Merge branch 'soc' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/renesas...
[firefly-linux-kernel-4.4.55.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @done                channel completion
247  * @num_bd              max NUM_BD. number of descriptors currently handling
248  */
249 struct sdma_channel {
250         struct sdma_engine              *sdma;
251         unsigned int                    channel;
252         enum dma_transfer_direction             direction;
253         enum sdma_peripheral_type       peripheral_type;
254         unsigned int                    event_id0;
255         unsigned int                    event_id1;
256         enum dma_slave_buswidth         word_size;
257         unsigned int                    buf_tail;
258         struct completion               done;
259         unsigned int                    num_bd;
260         struct sdma_buffer_descriptor   *bd;
261         dma_addr_t                      bd_phys;
262         unsigned int                    pc_from_device, pc_to_device;
263         unsigned long                   flags;
264         dma_addr_t                      per_address;
265         unsigned long                   event_mask[2];
266         unsigned long                   watermark_level;
267         u32                             shp_addr, per_addr;
268         struct dma_chan                 chan;
269         spinlock_t                      lock;
270         struct dma_async_tx_descriptor  desc;
271         enum dma_status                 status;
272         unsigned int                    chn_count;
273         unsigned int                    chn_real_count;
274         struct tasklet_struct           tasklet;
275 };
276
277 #define IMX_DMA_SG_LOOP         BIT(0)
278
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285
286 /**
287  * struct sdma_firmware_header - Layout of the firmware image
288  *
289  * @magic               "SDMA"
290  * @version_major       increased whenever layout of struct sdma_script_start_addrs
291  *                      changes.
292  * @version_minor       firmware minor version (for binary compatible changes)
293  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
294  * @num_script_addrs    Number of script addresses in this image
295  * @ram_code_start      offset of SDMA ram image in this firmware image
296  * @ram_code_size       size of SDMA ram image
297  * @script_addrs        Stores the start address of the SDMA scripts
298  *                      (in SDMA memory space)
299  */
300 struct sdma_firmware_header {
301         u32     magic;
302         u32     version_major;
303         u32     version_minor;
304         u32     script_addrs_start;
305         u32     num_script_addrs;
306         u32     ram_code_start;
307         u32     ram_code_size;
308 };
309
310 enum sdma_devtype {
311         IMX31_SDMA,     /* runs on i.mx31 */
312         IMX35_SDMA,     /* runs on i.mx35 and later */
313 };
314
315 struct sdma_engine {
316         struct device                   *dev;
317         struct device_dma_parameters    dma_parms;
318         struct sdma_channel             channel[MAX_DMA_CHANNELS];
319         struct sdma_channel_control     *channel_control;
320         void __iomem                    *regs;
321         enum sdma_devtype               devtype;
322         unsigned int                    num_events;
323         struct sdma_context_data        *context;
324         dma_addr_t                      context_phys;
325         struct dma_device               dma_device;
326         struct clk                      *clk_ipg;
327         struct clk                      *clk_ahb;
328         spinlock_t                      channel_0_lock;
329         struct sdma_script_start_addrs  *script_addrs;
330 };
331
332 static struct platform_device_id sdma_devtypes[] = {
333         {
334                 .name = "imx31-sdma",
335                 .driver_data = IMX31_SDMA,
336         }, {
337                 .name = "imx35-sdma",
338                 .driver_data = IMX35_SDMA,
339         }, {
340                 /* sentinel */
341         }
342 };
343 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
344
345 static const struct of_device_id sdma_dt_ids[] = {
346         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
347         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
348         { /* sentinel */ }
349 };
350 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
351
352 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
353 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
354 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
355 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
356
357 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
358 {
359         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
360                                                       SDMA_CHNENBL0_IMX35);
361         return chnenbl0 + event * 4;
362 }
363
364 static int sdma_config_ownership(struct sdma_channel *sdmac,
365                 bool event_override, bool mcu_override, bool dsp_override)
366 {
367         struct sdma_engine *sdma = sdmac->sdma;
368         int channel = sdmac->channel;
369         unsigned long evt, mcu, dsp;
370
371         if (event_override && mcu_override && dsp_override)
372                 return -EINVAL;
373
374         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
375         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
376         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
377
378         if (dsp_override)
379                 __clear_bit(channel, &dsp);
380         else
381                 __set_bit(channel, &dsp);
382
383         if (event_override)
384                 __clear_bit(channel, &evt);
385         else
386                 __set_bit(channel, &evt);
387
388         if (mcu_override)
389                 __clear_bit(channel, &mcu);
390         else
391                 __set_bit(channel, &mcu);
392
393         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
394         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
395         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
396
397         return 0;
398 }
399
400 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
401 {
402         writel(BIT(channel), sdma->regs + SDMA_H_START);
403 }
404
405 /*
406  * sdma_run_channel0 - run a channel and wait till it's done
407  */
408 static int sdma_run_channel0(struct sdma_engine *sdma)
409 {
410         int ret;
411         unsigned long timeout = 500;
412
413         sdma_enable_channel(sdma, 0);
414
415         while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
416                 if (timeout-- <= 0)
417                         break;
418                 udelay(1);
419         }
420
421         if (ret) {
422                 /* Clear the interrupt status */
423                 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
424         } else {
425                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
426         }
427
428         return ret ? 0 : -ETIMEDOUT;
429 }
430
431 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
432                 u32 address)
433 {
434         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
435         void *buf_virt;
436         dma_addr_t buf_phys;
437         int ret;
438         unsigned long flags;
439
440         buf_virt = dma_alloc_coherent(NULL,
441                         size,
442                         &buf_phys, GFP_KERNEL);
443         if (!buf_virt) {
444                 return -ENOMEM;
445         }
446
447         spin_lock_irqsave(&sdma->channel_0_lock, flags);
448
449         bd0->mode.command = C0_SETPM;
450         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
451         bd0->mode.count = size / 2;
452         bd0->buffer_addr = buf_phys;
453         bd0->ext_buffer_addr = address;
454
455         memcpy(buf_virt, buf, size);
456
457         ret = sdma_run_channel0(sdma);
458
459         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
460
461         dma_free_coherent(NULL, size, buf_virt, buf_phys);
462
463         return ret;
464 }
465
466 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
467 {
468         struct sdma_engine *sdma = sdmac->sdma;
469         int channel = sdmac->channel;
470         unsigned long val;
471         u32 chnenbl = chnenbl_ofs(sdma, event);
472
473         val = readl_relaxed(sdma->regs + chnenbl);
474         __set_bit(channel, &val);
475         writel_relaxed(val, sdma->regs + chnenbl);
476 }
477
478 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
479 {
480         struct sdma_engine *sdma = sdmac->sdma;
481         int channel = sdmac->channel;
482         u32 chnenbl = chnenbl_ofs(sdma, event);
483         unsigned long val;
484
485         val = readl_relaxed(sdma->regs + chnenbl);
486         __clear_bit(channel, &val);
487         writel_relaxed(val, sdma->regs + chnenbl);
488 }
489
490 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
491 {
492         struct sdma_buffer_descriptor *bd;
493
494         /*
495          * loop mode. Iterate over descriptors, re-setup them and
496          * call callback function.
497          */
498         while (1) {
499                 bd = &sdmac->bd[sdmac->buf_tail];
500
501                 if (bd->mode.status & BD_DONE)
502                         break;
503
504                 if (bd->mode.status & BD_RROR)
505                         sdmac->status = DMA_ERROR;
506                 else
507                         sdmac->status = DMA_IN_PROGRESS;
508
509                 bd->mode.status |= BD_DONE;
510                 sdmac->buf_tail++;
511                 sdmac->buf_tail %= sdmac->num_bd;
512
513                 if (sdmac->desc.callback)
514                         sdmac->desc.callback(sdmac->desc.callback_param);
515         }
516 }
517
518 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
519 {
520         struct sdma_buffer_descriptor *bd;
521         int i, error = 0;
522
523         sdmac->chn_real_count = 0;
524         /*
525          * non loop mode. Iterate over all descriptors, collect
526          * errors and call callback function
527          */
528         for (i = 0; i < sdmac->num_bd; i++) {
529                 bd = &sdmac->bd[i];
530
531                  if (bd->mode.status & (BD_DONE | BD_RROR))
532                         error = -EIO;
533                  sdmac->chn_real_count += bd->mode.count;
534         }
535
536         if (error)
537                 sdmac->status = DMA_ERROR;
538         else
539                 sdmac->status = DMA_SUCCESS;
540
541         dma_cookie_complete(&sdmac->desc);
542         if (sdmac->desc.callback)
543                 sdmac->desc.callback(sdmac->desc.callback_param);
544 }
545
546 static void sdma_tasklet(unsigned long data)
547 {
548         struct sdma_channel *sdmac = (struct sdma_channel *) data;
549
550         complete(&sdmac->done);
551
552         if (sdmac->flags & IMX_DMA_SG_LOOP)
553                 sdma_handle_channel_loop(sdmac);
554         else
555                 mxc_sdma_handle_channel_normal(sdmac);
556 }
557
558 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
559 {
560         struct sdma_engine *sdma = dev_id;
561         unsigned long stat;
562
563         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
564         /* not interested in channel 0 interrupts */
565         stat &= ~1;
566         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
567
568         while (stat) {
569                 int channel = fls(stat) - 1;
570                 struct sdma_channel *sdmac = &sdma->channel[channel];
571
572                 tasklet_schedule(&sdmac->tasklet);
573
574                 __clear_bit(channel, &stat);
575         }
576
577         return IRQ_HANDLED;
578 }
579
580 /*
581  * sets the pc of SDMA script according to the peripheral type
582  */
583 static void sdma_get_pc(struct sdma_channel *sdmac,
584                 enum sdma_peripheral_type peripheral_type)
585 {
586         struct sdma_engine *sdma = sdmac->sdma;
587         int per_2_emi = 0, emi_2_per = 0;
588         /*
589          * These are needed once we start to support transfers between
590          * two peripherals or memory-to-memory transfers
591          */
592         int per_2_per = 0, emi_2_emi = 0;
593
594         sdmac->pc_from_device = 0;
595         sdmac->pc_to_device = 0;
596
597         switch (peripheral_type) {
598         case IMX_DMATYPE_MEMORY:
599                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
600                 break;
601         case IMX_DMATYPE_DSP:
602                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
603                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
604                 break;
605         case IMX_DMATYPE_FIRI:
606                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
607                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
608                 break;
609         case IMX_DMATYPE_UART:
610                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
611                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
612                 break;
613         case IMX_DMATYPE_UART_SP:
614                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
615                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
616                 break;
617         case IMX_DMATYPE_ATA:
618                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
619                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
620                 break;
621         case IMX_DMATYPE_CSPI:
622         case IMX_DMATYPE_EXT:
623         case IMX_DMATYPE_SSI:
624                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
625                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
626                 break;
627         case IMX_DMATYPE_SSI_SP:
628         case IMX_DMATYPE_MMC:
629         case IMX_DMATYPE_SDHC:
630         case IMX_DMATYPE_CSPI_SP:
631         case IMX_DMATYPE_ESAI:
632         case IMX_DMATYPE_MSHC_SP:
633                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
634                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
635                 break;
636         case IMX_DMATYPE_ASRC:
637                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
638                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
639                 per_2_per = sdma->script_addrs->per_2_per_addr;
640                 break;
641         case IMX_DMATYPE_MSHC:
642                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
643                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
644                 break;
645         case IMX_DMATYPE_CCM:
646                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
647                 break;
648         case IMX_DMATYPE_SPDIF:
649                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
650                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
651                 break;
652         case IMX_DMATYPE_IPU_MEMORY:
653                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
654                 break;
655         default:
656                 break;
657         }
658
659         sdmac->pc_from_device = per_2_emi;
660         sdmac->pc_to_device = emi_2_per;
661 }
662
663 static int sdma_load_context(struct sdma_channel *sdmac)
664 {
665         struct sdma_engine *sdma = sdmac->sdma;
666         int channel = sdmac->channel;
667         int load_address;
668         struct sdma_context_data *context = sdma->context;
669         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
670         int ret;
671         unsigned long flags;
672
673         if (sdmac->direction == DMA_DEV_TO_MEM) {
674                 load_address = sdmac->pc_from_device;
675         } else {
676                 load_address = sdmac->pc_to_device;
677         }
678
679         if (load_address < 0)
680                 return load_address;
681
682         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
683         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
684         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
685         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
686         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
687         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
688
689         spin_lock_irqsave(&sdma->channel_0_lock, flags);
690
691         memset(context, 0, sizeof(*context));
692         context->channel_state.pc = load_address;
693
694         /* Send by context the event mask,base address for peripheral
695          * and watermark level
696          */
697         context->gReg[0] = sdmac->event_mask[1];
698         context->gReg[1] = sdmac->event_mask[0];
699         context->gReg[2] = sdmac->per_addr;
700         context->gReg[6] = sdmac->shp_addr;
701         context->gReg[7] = sdmac->watermark_level;
702
703         bd0->mode.command = C0_SETDM;
704         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
705         bd0->mode.count = sizeof(*context) / 4;
706         bd0->buffer_addr = sdma->context_phys;
707         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
708         ret = sdma_run_channel0(sdma);
709
710         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
711
712         return ret;
713 }
714
715 static void sdma_disable_channel(struct sdma_channel *sdmac)
716 {
717         struct sdma_engine *sdma = sdmac->sdma;
718         int channel = sdmac->channel;
719
720         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
721         sdmac->status = DMA_ERROR;
722 }
723
724 static int sdma_config_channel(struct sdma_channel *sdmac)
725 {
726         int ret;
727
728         sdma_disable_channel(sdmac);
729
730         sdmac->event_mask[0] = 0;
731         sdmac->event_mask[1] = 0;
732         sdmac->shp_addr = 0;
733         sdmac->per_addr = 0;
734
735         if (sdmac->event_id0) {
736                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
737                         return -EINVAL;
738                 sdma_event_enable(sdmac, sdmac->event_id0);
739         }
740
741         switch (sdmac->peripheral_type) {
742         case IMX_DMATYPE_DSP:
743                 sdma_config_ownership(sdmac, false, true, true);
744                 break;
745         case IMX_DMATYPE_MEMORY:
746                 sdma_config_ownership(sdmac, false, true, false);
747                 break;
748         default:
749                 sdma_config_ownership(sdmac, true, true, false);
750                 break;
751         }
752
753         sdma_get_pc(sdmac, sdmac->peripheral_type);
754
755         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
756                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
757                 /* Handle multiple event channels differently */
758                 if (sdmac->event_id1) {
759                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
760                         if (sdmac->event_id1 > 31)
761                                 __set_bit(31, &sdmac->watermark_level);
762                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
763                         if (sdmac->event_id0 > 31)
764                                 __set_bit(30, &sdmac->watermark_level);
765                 } else {
766                         __set_bit(sdmac->event_id0, sdmac->event_mask);
767                 }
768                 /* Watermark Level */
769                 sdmac->watermark_level |= sdmac->watermark_level;
770                 /* Address */
771                 sdmac->shp_addr = sdmac->per_address;
772         } else {
773                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
774         }
775
776         ret = sdma_load_context(sdmac);
777
778         return ret;
779 }
780
781 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
782                 unsigned int priority)
783 {
784         struct sdma_engine *sdma = sdmac->sdma;
785         int channel = sdmac->channel;
786
787         if (priority < MXC_SDMA_MIN_PRIORITY
788             || priority > MXC_SDMA_MAX_PRIORITY) {
789                 return -EINVAL;
790         }
791
792         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
793
794         return 0;
795 }
796
797 static int sdma_request_channel(struct sdma_channel *sdmac)
798 {
799         struct sdma_engine *sdma = sdmac->sdma;
800         int channel = sdmac->channel;
801         int ret = -EBUSY;
802
803         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
804         if (!sdmac->bd) {
805                 ret = -ENOMEM;
806                 goto out;
807         }
808
809         memset(sdmac->bd, 0, PAGE_SIZE);
810
811         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
812         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
813
814         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
815
816         init_completion(&sdmac->done);
817
818         sdmac->buf_tail = 0;
819
820         return 0;
821 out:
822
823         return ret;
824 }
825
826 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
827 {
828         return container_of(chan, struct sdma_channel, chan);
829 }
830
831 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
832 {
833         unsigned long flags;
834         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
835         dma_cookie_t cookie;
836
837         spin_lock_irqsave(&sdmac->lock, flags);
838
839         cookie = dma_cookie_assign(tx);
840
841         spin_unlock_irqrestore(&sdmac->lock, flags);
842
843         return cookie;
844 }
845
846 static int sdma_alloc_chan_resources(struct dma_chan *chan)
847 {
848         struct sdma_channel *sdmac = to_sdma_chan(chan);
849         struct imx_dma_data *data = chan->private;
850         int prio, ret;
851
852         if (!data)
853                 return -EINVAL;
854
855         switch (data->priority) {
856         case DMA_PRIO_HIGH:
857                 prio = 3;
858                 break;
859         case DMA_PRIO_MEDIUM:
860                 prio = 2;
861                 break;
862         case DMA_PRIO_LOW:
863         default:
864                 prio = 1;
865                 break;
866         }
867
868         sdmac->peripheral_type = data->peripheral_type;
869         sdmac->event_id0 = data->dma_request;
870
871         clk_enable(sdmac->sdma->clk_ipg);
872         clk_enable(sdmac->sdma->clk_ahb);
873
874         ret = sdma_request_channel(sdmac);
875         if (ret)
876                 return ret;
877
878         ret = sdma_set_channel_priority(sdmac, prio);
879         if (ret)
880                 return ret;
881
882         dma_async_tx_descriptor_init(&sdmac->desc, chan);
883         sdmac->desc.tx_submit = sdma_tx_submit;
884         /* txd.flags will be overwritten in prep funcs */
885         sdmac->desc.flags = DMA_CTRL_ACK;
886
887         return 0;
888 }
889
890 static void sdma_free_chan_resources(struct dma_chan *chan)
891 {
892         struct sdma_channel *sdmac = to_sdma_chan(chan);
893         struct sdma_engine *sdma = sdmac->sdma;
894
895         sdma_disable_channel(sdmac);
896
897         if (sdmac->event_id0)
898                 sdma_event_disable(sdmac, sdmac->event_id0);
899         if (sdmac->event_id1)
900                 sdma_event_disable(sdmac, sdmac->event_id1);
901
902         sdmac->event_id0 = 0;
903         sdmac->event_id1 = 0;
904
905         sdma_set_channel_priority(sdmac, 0);
906
907         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
908
909         clk_disable(sdma->clk_ipg);
910         clk_disable(sdma->clk_ahb);
911 }
912
913 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
914                 struct dma_chan *chan, struct scatterlist *sgl,
915                 unsigned int sg_len, enum dma_transfer_direction direction,
916                 unsigned long flags, void *context)
917 {
918         struct sdma_channel *sdmac = to_sdma_chan(chan);
919         struct sdma_engine *sdma = sdmac->sdma;
920         int ret, i, count;
921         int channel = sdmac->channel;
922         struct scatterlist *sg;
923
924         if (sdmac->status == DMA_IN_PROGRESS)
925                 return NULL;
926         sdmac->status = DMA_IN_PROGRESS;
927
928         sdmac->flags = 0;
929
930         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
931                         sg_len, channel);
932
933         sdmac->direction = direction;
934         ret = sdma_load_context(sdmac);
935         if (ret)
936                 goto err_out;
937
938         if (sg_len > NUM_BD) {
939                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
940                                 channel, sg_len, NUM_BD);
941                 ret = -EINVAL;
942                 goto err_out;
943         }
944
945         sdmac->chn_count = 0;
946         for_each_sg(sgl, sg, sg_len, i) {
947                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
948                 int param;
949
950                 bd->buffer_addr = sg->dma_address;
951
952                 count = sg_dma_len(sg);
953
954                 if (count > 0xffff) {
955                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
956                                         channel, count, 0xffff);
957                         ret = -EINVAL;
958                         goto err_out;
959                 }
960
961                 bd->mode.count = count;
962                 sdmac->chn_count += count;
963
964                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
965                         ret =  -EINVAL;
966                         goto err_out;
967                 }
968
969                 switch (sdmac->word_size) {
970                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
971                         bd->mode.command = 0;
972                         if (count & 3 || sg->dma_address & 3)
973                                 return NULL;
974                         break;
975                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
976                         bd->mode.command = 2;
977                         if (count & 1 || sg->dma_address & 1)
978                                 return NULL;
979                         break;
980                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
981                         bd->mode.command = 1;
982                         break;
983                 default:
984                         return NULL;
985                 }
986
987                 param = BD_DONE | BD_EXTD | BD_CONT;
988
989                 if (i + 1 == sg_len) {
990                         param |= BD_INTR;
991                         param |= BD_LAST;
992                         param &= ~BD_CONT;
993                 }
994
995                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
996                                 i, count, sg->dma_address,
997                                 param & BD_WRAP ? "wrap" : "",
998                                 param & BD_INTR ? " intr" : "");
999
1000                 bd->mode.status = param;
1001         }
1002
1003         sdmac->num_bd = sg_len;
1004         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1005
1006         return &sdmac->desc;
1007 err_out:
1008         sdmac->status = DMA_ERROR;
1009         return NULL;
1010 }
1011
1012 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1013                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1014                 size_t period_len, enum dma_transfer_direction direction,
1015                 void *context)
1016 {
1017         struct sdma_channel *sdmac = to_sdma_chan(chan);
1018         struct sdma_engine *sdma = sdmac->sdma;
1019         int num_periods = buf_len / period_len;
1020         int channel = sdmac->channel;
1021         int ret, i = 0, buf = 0;
1022
1023         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1024
1025         if (sdmac->status == DMA_IN_PROGRESS)
1026                 return NULL;
1027
1028         sdmac->status = DMA_IN_PROGRESS;
1029
1030         sdmac->flags |= IMX_DMA_SG_LOOP;
1031         sdmac->direction = direction;
1032         ret = sdma_load_context(sdmac);
1033         if (ret)
1034                 goto err_out;
1035
1036         if (num_periods > NUM_BD) {
1037                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1038                                 channel, num_periods, NUM_BD);
1039                 goto err_out;
1040         }
1041
1042         if (period_len > 0xffff) {
1043                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1044                                 channel, period_len, 0xffff);
1045                 goto err_out;
1046         }
1047
1048         while (buf < buf_len) {
1049                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1050                 int param;
1051
1052                 bd->buffer_addr = dma_addr;
1053
1054                 bd->mode.count = period_len;
1055
1056                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1057                         goto err_out;
1058                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1059                         bd->mode.command = 0;
1060                 else
1061                         bd->mode.command = sdmac->word_size;
1062
1063                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1064                 if (i + 1 == num_periods)
1065                         param |= BD_WRAP;
1066
1067                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1068                                 i, period_len, dma_addr,
1069                                 param & BD_WRAP ? "wrap" : "",
1070                                 param & BD_INTR ? " intr" : "");
1071
1072                 bd->mode.status = param;
1073
1074                 dma_addr += period_len;
1075                 buf += period_len;
1076
1077                 i++;
1078         }
1079
1080         sdmac->num_bd = num_periods;
1081         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1082
1083         return &sdmac->desc;
1084 err_out:
1085         sdmac->status = DMA_ERROR;
1086         return NULL;
1087 }
1088
1089 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1090                 unsigned long arg)
1091 {
1092         struct sdma_channel *sdmac = to_sdma_chan(chan);
1093         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1094
1095         switch (cmd) {
1096         case DMA_TERMINATE_ALL:
1097                 sdma_disable_channel(sdmac);
1098                 return 0;
1099         case DMA_SLAVE_CONFIG:
1100                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1101                         sdmac->per_address = dmaengine_cfg->src_addr;
1102                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1103                                                 dmaengine_cfg->src_addr_width;
1104                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1105                 } else {
1106                         sdmac->per_address = dmaengine_cfg->dst_addr;
1107                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1108                                                 dmaengine_cfg->dst_addr_width;
1109                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1110                 }
1111                 sdmac->direction = dmaengine_cfg->direction;
1112                 return sdma_config_channel(sdmac);
1113         default:
1114                 return -ENOSYS;
1115         }
1116
1117         return -EINVAL;
1118 }
1119
1120 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1121                                             dma_cookie_t cookie,
1122                                             struct dma_tx_state *txstate)
1123 {
1124         struct sdma_channel *sdmac = to_sdma_chan(chan);
1125         dma_cookie_t last_used;
1126
1127         last_used = chan->cookie;
1128
1129         dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1130                         sdmac->chn_count - sdmac->chn_real_count);
1131
1132         return sdmac->status;
1133 }
1134
1135 static void sdma_issue_pending(struct dma_chan *chan)
1136 {
1137         struct sdma_channel *sdmac = to_sdma_chan(chan);
1138         struct sdma_engine *sdma = sdmac->sdma;
1139
1140         if (sdmac->status == DMA_IN_PROGRESS)
1141                 sdma_enable_channel(sdma, sdmac->channel);
1142 }
1143
1144 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1145
1146 static void sdma_add_scripts(struct sdma_engine *sdma,
1147                 const struct sdma_script_start_addrs *addr)
1148 {
1149         s32 *addr_arr = (u32 *)addr;
1150         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1151         int i;
1152
1153         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1154                 if (addr_arr[i] > 0)
1155                         saddr_arr[i] = addr_arr[i];
1156 }
1157
1158 static void sdma_load_firmware(const struct firmware *fw, void *context)
1159 {
1160         struct sdma_engine *sdma = context;
1161         const struct sdma_firmware_header *header;
1162         const struct sdma_script_start_addrs *addr;
1163         unsigned short *ram_code;
1164
1165         if (!fw) {
1166                 dev_err(sdma->dev, "firmware not found\n");
1167                 return;
1168         }
1169
1170         if (fw->size < sizeof(*header))
1171                 goto err_firmware;
1172
1173         header = (struct sdma_firmware_header *)fw->data;
1174
1175         if (header->magic != SDMA_FIRMWARE_MAGIC)
1176                 goto err_firmware;
1177         if (header->ram_code_start + header->ram_code_size > fw->size)
1178                 goto err_firmware;
1179
1180         addr = (void *)header + header->script_addrs_start;
1181         ram_code = (void *)header + header->ram_code_start;
1182
1183         clk_enable(sdma->clk_ipg);
1184         clk_enable(sdma->clk_ahb);
1185         /* download the RAM image for SDMA */
1186         sdma_load_script(sdma, ram_code,
1187                         header->ram_code_size,
1188                         addr->ram_code_start_addr);
1189         clk_disable(sdma->clk_ipg);
1190         clk_disable(sdma->clk_ahb);
1191
1192         sdma_add_scripts(sdma, addr);
1193
1194         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1195                         header->version_major,
1196                         header->version_minor);
1197
1198 err_firmware:
1199         release_firmware(fw);
1200 }
1201
1202 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1203                 const char *fw_name)
1204 {
1205         int ret;
1206
1207         ret = request_firmware_nowait(THIS_MODULE,
1208                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1209                         GFP_KERNEL, sdma, sdma_load_firmware);
1210
1211         return ret;
1212 }
1213
1214 static int __init sdma_init(struct sdma_engine *sdma)
1215 {
1216         int i, ret;
1217         dma_addr_t ccb_phys;
1218
1219         switch (sdma->devtype) {
1220         case IMX31_SDMA:
1221                 sdma->num_events = 32;
1222                 break;
1223         case IMX35_SDMA:
1224                 sdma->num_events = 48;
1225                 break;
1226         default:
1227                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1228                         sdma->devtype);
1229                 return -ENODEV;
1230         }
1231
1232         clk_enable(sdma->clk_ipg);
1233         clk_enable(sdma->clk_ahb);
1234
1235         /* Be sure SDMA has not started yet */
1236         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1237
1238         sdma->channel_control = dma_alloc_coherent(NULL,
1239                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1240                         sizeof(struct sdma_context_data),
1241                         &ccb_phys, GFP_KERNEL);
1242
1243         if (!sdma->channel_control) {
1244                 ret = -ENOMEM;
1245                 goto err_dma_alloc;
1246         }
1247
1248         sdma->context = (void *)sdma->channel_control +
1249                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1250         sdma->context_phys = ccb_phys +
1251                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1252
1253         /* Zero-out the CCB structures array just allocated */
1254         memset(sdma->channel_control, 0,
1255                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1256
1257         /* disable all channels */
1258         for (i = 0; i < sdma->num_events; i++)
1259                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1260
1261         /* All channels have priority 0 */
1262         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1263                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1264
1265         ret = sdma_request_channel(&sdma->channel[0]);
1266         if (ret)
1267                 goto err_dma_alloc;
1268
1269         sdma_config_ownership(&sdma->channel[0], false, true, false);
1270
1271         /* Set Command Channel (Channel Zero) */
1272         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1273
1274         /* Set bits of CONFIG register but with static context switching */
1275         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1276         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1277
1278         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1279
1280         /* Set bits of CONFIG register with given context switching mode */
1281         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1282
1283         /* Initializes channel's priorities */
1284         sdma_set_channel_priority(&sdma->channel[0], 7);
1285
1286         clk_disable(sdma->clk_ipg);
1287         clk_disable(sdma->clk_ahb);
1288
1289         return 0;
1290
1291 err_dma_alloc:
1292         clk_disable(sdma->clk_ipg);
1293         clk_disable(sdma->clk_ahb);
1294         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1295         return ret;
1296 }
1297
1298 static int __init sdma_probe(struct platform_device *pdev)
1299 {
1300         const struct of_device_id *of_id =
1301                         of_match_device(sdma_dt_ids, &pdev->dev);
1302         struct device_node *np = pdev->dev.of_node;
1303         const char *fw_name;
1304         int ret;
1305         int irq;
1306         struct resource *iores;
1307         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1308         int i;
1309         struct sdma_engine *sdma;
1310         s32 *saddr_arr;
1311
1312         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1313         if (!sdma)
1314                 return -ENOMEM;
1315
1316         spin_lock_init(&sdma->channel_0_lock);
1317
1318         sdma->dev = &pdev->dev;
1319
1320         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1321         irq = platform_get_irq(pdev, 0);
1322         if (!iores || irq < 0) {
1323                 ret = -EINVAL;
1324                 goto err_irq;
1325         }
1326
1327         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1328                 ret = -EBUSY;
1329                 goto err_request_region;
1330         }
1331
1332         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1333         if (IS_ERR(sdma->clk_ipg)) {
1334                 ret = PTR_ERR(sdma->clk_ipg);
1335                 goto err_clk;
1336         }
1337
1338         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1339         if (IS_ERR(sdma->clk_ahb)) {
1340                 ret = PTR_ERR(sdma->clk_ahb);
1341                 goto err_clk;
1342         }
1343
1344         clk_prepare(sdma->clk_ipg);
1345         clk_prepare(sdma->clk_ahb);
1346
1347         sdma->regs = ioremap(iores->start, resource_size(iores));
1348         if (!sdma->regs) {
1349                 ret = -ENOMEM;
1350                 goto err_ioremap;
1351         }
1352
1353         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1354         if (ret)
1355                 goto err_request_irq;
1356
1357         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1358         if (!sdma->script_addrs) {
1359                 ret = -ENOMEM;
1360                 goto err_alloc;
1361         }
1362
1363         /* initially no scripts available */
1364         saddr_arr = (s32 *)sdma->script_addrs;
1365         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1366                 saddr_arr[i] = -EINVAL;
1367
1368         if (of_id)
1369                 pdev->id_entry = of_id->data;
1370         sdma->devtype = pdev->id_entry->driver_data;
1371
1372         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1373         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1374
1375         INIT_LIST_HEAD(&sdma->dma_device.channels);
1376         /* Initialize channel parameters */
1377         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1378                 struct sdma_channel *sdmac = &sdma->channel[i];
1379
1380                 sdmac->sdma = sdma;
1381                 spin_lock_init(&sdmac->lock);
1382
1383                 sdmac->chan.device = &sdma->dma_device;
1384                 dma_cookie_init(&sdmac->chan);
1385                 sdmac->channel = i;
1386
1387                 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1388                              (unsigned long) sdmac);
1389                 /*
1390                  * Add the channel to the DMAC list. Do not add channel 0 though
1391                  * because we need it internally in the SDMA driver. This also means
1392                  * that channel 0 in dmaengine counting matches sdma channel 1.
1393                  */
1394                 if (i)
1395                         list_add_tail(&sdmac->chan.device_node,
1396                                         &sdma->dma_device.channels);
1397         }
1398
1399         ret = sdma_init(sdma);
1400         if (ret)
1401                 goto err_init;
1402
1403         if (pdata && pdata->script_addrs)
1404                 sdma_add_scripts(sdma, pdata->script_addrs);
1405
1406         if (pdata) {
1407                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1408                 if (ret)
1409                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1410         } else {
1411                 /*
1412                  * Because that device tree does not encode ROM script address,
1413                  * the RAM script in firmware is mandatory for device tree
1414                  * probe, otherwise it fails.
1415                  */
1416                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1417                                               &fw_name);
1418                 if (ret)
1419                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1420                 else {
1421                         ret = sdma_get_firmware(sdma, fw_name);
1422                         if (ret)
1423                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1424                 }
1425         }
1426
1427         sdma->dma_device.dev = &pdev->dev;
1428
1429         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1430         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1431         sdma->dma_device.device_tx_status = sdma_tx_status;
1432         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1433         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1434         sdma->dma_device.device_control = sdma_control;
1435         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1436         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1437         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1438
1439         ret = dma_async_device_register(&sdma->dma_device);
1440         if (ret) {
1441                 dev_err(&pdev->dev, "unable to register\n");
1442                 goto err_init;
1443         }
1444
1445         dev_info(sdma->dev, "initialized\n");
1446
1447         return 0;
1448
1449 err_init:
1450         kfree(sdma->script_addrs);
1451 err_alloc:
1452         free_irq(irq, sdma);
1453 err_request_irq:
1454         iounmap(sdma->regs);
1455 err_ioremap:
1456 err_clk:
1457         release_mem_region(iores->start, resource_size(iores));
1458 err_request_region:
1459 err_irq:
1460         kfree(sdma);
1461         return ret;
1462 }
1463
1464 static int __exit sdma_remove(struct platform_device *pdev)
1465 {
1466         return -EBUSY;
1467 }
1468
1469 static struct platform_driver sdma_driver = {
1470         .driver         = {
1471                 .name   = "imx-sdma",
1472                 .of_match_table = sdma_dt_ids,
1473         },
1474         .id_table       = sdma_devtypes,
1475         .remove         = __exit_p(sdma_remove),
1476 };
1477
1478 static int __init sdma_module_init(void)
1479 {
1480         return platform_driver_probe(&sdma_driver, sdma_probe);
1481 }
1482 module_init(sdma_module_init);
1483
1484 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1485 MODULE_DESCRIPTION("i.MX SDMA driver");
1486 MODULE_LICENSE("GPL");