Merge tag 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzik...
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / powernow-k8.c
1 /*
2  *   (c) 2003-2012 Advanced Micro Devices, Inc.
3  *  Your use of this code is subject to the terms and conditions of the
4  *  GNU general public license version 2. See "COPYING" or
5  *  http://www.gnu.org/licenses/gpl.html
6  *
7  *  Maintainer:
8  *  Andreas Herrmann <andreas.herrmann3@amd.com>
9  *
10  *  Based on the powernow-k7.c module written by Dave Jones.
11  *  (C) 2003 Dave Jones on behalf of SuSE Labs
12  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
13  *  (C) 2004 Pavel Machek <pavel@ucw.cz>
14  *  Licensed under the terms of the GNU GPL License version 2.
15  *  Based upon datasheets & sample CPUs kindly provided by AMD.
16  *
17  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
18  *  Dominik Brodowski, Jacob Shin, and others.
19  *  Originally developed by Paul Devriendt.
20  *
21  *  Processor information obtained from Chapter 9 (Power and Thermal
22  *  Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23  *  the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24  *  Power Management" in BKDGs for newer AMD CPU families.
25  *
26  *  Tables for specific CPUs can be inferred from AMD's processor
27  *  power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28  */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/io.h>
39 #include <linux/delay.h>
40
41 #include <asm/msr.h>
42 #include <asm/cpu_device_id.h>
43
44 #include <linux/acpi.h>
45 #include <linux/mutex.h>
46 #include <acpi/processor.h>
47
48 #define PFX "powernow-k8: "
49 #define VERSION "version 2.20.00"
50 #include "powernow-k8.h"
51 #include "mperf.h"
52
53 /* serialize freq changes  */
54 static DEFINE_MUTEX(fidvid_mutex);
55
56 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
57
58 static int cpu_family = CPU_OPTERON;
59
60 /* array to map SW pstate number to acpi state */
61 static u32 ps_to_as[8];
62
63 /* core performance boost */
64 static bool cpb_capable, cpb_enabled;
65 static struct msr __percpu *msrs;
66
67 static struct cpufreq_driver cpufreq_amd64_driver;
68
69 #ifndef CONFIG_SMP
70 static inline const struct cpumask *cpu_core_mask(int cpu)
71 {
72         return cpumask_of(0);
73 }
74 #endif
75
76 /* Return a frequency in MHz, given an input fid */
77 static u32 find_freq_from_fid(u32 fid)
78 {
79         return 800 + (fid * 100);
80 }
81
82 /* Return a frequency in KHz, given an input fid */
83 static u32 find_khz_freq_from_fid(u32 fid)
84 {
85         return 1000 * find_freq_from_fid(fid);
86 }
87
88 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
89                                      u32 pstate)
90 {
91         return data[ps_to_as[pstate]].frequency;
92 }
93
94 /* Return the vco fid for an input fid
95  *
96  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
97  * only from corresponding high fids. This returns "high" fid corresponding to
98  * "low" one.
99  */
100 static u32 convert_fid_to_vco_fid(u32 fid)
101 {
102         if (fid < HI_FID_TABLE_BOTTOM)
103                 return 8 + (2 * fid);
104         else
105                 return fid;
106 }
107
108 /*
109  * Return 1 if the pending bit is set. Unless we just instructed the processor
110  * to transition to a new state, seeing this bit set is really bad news.
111  */
112 static int pending_bit_stuck(void)
113 {
114         u32 lo, hi;
115
116         if (cpu_family == CPU_HW_PSTATE)
117                 return 0;
118
119         rdmsr(MSR_FIDVID_STATUS, lo, hi);
120         return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
121 }
122
123 /*
124  * Update the global current fid / vid values from the status msr.
125  * Returns 1 on error.
126  */
127 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
128 {
129         u32 lo, hi;
130         u32 i = 0;
131
132         if (cpu_family == CPU_HW_PSTATE) {
133                 rdmsr(MSR_PSTATE_STATUS, lo, hi);
134                 i = lo & HW_PSTATE_MASK;
135                 data->currpstate = i;
136
137                 /*
138                  * a workaround for family 11h erratum 311 might cause
139                  * an "out-of-range Pstate if the core is in Pstate-0
140                  */
141                 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
142                         data->currpstate = HW_PSTATE_0;
143
144                 return 0;
145         }
146         do {
147                 if (i++ > 10000) {
148                         pr_debug("detected change pending stuck\n");
149                         return 1;
150                 }
151                 rdmsr(MSR_FIDVID_STATUS, lo, hi);
152         } while (lo & MSR_S_LO_CHANGE_PENDING);
153
154         data->currvid = hi & MSR_S_HI_CURRENT_VID;
155         data->currfid = lo & MSR_S_LO_CURRENT_FID;
156
157         return 0;
158 }
159
160 /* the isochronous relief time */
161 static void count_off_irt(struct powernow_k8_data *data)
162 {
163         udelay((1 << data->irt) * 10);
164         return;
165 }
166
167 /* the voltage stabilization time */
168 static void count_off_vst(struct powernow_k8_data *data)
169 {
170         udelay(data->vstable * VST_UNITS_20US);
171         return;
172 }
173
174 /* need to init the control msr to a safe value (for each cpu) */
175 static void fidvid_msr_init(void)
176 {
177         u32 lo, hi;
178         u8 fid, vid;
179
180         rdmsr(MSR_FIDVID_STATUS, lo, hi);
181         vid = hi & MSR_S_HI_CURRENT_VID;
182         fid = lo & MSR_S_LO_CURRENT_FID;
183         lo = fid | (vid << MSR_C_LO_VID_SHIFT);
184         hi = MSR_C_HI_STP_GNT_BENIGN;
185         pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
186         wrmsr(MSR_FIDVID_CTL, lo, hi);
187 }
188
189 /* write the new fid value along with the other control fields to the msr */
190 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
191 {
192         u32 lo;
193         u32 savevid = data->currvid;
194         u32 i = 0;
195
196         if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
197                 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
198                 return 1;
199         }
200
201         lo = fid;
202         lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
203         lo |= MSR_C_LO_INIT_FID_VID;
204
205         pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206                 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207
208         do {
209                 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210                 if (i++ > 100) {
211                         printk(KERN_ERR PFX
212                                 "Hardware error - pending bit very stuck - "
213                                 "no further pstate changes possible\n");
214                         return 1;
215                 }
216         } while (query_current_values_with_pending_wait(data));
217
218         count_off_irt(data);
219
220         if (savevid != data->currvid) {
221                 printk(KERN_ERR PFX
222                         "vid change on fid trans, old 0x%x, new 0x%x\n",
223                         savevid, data->currvid);
224                 return 1;
225         }
226
227         if (fid != data->currfid) {
228                 printk(KERN_ERR PFX
229                         "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
230                         data->currfid);
231                 return 1;
232         }
233
234         return 0;
235 }
236
237 /* Write a new vid to the hardware */
238 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
239 {
240         u32 lo;
241         u32 savefid = data->currfid;
242         int i = 0;
243
244         if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
245                 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
246                 return 1;
247         }
248
249         lo = data->currfid;
250         lo |= (vid << MSR_C_LO_VID_SHIFT);
251         lo |= MSR_C_LO_INIT_FID_VID;
252
253         pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
254                 vid, lo, STOP_GRANT_5NS);
255
256         do {
257                 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
258                 if (i++ > 100) {
259                         printk(KERN_ERR PFX "internal error - pending bit "
260                                         "very stuck - no further pstate "
261                                         "changes possible\n");
262                         return 1;
263                 }
264         } while (query_current_values_with_pending_wait(data));
265
266         if (savefid != data->currfid) {
267                 printk(KERN_ERR PFX "fid changed on vid trans, old "
268                         "0x%x new 0x%x\n",
269                        savefid, data->currfid);
270                 return 1;
271         }
272
273         if (vid != data->currvid) {
274                 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
275                                 "curr 0x%x\n",
276                                 vid, data->currvid);
277                 return 1;
278         }
279
280         return 0;
281 }
282
283 /*
284  * Reduce the vid by the max of step or reqvid.
285  * Decreasing vid codes represent increasing voltages:
286  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
287  */
288 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
289                 u32 reqvid, u32 step)
290 {
291         if ((data->currvid - reqvid) > step)
292                 reqvid = data->currvid - step;
293
294         if (write_new_vid(data, reqvid))
295                 return 1;
296
297         count_off_vst(data);
298
299         return 0;
300 }
301
302 /* Change hardware pstate by single MSR write */
303 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
304 {
305         wrmsr(MSR_PSTATE_CTRL, pstate, 0);
306         data->currpstate = pstate;
307         return 0;
308 }
309
310 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
311 static int transition_fid_vid(struct powernow_k8_data *data,
312                 u32 reqfid, u32 reqvid)
313 {
314         if (core_voltage_pre_transition(data, reqvid, reqfid))
315                 return 1;
316
317         if (core_frequency_transition(data, reqfid))
318                 return 1;
319
320         if (core_voltage_post_transition(data, reqvid))
321                 return 1;
322
323         if (query_current_values_with_pending_wait(data))
324                 return 1;
325
326         if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
327                 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
328                                 "curr 0x%x 0x%x\n",
329                                 smp_processor_id(),
330                                 reqfid, reqvid, data->currfid, data->currvid);
331                 return 1;
332         }
333
334         pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
335                 smp_processor_id(), data->currfid, data->currvid);
336
337         return 0;
338 }
339
340 /* Phase 1 - core voltage transition ... setup voltage */
341 static int core_voltage_pre_transition(struct powernow_k8_data *data,
342                 u32 reqvid, u32 reqfid)
343 {
344         u32 rvosteps = data->rvo;
345         u32 savefid = data->currfid;
346         u32 maxvid, lo, rvomult = 1;
347
348         pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
349                 "reqvid 0x%x, rvo 0x%x\n",
350                 smp_processor_id(),
351                 data->currfid, data->currvid, reqvid, data->rvo);
352
353         if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
354                 rvomult = 2;
355         rvosteps *= rvomult;
356         rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
357         maxvid = 0x1f & (maxvid >> 16);
358         pr_debug("ph1 maxvid=0x%x\n", maxvid);
359         if (reqvid < maxvid) /* lower numbers are higher voltages */
360                 reqvid = maxvid;
361
362         while (data->currvid > reqvid) {
363                 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
364                         data->currvid, reqvid);
365                 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
366                         return 1;
367         }
368
369         while ((rvosteps > 0) &&
370                         ((rvomult * data->rvo + data->currvid) > reqvid)) {
371                 if (data->currvid == maxvid) {
372                         rvosteps = 0;
373                 } else {
374                         pr_debug("ph1: changing vid for rvo, req 0x%x\n",
375                                 data->currvid - 1);
376                         if (decrease_vid_code_by_step(data, data->currvid-1, 1))
377                                 return 1;
378                         rvosteps--;
379                 }
380         }
381
382         if (query_current_values_with_pending_wait(data))
383                 return 1;
384
385         if (savefid != data->currfid) {
386                 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
387                                 data->currfid);
388                 return 1;
389         }
390
391         pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
392                 data->currfid, data->currvid);
393
394         return 0;
395 }
396
397 /* Phase 2 - core frequency transition */
398 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
399 {
400         u32 vcoreqfid, vcocurrfid, vcofiddiff;
401         u32 fid_interval, savevid = data->currvid;
402
403         if (data->currfid == reqfid) {
404                 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
405                                 data->currfid);
406                 return 0;
407         }
408
409         pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
410                 "reqfid 0x%x\n",
411                 smp_processor_id(),
412                 data->currfid, data->currvid, reqfid);
413
414         vcoreqfid = convert_fid_to_vco_fid(reqfid);
415         vcocurrfid = convert_fid_to_vco_fid(data->currfid);
416         vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
417             : vcoreqfid - vcocurrfid;
418
419         if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
420                 vcofiddiff = 0;
421
422         while (vcofiddiff > 2) {
423                 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
424
425                 if (reqfid > data->currfid) {
426                         if (data->currfid > LO_FID_TABLE_TOP) {
427                                 if (write_new_fid(data,
428                                                 data->currfid + fid_interval))
429                                         return 1;
430                         } else {
431                                 if (write_new_fid
432                                     (data,
433                                      2 + convert_fid_to_vco_fid(data->currfid)))
434                                         return 1;
435                         }
436                 } else {
437                         if (write_new_fid(data, data->currfid - fid_interval))
438                                 return 1;
439                 }
440
441                 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
442                 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
443                     : vcoreqfid - vcocurrfid;
444         }
445
446         if (write_new_fid(data, reqfid))
447                 return 1;
448
449         if (query_current_values_with_pending_wait(data))
450                 return 1;
451
452         if (data->currfid != reqfid) {
453                 printk(KERN_ERR PFX
454                         "ph2: mismatch, failed fid transition, "
455                         "curr 0x%x, req 0x%x\n",
456                         data->currfid, reqfid);
457                 return 1;
458         }
459
460         if (savevid != data->currvid) {
461                 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
462                         savevid, data->currvid);
463                 return 1;
464         }
465
466         pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
467                 data->currfid, data->currvid);
468
469         return 0;
470 }
471
472 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
473 static int core_voltage_post_transition(struct powernow_k8_data *data,
474                 u32 reqvid)
475 {
476         u32 savefid = data->currfid;
477         u32 savereqvid = reqvid;
478
479         pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
480                 smp_processor_id(),
481                 data->currfid, data->currvid);
482
483         if (reqvid != data->currvid) {
484                 if (write_new_vid(data, reqvid))
485                         return 1;
486
487                 if (savefid != data->currfid) {
488                         printk(KERN_ERR PFX
489                                "ph3: bad fid change, save 0x%x, curr 0x%x\n",
490                                savefid, data->currfid);
491                         return 1;
492                 }
493
494                 if (data->currvid != reqvid) {
495                         printk(KERN_ERR PFX
496                                "ph3: failed vid transition\n, "
497                                "req 0x%x, curr 0x%x",
498                                reqvid, data->currvid);
499                         return 1;
500                 }
501         }
502
503         if (query_current_values_with_pending_wait(data))
504                 return 1;
505
506         if (savereqvid != data->currvid) {
507                 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
508                 return 1;
509         }
510
511         if (savefid != data->currfid) {
512                 pr_debug("ph3 failed, currfid changed 0x%x\n",
513                         data->currfid);
514                 return 1;
515         }
516
517         pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
518                 data->currfid, data->currvid);
519
520         return 0;
521 }
522
523 static const struct x86_cpu_id powernow_k8_ids[] = {
524         /* IO based frequency switching */
525         { X86_VENDOR_AMD, 0xf },
526         /* MSR based frequency switching supported */
527         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
528         {}
529 };
530 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
531
532 static void check_supported_cpu(void *_rc)
533 {
534         u32 eax, ebx, ecx, edx;
535         int *rc = _rc;
536
537         *rc = -ENODEV;
538
539         eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
540
541         if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
542                 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
543                     ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
544                         printk(KERN_INFO PFX
545                                 "Processor cpuid %x not supported\n", eax);
546                         return;
547                 }
548
549                 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
550                 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
551                         printk(KERN_INFO PFX
552                                "No frequency change capabilities detected\n");
553                         return;
554                 }
555
556                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
557                 if ((edx & P_STATE_TRANSITION_CAPABLE)
558                         != P_STATE_TRANSITION_CAPABLE) {
559                         printk(KERN_INFO PFX
560                                 "Power state transitions not supported\n");
561                         return;
562                 }
563         } else { /* must be a HW Pstate capable processor */
564                 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
565                 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
566                         cpu_family = CPU_HW_PSTATE;
567                 else
568                         return;
569         }
570
571         *rc = 0;
572 }
573
574 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
575                 u8 maxvid)
576 {
577         unsigned int j;
578         u8 lastfid = 0xff;
579
580         for (j = 0; j < data->numps; j++) {
581                 if (pst[j].vid > LEAST_VID) {
582                         printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
583                                j, pst[j].vid);
584                         return -EINVAL;
585                 }
586                 if (pst[j].vid < data->rvo) {
587                         /* vid + rvo >= 0 */
588                         printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
589                                " %d\n", j);
590                         return -ENODEV;
591                 }
592                 if (pst[j].vid < maxvid + data->rvo) {
593                         /* vid + rvo >= maxvid */
594                         printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
595                                " %d\n", j);
596                         return -ENODEV;
597                 }
598                 if (pst[j].fid > MAX_FID) {
599                         printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
600                                " %d\n", j);
601                         return -ENODEV;
602                 }
603                 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
604                         /* Only first fid is allowed to be in "low" range */
605                         printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
606                                "0x%x\n", j, pst[j].fid);
607                         return -EINVAL;
608                 }
609                 if (pst[j].fid < lastfid)
610                         lastfid = pst[j].fid;
611         }
612         if (lastfid & 1) {
613                 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
614                 return -EINVAL;
615         }
616         if (lastfid > LO_FID_TABLE_TOP)
617                 printk(KERN_INFO FW_BUG PFX
618                         "first fid not from lo freq table\n");
619
620         return 0;
621 }
622
623 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
624                 unsigned int entry)
625 {
626         powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
627 }
628
629 static void print_basics(struct powernow_k8_data *data)
630 {
631         int j;
632         for (j = 0; j < data->numps; j++) {
633                 if (data->powernow_table[j].frequency !=
634                                 CPUFREQ_ENTRY_INVALID) {
635                         if (cpu_family == CPU_HW_PSTATE) {
636                                 printk(KERN_INFO PFX
637                                         "   %d : pstate %d (%d MHz)\n", j,
638                                         data->powernow_table[j].index,
639                                         data->powernow_table[j].frequency/1000);
640                         } else {
641                                 printk(KERN_INFO PFX
642                                         "fid 0x%x (%d MHz), vid 0x%x\n",
643                                         data->powernow_table[j].index & 0xff,
644                                         data->powernow_table[j].frequency/1000,
645                                         data->powernow_table[j].index >> 8);
646                         }
647                 }
648         }
649         if (data->batps)
650                 printk(KERN_INFO PFX "Only %d pstates on battery\n",
651                                 data->batps);
652 }
653
654 static u32 freq_from_fid_did(u32 fid, u32 did)
655 {
656         u32 mhz = 0;
657
658         if (boot_cpu_data.x86 == 0x10)
659                 mhz = (100 * (fid + 0x10)) >> did;
660         else if (boot_cpu_data.x86 == 0x11)
661                 mhz = (100 * (fid + 8)) >> did;
662         else
663                 BUG();
664
665         return mhz * 1000;
666 }
667
668 static int fill_powernow_table(struct powernow_k8_data *data,
669                 struct pst_s *pst, u8 maxvid)
670 {
671         struct cpufreq_frequency_table *powernow_table;
672         unsigned int j;
673
674         if (data->batps) {
675                 /* use ACPI support to get full speed on mains power */
676                 printk(KERN_WARNING PFX
677                         "Only %d pstates usable (use ACPI driver for full "
678                         "range\n", data->batps);
679                 data->numps = data->batps;
680         }
681
682         for (j = 1; j < data->numps; j++) {
683                 if (pst[j-1].fid >= pst[j].fid) {
684                         printk(KERN_ERR PFX "PST out of sequence\n");
685                         return -EINVAL;
686                 }
687         }
688
689         if (data->numps < 2) {
690                 printk(KERN_ERR PFX "no p states to transition\n");
691                 return -ENODEV;
692         }
693
694         if (check_pst_table(data, pst, maxvid))
695                 return -EINVAL;
696
697         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
698                 * (data->numps + 1)), GFP_KERNEL);
699         if (!powernow_table) {
700                 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
701                 return -ENOMEM;
702         }
703
704         for (j = 0; j < data->numps; j++) {
705                 int freq;
706                 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
707                 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
708                 freq = find_khz_freq_from_fid(pst[j].fid);
709                 powernow_table[j].frequency = freq;
710         }
711         powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
712         powernow_table[data->numps].index = 0;
713
714         if (query_current_values_with_pending_wait(data)) {
715                 kfree(powernow_table);
716                 return -EIO;
717         }
718
719         pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
720         data->powernow_table = powernow_table;
721         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
722                 print_basics(data);
723
724         for (j = 0; j < data->numps; j++)
725                 if ((pst[j].fid == data->currfid) &&
726                     (pst[j].vid == data->currvid))
727                         return 0;
728
729         pr_debug("currfid/vid do not match PST, ignoring\n");
730         return 0;
731 }
732
733 /* Find and validate the PSB/PST table in BIOS. */
734 static int find_psb_table(struct powernow_k8_data *data)
735 {
736         struct psb_s *psb;
737         unsigned int i;
738         u32 mvs;
739         u8 maxvid;
740         u32 cpst = 0;
741         u32 thiscpuid;
742
743         for (i = 0xc0000; i < 0xffff0; i += 0x10) {
744                 /* Scan BIOS looking for the signature. */
745                 /* It can not be at ffff0 - it is too big. */
746
747                 psb = phys_to_virt(i);
748                 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
749                         continue;
750
751                 pr_debug("found PSB header at 0x%p\n", psb);
752
753                 pr_debug("table vers: 0x%x\n", psb->tableversion);
754                 if (psb->tableversion != PSB_VERSION_1_4) {
755                         printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
756                         return -ENODEV;
757                 }
758
759                 pr_debug("flags: 0x%x\n", psb->flags1);
760                 if (psb->flags1) {
761                         printk(KERN_ERR FW_BUG PFX "unknown flags\n");
762                         return -ENODEV;
763                 }
764
765                 data->vstable = psb->vstable;
766                 pr_debug("voltage stabilization time: %d(*20us)\n",
767                                 data->vstable);
768
769                 pr_debug("flags2: 0x%x\n", psb->flags2);
770                 data->rvo = psb->flags2 & 3;
771                 data->irt = ((psb->flags2) >> 2) & 3;
772                 mvs = ((psb->flags2) >> 4) & 3;
773                 data->vidmvs = 1 << mvs;
774                 data->batps = ((psb->flags2) >> 6) & 3;
775
776                 pr_debug("ramp voltage offset: %d\n", data->rvo);
777                 pr_debug("isochronous relief time: %d\n", data->irt);
778                 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
779
780                 pr_debug("numpst: 0x%x\n", psb->num_tables);
781                 cpst = psb->num_tables;
782                 if ((psb->cpuid == 0x00000fc0) ||
783                     (psb->cpuid == 0x00000fe0)) {
784                         thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
785                         if ((thiscpuid == 0x00000fc0) ||
786                             (thiscpuid == 0x00000fe0))
787                                 cpst = 1;
788                 }
789                 if (cpst != 1) {
790                         printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
791                         return -ENODEV;
792                 }
793
794                 data->plllock = psb->plllocktime;
795                 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
796                 pr_debug("maxfid: 0x%x\n", psb->maxfid);
797                 pr_debug("maxvid: 0x%x\n", psb->maxvid);
798                 maxvid = psb->maxvid;
799
800                 data->numps = psb->numps;
801                 pr_debug("numpstates: 0x%x\n", data->numps);
802                 return fill_powernow_table(data,
803                                 (struct pst_s *)(psb+1), maxvid);
804         }
805         /*
806          * If you see this message, complain to BIOS manufacturer. If
807          * he tells you "we do not support Linux" or some similar
808          * nonsense, remember that Windows 2000 uses the same legacy
809          * mechanism that the old Linux PSB driver uses. Tell them it
810          * is broken with Windows 2000.
811          *
812          * The reference to the AMD documentation is chapter 9 in the
813          * BIOS and Kernel Developer's Guide, which is available on
814          * www.amd.com
815          */
816         printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
817         printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
818                 " and Cool'N'Quiet support is enabled in BIOS setup\n");
819         return -ENODEV;
820 }
821
822 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
823                 unsigned int index)
824 {
825         u64 control;
826
827         if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
828                 return;
829
830         control = data->acpi_data.states[index].control;
831         data->irt = (control >> IRT_SHIFT) & IRT_MASK;
832         data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
833         data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
834         data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
835         data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
836         data->vstable = (control >> VST_SHIFT) & VST_MASK;
837 }
838
839 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
840 {
841         struct cpufreq_frequency_table *powernow_table;
842         int ret_val = -ENODEV;
843         u64 control, status;
844
845         if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
846                 pr_debug("register performance failed: bad ACPI data\n");
847                 return -EIO;
848         }
849
850         /* verify the data contained in the ACPI structures */
851         if (data->acpi_data.state_count <= 1) {
852                 pr_debug("No ACPI P-States\n");
853                 goto err_out;
854         }
855
856         control = data->acpi_data.control_register.space_id;
857         status = data->acpi_data.status_register.space_id;
858
859         if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
860             (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
861                 pr_debug("Invalid control/status registers (%llx - %llx)\n",
862                         control, status);
863                 goto err_out;
864         }
865
866         /* fill in data->powernow_table */
867         powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
868                 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
869         if (!powernow_table) {
870                 pr_debug("powernow_table memory alloc failure\n");
871                 goto err_out;
872         }
873
874         /* fill in data */
875         data->numps = data->acpi_data.state_count;
876         powernow_k8_acpi_pst_values(data, 0);
877
878         if (cpu_family == CPU_HW_PSTATE)
879                 ret_val = fill_powernow_table_pstate(data, powernow_table);
880         else
881                 ret_val = fill_powernow_table_fidvid(data, powernow_table);
882         if (ret_val)
883                 goto err_out_mem;
884
885         powernow_table[data->acpi_data.state_count].frequency =
886                 CPUFREQ_TABLE_END;
887         powernow_table[data->acpi_data.state_count].index = 0;
888         data->powernow_table = powernow_table;
889
890         if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
891                 print_basics(data);
892
893         /* notify BIOS that we exist */
894         acpi_processor_notify_smm(THIS_MODULE);
895
896         if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
897                 printk(KERN_ERR PFX
898                                 "unable to alloc powernow_k8_data cpumask\n");
899                 ret_val = -ENOMEM;
900                 goto err_out_mem;
901         }
902
903         return 0;
904
905 err_out_mem:
906         kfree(powernow_table);
907
908 err_out:
909         acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
910
911         /* data->acpi_data.state_count informs us at ->exit()
912          * whether ACPI was used */
913         data->acpi_data.state_count = 0;
914
915         return ret_val;
916 }
917
918 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
919                 struct cpufreq_frequency_table *powernow_table)
920 {
921         int i;
922         u32 hi = 0, lo = 0;
923         rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
924         data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
925
926         for (i = 0; i < data->acpi_data.state_count; i++) {
927                 u32 index;
928
929                 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
930                 if (index > data->max_hw_pstate) {
931                         printk(KERN_ERR PFX "invalid pstate %d - "
932                                         "bad value %d.\n", i, index);
933                         printk(KERN_ERR PFX "Please report to BIOS "
934                                         "manufacturer\n");
935                         invalidate_entry(powernow_table, i);
936                         continue;
937                 }
938
939                 ps_to_as[index] = i;
940
941                 /* Frequency may be rounded for these */
942                 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
943                                  || boot_cpu_data.x86 == 0x11) {
944
945                         rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
946                         if (!(hi & HW_PSTATE_VALID_MASK)) {
947                                 pr_debug("invalid pstate %d, ignoring\n", index);
948                                 invalidate_entry(powernow_table, i);
949                                 continue;
950                         }
951
952                         powernow_table[i].frequency =
953                                 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
954                 } else
955                         powernow_table[i].frequency =
956                                 data->acpi_data.states[i].core_frequency * 1000;
957
958                 powernow_table[i].index = index;
959         }
960         return 0;
961 }
962
963 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
964                 struct cpufreq_frequency_table *powernow_table)
965 {
966         int i;
967
968         for (i = 0; i < data->acpi_data.state_count; i++) {
969                 u32 fid;
970                 u32 vid;
971                 u32 freq, index;
972                 u64 status, control;
973
974                 if (data->exttype) {
975                         status =  data->acpi_data.states[i].status;
976                         fid = status & EXT_FID_MASK;
977                         vid = (status >> VID_SHIFT) & EXT_VID_MASK;
978                 } else {
979                         control =  data->acpi_data.states[i].control;
980                         fid = control & FID_MASK;
981                         vid = (control >> VID_SHIFT) & VID_MASK;
982                 }
983
984                 pr_debug("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
985
986                 index = fid | (vid<<8);
987                 powernow_table[i].index = index;
988
989                 freq = find_khz_freq_from_fid(fid);
990                 powernow_table[i].frequency = freq;
991
992                 /* verify frequency is OK */
993                 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
994                         pr_debug("invalid freq %u kHz, ignoring\n", freq);
995                         invalidate_entry(powernow_table, i);
996                         continue;
997                 }
998
999                 /* verify voltage is OK -
1000                  * BIOSs are using "off" to indicate invalid */
1001                 if (vid == VID_OFF) {
1002                         pr_debug("invalid vid %u, ignoring\n", vid);
1003                         invalidate_entry(powernow_table, i);
1004                         continue;
1005                 }
1006
1007                 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1008                         printk(KERN_INFO PFX "invalid freq entries "
1009                                 "%u kHz vs. %u kHz\n", freq,
1010                                 (unsigned int)
1011                                 (data->acpi_data.states[i].core_frequency
1012                                  * 1000));
1013                         invalidate_entry(powernow_table, i);
1014                         continue;
1015                 }
1016         }
1017         return 0;
1018 }
1019
1020 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1021 {
1022         if (data->acpi_data.state_count)
1023                 acpi_processor_unregister_performance(&data->acpi_data,
1024                                 data->cpu);
1025         free_cpumask_var(data->acpi_data.shared_cpu_map);
1026 }
1027
1028 static int get_transition_latency(struct powernow_k8_data *data)
1029 {
1030         int max_latency = 0;
1031         int i;
1032         for (i = 0; i < data->acpi_data.state_count; i++) {
1033                 int cur_latency = data->acpi_data.states[i].transition_latency
1034                         + data->acpi_data.states[i].bus_master_latency;
1035                 if (cur_latency > max_latency)
1036                         max_latency = cur_latency;
1037         }
1038         if (max_latency == 0) {
1039                 /*
1040                  * Fam 11h and later may return 0 as transition latency. This
1041                  * is intended and means "very fast". While cpufreq core and
1042                  * governors currently can handle that gracefully, better set it
1043                  * to 1 to avoid problems in the future.
1044                  */
1045                 if (boot_cpu_data.x86 < 0x11)
1046                         printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1047                                 "latency\n");
1048                 max_latency = 1;
1049         }
1050         /* value in usecs, needs to be in nanoseconds */
1051         return 1000 * max_latency;
1052 }
1053
1054 /* Take a frequency, and issue the fid/vid transition command */
1055 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1056                 unsigned int index)
1057 {
1058         u32 fid = 0;
1059         u32 vid = 0;
1060         int res, i;
1061         struct cpufreq_freqs freqs;
1062
1063         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1064
1065         /* fid/vid correctness check for k8 */
1066         /* fid are the lower 8 bits of the index we stored into
1067          * the cpufreq frequency table in find_psb_table, vid
1068          * are the upper 8 bits.
1069          */
1070         fid = data->powernow_table[index].index & 0xFF;
1071         vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1072
1073         pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1074
1075         if (query_current_values_with_pending_wait(data))
1076                 return 1;
1077
1078         if ((data->currvid == vid) && (data->currfid == fid)) {
1079                 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1080                         fid, vid);
1081                 return 0;
1082         }
1083
1084         pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1085                 smp_processor_id(), fid, vid);
1086         freqs.old = find_khz_freq_from_fid(data->currfid);
1087         freqs.new = find_khz_freq_from_fid(fid);
1088
1089         for_each_cpu(i, data->available_cores) {
1090                 freqs.cpu = i;
1091                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1092         }
1093
1094         res = transition_fid_vid(data, fid, vid);
1095         if (res)
1096                 return res;
1097
1098         freqs.new = find_khz_freq_from_fid(data->currfid);
1099
1100         for_each_cpu(i, data->available_cores) {
1101                 freqs.cpu = i;
1102                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1103         }
1104         return res;
1105 }
1106
1107 /* Take a frequency, and issue the hardware pstate transition command */
1108 static int transition_frequency_pstate(struct powernow_k8_data *data,
1109                 unsigned int index)
1110 {
1111         u32 pstate = 0;
1112         int res, i;
1113         struct cpufreq_freqs freqs;
1114
1115         pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1116
1117         /* get MSR index for hardware pstate transition */
1118         pstate = index & HW_PSTATE_MASK;
1119         if (pstate > data->max_hw_pstate)
1120                 return -EINVAL;
1121
1122         freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1123                         data->currpstate);
1124         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1125
1126         for_each_cpu(i, data->available_cores) {
1127                 freqs.cpu = i;
1128                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1129         }
1130
1131         res = transition_pstate(data, pstate);
1132         freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1133
1134         for_each_cpu(i, data->available_cores) {
1135                 freqs.cpu = i;
1136                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1137         }
1138         return res;
1139 }
1140
1141 struct powernowk8_target_arg {
1142         struct cpufreq_policy           *pol;
1143         unsigned                        targfreq;
1144         unsigned                        relation;
1145 };
1146
1147 static long powernowk8_target_fn(void *arg)
1148 {
1149         struct powernowk8_target_arg *pta = arg;
1150         struct cpufreq_policy *pol = pta->pol;
1151         unsigned targfreq = pta->targfreq;
1152         unsigned relation = pta->relation;
1153         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1154         u32 checkfid;
1155         u32 checkvid;
1156         unsigned int newstate;
1157         int ret;
1158
1159         if (!data)
1160                 return -EINVAL;
1161
1162         checkfid = data->currfid;
1163         checkvid = data->currvid;
1164
1165         if (pending_bit_stuck()) {
1166                 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1167                 return -EIO;
1168         }
1169
1170         pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1171                 pol->cpu, targfreq, pol->min, pol->max, relation);
1172
1173         if (query_current_values_with_pending_wait(data))
1174                 return -EIO;
1175
1176         if (cpu_family != CPU_HW_PSTATE) {
1177                 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1178                 data->currfid, data->currvid);
1179
1180                 if ((checkvid != data->currvid) ||
1181                     (checkfid != data->currfid)) {
1182                         printk(KERN_INFO PFX
1183                                 "error - out of sync, fix 0x%x 0x%x, "
1184                                 "vid 0x%x 0x%x\n",
1185                                 checkfid, data->currfid,
1186                                 checkvid, data->currvid);
1187                 }
1188         }
1189
1190         if (cpufreq_frequency_table_target(pol, data->powernow_table,
1191                                 targfreq, relation, &newstate))
1192                 return -EIO;
1193
1194         mutex_lock(&fidvid_mutex);
1195
1196         powernow_k8_acpi_pst_values(data, newstate);
1197
1198         if (cpu_family == CPU_HW_PSTATE)
1199                 ret = transition_frequency_pstate(data,
1200                         data->powernow_table[newstate].index);
1201         else
1202                 ret = transition_frequency_fidvid(data, newstate);
1203         if (ret) {
1204                 printk(KERN_ERR PFX "transition frequency failed\n");
1205                 mutex_unlock(&fidvid_mutex);
1206                 return 1;
1207         }
1208         mutex_unlock(&fidvid_mutex);
1209
1210         if (cpu_family == CPU_HW_PSTATE)
1211                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1212                                 data->powernow_table[newstate].index);
1213         else
1214                 pol->cur = find_khz_freq_from_fid(data->currfid);
1215
1216         return 0;
1217 }
1218
1219 /* Driver entry point to switch to the target frequency */
1220 static int powernowk8_target(struct cpufreq_policy *pol,
1221                 unsigned targfreq, unsigned relation)
1222 {
1223         struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
1224                                              .relation = relation };
1225
1226         /*
1227          * Must run on @pol->cpu.  cpufreq core is responsible for ensuring
1228          * that we're bound to the current CPU and pol->cpu stays online.
1229          */
1230         if (smp_processor_id() == pol->cpu)
1231                 return powernowk8_target_fn(&pta);
1232         else
1233                 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
1234 }
1235
1236 /* Driver entry point to verify the policy and range of frequencies */
1237 static int powernowk8_verify(struct cpufreq_policy *pol)
1238 {
1239         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1240
1241         if (!data)
1242                 return -EINVAL;
1243
1244         return cpufreq_frequency_table_verify(pol, data->powernow_table);
1245 }
1246
1247 struct init_on_cpu {
1248         struct powernow_k8_data *data;
1249         int rc;
1250 };
1251
1252 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1253 {
1254         struct init_on_cpu *init_on_cpu = _init_on_cpu;
1255
1256         if (pending_bit_stuck()) {
1257                 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1258                 init_on_cpu->rc = -ENODEV;
1259                 return;
1260         }
1261
1262         if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1263                 init_on_cpu->rc = -ENODEV;
1264                 return;
1265         }
1266
1267         if (cpu_family == CPU_OPTERON)
1268                 fidvid_msr_init();
1269
1270         init_on_cpu->rc = 0;
1271 }
1272
1273 /* per CPU init entry point to the driver */
1274 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1275 {
1276         static const char ACPI_PSS_BIOS_BUG_MSG[] =
1277                 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1278                 FW_BUG PFX "Try again with latest BIOS.\n";
1279         struct powernow_k8_data *data;
1280         struct init_on_cpu init_on_cpu;
1281         int rc;
1282         struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1283
1284         if (!cpu_online(pol->cpu))
1285                 return -ENODEV;
1286
1287         smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1288         if (rc)
1289                 return -ENODEV;
1290
1291         data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1292         if (!data) {
1293                 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1294                 return -ENOMEM;
1295         }
1296
1297         data->cpu = pol->cpu;
1298         data->currpstate = HW_PSTATE_INVALID;
1299
1300         if (powernow_k8_cpu_init_acpi(data)) {
1301                 /*
1302                  * Use the PSB BIOS structure. This is only available on
1303                  * an UP version, and is deprecated by AMD.
1304                  */
1305                 if (num_online_cpus() != 1) {
1306                         printk_once(ACPI_PSS_BIOS_BUG_MSG);
1307                         goto err_out;
1308                 }
1309                 if (pol->cpu != 0) {
1310                         printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1311                                "CPU other than CPU0. Complain to your BIOS "
1312                                "vendor.\n");
1313                         goto err_out;
1314                 }
1315                 rc = find_psb_table(data);
1316                 if (rc)
1317                         goto err_out;
1318
1319                 /* Take a crude guess here.
1320                  * That guess was in microseconds, so multiply with 1000 */
1321                 pol->cpuinfo.transition_latency = (
1322                          ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1323                          ((1 << data->irt) * 30)) * 1000;
1324         } else /* ACPI _PSS objects available */
1325                 pol->cpuinfo.transition_latency = get_transition_latency(data);
1326
1327         /* only run on specific CPU from here on */
1328         init_on_cpu.data = data;
1329         smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1330                                  &init_on_cpu, 1);
1331         rc = init_on_cpu.rc;
1332         if (rc != 0)
1333                 goto err_out_exit_acpi;
1334
1335         if (cpu_family == CPU_HW_PSTATE)
1336                 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1337         else
1338                 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1339         data->available_cores = pol->cpus;
1340
1341         if (cpu_family == CPU_HW_PSTATE)
1342                 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1343                                 data->currpstate);
1344         else
1345                 pol->cur = find_khz_freq_from_fid(data->currfid);
1346         pr_debug("policy current frequency %d kHz\n", pol->cur);
1347
1348         /* min/max the cpu is capable of */
1349         if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1350                 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1351                 powernow_k8_cpu_exit_acpi(data);
1352                 kfree(data->powernow_table);
1353                 kfree(data);
1354                 return -EINVAL;
1355         }
1356
1357         /* Check for APERF/MPERF support in hardware */
1358         if (cpu_has(c, X86_FEATURE_APERFMPERF))
1359                 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1360
1361         cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1362
1363         if (cpu_family == CPU_HW_PSTATE)
1364                 pr_debug("cpu_init done, current pstate 0x%x\n",
1365                                 data->currpstate);
1366         else
1367                 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1368                         data->currfid, data->currvid);
1369
1370         per_cpu(powernow_data, pol->cpu) = data;
1371
1372         return 0;
1373
1374 err_out_exit_acpi:
1375         powernow_k8_cpu_exit_acpi(data);
1376
1377 err_out:
1378         kfree(data);
1379         return -ENODEV;
1380 }
1381
1382 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1383 {
1384         struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1385
1386         if (!data)
1387                 return -EINVAL;
1388
1389         powernow_k8_cpu_exit_acpi(data);
1390
1391         cpufreq_frequency_table_put_attr(pol->cpu);
1392
1393         kfree(data->powernow_table);
1394         kfree(data);
1395         per_cpu(powernow_data, pol->cpu) = NULL;
1396
1397         return 0;
1398 }
1399
1400 static void query_values_on_cpu(void *_err)
1401 {
1402         int *err = _err;
1403         struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1404
1405         *err = query_current_values_with_pending_wait(data);
1406 }
1407
1408 static unsigned int powernowk8_get(unsigned int cpu)
1409 {
1410         struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1411         unsigned int khz = 0;
1412         int err;
1413
1414         if (!data)
1415                 return 0;
1416
1417         smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1418         if (err)
1419                 goto out;
1420
1421         if (cpu_family == CPU_HW_PSTATE)
1422                 khz = find_khz_freq_from_pstate(data->powernow_table,
1423                                                 data->currpstate);
1424         else
1425                 khz = find_khz_freq_from_fid(data->currfid);
1426
1427
1428 out:
1429         return khz;
1430 }
1431
1432 static void _cpb_toggle_msrs(bool t)
1433 {
1434         int cpu;
1435
1436         get_online_cpus();
1437
1438         rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1439
1440         for_each_cpu(cpu, cpu_online_mask) {
1441                 struct msr *reg = per_cpu_ptr(msrs, cpu);
1442                 if (t)
1443                         reg->l &= ~BIT(25);
1444                 else
1445                         reg->l |= BIT(25);
1446         }
1447         wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1448
1449         put_online_cpus();
1450 }
1451
1452 /*
1453  * Switch on/off core performance boosting.
1454  *
1455  * 0=disable
1456  * 1=enable.
1457  */
1458 static void cpb_toggle(bool t)
1459 {
1460         if (!cpb_capable)
1461                 return;
1462
1463         if (t && !cpb_enabled) {
1464                 cpb_enabled = true;
1465                 _cpb_toggle_msrs(t);
1466                 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1467         } else if (!t && cpb_enabled) {
1468                 cpb_enabled = false;
1469                 _cpb_toggle_msrs(t);
1470                 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1471         }
1472 }
1473
1474 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1475                                  size_t count)
1476 {
1477         int ret = -EINVAL;
1478         unsigned long val = 0;
1479
1480         ret = strict_strtoul(buf, 10, &val);
1481         if (!ret && (val == 0 || val == 1) && cpb_capable)
1482                 cpb_toggle(val);
1483         else
1484                 return -EINVAL;
1485
1486         return count;
1487 }
1488
1489 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1490 {
1491         return sprintf(buf, "%u\n", cpb_enabled);
1492 }
1493
1494 #define define_one_rw(_name) \
1495 static struct freq_attr _name = \
1496 __ATTR(_name, 0644, show_##_name, store_##_name)
1497
1498 define_one_rw(cpb);
1499
1500 static struct freq_attr *powernow_k8_attr[] = {
1501         &cpufreq_freq_attr_scaling_available_freqs,
1502         &cpb,
1503         NULL,
1504 };
1505
1506 static struct cpufreq_driver cpufreq_amd64_driver = {
1507         .verify         = powernowk8_verify,
1508         .target         = powernowk8_target,
1509         .bios_limit     = acpi_processor_get_bios_limit,
1510         .init           = powernowk8_cpu_init,
1511         .exit           = __devexit_p(powernowk8_cpu_exit),
1512         .get            = powernowk8_get,
1513         .name           = "powernow-k8",
1514         .owner          = THIS_MODULE,
1515         .attr           = powernow_k8_attr,
1516 };
1517
1518 /*
1519  * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1520  * cannot block the remaining ones from boosting. On the CPU_UP path we
1521  * simply keep the boost-disable flag in sync with the current global
1522  * state.
1523  */
1524 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1525                       void *hcpu)
1526 {
1527         unsigned cpu = (long)hcpu;
1528         u32 lo, hi;
1529
1530         switch (action) {
1531         case CPU_UP_PREPARE:
1532         case CPU_UP_PREPARE_FROZEN:
1533
1534                 if (!cpb_enabled) {
1535                         rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1536                         lo |= BIT(25);
1537                         wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1538                 }
1539                 break;
1540
1541         case CPU_DOWN_PREPARE:
1542         case CPU_DOWN_PREPARE_FROZEN:
1543                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1544                 lo &= ~BIT(25);
1545                 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1546                 break;
1547
1548         default:
1549                 break;
1550         }
1551
1552         return NOTIFY_OK;
1553 }
1554
1555 static struct notifier_block cpb_nb = {
1556         .notifier_call          = cpb_notify,
1557 };
1558
1559 /* driver entry point for init */
1560 static int __cpuinit powernowk8_init(void)
1561 {
1562         unsigned int i, supported_cpus = 0, cpu;
1563         int rv;
1564
1565         if (!x86_match_cpu(powernow_k8_ids))
1566                 return -ENODEV;
1567
1568         for_each_online_cpu(i) {
1569                 int rc;
1570                 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1571                 if (rc == 0)
1572                         supported_cpus++;
1573         }
1574
1575         if (supported_cpus != num_online_cpus())
1576                 return -ENODEV;
1577
1578         printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1579                 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1580
1581         if (boot_cpu_has(X86_FEATURE_CPB)) {
1582
1583                 cpb_capable = true;
1584
1585                 msrs = msrs_alloc();
1586                 if (!msrs) {
1587                         printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1588                         return -ENOMEM;
1589                 }
1590
1591                 register_cpu_notifier(&cpb_nb);
1592
1593                 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1594
1595                 for_each_cpu(cpu, cpu_online_mask) {
1596                         struct msr *reg = per_cpu_ptr(msrs, cpu);
1597                         cpb_enabled |= !(!!(reg->l & BIT(25)));
1598                 }
1599
1600                 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1601                         (cpb_enabled ? "on" : "off"));
1602         }
1603
1604         rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1605         if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1606                 unregister_cpu_notifier(&cpb_nb);
1607                 msrs_free(msrs);
1608                 msrs = NULL;
1609         }
1610         return rv;
1611 }
1612
1613 /* driver entry point for term */
1614 static void __exit powernowk8_exit(void)
1615 {
1616         pr_debug("exit\n");
1617
1618         if (boot_cpu_has(X86_FEATURE_CPB)) {
1619                 msrs_free(msrs);
1620                 msrs = NULL;
1621
1622                 unregister_cpu_notifier(&cpb_nb);
1623         }
1624
1625         cpufreq_unregister_driver(&cpufreq_amd64_driver);
1626 }
1627
1628 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1629                 "Mark Langsdorf <mark.langsdorf@amd.com>");
1630 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1631 MODULE_LICENSE("GPL");
1632
1633 late_initcall(powernowk8_init);
1634 module_exit(powernowk8_exit);