",
345         [0xe] = "link internal",        [0xf] = "-reserved-",
346 };
347 static const char *phys[] = {
348         [0x0] = "phy config packet",    [0x1] = "link-on packet",
349         [0x2] = "self-id packet",       [0x3] = "-reserved-",
350 };
351
352 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
353 {
354         int tcode = header[0] >> 4 & 0xf;
355         char specific[12];
356
357         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
358                 return;
359
360         if (unlikely(evt >= ARRAY_SIZE(evts)))
361                         evt = 0x1f;
362
363         if (header[0] == ~header[1]) {
364                 printk(KERN_DEBUG "A%c %s, %s, %08x\n",
365                        dir, evts[evt], phys[header[0] >> 30 & 0x3],
366                        header[0]);
367                 return;
368         }
369
370         switch (tcode) {
371         case 0x0: case 0x6: case 0x8:
372                 snprintf(specific, sizeof(specific), " = %08x",
373                          be32_to_cpu((__force __be32)header[3]));
374                 break;
375         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
376                 snprintf(specific, sizeof(specific), " %x,%x",
377                          header[3] >> 16, header[3] & 0xffff);
378                 break;
379         default:
380                 specific[0] = '\0';
381         }
382
383         switch (tcode) {
384         case 0xe: case 0xa:
385                 printk(KERN_DEBUG "A%c %s, %s\n",
386                        dir, evts[evt], tcodes[tcode]);
387                 break;
388         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
389                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
390                        "%04x -> %04x, %s, "
391                        "%s, %04x%08x%s\n",
392                        dir, speed, header[0] >> 10 & 0x3f,
393                        header[1] >> 16, header[0] >> 16, evts[evt],
394                        tcodes[tcode], header[1] & 0xffff, header[2], specific);
395                 break;
396         default:
397                 printk(KERN_DEBUG "A%c spd %x tl %02x, "
398                        "%04x -> %04x, %s, "
399                        "%s%s\n",
400                        dir, speed, header[0] >> 10 & 0x3f,
401                        header[1] >> 16, header[0] >> 16, evts[evt],
402                        tcodes[tcode], specific);
403         }
404 }
405
406 #else
407
408 #define log_irqs(evt)
409 #define log_selfids(generation, self_id_count, sid)
410 #define log_ar_at_event(dir, speed, header, evt)
411
412 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
413
414 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
415 {
416         writel(data, ohci->registers + offset);
417 }
418
419 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
420 {
421         return readl(ohci->registers + offset);
422 }
423
424 static inline void flush_writes(const struct fw_ohci *ohci)
425 {
426         /* Do a dummy read to flush writes. */
427         reg_read(ohci, OHCI1394_Version);
428 }
429
430 static int
431 ohci_update_phy_reg(struct fw_card *card, int addr,
432                     int clear_bits, int set_bits)
433 {
434         struct fw_ohci *ohci = fw_ohci(card);
435         u32 val, old;
436
437         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
438         flush_writes(ohci);
439         msleep(2);
440         val = reg_read(ohci, OHCI1394_PhyControl);
441         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
442                 fw_error("failed to set phy reg bits.\n");
443                 return -EBUSY;
444         }
445
446         old = OHCI1394_PhyControl_ReadData(val);
447         old = (old & ~clear_bits) | set_bits;
448         reg_write(ohci, OHCI1394_PhyControl,
449                   OHCI1394_PhyControl_Write(addr, old));
450
451         return 0;
452 }
453
454 static int ar_context_add_page(struct ar_context *ctx)
455 {
456         struct device *dev = ctx->ohci->card.device;
457         struct ar_buffer *ab;
458         dma_addr_t uninitialized_var(ab_bus);
459         size_t offset;
460
461         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
462         if (ab == NULL)
463                 return -ENOMEM;
464
465         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
466         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
467                                                     DESCRIPTOR_STATUS |
468                                                     DESCRIPTOR_BRANCH_ALWAYS);
469         offset = offsetof(struct ar_buffer, data);
470         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
471         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
472         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
473         ab->descriptor.branch_address = 0;
474
475         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
476         ctx->last_buffer->next = ab;
477         ctx->last_buffer = ab;
478
479         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
480         flush_writes(ctx->ohci);
481
482         return 0;
483 }
484
485 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
486 #define cond_le32_to_cpu(v) \
487         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
488 #else
489 #define cond_le32_to_cpu(v) le32_to_cpu(v)
490 #endif
491
492 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
493 {
494         struct fw_ohci *ohci = ctx->ohci;
495         struct fw_packet p;
496         u32 status, length, tcode;
497
498         p.header[0] = cond_le32_to_cpu(buffer[0]);
499         p.header[1] = cond_le32_to_cpu(buffer[1]);
500         p.header[2] = cond_le32_to_cpu(buffer[2]);
501
502         tcode = (p.header[0] >> 4) & 0x0f;
503         switch (tcode) {
504         case TCODE_WRITE_QUADLET_REQUEST:
505         case TCODE_READ_QUADLET_RESPONSE:
506                 p.header[3] = (__force __u32) buffer[3];
507                 p.header_length = 16;
508                 p.payload_length = 0;
509                 break;
510
511         case TCODE_READ_BLOCK_REQUEST :
512                 p.header[3] = cond_le32_to_cpu(buffer[3]);
513                 p.header_length = 16;
514                 p.payload_length = 0;
515                 break;
516
517         case TCODE_WRITE_BLOCK_REQUEST:
518         case TCODE_READ_BLOCK_RESPONSE:
519         case TCODE_LOCK_REQUEST:
520         case TCODE_LOCK_RESPONSE:
521                 p.header[3] = cond_le32_to_cpu(buffer[3]);
522                 p.header_length = 16;
523                 p.payload_length = p.header[3] >> 16;
524                 break;
525
526         case TCODE_WRITE_RESPONSE:
527         case TCODE_READ_QUADLET_REQUEST:
528         case OHCI_TCODE_PHY_PACKET:
529                 p.header_length = 12;
530                 p.payload_length = 0;
531                 break;
532         }
533
534         p.payload = (void *) buffer + p.header_length;
535
536         /* FIXME: What to do about evt_* errors? */
537         length = (p.header_length + p.payload_length + 3) / 4;
538         status = cond_le32_to_cpu(buffer[length]);
539
540         p.ack        = ((status >> 16) & 0x1f) - 16;
541         p.speed      = (status >> 21) & 0x7;
542         p.timestamp  = status & 0xffff;
543         p.generation = ohci->request_generation;
544
545         log_ar_at_event('R', p.speed, p.header, status >> 16 & 0x1f);
546
547         /*
548          * The OHCI bus reset handler synthesizes a phy packet with
549          * the new generation number when a bus reset happens (see
550          * section 8.4.2.3).  This helps us determine when a request
551          * was received and make sure we send the response in the same
552          * generation.  We only need this for requests; for responses
553          * we use the unique tlabel for finding the matching
554          * request.
555          */
556
557         if (p.ack + 16 == 0x09)
558                 ohci->request_generation = (p.header[2] >> 16) & 0xff;
559         else if (ctx == &ohci->ar_request_ctx)
560                 fw_core_handle_request(&ohci->card, &p);
561         else
562                 fw_core_handle_response(&ohci->card, &p);
563
564         return buffer + length + 1;
565 }
566
567 static void ar_context_tasklet(unsigned long data)
568 {
569         struct ar_context *ctx = (struct ar_context *)data;
570         struct fw_ohci *ohci = ctx->ohci;
571         struct ar_buffer *ab;
572         struct descriptor *d;
573         void *buffer, *end;
574
575         ab = ctx->current_buffer;
576         d = &ab->descriptor;
577
578         if (d->res_count == 0) {
579                 size_t size, rest, offset;
580                 dma_addr_t start_bus;
581                 void *start;
582
583                 /*
584                  * This descriptor is finished and we may have a
585                  * packet split across this and the next buffer. We
586                  * reuse the page for reassembling the split packet.
587                  */
588
589                 offset = offsetof(struct ar_buffer, data);
590                 start = buffer = ab;
591                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
592
593                 ab = ab->next;
594                 d = &ab->descriptor;
595                 size = buffer + PAGE_SIZE - ctx->pointer;
596                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
597                 memmove(buffer, ctx->pointer, size);
598                 memcpy(buffer + size, ab->data, rest);
599                 ctx->current_buffer = ab;
600                 ctx->pointer = (void *) ab->data + rest;
601                 end = buffer + size + rest;
602
603                 while (buffer < end)
604                         buffer = handle_ar_packet(ctx, buffer);
605
606                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
607                                   start, start_bus);
608                 ar_context_add_page(ctx);
609         } else {
610                 buffer = ctx->pointer;
611                 ctx->pointer = end =
612                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
613
614                 while (buffer < end)
615                         buffer = handle_ar_packet(ctx, buffer);
616         }
617 }
618
619 static int
620 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
621 {
622         struct ar_buffer ab;
623
624         ctx->regs        = regs;
625         ctx->ohci        = ohci;
626         ctx->last_buffer = &ab;
627         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
628
629         ar_context_add_page(ctx);
630         ar_context_add_page(ctx);
631         ctx->current_buffer = ab.next;
632         ctx->pointer = ctx->current_buffer->data;
633
634         return 0;
635 }
636
637 static void ar_context_run(struct ar_context *ctx)
638 {
639         struct ar_buffer *ab = ctx->current_buffer;
640         dma_addr_t ab_bus;
641         size_t offset;
642
643         offset = offsetof(struct ar_buffer, data);
644         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
645
646         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
647         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
648         flush_writes(ctx->ohci);
649 }
650
651 static struct descriptor *
652 find_branch_descriptor(struct descriptor *d, int z)
653 {
654         int b, key;
655
656         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
657         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
658
659         /* figure out which descriptor the branch address goes in */
660         if (z == 2 && (b == 3 || key == 2))
661                 return d;
662         else
663                 return d + z - 1;
664 }
665
666 static void context_tasklet(unsigned long data)
667 {
668         struct context *ctx = (struct context *) data;
669         struct descriptor *d, *last;
670         u32 address;
671         int z;
672         struct descriptor_buffer *desc;
673
674         desc = list_entry(ctx->buffer_list.next,
675                         struct descriptor_buffer, list);
676         last = ctx->last;
677         while (last->branch_address != 0) {
678                 struct descriptor_buffer *old_desc = desc;
679                 address = le32_to_cpu(last->branch_address);
680                 z = address & 0xf;
681                 address &= ~0xf;
682
683                 /* If the branch address points to a buffer outside of the
684                  * current buffer, advance to the next buffer. */
685                 if (address < desc->buffer_bus ||
686                                 address >= desc->buffer_bus + desc->used)
687                         desc = list_entry(desc->list.next,
688                                         struct descriptor_buffer, list);
689                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
690                 last = find_branch_descriptor(d, z);
691
692                 if (!ctx->callback(ctx, d, last))
693                         break;
694
695                 if (old_desc != desc) {
696                         /* If we've advanced to the next buffer, move the
697                          * previous buffer to the free list. */
698                         unsigned long flags;
699                         old_desc->used = 0;
700                         spin_lock_irqsave(&ctx->ohci->lock, flags);
701                         list_move_tail(&old_desc->list, &ctx->buffer_list);
702                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
703                 }
704                 ctx->last = last;
705         }
706 }
707
708 /*
709  * Allocate a new buffer and add it to the list of free buffers for this
710  * context.  Must be called with ohci->lock held.
711  */
712 static int
713 context_add_buffer(struct context *ctx)
714 {
715         struct descriptor_buffer *desc;
716         dma_addr_t uninitialized_var(bus_addr);
717         int offset;
718
719         /*
720          * 16MB of descriptors should be far more than enough for any DMA
721          * program.  This will catch run-away userspace or DoS attacks.
722          */
723         if (ctx->total_allocation >= 16*1024*1024)
724                 return -ENOMEM;
725
726         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
727                         &bus_addr, GFP_ATOMIC);
728         if (!desc)
729                 return -ENOMEM;
730
731         offset = (void *)&desc->buffer - (void *)desc;
732         desc->buffer_size = PAGE_SIZE - offset;
733         desc->buffer_bus = bus_addr + offset;
734         desc->used = 0;
735
736         list_add_tail(&desc->list, &ctx->buffer_list);
737         ctx->total_allocation += PAGE_SIZE;
738
739         return 0;
740 }
741
742 static int
743 context_init(struct context *ctx, struct fw_ohci *ohci,
744              u32 regs, descriptor_callback_t callback)
745 {
746         ctx->ohci = ohci;
747         ctx->regs = regs;
748         ctx->total_allocation = 0;
749
750         INIT_LIST_HEAD(&ctx->buffer_list);
751         if (context_add_buffer(ctx) < 0)
752                 return -ENOMEM;
753
754         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
755                         struct descriptor_buffer, list);
756
757         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
758         ctx->callback = callback;
759
760         /*
761          * We put a dummy descriptor in the buffer that has a NULL
762          * branch address and looks like it's been sent.  That way we
763          * have a descriptor to append DMA programs to.
764          */
765         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
766         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
767         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
768         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
769         ctx->last = ctx->buffer_tail->buffer;
770         ctx->prev = ctx->buffer_tail->buffer;
771
772         return 0;
773 }
774
775 static void
776 context_release(struct context *ctx)
777 {
778         struct fw_card *card = &ctx->ohci->card;
779         struct descriptor_buffer *desc, *tmp;
780
781         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
782                 dma_free_coherent(card->device, PAGE_SIZE, desc,
783                         desc->buffer_bus -
784                         ((void *)&desc->buffer - (void *)desc));
785 }
786
787 /* Must be called with ohci->lock held */
788 static struct descriptor *
789 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
790 {
791         struct descriptor *d = NULL;
792         struct descriptor_buffer *desc = ctx->buffer_tail;
793
794         if (z * sizeof(*d) > desc->buffer_size)
795                 return NULL;
796
797         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
798                 /* No room for the descriptor in this buffer, so advance to the
799                  * next one. */
800
801                 if (desc->list.next == &ctx->buffer_list) {
802                         /* If there is no free buffer next in the list,
803                          * allocate one. */
804                         if (context_add_buffer(ctx) < 0)
805                                 return NULL;
806                 }
807                 desc = list_entry(desc->list.next,
808                                 struct descriptor_buffer, list);
809                 ctx->buffer_tail = desc;
810         }
811
812         d = desc->buffer + desc->used / sizeof(*d);
813         memset(d, 0, z * sizeof(*d));
814         *d_bus = desc->buffer_bus + desc->used;
815
816         return d;
817 }
818
819 static void context_run(struct context *ctx, u32 extra)
820 {
821         struct fw_ohci *ohci = ctx->ohci;
822
823         reg_write(ohci, COMMAND_PTR(ctx->regs),
824                   le32_to_cpu(ctx->last->branch_address));
825         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
826         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
827         flush_writes(ohci);
828 }
829
830 static void context_append(struct context *ctx,
831                            struct descriptor *d, int z, int extra)
832 {
833         dma_addr_t d_bus;
834         struct descriptor_buffer *desc = ctx->buffer_tail;
835
836         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
837
838         desc->used += (z + extra) * sizeof(*d);
839         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
840         ctx->prev = find_branch_descriptor(d, z);
841
842         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
843         flush_writes(ctx->ohci);
844 }
845
846 static void context_stop(struct context *ctx)
847 {
848         u32 reg;
849         int i;
850
851         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
852         flush_writes(ctx->ohci);
853
854         for (i = 0; i < 10; i++) {
855                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
856                 if ((reg & CONTEXT_ACTIVE) == 0)
857                         break;
858
859                 fw_notify("context_stop: still active (0x%08x)\n", reg);
860                 mdelay(1);
861         }
862 }
863
864 struct driver_data {
865         struct fw_packet *packet;
866 };
867
868 /*
869  * This function apppends a packet to the DMA queue for transmission.
870  * Must always be called with the ochi->lock held to ensure proper
871  * generation handling and locking around packet queue manipulation.
872  */
873 static int
874 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
875 {
876         struct fw_ohci *ohci = ctx->ohci;
877         dma_addr_t d_bus, uninitialized_var(payload_bus);
878         struct driver_data *driver_data;
879         struct descriptor *d, *last;
880         __le32 *header;
881         int z, tcode;
882         u32 reg;
883
884         d = context_get_descriptors(ctx, 4, &d_bus);
885         if (d == NULL) {
886                 packet->ack = RCODE_SEND_ERROR;
887                 return -1;
888         }
889
890         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
891         d[0].res_count = cpu_to_le16(packet->timestamp);
892
893         /*
894          * The DMA format for asyncronous link packets is different
895          * from the IEEE1394 layout, so shift the fields around
896          * accordingly.  If header_length is 8, it's a PHY packet, to
897          * which we need to prepend an extra quadlet.
898          */
899
900         header = (__le32 *) &d[1];
901         if (packet->header_length > 8) {
902                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
903                                         (packet->speed << 16));
904                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
905                                         (packet->header[0] & 0xffff0000));
906                 header[2] = cpu_to_le32(packet->header[2]);
907
908                 tcode = (packet->header[0] >> 4) & 0x0f;
909                 if (TCODE_IS_BLOCK_PACKET(tcode))
910                         header[3] = cpu_to_le32(packet->header[3]);
911                 else
912                         header[3] = (__force __le32) packet->header[3];
913
914                 d[0].req_count = cpu_to_le16(packet->header_length);
915         } else {
916                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
917                                         (packet->speed << 16));
918                 header[1] = cpu_to_le32(packet->header[0]);
919                 header[2] = cpu_to_le32(packet->header[1]);
920                 d[0].req_count = cpu_to_le16(12);
921         }
922
923         driver_data = (struct driver_data *) &d[3];
924         driver_data->packet = packet;
925         packet->driver_data = driver_data;
926
927         if (packet->payload_length > 0) {
928                 payload_bus =
929                         dma_map_single(ohci->card.device, packet->payload,
930                                        packet->payload_length, DMA_TO_DEVICE);
931                 if (dma_mapping_error(payload_bus)) {
932                         packet->ack = RCODE_SEND_ERROR;
933                         return -1;
934                 }
935
936                 d[2].req_count    = cpu_to_le16(packet->payload_length);
937                 d[2].data_address = cpu_to_le32(payload_bus);
938                 last = &d[2];
939                 z = 3;
940         } else {
941                 last = &d[0];
942                 z = 2;
943         }
944
945         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
946                                      DESCRIPTOR_IRQ_ALWAYS |
947                                      DESCRIPTOR_BRANCH_ALWAYS);
948
949         /* FIXME: Document how the locking works. */
950         if (ohci->generation != packet->generation) {
951                 if (packet->payload_length > 0)
952                         dma_unmap_single(ohci->card.device, payload_bus,
953                                          packet->payload_length, DMA_TO_DEVICE);
954                 packet->ack = RCODE_GENERATION;
955                 return -1;
956         }
957
958         context_append(ctx, d, z, 4 - z);
959
960         /* If the context isn't already running, start it up. */
961         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
962         if ((reg & CONTEXT_RUN) == 0)
963                 context_run(ctx, 0);
964
965         return 0;
966 }
967
968 static int handle_at_packet(struct context *context,
969                             struct descriptor *d,
970                             struct descriptor *last)
971 {
972         struct driver_data *driver_data;
973         struct fw_packet *packet;
974         struct fw_ohci *ohci = context->ohci;
975         dma_addr_t payload_bus;
976         int evt;
977
978         if (last->transfer_status == 0)
979                 /* This descriptor isn't done yet, stop iteration. */
980                 return 0;
981
982         driver_data = (struct driver_data *) &d[3];
983         packet = driver_data->packet;
984         if (packet == NULL)
985                 /* This packet was cancelled, just continue. */
986                 return 1;
987
988         payload_bus = le32_to_cpu(last->data_address);
989         if (payload_bus != 0)
990                 dma_unmap_single(ohci->card.device, payload_bus,
991                                  packet->payload_length, DMA_TO_DEVICE);
992
993         evt = le16_to_cpu(last->transfer_status) & 0x1f;
994         packet->timestamp = le16_to_cpu(last->res_count);
995
996         log_ar_at_event('T', packet->speed, packet->header, evt);
997
998         switch (evt) {
999         case OHCI1394_evt_timeout:
1000                 /* Async response transmit timed out. */
1001                 packet->ack = RCODE_CANCELLED;
1002                 break;
1003
1004         case OHCI1394_evt_flushed:
1005                 /*
1006                  * The packet was flushed should give same error as
1007                  * when we try to use a stale generation count.
1008                  */
1009                 packet->ack = RCODE_GENERATION;
1010                 break;
1011
1012         case OHCI1394_evt_missing_ack:
1013                 /*
1014                  * Using a valid (current) generation count, but the
1015                  * node is not on the bus or not sending acks.
1016                  */
1017                 packet->ack = RCODE_NO_ACK;
1018                 break;
1019
1020         case ACK_COMPLETE + 0x10:
1021         case ACK_PENDING + 0x10:
1022         case ACK_BUSY_X + 0x10:
1023         case ACK_BUSY_A + 0x10:
1024         case ACK_BUSY_B + 0x10:
1025         case ACK_DATA_ERROR + 0x10:
1026         case ACK_TYPE_ERROR + 0x10:
1027                 packet->ack = evt - 0x10;
1028                 break;
1029
1030         default:
1031                 packet->ack = RCODE_SEND_ERROR;
1032                 break;
1033         }
1034
1035         packet->callback(packet, &ohci->card, packet->ack);
1036
1037         return 1;
1038 }
1039
1040 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1041 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1042 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1043 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1044 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1045
1046 static void
1047 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1048 {
1049         struct fw_packet response;
1050         int tcode, length, i;
1051
1052         tcode = HEADER_GET_TCODE(packet->header[0]);
1053         if (TCODE_IS_BLOCK_PACKET(tcode))
1054                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1055         else
1056                 length = 4;
1057
1058         i = csr - CSR_CONFIG_ROM;
1059         if (i + length > CONFIG_ROM_SIZE) {
1060                 fw_fill_response(&response, packet->header,
1061                                  RCODE_ADDRESS_ERROR, NULL, 0);
1062         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1063                 fw_fill_response(&response, packet->header,
1064                                  RCODE_TYPE_ERROR, NULL, 0);
1065         } else {
1066                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1067                                  (void *) ohci->config_rom + i, length);
1068         }
1069
1070         fw_core_handle_response(&ohci->card, &response);
1071 }
1072
1073 static void
1074 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1075 {
1076         struct fw_packet response;
1077         int tcode, length, ext_tcode, sel;
1078         __be32 *payload, lock_old;
1079         u32 lock_arg, lock_data;
1080
1081         tcode = HEADER_GET_TCODE(packet->header[0]);
1082         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1083         payload = packet->payload;
1084         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1085
1086         if (tcode == TCODE_LOCK_REQUEST &&
1087             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1088                 lock_arg = be32_to_cpu(payload[0]);
1089                 lock_data = be32_to_cpu(payload[1]);
1090         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1091                 lock_arg = 0;
1092                 lock_data = 0;
1093         } else {
1094                 fw_fill_response(&response, packet->header,
1095                                  RCODE_TYPE_ERROR, NULL, 0);
1096                 goto out;
1097         }
1098
1099         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1100         reg_write(ohci, OHCI1394_CSRData, lock_data);
1101         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1102         reg_write(ohci, OHCI1394_CSRControl, sel);
1103
1104         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1105                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1106         else
1107                 fw_notify("swap not done yet\n");
1108
1109         fw_fill_response(&response, packet->header,
1110                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1111  out:
1112         fw_core_handle_response(&ohci->card, &response);
1113 }
1114
1115 static void
1116 handle_local_request(struct context *ctx, struct fw_packet *packet)
1117 {
1118         u64 offset;
1119         u32 csr;
1120
1121         if (ctx == &ctx->ohci->at_request_ctx) {
1122                 packet->ack = ACK_PENDING;
1123                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1124         }
1125
1126         offset =
1127                 ((unsigned long long)
1128                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1129                 packet->header[2];
1130         csr = offset - CSR_REGISTER_BASE;
1131
1132         /* Handle config rom reads. */
1133         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1134                 handle_local_rom(ctx->ohci, packet, csr);
1135         else switch (csr) {
1136         case CSR_BUS_MANAGER_ID:
1137         case CSR_BANDWIDTH_AVAILABLE:
1138         case CSR_CHANNELS_AVAILABLE_HI:
1139         case CSR_CHANNELS_AVAILABLE_LO:
1140                 handle_local_lock(ctx->ohci, packet, csr);
1141                 break;
1142         default:
1143                 if (ctx == &ctx->ohci->at_request_ctx)
1144                         fw_core_handle_request(&ctx->ohci->card, packet);
1145                 else
1146                         fw_core_handle_response(&ctx->ohci->card, packet);
1147                 break;
1148         }
1149
1150         if (ctx == &ctx->ohci->at_response_ctx) {
1151                 packet->ack = ACK_COMPLETE;
1152                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1153         }
1154 }
1155
1156 static void
1157 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1158 {
1159         unsigned long flags;
1160         int retval;
1161
1162         spin_lock_irqsave(&ctx->ohci->lock, flags);
1163
1164         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1165             ctx->ohci->generation == packet->generation) {
1166                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1167                 handle_local_request(ctx, packet);
1168                 return;
1169         }
1170
1171         retval = at_context_queue_packet(ctx, packet);
1172         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1173
1174         if (retval < 0)
1175                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1176
1177 }
1178
1179 static void bus_reset_tasklet(unsigned long data)
1180 {
1181         struct fw_ohci *ohci = (struct fw_ohci *)data;
1182         int self_id_count, i, j, reg;
1183         int generation, new_generation;
1184         unsigned long flags;
1185         void *free_rom = NULL;
1186         dma_addr_t free_rom_bus = 0;
1187
1188         reg = reg_read(ohci, OHCI1394_NodeID);
1189         if (!(reg & OHCI1394_NodeID_idValid)) {
1190                 fw_notify("node ID not valid, new bus reset in progress\n");
1191                 return;
1192         }
1193         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1194                 fw_notify("malconfigured bus\n");
1195                 return;
1196         }
1197         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1198                                OHCI1394_NodeID_nodeNumber);
1199
1200         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1201         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1202                 fw_notify("inconsistent self IDs\n");
1203                 return;
1204         }
1205         /*
1206          * The count in the SelfIDCount register is the number of
1207          * bytes in the self ID receive buffer.  Since we also receive
1208          * the inverted quadlets and a header quadlet, we shift one
1209          * bit extra to get the actual number of self IDs.
1210          */
1211         self_id_count = (reg >> 3) & 0x3ff;
1212         if (self_id_count == 0) {
1213                 fw_notify("inconsistent self IDs\n");
1214                 return;
1215         }
1216         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1217         rmb();
1218
1219         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1220                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1221                         fw_notify("inconsistent self IDs\n");
1222                         return;
1223                 }
1224                 ohci->self_id_buffer[j] =
1225                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1226         }
1227         rmb();
1228
1229         /*
1230          * Check the consistency of the self IDs we just read.  The
1231          * problem we face is that a new bus reset can start while we
1232          * read out the self IDs from the DMA buffer. If this happens,
1233          * the DMA buffer will be overwritten with new self IDs and we
1234          * will read out inconsistent data.  The OHCI specification
1235          * (section 11.2) recommends a technique similar to
1236          * linux/seqlock.h, where we remember the generation of the
1237          * self IDs in the buffer before reading them out and compare
1238          * it to the current generation after reading them out.  If
1239          * the two generations match we know we have a consistent set
1240          * of self IDs.
1241          */
1242
1243         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1244         if (new_generation != generation) {
1245                 fw_notify("recursive bus reset detected, "
1246                           "discarding self ids\n");
1247                 return;
1248         }
1249
1250         /* FIXME: Document how the locking works. */
1251         spin_lock_irqsave(&ohci->lock, flags);
1252
1253         ohci->generation = generation;
1254         context_stop(&ohci->at_request_ctx);
1255         context_stop(&ohci->at_response_ctx);
1256         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1257
1258         /*
1259          * This next bit is unrelated to the AT context stuff but we
1260          * have to do it under the spinlock also.  If a new config rom
1261          * was set up before this reset, the old one is now no longer
1262          * in use and we can free it. Update the config rom pointers
1263          * to point to the current config rom and clear the
1264          * next_config_rom pointer so a new udpate can take place.
1265          */
1266
1267         if (ohci->next_config_rom != NULL) {
1268                 if (ohci->next_config_rom != ohci->config_rom) {
1269                         free_rom      = ohci->config_rom;
1270                         free_rom_bus  = ohci->config_rom_bus;
1271                 }
1272                 ohci->config_rom      = ohci->next_config_rom;
1273                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1274                 ohci->next_config_rom = NULL;
1275
1276                 /*
1277                  * Restore config_rom image and manually update
1278                  * config_rom registers.  Writing the header quadlet
1279                  * will indicate that the config rom is ready, so we
1280                  * do that last.
1281                  */
1282                 reg_write(ohci, OHCI1394_BusOptions,
1283                           be32_to_cpu(ohci->config_rom[2]));
1284                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1285                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1286         }
1287
1288 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1289         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1290         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1291 #endif
1292
1293         spin_unlock_irqrestore(&ohci->lock, flags);
1294
1295         if (free_rom)
1296                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1297                                   free_rom, free_rom_bus);
1298
1299         log_selfids(generation, self_id_count, ohci->self_id_buffer);
1300
1301         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1302                                  self_id_count, ohci->self_id_buffer);
1303 }
1304
1305 static irqreturn_t irq_handler(int irq, void *data)
1306 {
1307         struct fw_ohci *ohci = data;
1308         u32 event, iso_event, cycle_time;
1309         int i;
1310
1311         event = reg_read(ohci, OHCI1394_IntEventClear);
1312
1313         if (!event || !~event)
1314                 return IRQ_NONE;
1315
1316         reg_write(ohci, OHCI1394_IntEventClear, event);
1317         log_irqs(event);
1318
1319         if (event & OHCI1394_selfIDComplete)
1320                 tasklet_schedule(&ohci->bus_reset_tasklet);
1321
1322         if (event & OHCI1394_RQPkt)
1323                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1324
1325         if (event & OHCI1394_RSPkt)
1326                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1327
1328         if (event & OHCI1394_reqTxComplete)
1329                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1330
1331         if (event & OHCI1394_respTxComplete)
1332                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1333
1334         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1335         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1336
1337         while (iso_event) {
1338                 i = ffs(iso_event) - 1;
1339                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1340                 iso_event &= ~(1 << i);
1341         }
1342
1343         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1344         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1345
1346         while (iso_event) {
1347                 i = ffs(iso_event) - 1;
1348                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1349                 iso_event &= ~(1 << i);
1350         }
1351
1352         if (unlikely(event & OHCI1394_postedWriteErr))
1353                 fw_error("PCI posted write error\n");
1354
1355         if (unlikely(event & OHCI1394_cycleTooLong)) {
1356                 if (printk_ratelimit())
1357                         fw_notify("isochronous cycle too long\n");
1358                 reg_write(ohci, OHCI1394_LinkControlSet,
1359                           OHCI1394_LinkControl_cycleMaster);
1360         }
1361
1362         if (event & OHCI1394_cycle64Seconds) {
1363                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1364                 if ((cycle_time & 0x80000000) == 0)
1365                         ohci->bus_seconds++;
1366         }
1367
1368         return IRQ_HANDLED;
1369 }
1370
1371 static int software_reset(struct fw_ohci *ohci)
1372 {
1373         int i;
1374
1375         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1376
1377         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1378                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1379                      OHCI1394_HCControl_softReset) == 0)
1380                         return 0;
1381                 msleep(1);
1382         }
1383
1384         return -EBUSY;
1385 }
1386
1387 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1388 {
1389         struct fw_ohci *ohci = fw_ohci(card);
1390         struct pci_dev *dev = to_pci_dev(card->device);
1391
1392         if (software_reset(ohci)) {
1393                 fw_error("Failed to reset ohci card.\n");
1394                 return -EBUSY;
1395         }
1396
1397         /*
1398          * Now enable LPS, which we need in order to start accessing
1399          * most of the registers.  In fact, on some cards (ALI M5251),
1400          * accessing registers in the SClk domain without LPS enabled
1401          * will lock up the machine.  Wait 50msec to make sure we have
1402          * full link enabled.
1403          */
1404         reg_write(ohci, OHCI1394_HCControlSet,
1405                   OHCI1394_HCControl_LPS |
1406                   OHCI1394_HCControl_postedWriteEnable);
1407         flush_writes(ohci);
1408         msleep(50);
1409
1410         reg_write(ohci, OHCI1394_HCControlClear,
1411                   OHCI1394_HCControl_noByteSwapData);
1412
1413         reg_write(ohci, OHCI1394_LinkControlSet,
1414                   OHCI1394_LinkControl_rcvSelfID |
1415                   OHCI1394_LinkControl_cycleTimerEnable |
1416                   OHCI1394_LinkControl_cycleMaster);
1417
1418         reg_write(ohci, OHCI1394_ATRetries,
1419                   OHCI1394_MAX_AT_REQ_RETRIES |
1420                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1421                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1422
1423         ar_context_run(&ohci->ar_request_ctx);
1424         ar_context_run(&ohci->ar_response_ctx);
1425
1426         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1427         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1428         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1429         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1430         reg_write(ohci, OHCI1394_IntMaskSet,
1431                   OHCI1394_selfIDComplete |
1432                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1433                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1434                   OHCI1394_isochRx | OHCI1394_isochTx |
1435                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1436                   OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1437
1438         /* Activate link_on bit and contender bit in our self ID packets.*/
1439         if (ohci_update_phy_reg(card, 4, 0,
1440                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1441                 return -EIO;
1442
1443         /*
1444          * When the link is not yet enabled, the atomic config rom
1445          * update mechanism described below in ohci_set_config_rom()
1446          * is not active.  We have to update ConfigRomHeader and
1447          * BusOptions manually, and the write to ConfigROMmap takes
1448          * effect immediately.  We tie this to the enabling of the
1449          * link, so we have a valid config rom before enabling - the
1450          * OHCI requires that ConfigROMhdr and BusOptions have valid
1451          * values before enabling.
1452          *
1453          * However, when the ConfigROMmap is written, some controllers
1454          * always read back quadlets 0 and 2 from the config rom to
1455          * the ConfigRomHeader and BusOptions registers on bus reset.
1456          * They shouldn't do that in this initial case where the link
1457          * isn't enabled.  This means we have to use the same
1458          * workaround here, setting the bus header to 0 and then write
1459          * the right values in the bus reset tasklet.
1460          */
1461
1462         if (config_rom) {
1463                 ohci->next_config_rom =
1464                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1465                                            &ohci->next_config_rom_bus,
1466                                            GFP_KERNEL);
1467                 if (ohci->next_config_rom == NULL)
1468                         return -ENOMEM;
1469
1470                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1471                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1472         } else {
1473                 /*
1474                  * In the suspend case, config_rom is NULL, which
1475                  * means that we just reuse the old config rom.
1476                  */
1477                 ohci->next_config_rom = ohci->config_rom;
1478                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1479         }
1480
1481         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1482         ohci->next_config_rom[0] = 0;
1483         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1484         reg_write(ohci, OHCI1394_BusOptions,
1485                   be32_to_cpu(ohci->next_config_rom[2]));
1486         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1487
1488         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1489
1490         if (request_irq(dev->irq, irq_handler,
1491                         IRQF_SHARED, ohci_driver_name, ohci)) {
1492                 fw_error("Failed to allocate shared interrupt %d.\n",
1493                          dev->irq);
1494                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1495                                   ohci->config_rom, ohci->config_rom_bus);
1496                 return -EIO;
1497         }
1498
1499         reg_write(ohci, OHCI1394_HCControlSet,
1500                   OHCI1394_HCControl_linkEnable |
1501                   OHCI1394_HCControl_BIBimageValid);
1502         flush_writes(ohci);
1503
1504         /*
1505          * We are ready to go, initiate bus reset to finish the
1506          * initialization.
1507          */
1508
1509         fw_core_initiate_bus_reset(&ohci->card, 1);
1510
1511         return 0;
1512 }
1513
1514 static int
1515 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1516 {
1517         struct fw_ohci *ohci;
1518         unsigned long flags;
1519         int retval = -EBUSY;
1520         __be32 *next_config_rom;
1521         dma_addr_t uninitialized_var(next_config_rom_bus);
1522
1523         ohci = fw_ohci(card);
1524
1525         /*
1526          * When the OHCI controller is enabled, the config rom update
1527          * mechanism is a bit tricky, but easy enough to use.  See
1528          * section 5.5.6 in the OHCI specification.
1529          *
1530          * The OHCI controller caches the new config rom address in a
1531          * shadow register (ConfigROMmapNext) and needs a bus reset
1532          * for the changes to take place.  When the bus reset is
1533          * detected, the controller loads the new values for the
1534          * ConfigRomHeader and BusOptions registers from the specified
1535          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1536          * shadow register. All automatically and atomically.
1537          *
1538          * Now, there's a twist to this story.  The automatic load of
1539          * ConfigRomHeader and BusOptions doesn't honor the
1540          * noByteSwapData bit, so with a be32 config rom, the
1541          * controller will load be32 values in to these registers
1542          * during the atomic update, even on litte endian
1543          * architectures.  The workaround we use is to put a 0 in the
1544          * header quadlet; 0 is endian agnostic and means that the
1545          * config rom isn't ready yet.  In the bus reset tasklet we
1546          * then set up the real values for the two registers.
1547          *
1548          * We use ohci->lock to avoid racing with the code that sets
1549          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1550          */
1551
1552         next_config_rom =
1553                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1554                                    &next_config_rom_bus, GFP_KERNEL);
1555         if (next_config_rom == NULL)
1556                 return -ENOMEM;
1557
1558         spin_lock_irqsave(&ohci->lock, flags);
1559
1560         if (ohci->next_config_rom == NULL) {
1561                 ohci->next_config_rom = next_config_rom;
1562                 ohci->next_config_rom_bus = next_config_rom_bus;
1563
1564                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1565                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1566                                   length * 4);
1567
1568                 ohci->next_header = config_rom[0];
1569                 ohci->next_config_rom[0] = 0;
1570
1571                 reg_write(ohci, OHCI1394_ConfigROMmap,
1572                           ohci->next_config_rom_bus);
1573                 retval = 0;
1574         }
1575
1576         spin_unlock_irqrestore(&ohci->lock, flags);
1577
1578         /*
1579          * Now initiate a bus reset to have the changes take
1580          * effect. We clean up the old config rom memory and DMA
1581          * mappings in the bus reset tasklet, since the OHCI
1582          * controller could need to access it before the bus reset
1583          * takes effect.
1584          */
1585         if (retval == 0)
1586                 fw_core_initiate_bus_reset(&ohci->card, 1);
1587         else
1588                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1589                                   next_config_rom, next_config_rom_bus);
1590
1591         return retval;
1592 }
1593
1594 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1595 {
1596         struct fw_ohci *ohci = fw_ohci(card);
1597
1598         at_context_transmit(&ohci->at_request_ctx, packet);
1599 }
1600
1601 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1602 {
1603         struct fw_ohci *ohci = fw_ohci(card);
1604
1605         at_context_transmit(&ohci->at_response_ctx, packet);
1606 }
1607
1608 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1609 {
1610         struct fw_ohci *ohci = fw_ohci(card);
1611         struct context *ctx = &ohci->at_request_ctx;
1612         struct driver_data *driver_data = packet->driver_data;
1613         int retval = -ENOENT;
1614
1615         tasklet_disable(&ctx->tasklet);
1616
1617         if (packet->ack != 0)
1618                 goto out;
1619
1620         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1621         driver_data->packet = NULL;
1622         packet->ack = RCODE_CANCELLED;
1623         packet->callback(packet, &ohci->card, packet->ack);
1624         retval = 0;
1625
1626  out:
1627         tasklet_enable(&ctx->tasklet);
1628
1629         return retval;
1630 }
1631
1632 static int
1633 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1634 {
1635 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1636         return 0;
1637 #else
1638         struct fw_ohci *ohci = fw_ohci(card);
1639         unsigned long flags;
1640         int n, retval = 0;
1641
1642         /*
1643          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1644          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1645          */
1646
1647         spin_lock_irqsave(&ohci->lock, flags);
1648
1649         if (ohci->generation != generation) {
1650                 retval = -ESTALE;
1651                 goto out;
1652         }
1653
1654         /*
1655          * Note, if the node ID contains a non-local bus ID, physical DMA is
1656          * enabled for _all_ nodes on remote buses.
1657          */
1658
1659         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1660         if (n < 32)
1661                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1662         else
1663                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1664
1665         flush_writes(ohci);
1666  out:
1667         spin_unlock_irqrestore(&ohci->lock, flags);
1668         return retval;
1669 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1670 }
1671
1672 static u64
1673 ohci_get_bus_time(struct fw_card *card)
1674 {
1675         struct fw_ohci *ohci = fw_ohci(card);
1676         u32 cycle_time;
1677         u64 bus_time;
1678
1679         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1680         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1681
1682         return bus_time;
1683 }
1684
1685 static int handle_ir_dualbuffer_packet(struct context *context,
1686                                        struct descriptor *d,
1687                                        struct descriptor *last)
1688 {
1689         struct iso_context *ctx =
1690                 container_of(context, struct iso_context, context);
1691         struct db_descriptor *db = (struct db_descriptor *) d;
1692         __le32 *ir_header;
1693         size_t header_length;
1694         void *p, *end;
1695         int i;
1696
1697         if (db->first_res_count != 0 && db->second_res_count != 0) {
1698                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1699                         /* This descriptor isn't done yet, stop iteration. */
1700                         return 0;
1701                 }
1702                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1703         }
1704
1705         header_length = le16_to_cpu(db->first_req_count) -
1706                 le16_to_cpu(db->first_res_count);
1707
1708         i = ctx->header_length;
1709         p = db + 1;
1710         end = p + header_length;
1711         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1712                 /*
1713                  * The iso header is byteswapped to little endian by
1714                  * the controller, but the remaining header quadlets
1715                  * are big endian.  We want to present all the headers
1716                  * as big endian, so we have to swap the first
1717                  * quadlet.
1718                  */
1719                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1720                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1721                 i += ctx->base.header_size;
1722                 ctx->excess_bytes +=
1723                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1724                 p += ctx->base.header_size + 4;
1725         }
1726         ctx->header_length = i;
1727
1728         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1729                 le16_to_cpu(db->second_res_count);
1730
1731         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1732                 ir_header = (__le32 *) (db + 1);
1733                 ctx->base.callback(&ctx->base,
1734                                    le32_to_cpu(ir_header[0]) & 0xffff,
1735                                    ctx->header_length, ctx->header,
1736                                    ctx->base.callback_data);
1737                 ctx->header_length = 0;
1738         }
1739
1740         return 1;
1741 }
1742
1743 static int handle_ir_packet_per_buffer(struct context *context,
1744                                        struct descriptor *d,
1745                                        struct descriptor *last)
1746 {
1747         struct iso_context *ctx =
1748                 container_of(context, struct iso_context, context);
1749         struct descriptor *pd;
1750         __le32 *ir_header;
1751         void *p;
1752         int i;
1753
1754         for (pd = d; pd <= last; pd++) {
1755                 if (pd->transfer_status)
1756                         break;
1757         }
1758         if (pd > last)
1759                 /* Descriptor(s) not done yet, stop iteration */
1760                 return 0;
1761
1762         i   = ctx->header_length;
1763         p   = last + 1;
1764
1765         if (ctx->base.header_size > 0 &&
1766                         i + ctx->base.header_size <= PAGE_SIZE) {
1767                 /*
1768                  * The iso header is byteswapped to little endian by
1769                  * the controller, but the remaining header quadlets
1770                  * are big endian.  We want to present all the headers
1771                  * as big endian, so we have to swap the first quadlet.
1772                  */
1773                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1774                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1775                 ctx->header_length += ctx->base.header_size;
1776         }
1777
1778         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1779                 ir_header = (__le32 *) p;
1780                 ctx->base.callback(&ctx->base,
1781                                    le32_to_cpu(ir_header[0]) & 0xffff,
1782                                    ctx->header_length, ctx->header,
1783                                    ctx->base.callback_data);
1784                 ctx->header_length = 0;
1785         }
1786
1787         return 1;
1788 }
1789
1790 static int handle_it_packet(struct context *context,
1791                             struct descriptor *d,
1792                             struct descriptor *last)
1793 {
1794         struct iso_context *ctx =
1795                 container_of(context, struct iso_context, context);
1796
1797         if (last->transfer_status == 0)
1798                 /* This descriptor isn't done yet, stop iteration. */
1799                 return 0;
1800
1801         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1802                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1803                                    0, NULL, ctx->base.callback_data);
1804
1805         return 1;
1806 }
1807
1808 static struct fw_iso_context *
1809 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1810 {
1811         struct fw_ohci *ohci = fw_ohci(card);
1812         struct iso_context *ctx, *list;
1813         descriptor_callback_t callback;
1814         u32 *mask, regs;
1815         unsigned long flags;
1816         int index, retval = -ENOMEM;
1817
1818         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1819                 mask = &ohci->it_context_mask;
1820                 list = ohci->it_context_list;
1821                 callback = handle_it_packet;
1822         } else {
1823                 mask = &ohci->ir_context_mask;
1824                 list = ohci->ir_context_list;
1825                 if (ohci->version >= OHCI_VERSION_1_1)
1826                         callback = handle_ir_dualbuffer_packet;
1827                 else
1828                         callback = handle_ir_packet_per_buffer;
1829         }
1830
1831         spin_lock_irqsave(&ohci->lock, flags);
1832         index = ffs(*mask) - 1;
1833         if (index >= 0)
1834                 *mask &= ~(1 << index);
1835         spin_unlock_irqrestore(&ohci->lock, flags);
1836
1837         if (index < 0)
1838                 return ERR_PTR(-EBUSY);
1839
1840         if (type == FW_ISO_CONTEXT_TRANSMIT)
1841                 regs = OHCI1394_IsoXmitContextBase(index);
1842         else
1843                 regs = OHCI1394_IsoRcvContextBase(index);
1844
1845         ctx = &list[index];
1846         memset(ctx, 0, sizeof(*ctx));
1847         ctx->header_length = 0;
1848         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1849         if (ctx->header == NULL)
1850                 goto out;
1851
1852         retval = context_init(&ctx->context, ohci, regs, callback);
1853         if (retval < 0)
1854                 goto out_with_header;
1855
1856         return &ctx->base;
1857
1858  out_with_header:
1859         free_page((unsigned long)ctx->header);
1860  out:
1861         spin_lock_irqsave(&ohci->lock, flags);
1862         *mask |= 1 << index;
1863         spin_unlock_irqrestore(&ohci->lock, flags);
1864
1865         return ERR_PTR(retval);
1866 }
1867
1868 static int ohci_start_iso(struct fw_iso_context *base,
1869                           s32 cycle, u32 sync, u32 tags)
1870 {
1871         struct iso_context *ctx = container_of(base, struct iso_context, base);
1872         struct fw_ohci *ohci = ctx->context.ohci;
1873         u32 control, match;
1874         int index;
1875
1876         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1877                 index = ctx - ohci->it_context_list;
1878                 match = 0;
1879                 if (cycle >= 0)
1880                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1881                                 (cycle & 0x7fff) << 16;
1882
1883                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1884                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1885                 context_run(&ctx->context, match);
1886         } else {
1887                 index = ctx - ohci->ir_context_list;
1888                 control = IR_CONTEXT_ISOCH_HEADER;
1889                 if (ohci->version >= OHCI_VERSION_1_1)
1890                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1891                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1892                 if (cycle >= 0) {
1893                         match |= (cycle & 0x07fff) << 12;
1894                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1895                 }
1896
1897                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1898                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1899                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1900                 context_run(&ctx->context, control);
1901         }
1902
1903         return 0;
1904 }
1905
1906 static int ohci_stop_iso(struct fw_iso_context *base)
1907 {
1908         struct fw_ohci *ohci = fw_ohci(base->card);
1909         struct iso_context *ctx = container_of(base, struct iso_context, base);
1910         int index;
1911
1912         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1913                 index = ctx - ohci->it_context_list;
1914                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1915         } else {
1916                 index = ctx - ohci->ir_context_list;
1917                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1918         }
1919         flush_writes(ohci);
1920         context_stop(&ctx->context);
1921
1922         return 0;
1923 }
1924
1925 static void ohci_free_iso_context(struct fw_iso_context *base)
1926 {
1927         struct fw_ohci *ohci = fw_ohci(base->card);
1928         struct iso_context *ctx = container_of(base, struct iso_context, base);
1929         unsigned long flags;
1930         int index;
1931
1932         ohci_stop_iso(base);
1933         context_release(&ctx->context);
1934         free_page((unsigned long)ctx->header);
1935
1936         spin_lock_irqsave(&ohci->lock, flags);
1937
1938         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1939                 index = ctx - ohci->it_context_list;
1940                 ohci->it_context_mask |= 1 << index;
1941         } else {
1942                 index = ctx - ohci->ir_context_list;
1943                 ohci->ir_context_mask |= 1 << index;
1944         }
1945
1946         spin_unlock_irqrestore(&ohci->lock, flags);
1947 }
1948
1949 static int
1950 ohci_queue_iso_transmit(struct fw_iso_context *base,
1951                         struct fw_iso_packet *packet,
1952                         struct fw_iso_buffer *buffer,
1953                         unsigned long payload)
1954 {
1955         struct iso_context *ctx = container_of(base, struct iso_context, base);
1956         struct descriptor *d, *last, *pd;
1957         struct fw_iso_packet *p;
1958         __le32 *header;
1959         dma_addr_t d_bus, page_bus;
1960         u32 z, header_z, payload_z, irq;
1961         u32 payload_index, payload_end_index, next_page_index;
1962         int page, end_page, i, length, offset;
1963
1964         /*
1965          * FIXME: Cycle lost behavior should be configurable: lose
1966          * packet, retransmit or terminate..
1967          */
1968
1969         p = packet;
1970         payload_index = payload;
1971
1972         if (p->skip)
1973                 z = 1;
1974         else
1975                 z = 2;
1976         if (p->header_length > 0)
1977                 z++;
1978
1979         /* Determine the first page the payload isn't contained in. */
1980         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1981         if (p->payload_length > 0)
1982                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1983         else
1984                 payload_z = 0;
1985
1986         z += payload_z;
1987
1988         /* Get header size in number of descriptors. */
1989         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1990
1991         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1992         if (d == NULL)
1993                 return -ENOMEM;
1994
1995         if (!p->skip) {
1996                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1997                 d[0].req_count = cpu_to_le16(8);
1998
1999                 header = (__le32 *) &d[1];
2000                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2001                                         IT_HEADER_TAG(p->tag) |
2002                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2003                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2004                                         IT_HEADER_SPEED(ctx->base.speed));
2005                 header[1] =
2006                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2007                                                           p->payload_length));
2008         }
2009
2010         if (p->header_length > 0) {
2011                 d[2].req_count    = cpu_to_le16(p->header_length);
2012                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2013                 memcpy(&d[z], p->header, p->header_length);
2014         }
2015
2016         pd = d + z - payload_z;
2017         payload_end_index = payload_index + p->payload_length;
2018         for (i = 0; i < payload_z; i++) {
2019                 page               = payload_index >> PAGE_SHIFT;
2020                 offset             = payload_index & ~PAGE_MASK;
2021                 next_page_index    = (page + 1) << PAGE_SHIFT;
2022                 length             =
2023                         min(next_page_index, payload_end_index) - payload_index;
2024                 pd[i].req_count    = cpu_to_le16(length);
2025
2026                 page_bus = page_private(buffer->pages[page]);
2027                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2028
2029                 payload_index += length;
2030         }
2031
2032         if (p->interrupt)
2033                 irq = DESCRIPTOR_IRQ_ALWAYS;
2034         else
2035                 irq = DESCRIPTOR_NO_IRQ;
2036
2037         last = z == 2 ? d : d + z - 1;
2038         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2039                                      DESCRIPTOR_STATUS |
2040                                      DESCRIPTOR_BRANCH_ALWAYS |
2041                                      irq);
2042
2043         context_append(&ctx->context, d, z, header_z);
2044
2045         return 0;
2046 }
2047
2048 static int
2049 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2050                                   struct fw_iso_packet *packet,
2051                                   struct fw_iso_buffer *buffer,
2052                                   unsigned long payload)
2053 {
2054         struct iso_context *ctx = container_of(base, struct iso_context, base);
2055         struct db_descriptor *db = NULL;
2056         struct descriptor *d;
2057         struct fw_iso_packet *p;
2058         dma_addr_t d_bus, page_bus;
2059         u32 z, header_z, length, rest;
2060         int page, offset, packet_count, header_size;
2061
2062         /*
2063          * FIXME: Cycle lost behavior should be configurable: lose
2064          * packet, retransmit or terminate..
2065          */
2066
2067         p = packet;
2068         z = 2;
2069
2070         /*
2071          * The OHCI controller puts the status word in the header
2072          * buffer too, so we need 4 extra bytes per packet.
2073          */
2074         packet_count = p->header_length / ctx->base.header_size;
2075         header_size = packet_count * (ctx->base.header_size + 4);
2076
2077         /* Get header size in number of descriptors. */
2078         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2079         page     = payload >> PAGE_SHIFT;
2080         offset   = payload & ~PAGE_MASK;
2081         rest     = p->payload_length;
2082
2083         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2084         while (rest > 0) {
2085                 d = context_get_descriptors(&ctx->context,
2086                                             z + header_z, &d_bus);
2087                 if (d == NULL)
2088                         return -ENOMEM;
2089
2090                 db = (struct db_descriptor *) d;
2091                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2092                                           DESCRIPTOR_BRANCH_ALWAYS);
2093                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2094                 if (p->skip && rest == p->payload_length) {
2095                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2096                         db->first_req_count = db->first_size;
2097                 } else {
2098                         db->first_req_count = cpu_to_le16(header_size);
2099                 }
2100                 db->first_res_count = db->first_req_count;
2101                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2102
2103                 if (p->skip && rest == p->payload_length)
2104                         length = 4;
2105                 else if (offset + rest < PAGE_SIZE)
2106                         length = rest;
2107                 else
2108                         length = PAGE_SIZE - offset;
2109
2110                 db->second_req_count = cpu_to_le16(length);
2111                 db->second_res_count = db->second_req_count;
2112                 page_bus = page_private(buffer->pages[page]);
2113                 db->second_buffer = cpu_to_le32(page_bus + offset);
2114
2115                 if (p->interrupt && length == rest)
2116                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2117
2118                 context_append(&ctx->context, d, z, header_z);
2119                 offset = (offset + length) & ~PAGE_MASK;
2120                 rest -= length;
2121                 if (offset == 0)
2122                         page++;
2123         }
2124
2125         return 0;
2126 }
2127
2128 static int
2129 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2130                                          struct fw_iso_packet *packet,
2131                                          struct fw_iso_buffer *buffer,
2132                                          unsigned long payload)
2133 {
2134         struct iso_context *ctx = container_of(base, struct iso_context, base);
2135         struct descriptor *d = NULL, *pd = NULL;
2136         struct fw_iso_packet *p = packet;
2137         dma_addr_t d_bus, page_bus;
2138         u32 z, header_z, rest;
2139         int i, j, length;
2140         int page, offset, packet_count, header_size, payload_per_buffer;
2141
2142         /*
2143          * The OHCI controller puts the status word in the
2144          * buffer too, so we need 4 extra bytes per packet.
2145          */
2146         packet_count = p->header_length / ctx->base.header_size;
2147         header_size  = ctx->base.header_size + 4;
2148
2149         /* Get header size in number of descriptors. */
2150         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2151         page     = payload >> PAGE_SHIFT;
2152         offset   = payload & ~PAGE_MASK;
2153         payload_per_buffer = p->payload_length / packet_count;
2154
2155         for (i = 0; i < packet_count; i++) {
2156                 /* d points to the header descriptor */
2157                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2158                 d = context_get_descriptors(&ctx->context,
2159                                 z + header_z, &d_bus);
2160                 if (d == NULL)
2161                         return -ENOMEM;
2162
2163                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2164                                               DESCRIPTOR_INPUT_MORE);
2165                 if (p->skip && i == 0)
2166                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2167                 d->req_count    = cpu_to_le16(header_size);
2168                 d->res_count    = d->req_count;
2169                 d->transfer_status = 0;
2170                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2171
2172                 rest = payload_per_buffer;
2173                 for (j = 1; j < z; j++) {
2174                         pd = d + j;
2175                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2176                                                   DESCRIPTOR_INPUT_MORE);
2177
2178                         if (offset + rest < PAGE_SIZE)
2179                                 length = rest;
2180                         else
2181                                 length = PAGE_SIZE - offset;
2182                         pd->req_count = cpu_to_le16(length);
2183                         pd->res_count = pd->req_count;
2184                         pd->transfer_status = 0;
2185
2186                         page_bus = page_private(buffer->pages[page]);
2187                         pd->data_address = cpu_to_le32(page_bus + offset);
2188
2189                         offset = (offset + length) & ~PAGE_MASK;
2190                         rest -= length;
2191                         if (offset == 0)
2192                                 page++;
2193                 }
2194                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2195                                           DESCRIPTOR_INPUT_LAST |
2196                                           DESCRIPTOR_BRANCH_ALWAYS);
2197                 if (p->interrupt && i == packet_count - 1)
2198                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2199
2200                 context_append(&ctx->context, d, z, header_z);
2201         }
2202
2203         return 0;
2204 }
2205
2206 static int
2207 ohci_queue_iso(struct fw_iso_context *base,
2208                struct fw_iso_packet *packet,
2209                struct fw_iso_buffer *buffer,
2210                unsigned long payload)
2211 {
2212         struct iso_context *ctx = container_of(base, struct iso_context, base);
2213         unsigned long flags;
2214         int retval;
2215
2216         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2217         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2218                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2219         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2220                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2221                                                          buffer, payload);
2222         else
2223                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2224                                                                 buffer,
2225                                                                 payload);
2226         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2227
2228         return retval;
2229 }
2230
2231 static const struct fw_card_driver ohci_driver = {
2232         .name                   = ohci_driver_name,
2233         .enable                 = ohci_enable,
2234         .update_phy_reg         = ohci_update_phy_reg,
2235         .set_config_rom         = ohci_set_config_rom,
2236         .send_request           = ohci_send_request,
2237         .send_response          = ohci_send_response,
2238         .cancel_packet          = ohci_cancel_packet,
2239         .enable_phys_dma        = ohci_enable_phys_dma,
2240         .get_bus_time           = ohci_get_bus_time,
2241
2242         .allocate_iso_context   = ohci_allocate_iso_context,
2243         .free_iso_context       = ohci_free_iso_context,
2244         .queue_iso              = ohci_queue_iso,
2245         .start_iso              = ohci_start_iso,
2246         .stop_iso               = ohci_stop_iso,
2247 };
2248
2249 #ifdef CONFIG_PPC_PMAC
2250 static void ohci_pmac_on(struct pci_dev *dev)
2251 {
2252         if (machine_is(powermac)) {
2253                 struct device_node *ofn = pci_device_to_OF_node(dev);
2254
2255                 if (ofn) {
2256                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2257                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2258                 }
2259         }
2260 }
2261
2262 static void ohci_pmac_off(struct pci_dev *dev)
2263 {
2264         if (machine_is(powermac)) {
2265                 struct device_node *ofn = pci_device_to_OF_node(dev);
2266
2267                 if (ofn) {
2268                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2269                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2270                 }
2271         }
2272 }
2273 #else
2274 #define ohci_pmac_on(dev)
2275 #define ohci_pmac_off(dev)
2276 #endif /* CONFIG_PPC_PMAC */
2277
2278 static int __devinit
2279 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2280 {
2281         struct fw_ohci *ohci;
2282         u32 bus_options, max_receive, link_speed;
2283         u64 guid;
2284         int err;
2285         size_t size;
2286
2287         ohci_pmac_on(dev);
2288
2289         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2290         if (ohci == NULL) {
2291                 fw_error("Could not malloc fw_ohci data.\n");
2292                 return -ENOMEM;
2293         }
2294
2295         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2296
2297         err = pci_enable_device(dev);
2298         if (err) {
2299                 fw_error("Failed to enable OHCI hardware.\n");
2300                 goto fail_free;
2301         }
2302
2303         pci_set_master(dev);
2304         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2305         pci_set_drvdata(dev, ohci);
2306
2307 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2308         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2309                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2310 #endif
2311         spin_lock_init(&ohci->lock);
2312
2313         tasklet_init(&ohci->bus_reset_tasklet,
2314                      bus_reset_tasklet, (unsigned long)ohci);
2315
2316         err = pci_request_region(dev, 0, ohci_driver_name);
2317         if (err) {
2318                 fw_error("MMIO resource unavailable\n");
2319                 goto fail_disable;
2320         }
2321
2322         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2323         if (ohci->registers == NULL) {
2324                 fw_error("Failed to remap registers\n");
2325                 err = -ENXIO;
2326                 goto fail_iomem;
2327         }
2328
2329         ar_context_init(&ohci->ar_request_ctx, ohci,
2330                         OHCI1394_AsReqRcvContextControlSet);
2331
2332         ar_context_init(&ohci->ar_response_ctx, ohci,
2333                         OHCI1394_AsRspRcvContextControlSet);
2334
2335         context_init(&ohci->at_request_ctx, ohci,
2336                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2337
2338         context_init(&ohci->at_response_ctx, ohci,
2339                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2340
2341         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2342         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2343         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2344         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2345         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2346
2347         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2348         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2349         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2350         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2351         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2352
2353         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2354                 fw_error("Out of memory for it/ir contexts.\n");
2355                 err = -ENOMEM;
2356                 goto fail_registers;
2357         }
2358
2359         /* self-id dma buffer allocation */
2360         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2361                                                SELF_ID_BUF_SIZE,
2362                                                &ohci->self_id_bus,
2363                                                GFP_KERNEL);
2364         if (ohci->self_id_cpu == NULL) {
2365                 fw_error("Out of memory for self ID buffer.\n");
2366                 err = -ENOMEM;
2367                 goto fail_registers;
2368         }
2369
2370         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2371         max_receive = (bus_options >> 12) & 0xf;
2372         link_speed = bus_options & 0x7;
2373         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2374                 reg_read(ohci, OHCI1394_GUIDLo);
2375
2376         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2377         if (err < 0)
2378                 goto fail_self_id;
2379
2380         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2381         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2382                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2383         return 0;
2384
2385  fail_self_id:
2386         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2387                           ohci->self_id_cpu, ohci->self_id_bus);
2388  fail_registers:
2389         kfree(ohci->it_context_list);
2390         kfree(ohci->ir_context_list);
2391         pci_iounmap(dev, ohci->registers);
2392  fail_iomem:
2393         pci_release_region(dev, 0);
2394  fail_disable:
2395         pci_disable_device(dev);
2396  fail_free:
2397         kfree(&ohci->card);
2398
2399         return err;
2400 }
2401
2402 static void pci_remove(struct pci_dev *dev)
2403 {
2404         struct fw_ohci *ohci;
2405
2406         ohci = pci_get_drvdata(dev);
2407         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2408         flush_writes(ohci);
2409         fw_core_remove_card(&ohci->card);
2410
2411         /*
2412          * FIXME: Fail all pending packets here, now that the upper
2413          * layers can't queue any more.
2414          */
2415
2416         software_reset(ohci);
2417         free_irq(dev->irq, ohci);
2418         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2419                           ohci->self_id_cpu, ohci->self_id_bus);
2420         kfree(ohci->it_context_list);
2421         kfree(ohci->ir_context_list);
2422         pci_iounmap(dev, ohci->registers);
2423         pci_release_region(dev, 0);
2424         pci_disable_device(dev);
2425         kfree(&ohci->card);
2426         ohci_pmac_off(dev);
2427
2428         fw_notify("Removed fw-ohci device.\n");
2429 }
2430
2431 #ifdef CONFIG_PM
2432 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2433 {
2434         struct fw_ohci *ohci = pci_get_drvdata(dev);
2435         int err;
2436
2437         software_reset(ohci);
2438         free_irq(dev->irq, ohci);
2439         err = pci_save_state(dev);
2440         if (err) {
2441                 fw_error("pci_save_state failed\n");
2442                 return err;
2443         }
2444         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2445         if (err)
2446                 fw_error("pci_set_power_state failed with %d\n", err);
2447         ohci_pmac_off(dev);
2448
2449         return 0;
2450 }
2451
2452 static int pci_resume(struct pci_dev *dev)
2453 {
2454         struct fw_ohci *ohci = pci_get_drvdata(dev);
2455         int err;
2456
2457         ohci_pmac_on(dev);
2458         pci_set_power_state(dev, PCI_D0);
2459         pci_restore_state(dev);
2460         err = pci_enable_device(dev);
2461         if (err) {
2462                 fw_error("pci_enable_device failed\n");
2463                 return err;
2464         }
2465
2466         return ohci_enable(&ohci->card, NULL, 0);
2467 }
2468 #endif
2469
2470 static struct pci_device_id pci_table[] = {
2471         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2472         { }
2473 };
2474
2475 MODULE_DEVICE_TABLE(pci, pci_table);
2476
2477 static struct pci_driver fw_ohci_pci_driver = {
2478         .name           = ohci_driver_name,
2479         .id_table       = pci_table,
2480         .probe          = pci_probe,
2481         .remove         = pci_remove,
2482 #ifdef CONFIG_PM
2483         .resume         = pci_resume,
2484         .suspend        = pci_suspend,
2485 #endif
2486 };
2487
2488 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2489 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2490 MODULE_LICENSE("GPL");
2491
2492 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2493 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2494 MODULE_ALIAS("ohci1394");
2495 #endif
2496
2497 static int __init fw_ohci_init(void)
2498 {
2499         return pci_register_driver(&fw_ohci_pci_driver);
2500 }
2501
2502 static void __exit fw_ohci_cleanup(void)
2503 {
2504         pci_unregister_driver(&fw_ohci_pci_driver);
2505 }
2506
2507 module_init(fw_ohci_init);
2508 module_exit(fw_ohci_cleanup);