ccf6ce7e598398824072f26130f6a042efec56db
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         policy = cdbs->cur_policy;
64
65         /* Get Absolute Load */
66         for_each_cpu(j, policy->cpus) {
67                 struct cpu_dbs_common_info *j_cdbs;
68                 u64 cur_wall_time, cur_idle_time;
69                 unsigned int idle_time, wall_time;
70                 unsigned int load;
71                 int io_busy = 0;
72
73                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
74
75                 /*
76                  * For the purpose of ondemand, waiting for disk IO is
77                  * an indication that you're performance critical, and
78                  * not that the system is actually idle. So do not add
79                  * the iowait time to the cpu idle time.
80                  */
81                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
82                         io_busy = od_tuners->io_is_busy;
83                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
84
85                 wall_time = (unsigned int)
86                         (cur_wall_time - j_cdbs->prev_cpu_wall);
87                 j_cdbs->prev_cpu_wall = cur_wall_time;
88
89                 idle_time = (unsigned int)
90                         (cur_idle_time - j_cdbs->prev_cpu_idle);
91                 j_cdbs->prev_cpu_idle = cur_idle_time;
92
93                 if (ignore_nice) {
94                         u64 cur_nice;
95                         unsigned long cur_nice_jiffies;
96
97                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
98                                          cdbs->prev_cpu_nice;
99                         /*
100                          * Assumption: nice time between sampling periods will
101                          * be less than 2^32 jiffies for 32 bit sys
102                          */
103                         cur_nice_jiffies = (unsigned long)
104                                         cputime64_to_jiffies64(cur_nice);
105
106                         cdbs->prev_cpu_nice =
107                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
108                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
109                 }
110
111                 if (unlikely(!wall_time || wall_time < idle_time))
112                         continue;
113
114                 /*
115                  * If the CPU had gone completely idle, and a task just woke up
116                  * on this CPU now, it would be unfair to calculate 'load' the
117                  * usual way for this elapsed time-window, because it will show
118                  * near-zero load, irrespective of how CPU intensive that task
119                  * actually is. This is undesirable for latency-sensitive bursty
120                  * workloads.
121                  *
122                  * To avoid this, we reuse the 'load' from the previous
123                  * time-window and give this task a chance to start with a
124                  * reasonably high CPU frequency. (However, we shouldn't over-do
125                  * this copy, lest we get stuck at a high load (high frequency)
126                  * for too long, even when the current system load has actually
127                  * dropped down. So we perform the copy only once, upon the
128                  * first wake-up from idle.)
129                  *
130                  * Detecting this situation is easy: the governor's deferrable
131                  * timer would not have fired during CPU-idle periods. Hence
132                  * an unusually large 'wall_time' (as compared to the sampling
133                  * rate) indicates this scenario.
134                  *
135                  * prev_load can be zero in two cases and we must recalculate it
136                  * for both cases:
137                  * - during long idle intervals
138                  * - explicitly set to zero
139                  */
140                 if (unlikely(wall_time > (2 * sampling_rate) &&
141                              j_cdbs->prev_load)) {
142                         load = j_cdbs->prev_load;
143
144                         /*
145                          * Perform a destructive copy, to ensure that we copy
146                          * the previous load only once, upon the first wake-up
147                          * from idle.
148                          */
149                         j_cdbs->prev_load = 0;
150                 } else {
151                         load = 100 * (wall_time - idle_time) / wall_time;
152                         j_cdbs->prev_load = load;
153                 }
154
155                 if (load > max_load)
156                         max_load = load;
157         }
158
159         dbs_data->cdata->gov_check_cpu(cpu, max_load);
160 }
161 EXPORT_SYMBOL_GPL(dbs_check_cpu);
162
163 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
164                 unsigned int delay)
165 {
166         struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
167
168         mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
169 }
170
171 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
172                 unsigned int delay, bool all_cpus)
173 {
174         int i;
175
176         mutex_lock(&cpufreq_governor_lock);
177         if (!policy->governor_enabled)
178                 goto out_unlock;
179
180         if (!all_cpus) {
181                 /*
182                  * Use raw_smp_processor_id() to avoid preemptible warnings.
183                  * We know that this is only called with all_cpus == false from
184                  * works that have been queued with *_work_on() functions and
185                  * those works are canceled during CPU_DOWN_PREPARE so they
186                  * can't possibly run on any other CPU.
187                  */
188                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
189         } else {
190                 for_each_cpu(i, policy->cpus)
191                         __gov_queue_work(i, dbs_data, delay);
192         }
193
194 out_unlock:
195         mutex_unlock(&cpufreq_governor_lock);
196 }
197 EXPORT_SYMBOL_GPL(gov_queue_work);
198
199 static inline void gov_cancel_work(struct dbs_data *dbs_data,
200                 struct cpufreq_policy *policy)
201 {
202         struct cpu_dbs_common_info *cdbs;
203         int i;
204
205         for_each_cpu(i, policy->cpus) {
206                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
207                 cancel_delayed_work_sync(&cdbs->work);
208         }
209 }
210
211 /* Will return if we need to evaluate cpu load again or not */
212 bool need_load_eval(struct cpu_dbs_common_info *cdbs,
213                 unsigned int sampling_rate)
214 {
215         if (policy_is_shared(cdbs->cur_policy)) {
216                 ktime_t time_now = ktime_get();
217                 s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
218
219                 /* Do nothing if we recently have sampled */
220                 if (delta_us < (s64)(sampling_rate / 2))
221                         return false;
222                 else
223                         cdbs->time_stamp = time_now;
224         }
225
226         return true;
227 }
228 EXPORT_SYMBOL_GPL(need_load_eval);
229
230 static void set_sampling_rate(struct dbs_data *dbs_data,
231                 unsigned int sampling_rate)
232 {
233         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
234                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
235                 cs_tuners->sampling_rate = sampling_rate;
236         } else {
237                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
238                 od_tuners->sampling_rate = sampling_rate;
239         }
240 }
241
242 static int cpufreq_governor_init(struct cpufreq_policy *policy,
243                                  struct dbs_data *dbs_data,
244                                  struct common_dbs_data *cdata)
245 {
246         unsigned int latency;
247         int ret;
248
249         if (dbs_data) {
250                 if (WARN_ON(have_governor_per_policy()))
251                         return -EINVAL;
252                 dbs_data->usage_count++;
253                 policy->governor_data = dbs_data;
254                 return 0;
255         }
256
257         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
258         if (!dbs_data)
259                 return -ENOMEM;
260
261         dbs_data->cdata = cdata;
262         dbs_data->usage_count = 1;
263
264         ret = cdata->init(dbs_data, !policy->governor->initialized);
265         if (ret)
266                 goto free_dbs_data;
267
268         /* policy latency is in ns. Convert it to us first */
269         latency = policy->cpuinfo.transition_latency / 1000;
270         if (latency == 0)
271                 latency = 1;
272
273         /* Bring kernel and HW constraints together */
274         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
275                                           MIN_LATENCY_MULTIPLIER * latency);
276         set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
277                                         latency * LATENCY_MULTIPLIER));
278
279         if (!have_governor_per_policy()) {
280                 if (WARN_ON(cpufreq_get_global_kobject())) {
281                         ret = -EINVAL;
282                         goto cdata_exit;
283                 }
284                 cdata->gdbs_data = dbs_data;
285         }
286
287         ret = sysfs_create_group(get_governor_parent_kobj(policy),
288                                  get_sysfs_attr(dbs_data));
289         if (ret)
290                 goto put_kobj;
291
292         policy->governor_data = dbs_data;
293
294         return 0;
295
296 put_kobj:
297         if (!have_governor_per_policy()) {
298                 cdata->gdbs_data = NULL;
299                 cpufreq_put_global_kobject();
300         }
301 cdata_exit:
302         cdata->exit(dbs_data, !policy->governor->initialized);
303 free_dbs_data:
304         kfree(dbs_data);
305         return ret;
306 }
307
308 static void cpufreq_governor_exit(struct cpufreq_policy *policy,
309                                   struct dbs_data *dbs_data)
310 {
311         struct common_dbs_data *cdata = dbs_data->cdata;
312
313         policy->governor_data = NULL;
314         if (!--dbs_data->usage_count) {
315                 sysfs_remove_group(get_governor_parent_kobj(policy),
316                                    get_sysfs_attr(dbs_data));
317
318                 if (!have_governor_per_policy()) {
319                         cdata->gdbs_data = NULL;
320                         cpufreq_put_global_kobject();
321                 }
322
323                 cdata->exit(dbs_data, policy->governor->initialized == 1);
324                 kfree(dbs_data);
325         }
326 }
327
328 static int cpufreq_governor_start(struct cpufreq_policy *policy,
329                                   struct dbs_data *dbs_data)
330 {
331         struct common_dbs_data *cdata = dbs_data->cdata;
332         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
333         struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
334         int io_busy = 0;
335
336         if (!policy->cur)
337                 return -EINVAL;
338
339         if (cdata->governor == GOV_CONSERVATIVE) {
340                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
341
342                 sampling_rate = cs_tuners->sampling_rate;
343                 ignore_nice = cs_tuners->ignore_nice_load;
344         } else {
345                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
346
347                 sampling_rate = od_tuners->sampling_rate;
348                 ignore_nice = od_tuners->ignore_nice_load;
349                 io_busy = od_tuners->io_is_busy;
350         }
351
352         mutex_lock(&dbs_data->mutex);
353
354         for_each_cpu(j, policy->cpus) {
355                 struct cpu_dbs_common_info *j_cdbs = cdata->get_cpu_cdbs(j);
356                 unsigned int prev_load;
357
358                 j_cdbs->cpu = j;
359                 j_cdbs->cur_policy = policy;
360                 j_cdbs->prev_cpu_idle =
361                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
362
363                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
364                                             j_cdbs->prev_cpu_idle);
365                 j_cdbs->prev_load = 100 * prev_load /
366                                     (unsigned int)j_cdbs->prev_cpu_wall;
367
368                 if (ignore_nice)
369                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
370
371                 mutex_init(&j_cdbs->timer_mutex);
372                 INIT_DEFERRABLE_WORK(&j_cdbs->work, cdata->gov_dbs_timer);
373         }
374
375         if (cdata->governor == GOV_CONSERVATIVE) {
376                 struct cs_cpu_dbs_info_s *cs_dbs_info =
377                         cdata->get_cpu_dbs_info_s(cpu);
378
379                 cs_dbs_info->down_skip = 0;
380                 cs_dbs_info->enable = 1;
381                 cs_dbs_info->requested_freq = policy->cur;
382         } else {
383                 struct od_ops *od_ops = cdata->gov_ops;
384                 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
385
386                 od_dbs_info->rate_mult = 1;
387                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
388                 od_ops->powersave_bias_init_cpu(cpu);
389         }
390
391         mutex_unlock(&dbs_data->mutex);
392
393         /* Initiate timer time stamp */
394         cpu_cdbs->time_stamp = ktime_get();
395
396         gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
397                        true);
398         return 0;
399 }
400
401 static void cpufreq_governor_stop(struct cpufreq_policy *policy,
402                                   struct dbs_data *dbs_data)
403 {
404         struct common_dbs_data *cdata = dbs_data->cdata;
405         unsigned int cpu = policy->cpu;
406         struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
407
408         if (cdata->governor == GOV_CONSERVATIVE) {
409                 struct cs_cpu_dbs_info_s *cs_dbs_info =
410                         cdata->get_cpu_dbs_info_s(cpu);
411
412                 cs_dbs_info->enable = 0;
413         }
414
415         gov_cancel_work(dbs_data, policy);
416
417         mutex_lock(&dbs_data->mutex);
418         mutex_destroy(&cpu_cdbs->timer_mutex);
419         cpu_cdbs->cur_policy = NULL;
420         mutex_unlock(&dbs_data->mutex);
421 }
422
423 static void cpufreq_governor_limits(struct cpufreq_policy *policy,
424                                     struct dbs_data *dbs_data)
425 {
426         struct common_dbs_data *cdata = dbs_data->cdata;
427         unsigned int cpu = policy->cpu;
428         struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
429
430         mutex_lock(&dbs_data->mutex);
431         if (!cpu_cdbs->cur_policy) {
432                 mutex_unlock(&dbs_data->mutex);
433                 return;
434         }
435
436         mutex_lock(&cpu_cdbs->timer_mutex);
437         if (policy->max < cpu_cdbs->cur_policy->cur)
438                 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->max,
439                                         CPUFREQ_RELATION_H);
440         else if (policy->min > cpu_cdbs->cur_policy->cur)
441                 __cpufreq_driver_target(cpu_cdbs->cur_policy, policy->min,
442                                         CPUFREQ_RELATION_L);
443         dbs_check_cpu(dbs_data, cpu);
444         mutex_unlock(&cpu_cdbs->timer_mutex);
445
446         mutex_unlock(&dbs_data->mutex);
447 }
448
449 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
450                          struct common_dbs_data *cdata, unsigned int event)
451 {
452         struct dbs_data *dbs_data;
453         int ret = 0;
454
455         if (have_governor_per_policy())
456                 dbs_data = policy->governor_data;
457         else
458                 dbs_data = cdata->gdbs_data;
459
460         WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT));
461
462         switch (event) {
463         case CPUFREQ_GOV_POLICY_INIT:
464                 ret = cpufreq_governor_init(policy, dbs_data, cdata);
465                 break;
466         case CPUFREQ_GOV_POLICY_EXIT:
467                 cpufreq_governor_exit(policy, dbs_data);
468                 break;
469         case CPUFREQ_GOV_START:
470                 ret = cpufreq_governor_start(policy, dbs_data);
471                 break;
472         case CPUFREQ_GOV_STOP:
473                 cpufreq_governor_stop(policy, dbs_data);
474                 break;
475         case CPUFREQ_GOV_LIMITS:
476                 cpufreq_governor_limits(policy, dbs_data);
477                 break;
478         }
479
480         return ret;
481 }
482 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);