cgroup: superblock can't be released with active dentries
[firefly-linux-kernel-4.4.55.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  * Mode/Count of data node descriptors - IPCv2
128  */
129 struct sdma_mode_count {
130         u32 count   : 16; /* size of the buffer pointed by this BD */
131         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
132         u32 command :  8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136  * Buffer descriptor
137  */
138 struct sdma_buffer_descriptor {
139         struct sdma_mode_count  mode;
140         u32 buffer_addr;        /* address of the buffer described */
141         u32 ext_buffer_addr;    /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145  * struct sdma_channel_control - Channel control Block
146  *
147  * @current_bd_ptr      current buffer descriptor processed
148  * @base_bd_ptr         first element of buffer descriptor array
149  * @unused              padding. The SDMA engine expects an array of 128 byte
150  *                      control blocks
151  */
152 struct sdma_channel_control {
153         u32 current_bd_ptr;
154         u32 base_bd_ptr;
155         u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159  * struct sdma_state_registers - SDMA context for a channel
160  *
161  * @pc:         program counter
162  * @t:          test bit: status of arithmetic & test instruction
163  * @rpc:        return program counter
164  * @sf:         source fault while loading data
165  * @spc:        loop start program counter
166  * @df:         destination fault while storing data
167  * @epc:        loop end program counter
168  * @lm:         loop mode
169  */
170 struct sdma_state_registers {
171         u32 pc     :14;
172         u32 unused1: 1;
173         u32 t      : 1;
174         u32 rpc    :14;
175         u32 unused0: 1;
176         u32 sf     : 1;
177         u32 spc    :14;
178         u32 unused2: 1;
179         u32 df     : 1;
180         u32 epc    :14;
181         u32 lm     : 2;
182 } __attribute__ ((packed));
183
184 /**
185  * struct sdma_context_data - sdma context specific to a channel
186  *
187  * @channel_state:      channel state bits
188  * @gReg:               general registers
189  * @mda:                burst dma destination address register
190  * @msa:                burst dma source address register
191  * @ms:                 burst dma status register
192  * @md:                 burst dma data register
193  * @pda:                peripheral dma destination address register
194  * @psa:                peripheral dma source address register
195  * @ps:                 peripheral dma status register
196  * @pd:                 peripheral dma data register
197  * @ca:                 CRC polynomial register
198  * @cs:                 CRC accumulator register
199  * @dda:                dedicated core destination address register
200  * @dsa:                dedicated core source address register
201  * @ds:                 dedicated core status register
202  * @dd:                 dedicated core data register
203  */
204 struct sdma_context_data {
205         struct sdma_state_registers  channel_state;
206         u32  gReg[8];
207         u32  mda;
208         u32  msa;
209         u32  ms;
210         u32  md;
211         u32  pda;
212         u32  psa;
213         u32  ps;
214         u32  pd;
215         u32  ca;
216         u32  cs;
217         u32  dda;
218         u32  dsa;
219         u32  ds;
220         u32  dd;
221         u32  scratch0;
222         u32  scratch1;
223         u32  scratch2;
224         u32  scratch3;
225         u32  scratch4;
226         u32  scratch5;
227         u32  scratch6;
228         u32  scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236  * struct sdma_channel - housekeeping for a SDMA channel
237  *
238  * @sdma                pointer to the SDMA engine for this channel
239  * @channel             the channel number, matches dmaengine chan_id + 1
240  * @direction           transfer type. Needed for setting SDMA script
241  * @peripheral_type     Peripheral type. Needed for setting SDMA script
242  * @event_id0           aka dma request line
243  * @event_id1           for channels that use 2 events
244  * @word_size           peripheral access size
245  * @buf_tail            ID of the buffer that was processed
246  * @done                channel completion
247  * @num_bd              max NUM_BD. number of descriptors currently handling
248  */
249 struct sdma_channel {
250         struct sdma_engine              *sdma;
251         unsigned int                    channel;
252         enum dma_transfer_direction             direction;
253         enum sdma_peripheral_type       peripheral_type;
254         unsigned int                    event_id0;
255         unsigned int                    event_id1;
256         enum dma_slave_buswidth         word_size;
257         unsigned int                    buf_tail;
258         struct completion               done;
259         unsigned int                    num_bd;
260         struct sdma_buffer_descriptor   *bd;
261         dma_addr_t                      bd_phys;
262         unsigned int                    pc_from_device, pc_to_device;
263         unsigned long                   flags;
264         dma_addr_t                      per_address;
265         unsigned long                   event_mask[2];
266         unsigned long                   watermark_level;
267         u32                             shp_addr, per_addr;
268         struct dma_chan                 chan;
269         spinlock_t                      lock;
270         struct dma_async_tx_descriptor  desc;
271         enum dma_status                 status;
272         unsigned int                    chn_count;
273         unsigned int                    chn_real_count;
274 };
275
276 #define IMX_DMA_SG_LOOP         BIT(0)
277
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284
285 /**
286  * struct sdma_firmware_header - Layout of the firmware image
287  *
288  * @magic               "SDMA"
289  * @version_major       increased whenever layout of struct sdma_script_start_addrs
290  *                      changes.
291  * @version_minor       firmware minor version (for binary compatible changes)
292  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
293  * @num_script_addrs    Number of script addresses in this image
294  * @ram_code_start      offset of SDMA ram image in this firmware image
295  * @ram_code_size       size of SDMA ram image
296  * @script_addrs        Stores the start address of the SDMA scripts
297  *                      (in SDMA memory space)
298  */
299 struct sdma_firmware_header {
300         u32     magic;
301         u32     version_major;
302         u32     version_minor;
303         u32     script_addrs_start;
304         u32     num_script_addrs;
305         u32     ram_code_start;
306         u32     ram_code_size;
307 };
308
309 enum sdma_devtype {
310         IMX31_SDMA,     /* runs on i.mx31 */
311         IMX35_SDMA,     /* runs on i.mx35 and later */
312 };
313
314 struct sdma_engine {
315         struct device                   *dev;
316         struct device_dma_parameters    dma_parms;
317         struct sdma_channel             channel[MAX_DMA_CHANNELS];
318         struct sdma_channel_control     *channel_control;
319         void __iomem                    *regs;
320         enum sdma_devtype               devtype;
321         unsigned int                    num_events;
322         struct sdma_context_data        *context;
323         dma_addr_t                      context_phys;
324         struct dma_device               dma_device;
325         struct clk                      *clk;
326         struct mutex                    channel_0_lock;
327         struct sdma_script_start_addrs  *script_addrs;
328 };
329
330 static struct platform_device_id sdma_devtypes[] = {
331         {
332                 .name = "imx31-sdma",
333                 .driver_data = IMX31_SDMA,
334         }, {
335                 .name = "imx35-sdma",
336                 .driver_data = IMX35_SDMA,
337         }, {
338                 /* sentinel */
339         }
340 };
341 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
342
343 static const struct of_device_id sdma_dt_ids[] = {
344         { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
345         { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
346         { /* sentinel */ }
347 };
348 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
349
350 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
351 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
352 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
353 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
354
355 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
356 {
357         u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
358                                                       SDMA_CHNENBL0_IMX35);
359         return chnenbl0 + event * 4;
360 }
361
362 static int sdma_config_ownership(struct sdma_channel *sdmac,
363                 bool event_override, bool mcu_override, bool dsp_override)
364 {
365         struct sdma_engine *sdma = sdmac->sdma;
366         int channel = sdmac->channel;
367         unsigned long evt, mcu, dsp;
368
369         if (event_override && mcu_override && dsp_override)
370                 return -EINVAL;
371
372         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
373         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
374         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
375
376         if (dsp_override)
377                 __clear_bit(channel, &dsp);
378         else
379                 __set_bit(channel, &dsp);
380
381         if (event_override)
382                 __clear_bit(channel, &evt);
383         else
384                 __set_bit(channel, &evt);
385
386         if (mcu_override)
387                 __clear_bit(channel, &mcu);
388         else
389                 __set_bit(channel, &mcu);
390
391         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
392         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
393         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
394
395         return 0;
396 }
397
398 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
399 {
400         writel(BIT(channel), sdma->regs + SDMA_H_START);
401 }
402
403 /*
404  * sdma_run_channel - run a channel and wait till it's done
405  */
406 static int sdma_run_channel(struct sdma_channel *sdmac)
407 {
408         struct sdma_engine *sdma = sdmac->sdma;
409         int channel = sdmac->channel;
410         int ret;
411
412         init_completion(&sdmac->done);
413
414         sdma_enable_channel(sdma, channel);
415
416         ret = wait_for_completion_timeout(&sdmac->done, HZ);
417
418         return ret ? 0 : -ETIMEDOUT;
419 }
420
421 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
422                 u32 address)
423 {
424         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
425         void *buf_virt;
426         dma_addr_t buf_phys;
427         int ret;
428
429         mutex_lock(&sdma->channel_0_lock);
430
431         buf_virt = dma_alloc_coherent(NULL,
432                         size,
433                         &buf_phys, GFP_KERNEL);
434         if (!buf_virt) {
435                 ret = -ENOMEM;
436                 goto err_out;
437         }
438
439         bd0->mode.command = C0_SETPM;
440         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
441         bd0->mode.count = size / 2;
442         bd0->buffer_addr = buf_phys;
443         bd0->ext_buffer_addr = address;
444
445         memcpy(buf_virt, buf, size);
446
447         ret = sdma_run_channel(&sdma->channel[0]);
448
449         dma_free_coherent(NULL, size, buf_virt, buf_phys);
450
451 err_out:
452         mutex_unlock(&sdma->channel_0_lock);
453
454         return ret;
455 }
456
457 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
458 {
459         struct sdma_engine *sdma = sdmac->sdma;
460         int channel = sdmac->channel;
461         unsigned long val;
462         u32 chnenbl = chnenbl_ofs(sdma, event);
463
464         val = readl_relaxed(sdma->regs + chnenbl);
465         __set_bit(channel, &val);
466         writel_relaxed(val, sdma->regs + chnenbl);
467 }
468
469 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
470 {
471         struct sdma_engine *sdma = sdmac->sdma;
472         int channel = sdmac->channel;
473         u32 chnenbl = chnenbl_ofs(sdma, event);
474         unsigned long val;
475
476         val = readl_relaxed(sdma->regs + chnenbl);
477         __clear_bit(channel, &val);
478         writel_relaxed(val, sdma->regs + chnenbl);
479 }
480
481 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
482 {
483         struct sdma_buffer_descriptor *bd;
484
485         /*
486          * loop mode. Iterate over descriptors, re-setup them and
487          * call callback function.
488          */
489         while (1) {
490                 bd = &sdmac->bd[sdmac->buf_tail];
491
492                 if (bd->mode.status & BD_DONE)
493                         break;
494
495                 if (bd->mode.status & BD_RROR)
496                         sdmac->status = DMA_ERROR;
497                 else
498                         sdmac->status = DMA_IN_PROGRESS;
499
500                 bd->mode.status |= BD_DONE;
501                 sdmac->buf_tail++;
502                 sdmac->buf_tail %= sdmac->num_bd;
503
504                 if (sdmac->desc.callback)
505                         sdmac->desc.callback(sdmac->desc.callback_param);
506         }
507 }
508
509 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
510 {
511         struct sdma_buffer_descriptor *bd;
512         int i, error = 0;
513
514         sdmac->chn_real_count = 0;
515         /*
516          * non loop mode. Iterate over all descriptors, collect
517          * errors and call callback function
518          */
519         for (i = 0; i < sdmac->num_bd; i++) {
520                 bd = &sdmac->bd[i];
521
522                  if (bd->mode.status & (BD_DONE | BD_RROR))
523                         error = -EIO;
524                  sdmac->chn_real_count += bd->mode.count;
525         }
526
527         if (error)
528                 sdmac->status = DMA_ERROR;
529         else
530                 sdmac->status = DMA_SUCCESS;
531
532         dma_cookie_complete(&sdmac->desc);
533         if (sdmac->desc.callback)
534                 sdmac->desc.callback(sdmac->desc.callback_param);
535 }
536
537 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
538 {
539         complete(&sdmac->done);
540
541         /* not interested in channel 0 interrupts */
542         if (sdmac->channel == 0)
543                 return;
544
545         if (sdmac->flags & IMX_DMA_SG_LOOP)
546                 sdma_handle_channel_loop(sdmac);
547         else
548                 mxc_sdma_handle_channel_normal(sdmac);
549 }
550
551 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
552 {
553         struct sdma_engine *sdma = dev_id;
554         unsigned long stat;
555
556         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
557         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
558
559         while (stat) {
560                 int channel = fls(stat) - 1;
561                 struct sdma_channel *sdmac = &sdma->channel[channel];
562
563                 mxc_sdma_handle_channel(sdmac);
564
565                 __clear_bit(channel, &stat);
566         }
567
568         return IRQ_HANDLED;
569 }
570
571 /*
572  * sets the pc of SDMA script according to the peripheral type
573  */
574 static void sdma_get_pc(struct sdma_channel *sdmac,
575                 enum sdma_peripheral_type peripheral_type)
576 {
577         struct sdma_engine *sdma = sdmac->sdma;
578         int per_2_emi = 0, emi_2_per = 0;
579         /*
580          * These are needed once we start to support transfers between
581          * two peripherals or memory-to-memory transfers
582          */
583         int per_2_per = 0, emi_2_emi = 0;
584
585         sdmac->pc_from_device = 0;
586         sdmac->pc_to_device = 0;
587
588         switch (peripheral_type) {
589         case IMX_DMATYPE_MEMORY:
590                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
591                 break;
592         case IMX_DMATYPE_DSP:
593                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
594                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
595                 break;
596         case IMX_DMATYPE_FIRI:
597                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
598                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
599                 break;
600         case IMX_DMATYPE_UART:
601                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
602                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
603                 break;
604         case IMX_DMATYPE_UART_SP:
605                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
606                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
607                 break;
608         case IMX_DMATYPE_ATA:
609                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
610                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
611                 break;
612         case IMX_DMATYPE_CSPI:
613         case IMX_DMATYPE_EXT:
614         case IMX_DMATYPE_SSI:
615                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
616                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
617                 break;
618         case IMX_DMATYPE_SSI_SP:
619         case IMX_DMATYPE_MMC:
620         case IMX_DMATYPE_SDHC:
621         case IMX_DMATYPE_CSPI_SP:
622         case IMX_DMATYPE_ESAI:
623         case IMX_DMATYPE_MSHC_SP:
624                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
625                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
626                 break;
627         case IMX_DMATYPE_ASRC:
628                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
629                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
630                 per_2_per = sdma->script_addrs->per_2_per_addr;
631                 break;
632         case IMX_DMATYPE_MSHC:
633                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
634                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
635                 break;
636         case IMX_DMATYPE_CCM:
637                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
638                 break;
639         case IMX_DMATYPE_SPDIF:
640                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
641                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
642                 break;
643         case IMX_DMATYPE_IPU_MEMORY:
644                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
645                 break;
646         default:
647                 break;
648         }
649
650         sdmac->pc_from_device = per_2_emi;
651         sdmac->pc_to_device = emi_2_per;
652 }
653
654 static int sdma_load_context(struct sdma_channel *sdmac)
655 {
656         struct sdma_engine *sdma = sdmac->sdma;
657         int channel = sdmac->channel;
658         int load_address;
659         struct sdma_context_data *context = sdma->context;
660         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
661         int ret;
662
663         if (sdmac->direction == DMA_DEV_TO_MEM) {
664                 load_address = sdmac->pc_from_device;
665         } else {
666                 load_address = sdmac->pc_to_device;
667         }
668
669         if (load_address < 0)
670                 return load_address;
671
672         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
673         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
674         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
675         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
676         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
677         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
678
679         mutex_lock(&sdma->channel_0_lock);
680
681         memset(context, 0, sizeof(*context));
682         context->channel_state.pc = load_address;
683
684         /* Send by context the event mask,base address for peripheral
685          * and watermark level
686          */
687         context->gReg[0] = sdmac->event_mask[1];
688         context->gReg[1] = sdmac->event_mask[0];
689         context->gReg[2] = sdmac->per_addr;
690         context->gReg[6] = sdmac->shp_addr;
691         context->gReg[7] = sdmac->watermark_level;
692
693         bd0->mode.command = C0_SETDM;
694         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
695         bd0->mode.count = sizeof(*context) / 4;
696         bd0->buffer_addr = sdma->context_phys;
697         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
698
699         ret = sdma_run_channel(&sdma->channel[0]);
700
701         mutex_unlock(&sdma->channel_0_lock);
702
703         return ret;
704 }
705
706 static void sdma_disable_channel(struct sdma_channel *sdmac)
707 {
708         struct sdma_engine *sdma = sdmac->sdma;
709         int channel = sdmac->channel;
710
711         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
712         sdmac->status = DMA_ERROR;
713 }
714
715 static int sdma_config_channel(struct sdma_channel *sdmac)
716 {
717         int ret;
718
719         sdma_disable_channel(sdmac);
720
721         sdmac->event_mask[0] = 0;
722         sdmac->event_mask[1] = 0;
723         sdmac->shp_addr = 0;
724         sdmac->per_addr = 0;
725
726         if (sdmac->event_id0) {
727                 if (sdmac->event_id0 >= sdmac->sdma->num_events)
728                         return -EINVAL;
729                 sdma_event_enable(sdmac, sdmac->event_id0);
730         }
731
732         switch (sdmac->peripheral_type) {
733         case IMX_DMATYPE_DSP:
734                 sdma_config_ownership(sdmac, false, true, true);
735                 break;
736         case IMX_DMATYPE_MEMORY:
737                 sdma_config_ownership(sdmac, false, true, false);
738                 break;
739         default:
740                 sdma_config_ownership(sdmac, true, true, false);
741                 break;
742         }
743
744         sdma_get_pc(sdmac, sdmac->peripheral_type);
745
746         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
747                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
748                 /* Handle multiple event channels differently */
749                 if (sdmac->event_id1) {
750                         sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
751                         if (sdmac->event_id1 > 31)
752                                 __set_bit(31, &sdmac->watermark_level);
753                         sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
754                         if (sdmac->event_id0 > 31)
755                                 __set_bit(30, &sdmac->watermark_level);
756                 } else {
757                         __set_bit(sdmac->event_id0, sdmac->event_mask);
758                 }
759                 /* Watermark Level */
760                 sdmac->watermark_level |= sdmac->watermark_level;
761                 /* Address */
762                 sdmac->shp_addr = sdmac->per_address;
763         } else {
764                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
765         }
766
767         ret = sdma_load_context(sdmac);
768
769         return ret;
770 }
771
772 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
773                 unsigned int priority)
774 {
775         struct sdma_engine *sdma = sdmac->sdma;
776         int channel = sdmac->channel;
777
778         if (priority < MXC_SDMA_MIN_PRIORITY
779             || priority > MXC_SDMA_MAX_PRIORITY) {
780                 return -EINVAL;
781         }
782
783         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
784
785         return 0;
786 }
787
788 static int sdma_request_channel(struct sdma_channel *sdmac)
789 {
790         struct sdma_engine *sdma = sdmac->sdma;
791         int channel = sdmac->channel;
792         int ret = -EBUSY;
793
794         sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
795         if (!sdmac->bd) {
796                 ret = -ENOMEM;
797                 goto out;
798         }
799
800         memset(sdmac->bd, 0, PAGE_SIZE);
801
802         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
803         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
804
805         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
806
807         init_completion(&sdmac->done);
808
809         sdmac->buf_tail = 0;
810
811         return 0;
812 out:
813
814         return ret;
815 }
816
817 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
818 {
819         return container_of(chan, struct sdma_channel, chan);
820 }
821
822 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
823 {
824         unsigned long flags;
825         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
826         dma_cookie_t cookie;
827
828         spin_lock_irqsave(&sdmac->lock, flags);
829
830         cookie = dma_cookie_assign(tx);
831
832         spin_unlock_irqrestore(&sdmac->lock, flags);
833
834         return cookie;
835 }
836
837 static int sdma_alloc_chan_resources(struct dma_chan *chan)
838 {
839         struct sdma_channel *sdmac = to_sdma_chan(chan);
840         struct imx_dma_data *data = chan->private;
841         int prio, ret;
842
843         if (!data)
844                 return -EINVAL;
845
846         switch (data->priority) {
847         case DMA_PRIO_HIGH:
848                 prio = 3;
849                 break;
850         case DMA_PRIO_MEDIUM:
851                 prio = 2;
852                 break;
853         case DMA_PRIO_LOW:
854         default:
855                 prio = 1;
856                 break;
857         }
858
859         sdmac->peripheral_type = data->peripheral_type;
860         sdmac->event_id0 = data->dma_request;
861
862         clk_enable(sdmac->sdma->clk);
863
864         ret = sdma_request_channel(sdmac);
865         if (ret)
866                 return ret;
867
868         ret = sdma_set_channel_priority(sdmac, prio);
869         if (ret)
870                 return ret;
871
872         dma_async_tx_descriptor_init(&sdmac->desc, chan);
873         sdmac->desc.tx_submit = sdma_tx_submit;
874         /* txd.flags will be overwritten in prep funcs */
875         sdmac->desc.flags = DMA_CTRL_ACK;
876
877         return 0;
878 }
879
880 static void sdma_free_chan_resources(struct dma_chan *chan)
881 {
882         struct sdma_channel *sdmac = to_sdma_chan(chan);
883         struct sdma_engine *sdma = sdmac->sdma;
884
885         sdma_disable_channel(sdmac);
886
887         if (sdmac->event_id0)
888                 sdma_event_disable(sdmac, sdmac->event_id0);
889         if (sdmac->event_id1)
890                 sdma_event_disable(sdmac, sdmac->event_id1);
891
892         sdmac->event_id0 = 0;
893         sdmac->event_id1 = 0;
894
895         sdma_set_channel_priority(sdmac, 0);
896
897         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
898
899         clk_disable(sdma->clk);
900 }
901
902 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
903                 struct dma_chan *chan, struct scatterlist *sgl,
904                 unsigned int sg_len, enum dma_transfer_direction direction,
905                 unsigned long flags, void *context)
906 {
907         struct sdma_channel *sdmac = to_sdma_chan(chan);
908         struct sdma_engine *sdma = sdmac->sdma;
909         int ret, i, count;
910         int channel = sdmac->channel;
911         struct scatterlist *sg;
912
913         if (sdmac->status == DMA_IN_PROGRESS)
914                 return NULL;
915         sdmac->status = DMA_IN_PROGRESS;
916
917         sdmac->flags = 0;
918
919         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
920                         sg_len, channel);
921
922         sdmac->direction = direction;
923         ret = sdma_load_context(sdmac);
924         if (ret)
925                 goto err_out;
926
927         if (sg_len > NUM_BD) {
928                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
929                                 channel, sg_len, NUM_BD);
930                 ret = -EINVAL;
931                 goto err_out;
932         }
933
934         sdmac->chn_count = 0;
935         for_each_sg(sgl, sg, sg_len, i) {
936                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
937                 int param;
938
939                 bd->buffer_addr = sg->dma_address;
940
941                 count = sg->length;
942
943                 if (count > 0xffff) {
944                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
945                                         channel, count, 0xffff);
946                         ret = -EINVAL;
947                         goto err_out;
948                 }
949
950                 bd->mode.count = count;
951                 sdmac->chn_count += count;
952
953                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
954                         ret =  -EINVAL;
955                         goto err_out;
956                 }
957
958                 switch (sdmac->word_size) {
959                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
960                         bd->mode.command = 0;
961                         if (count & 3 || sg->dma_address & 3)
962                                 return NULL;
963                         break;
964                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
965                         bd->mode.command = 2;
966                         if (count & 1 || sg->dma_address & 1)
967                                 return NULL;
968                         break;
969                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
970                         bd->mode.command = 1;
971                         break;
972                 default:
973                         return NULL;
974                 }
975
976                 param = BD_DONE | BD_EXTD | BD_CONT;
977
978                 if (i + 1 == sg_len) {
979                         param |= BD_INTR;
980                         param |= BD_LAST;
981                         param &= ~BD_CONT;
982                 }
983
984                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
985                                 i, count, sg->dma_address,
986                                 param & BD_WRAP ? "wrap" : "",
987                                 param & BD_INTR ? " intr" : "");
988
989                 bd->mode.status = param;
990         }
991
992         sdmac->num_bd = sg_len;
993         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
994
995         return &sdmac->desc;
996 err_out:
997         sdmac->status = DMA_ERROR;
998         return NULL;
999 }
1000
1001 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1002                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1003                 size_t period_len, enum dma_transfer_direction direction,
1004                 void *context)
1005 {
1006         struct sdma_channel *sdmac = to_sdma_chan(chan);
1007         struct sdma_engine *sdma = sdmac->sdma;
1008         int num_periods = buf_len / period_len;
1009         int channel = sdmac->channel;
1010         int ret, i = 0, buf = 0;
1011
1012         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1013
1014         if (sdmac->status == DMA_IN_PROGRESS)
1015                 return NULL;
1016
1017         sdmac->status = DMA_IN_PROGRESS;
1018
1019         sdmac->flags |= IMX_DMA_SG_LOOP;
1020         sdmac->direction = direction;
1021         ret = sdma_load_context(sdmac);
1022         if (ret)
1023                 goto err_out;
1024
1025         if (num_periods > NUM_BD) {
1026                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1027                                 channel, num_periods, NUM_BD);
1028                 goto err_out;
1029         }
1030
1031         if (period_len > 0xffff) {
1032                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1033                                 channel, period_len, 0xffff);
1034                 goto err_out;
1035         }
1036
1037         while (buf < buf_len) {
1038                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1039                 int param;
1040
1041                 bd->buffer_addr = dma_addr;
1042
1043                 bd->mode.count = period_len;
1044
1045                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1046                         goto err_out;
1047                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1048                         bd->mode.command = 0;
1049                 else
1050                         bd->mode.command = sdmac->word_size;
1051
1052                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1053                 if (i + 1 == num_periods)
1054                         param |= BD_WRAP;
1055
1056                 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1057                                 i, period_len, dma_addr,
1058                                 param & BD_WRAP ? "wrap" : "",
1059                                 param & BD_INTR ? " intr" : "");
1060
1061                 bd->mode.status = param;
1062
1063                 dma_addr += period_len;
1064                 buf += period_len;
1065
1066                 i++;
1067         }
1068
1069         sdmac->num_bd = num_periods;
1070         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1071
1072         return &sdmac->desc;
1073 err_out:
1074         sdmac->status = DMA_ERROR;
1075         return NULL;
1076 }
1077
1078 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1079                 unsigned long arg)
1080 {
1081         struct sdma_channel *sdmac = to_sdma_chan(chan);
1082         struct dma_slave_config *dmaengine_cfg = (void *)arg;
1083
1084         switch (cmd) {
1085         case DMA_TERMINATE_ALL:
1086                 sdma_disable_channel(sdmac);
1087                 return 0;
1088         case DMA_SLAVE_CONFIG:
1089                 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1090                         sdmac->per_address = dmaengine_cfg->src_addr;
1091                         sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1092                                                 dmaengine_cfg->src_addr_width;
1093                         sdmac->word_size = dmaengine_cfg->src_addr_width;
1094                 } else {
1095                         sdmac->per_address = dmaengine_cfg->dst_addr;
1096                         sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1097                                                 dmaengine_cfg->dst_addr_width;
1098                         sdmac->word_size = dmaengine_cfg->dst_addr_width;
1099                 }
1100                 sdmac->direction = dmaengine_cfg->direction;
1101                 return sdma_config_channel(sdmac);
1102         default:
1103                 return -ENOSYS;
1104         }
1105
1106         return -EINVAL;
1107 }
1108
1109 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1110                                             dma_cookie_t cookie,
1111                                             struct dma_tx_state *txstate)
1112 {
1113         struct sdma_channel *sdmac = to_sdma_chan(chan);
1114         dma_cookie_t last_used;
1115
1116         last_used = chan->cookie;
1117
1118         dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1119                         sdmac->chn_count - sdmac->chn_real_count);
1120
1121         return sdmac->status;
1122 }
1123
1124 static void sdma_issue_pending(struct dma_chan *chan)
1125 {
1126         struct sdma_channel *sdmac = to_sdma_chan(chan);
1127         struct sdma_engine *sdma = sdmac->sdma;
1128
1129         if (sdmac->status == DMA_IN_PROGRESS)
1130                 sdma_enable_channel(sdma, sdmac->channel);
1131 }
1132
1133 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1134
1135 static void sdma_add_scripts(struct sdma_engine *sdma,
1136                 const struct sdma_script_start_addrs *addr)
1137 {
1138         s32 *addr_arr = (u32 *)addr;
1139         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1140         int i;
1141
1142         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1143                 if (addr_arr[i] > 0)
1144                         saddr_arr[i] = addr_arr[i];
1145 }
1146
1147 static void sdma_load_firmware(const struct firmware *fw, void *context)
1148 {
1149         struct sdma_engine *sdma = context;
1150         const struct sdma_firmware_header *header;
1151         const struct sdma_script_start_addrs *addr;
1152         unsigned short *ram_code;
1153
1154         if (!fw) {
1155                 dev_err(sdma->dev, "firmware not found\n");
1156                 return;
1157         }
1158
1159         if (fw->size < sizeof(*header))
1160                 goto err_firmware;
1161
1162         header = (struct sdma_firmware_header *)fw->data;
1163
1164         if (header->magic != SDMA_FIRMWARE_MAGIC)
1165                 goto err_firmware;
1166         if (header->ram_code_start + header->ram_code_size > fw->size)
1167                 goto err_firmware;
1168
1169         addr = (void *)header + header->script_addrs_start;
1170         ram_code = (void *)header + header->ram_code_start;
1171
1172         clk_enable(sdma->clk);
1173         /* download the RAM image for SDMA */
1174         sdma_load_script(sdma, ram_code,
1175                         header->ram_code_size,
1176                         addr->ram_code_start_addr);
1177         clk_disable(sdma->clk);
1178
1179         sdma_add_scripts(sdma, addr);
1180
1181         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1182                         header->version_major,
1183                         header->version_minor);
1184
1185 err_firmware:
1186         release_firmware(fw);
1187 }
1188
1189 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1190                 const char *fw_name)
1191 {
1192         int ret;
1193
1194         ret = request_firmware_nowait(THIS_MODULE,
1195                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1196                         GFP_KERNEL, sdma, sdma_load_firmware);
1197
1198         return ret;
1199 }
1200
1201 static int __init sdma_init(struct sdma_engine *sdma)
1202 {
1203         int i, ret;
1204         dma_addr_t ccb_phys;
1205
1206         switch (sdma->devtype) {
1207         case IMX31_SDMA:
1208                 sdma->num_events = 32;
1209                 break;
1210         case IMX35_SDMA:
1211                 sdma->num_events = 48;
1212                 break;
1213         default:
1214                 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1215                         sdma->devtype);
1216                 return -ENODEV;
1217         }
1218
1219         clk_enable(sdma->clk);
1220
1221         /* Be sure SDMA has not started yet */
1222         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1223
1224         sdma->channel_control = dma_alloc_coherent(NULL,
1225                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1226                         sizeof(struct sdma_context_data),
1227                         &ccb_phys, GFP_KERNEL);
1228
1229         if (!sdma->channel_control) {
1230                 ret = -ENOMEM;
1231                 goto err_dma_alloc;
1232         }
1233
1234         sdma->context = (void *)sdma->channel_control +
1235                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1236         sdma->context_phys = ccb_phys +
1237                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1238
1239         /* Zero-out the CCB structures array just allocated */
1240         memset(sdma->channel_control, 0,
1241                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1242
1243         /* disable all channels */
1244         for (i = 0; i < sdma->num_events; i++)
1245                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1246
1247         /* All channels have priority 0 */
1248         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1249                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1250
1251         ret = sdma_request_channel(&sdma->channel[0]);
1252         if (ret)
1253                 goto err_dma_alloc;
1254
1255         sdma_config_ownership(&sdma->channel[0], false, true, false);
1256
1257         /* Set Command Channel (Channel Zero) */
1258         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1259
1260         /* Set bits of CONFIG register but with static context switching */
1261         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1262         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1263
1264         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1265
1266         /* Set bits of CONFIG register with given context switching mode */
1267         writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1268
1269         /* Initializes channel's priorities */
1270         sdma_set_channel_priority(&sdma->channel[0], 7);
1271
1272         clk_disable(sdma->clk);
1273
1274         return 0;
1275
1276 err_dma_alloc:
1277         clk_disable(sdma->clk);
1278         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1279         return ret;
1280 }
1281
1282 static int __init sdma_probe(struct platform_device *pdev)
1283 {
1284         const struct of_device_id *of_id =
1285                         of_match_device(sdma_dt_ids, &pdev->dev);
1286         struct device_node *np = pdev->dev.of_node;
1287         const char *fw_name;
1288         int ret;
1289         int irq;
1290         struct resource *iores;
1291         struct sdma_platform_data *pdata = pdev->dev.platform_data;
1292         int i;
1293         struct sdma_engine *sdma;
1294         s32 *saddr_arr;
1295
1296         sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1297         if (!sdma)
1298                 return -ENOMEM;
1299
1300         mutex_init(&sdma->channel_0_lock);
1301
1302         sdma->dev = &pdev->dev;
1303
1304         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1305         irq = platform_get_irq(pdev, 0);
1306         if (!iores || irq < 0) {
1307                 ret = -EINVAL;
1308                 goto err_irq;
1309         }
1310
1311         if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1312                 ret = -EBUSY;
1313                 goto err_request_region;
1314         }
1315
1316         sdma->clk = clk_get(&pdev->dev, NULL);
1317         if (IS_ERR(sdma->clk)) {
1318                 ret = PTR_ERR(sdma->clk);
1319                 goto err_clk;
1320         }
1321
1322         sdma->regs = ioremap(iores->start, resource_size(iores));
1323         if (!sdma->regs) {
1324                 ret = -ENOMEM;
1325                 goto err_ioremap;
1326         }
1327
1328         ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1329         if (ret)
1330                 goto err_request_irq;
1331
1332         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1333         if (!sdma->script_addrs) {
1334                 ret = -ENOMEM;
1335                 goto err_alloc;
1336         }
1337
1338         /* initially no scripts available */
1339         saddr_arr = (s32 *)sdma->script_addrs;
1340         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1341                 saddr_arr[i] = -EINVAL;
1342
1343         if (of_id)
1344                 pdev->id_entry = of_id->data;
1345         sdma->devtype = pdev->id_entry->driver_data;
1346
1347         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1348         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1349
1350         INIT_LIST_HEAD(&sdma->dma_device.channels);
1351         /* Initialize channel parameters */
1352         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1353                 struct sdma_channel *sdmac = &sdma->channel[i];
1354
1355                 sdmac->sdma = sdma;
1356                 spin_lock_init(&sdmac->lock);
1357
1358                 sdmac->chan.device = &sdma->dma_device;
1359                 dma_cookie_init(&sdmac->chan);
1360                 sdmac->channel = i;
1361
1362                 /*
1363                  * Add the channel to the DMAC list. Do not add channel 0 though
1364                  * because we need it internally in the SDMA driver. This also means
1365                  * that channel 0 in dmaengine counting matches sdma channel 1.
1366                  */
1367                 if (i)
1368                         list_add_tail(&sdmac->chan.device_node,
1369                                         &sdma->dma_device.channels);
1370         }
1371
1372         ret = sdma_init(sdma);
1373         if (ret)
1374                 goto err_init;
1375
1376         if (pdata && pdata->script_addrs)
1377                 sdma_add_scripts(sdma, pdata->script_addrs);
1378
1379         if (pdata) {
1380                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1381                 if (ret)
1382                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1383         } else {
1384                 /*
1385                  * Because that device tree does not encode ROM script address,
1386                  * the RAM script in firmware is mandatory for device tree
1387                  * probe, otherwise it fails.
1388                  */
1389                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1390                                               &fw_name);
1391                 if (ret)
1392                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1393                 else {
1394                         ret = sdma_get_firmware(sdma, fw_name);
1395                         if (ret)
1396                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1397                 }
1398         }
1399
1400         sdma->dma_device.dev = &pdev->dev;
1401
1402         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1403         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1404         sdma->dma_device.device_tx_status = sdma_tx_status;
1405         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1406         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1407         sdma->dma_device.device_control = sdma_control;
1408         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1409         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1410         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1411
1412         ret = dma_async_device_register(&sdma->dma_device);
1413         if (ret) {
1414                 dev_err(&pdev->dev, "unable to register\n");
1415                 goto err_init;
1416         }
1417
1418         dev_info(sdma->dev, "initialized\n");
1419
1420         return 0;
1421
1422 err_init:
1423         kfree(sdma->script_addrs);
1424 err_alloc:
1425         free_irq(irq, sdma);
1426 err_request_irq:
1427         iounmap(sdma->regs);
1428 err_ioremap:
1429         clk_put(sdma->clk);
1430 err_clk:
1431         release_mem_region(iores->start, resource_size(iores));
1432 err_request_region:
1433 err_irq:
1434         kfree(sdma);
1435         return ret;
1436 }
1437
1438 static int __exit sdma_remove(struct platform_device *pdev)
1439 {
1440         return -EBUSY;
1441 }
1442
1443 static struct platform_driver sdma_driver = {
1444         .driver         = {
1445                 .name   = "imx-sdma",
1446                 .of_match_table = sdma_dt_ids,
1447         },
1448         .id_table       = sdma_devtypes,
1449         .remove         = __exit_p(sdma_remove),
1450 };
1451
1452 static int __init sdma_module_init(void)
1453 {
1454         return platform_driver_probe(&sdma_driver, sdma_probe);
1455 }
1456 module_init(sdma_module_init);
1457
1458 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1459 MODULE_DESCRIPTION("i.MX SDMA driver");
1460 MODULE_LICENSE("GPL");