intel_pstate: Fix user input of min/max to legal policy region
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54         return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59         int mask, ret;
60
61         ret = fp_toint(x);
62         mask = (1 << FRAC_BITS) - 1;
63         if (x & mask)
64                 ret += 1;
65         return ret;
66 }
67
68 struct sample {
69         int32_t core_pct_busy;
70         u64 aperf;
71         u64 mperf;
72         u64 tsc;
73         int freq;
74         ktime_t time;
75 };
76
77 struct pstate_data {
78         int     current_pstate;
79         int     min_pstate;
80         int     max_pstate;
81         int     scaling;
82         int     turbo_pstate;
83 };
84
85 struct vid_data {
86         int min;
87         int max;
88         int turbo;
89         int32_t ratio;
90 };
91
92 struct _pid {
93         int setpoint;
94         int32_t integral;
95         int32_t p_gain;
96         int32_t i_gain;
97         int32_t d_gain;
98         int deadband;
99         int32_t last_err;
100 };
101
102 struct cpudata {
103         int cpu;
104
105         struct timer_list timer;
106
107         struct pstate_data pstate;
108         struct vid_data vid;
109         struct _pid pid;
110
111         ktime_t last_sample_time;
112         u64     prev_aperf;
113         u64     prev_mperf;
114         u64     prev_tsc;
115         struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120         int sample_rate_ms;
121         int deadband;
122         int setpoint;
123         int p_gain_pct;
124         int d_gain_pct;
125         int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129         int (*get_max)(void);
130         int (*get_min)(void);
131         int (*get_turbo)(void);
132         int (*get_scaling)(void);
133         void (*set)(struct cpudata*, int pstate);
134         void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138         struct pstate_adjust_policy pid_policy;
139         struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147         int no_turbo;
148         int turbo_disabled;
149         int max_perf_pct;
150         int min_perf_pct;
151         int32_t max_perf;
152         int32_t min_perf;
153         int max_policy_pct;
154         int max_sysfs_pct;
155         int min_policy_pct;
156         int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160         .no_turbo = 0,
161         .turbo_disabled = 0,
162         .max_perf_pct = 100,
163         .max_perf = int_tofp(1),
164         .min_perf_pct = 0,
165         .min_perf = 0,
166         .max_policy_pct = 100,
167         .max_sysfs_pct = 100,
168         .min_policy_pct = 0,
169         .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173                              int deadband, int integral) {
174         pid->setpoint = setpoint;
175         pid->deadband  = deadband;
176         pid->integral  = int_tofp(integral);
177         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197         signed int result;
198         int32_t pterm, dterm, fp_error;
199         int32_t integral_limit;
200
201         fp_error = int_tofp(pid->setpoint) - busy;
202
203         if (abs(fp_error) <= int_tofp(pid->deadband))
204                 return 0;
205
206         pterm = mul_fp(pid->p_gain, fp_error);
207
208         pid->integral += fp_error;
209
210         /*
211          * We limit the integral here so that it will never
212          * get higher than 30.  This prevents it from becoming
213          * too large an input over long periods of time and allows
214          * it to get factored out sooner.
215          *
216          * The value of 30 was chosen through experimentation.
217          */
218         integral_limit = int_tofp(30);
219         if (pid->integral > integral_limit)
220                 pid->integral = integral_limit;
221         if (pid->integral < -integral_limit)
222                 pid->integral = -integral_limit;
223
224         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225         pid->last_err = fp_error;
226
227         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228         result = result + (1 << (FRAC_BITS-1));
229         return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243         unsigned int cpu;
244
245         for_each_online_cpu(cpu) {
246                 if (all_cpu_data[cpu])
247                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248         }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253         u64 misc_en;
254         struct cpudata *cpu;
255
256         cpu = all_cpu_data[0];
257         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258         limits.turbo_disabled =
259                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266         int min, max, cpu;
267         u64 value, freq;
268
269         get_online_cpus();
270
271         for_each_online_cpu(cpu) {
272                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273                 min = PCT_TO_HWP(limits.min_perf_pct);
274                 value &= ~HWP_MIN_PERF(~0L);
275                 value |= HWP_MIN_PERF(min);
276
277                 max = PCT_TO_HWP(limits.max_perf_pct);
278                 if (limits.no_turbo) {
279                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
280                         max = HWP_GUARANTEED_PERF(freq);
281                 }
282
283                 value &= ~HWP_MAX_PERF(~0L);
284                 value |= HWP_MAX_PERF(max);
285                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286         }
287
288         put_online_cpus();
289 }
290
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294         *(u32 *)data = val;
295         intel_pstate_reset_all_pid();
296         return 0;
297 }
298
299 static int pid_param_get(void *data, u64 *val)
300 {
301         *val = *(u32 *)data;
302         return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305
306 struct pid_param {
307         char *name;
308         void *value;
309 };
310
311 static struct pid_param pid_files[] = {
312         {"sample_rate_ms", &pid_params.sample_rate_ms},
313         {"d_gain_pct", &pid_params.d_gain_pct},
314         {"i_gain_pct", &pid_params.i_gain_pct},
315         {"deadband", &pid_params.deadband},
316         {"setpoint", &pid_params.setpoint},
317         {"p_gain_pct", &pid_params.p_gain_pct},
318         {NULL, NULL}
319 };
320
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323         struct dentry *debugfs_parent;
324         int i = 0;
325
326         if (hwp_active)
327                 return;
328         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329         if (IS_ERR_OR_NULL(debugfs_parent))
330                 return;
331         while (pid_files[i].name) {
332                 debugfs_create_file(pid_files[i].name, 0660,
333                                     debugfs_parent, pid_files[i].value,
334                                     &fops_pid_param);
335                 i++;
336         }
337 }
338
339 /************************** debugfs end ************************/
340
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)                                     \
343         static ssize_t show_##file_name                                 \
344         (struct kobject *kobj, struct attribute *attr, char *buf)       \
345         {                                                               \
346                 return sprintf(buf, "%u\n", limits.object);             \
347         }
348
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350                                 struct attribute *attr, char *buf)
351 {
352         struct cpudata *cpu;
353         int total, no_turbo, turbo_pct;
354         uint32_t turbo_fp;
355
356         cpu = all_cpu_data[0];
357
358         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360         turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362         return sprintf(buf, "%u\n", turbo_pct);
363 }
364
365 static ssize_t show_num_pstates(struct kobject *kobj,
366                                 struct attribute *attr, char *buf)
367 {
368         struct cpudata *cpu;
369         int total;
370
371         cpu = all_cpu_data[0];
372         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373         return sprintf(buf, "%u\n", total);
374 }
375
376 static ssize_t show_no_turbo(struct kobject *kobj,
377                              struct attribute *attr, char *buf)
378 {
379         ssize_t ret;
380
381         update_turbo_state();
382         if (limits.turbo_disabled)
383                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384         else
385                 ret = sprintf(buf, "%u\n", limits.no_turbo);
386
387         return ret;
388 }
389
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391                               const char *buf, size_t count)
392 {
393         unsigned int input;
394         int ret;
395
396         ret = sscanf(buf, "%u", &input);
397         if (ret != 1)
398                 return -EINVAL;
399
400         update_turbo_state();
401         if (limits.turbo_disabled) {
402                 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403                 return -EPERM;
404         }
405
406         limits.no_turbo = clamp_t(int, input, 0, 1);
407
408         if (hwp_active)
409                 intel_pstate_hwp_set();
410
411         return count;
412 }
413
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415                                   const char *buf, size_t count)
416 {
417         unsigned int input;
418         int ret;
419
420         ret = sscanf(buf, "%u", &input);
421         if (ret != 1)
422                 return -EINVAL;
423
424         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426         limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
427         limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
428         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
429
430         if (hwp_active)
431                 intel_pstate_hwp_set();
432         return count;
433 }
434
435 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
436                                   const char *buf, size_t count)
437 {
438         unsigned int input;
439         int ret;
440
441         ret = sscanf(buf, "%u", &input);
442         if (ret != 1)
443                 return -EINVAL;
444
445         limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
446         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
447         limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
448         limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
449         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
450
451         if (hwp_active)
452                 intel_pstate_hwp_set();
453         return count;
454 }
455
456 show_one(max_perf_pct, max_perf_pct);
457 show_one(min_perf_pct, min_perf_pct);
458
459 define_one_global_rw(no_turbo);
460 define_one_global_rw(max_perf_pct);
461 define_one_global_rw(min_perf_pct);
462 define_one_global_ro(turbo_pct);
463 define_one_global_ro(num_pstates);
464
465 static struct attribute *intel_pstate_attributes[] = {
466         &no_turbo.attr,
467         &max_perf_pct.attr,
468         &min_perf_pct.attr,
469         &turbo_pct.attr,
470         &num_pstates.attr,
471         NULL
472 };
473
474 static struct attribute_group intel_pstate_attr_group = {
475         .attrs = intel_pstate_attributes,
476 };
477
478 static void __init intel_pstate_sysfs_expose_params(void)
479 {
480         struct kobject *intel_pstate_kobject;
481         int rc;
482
483         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
484                                                 &cpu_subsys.dev_root->kobj);
485         BUG_ON(!intel_pstate_kobject);
486         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
487         BUG_ON(rc);
488 }
489 /************************** sysfs end ************************/
490
491 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
492 {
493         pr_info("intel_pstate: HWP enabled\n");
494
495         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
496 }
497
498 static int byt_get_min_pstate(void)
499 {
500         u64 value;
501
502         rdmsrl(BYT_RATIOS, value);
503         return (value >> 8) & 0x7F;
504 }
505
506 static int byt_get_max_pstate(void)
507 {
508         u64 value;
509
510         rdmsrl(BYT_RATIOS, value);
511         return (value >> 16) & 0x7F;
512 }
513
514 static int byt_get_turbo_pstate(void)
515 {
516         u64 value;
517
518         rdmsrl(BYT_TURBO_RATIOS, value);
519         return value & 0x7F;
520 }
521
522 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
523 {
524         u64 val;
525         int32_t vid_fp;
526         u32 vid;
527
528         val = (u64)pstate << 8;
529         if (limits.no_turbo && !limits.turbo_disabled)
530                 val |= (u64)1 << 32;
531
532         vid_fp = cpudata->vid.min + mul_fp(
533                 int_tofp(pstate - cpudata->pstate.min_pstate),
534                 cpudata->vid.ratio);
535
536         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
537         vid = ceiling_fp(vid_fp);
538
539         if (pstate > cpudata->pstate.max_pstate)
540                 vid = cpudata->vid.turbo;
541
542         val |= vid;
543
544         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
545 }
546
547 #define BYT_BCLK_FREQS 5
548 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
549
550 static int byt_get_scaling(void)
551 {
552         u64 value;
553         int i;
554
555         rdmsrl(MSR_FSB_FREQ, value);
556         i = value & 0x3;
557
558         BUG_ON(i > BYT_BCLK_FREQS);
559
560         return byt_freq_table[i] * 100;
561 }
562
563 static void byt_get_vid(struct cpudata *cpudata)
564 {
565         u64 value;
566
567         rdmsrl(BYT_VIDS, value);
568         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
569         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
570         cpudata->vid.ratio = div_fp(
571                 cpudata->vid.max - cpudata->vid.min,
572                 int_tofp(cpudata->pstate.max_pstate -
573                         cpudata->pstate.min_pstate));
574
575         rdmsrl(BYT_TURBO_VIDS, value);
576         cpudata->vid.turbo = value & 0x7f;
577 }
578
579 static int core_get_min_pstate(void)
580 {
581         u64 value;
582
583         rdmsrl(MSR_PLATFORM_INFO, value);
584         return (value >> 40) & 0xFF;
585 }
586
587 static int core_get_max_pstate(void)
588 {
589         u64 value;
590
591         rdmsrl(MSR_PLATFORM_INFO, value);
592         return (value >> 8) & 0xFF;
593 }
594
595 static int core_get_turbo_pstate(void)
596 {
597         u64 value;
598         int nont, ret;
599
600         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
601         nont = core_get_max_pstate();
602         ret = (value) & 255;
603         if (ret <= nont)
604                 ret = nont;
605         return ret;
606 }
607
608 static inline int core_get_scaling(void)
609 {
610         return 100000;
611 }
612
613 static void core_set_pstate(struct cpudata *cpudata, int pstate)
614 {
615         u64 val;
616
617         val = (u64)pstate << 8;
618         if (limits.no_turbo && !limits.turbo_disabled)
619                 val |= (u64)1 << 32;
620
621         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
622 }
623
624 static int knl_get_turbo_pstate(void)
625 {
626         u64 value;
627         int nont, ret;
628
629         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
630         nont = core_get_max_pstate();
631         ret = (((value) >> 8) & 0xFF);
632         if (ret <= nont)
633                 ret = nont;
634         return ret;
635 }
636
637 static struct cpu_defaults core_params = {
638         .pid_policy = {
639                 .sample_rate_ms = 10,
640                 .deadband = 0,
641                 .setpoint = 97,
642                 .p_gain_pct = 20,
643                 .d_gain_pct = 0,
644                 .i_gain_pct = 0,
645         },
646         .funcs = {
647                 .get_max = core_get_max_pstate,
648                 .get_min = core_get_min_pstate,
649                 .get_turbo = core_get_turbo_pstate,
650                 .get_scaling = core_get_scaling,
651                 .set = core_set_pstate,
652         },
653 };
654
655 static struct cpu_defaults byt_params = {
656         .pid_policy = {
657                 .sample_rate_ms = 10,
658                 .deadband = 0,
659                 .setpoint = 60,
660                 .p_gain_pct = 14,
661                 .d_gain_pct = 0,
662                 .i_gain_pct = 4,
663         },
664         .funcs = {
665                 .get_max = byt_get_max_pstate,
666                 .get_min = byt_get_min_pstate,
667                 .get_turbo = byt_get_turbo_pstate,
668                 .set = byt_set_pstate,
669                 .get_scaling = byt_get_scaling,
670                 .get_vid = byt_get_vid,
671         },
672 };
673
674 static struct cpu_defaults knl_params = {
675         .pid_policy = {
676                 .sample_rate_ms = 10,
677                 .deadband = 0,
678                 .setpoint = 97,
679                 .p_gain_pct = 20,
680                 .d_gain_pct = 0,
681                 .i_gain_pct = 0,
682         },
683         .funcs = {
684                 .get_max = core_get_max_pstate,
685                 .get_min = core_get_min_pstate,
686                 .get_turbo = knl_get_turbo_pstate,
687                 .get_scaling = core_get_scaling,
688                 .set = core_set_pstate,
689         },
690 };
691
692 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
693 {
694         int max_perf = cpu->pstate.turbo_pstate;
695         int max_perf_adj;
696         int min_perf;
697
698         if (limits.no_turbo || limits.turbo_disabled)
699                 max_perf = cpu->pstate.max_pstate;
700
701         /*
702          * performance can be limited by user through sysfs, by cpufreq
703          * policy, or by cpu specific default values determined through
704          * experimentation.
705          */
706         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
707         *max = clamp_t(int, max_perf_adj,
708                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
709
710         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
711         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
712 }
713
714 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
715 {
716         int max_perf, min_perf;
717
718         if (force) {
719                 update_turbo_state();
720
721                 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
722
723                 pstate = clamp_t(int, pstate, min_perf, max_perf);
724
725                 if (pstate == cpu->pstate.current_pstate)
726                         return;
727         }
728         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
729
730         cpu->pstate.current_pstate = pstate;
731
732         pstate_funcs.set(cpu, pstate);
733 }
734
735 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
736 {
737         cpu->pstate.min_pstate = pstate_funcs.get_min();
738         cpu->pstate.max_pstate = pstate_funcs.get_max();
739         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
740         cpu->pstate.scaling = pstate_funcs.get_scaling();
741
742         if (pstate_funcs.get_vid)
743                 pstate_funcs.get_vid(cpu);
744         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
745 }
746
747 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
748 {
749         struct sample *sample = &cpu->sample;
750         int64_t core_pct;
751
752         core_pct = int_tofp(sample->aperf) * int_tofp(100);
753         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
754
755         sample->freq = fp_toint(
756                 mul_fp(int_tofp(
757                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
758                         core_pct));
759
760         sample->core_pct_busy = (int32_t)core_pct;
761 }
762
763 static inline void intel_pstate_sample(struct cpudata *cpu)
764 {
765         u64 aperf, mperf;
766         unsigned long flags;
767         u64 tsc;
768
769         local_irq_save(flags);
770         rdmsrl(MSR_IA32_APERF, aperf);
771         rdmsrl(MSR_IA32_MPERF, mperf);
772         tsc = native_read_tsc();
773         local_irq_restore(flags);
774
775         cpu->last_sample_time = cpu->sample.time;
776         cpu->sample.time = ktime_get();
777         cpu->sample.aperf = aperf;
778         cpu->sample.mperf = mperf;
779         cpu->sample.tsc =  tsc;
780         cpu->sample.aperf -= cpu->prev_aperf;
781         cpu->sample.mperf -= cpu->prev_mperf;
782         cpu->sample.tsc -= cpu->prev_tsc;
783
784         intel_pstate_calc_busy(cpu);
785
786         cpu->prev_aperf = aperf;
787         cpu->prev_mperf = mperf;
788         cpu->prev_tsc = tsc;
789 }
790
791 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
792 {
793         int delay;
794
795         delay = msecs_to_jiffies(50);
796         mod_timer_pinned(&cpu->timer, jiffies + delay);
797 }
798
799 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
800 {
801         int delay;
802
803         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
804         mod_timer_pinned(&cpu->timer, jiffies + delay);
805 }
806
807 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
808 {
809         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
810         s64 duration_us;
811         u32 sample_time;
812
813         /*
814          * core_busy is the ratio of actual performance to max
815          * max_pstate is the max non turbo pstate available
816          * current_pstate was the pstate that was requested during
817          *      the last sample period.
818          *
819          * We normalize core_busy, which was our actual percent
820          * performance to what we requested during the last sample
821          * period. The result will be a percentage of busy at a
822          * specified pstate.
823          */
824         core_busy = cpu->sample.core_pct_busy;
825         max_pstate = int_tofp(cpu->pstate.max_pstate);
826         current_pstate = int_tofp(cpu->pstate.current_pstate);
827         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
828
829         /*
830          * Since we have a deferred timer, it will not fire unless
831          * we are in C0.  So, determine if the actual elapsed time
832          * is significantly greater (3x) than our sample interval.  If it
833          * is, then we were idle for a long enough period of time
834          * to adjust our busyness.
835          */
836         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
837         duration_us = ktime_us_delta(cpu->sample.time,
838                                      cpu->last_sample_time);
839         if (duration_us > sample_time * 3) {
840                 sample_ratio = div_fp(int_tofp(sample_time),
841                                       int_tofp(duration_us));
842                 core_busy = mul_fp(core_busy, sample_ratio);
843         }
844
845         return core_busy;
846 }
847
848 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
849 {
850         int32_t busy_scaled;
851         struct _pid *pid;
852         signed int ctl;
853         int from;
854         struct sample *sample;
855
856         from = cpu->pstate.current_pstate;
857
858         pid = &cpu->pid;
859         busy_scaled = intel_pstate_get_scaled_busy(cpu);
860
861         ctl = pid_calc(pid, busy_scaled);
862
863         /* Negative values of ctl increase the pstate and vice versa */
864         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
865
866         sample = &cpu->sample;
867         trace_pstate_sample(fp_toint(sample->core_pct_busy),
868                 fp_toint(busy_scaled),
869                 from,
870                 cpu->pstate.current_pstate,
871                 sample->mperf,
872                 sample->aperf,
873                 sample->tsc,
874                 sample->freq);
875 }
876
877 static void intel_hwp_timer_func(unsigned long __data)
878 {
879         struct cpudata *cpu = (struct cpudata *) __data;
880
881         intel_pstate_sample(cpu);
882         intel_hwp_set_sample_time(cpu);
883 }
884
885 static void intel_pstate_timer_func(unsigned long __data)
886 {
887         struct cpudata *cpu = (struct cpudata *) __data;
888
889         intel_pstate_sample(cpu);
890
891         intel_pstate_adjust_busy_pstate(cpu);
892
893         intel_pstate_set_sample_time(cpu);
894 }
895
896 #define ICPU(model, policy) \
897         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
898                         (unsigned long)&policy }
899
900 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
901         ICPU(0x2a, core_params),
902         ICPU(0x2d, core_params),
903         ICPU(0x37, byt_params),
904         ICPU(0x3a, core_params),
905         ICPU(0x3c, core_params),
906         ICPU(0x3d, core_params),
907         ICPU(0x3e, core_params),
908         ICPU(0x3f, core_params),
909         ICPU(0x45, core_params),
910         ICPU(0x46, core_params),
911         ICPU(0x47, core_params),
912         ICPU(0x4c, byt_params),
913         ICPU(0x4e, core_params),
914         ICPU(0x4f, core_params),
915         ICPU(0x5e, core_params),
916         ICPU(0x56, core_params),
917         ICPU(0x57, knl_params),
918         {}
919 };
920 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
921
922 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
923         ICPU(0x56, core_params),
924         {}
925 };
926
927 static int intel_pstate_init_cpu(unsigned int cpunum)
928 {
929         struct cpudata *cpu;
930
931         if (!all_cpu_data[cpunum])
932                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
933                                                GFP_KERNEL);
934         if (!all_cpu_data[cpunum])
935                 return -ENOMEM;
936
937         cpu = all_cpu_data[cpunum];
938
939         cpu->cpu = cpunum;
940
941         if (hwp_active)
942                 intel_pstate_hwp_enable(cpu);
943
944         intel_pstate_get_cpu_pstates(cpu);
945
946         init_timer_deferrable(&cpu->timer);
947         cpu->timer.data = (unsigned long)cpu;
948         cpu->timer.expires = jiffies + HZ/100;
949
950         if (!hwp_active)
951                 cpu->timer.function = intel_pstate_timer_func;
952         else
953                 cpu->timer.function = intel_hwp_timer_func;
954
955         intel_pstate_busy_pid_reset(cpu);
956         intel_pstate_sample(cpu);
957
958         add_timer_on(&cpu->timer, cpunum);
959
960         pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
961
962         return 0;
963 }
964
965 static unsigned int intel_pstate_get(unsigned int cpu_num)
966 {
967         struct sample *sample;
968         struct cpudata *cpu;
969
970         cpu = all_cpu_data[cpu_num];
971         if (!cpu)
972                 return 0;
973         sample = &cpu->sample;
974         return sample->freq;
975 }
976
977 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
978 {
979         if (!policy->cpuinfo.max_freq)
980                 return -ENODEV;
981
982         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
983             policy->max >= policy->cpuinfo.max_freq) {
984                 limits.min_policy_pct = 100;
985                 limits.min_perf_pct = 100;
986                 limits.min_perf = int_tofp(1);
987                 limits.max_policy_pct = 100;
988                 limits.max_perf_pct = 100;
989                 limits.max_perf = int_tofp(1);
990                 limits.no_turbo = 0;
991                 return 0;
992         }
993
994         limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
995         limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
996         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
997         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
998
999         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1000         limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
1001         limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1002         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1003         limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
1004
1005         /* Make sure min_perf_pct <= max_perf_pct */
1006         limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
1007
1008         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1009         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1010
1011         if (hwp_active)
1012                 intel_pstate_hwp_set();
1013
1014         return 0;
1015 }
1016
1017 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1018 {
1019         cpufreq_verify_within_cpu_limits(policy);
1020
1021         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1022             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1023                 return -EINVAL;
1024
1025         return 0;
1026 }
1027
1028 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1029 {
1030         int cpu_num = policy->cpu;
1031         struct cpudata *cpu = all_cpu_data[cpu_num];
1032
1033         pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1034
1035         del_timer_sync(&all_cpu_data[cpu_num]->timer);
1036         if (hwp_active)
1037                 return;
1038
1039         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1040 }
1041
1042 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1043 {
1044         struct cpudata *cpu;
1045         int rc;
1046
1047         rc = intel_pstate_init_cpu(policy->cpu);
1048         if (rc)
1049                 return rc;
1050
1051         cpu = all_cpu_data[policy->cpu];
1052
1053         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1054                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1055         else
1056                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1057
1058         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1059         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1060
1061         /* cpuinfo and default policy values */
1062         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1063         policy->cpuinfo.max_freq =
1064                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1065         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1066         cpumask_set_cpu(policy->cpu, policy->cpus);
1067
1068         return 0;
1069 }
1070
1071 static struct cpufreq_driver intel_pstate_driver = {
1072         .flags          = CPUFREQ_CONST_LOOPS,
1073         .verify         = intel_pstate_verify_policy,
1074         .setpolicy      = intel_pstate_set_policy,
1075         .get            = intel_pstate_get,
1076         .init           = intel_pstate_cpu_init,
1077         .stop_cpu       = intel_pstate_stop_cpu,
1078         .name           = "intel_pstate",
1079 };
1080
1081 static int __initdata no_load;
1082 static int __initdata no_hwp;
1083 static int __initdata hwp_only;
1084 static unsigned int force_load;
1085
1086 static int intel_pstate_msrs_not_valid(void)
1087 {
1088         if (!pstate_funcs.get_max() ||
1089             !pstate_funcs.get_min() ||
1090             !pstate_funcs.get_turbo())
1091                 return -ENODEV;
1092
1093         return 0;
1094 }
1095
1096 static void copy_pid_params(struct pstate_adjust_policy *policy)
1097 {
1098         pid_params.sample_rate_ms = policy->sample_rate_ms;
1099         pid_params.p_gain_pct = policy->p_gain_pct;
1100         pid_params.i_gain_pct = policy->i_gain_pct;
1101         pid_params.d_gain_pct = policy->d_gain_pct;
1102         pid_params.deadband = policy->deadband;
1103         pid_params.setpoint = policy->setpoint;
1104 }
1105
1106 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1107 {
1108         pstate_funcs.get_max   = funcs->get_max;
1109         pstate_funcs.get_min   = funcs->get_min;
1110         pstate_funcs.get_turbo = funcs->get_turbo;
1111         pstate_funcs.get_scaling = funcs->get_scaling;
1112         pstate_funcs.set       = funcs->set;
1113         pstate_funcs.get_vid   = funcs->get_vid;
1114 }
1115
1116 #if IS_ENABLED(CONFIG_ACPI)
1117 #include <acpi/processor.h>
1118
1119 static bool intel_pstate_no_acpi_pss(void)
1120 {
1121         int i;
1122
1123         for_each_possible_cpu(i) {
1124                 acpi_status status;
1125                 union acpi_object *pss;
1126                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1127                 struct acpi_processor *pr = per_cpu(processors, i);
1128
1129                 if (!pr)
1130                         continue;
1131
1132                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1133                 if (ACPI_FAILURE(status))
1134                         continue;
1135
1136                 pss = buffer.pointer;
1137                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1138                         kfree(pss);
1139                         return false;
1140                 }
1141
1142                 kfree(pss);
1143         }
1144
1145         return true;
1146 }
1147
1148 static bool intel_pstate_has_acpi_ppc(void)
1149 {
1150         int i;
1151
1152         for_each_possible_cpu(i) {
1153                 struct acpi_processor *pr = per_cpu(processors, i);
1154
1155                 if (!pr)
1156                         continue;
1157                 if (acpi_has_method(pr->handle, "_PPC"))
1158                         return true;
1159         }
1160         return false;
1161 }
1162
1163 enum {
1164         PSS,
1165         PPC,
1166 };
1167
1168 struct hw_vendor_info {
1169         u16  valid;
1170         char oem_id[ACPI_OEM_ID_SIZE];
1171         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1172         int  oem_pwr_table;
1173 };
1174
1175 /* Hardware vendor-specific info that has its own power management modes */
1176 static struct hw_vendor_info vendor_info[] = {
1177         {1, "HP    ", "ProLiant", PSS},
1178         {1, "ORACLE", "X4-2    ", PPC},
1179         {1, "ORACLE", "X4-2L   ", PPC},
1180         {1, "ORACLE", "X4-2B   ", PPC},
1181         {1, "ORACLE", "X3-2    ", PPC},
1182         {1, "ORACLE", "X3-2L   ", PPC},
1183         {1, "ORACLE", "X3-2B   ", PPC},
1184         {1, "ORACLE", "X4470M2 ", PPC},
1185         {1, "ORACLE", "X4270M3 ", PPC},
1186         {1, "ORACLE", "X4270M2 ", PPC},
1187         {1, "ORACLE", "X4170M2 ", PPC},
1188         {1, "ORACLE", "X4170 M3", PPC},
1189         {1, "ORACLE", "X4275 M3", PPC},
1190         {1, "ORACLE", "X6-2    ", PPC},
1191         {1, "ORACLE", "Sudbury ", PPC},
1192         {0, "", ""},
1193 };
1194
1195 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1196 {
1197         struct acpi_table_header hdr;
1198         struct hw_vendor_info *v_info;
1199         const struct x86_cpu_id *id;
1200         u64 misc_pwr;
1201
1202         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1203         if (id) {
1204                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1205                 if ( misc_pwr & (1 << 8))
1206                         return true;
1207         }
1208
1209         if (acpi_disabled ||
1210             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1211                 return false;
1212
1213         for (v_info = vendor_info; v_info->valid; v_info++) {
1214                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1215                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1216                                                 ACPI_OEM_TABLE_ID_SIZE))
1217                         switch (v_info->oem_pwr_table) {
1218                         case PSS:
1219                                 return intel_pstate_no_acpi_pss();
1220                         case PPC:
1221                                 return intel_pstate_has_acpi_ppc() &&
1222                                         (!force_load);
1223                         }
1224         }
1225
1226         return false;
1227 }
1228 #else /* CONFIG_ACPI not enabled */
1229 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1230 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1231 #endif /* CONFIG_ACPI */
1232
1233 static int __init intel_pstate_init(void)
1234 {
1235         int cpu, rc = 0;
1236         const struct x86_cpu_id *id;
1237         struct cpu_defaults *cpu_def;
1238
1239         if (no_load)
1240                 return -ENODEV;
1241
1242         id = x86_match_cpu(intel_pstate_cpu_ids);
1243         if (!id)
1244                 return -ENODEV;
1245
1246         /*
1247          * The Intel pstate driver will be ignored if the platform
1248          * firmware has its own power management modes.
1249          */
1250         if (intel_pstate_platform_pwr_mgmt_exists())
1251                 return -ENODEV;
1252
1253         cpu_def = (struct cpu_defaults *)id->driver_data;
1254
1255         copy_pid_params(&cpu_def->pid_policy);
1256         copy_cpu_funcs(&cpu_def->funcs);
1257
1258         if (intel_pstate_msrs_not_valid())
1259                 return -ENODEV;
1260
1261         pr_info("Intel P-state driver initializing.\n");
1262
1263         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1264         if (!all_cpu_data)
1265                 return -ENOMEM;
1266
1267         if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1268                 hwp_active++;
1269
1270         if (!hwp_active && hwp_only)
1271                 goto out;
1272
1273         rc = cpufreq_register_driver(&intel_pstate_driver);
1274         if (rc)
1275                 goto out;
1276
1277         intel_pstate_debug_expose_params();
1278         intel_pstate_sysfs_expose_params();
1279
1280         return rc;
1281 out:
1282         get_online_cpus();
1283         for_each_online_cpu(cpu) {
1284                 if (all_cpu_data[cpu]) {
1285                         del_timer_sync(&all_cpu_data[cpu]->timer);
1286                         kfree(all_cpu_data[cpu]);
1287                 }
1288         }
1289
1290         put_online_cpus();
1291         vfree(all_cpu_data);
1292         return -ENODEV;
1293 }
1294 device_initcall(intel_pstate_init);
1295
1296 static int __init intel_pstate_setup(char *str)
1297 {
1298         if (!str)
1299                 return -EINVAL;
1300
1301         if (!strcmp(str, "disable"))
1302                 no_load = 1;
1303         if (!strcmp(str, "no_hwp"))
1304                 no_hwp = 1;
1305         if (!strcmp(str, "force"))
1306                 force_load = 1;
1307         if (!strcmp(str, "hwp_only"))
1308                 hwp_only = 1;
1309         return 0;
1310 }
1311 early_param("intel_pstate", intel_pstate_setup);
1312
1313 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1314 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1315 MODULE_LICENSE("GPL");