c42a8a11b86053f5e9213308bfdaf1e3e1945962
[firefly-linux-kernel-4.4.55.git] / drivers / cpuidle / governors / menu.c
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/module.h>
23
24 #define BUCKETS 12
25 #define INTERVALS 8
26 #define RESOLUTION 1024
27 #define DECAY 8
28 #define MAX_INTERESTING 50000
29 #define STDDEV_THRESH 400
30
31 /* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
32 #define MAX_DEVIATION 60
33
34 static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
35 static DEFINE_PER_CPU(int, hrtimer_status);
36 /* menu hrtimer mode */
37 enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL};
38
39 /*
40  * Concepts and ideas behind the menu governor
41  *
42  * For the menu governor, there are 3 decision factors for picking a C
43  * state:
44  * 1) Energy break even point
45  * 2) Performance impact
46  * 3) Latency tolerance (from pmqos infrastructure)
47  * These these three factors are treated independently.
48  *
49  * Energy break even point
50  * -----------------------
51  * C state entry and exit have an energy cost, and a certain amount of time in
52  * the  C state is required to actually break even on this cost. CPUIDLE
53  * provides us this duration in the "target_residency" field. So all that we
54  * need is a good prediction of how long we'll be idle. Like the traditional
55  * menu governor, we start with the actual known "next timer event" time.
56  *
57  * Since there are other source of wakeups (interrupts for example) than
58  * the next timer event, this estimation is rather optimistic. To get a
59  * more realistic estimate, a correction factor is applied to the estimate,
60  * that is based on historic behavior. For example, if in the past the actual
61  * duration always was 50% of the next timer tick, the correction factor will
62  * be 0.5.
63  *
64  * menu uses a running average for this correction factor, however it uses a
65  * set of factors, not just a single factor. This stems from the realization
66  * that the ratio is dependent on the order of magnitude of the expected
67  * duration; if we expect 500 milliseconds of idle time the likelihood of
68  * getting an interrupt very early is much higher than if we expect 50 micro
69  * seconds of idle time. A second independent factor that has big impact on
70  * the actual factor is if there is (disk) IO outstanding or not.
71  * (as a special twist, we consider every sleep longer than 50 milliseconds
72  * as perfect; there are no power gains for sleeping longer than this)
73  *
74  * For these two reasons we keep an array of 12 independent factors, that gets
75  * indexed based on the magnitude of the expected duration as well as the
76  * "is IO outstanding" property.
77  *
78  * Repeatable-interval-detector
79  * ----------------------------
80  * There are some cases where "next timer" is a completely unusable predictor:
81  * Those cases where the interval is fixed, for example due to hardware
82  * interrupt mitigation, but also due to fixed transfer rate devices such as
83  * mice.
84  * For this, we use a different predictor: We track the duration of the last 8
85  * intervals and if the stand deviation of these 8 intervals is below a
86  * threshold value, we use the average of these intervals as prediction.
87  *
88  * Limiting Performance Impact
89  * ---------------------------
90  * C states, especially those with large exit latencies, can have a real
91  * noticeable impact on workloads, which is not acceptable for most sysadmins,
92  * and in addition, less performance has a power price of its own.
93  *
94  * As a general rule of thumb, menu assumes that the following heuristic
95  * holds:
96  *     The busier the system, the less impact of C states is acceptable
97  *
98  * This rule-of-thumb is implemented using a performance-multiplier:
99  * If the exit latency times the performance multiplier is longer than
100  * the predicted duration, the C state is not considered a candidate
101  * for selection due to a too high performance impact. So the higher
102  * this multiplier is, the longer we need to be idle to pick a deep C
103  * state, and thus the less likely a busy CPU will hit such a deep
104  * C state.
105  *
106  * Two factors are used in determing this multiplier:
107  * a value of 10 is added for each point of "per cpu load average" we have.
108  * a value of 5 points is added for each process that is waiting for
109  * IO on this CPU.
110  * (these values are experimentally determined)
111  *
112  * The load average factor gives a longer term (few seconds) input to the
113  * decision, while the iowait value gives a cpu local instantanious input.
114  * The iowait factor may look low, but realize that this is also already
115  * represented in the system load average.
116  *
117  */
118
119 /*
120  * The C-state residency is so long that is is worthwhile to exit
121  * from the shallow C-state and re-enter into a deeper C-state.
122  */
123 static unsigned int perfect_cstate_ms __read_mostly = 30;
124 module_param(perfect_cstate_ms, uint, 0000);
125
126 struct menu_device {
127         int             last_state_idx;
128         int             needs_update;
129
130         unsigned int    expected_us;
131         u64             predicted_us;
132         unsigned int    exit_us;
133         unsigned int    bucket;
134         u64             correction_factor[BUCKETS];
135         u32             intervals[INTERVALS];
136         int             interval_ptr;
137 };
138
139
140 #define LOAD_INT(x) ((x) >> FSHIFT)
141 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
142
143 static int get_loadavg(void)
144 {
145         unsigned long this = this_cpu_load();
146
147
148         return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
149 }
150
151 static inline int which_bucket(unsigned int duration)
152 {
153         int bucket = 0;
154
155         /*
156          * We keep two groups of stats; one with no
157          * IO pending, one without.
158          * This allows us to calculate
159          * E(duration)|iowait
160          */
161         if (nr_iowait_cpu(smp_processor_id()))
162                 bucket = BUCKETS/2;
163
164         if (duration < 10)
165                 return bucket;
166         if (duration < 100)
167                 return bucket + 1;
168         if (duration < 1000)
169                 return bucket + 2;
170         if (duration < 10000)
171                 return bucket + 3;
172         if (duration < 100000)
173                 return bucket + 4;
174         return bucket + 5;
175 }
176
177 /*
178  * Return a multiplier for the exit latency that is intended
179  * to take performance requirements into account.
180  * The more performance critical we estimate the system
181  * to be, the higher this multiplier, and thus the higher
182  * the barrier to go to an expensive C state.
183  */
184 static inline int performance_multiplier(void)
185 {
186         int mult = 1;
187
188         /* for higher loadavg, we are more reluctant */
189
190         /*
191          * this doesn't work as intended - it is almost always 0, but can
192          * sometimes, depending on workload, spike very high into the hundreds
193          * even when the average cpu load is under 10%.
194          */
195         /* mult += 2 * get_loadavg(); */
196
197         /* for IO wait tasks (per cpu!) we add 5x each */
198         mult += 10 * nr_iowait_cpu(smp_processor_id());
199
200         return mult;
201 }
202
203 static DEFINE_PER_CPU(struct menu_device, menu_devices);
204
205 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
206
207 /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
208 static u64 div_round64(u64 dividend, u32 divisor)
209 {
210         return div_u64(dividend + (divisor / 2), divisor);
211 }
212
213 /* Cancel the hrtimer if it is not triggered yet */
214 void menu_hrtimer_cancel(void)
215 {
216         int cpu = smp_processor_id();
217         struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
218
219         /* The timer is still not time out*/
220         if (per_cpu(hrtimer_status, cpu)) {
221                 hrtimer_cancel(hrtmr);
222                 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
223         }
224 }
225 EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);
226
227 /* Call back for hrtimer is triggered */
228 static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
229 {
230         int cpu = smp_processor_id();
231         struct menu_device *data = &per_cpu(menu_devices, cpu);
232
233         /* In general case, the expected residency is much larger than
234          *  deepest C-state target residency, but prediction logic still
235          *  predicts a small predicted residency, so the prediction
236          *  history is totally broken if the timer is triggered.
237          *  So reset the correction factor.
238          */
239         if (per_cpu(hrtimer_status, cpu) == MENU_HRTIMER_GENERAL)
240                 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
241
242         per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
243
244         return HRTIMER_NORESTART;
245 }
246
247 /*
248  * Try detecting repeating patterns by keeping track of the last 8
249  * intervals, and checking if the standard deviation of that set
250  * of points is below a threshold. If it is... then use the
251  * average of these 8 points as the estimated value.
252  */
253 static u32 get_typical_interval(struct menu_device *data)
254 {
255         int i = 0, divisor = 0;
256         uint64_t max = 0, avg = 0, stddev = 0;
257         int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
258         unsigned int ret = 0;
259
260 again:
261
262         /* first calculate average and standard deviation of the past */
263         max = avg = divisor = stddev = 0;
264         for (i = 0; i < INTERVALS; i++) {
265                 int64_t value = data->intervals[i];
266                 if (value <= thresh) {
267                         avg += value;
268                         divisor++;
269                         if (value > max)
270                                 max = value;
271                 }
272         }
273         do_div(avg, divisor);
274
275         for (i = 0; i < INTERVALS; i++) {
276                 int64_t value = data->intervals[i];
277                 if (value <= thresh) {
278                         int64_t diff = value - avg;
279                         stddev += diff * diff;
280                 }
281         }
282         do_div(stddev, divisor);
283         stddev = int_sqrt(stddev);
284         /*
285          * If we have outliers to the upside in our distribution, discard
286          * those by setting the threshold to exclude these outliers, then
287          * calculate the average and standard deviation again. Once we get
288          * down to the bottom 3/4 of our samples, stop excluding samples.
289          *
290          * This can deal with workloads that have long pauses interspersed
291          * with sporadic activity with a bunch of short pauses.
292          *
293          * The typical interval is obtained when standard deviation is small
294          * or standard deviation is small compared to the average interval.
295          */
296         if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
297                                                         || stddev <= 20) {
298                 data->predicted_us = avg;
299                 ret = 1;
300                 return ret;
301
302         } else if ((divisor * 4) > INTERVALS * 3) {
303                 /* Exclude the max interval */
304                 thresh = max - 1;
305                 goto again;
306         }
307
308         return ret;
309 }
310
311 /**
312  * menu_select - selects the next idle state to enter
313  * @drv: cpuidle driver containing state data
314  * @dev: the CPU
315  */
316 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
317 {
318         struct menu_device *data = &__get_cpu_var(menu_devices);
319         int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
320         int i;
321         int multiplier;
322         struct timespec t;
323         int repeat = 0, low_predicted = 0;
324         int cpu = smp_processor_id();
325         struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
326
327         if (data->needs_update) {
328                 menu_update(drv, dev);
329                 data->needs_update = 0;
330         }
331
332         data->last_state_idx = 0;
333         data->exit_us = 0;
334
335         /* Special case when user has set very strict latency requirement */
336         if (unlikely(latency_req == 0))
337                 return 0;
338
339         /* determine the expected residency time, round up */
340         t = ktime_to_timespec(tick_nohz_get_sleep_length());
341         data->expected_us =
342                 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
343
344
345         data->bucket = which_bucket(data->expected_us);
346
347         multiplier = performance_multiplier();
348
349         /*
350          * if the correction factor is 0 (eg first time init or cpu hotplug
351          * etc), we actually want to start out with a unity factor.
352          */
353         if (data->correction_factor[data->bucket] == 0)
354                 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
355
356         /* Make sure to round up for half microseconds */
357         data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
358                                          RESOLUTION * DECAY);
359
360         repeat = get_typical_interval(data);
361
362         /*
363          * We want to default to C1 (hlt), not to busy polling
364          * unless the timer is happening really really soon.
365          */
366         if (data->expected_us > 5 &&
367             !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
368                 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
369                 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
370
371         /*
372          * Find the idle state with the lowest power while satisfying
373          * our constraints.
374          */
375         for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
376                 struct cpuidle_state *s = &drv->states[i];
377                 struct cpuidle_state_usage *su = &dev->states_usage[i];
378
379                 if (s->disabled || su->disable)
380                         continue;
381                 if (s->target_residency > data->predicted_us) {
382                         low_predicted = 1;
383                         continue;
384                 }
385                 if (s->exit_latency > latency_req)
386                         continue;
387                 if (s->exit_latency * multiplier > data->predicted_us)
388                         continue;
389
390                 data->last_state_idx = i;
391                 data->exit_us = s->exit_latency;
392         }
393
394         /* not deepest C-state chosen for low predicted residency */
395         if (low_predicted) {
396                 unsigned int timer_us = 0;
397                 unsigned int perfect_us = 0;
398
399                 /*
400                  * Set a timer to detect whether this sleep is much
401                  * longer than repeat mode predicted.  If the timer
402                  * triggers, the code will evaluate whether to put
403                  * the CPU into a deeper C-state.
404                  * The timer is cancelled on CPU wakeup.
405                  */
406                 timer_us = 2 * (data->predicted_us + MAX_DEVIATION);
407
408                 perfect_us = perfect_cstate_ms * 1000;
409
410                 if (repeat && (4 * timer_us < data->expected_us)) {
411                         RCU_NONIDLE(hrtimer_start(hrtmr,
412                                 ns_to_ktime(1000 * timer_us),
413                                 HRTIMER_MODE_REL_PINNED));
414                         /* In repeat case, menu hrtimer is started */
415                         per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
416                 } else if (perfect_us < data->expected_us) {
417                         /*
418                          * The next timer is long. This could be because
419                          * we did not make a useful prediction.
420                          * In that case, it makes sense to re-enter
421                          * into a deeper C-state after some time.
422                          */
423                         RCU_NONIDLE(hrtimer_start(hrtmr,
424                                 ns_to_ktime(1000 * timer_us),
425                                 HRTIMER_MODE_REL_PINNED));
426                         /* In general case, menu hrtimer is started */
427                         per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_GENERAL;
428                 }
429
430         }
431
432         return data->last_state_idx;
433 }
434
435 /**
436  * menu_reflect - records that data structures need update
437  * @dev: the CPU
438  * @index: the index of actual entered state
439  *
440  * NOTE: it's important to be fast here because this operation will add to
441  *       the overall exit latency.
442  */
443 static void menu_reflect(struct cpuidle_device *dev, int index)
444 {
445         struct menu_device *data = &__get_cpu_var(menu_devices);
446         data->last_state_idx = index;
447         if (index >= 0)
448                 data->needs_update = 1;
449 }
450
451 /**
452  * menu_update - attempts to guess what happened after entry
453  * @drv: cpuidle driver containing state data
454  * @dev: the CPU
455  */
456 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
457 {
458         struct menu_device *data = &__get_cpu_var(menu_devices);
459         int last_idx = data->last_state_idx;
460         unsigned int last_idle_us = cpuidle_get_last_residency(dev);
461         struct cpuidle_state *target = &drv->states[last_idx];
462         unsigned int measured_us;
463         u64 new_factor;
464
465         /*
466          * Ugh, this idle state doesn't support residency measurements, so we
467          * are basically lost in the dark.  As a compromise, assume we slept
468          * for the whole expected time.
469          */
470         if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
471                 last_idle_us = data->expected_us;
472
473
474         measured_us = last_idle_us;
475
476         /*
477          * We correct for the exit latency; we are assuming here that the
478          * exit latency happens after the event that we're interested in.
479          */
480         if (measured_us > data->exit_us)
481                 measured_us -= data->exit_us;
482
483
484         /* update our correction ratio */
485
486         new_factor = data->correction_factor[data->bucket]
487                         * (DECAY - 1) / DECAY;
488
489         if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
490                 new_factor += RESOLUTION * measured_us / data->expected_us;
491         else
492                 /*
493                  * we were idle so long that we count it as a perfect
494                  * prediction
495                  */
496                 new_factor += RESOLUTION;
497
498         /*
499          * We don't want 0 as factor; we always want at least
500          * a tiny bit of estimated time.
501          */
502         if (new_factor == 0)
503                 new_factor = 1;
504
505         data->correction_factor[data->bucket] = new_factor;
506
507         /* update the repeating-pattern data */
508         data->intervals[data->interval_ptr++] = last_idle_us;
509         if (data->interval_ptr >= INTERVALS)
510                 data->interval_ptr = 0;
511 }
512
513 /**
514  * menu_enable_device - scans a CPU's states and does setup
515  * @drv: cpuidle driver
516  * @dev: the CPU
517  */
518 static int menu_enable_device(struct cpuidle_driver *drv,
519                                 struct cpuidle_device *dev)
520 {
521         struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
522         struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
523         hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
524         t->function = menu_hrtimer_notify;
525
526         memset(data, 0, sizeof(struct menu_device));
527
528         return 0;
529 }
530
531 static struct cpuidle_governor menu_governor = {
532         .name =         "menu",
533         .rating =       20,
534         .enable =       menu_enable_device,
535         .select =       menu_select,
536         .reflect =      menu_reflect,
537         .owner =        THIS_MODULE,
538 };
539
540 /**
541  * init_menu - initializes the governor
542  */
543 static int __init init_menu(void)
544 {
545         return cpuidle_register_governor(&menu_governor);
546 }
547
548 /**
549  * exit_menu - exits the governor
550  */
551 static void __exit exit_menu(void)
552 {
553         cpuidle_unregister_governor(&menu_governor);
554 }
555
556 MODULE_LICENSE("GPL");
557 module_init(init_menu);
558 module_exit(exit_menu);