ASoC: rt5640: Add ACPI ID for Intel Baytrail
[firefly-linux-kernel-4.4.55.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtol(val, 0, &l);
62         if (ret)
63                 return ret;
64         if ((int)l != l)
65                 return -EINVAL;
66         *((int *)kp->arg) = l;
67
68         /* notify edac_mc engine to reset the poll period */
69         edac_mc_reset_delay_period(l);
70
71         return 0;
72 }
73
74 /* Parameter declarations for above */
75 module_param(edac_mc_panic_on_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
77 module_param(edac_mc_log_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_log_ue,
79                  "Log uncorrectable error to console: 0=off 1=on");
80 module_param(edac_mc_log_ce, int, 0644);
81 MODULE_PARM_DESC(edac_mc_log_ce,
82                  "Log correctable error to console: 0=off 1=on");
83 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
84                   &edac_mc_poll_msec, 0644);
85 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
86
87 static struct device *mci_pdev;
88
89 /*
90  * various constants for Memory Controllers
91  */
92 static const char * const mem_types[] = {
93         [MEM_EMPTY] = "Empty",
94         [MEM_RESERVED] = "Reserved",
95         [MEM_UNKNOWN] = "Unknown",
96         [MEM_FPM] = "FPM",
97         [MEM_EDO] = "EDO",
98         [MEM_BEDO] = "BEDO",
99         [MEM_SDR] = "Unbuffered-SDR",
100         [MEM_RDR] = "Registered-SDR",
101         [MEM_DDR] = "Unbuffered-DDR",
102         [MEM_RDDR] = "Registered-DDR",
103         [MEM_RMBS] = "RMBS",
104         [MEM_DDR2] = "Unbuffered-DDR2",
105         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
106         [MEM_RDDR2] = "Registered-DDR2",
107         [MEM_XDR] = "XDR",
108         [MEM_DDR3] = "Unbuffered-DDR3",
109         [MEM_RDDR3] = "Registered-DDR3"
110 };
111
112 static const char * const dev_types[] = {
113         [DEV_UNKNOWN] = "Unknown",
114         [DEV_X1] = "x1",
115         [DEV_X2] = "x2",
116         [DEV_X4] = "x4",
117         [DEV_X8] = "x8",
118         [DEV_X16] = "x16",
119         [DEV_X32] = "x32",
120         [DEV_X64] = "x64"
121 };
122
123 static const char * const edac_caps[] = {
124         [EDAC_UNKNOWN] = "Unknown",
125         [EDAC_NONE] = "None",
126         [EDAC_RESERVED] = "Reserved",
127         [EDAC_PARITY] = "PARITY",
128         [EDAC_EC] = "EC",
129         [EDAC_SECDED] = "SECDED",
130         [EDAC_S2ECD2ED] = "S2ECD2ED",
131         [EDAC_S4ECD4ED] = "S4ECD4ED",
132         [EDAC_S8ECD8ED] = "S8ECD8ED",
133         [EDAC_S16ECD16ED] = "S16ECD16ED"
134 };
135
136 #ifdef CONFIG_EDAC_LEGACY_SYSFS
137 /*
138  * EDAC sysfs CSROW data structures and methods
139  */
140
141 #define to_csrow(k) container_of(k, struct csrow_info, dev)
142
143 /*
144  * We need it to avoid namespace conflicts between the legacy API
145  * and the per-dimm/per-rank one
146  */
147 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
148         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
149
150 struct dev_ch_attribute {
151         struct device_attribute attr;
152         int channel;
153 };
154
155 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
156         struct dev_ch_attribute dev_attr_legacy_##_name = \
157                 { __ATTR(_name, _mode, _show, _store), (_var) }
158
159 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
160
161 /* Set of more default csrow<id> attribute show/store functions */
162 static ssize_t csrow_ue_count_show(struct device *dev,
163                                    struct device_attribute *mattr, char *data)
164 {
165         struct csrow_info *csrow = to_csrow(dev);
166
167         return sprintf(data, "%u\n", csrow->ue_count);
168 }
169
170 static ssize_t csrow_ce_count_show(struct device *dev,
171                                    struct device_attribute *mattr, char *data)
172 {
173         struct csrow_info *csrow = to_csrow(dev);
174
175         return sprintf(data, "%u\n", csrow->ce_count);
176 }
177
178 static ssize_t csrow_size_show(struct device *dev,
179                                struct device_attribute *mattr, char *data)
180 {
181         struct csrow_info *csrow = to_csrow(dev);
182         int i;
183         u32 nr_pages = 0;
184
185         for (i = 0; i < csrow->nr_channels; i++)
186                 nr_pages += csrow->channels[i]->dimm->nr_pages;
187         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
188 }
189
190 static ssize_t csrow_mem_type_show(struct device *dev,
191                                    struct device_attribute *mattr, char *data)
192 {
193         struct csrow_info *csrow = to_csrow(dev);
194
195         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
196 }
197
198 static ssize_t csrow_dev_type_show(struct device *dev,
199                                    struct device_attribute *mattr, char *data)
200 {
201         struct csrow_info *csrow = to_csrow(dev);
202
203         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
204 }
205
206 static ssize_t csrow_edac_mode_show(struct device *dev,
207                                     struct device_attribute *mattr,
208                                     char *data)
209 {
210         struct csrow_info *csrow = to_csrow(dev);
211
212         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
213 }
214
215 /* show/store functions for DIMM Label attributes */
216 static ssize_t channel_dimm_label_show(struct device *dev,
217                                        struct device_attribute *mattr,
218                                        char *data)
219 {
220         struct csrow_info *csrow = to_csrow(dev);
221         unsigned chan = to_channel(mattr);
222         struct rank_info *rank = csrow->channels[chan];
223
224         /* if field has not been initialized, there is nothing to send */
225         if (!rank->dimm->label[0])
226                 return 0;
227
228         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
229                         rank->dimm->label);
230 }
231
232 static ssize_t channel_dimm_label_store(struct device *dev,
233                                         struct device_attribute *mattr,
234                                         const char *data, size_t count)
235 {
236         struct csrow_info *csrow = to_csrow(dev);
237         unsigned chan = to_channel(mattr);
238         struct rank_info *rank = csrow->channels[chan];
239
240         ssize_t max_size = 0;
241
242         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
243         strncpy(rank->dimm->label, data, max_size);
244         rank->dimm->label[max_size] = '\0';
245
246         return max_size;
247 }
248
249 /* show function for dynamic chX_ce_count attribute */
250 static ssize_t channel_ce_count_show(struct device *dev,
251                                      struct device_attribute *mattr, char *data)
252 {
253         struct csrow_info *csrow = to_csrow(dev);
254         unsigned chan = to_channel(mattr);
255         struct rank_info *rank = csrow->channels[chan];
256
257         return sprintf(data, "%u\n", rank->ce_count);
258 }
259
260 /* cwrow<id>/attribute files */
261 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
262 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
263 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
264 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
265 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
266 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
267
268 /* default attributes of the CSROW<id> object */
269 static struct attribute *csrow_attrs[] = {
270         &dev_attr_legacy_dev_type.attr,
271         &dev_attr_legacy_mem_type.attr,
272         &dev_attr_legacy_edac_mode.attr,
273         &dev_attr_legacy_size_mb.attr,
274         &dev_attr_legacy_ue_count.attr,
275         &dev_attr_legacy_ce_count.attr,
276         NULL,
277 };
278
279 static struct attribute_group csrow_attr_grp = {
280         .attrs  = csrow_attrs,
281 };
282
283 static const struct attribute_group *csrow_attr_groups[] = {
284         &csrow_attr_grp,
285         NULL
286 };
287
288 static void csrow_attr_release(struct device *dev)
289 {
290         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
291
292         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
293         kfree(csrow);
294 }
295
296 static struct device_type csrow_attr_type = {
297         .groups         = csrow_attr_groups,
298         .release        = csrow_attr_release,
299 };
300
301 /*
302  * possible dynamic channel DIMM Label attribute files
303  *
304  */
305
306 #define EDAC_NR_CHANNELS        6
307
308 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
309         channel_dimm_label_show, channel_dimm_label_store, 0);
310 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
311         channel_dimm_label_show, channel_dimm_label_store, 1);
312 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 2);
314 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 3);
316 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 4);
318 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
319         channel_dimm_label_show, channel_dimm_label_store, 5);
320
321 /* Total possible dynamic DIMM Label attribute file table */
322 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
323         &dev_attr_legacy_ch0_dimm_label.attr,
324         &dev_attr_legacy_ch1_dimm_label.attr,
325         &dev_attr_legacy_ch2_dimm_label.attr,
326         &dev_attr_legacy_ch3_dimm_label.attr,
327         &dev_attr_legacy_ch4_dimm_label.attr,
328         &dev_attr_legacy_ch5_dimm_label.attr
329 };
330
331 /* possible dynamic channel ce_count attribute files */
332 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
333                    channel_ce_count_show, NULL, 0);
334 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
335                    channel_ce_count_show, NULL, 1);
336 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
337                    channel_ce_count_show, NULL, 2);
338 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
339                    channel_ce_count_show, NULL, 3);
340 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
341                    channel_ce_count_show, NULL, 4);
342 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
343                    channel_ce_count_show, NULL, 5);
344
345 /* Total possible dynamic ce_count attribute file table */
346 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
347         &dev_attr_legacy_ch0_ce_count.attr,
348         &dev_attr_legacy_ch1_ce_count.attr,
349         &dev_attr_legacy_ch2_ce_count.attr,
350         &dev_attr_legacy_ch3_ce_count.attr,
351         &dev_attr_legacy_ch4_ce_count.attr,
352         &dev_attr_legacy_ch5_ce_count.attr
353 };
354
355 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
356 {
357         int chan, nr_pages = 0;
358
359         for (chan = 0; chan < csrow->nr_channels; chan++)
360                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
361
362         return nr_pages;
363 }
364
365 /* Create a CSROW object under specifed edac_mc_device */
366 static int edac_create_csrow_object(struct mem_ctl_info *mci,
367                                     struct csrow_info *csrow, int index)
368 {
369         int err, chan;
370
371         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
372                 return -ENODEV;
373
374         csrow->dev.type = &csrow_attr_type;
375         csrow->dev.bus = mci->bus;
376         device_initialize(&csrow->dev);
377         csrow->dev.parent = &mci->dev;
378         csrow->mci = mci;
379         dev_set_name(&csrow->dev, "csrow%d", index);
380         dev_set_drvdata(&csrow->dev, csrow);
381
382         edac_dbg(0, "creating (virtual) csrow node %s\n",
383                  dev_name(&csrow->dev));
384
385         err = device_add(&csrow->dev);
386         if (err < 0)
387                 return err;
388
389         for (chan = 0; chan < csrow->nr_channels; chan++) {
390                 /* Only expose populated DIMMs */
391                 if (!csrow->channels[chan]->dimm->nr_pages)
392                         continue;
393                 err = device_create_file(&csrow->dev,
394                                          dynamic_csrow_dimm_attr[chan]);
395                 if (err < 0)
396                         goto error;
397                 err = device_create_file(&csrow->dev,
398                                          dynamic_csrow_ce_count_attr[chan]);
399                 if (err < 0) {
400                         device_remove_file(&csrow->dev,
401                                            dynamic_csrow_dimm_attr[chan]);
402                         goto error;
403                 }
404         }
405
406         return 0;
407
408 error:
409         for (--chan; chan >= 0; chan--) {
410                 device_remove_file(&csrow->dev,
411                                         dynamic_csrow_dimm_attr[chan]);
412                 device_remove_file(&csrow->dev,
413                                            dynamic_csrow_ce_count_attr[chan]);
414         }
415         put_device(&csrow->dev);
416
417         return err;
418 }
419
420 /* Create a CSROW object under specifed edac_mc_device */
421 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
422 {
423         int err, i, chan;
424         struct csrow_info *csrow;
425
426         for (i = 0; i < mci->nr_csrows; i++) {
427                 csrow = mci->csrows[i];
428                 if (!nr_pages_per_csrow(csrow))
429                         continue;
430                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
431                 if (err < 0) {
432                         edac_dbg(1,
433                                  "failure: create csrow objects for csrow %d\n",
434                                  i);
435                         goto error;
436                 }
437         }
438         return 0;
439
440 error:
441         for (--i; i >= 0; i--) {
442                 csrow = mci->csrows[i];
443                 if (!nr_pages_per_csrow(csrow))
444                         continue;
445                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
446                         if (!csrow->channels[chan]->dimm->nr_pages)
447                                 continue;
448                         device_remove_file(&csrow->dev,
449                                                 dynamic_csrow_dimm_attr[chan]);
450                         device_remove_file(&csrow->dev,
451                                                 dynamic_csrow_ce_count_attr[chan]);
452                 }
453                 put_device(&mci->csrows[i]->dev);
454         }
455
456         return err;
457 }
458
459 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
460 {
461         int i, chan;
462         struct csrow_info *csrow;
463
464         for (i = mci->nr_csrows - 1; i >= 0; i--) {
465                 csrow = mci->csrows[i];
466                 if (!nr_pages_per_csrow(csrow))
467                         continue;
468                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
469                         if (!csrow->channels[chan]->dimm->nr_pages)
470                                 continue;
471                         edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
472                                  i, chan);
473                         device_remove_file(&csrow->dev,
474                                                 dynamic_csrow_dimm_attr[chan]);
475                         device_remove_file(&csrow->dev,
476                                                 dynamic_csrow_ce_count_attr[chan]);
477                 }
478                 device_unregister(&mci->csrows[i]->dev);
479         }
480 }
481 #endif
482
483 /*
484  * Per-dimm (or per-rank) devices
485  */
486
487 #define to_dimm(k) container_of(k, struct dimm_info, dev)
488
489 /* show/store functions for DIMM Label attributes */
490 static ssize_t dimmdev_location_show(struct device *dev,
491                                      struct device_attribute *mattr, char *data)
492 {
493         struct dimm_info *dimm = to_dimm(dev);
494
495         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
496 }
497
498 static ssize_t dimmdev_label_show(struct device *dev,
499                                   struct device_attribute *mattr, char *data)
500 {
501         struct dimm_info *dimm = to_dimm(dev);
502
503         /* if field has not been initialized, there is nothing to send */
504         if (!dimm->label[0])
505                 return 0;
506
507         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
508 }
509
510 static ssize_t dimmdev_label_store(struct device *dev,
511                                    struct device_attribute *mattr,
512                                    const char *data,
513                                    size_t count)
514 {
515         struct dimm_info *dimm = to_dimm(dev);
516
517         ssize_t max_size = 0;
518
519         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
520         strncpy(dimm->label, data, max_size);
521         dimm->label[max_size] = '\0';
522
523         return max_size;
524 }
525
526 static ssize_t dimmdev_size_show(struct device *dev,
527                                  struct device_attribute *mattr, char *data)
528 {
529         struct dimm_info *dimm = to_dimm(dev);
530
531         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
532 }
533
534 static ssize_t dimmdev_mem_type_show(struct device *dev,
535                                      struct device_attribute *mattr, char *data)
536 {
537         struct dimm_info *dimm = to_dimm(dev);
538
539         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
540 }
541
542 static ssize_t dimmdev_dev_type_show(struct device *dev,
543                                      struct device_attribute *mattr, char *data)
544 {
545         struct dimm_info *dimm = to_dimm(dev);
546
547         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
548 }
549
550 static ssize_t dimmdev_edac_mode_show(struct device *dev,
551                                       struct device_attribute *mattr,
552                                       char *data)
553 {
554         struct dimm_info *dimm = to_dimm(dev);
555
556         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
557 }
558
559 /* dimm/rank attribute files */
560 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
561                    dimmdev_label_show, dimmdev_label_store);
562 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
563 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
564 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
565 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
566 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
567
568 /* attributes of the dimm<id>/rank<id> object */
569 static struct attribute *dimm_attrs[] = {
570         &dev_attr_dimm_label.attr,
571         &dev_attr_dimm_location.attr,
572         &dev_attr_size.attr,
573         &dev_attr_dimm_mem_type.attr,
574         &dev_attr_dimm_dev_type.attr,
575         &dev_attr_dimm_edac_mode.attr,
576         NULL,
577 };
578
579 static struct attribute_group dimm_attr_grp = {
580         .attrs  = dimm_attrs,
581 };
582
583 static const struct attribute_group *dimm_attr_groups[] = {
584         &dimm_attr_grp,
585         NULL
586 };
587
588 static void dimm_attr_release(struct device *dev)
589 {
590         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
591
592         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
593         kfree(dimm);
594 }
595
596 static struct device_type dimm_attr_type = {
597         .groups         = dimm_attr_groups,
598         .release        = dimm_attr_release,
599 };
600
601 /* Create a DIMM object under specifed memory controller device */
602 static int edac_create_dimm_object(struct mem_ctl_info *mci,
603                                    struct dimm_info *dimm,
604                                    int index)
605 {
606         int err;
607         dimm->mci = mci;
608
609         dimm->dev.type = &dimm_attr_type;
610         dimm->dev.bus = mci->bus;
611         device_initialize(&dimm->dev);
612
613         dimm->dev.parent = &mci->dev;
614         if (mci->csbased)
615                 dev_set_name(&dimm->dev, "rank%d", index);
616         else
617                 dev_set_name(&dimm->dev, "dimm%d", index);
618         dev_set_drvdata(&dimm->dev, dimm);
619         pm_runtime_forbid(&mci->dev);
620
621         err =  device_add(&dimm->dev);
622
623         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
624
625         return err;
626 }
627
628 /*
629  * Memory controller device
630  */
631
632 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
633
634 static ssize_t mci_reset_counters_store(struct device *dev,
635                                         struct device_attribute *mattr,
636                                         const char *data, size_t count)
637 {
638         struct mem_ctl_info *mci = to_mci(dev);
639         int cnt, row, chan, i;
640         mci->ue_mc = 0;
641         mci->ce_mc = 0;
642         mci->ue_noinfo_count = 0;
643         mci->ce_noinfo_count = 0;
644
645         for (row = 0; row < mci->nr_csrows; row++) {
646                 struct csrow_info *ri = mci->csrows[row];
647
648                 ri->ue_count = 0;
649                 ri->ce_count = 0;
650
651                 for (chan = 0; chan < ri->nr_channels; chan++)
652                         ri->channels[chan]->ce_count = 0;
653         }
654
655         cnt = 1;
656         for (i = 0; i < mci->n_layers; i++) {
657                 cnt *= mci->layers[i].size;
658                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
659                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
660         }
661
662         mci->start_time = jiffies;
663         return count;
664 }
665
666 /* Memory scrubbing interface:
667  *
668  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
669  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
670  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
671  *
672  * Negative value still means that an error has occurred while setting
673  * the scrub rate.
674  */
675 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
676                                           struct device_attribute *mattr,
677                                           const char *data, size_t count)
678 {
679         struct mem_ctl_info *mci = to_mci(dev);
680         unsigned long bandwidth = 0;
681         int new_bw = 0;
682
683         if (kstrtoul(data, 10, &bandwidth) < 0)
684                 return -EINVAL;
685
686         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
687         if (new_bw < 0) {
688                 edac_printk(KERN_WARNING, EDAC_MC,
689                             "Error setting scrub rate to: %lu\n", bandwidth);
690                 return -EINVAL;
691         }
692
693         return count;
694 }
695
696 /*
697  * ->get_sdram_scrub_rate() return value semantics same as above.
698  */
699 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
700                                          struct device_attribute *mattr,
701                                          char *data)
702 {
703         struct mem_ctl_info *mci = to_mci(dev);
704         int bandwidth = 0;
705
706         bandwidth = mci->get_sdram_scrub_rate(mci);
707         if (bandwidth < 0) {
708                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
709                 return bandwidth;
710         }
711
712         return sprintf(data, "%d\n", bandwidth);
713 }
714
715 /* default attribute files for the MCI object */
716 static ssize_t mci_ue_count_show(struct device *dev,
717                                  struct device_attribute *mattr,
718                                  char *data)
719 {
720         struct mem_ctl_info *mci = to_mci(dev);
721
722         return sprintf(data, "%d\n", mci->ue_mc);
723 }
724
725 static ssize_t mci_ce_count_show(struct device *dev,
726                                  struct device_attribute *mattr,
727                                  char *data)
728 {
729         struct mem_ctl_info *mci = to_mci(dev);
730
731         return sprintf(data, "%d\n", mci->ce_mc);
732 }
733
734 static ssize_t mci_ce_noinfo_show(struct device *dev,
735                                   struct device_attribute *mattr,
736                                   char *data)
737 {
738         struct mem_ctl_info *mci = to_mci(dev);
739
740         return sprintf(data, "%d\n", mci->ce_noinfo_count);
741 }
742
743 static ssize_t mci_ue_noinfo_show(struct device *dev,
744                                   struct device_attribute *mattr,
745                                   char *data)
746 {
747         struct mem_ctl_info *mci = to_mci(dev);
748
749         return sprintf(data, "%d\n", mci->ue_noinfo_count);
750 }
751
752 static ssize_t mci_seconds_show(struct device *dev,
753                                 struct device_attribute *mattr,
754                                 char *data)
755 {
756         struct mem_ctl_info *mci = to_mci(dev);
757
758         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
759 }
760
761 static ssize_t mci_ctl_name_show(struct device *dev,
762                                  struct device_attribute *mattr,
763                                  char *data)
764 {
765         struct mem_ctl_info *mci = to_mci(dev);
766
767         return sprintf(data, "%s\n", mci->ctl_name);
768 }
769
770 static ssize_t mci_size_mb_show(struct device *dev,
771                                 struct device_attribute *mattr,
772                                 char *data)
773 {
774         struct mem_ctl_info *mci = to_mci(dev);
775         int total_pages = 0, csrow_idx, j;
776
777         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
778                 struct csrow_info *csrow = mci->csrows[csrow_idx];
779
780                 for (j = 0; j < csrow->nr_channels; j++) {
781                         struct dimm_info *dimm = csrow->channels[j]->dimm;
782
783                         total_pages += dimm->nr_pages;
784                 }
785         }
786
787         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
788 }
789
790 static ssize_t mci_max_location_show(struct device *dev,
791                                      struct device_attribute *mattr,
792                                      char *data)
793 {
794         struct mem_ctl_info *mci = to_mci(dev);
795         int i;
796         char *p = data;
797
798         for (i = 0; i < mci->n_layers; i++) {
799                 p += sprintf(p, "%s %d ",
800                              edac_layer_name[mci->layers[i].type],
801                              mci->layers[i].size - 1);
802         }
803
804         return p - data;
805 }
806
807 #ifdef CONFIG_EDAC_DEBUG
808 static ssize_t edac_fake_inject_write(struct file *file,
809                                       const char __user *data,
810                                       size_t count, loff_t *ppos)
811 {
812         struct device *dev = file->private_data;
813         struct mem_ctl_info *mci = to_mci(dev);
814         static enum hw_event_mc_err_type type;
815         u16 errcount = mci->fake_inject_count;
816
817         if (!errcount)
818                 errcount = 1;
819
820         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
821                                    : HW_EVENT_ERR_CORRECTED;
822
823         printk(KERN_DEBUG
824                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
825                 errcount,
826                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
827                 errcount > 1 ? "s" : "",
828                 mci->fake_inject_layer[0],
829                 mci->fake_inject_layer[1],
830                 mci->fake_inject_layer[2]
831                );
832         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
833                              mci->fake_inject_layer[0],
834                              mci->fake_inject_layer[1],
835                              mci->fake_inject_layer[2],
836                              "FAKE ERROR", "for EDAC testing only");
837
838         return count;
839 }
840
841 static const struct file_operations debug_fake_inject_fops = {
842         .open = simple_open,
843         .write = edac_fake_inject_write,
844         .llseek = generic_file_llseek,
845 };
846 #endif
847
848 /* default Control file */
849 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
850
851 /* default Attribute files */
852 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
853 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
854 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
855 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
856 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
857 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
858 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
859 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
860
861 /* memory scrubber attribute file */
862 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
863
864 static struct attribute *mci_attrs[] = {
865         &dev_attr_reset_counters.attr,
866         &dev_attr_mc_name.attr,
867         &dev_attr_size_mb.attr,
868         &dev_attr_seconds_since_reset.attr,
869         &dev_attr_ue_noinfo_count.attr,
870         &dev_attr_ce_noinfo_count.attr,
871         &dev_attr_ue_count.attr,
872         &dev_attr_ce_count.attr,
873         &dev_attr_max_location.attr,
874         NULL
875 };
876
877 static struct attribute_group mci_attr_grp = {
878         .attrs  = mci_attrs,
879 };
880
881 static const struct attribute_group *mci_attr_groups[] = {
882         &mci_attr_grp,
883         NULL
884 };
885
886 static void mci_attr_release(struct device *dev)
887 {
888         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
889
890         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
891         kfree(mci);
892 }
893
894 static struct device_type mci_attr_type = {
895         .groups         = mci_attr_groups,
896         .release        = mci_attr_release,
897 };
898
899 #ifdef CONFIG_EDAC_DEBUG
900 static struct dentry *edac_debugfs;
901
902 int __init edac_debugfs_init(void)
903 {
904         edac_debugfs = debugfs_create_dir("edac", NULL);
905         if (IS_ERR(edac_debugfs)) {
906                 edac_debugfs = NULL;
907                 return -ENOMEM;
908         }
909         return 0;
910 }
911
912 void __exit edac_debugfs_exit(void)
913 {
914         debugfs_remove(edac_debugfs);
915 }
916
917 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
918 {
919         struct dentry *d, *parent;
920         char name[80];
921         int i;
922
923         if (!edac_debugfs)
924                 return -ENODEV;
925
926         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
927         if (!d)
928                 return -ENOMEM;
929         parent = d;
930
931         for (i = 0; i < mci->n_layers; i++) {
932                 sprintf(name, "fake_inject_%s",
933                              edac_layer_name[mci->layers[i].type]);
934                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
935                                       &mci->fake_inject_layer[i]);
936                 if (!d)
937                         goto nomem;
938         }
939
940         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
941                                 &mci->fake_inject_ue);
942         if (!d)
943                 goto nomem;
944
945         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
946                                 &mci->fake_inject_count);
947         if (!d)
948                 goto nomem;
949
950         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
951                                 &mci->dev,
952                                 &debug_fake_inject_fops);
953         if (!d)
954                 goto nomem;
955
956         mci->debugfs = parent;
957         return 0;
958 nomem:
959         debugfs_remove(mci->debugfs);
960         return -ENOMEM;
961 }
962 #endif
963
964 /*
965  * Create a new Memory Controller kobject instance,
966  *      mc<id> under the 'mc' directory
967  *
968  * Return:
969  *      0       Success
970  *      !0      Failure
971  */
972 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
973 {
974         int i, err;
975
976         /*
977          * The memory controller needs its own bus, in order to avoid
978          * namespace conflicts at /sys/bus/edac.
979          */
980         mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
981         if (!mci->bus->name)
982                 return -ENOMEM;
983
984         edac_dbg(0, "creating bus %s\n", mci->bus->name);
985
986         err = bus_register(mci->bus);
987         if (err < 0)
988                 return err;
989
990         /* get the /sys/devices/system/edac subsys reference */
991         mci->dev.type = &mci_attr_type;
992         device_initialize(&mci->dev);
993
994         mci->dev.parent = mci_pdev;
995         mci->dev.bus = mci->bus;
996         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
997         dev_set_drvdata(&mci->dev, mci);
998         pm_runtime_forbid(&mci->dev);
999
1000         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1001         err = device_add(&mci->dev);
1002         if (err < 0) {
1003                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1004                 bus_unregister(mci->bus);
1005                 kfree(mci->bus->name);
1006                 return err;
1007         }
1008
1009         if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1010                 if (mci->get_sdram_scrub_rate) {
1011                         dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1012                         dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1013                 }
1014                 if (mci->set_sdram_scrub_rate) {
1015                         dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1016                         dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1017                 }
1018                 err = device_create_file(&mci->dev,
1019                                          &dev_attr_sdram_scrub_rate);
1020                 if (err) {
1021                         edac_dbg(1, "failure: create sdram_scrub_rate\n");
1022                         goto fail2;
1023                 }
1024         }
1025         /*
1026          * Create the dimm/rank devices
1027          */
1028         for (i = 0; i < mci->tot_dimms; i++) {
1029                 struct dimm_info *dimm = mci->dimms[i];
1030                 /* Only expose populated DIMMs */
1031                 if (dimm->nr_pages == 0)
1032                         continue;
1033 #ifdef CONFIG_EDAC_DEBUG
1034                 edac_dbg(1, "creating dimm%d, located at ", i);
1035                 if (edac_debug_level >= 1) {
1036                         int lay;
1037                         for (lay = 0; lay < mci->n_layers; lay++)
1038                                 printk(KERN_CONT "%s %d ",
1039                                         edac_layer_name[mci->layers[lay].type],
1040                                         dimm->location[lay]);
1041                         printk(KERN_CONT "\n");
1042                 }
1043 #endif
1044                 err = edac_create_dimm_object(mci, dimm, i);
1045                 if (err) {
1046                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1047                         goto fail;
1048                 }
1049         }
1050
1051 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1052         err = edac_create_csrow_objects(mci);
1053         if (err < 0)
1054                 goto fail;
1055 #endif
1056
1057 #ifdef CONFIG_EDAC_DEBUG
1058         edac_create_debug_nodes(mci);
1059 #endif
1060         return 0;
1061
1062 fail:
1063         for (i--; i >= 0; i--) {
1064                 struct dimm_info *dimm = mci->dimms[i];
1065                 if (dimm->nr_pages == 0)
1066                         continue;
1067                 device_unregister(&dimm->dev);
1068         }
1069 fail2:
1070         device_unregister(&mci->dev);
1071         bus_unregister(mci->bus);
1072         kfree(mci->bus->name);
1073         return err;
1074 }
1075
1076 /*
1077  * remove a Memory Controller instance
1078  */
1079 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1080 {
1081         int i;
1082
1083         edac_dbg(0, "\n");
1084
1085 #ifdef CONFIG_EDAC_DEBUG
1086         debugfs_remove(mci->debugfs);
1087 #endif
1088 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1089         edac_delete_csrow_objects(mci);
1090 #endif
1091
1092         for (i = 0; i < mci->tot_dimms; i++) {
1093                 struct dimm_info *dimm = mci->dimms[i];
1094                 if (dimm->nr_pages == 0)
1095                         continue;
1096                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1097                 device_unregister(&dimm->dev);
1098         }
1099 }
1100
1101 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1102 {
1103         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1104         device_unregister(&mci->dev);
1105         bus_unregister(mci->bus);
1106         kfree(mci->bus->name);
1107 }
1108
1109 static void mc_attr_release(struct device *dev)
1110 {
1111         /*
1112          * There's no container structure here, as this is just the mci
1113          * parent device, used to create the /sys/devices/mc sysfs node.
1114          * So, there are no attributes on it.
1115          */
1116         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1117         kfree(dev);
1118 }
1119
1120 static struct device_type mc_attr_type = {
1121         .release        = mc_attr_release,
1122 };
1123 /*
1124  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1125  */
1126 int __init edac_mc_sysfs_init(void)
1127 {
1128         struct bus_type *edac_subsys;
1129         int err;
1130
1131         /* get the /sys/devices/system/edac subsys reference */
1132         edac_subsys = edac_get_sysfs_subsys();
1133         if (edac_subsys == NULL) {
1134                 edac_dbg(1, "no edac_subsys\n");
1135                 err = -EINVAL;
1136                 goto out;
1137         }
1138
1139         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1140         if (!mci_pdev) {
1141                 err = -ENOMEM;
1142                 goto out_put_sysfs;
1143         }
1144
1145         mci_pdev->bus = edac_subsys;
1146         mci_pdev->type = &mc_attr_type;
1147         device_initialize(mci_pdev);
1148         dev_set_name(mci_pdev, "mc");
1149
1150         err = device_add(mci_pdev);
1151         if (err < 0)
1152                 goto out_dev_free;
1153
1154         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1155
1156         return 0;
1157
1158  out_dev_free:
1159         kfree(mci_pdev);
1160  out_put_sysfs:
1161         edac_put_sysfs_subsys();
1162  out:
1163         return err;
1164 }
1165
1166 void __exit edac_mc_sysfs_exit(void)
1167 {
1168         device_unregister(mci_pdev);
1169         edac_put_sysfs_subsys();
1170 }