Merge tag 'regmap-v3.15-nodev' of git://git.kernel.org/pub/scm/linux/kernel/git/broon...
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define SAMPLE_COUNT            3
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40
41
42 #define FRAC_BITS 6
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 #define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(int32_t x, int32_t y)
53 {
54         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
55 }
56
57 struct sample {
58         int32_t core_pct_busy;
59         u64 aperf;
60         u64 mperf;
61         unsigned long long tsc;
62         int freq;
63 };
64
65 struct pstate_data {
66         int     current_pstate;
67         int     min_pstate;
68         int     max_pstate;
69         int     turbo_pstate;
70 };
71
72 struct vid_data {
73         int32_t min;
74         int32_t max;
75         int32_t ratio;
76 };
77
78 struct _pid {
79         int setpoint;
80         int32_t integral;
81         int32_t p_gain;
82         int32_t i_gain;
83         int32_t d_gain;
84         int deadband;
85         int32_t last_err;
86 };
87
88 struct cpudata {
89         int cpu;
90
91         char name[64];
92
93         struct timer_list timer;
94
95         struct pstate_data pstate;
96         struct vid_data vid;
97         struct _pid pid;
98
99         u64     prev_aperf;
100         u64     prev_mperf;
101         unsigned long long prev_tsc;
102         struct sample sample;
103 };
104
105 static struct cpudata **all_cpu_data;
106 struct pstate_adjust_policy {
107         int sample_rate_ms;
108         int deadband;
109         int setpoint;
110         int p_gain_pct;
111         int d_gain_pct;
112         int i_gain_pct;
113 };
114
115 struct pstate_funcs {
116         int (*get_max)(void);
117         int (*get_min)(void);
118         int (*get_turbo)(void);
119         void (*set)(struct cpudata*, int pstate);
120         void (*get_vid)(struct cpudata *);
121 };
122
123 struct cpu_defaults {
124         struct pstate_adjust_policy pid_policy;
125         struct pstate_funcs funcs;
126 };
127
128 static struct pstate_adjust_policy pid_params;
129 static struct pstate_funcs pstate_funcs;
130
131 struct perf_limits {
132         int no_turbo;
133         int max_perf_pct;
134         int min_perf_pct;
135         int32_t max_perf;
136         int32_t min_perf;
137         int max_policy_pct;
138         int max_sysfs_pct;
139 };
140
141 static struct perf_limits limits = {
142         .no_turbo = 0,
143         .max_perf_pct = 100,
144         .max_perf = int_tofp(1),
145         .min_perf_pct = 0,
146         .min_perf = 0,
147         .max_policy_pct = 100,
148         .max_sysfs_pct = 100,
149 };
150
151 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
152                         int deadband, int integral) {
153         pid->setpoint = setpoint;
154         pid->deadband  = deadband;
155         pid->integral  = int_tofp(integral);
156         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
157 }
158
159 static inline void pid_p_gain_set(struct _pid *pid, int percent)
160 {
161         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
162 }
163
164 static inline void pid_i_gain_set(struct _pid *pid, int percent)
165 {
166         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
167 }
168
169 static inline void pid_d_gain_set(struct _pid *pid, int percent)
170 {
171
172         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
173 }
174
175 static signed int pid_calc(struct _pid *pid, int32_t busy)
176 {
177         signed int result;
178         int32_t pterm, dterm, fp_error;
179         int32_t integral_limit;
180
181         fp_error = int_tofp(pid->setpoint) - busy;
182
183         if (abs(fp_error) <= int_tofp(pid->deadband))
184                 return 0;
185
186         pterm = mul_fp(pid->p_gain, fp_error);
187
188         pid->integral += fp_error;
189
190         /* limit the integral term */
191         integral_limit = int_tofp(30);
192         if (pid->integral > integral_limit)
193                 pid->integral = integral_limit;
194         if (pid->integral < -integral_limit)
195                 pid->integral = -integral_limit;
196
197         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
198         pid->last_err = fp_error;
199
200         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
201
202         return (signed int)fp_toint(result);
203 }
204
205 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
206 {
207         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
208         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
209         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
210
211         pid_reset(&cpu->pid,
212                 pid_params.setpoint,
213                 100,
214                 pid_params.deadband,
215                 0);
216 }
217
218 static inline void intel_pstate_reset_all_pid(void)
219 {
220         unsigned int cpu;
221         for_each_online_cpu(cpu) {
222                 if (all_cpu_data[cpu])
223                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
224         }
225 }
226
227 /************************** debugfs begin ************************/
228 static int pid_param_set(void *data, u64 val)
229 {
230         *(u32 *)data = val;
231         intel_pstate_reset_all_pid();
232         return 0;
233 }
234 static int pid_param_get(void *data, u64 *val)
235 {
236         *val = *(u32 *)data;
237         return 0;
238 }
239 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
240                         pid_param_set, "%llu\n");
241
242 struct pid_param {
243         char *name;
244         void *value;
245 };
246
247 static struct pid_param pid_files[] = {
248         {"sample_rate_ms", &pid_params.sample_rate_ms},
249         {"d_gain_pct", &pid_params.d_gain_pct},
250         {"i_gain_pct", &pid_params.i_gain_pct},
251         {"deadband", &pid_params.deadband},
252         {"setpoint", &pid_params.setpoint},
253         {"p_gain_pct", &pid_params.p_gain_pct},
254         {NULL, NULL}
255 };
256
257 static struct dentry *debugfs_parent;
258 static void intel_pstate_debug_expose_params(void)
259 {
260         int i = 0;
261
262         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
263         if (IS_ERR_OR_NULL(debugfs_parent))
264                 return;
265         while (pid_files[i].name) {
266                 debugfs_create_file(pid_files[i].name, 0660,
267                                 debugfs_parent, pid_files[i].value,
268                                 &fops_pid_param);
269                 i++;
270         }
271 }
272
273 /************************** debugfs end ************************/
274
275 /************************** sysfs begin ************************/
276 #define show_one(file_name, object)                                     \
277         static ssize_t show_##file_name                                 \
278         (struct kobject *kobj, struct attribute *attr, char *buf)       \
279         {                                                               \
280                 return sprintf(buf, "%u\n", limits.object);             \
281         }
282
283 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
284                                 const char *buf, size_t count)
285 {
286         unsigned int input;
287         int ret;
288         ret = sscanf(buf, "%u", &input);
289         if (ret != 1)
290                 return -EINVAL;
291         limits.no_turbo = clamp_t(int, input, 0 , 1);
292
293         return count;
294 }
295
296 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
297                                 const char *buf, size_t count)
298 {
299         unsigned int input;
300         int ret;
301         ret = sscanf(buf, "%u", &input);
302         if (ret != 1)
303                 return -EINVAL;
304
305         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
306         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
307         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
308         return count;
309 }
310
311 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312                                 const char *buf, size_t count)
313 {
314         unsigned int input;
315         int ret;
316         ret = sscanf(buf, "%u", &input);
317         if (ret != 1)
318                 return -EINVAL;
319         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
320         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
321
322         return count;
323 }
324
325 show_one(no_turbo, no_turbo);
326 show_one(max_perf_pct, max_perf_pct);
327 show_one(min_perf_pct, min_perf_pct);
328
329 define_one_global_rw(no_turbo);
330 define_one_global_rw(max_perf_pct);
331 define_one_global_rw(min_perf_pct);
332
333 static struct attribute *intel_pstate_attributes[] = {
334         &no_turbo.attr,
335         &max_perf_pct.attr,
336         &min_perf_pct.attr,
337         NULL
338 };
339
340 static struct attribute_group intel_pstate_attr_group = {
341         .attrs = intel_pstate_attributes,
342 };
343 static struct kobject *intel_pstate_kobject;
344
345 static void intel_pstate_sysfs_expose_params(void)
346 {
347         int rc;
348
349         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
350                                                 &cpu_subsys.dev_root->kobj);
351         BUG_ON(!intel_pstate_kobject);
352         rc = sysfs_create_group(intel_pstate_kobject,
353                                 &intel_pstate_attr_group);
354         BUG_ON(rc);
355 }
356
357 /************************** sysfs end ************************/
358 static int byt_get_min_pstate(void)
359 {
360         u64 value;
361         rdmsrl(BYT_RATIOS, value);
362         return (value >> 8) & 0xFF;
363 }
364
365 static int byt_get_max_pstate(void)
366 {
367         u64 value;
368         rdmsrl(BYT_RATIOS, value);
369         return (value >> 16) & 0xFF;
370 }
371
372 static int byt_get_turbo_pstate(void)
373 {
374         u64 value;
375         rdmsrl(BYT_TURBO_RATIOS, value);
376         return value & 0x3F;
377 }
378
379 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
380 {
381         u64 val;
382         int32_t vid_fp;
383         u32 vid;
384
385         val = pstate << 8;
386         if (limits.no_turbo)
387                 val |= (u64)1 << 32;
388
389         vid_fp = cpudata->vid.min + mul_fp(
390                 int_tofp(pstate - cpudata->pstate.min_pstate),
391                 cpudata->vid.ratio);
392
393         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
394         vid = fp_toint(vid_fp);
395
396         val |= vid;
397
398         wrmsrl(MSR_IA32_PERF_CTL, val);
399 }
400
401 static void byt_get_vid(struct cpudata *cpudata)
402 {
403         u64 value;
404
405         rdmsrl(BYT_VIDS, value);
406         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
407         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
408         cpudata->vid.ratio = div_fp(
409                 cpudata->vid.max - cpudata->vid.min,
410                 int_tofp(cpudata->pstate.max_pstate -
411                         cpudata->pstate.min_pstate));
412 }
413
414
415 static int core_get_min_pstate(void)
416 {
417         u64 value;
418         rdmsrl(MSR_PLATFORM_INFO, value);
419         return (value >> 40) & 0xFF;
420 }
421
422 static int core_get_max_pstate(void)
423 {
424         u64 value;
425         rdmsrl(MSR_PLATFORM_INFO, value);
426         return (value >> 8) & 0xFF;
427 }
428
429 static int core_get_turbo_pstate(void)
430 {
431         u64 value;
432         int nont, ret;
433         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
434         nont = core_get_max_pstate();
435         ret = ((value) & 255);
436         if (ret <= nont)
437                 ret = nont;
438         return ret;
439 }
440
441 static void core_set_pstate(struct cpudata *cpudata, int pstate)
442 {
443         u64 val;
444
445         val = pstate << 8;
446         if (limits.no_turbo)
447                 val |= (u64)1 << 32;
448
449         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
450 }
451
452 static struct cpu_defaults core_params = {
453         .pid_policy = {
454                 .sample_rate_ms = 10,
455                 .deadband = 0,
456                 .setpoint = 97,
457                 .p_gain_pct = 20,
458                 .d_gain_pct = 0,
459                 .i_gain_pct = 0,
460         },
461         .funcs = {
462                 .get_max = core_get_max_pstate,
463                 .get_min = core_get_min_pstate,
464                 .get_turbo = core_get_turbo_pstate,
465                 .set = core_set_pstate,
466         },
467 };
468
469 static struct cpu_defaults byt_params = {
470         .pid_policy = {
471                 .sample_rate_ms = 10,
472                 .deadband = 0,
473                 .setpoint = 97,
474                 .p_gain_pct = 14,
475                 .d_gain_pct = 0,
476                 .i_gain_pct = 4,
477         },
478         .funcs = {
479                 .get_max = byt_get_max_pstate,
480                 .get_min = byt_get_min_pstate,
481                 .get_turbo = byt_get_turbo_pstate,
482                 .set = byt_set_pstate,
483                 .get_vid = byt_get_vid,
484         },
485 };
486
487
488 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
489 {
490         int max_perf = cpu->pstate.turbo_pstate;
491         int max_perf_adj;
492         int min_perf;
493         if (limits.no_turbo)
494                 max_perf = cpu->pstate.max_pstate;
495
496         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
497         *max = clamp_t(int, max_perf_adj,
498                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
499
500         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
501         *min = clamp_t(int, min_perf,
502                         cpu->pstate.min_pstate, max_perf);
503 }
504
505 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
506 {
507         int max_perf, min_perf;
508
509         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
510
511         pstate = clamp_t(int, pstate, min_perf, max_perf);
512
513         if (pstate == cpu->pstate.current_pstate)
514                 return;
515
516         trace_cpu_frequency(pstate * 100000, cpu->cpu);
517
518         cpu->pstate.current_pstate = pstate;
519
520         pstate_funcs.set(cpu, pstate);
521 }
522
523 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
524 {
525         int target;
526         target = cpu->pstate.current_pstate + steps;
527
528         intel_pstate_set_pstate(cpu, target);
529 }
530
531 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
532 {
533         int target;
534         target = cpu->pstate.current_pstate - steps;
535         intel_pstate_set_pstate(cpu, target);
536 }
537
538 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
539 {
540         sprintf(cpu->name, "Intel 2nd generation core");
541
542         cpu->pstate.min_pstate = pstate_funcs.get_min();
543         cpu->pstate.max_pstate = pstate_funcs.get_max();
544         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
545
546         if (pstate_funcs.get_vid)
547                 pstate_funcs.get_vid(cpu);
548
549         /*
550          * goto max pstate so we don't slow up boot if we are built-in if we are
551          * a module we will take care of it during normal operation
552          */
553         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
554 }
555
556 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
557                                         struct sample *sample)
558 {
559         int32_t core_pct;
560         int32_t c0_pct;
561
562         core_pct = div_fp(int_tofp((sample->aperf)),
563                         int_tofp((sample->mperf)));
564         core_pct = mul_fp(core_pct, int_tofp(100));
565         FP_ROUNDUP(core_pct);
566
567         c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
568
569         sample->freq = fp_toint(
570                 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
571
572         sample->core_pct_busy = mul_fp(core_pct, c0_pct);
573 }
574
575 static inline void intel_pstate_sample(struct cpudata *cpu)
576 {
577         u64 aperf, mperf;
578         unsigned long long tsc;
579
580         rdmsrl(MSR_IA32_APERF, aperf);
581         rdmsrl(MSR_IA32_MPERF, mperf);
582         tsc = native_read_tsc();
583
584         aperf = aperf >> FRAC_BITS;
585         mperf = mperf >> FRAC_BITS;
586         tsc = tsc >> FRAC_BITS;
587
588         cpu->sample.aperf = aperf;
589         cpu->sample.mperf = mperf;
590         cpu->sample.tsc = tsc;
591         cpu->sample.aperf -= cpu->prev_aperf;
592         cpu->sample.mperf -= cpu->prev_mperf;
593         cpu->sample.tsc -= cpu->prev_tsc;
594
595         intel_pstate_calc_busy(cpu, &cpu->sample);
596
597         cpu->prev_aperf = aperf;
598         cpu->prev_mperf = mperf;
599         cpu->prev_tsc = tsc;
600 }
601
602 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
603 {
604         int sample_time, delay;
605
606         sample_time = pid_params.sample_rate_ms;
607         delay = msecs_to_jiffies(sample_time);
608         mod_timer_pinned(&cpu->timer, jiffies + delay);
609 }
610
611 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
612 {
613         int32_t core_busy, max_pstate, current_pstate;
614
615         core_busy = cpu->sample.core_pct_busy;
616         max_pstate = int_tofp(cpu->pstate.max_pstate);
617         current_pstate = int_tofp(cpu->pstate.current_pstate);
618         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
619         return FP_ROUNDUP(core_busy);
620 }
621
622 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
623 {
624         int32_t busy_scaled;
625         struct _pid *pid;
626         signed int ctl = 0;
627         int steps;
628
629         pid = &cpu->pid;
630         busy_scaled = intel_pstate_get_scaled_busy(cpu);
631
632         ctl = pid_calc(pid, busy_scaled);
633
634         steps = abs(ctl);
635
636         if (ctl < 0)
637                 intel_pstate_pstate_increase(cpu, steps);
638         else
639                 intel_pstate_pstate_decrease(cpu, steps);
640 }
641
642 static void intel_pstate_timer_func(unsigned long __data)
643 {
644         struct cpudata *cpu = (struct cpudata *) __data;
645         struct sample *sample;
646
647         intel_pstate_sample(cpu);
648
649         sample = &cpu->sample;
650
651         intel_pstate_adjust_busy_pstate(cpu);
652
653         trace_pstate_sample(fp_toint(sample->core_pct_busy),
654                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
655                         cpu->pstate.current_pstate,
656                         sample->mperf,
657                         sample->aperf,
658                         sample->freq);
659
660         intel_pstate_set_sample_time(cpu);
661 }
662
663 #define ICPU(model, policy) \
664         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
665                         (unsigned long)&policy }
666
667 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
668         ICPU(0x2a, core_params),
669         ICPU(0x2d, core_params),
670         ICPU(0x37, byt_params),
671         ICPU(0x3a, core_params),
672         ICPU(0x3c, core_params),
673         ICPU(0x3e, core_params),
674         ICPU(0x3f, core_params),
675         ICPU(0x45, core_params),
676         ICPU(0x46, core_params),
677         {}
678 };
679 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
680
681 static int intel_pstate_init_cpu(unsigned int cpunum)
682 {
683
684         const struct x86_cpu_id *id;
685         struct cpudata *cpu;
686
687         id = x86_match_cpu(intel_pstate_cpu_ids);
688         if (!id)
689                 return -ENODEV;
690
691         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
692         if (!all_cpu_data[cpunum])
693                 return -ENOMEM;
694
695         cpu = all_cpu_data[cpunum];
696
697         intel_pstate_get_cpu_pstates(cpu);
698         if (!cpu->pstate.current_pstate) {
699                 all_cpu_data[cpunum] = NULL;
700                 kfree(cpu);
701                 return -ENODATA;
702         }
703
704         cpu->cpu = cpunum;
705
706         init_timer_deferrable(&cpu->timer);
707         cpu->timer.function = intel_pstate_timer_func;
708         cpu->timer.data =
709                 (unsigned long)cpu;
710         cpu->timer.expires = jiffies + HZ/100;
711         intel_pstate_busy_pid_reset(cpu);
712         intel_pstate_sample(cpu);
713         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
714
715         add_timer_on(&cpu->timer, cpunum);
716
717         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
718
719         return 0;
720 }
721
722 static unsigned int intel_pstate_get(unsigned int cpu_num)
723 {
724         struct sample *sample;
725         struct cpudata *cpu;
726
727         cpu = all_cpu_data[cpu_num];
728         if (!cpu)
729                 return 0;
730         sample = &cpu->sample;
731         return sample->freq;
732 }
733
734 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
735 {
736         struct cpudata *cpu;
737
738         cpu = all_cpu_data[policy->cpu];
739
740         if (!policy->cpuinfo.max_freq)
741                 return -ENODEV;
742
743         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
744                 limits.min_perf_pct = 100;
745                 limits.min_perf = int_tofp(1);
746                 limits.max_perf_pct = 100;
747                 limits.max_perf = int_tofp(1);
748                 limits.no_turbo = 0;
749                 return 0;
750         }
751         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
752         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
753         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
754
755         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
756         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
757         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
758         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
759
760         return 0;
761 }
762
763 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
764 {
765         cpufreq_verify_within_cpu_limits(policy);
766
767         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
768                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
769                 return -EINVAL;
770
771         return 0;
772 }
773
774 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
775 {
776         int cpu_num = policy->cpu;
777         struct cpudata *cpu = all_cpu_data[cpu_num];
778
779         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
780
781         del_timer_sync(&all_cpu_data[cpu_num]->timer);
782         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
783         kfree(all_cpu_data[cpu_num]);
784         all_cpu_data[cpu_num] = NULL;
785 }
786
787 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
788 {
789         struct cpudata *cpu;
790         int rc;
791
792         rc = intel_pstate_init_cpu(policy->cpu);
793         if (rc)
794                 return rc;
795
796         cpu = all_cpu_data[policy->cpu];
797
798         if (!limits.no_turbo &&
799                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
800                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
801         else
802                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
803
804         policy->min = cpu->pstate.min_pstate * 100000;
805         policy->max = cpu->pstate.turbo_pstate * 100000;
806
807         /* cpuinfo and default policy values */
808         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
809         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
810         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
811         cpumask_set_cpu(policy->cpu, policy->cpus);
812
813         return 0;
814 }
815
816 static struct cpufreq_driver intel_pstate_driver = {
817         .flags          = CPUFREQ_CONST_LOOPS,
818         .verify         = intel_pstate_verify_policy,
819         .setpolicy      = intel_pstate_set_policy,
820         .get            = intel_pstate_get,
821         .init           = intel_pstate_cpu_init,
822         .stop_cpu       = intel_pstate_stop_cpu,
823         .name           = "intel_pstate",
824 };
825
826 static int __initdata no_load;
827
828 static int intel_pstate_msrs_not_valid(void)
829 {
830         /* Check that all the msr's we are using are valid. */
831         u64 aperf, mperf, tmp;
832
833         rdmsrl(MSR_IA32_APERF, aperf);
834         rdmsrl(MSR_IA32_MPERF, mperf);
835
836         if (!pstate_funcs.get_max() ||
837                 !pstate_funcs.get_min() ||
838                 !pstate_funcs.get_turbo())
839                 return -ENODEV;
840
841         rdmsrl(MSR_IA32_APERF, tmp);
842         if (!(tmp - aperf))
843                 return -ENODEV;
844
845         rdmsrl(MSR_IA32_MPERF, tmp);
846         if (!(tmp - mperf))
847                 return -ENODEV;
848
849         return 0;
850 }
851
852 static void copy_pid_params(struct pstate_adjust_policy *policy)
853 {
854         pid_params.sample_rate_ms = policy->sample_rate_ms;
855         pid_params.p_gain_pct = policy->p_gain_pct;
856         pid_params.i_gain_pct = policy->i_gain_pct;
857         pid_params.d_gain_pct = policy->d_gain_pct;
858         pid_params.deadband = policy->deadband;
859         pid_params.setpoint = policy->setpoint;
860 }
861
862 static void copy_cpu_funcs(struct pstate_funcs *funcs)
863 {
864         pstate_funcs.get_max   = funcs->get_max;
865         pstate_funcs.get_min   = funcs->get_min;
866         pstate_funcs.get_turbo = funcs->get_turbo;
867         pstate_funcs.set       = funcs->set;
868         pstate_funcs.get_vid   = funcs->get_vid;
869 }
870
871 #if IS_ENABLED(CONFIG_ACPI)
872 #include <acpi/processor.h>
873
874 static bool intel_pstate_no_acpi_pss(void)
875 {
876         int i;
877
878         for_each_possible_cpu(i) {
879                 acpi_status status;
880                 union acpi_object *pss;
881                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
882                 struct acpi_processor *pr = per_cpu(processors, i);
883
884                 if (!pr)
885                         continue;
886
887                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
888                 if (ACPI_FAILURE(status))
889                         continue;
890
891                 pss = buffer.pointer;
892                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
893                         kfree(pss);
894                         return false;
895                 }
896
897                 kfree(pss);
898         }
899
900         return true;
901 }
902
903 struct hw_vendor_info {
904         u16  valid;
905         char oem_id[ACPI_OEM_ID_SIZE];
906         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
907 };
908
909 /* Hardware vendor-specific info that has its own power management modes */
910 static struct hw_vendor_info vendor_info[] = {
911         {1, "HP    ", "ProLiant"},
912         {0, "", ""},
913 };
914
915 static bool intel_pstate_platform_pwr_mgmt_exists(void)
916 {
917         struct acpi_table_header hdr;
918         struct hw_vendor_info *v_info;
919
920         if (acpi_disabled
921             || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
922                 return false;
923
924         for (v_info = vendor_info; v_info->valid; v_info++) {
925                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
926                     && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
927                     && intel_pstate_no_acpi_pss())
928                         return true;
929         }
930
931         return false;
932 }
933 #else /* CONFIG_ACPI not enabled */
934 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
935 #endif /* CONFIG_ACPI */
936
937 static int __init intel_pstate_init(void)
938 {
939         int cpu, rc = 0;
940         const struct x86_cpu_id *id;
941         struct cpu_defaults *cpu_info;
942
943         if (no_load)
944                 return -ENODEV;
945
946         id = x86_match_cpu(intel_pstate_cpu_ids);
947         if (!id)
948                 return -ENODEV;
949
950         /*
951          * The Intel pstate driver will be ignored if the platform
952          * firmware has its own power management modes.
953          */
954         if (intel_pstate_platform_pwr_mgmt_exists())
955                 return -ENODEV;
956
957         cpu_info = (struct cpu_defaults *)id->driver_data;
958
959         copy_pid_params(&cpu_info->pid_policy);
960         copy_cpu_funcs(&cpu_info->funcs);
961
962         if (intel_pstate_msrs_not_valid())
963                 return -ENODEV;
964
965         pr_info("Intel P-state driver initializing.\n");
966
967         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
968         if (!all_cpu_data)
969                 return -ENOMEM;
970
971         rc = cpufreq_register_driver(&intel_pstate_driver);
972         if (rc)
973                 goto out;
974
975         intel_pstate_debug_expose_params();
976         intel_pstate_sysfs_expose_params();
977
978         return rc;
979 out:
980         get_online_cpus();
981         for_each_online_cpu(cpu) {
982                 if (all_cpu_data[cpu]) {
983                         del_timer_sync(&all_cpu_data[cpu]->timer);
984                         kfree(all_cpu_data[cpu]);
985                 }
986         }
987
988         put_online_cpus();
989         vfree(all_cpu_data);
990         return -ENODEV;
991 }
992 device_initcall(intel_pstate_init);
993
994 static int __init intel_pstate_setup(char *str)
995 {
996         if (!str)
997                 return -EINVAL;
998
999         if (!strcmp(str, "disable"))
1000                 no_load = 1;
1001         return 0;
1002 }
1003 early_param("intel_pstate", intel_pstate_setup);
1004
1005 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1006 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1007 MODULE_LICENSE("GPL");