regmap: rbtree: Fixed node range check on sync
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33
34 #define SAMPLE_COUNT            3
35
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49
50 struct sample {
51         int core_pct_busy;
52         u64 aperf;
53         u64 mperf;
54         int freq;
55 };
56
57 struct pstate_data {
58         int     current_pstate;
59         int     min_pstate;
60         int     max_pstate;
61         int     turbo_pstate;
62 };
63
64 struct _pid {
65         int setpoint;
66         int32_t integral;
67         int32_t p_gain;
68         int32_t i_gain;
69         int32_t d_gain;
70         int deadband;
71         int last_err;
72 };
73
74 struct cpudata {
75         int cpu;
76
77         char name[64];
78
79         struct timer_list timer;
80
81         struct pstate_adjust_policy *pstate_policy;
82         struct pstate_data pstate;
83         struct _pid pid;
84
85         int min_pstate_count;
86
87         u64     prev_aperf;
88         u64     prev_mperf;
89         int     sample_ptr;
90         struct sample samples[SAMPLE_COUNT];
91 };
92
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95         int sample_rate_ms;
96         int deadband;
97         int setpoint;
98         int p_gain_pct;
99         int d_gain_pct;
100         int i_gain_pct;
101 };
102
103 static struct pstate_adjust_policy default_policy = {
104         .sample_rate_ms = 10,
105         .deadband = 0,
106         .setpoint = 109,
107         .p_gain_pct = 17,
108         .d_gain_pct = 0,
109         .i_gain_pct = 4,
110 };
111
112 struct perf_limits {
113         int no_turbo;
114         int max_perf_pct;
115         int min_perf_pct;
116         int32_t max_perf;
117         int32_t min_perf;
118         int max_policy_pct;
119         int max_sysfs_pct;
120 };
121
122 static struct perf_limits limits = {
123         .no_turbo = 0,
124         .max_perf_pct = 100,
125         .max_perf = int_tofp(1),
126         .min_perf_pct = 0,
127         .min_perf = 0,
128         .max_policy_pct = 100,
129         .max_sysfs_pct = 100,
130 };
131
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133                         int deadband, int integral) {
134         pid->setpoint = setpoint;
135         pid->deadband  = deadband;
136         pid->integral  = int_tofp(integral);
137         pid->last_err  = setpoint - busy;
138 }
139
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152
153         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155
156 static signed int pid_calc(struct _pid *pid, int busy)
157 {
158         signed int err, result;
159         int32_t pterm, dterm, fp_error;
160         int32_t integral_limit;
161
162         err = pid->setpoint - busy;
163         fp_error = int_tofp(err);
164
165         if (abs(err) <= pid->deadband)
166                 return 0;
167
168         pterm = mul_fp(pid->p_gain, fp_error);
169
170         pid->integral += fp_error;
171
172         /* limit the integral term */
173         integral_limit = int_tofp(30);
174         if (pid->integral > integral_limit)
175                 pid->integral = integral_limit;
176         if (pid->integral < -integral_limit)
177                 pid->integral = -integral_limit;
178
179         dterm = mul_fp(pid->d_gain, (err - pid->last_err));
180         pid->last_err = err;
181
182         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
183
184         return (signed int)fp_toint(result);
185 }
186
187 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
188 {
189         pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
190         pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
191         pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
192
193         pid_reset(&cpu->pid,
194                 cpu->pstate_policy->setpoint,
195                 100,
196                 cpu->pstate_policy->deadband,
197                 0);
198 }
199
200 static inline void intel_pstate_reset_all_pid(void)
201 {
202         unsigned int cpu;
203         for_each_online_cpu(cpu) {
204                 if (all_cpu_data[cpu])
205                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
206         }
207 }
208
209 /************************** debugfs begin ************************/
210 static int pid_param_set(void *data, u64 val)
211 {
212         *(u32 *)data = val;
213         intel_pstate_reset_all_pid();
214         return 0;
215 }
216 static int pid_param_get(void *data, u64 *val)
217 {
218         *val = *(u32 *)data;
219         return 0;
220 }
221 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
222                         pid_param_set, "%llu\n");
223
224 struct pid_param {
225         char *name;
226         void *value;
227 };
228
229 static struct pid_param pid_files[] = {
230         {"sample_rate_ms", &default_policy.sample_rate_ms},
231         {"d_gain_pct", &default_policy.d_gain_pct},
232         {"i_gain_pct", &default_policy.i_gain_pct},
233         {"deadband", &default_policy.deadband},
234         {"setpoint", &default_policy.setpoint},
235         {"p_gain_pct", &default_policy.p_gain_pct},
236         {NULL, NULL}
237 };
238
239 static struct dentry *debugfs_parent;
240 static void intel_pstate_debug_expose_params(void)
241 {
242         int i = 0;
243
244         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
245         if (IS_ERR_OR_NULL(debugfs_parent))
246                 return;
247         while (pid_files[i].name) {
248                 debugfs_create_file(pid_files[i].name, 0660,
249                                 debugfs_parent, pid_files[i].value,
250                                 &fops_pid_param);
251                 i++;
252         }
253 }
254
255 /************************** debugfs end ************************/
256
257 /************************** sysfs begin ************************/
258 #define show_one(file_name, object)                                     \
259         static ssize_t show_##file_name                                 \
260         (struct kobject *kobj, struct attribute *attr, char *buf)       \
261         {                                                               \
262                 return sprintf(buf, "%u\n", limits.object);             \
263         }
264
265 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
266                                 const char *buf, size_t count)
267 {
268         unsigned int input;
269         int ret;
270         ret = sscanf(buf, "%u", &input);
271         if (ret != 1)
272                 return -EINVAL;
273         limits.no_turbo = clamp_t(int, input, 0 , 1);
274
275         return count;
276 }
277
278 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
279                                 const char *buf, size_t count)
280 {
281         unsigned int input;
282         int ret;
283         ret = sscanf(buf, "%u", &input);
284         if (ret != 1)
285                 return -EINVAL;
286
287         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
288         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
290         return count;
291 }
292
293 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
294                                 const char *buf, size_t count)
295 {
296         unsigned int input;
297         int ret;
298         ret = sscanf(buf, "%u", &input);
299         if (ret != 1)
300                 return -EINVAL;
301         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
302         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
303
304         return count;
305 }
306
307 show_one(no_turbo, no_turbo);
308 show_one(max_perf_pct, max_perf_pct);
309 show_one(min_perf_pct, min_perf_pct);
310
311 define_one_global_rw(no_turbo);
312 define_one_global_rw(max_perf_pct);
313 define_one_global_rw(min_perf_pct);
314
315 static struct attribute *intel_pstate_attributes[] = {
316         &no_turbo.attr,
317         &max_perf_pct.attr,
318         &min_perf_pct.attr,
319         NULL
320 };
321
322 static struct attribute_group intel_pstate_attr_group = {
323         .attrs = intel_pstate_attributes,
324 };
325 static struct kobject *intel_pstate_kobject;
326
327 static void intel_pstate_sysfs_expose_params(void)
328 {
329         int rc;
330
331         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
332                                                 &cpu_subsys.dev_root->kobj);
333         BUG_ON(!intel_pstate_kobject);
334         rc = sysfs_create_group(intel_pstate_kobject,
335                                 &intel_pstate_attr_group);
336         BUG_ON(rc);
337 }
338
339 /************************** sysfs end ************************/
340
341 static int intel_pstate_min_pstate(void)
342 {
343         u64 value;
344         rdmsrl(MSR_PLATFORM_INFO, value);
345         return (value >> 40) & 0xFF;
346 }
347
348 static int intel_pstate_max_pstate(void)
349 {
350         u64 value;
351         rdmsrl(MSR_PLATFORM_INFO, value);
352         return (value >> 8) & 0xFF;
353 }
354
355 static int intel_pstate_turbo_pstate(void)
356 {
357         u64 value;
358         int nont, ret;
359         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360         nont = intel_pstate_max_pstate();
361         ret = ((value) & 255);
362         if (ret <= nont)
363                 ret = nont;
364         return ret;
365 }
366
367 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
368 {
369         int max_perf = cpu->pstate.turbo_pstate;
370         int min_perf;
371         if (limits.no_turbo)
372                 max_perf = cpu->pstate.max_pstate;
373
374         max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
375         *max = clamp_t(int, max_perf,
376                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
377
378         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
379         *min = clamp_t(int, min_perf,
380                         cpu->pstate.min_pstate, max_perf);
381 }
382
383 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
384 {
385         int max_perf, min_perf;
386
387         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388
389         pstate = clamp_t(int, pstate, min_perf, max_perf);
390
391         if (pstate == cpu->pstate.current_pstate)
392                 return;
393
394         trace_cpu_frequency(pstate * 100000, cpu->cpu);
395
396         cpu->pstate.current_pstate = pstate;
397         wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
398
399 }
400
401 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
402 {
403         int target;
404         target = cpu->pstate.current_pstate + steps;
405
406         intel_pstate_set_pstate(cpu, target);
407 }
408
409 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
410 {
411         int target;
412         target = cpu->pstate.current_pstate - steps;
413         intel_pstate_set_pstate(cpu, target);
414 }
415
416 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
417 {
418         sprintf(cpu->name, "Intel 2nd generation core");
419
420         cpu->pstate.min_pstate = intel_pstate_min_pstate();
421         cpu->pstate.max_pstate = intel_pstate_max_pstate();
422         cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
423
424         /*
425          * goto max pstate so we don't slow up boot if we are built-in if we are
426          * a module we will take care of it during normal operation
427          */
428         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
429 }
430
431 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
432                                         struct sample *sample)
433 {
434         u64 core_pct;
435         core_pct = div64_u64(sample->aperf * 100, sample->mperf);
436         sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
437
438         sample->core_pct_busy = core_pct;
439 }
440
441 static inline void intel_pstate_sample(struct cpudata *cpu)
442 {
443         u64 aperf, mperf;
444
445         rdmsrl(MSR_IA32_APERF, aperf);
446         rdmsrl(MSR_IA32_MPERF, mperf);
447         cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
448         cpu->samples[cpu->sample_ptr].aperf = aperf;
449         cpu->samples[cpu->sample_ptr].mperf = mperf;
450         cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
451         cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
452
453         intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
454
455         cpu->prev_aperf = aperf;
456         cpu->prev_mperf = mperf;
457 }
458
459 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
460 {
461         int sample_time, delay;
462
463         sample_time = cpu->pstate_policy->sample_rate_ms;
464         delay = msecs_to_jiffies(sample_time);
465         mod_timer_pinned(&cpu->timer, jiffies + delay);
466 }
467
468 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
469 {
470         int32_t busy_scaled;
471         int32_t core_busy, turbo_pstate, current_pstate;
472
473         core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
474         turbo_pstate = int_tofp(cpu->pstate.turbo_pstate);
475         current_pstate = int_tofp(cpu->pstate.current_pstate);
476         busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate));
477
478         return fp_toint(busy_scaled);
479 }
480
481 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
482 {
483         int busy_scaled;
484         struct _pid *pid;
485         signed int ctl = 0;
486         int steps;
487
488         pid = &cpu->pid;
489         busy_scaled = intel_pstate_get_scaled_busy(cpu);
490
491         ctl = pid_calc(pid, busy_scaled);
492
493         steps = abs(ctl);
494         if (ctl < 0)
495                 intel_pstate_pstate_increase(cpu, steps);
496         else
497                 intel_pstate_pstate_decrease(cpu, steps);
498 }
499
500 static void intel_pstate_timer_func(unsigned long __data)
501 {
502         struct cpudata *cpu = (struct cpudata *) __data;
503
504         intel_pstate_sample(cpu);
505         intel_pstate_adjust_busy_pstate(cpu);
506
507         if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
508                 cpu->min_pstate_count++;
509                 if (!(cpu->min_pstate_count % 5)) {
510                         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
511                 }
512         } else
513                 cpu->min_pstate_count = 0;
514
515         intel_pstate_set_sample_time(cpu);
516 }
517
518 #define ICPU(model, policy) \
519         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
520
521 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
522         ICPU(0x2a, default_policy),
523         ICPU(0x2d, default_policy),
524         {}
525 };
526 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
527
528 static int intel_pstate_init_cpu(unsigned int cpunum)
529 {
530
531         const struct x86_cpu_id *id;
532         struct cpudata *cpu;
533
534         id = x86_match_cpu(intel_pstate_cpu_ids);
535         if (!id)
536                 return -ENODEV;
537
538         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
539         if (!all_cpu_data[cpunum])
540                 return -ENOMEM;
541
542         cpu = all_cpu_data[cpunum];
543
544         intel_pstate_get_cpu_pstates(cpu);
545
546         cpu->cpu = cpunum;
547         cpu->pstate_policy =
548                 (struct pstate_adjust_policy *)id->driver_data;
549         init_timer_deferrable(&cpu->timer);
550         cpu->timer.function = intel_pstate_timer_func;
551         cpu->timer.data =
552                 (unsigned long)cpu;
553         cpu->timer.expires = jiffies + HZ/100;
554         intel_pstate_busy_pid_reset(cpu);
555         intel_pstate_sample(cpu);
556         intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
557
558         add_timer_on(&cpu->timer, cpunum);
559
560         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
561
562         return 0;
563 }
564
565 static unsigned int intel_pstate_get(unsigned int cpu_num)
566 {
567         struct sample *sample;
568         struct cpudata *cpu;
569
570         cpu = all_cpu_data[cpu_num];
571         if (!cpu)
572                 return 0;
573         sample = &cpu->samples[cpu->sample_ptr];
574         return sample->freq;
575 }
576
577 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
578 {
579         struct cpudata *cpu;
580
581         cpu = all_cpu_data[policy->cpu];
582
583         if (!policy->cpuinfo.max_freq)
584                 return -ENODEV;
585
586         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
587                 limits.min_perf_pct = 100;
588                 limits.min_perf = int_tofp(1);
589                 limits.max_perf_pct = 100;
590                 limits.max_perf = int_tofp(1);
591                 limits.no_turbo = 0;
592                 return 0;
593         }
594         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
595         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
596         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
597
598         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
599         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
600         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
601         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
602
603         return 0;
604 }
605
606 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
607 {
608         cpufreq_verify_within_limits(policy,
609                                 policy->cpuinfo.min_freq,
610                                 policy->cpuinfo.max_freq);
611
612         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
613                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
614                 return -EINVAL;
615
616         return 0;
617 }
618
619 static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy)
620 {
621         int cpu = policy->cpu;
622
623         del_timer(&all_cpu_data[cpu]->timer);
624         kfree(all_cpu_data[cpu]);
625         all_cpu_data[cpu] = NULL;
626         return 0;
627 }
628
629 static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy)
630 {
631         int rc, min_pstate, max_pstate;
632         struct cpudata *cpu;
633
634         rc = intel_pstate_init_cpu(policy->cpu);
635         if (rc)
636                 return rc;
637
638         cpu = all_cpu_data[policy->cpu];
639
640         if (!limits.no_turbo &&
641                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
642                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
643         else
644                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
645
646         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
647         policy->min = min_pstate * 100000;
648         policy->max = max_pstate * 100000;
649
650         /* cpuinfo and default policy values */
651         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
652         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
653         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
654         cpumask_set_cpu(policy->cpu, policy->cpus);
655
656         return 0;
657 }
658
659 static struct cpufreq_driver intel_pstate_driver = {
660         .flags          = CPUFREQ_CONST_LOOPS,
661         .verify         = intel_pstate_verify_policy,
662         .setpolicy      = intel_pstate_set_policy,
663         .get            = intel_pstate_get,
664         .init           = intel_pstate_cpu_init,
665         .exit           = intel_pstate_cpu_exit,
666         .name           = "intel_pstate",
667         .owner          = THIS_MODULE,
668 };
669
670 static int __initdata no_load;
671
672 static int intel_pstate_msrs_not_valid(void)
673 {
674         /* Check that all the msr's we are using are valid. */
675         u64 aperf, mperf, tmp;
676
677         rdmsrl(MSR_IA32_APERF, aperf);
678         rdmsrl(MSR_IA32_MPERF, mperf);
679
680         if (!intel_pstate_min_pstate() ||
681                 !intel_pstate_max_pstate() ||
682                 !intel_pstate_turbo_pstate())
683                 return -ENODEV;
684
685         rdmsrl(MSR_IA32_APERF, tmp);
686         if (!(tmp - aperf))
687                 return -ENODEV;
688
689         rdmsrl(MSR_IA32_MPERF, tmp);
690         if (!(tmp - mperf))
691                 return -ENODEV;
692
693         return 0;
694 }
695 static int __init intel_pstate_init(void)
696 {
697         int cpu, rc = 0;
698         const struct x86_cpu_id *id;
699
700         if (no_load)
701                 return -ENODEV;
702
703         id = x86_match_cpu(intel_pstate_cpu_ids);
704         if (!id)
705                 return -ENODEV;
706
707         if (intel_pstate_msrs_not_valid())
708                 return -ENODEV;
709
710         pr_info("Intel P-state driver initializing.\n");
711
712         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
713         if (!all_cpu_data)
714                 return -ENOMEM;
715
716         rc = cpufreq_register_driver(&intel_pstate_driver);
717         if (rc)
718                 goto out;
719
720         intel_pstate_debug_expose_params();
721         intel_pstate_sysfs_expose_params();
722         return rc;
723 out:
724         get_online_cpus();
725         for_each_online_cpu(cpu) {
726                 if (all_cpu_data[cpu]) {
727                         del_timer_sync(&all_cpu_data[cpu]->timer);
728                         kfree(all_cpu_data[cpu]);
729                 }
730         }
731
732         put_online_cpus();
733         vfree(all_cpu_data);
734         return -ENODEV;
735 }
736 device_initcall(intel_pstate_init);
737
738 static int __init intel_pstate_setup(char *str)
739 {
740         if (!str)
741                 return -EINVAL;
742
743         if (!strcmp(str, "disable"))
744                 no_load = 1;
745         return 0;
746 }
747 early_param("intel_pstate", intel_pstate_setup);
748
749 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
750 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
751 MODULE_LICENSE("GPL");