crypto: ux500 - Add driver for HASH hardware
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8  *      Added handling for CPU hotplug
9  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10  *      Fix handling for CPU hotplug -- affected CPUs
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31 #include <linux/syscore_ops.h>
32
33 #include <trace/events/power.h>
34
35 /**
36  * The "cpufreq driver" - the arch- or hardware-dependent low
37  * level driver of CPUFreq support, and its spinlock. This lock
38  * also protects the cpufreq_cpu_data array.
39  */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50  * all cpufreq/hotplug/workqueue/etc related lock issues.
51  *
52  * The rules for this semaphore:
53  * - Any routine that wants to read from the policy structure will
54  *   do a down_read on this semaphore.
55  * - Any routine that will write to the policy structure and/or may take away
56  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
57  *   mode before doing so.
58  *
59  * Additional rules:
60  * - All holders of the lock should check to make sure that the CPU they
61  *   are concerned with are online after they get the lock.
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  * - Lock should not be held across
65  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66  */
67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70 #define lock_policy_rwsem(mode, cpu)                                    \
71 static int lock_policy_rwsem_##mode                                     \
72 (int cpu)                                                               \
73 {                                                                       \
74         int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);              \
75         BUG_ON(policy_cpu == -1);                                       \
76         down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));            \
77         if (unlikely(!cpu_online(cpu))) {                               \
78                 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu));      \
79                 return -1;                                              \
80         }                                                               \
81                                                                         \
82         return 0;                                                       \
83 }
84
85 lock_policy_rwsem(read, cpu);
86
87 lock_policy_rwsem(write, cpu);
88
89 static void unlock_policy_rwsem_read(int cpu)
90 {
91         int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92         BUG_ON(policy_cpu == -1);
93         up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95
96 static void unlock_policy_rwsem_write(int cpu)
97 {
98         int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99         BUG_ON(policy_cpu == -1);
100         up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
101 }
102
103
104 /* internal prototypes */
105 static int __cpufreq_governor(struct cpufreq_policy *policy,
106                 unsigned int event);
107 static unsigned int __cpufreq_get(unsigned int cpu);
108 static void handle_update(struct work_struct *work);
109
110 /**
111  * Two notifier lists: the "policy" list is involved in the
112  * validation process for a new CPU frequency policy; the
113  * "transition" list for kernel code that needs to handle
114  * changes to devices when the CPU clock speed changes.
115  * The mutex locks both lists.
116  */
117 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118 static struct srcu_notifier_head cpufreq_transition_notifier_list;
119
120 static bool init_cpufreq_transition_notifier_list_called;
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124         init_cpufreq_transition_notifier_list_called = true;
125         return 0;
126 }
127 pure_initcall(init_cpufreq_transition_notifier_list);
128
129 static LIST_HEAD(cpufreq_governor_list);
130 static DEFINE_MUTEX(cpufreq_governor_mutex);
131
132 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
133 {
134         struct cpufreq_policy *data;
135         unsigned long flags;
136
137         if (cpu >= nr_cpu_ids)
138                 goto err_out;
139
140         /* get the cpufreq driver */
141         spin_lock_irqsave(&cpufreq_driver_lock, flags);
142
143         if (!cpufreq_driver)
144                 goto err_out_unlock;
145
146         if (!try_module_get(cpufreq_driver->owner))
147                 goto err_out_unlock;
148
149
150         /* get the CPU */
151         data = per_cpu(cpufreq_cpu_data, cpu);
152
153         if (!data)
154                 goto err_out_put_module;
155
156         if (!kobject_get(&data->kobj))
157                 goto err_out_put_module;
158
159         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160         return data;
161
162 err_out_put_module:
163         module_put(cpufreq_driver->owner);
164 err_out_unlock:
165         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166 err_out:
167         return NULL;
168 }
169 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
170
171
172 void cpufreq_cpu_put(struct cpufreq_policy *data)
173 {
174         kobject_put(&data->kobj);
175         module_put(cpufreq_driver->owner);
176 }
177 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
178
179
180 /*********************************************************************
181  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
182  *********************************************************************/
183
184 /**
185  * adjust_jiffies - adjust the system "loops_per_jiffy"
186  *
187  * This function alters the system "loops_per_jiffy" for the clock
188  * speed change. Note that loops_per_jiffy cannot be updated on SMP
189  * systems as each CPU might be scaled differently. So, use the arch
190  * per-CPU loops_per_jiffy value wherever possible.
191  */
192 #ifndef CONFIG_SMP
193 static unsigned long l_p_j_ref;
194 static unsigned int  l_p_j_ref_freq;
195
196 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
197 {
198         if (ci->flags & CPUFREQ_CONST_LOOPS)
199                 return;
200
201         if (!l_p_j_ref_freq) {
202                 l_p_j_ref = loops_per_jiffy;
203                 l_p_j_ref_freq = ci->old;
204                 pr_debug("saving %lu as reference value for loops_per_jiffy; "
205                         "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
206         }
207         if ((val == CPUFREQ_POSTCHANGE  && ci->old != ci->new) ||
208             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
209                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
210                                                                 ci->new);
211                 pr_debug("scaling loops_per_jiffy to %lu "
212                         "for frequency %u kHz\n", loops_per_jiffy, ci->new);
213         }
214 }
215 #else
216 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
217 {
218         return;
219 }
220 #endif
221
222
223 /**
224  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
225  * on frequency transition.
226  *
227  * This function calls the transition notifiers and the "adjust_jiffies"
228  * function. It is called twice on all CPU frequency changes that have
229  * external effects.
230  */
231 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
232 {
233         struct cpufreq_policy *policy;
234
235         BUG_ON(irqs_disabled());
236
237         freqs->flags = cpufreq_driver->flags;
238         pr_debug("notification %u of frequency transition to %u kHz\n",
239                 state, freqs->new);
240
241         policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
242         switch (state) {
243
244         case CPUFREQ_PRECHANGE:
245                 /* detect if the driver reported a value as "old frequency"
246                  * which is not equal to what the cpufreq core thinks is
247                  * "old frequency".
248                  */
249                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
250                         if ((policy) && (policy->cpu == freqs->cpu) &&
251                             (policy->cur) && (policy->cur != freqs->old)) {
252                                 pr_debug("Warning: CPU frequency is"
253                                         " %u, cpufreq assumed %u kHz.\n",
254                                         freqs->old, policy->cur);
255                                 freqs->old = policy->cur;
256                         }
257                 }
258                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
259                                 CPUFREQ_PRECHANGE, freqs);
260                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
261                 break;
262
263         case CPUFREQ_POSTCHANGE:
264                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
265                 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
266                         (unsigned long)freqs->cpu);
267                 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
268                 trace_cpu_frequency(freqs->new, freqs->cpu);
269                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
270                                 CPUFREQ_POSTCHANGE, freqs);
271                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
272                         policy->cur = freqs->new;
273                 break;
274         }
275 }
276 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
277
278
279
280 /*********************************************************************
281  *                          SYSFS INTERFACE                          *
282  *********************************************************************/
283
284 static struct cpufreq_governor *__find_governor(const char *str_governor)
285 {
286         struct cpufreq_governor *t;
287
288         list_for_each_entry(t, &cpufreq_governor_list, governor_list)
289                 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
290                         return t;
291
292         return NULL;
293 }
294
295 /**
296  * cpufreq_parse_governor - parse a governor string
297  */
298 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
299                                 struct cpufreq_governor **governor)
300 {
301         int err = -EINVAL;
302
303         if (!cpufreq_driver)
304                 goto out;
305
306         if (cpufreq_driver->setpolicy) {
307                 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
308                         *policy = CPUFREQ_POLICY_PERFORMANCE;
309                         err = 0;
310                 } else if (!strnicmp(str_governor, "powersave",
311                                                 CPUFREQ_NAME_LEN)) {
312                         *policy = CPUFREQ_POLICY_POWERSAVE;
313                         err = 0;
314                 }
315         } else if (cpufreq_driver->target) {
316                 struct cpufreq_governor *t;
317
318                 mutex_lock(&cpufreq_governor_mutex);
319
320                 t = __find_governor(str_governor);
321
322                 if (t == NULL) {
323                         int ret;
324
325                         mutex_unlock(&cpufreq_governor_mutex);
326                         ret = request_module("cpufreq_%s", str_governor);
327                         mutex_lock(&cpufreq_governor_mutex);
328
329                         if (ret == 0)
330                                 t = __find_governor(str_governor);
331                 }
332
333                 if (t != NULL) {
334                         *governor = t;
335                         err = 0;
336                 }
337
338                 mutex_unlock(&cpufreq_governor_mutex);
339         }
340 out:
341         return err;
342 }
343
344
345 /**
346  * cpufreq_per_cpu_attr_read() / show_##file_name() -
347  * print out cpufreq information
348  *
349  * Write out information from cpufreq_driver->policy[cpu]; object must be
350  * "unsigned int".
351  */
352
353 #define show_one(file_name, object)                     \
354 static ssize_t show_##file_name                         \
355 (struct cpufreq_policy *policy, char *buf)              \
356 {                                                       \
357         return sprintf(buf, "%u\n", policy->object);    \
358 }
359
360 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
361 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
362 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
363 show_one(scaling_min_freq, min);
364 show_one(scaling_max_freq, max);
365 show_one(scaling_cur_freq, cur);
366
367 static int __cpufreq_set_policy(struct cpufreq_policy *data,
368                                 struct cpufreq_policy *policy);
369
370 /**
371  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
372  */
373 #define store_one(file_name, object)                    \
374 static ssize_t store_##file_name                                        \
375 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
376 {                                                                       \
377         unsigned int ret = -EINVAL;                                     \
378         struct cpufreq_policy new_policy;                               \
379                                                                         \
380         ret = cpufreq_get_policy(&new_policy, policy->cpu);             \
381         if (ret)                                                        \
382                 return -EINVAL;                                         \
383                                                                         \
384         ret = sscanf(buf, "%u", &new_policy.object);                    \
385         if (ret != 1)                                                   \
386                 return -EINVAL;                                         \
387                                                                         \
388         ret = __cpufreq_set_policy(policy, &new_policy);                \
389         policy->user_policy.object = policy->object;                    \
390                                                                         \
391         return ret ? ret : count;                                       \
392 }
393
394 store_one(scaling_min_freq, min);
395 store_one(scaling_max_freq, max);
396
397 /**
398  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
399  */
400 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
401                                         char *buf)
402 {
403         unsigned int cur_freq = __cpufreq_get(policy->cpu);
404         if (!cur_freq)
405                 return sprintf(buf, "<unknown>");
406         return sprintf(buf, "%u\n", cur_freq);
407 }
408
409
410 /**
411  * show_scaling_governor - show the current policy for the specified CPU
412  */
413 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
414 {
415         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
416                 return sprintf(buf, "powersave\n");
417         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
418                 return sprintf(buf, "performance\n");
419         else if (policy->governor)
420                 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
421                                 policy->governor->name);
422         return -EINVAL;
423 }
424
425
426 /**
427  * store_scaling_governor - store policy for the specified CPU
428  */
429 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
430                                         const char *buf, size_t count)
431 {
432         unsigned int ret = -EINVAL;
433         char    str_governor[16];
434         struct cpufreq_policy new_policy;
435
436         ret = cpufreq_get_policy(&new_policy, policy->cpu);
437         if (ret)
438                 return ret;
439
440         ret = sscanf(buf, "%15s", str_governor);
441         if (ret != 1)
442                 return -EINVAL;
443
444         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
445                                                 &new_policy.governor))
446                 return -EINVAL;
447
448         /* Do not use cpufreq_set_policy here or the user_policy.max
449            will be wrongly overridden */
450         ret = __cpufreq_set_policy(policy, &new_policy);
451
452         policy->user_policy.policy = policy->policy;
453         policy->user_policy.governor = policy->governor;
454
455         if (ret)
456                 return ret;
457         else
458                 return count;
459 }
460
461 /**
462  * show_scaling_driver - show the cpufreq driver currently loaded
463  */
464 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
465 {
466         return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
467 }
468
469 /**
470  * show_scaling_available_governors - show the available CPUfreq governors
471  */
472 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
473                                                 char *buf)
474 {
475         ssize_t i = 0;
476         struct cpufreq_governor *t;
477
478         if (!cpufreq_driver->target) {
479                 i += sprintf(buf, "performance powersave");
480                 goto out;
481         }
482
483         list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
484                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
485                     - (CPUFREQ_NAME_LEN + 2)))
486                         goto out;
487                 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
488         }
489 out:
490         i += sprintf(&buf[i], "\n");
491         return i;
492 }
493
494 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
495 {
496         ssize_t i = 0;
497         unsigned int cpu;
498
499         for_each_cpu(cpu, mask) {
500                 if (i)
501                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
502                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
503                 if (i >= (PAGE_SIZE - 5))
504                         break;
505         }
506         i += sprintf(&buf[i], "\n");
507         return i;
508 }
509
510 /**
511  * show_related_cpus - show the CPUs affected by each transition even if
512  * hw coordination is in use
513  */
514 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
515 {
516         if (cpumask_empty(policy->related_cpus))
517                 return show_cpus(policy->cpus, buf);
518         return show_cpus(policy->related_cpus, buf);
519 }
520
521 /**
522  * show_affected_cpus - show the CPUs affected by each transition
523  */
524 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
525 {
526         return show_cpus(policy->cpus, buf);
527 }
528
529 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
530                                         const char *buf, size_t count)
531 {
532         unsigned int freq = 0;
533         unsigned int ret;
534
535         if (!policy->governor || !policy->governor->store_setspeed)
536                 return -EINVAL;
537
538         ret = sscanf(buf, "%u", &freq);
539         if (ret != 1)
540                 return -EINVAL;
541
542         policy->governor->store_setspeed(policy, freq);
543
544         return count;
545 }
546
547 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
548 {
549         if (!policy->governor || !policy->governor->show_setspeed)
550                 return sprintf(buf, "<unsupported>\n");
551
552         return policy->governor->show_setspeed(policy, buf);
553 }
554
555 /**
556  * show_scaling_driver - show the current cpufreq HW/BIOS limitation
557  */
558 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
559 {
560         unsigned int limit;
561         int ret;
562         if (cpufreq_driver->bios_limit) {
563                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
564                 if (!ret)
565                         return sprintf(buf, "%u\n", limit);
566         }
567         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
568 }
569
570 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
571 cpufreq_freq_attr_ro(cpuinfo_min_freq);
572 cpufreq_freq_attr_ro(cpuinfo_max_freq);
573 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
574 cpufreq_freq_attr_ro(scaling_available_governors);
575 cpufreq_freq_attr_ro(scaling_driver);
576 cpufreq_freq_attr_ro(scaling_cur_freq);
577 cpufreq_freq_attr_ro(bios_limit);
578 cpufreq_freq_attr_ro(related_cpus);
579 cpufreq_freq_attr_ro(affected_cpus);
580 cpufreq_freq_attr_rw(scaling_min_freq);
581 cpufreq_freq_attr_rw(scaling_max_freq);
582 cpufreq_freq_attr_rw(scaling_governor);
583 cpufreq_freq_attr_rw(scaling_setspeed);
584
585 static struct attribute *default_attrs[] = {
586         &cpuinfo_min_freq.attr,
587         &cpuinfo_max_freq.attr,
588         &cpuinfo_transition_latency.attr,
589         &scaling_min_freq.attr,
590         &scaling_max_freq.attr,
591         &affected_cpus.attr,
592         &related_cpus.attr,
593         &scaling_governor.attr,
594         &scaling_driver.attr,
595         &scaling_available_governors.attr,
596         &scaling_setspeed.attr,
597         NULL
598 };
599
600 struct kobject *cpufreq_global_kobject;
601 EXPORT_SYMBOL(cpufreq_global_kobject);
602
603 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
604 #define to_attr(a) container_of(a, struct freq_attr, attr)
605
606 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
607 {
608         struct cpufreq_policy *policy = to_policy(kobj);
609         struct freq_attr *fattr = to_attr(attr);
610         ssize_t ret = -EINVAL;
611         policy = cpufreq_cpu_get(policy->cpu);
612         if (!policy)
613                 goto no_policy;
614
615         if (lock_policy_rwsem_read(policy->cpu) < 0)
616                 goto fail;
617
618         if (fattr->show)
619                 ret = fattr->show(policy, buf);
620         else
621                 ret = -EIO;
622
623         unlock_policy_rwsem_read(policy->cpu);
624 fail:
625         cpufreq_cpu_put(policy);
626 no_policy:
627         return ret;
628 }
629
630 static ssize_t store(struct kobject *kobj, struct attribute *attr,
631                      const char *buf, size_t count)
632 {
633         struct cpufreq_policy *policy = to_policy(kobj);
634         struct freq_attr *fattr = to_attr(attr);
635         ssize_t ret = -EINVAL;
636         policy = cpufreq_cpu_get(policy->cpu);
637         if (!policy)
638                 goto no_policy;
639
640         if (lock_policy_rwsem_write(policy->cpu) < 0)
641                 goto fail;
642
643         if (fattr->store)
644                 ret = fattr->store(policy, buf, count);
645         else
646                 ret = -EIO;
647
648         unlock_policy_rwsem_write(policy->cpu);
649 fail:
650         cpufreq_cpu_put(policy);
651 no_policy:
652         return ret;
653 }
654
655 static void cpufreq_sysfs_release(struct kobject *kobj)
656 {
657         struct cpufreq_policy *policy = to_policy(kobj);
658         pr_debug("last reference is dropped\n");
659         complete(&policy->kobj_unregister);
660 }
661
662 static const struct sysfs_ops sysfs_ops = {
663         .show   = show,
664         .store  = store,
665 };
666
667 static struct kobj_type ktype_cpufreq = {
668         .sysfs_ops      = &sysfs_ops,
669         .default_attrs  = default_attrs,
670         .release        = cpufreq_sysfs_release,
671 };
672
673 /*
674  * Returns:
675  *   Negative: Failure
676  *   0:        Success
677  *   Positive: When we have a managed CPU and the sysfs got symlinked
678  */
679 static int cpufreq_add_dev_policy(unsigned int cpu,
680                                   struct cpufreq_policy *policy,
681                                   struct device *dev)
682 {
683         int ret = 0;
684 #ifdef CONFIG_SMP
685         unsigned long flags;
686         unsigned int j;
687 #ifdef CONFIG_HOTPLUG_CPU
688         struct cpufreq_governor *gov;
689
690         gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
691         if (gov) {
692                 policy->governor = gov;
693                 pr_debug("Restoring governor %s for cpu %d\n",
694                        policy->governor->name, cpu);
695         }
696 #endif
697
698         for_each_cpu(j, policy->cpus) {
699                 struct cpufreq_policy *managed_policy;
700
701                 if (cpu == j)
702                         continue;
703
704                 /* Check for existing affected CPUs.
705                  * They may not be aware of it due to CPU Hotplug.
706                  * cpufreq_cpu_put is called when the device is removed
707                  * in __cpufreq_remove_dev()
708                  */
709                 managed_policy = cpufreq_cpu_get(j);
710                 if (unlikely(managed_policy)) {
711
712                         /* Set proper policy_cpu */
713                         unlock_policy_rwsem_write(cpu);
714                         per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
715
716                         if (lock_policy_rwsem_write(cpu) < 0) {
717                                 /* Should not go through policy unlock path */
718                                 if (cpufreq_driver->exit)
719                                         cpufreq_driver->exit(policy);
720                                 cpufreq_cpu_put(managed_policy);
721                                 return -EBUSY;
722                         }
723
724                         spin_lock_irqsave(&cpufreq_driver_lock, flags);
725                         cpumask_copy(managed_policy->cpus, policy->cpus);
726                         per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
727                         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
728
729                         pr_debug("CPU already managed, adding link\n");
730                         ret = sysfs_create_link(&dev->kobj,
731                                                 &managed_policy->kobj,
732                                                 "cpufreq");
733                         if (ret)
734                                 cpufreq_cpu_put(managed_policy);
735                         /*
736                          * Success. We only needed to be added to the mask.
737                          * Call driver->exit() because only the cpu parent of
738                          * the kobj needed to call init().
739                          */
740                         if (cpufreq_driver->exit)
741                                 cpufreq_driver->exit(policy);
742
743                         if (!ret)
744                                 return 1;
745                         else
746                                 return ret;
747                 }
748         }
749 #endif
750         return ret;
751 }
752
753
754 /* symlink affected CPUs */
755 static int cpufreq_add_dev_symlink(unsigned int cpu,
756                                    struct cpufreq_policy *policy)
757 {
758         unsigned int j;
759         int ret = 0;
760
761         for_each_cpu(j, policy->cpus) {
762                 struct cpufreq_policy *managed_policy;
763                 struct device *cpu_dev;
764
765                 if (j == cpu)
766                         continue;
767                 if (!cpu_online(j))
768                         continue;
769
770                 pr_debug("CPU %u already managed, adding link\n", j);
771                 managed_policy = cpufreq_cpu_get(cpu);
772                 cpu_dev = get_cpu_device(j);
773                 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
774                                         "cpufreq");
775                 if (ret) {
776                         cpufreq_cpu_put(managed_policy);
777                         return ret;
778                 }
779         }
780         return ret;
781 }
782
783 static int cpufreq_add_dev_interface(unsigned int cpu,
784                                      struct cpufreq_policy *policy,
785                                      struct device *dev)
786 {
787         struct cpufreq_policy new_policy;
788         struct freq_attr **drv_attr;
789         unsigned long flags;
790         int ret = 0;
791         unsigned int j;
792
793         /* prepare interface data */
794         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
795                                    &dev->kobj, "cpufreq");
796         if (ret)
797                 return ret;
798
799         /* set up files for this cpu device */
800         drv_attr = cpufreq_driver->attr;
801         while ((drv_attr) && (*drv_attr)) {
802                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
803                 if (ret)
804                         goto err_out_kobj_put;
805                 drv_attr++;
806         }
807         if (cpufreq_driver->get) {
808                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
809                 if (ret)
810                         goto err_out_kobj_put;
811         }
812         if (cpufreq_driver->target) {
813                 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
814                 if (ret)
815                         goto err_out_kobj_put;
816         }
817         if (cpufreq_driver->bios_limit) {
818                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
819                 if (ret)
820                         goto err_out_kobj_put;
821         }
822
823         spin_lock_irqsave(&cpufreq_driver_lock, flags);
824         for_each_cpu(j, policy->cpus) {
825                 if (!cpu_online(j))
826                         continue;
827                 per_cpu(cpufreq_cpu_data, j) = policy;
828                 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
829         }
830         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
831
832         ret = cpufreq_add_dev_symlink(cpu, policy);
833         if (ret)
834                 goto err_out_kobj_put;
835
836         memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
837         /* assure that the starting sequence is run in __cpufreq_set_policy */
838         policy->governor = NULL;
839
840         /* set default policy */
841         ret = __cpufreq_set_policy(policy, &new_policy);
842         policy->user_policy.policy = policy->policy;
843         policy->user_policy.governor = policy->governor;
844
845         if (ret) {
846                 pr_debug("setting policy failed\n");
847                 if (cpufreq_driver->exit)
848                         cpufreq_driver->exit(policy);
849         }
850         return ret;
851
852 err_out_kobj_put:
853         kobject_put(&policy->kobj);
854         wait_for_completion(&policy->kobj_unregister);
855         return ret;
856 }
857
858
859 /**
860  * cpufreq_add_dev - add a CPU device
861  *
862  * Adds the cpufreq interface for a CPU device.
863  *
864  * The Oracle says: try running cpufreq registration/unregistration concurrently
865  * with with cpu hotplugging and all hell will break loose. Tried to clean this
866  * mess up, but more thorough testing is needed. - Mathieu
867  */
868 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
869 {
870         unsigned int cpu = dev->id;
871         int ret = 0, found = 0;
872         struct cpufreq_policy *policy;
873         unsigned long flags;
874         unsigned int j;
875 #ifdef CONFIG_HOTPLUG_CPU
876         int sibling;
877 #endif
878
879         if (cpu_is_offline(cpu))
880                 return 0;
881
882         pr_debug("adding CPU %u\n", cpu);
883
884 #ifdef CONFIG_SMP
885         /* check whether a different CPU already registered this
886          * CPU because it is in the same boat. */
887         policy = cpufreq_cpu_get(cpu);
888         if (unlikely(policy)) {
889                 cpufreq_cpu_put(policy);
890                 return 0;
891         }
892 #endif
893
894         if (!try_module_get(cpufreq_driver->owner)) {
895                 ret = -EINVAL;
896                 goto module_out;
897         }
898
899         ret = -ENOMEM;
900         policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
901         if (!policy)
902                 goto nomem_out;
903
904         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
905                 goto err_free_policy;
906
907         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
908                 goto err_free_cpumask;
909
910         policy->cpu = cpu;
911         cpumask_copy(policy->cpus, cpumask_of(cpu));
912
913         /* Initially set CPU itself as the policy_cpu */
914         per_cpu(cpufreq_policy_cpu, cpu) = cpu;
915         ret = (lock_policy_rwsem_write(cpu) < 0);
916         WARN_ON(ret);
917
918         init_completion(&policy->kobj_unregister);
919         INIT_WORK(&policy->update, handle_update);
920
921         /* Set governor before ->init, so that driver could check it */
922 #ifdef CONFIG_HOTPLUG_CPU
923         for_each_online_cpu(sibling) {
924                 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
925                 if (cp && cp->governor &&
926                     (cpumask_test_cpu(cpu, cp->related_cpus))) {
927                         policy->governor = cp->governor;
928                         found = 1;
929                         break;
930                 }
931         }
932 #endif
933         if (!found)
934                 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
935         /* call driver. From then on the cpufreq must be able
936          * to accept all calls to ->verify and ->setpolicy for this CPU
937          */
938         ret = cpufreq_driver->init(policy);
939         if (ret) {
940                 pr_debug("initialization failed\n");
941                 goto err_unlock_policy;
942         }
943         policy->user_policy.min = policy->min;
944         policy->user_policy.max = policy->max;
945
946         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
947                                      CPUFREQ_START, policy);
948
949         ret = cpufreq_add_dev_policy(cpu, policy, dev);
950         if (ret) {
951                 if (ret > 0)
952                         /* This is a managed cpu, symlink created,
953                            exit with 0 */
954                         ret = 0;
955                 goto err_unlock_policy;
956         }
957
958         ret = cpufreq_add_dev_interface(cpu, policy, dev);
959         if (ret)
960                 goto err_out_unregister;
961
962         unlock_policy_rwsem_write(cpu);
963
964         kobject_uevent(&policy->kobj, KOBJ_ADD);
965         module_put(cpufreq_driver->owner);
966         pr_debug("initialization complete\n");
967
968         return 0;
969
970
971 err_out_unregister:
972         spin_lock_irqsave(&cpufreq_driver_lock, flags);
973         for_each_cpu(j, policy->cpus)
974                 per_cpu(cpufreq_cpu_data, j) = NULL;
975         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
976
977         kobject_put(&policy->kobj);
978         wait_for_completion(&policy->kobj_unregister);
979
980 err_unlock_policy:
981         unlock_policy_rwsem_write(cpu);
982         free_cpumask_var(policy->related_cpus);
983 err_free_cpumask:
984         free_cpumask_var(policy->cpus);
985 err_free_policy:
986         kfree(policy);
987 nomem_out:
988         module_put(cpufreq_driver->owner);
989 module_out:
990         return ret;
991 }
992
993
994 /**
995  * __cpufreq_remove_dev - remove a CPU device
996  *
997  * Removes the cpufreq interface for a CPU device.
998  * Caller should already have policy_rwsem in write mode for this CPU.
999  * This routine frees the rwsem before returning.
1000  */
1001 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1002 {
1003         unsigned int cpu = dev->id;
1004         unsigned long flags;
1005         struct cpufreq_policy *data;
1006         struct kobject *kobj;
1007         struct completion *cmp;
1008 #ifdef CONFIG_SMP
1009         struct device *cpu_dev;
1010         unsigned int j;
1011 #endif
1012
1013         pr_debug("unregistering CPU %u\n", cpu);
1014
1015         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1016         data = per_cpu(cpufreq_cpu_data, cpu);
1017
1018         if (!data) {
1019                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1020                 unlock_policy_rwsem_write(cpu);
1021                 return -EINVAL;
1022         }
1023         per_cpu(cpufreq_cpu_data, cpu) = NULL;
1024
1025
1026 #ifdef CONFIG_SMP
1027         /* if this isn't the CPU which is the parent of the kobj, we
1028          * only need to unlink, put and exit
1029          */
1030         if (unlikely(cpu != data->cpu)) {
1031                 pr_debug("removing link\n");
1032                 cpumask_clear_cpu(cpu, data->cpus);
1033                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1034                 kobj = &dev->kobj;
1035                 cpufreq_cpu_put(data);
1036                 unlock_policy_rwsem_write(cpu);
1037                 sysfs_remove_link(kobj, "cpufreq");
1038                 return 0;
1039         }
1040 #endif
1041
1042 #ifdef CONFIG_SMP
1043
1044 #ifdef CONFIG_HOTPLUG_CPU
1045         strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1046                         CPUFREQ_NAME_LEN);
1047 #endif
1048
1049         /* if we have other CPUs still registered, we need to unlink them,
1050          * or else wait_for_completion below will lock up. Clean the
1051          * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1052          * the sysfs links afterwards.
1053          */
1054         if (unlikely(cpumask_weight(data->cpus) > 1)) {
1055                 for_each_cpu(j, data->cpus) {
1056                         if (j == cpu)
1057                                 continue;
1058                         per_cpu(cpufreq_cpu_data, j) = NULL;
1059                 }
1060         }
1061
1062         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1063
1064         if (unlikely(cpumask_weight(data->cpus) > 1)) {
1065                 for_each_cpu(j, data->cpus) {
1066                         if (j == cpu)
1067                                 continue;
1068                         pr_debug("removing link for cpu %u\n", j);
1069 #ifdef CONFIG_HOTPLUG_CPU
1070                         strncpy(per_cpu(cpufreq_cpu_governor, j),
1071                                 data->governor->name, CPUFREQ_NAME_LEN);
1072 #endif
1073                         cpu_dev = get_cpu_device(j);
1074                         kobj = &cpu_dev->kobj;
1075                         unlock_policy_rwsem_write(cpu);
1076                         sysfs_remove_link(kobj, "cpufreq");
1077                         lock_policy_rwsem_write(cpu);
1078                         cpufreq_cpu_put(data);
1079                 }
1080         }
1081 #else
1082         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1083 #endif
1084
1085         if (cpufreq_driver->target)
1086                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1087
1088         kobj = &data->kobj;
1089         cmp = &data->kobj_unregister;
1090         unlock_policy_rwsem_write(cpu);
1091         kobject_put(kobj);
1092
1093         /* we need to make sure that the underlying kobj is actually
1094          * not referenced anymore by anybody before we proceed with
1095          * unloading.
1096          */
1097         pr_debug("waiting for dropping of refcount\n");
1098         wait_for_completion(cmp);
1099         pr_debug("wait complete\n");
1100
1101         lock_policy_rwsem_write(cpu);
1102         if (cpufreq_driver->exit)
1103                 cpufreq_driver->exit(data);
1104         unlock_policy_rwsem_write(cpu);
1105
1106 #ifdef CONFIG_HOTPLUG_CPU
1107         /* when the CPU which is the parent of the kobj is hotplugged
1108          * offline, check for siblings, and create cpufreq sysfs interface
1109          * and symlinks
1110          */
1111         if (unlikely(cpumask_weight(data->cpus) > 1)) {
1112                 /* first sibling now owns the new sysfs dir */
1113                 cpumask_clear_cpu(cpu, data->cpus);
1114                 cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL);
1115
1116                 /* finally remove our own symlink */
1117                 lock_policy_rwsem_write(cpu);
1118                 __cpufreq_remove_dev(dev, sif);
1119         }
1120 #endif
1121
1122         free_cpumask_var(data->related_cpus);
1123         free_cpumask_var(data->cpus);
1124         kfree(data);
1125
1126         return 0;
1127 }
1128
1129
1130 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1131 {
1132         unsigned int cpu = dev->id;
1133         int retval;
1134
1135         if (cpu_is_offline(cpu))
1136                 return 0;
1137
1138         if (unlikely(lock_policy_rwsem_write(cpu)))
1139                 BUG();
1140
1141         retval = __cpufreq_remove_dev(dev, sif);
1142         return retval;
1143 }
1144
1145
1146 static void handle_update(struct work_struct *work)
1147 {
1148         struct cpufreq_policy *policy =
1149                 container_of(work, struct cpufreq_policy, update);
1150         unsigned int cpu = policy->cpu;
1151         pr_debug("handle_update for cpu %u called\n", cpu);
1152         cpufreq_update_policy(cpu);
1153 }
1154
1155 /**
1156  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1157  *      @cpu: cpu number
1158  *      @old_freq: CPU frequency the kernel thinks the CPU runs at
1159  *      @new_freq: CPU frequency the CPU actually runs at
1160  *
1161  *      We adjust to current frequency first, and need to clean up later.
1162  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1163  */
1164 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1165                                 unsigned int new_freq)
1166 {
1167         struct cpufreq_freqs freqs;
1168
1169         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1170                "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1171
1172         freqs.cpu = cpu;
1173         freqs.old = old_freq;
1174         freqs.new = new_freq;
1175         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1176         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1177 }
1178
1179
1180 /**
1181  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1182  * @cpu: CPU number
1183  *
1184  * This is the last known freq, without actually getting it from the driver.
1185  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1186  */
1187 unsigned int cpufreq_quick_get(unsigned int cpu)
1188 {
1189         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1190         unsigned int ret_freq = 0;
1191
1192         if (policy) {
1193                 ret_freq = policy->cur;
1194                 cpufreq_cpu_put(policy);
1195         }
1196
1197         return ret_freq;
1198 }
1199 EXPORT_SYMBOL(cpufreq_quick_get);
1200
1201 /**
1202  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1203  * @cpu: CPU number
1204  *
1205  * Just return the max possible frequency for a given CPU.
1206  */
1207 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1208 {
1209         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1210         unsigned int ret_freq = 0;
1211
1212         if (policy) {
1213                 ret_freq = policy->max;
1214                 cpufreq_cpu_put(policy);
1215         }
1216
1217         return ret_freq;
1218 }
1219 EXPORT_SYMBOL(cpufreq_quick_get_max);
1220
1221
1222 static unsigned int __cpufreq_get(unsigned int cpu)
1223 {
1224         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1225         unsigned int ret_freq = 0;
1226
1227         if (!cpufreq_driver->get)
1228                 return ret_freq;
1229
1230         ret_freq = cpufreq_driver->get(cpu);
1231
1232         if (ret_freq && policy->cur &&
1233                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1234                 /* verify no discrepancy between actual and
1235                                         saved value exists */
1236                 if (unlikely(ret_freq != policy->cur)) {
1237                         cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1238                         schedule_work(&policy->update);
1239                 }
1240         }
1241
1242         return ret_freq;
1243 }
1244
1245 /**
1246  * cpufreq_get - get the current CPU frequency (in kHz)
1247  * @cpu: CPU number
1248  *
1249  * Get the CPU current (static) CPU frequency
1250  */
1251 unsigned int cpufreq_get(unsigned int cpu)
1252 {
1253         unsigned int ret_freq = 0;
1254         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1255
1256         if (!policy)
1257                 goto out;
1258
1259         if (unlikely(lock_policy_rwsem_read(cpu)))
1260                 goto out_policy;
1261
1262         ret_freq = __cpufreq_get(cpu);
1263
1264         unlock_policy_rwsem_read(cpu);
1265
1266 out_policy:
1267         cpufreq_cpu_put(policy);
1268 out:
1269         return ret_freq;
1270 }
1271 EXPORT_SYMBOL(cpufreq_get);
1272
1273 static struct subsys_interface cpufreq_interface = {
1274         .name           = "cpufreq",
1275         .subsys         = &cpu_subsys,
1276         .add_dev        = cpufreq_add_dev,
1277         .remove_dev     = cpufreq_remove_dev,
1278 };
1279
1280
1281 /**
1282  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1283  *
1284  * This function is only executed for the boot processor.  The other CPUs
1285  * have been put offline by means of CPU hotplug.
1286  */
1287 static int cpufreq_bp_suspend(void)
1288 {
1289         int ret = 0;
1290
1291         int cpu = smp_processor_id();
1292         struct cpufreq_policy *cpu_policy;
1293
1294         pr_debug("suspending cpu %u\n", cpu);
1295
1296         /* If there's no policy for the boot CPU, we have nothing to do. */
1297         cpu_policy = cpufreq_cpu_get(cpu);
1298         if (!cpu_policy)
1299                 return 0;
1300
1301         if (cpufreq_driver->suspend) {
1302                 ret = cpufreq_driver->suspend(cpu_policy);
1303                 if (ret)
1304                         printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1305                                         "step on CPU %u\n", cpu_policy->cpu);
1306         }
1307
1308         cpufreq_cpu_put(cpu_policy);
1309         return ret;
1310 }
1311
1312 /**
1313  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1314  *
1315  *      1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1316  *      2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1317  *          restored. It will verify that the current freq is in sync with
1318  *          what we believe it to be. This is a bit later than when it
1319  *          should be, but nonethteless it's better than calling
1320  *          cpufreq_driver->get() here which might re-enable interrupts...
1321  *
1322  * This function is only executed for the boot CPU.  The other CPUs have not
1323  * been turned on yet.
1324  */
1325 static void cpufreq_bp_resume(void)
1326 {
1327         int ret = 0;
1328
1329         int cpu = smp_processor_id();
1330         struct cpufreq_policy *cpu_policy;
1331
1332         pr_debug("resuming cpu %u\n", cpu);
1333
1334         /* If there's no policy for the boot CPU, we have nothing to do. */
1335         cpu_policy = cpufreq_cpu_get(cpu);
1336         if (!cpu_policy)
1337                 return;
1338
1339         if (cpufreq_driver->resume) {
1340                 ret = cpufreq_driver->resume(cpu_policy);
1341                 if (ret) {
1342                         printk(KERN_ERR "cpufreq: resume failed in ->resume "
1343                                         "step on CPU %u\n", cpu_policy->cpu);
1344                         goto fail;
1345                 }
1346         }
1347
1348         schedule_work(&cpu_policy->update);
1349
1350 fail:
1351         cpufreq_cpu_put(cpu_policy);
1352 }
1353
1354 static struct syscore_ops cpufreq_syscore_ops = {
1355         .suspend        = cpufreq_bp_suspend,
1356         .resume         = cpufreq_bp_resume,
1357 };
1358
1359
1360 /*********************************************************************
1361  *                     NOTIFIER LISTS INTERFACE                      *
1362  *********************************************************************/
1363
1364 /**
1365  *      cpufreq_register_notifier - register a driver with cpufreq
1366  *      @nb: notifier function to register
1367  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1368  *
1369  *      Add a driver to one of two lists: either a list of drivers that
1370  *      are notified about clock rate changes (once before and once after
1371  *      the transition), or a list of drivers that are notified about
1372  *      changes in cpufreq policy.
1373  *
1374  *      This function may sleep, and has the same return conditions as
1375  *      blocking_notifier_chain_register.
1376  */
1377 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1378 {
1379         int ret;
1380
1381         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1382
1383         switch (list) {
1384         case CPUFREQ_TRANSITION_NOTIFIER:
1385                 ret = srcu_notifier_chain_register(
1386                                 &cpufreq_transition_notifier_list, nb);
1387                 break;
1388         case CPUFREQ_POLICY_NOTIFIER:
1389                 ret = blocking_notifier_chain_register(
1390                                 &cpufreq_policy_notifier_list, nb);
1391                 break;
1392         default:
1393                 ret = -EINVAL;
1394         }
1395
1396         return ret;
1397 }
1398 EXPORT_SYMBOL(cpufreq_register_notifier);
1399
1400
1401 /**
1402  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1403  *      @nb: notifier block to be unregistered
1404  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1405  *
1406  *      Remove a driver from the CPU frequency notifier list.
1407  *
1408  *      This function may sleep, and has the same return conditions as
1409  *      blocking_notifier_chain_unregister.
1410  */
1411 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1412 {
1413         int ret;
1414
1415         switch (list) {
1416         case CPUFREQ_TRANSITION_NOTIFIER:
1417                 ret = srcu_notifier_chain_unregister(
1418                                 &cpufreq_transition_notifier_list, nb);
1419                 break;
1420         case CPUFREQ_POLICY_NOTIFIER:
1421                 ret = blocking_notifier_chain_unregister(
1422                                 &cpufreq_policy_notifier_list, nb);
1423                 break;
1424         default:
1425                 ret = -EINVAL;
1426         }
1427
1428         return ret;
1429 }
1430 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1431
1432
1433 /*********************************************************************
1434  *                              GOVERNORS                            *
1435  *********************************************************************/
1436
1437
1438 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1439                             unsigned int target_freq,
1440                             unsigned int relation)
1441 {
1442         int retval = -EINVAL;
1443
1444         pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1445                 target_freq, relation);
1446         if (cpu_online(policy->cpu) && cpufreq_driver->target)
1447                 retval = cpufreq_driver->target(policy, target_freq, relation);
1448
1449         return retval;
1450 }
1451 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1452
1453 int cpufreq_driver_target(struct cpufreq_policy *policy,
1454                           unsigned int target_freq,
1455                           unsigned int relation)
1456 {
1457         int ret = -EINVAL;
1458
1459         policy = cpufreq_cpu_get(policy->cpu);
1460         if (!policy)
1461                 goto no_policy;
1462
1463         if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1464                 goto fail;
1465
1466         ret = __cpufreq_driver_target(policy, target_freq, relation);
1467
1468         unlock_policy_rwsem_write(policy->cpu);
1469
1470 fail:
1471         cpufreq_cpu_put(policy);
1472 no_policy:
1473         return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1476
1477 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1478 {
1479         int ret = 0;
1480
1481         policy = cpufreq_cpu_get(policy->cpu);
1482         if (!policy)
1483                 return -EINVAL;
1484
1485         if (cpu_online(cpu) && cpufreq_driver->getavg)
1486                 ret = cpufreq_driver->getavg(policy, cpu);
1487
1488         cpufreq_cpu_put(policy);
1489         return ret;
1490 }
1491 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1492
1493 /*
1494  * when "event" is CPUFREQ_GOV_LIMITS
1495  */
1496
1497 static int __cpufreq_governor(struct cpufreq_policy *policy,
1498                                         unsigned int event)
1499 {
1500         int ret;
1501
1502         /* Only must be defined when default governor is known to have latency
1503            restrictions, like e.g. conservative or ondemand.
1504            That this is the case is already ensured in Kconfig
1505         */
1506 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1507         struct cpufreq_governor *gov = &cpufreq_gov_performance;
1508 #else
1509         struct cpufreq_governor *gov = NULL;
1510 #endif
1511
1512         if (policy->governor->max_transition_latency &&
1513             policy->cpuinfo.transition_latency >
1514             policy->governor->max_transition_latency) {
1515                 if (!gov)
1516                         return -EINVAL;
1517                 else {
1518                         printk(KERN_WARNING "%s governor failed, too long"
1519                                " transition latency of HW, fallback"
1520                                " to %s governor\n",
1521                                policy->governor->name,
1522                                gov->name);
1523                         policy->governor = gov;
1524                 }
1525         }
1526
1527         if (!try_module_get(policy->governor->owner))
1528                 return -EINVAL;
1529
1530         pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1531                                                 policy->cpu, event);
1532         ret = policy->governor->governor(policy, event);
1533
1534         /* we keep one module reference alive for
1535                         each CPU governed by this CPU */
1536         if ((event != CPUFREQ_GOV_START) || ret)
1537                 module_put(policy->governor->owner);
1538         if ((event == CPUFREQ_GOV_STOP) && !ret)
1539                 module_put(policy->governor->owner);
1540
1541         return ret;
1542 }
1543
1544
1545 int cpufreq_register_governor(struct cpufreq_governor *governor)
1546 {
1547         int err;
1548
1549         if (!governor)
1550                 return -EINVAL;
1551
1552         mutex_lock(&cpufreq_governor_mutex);
1553
1554         err = -EBUSY;
1555         if (__find_governor(governor->name) == NULL) {
1556                 err = 0;
1557                 list_add(&governor->governor_list, &cpufreq_governor_list);
1558         }
1559
1560         mutex_unlock(&cpufreq_governor_mutex);
1561         return err;
1562 }
1563 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1564
1565
1566 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1567 {
1568 #ifdef CONFIG_HOTPLUG_CPU
1569         int cpu;
1570 #endif
1571
1572         if (!governor)
1573                 return;
1574
1575 #ifdef CONFIG_HOTPLUG_CPU
1576         for_each_present_cpu(cpu) {
1577                 if (cpu_online(cpu))
1578                         continue;
1579                 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1580                         strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1581         }
1582 #endif
1583
1584         mutex_lock(&cpufreq_governor_mutex);
1585         list_del(&governor->governor_list);
1586         mutex_unlock(&cpufreq_governor_mutex);
1587         return;
1588 }
1589 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1590
1591
1592
1593 /*********************************************************************
1594  *                          POLICY INTERFACE                         *
1595  *********************************************************************/
1596
1597 /**
1598  * cpufreq_get_policy - get the current cpufreq_policy
1599  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1600  *      is written
1601  *
1602  * Reads the current cpufreq policy.
1603  */
1604 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1605 {
1606         struct cpufreq_policy *cpu_policy;
1607         if (!policy)
1608                 return -EINVAL;
1609
1610         cpu_policy = cpufreq_cpu_get(cpu);
1611         if (!cpu_policy)
1612                 return -EINVAL;
1613
1614         memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1615
1616         cpufreq_cpu_put(cpu_policy);
1617         return 0;
1618 }
1619 EXPORT_SYMBOL(cpufreq_get_policy);
1620
1621
1622 /*
1623  * data   : current policy.
1624  * policy : policy to be set.
1625  */
1626 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1627                                 struct cpufreq_policy *policy)
1628 {
1629         int ret = 0;
1630
1631         pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1632                 policy->min, policy->max);
1633
1634         memcpy(&policy->cpuinfo, &data->cpuinfo,
1635                                 sizeof(struct cpufreq_cpuinfo));
1636
1637         if (policy->min > data->max || policy->max < data->min) {
1638                 ret = -EINVAL;
1639                 goto error_out;
1640         }
1641
1642         /* verify the cpu speed can be set within this limit */
1643         ret = cpufreq_driver->verify(policy);
1644         if (ret)
1645                 goto error_out;
1646
1647         /* adjust if necessary - all reasons */
1648         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1649                         CPUFREQ_ADJUST, policy);
1650
1651         /* adjust if necessary - hardware incompatibility*/
1652         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1653                         CPUFREQ_INCOMPATIBLE, policy);
1654
1655         /* verify the cpu speed can be set within this limit,
1656            which might be different to the first one */
1657         ret = cpufreq_driver->verify(policy);
1658         if (ret)
1659                 goto error_out;
1660
1661         /* notification of the new policy */
1662         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1663                         CPUFREQ_NOTIFY, policy);
1664
1665         data->min = policy->min;
1666         data->max = policy->max;
1667
1668         pr_debug("new min and max freqs are %u - %u kHz\n",
1669                                         data->min, data->max);
1670
1671         if (cpufreq_driver->setpolicy) {
1672                 data->policy = policy->policy;
1673                 pr_debug("setting range\n");
1674                 ret = cpufreq_driver->setpolicy(policy);
1675         } else {
1676                 if (policy->governor != data->governor) {
1677                         /* save old, working values */
1678                         struct cpufreq_governor *old_gov = data->governor;
1679
1680                         pr_debug("governor switch\n");
1681
1682                         /* end old governor */
1683                         if (data->governor)
1684                                 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1685
1686                         /* start new governor */
1687                         data->governor = policy->governor;
1688                         if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1689                                 /* new governor failed, so re-start old one */
1690                                 pr_debug("starting governor %s failed\n",
1691                                                         data->governor->name);
1692                                 if (old_gov) {
1693                                         data->governor = old_gov;
1694                                         __cpufreq_governor(data,
1695                                                            CPUFREQ_GOV_START);
1696                                 }
1697                                 ret = -EINVAL;
1698                                 goto error_out;
1699                         }
1700                         /* might be a policy change, too, so fall through */
1701                 }
1702                 pr_debug("governor: change or update limits\n");
1703                 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1704         }
1705
1706 error_out:
1707         return ret;
1708 }
1709
1710 /**
1711  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
1712  *      @cpu: CPU which shall be re-evaluated
1713  *
1714  *      Useful for policy notifiers which have different necessities
1715  *      at different times.
1716  */
1717 int cpufreq_update_policy(unsigned int cpu)
1718 {
1719         struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1720         struct cpufreq_policy policy;
1721         int ret;
1722
1723         if (!data) {
1724                 ret = -ENODEV;
1725                 goto no_policy;
1726         }
1727
1728         if (unlikely(lock_policy_rwsem_write(cpu))) {
1729                 ret = -EINVAL;
1730                 goto fail;
1731         }
1732
1733         pr_debug("updating policy for CPU %u\n", cpu);
1734         memcpy(&policy, data, sizeof(struct cpufreq_policy));
1735         policy.min = data->user_policy.min;
1736         policy.max = data->user_policy.max;
1737         policy.policy = data->user_policy.policy;
1738         policy.governor = data->user_policy.governor;
1739
1740         /* BIOS might change freq behind our back
1741           -> ask driver for current freq and notify governors about a change */
1742         if (cpufreq_driver->get) {
1743                 policy.cur = cpufreq_driver->get(cpu);
1744                 if (!data->cur) {
1745                         pr_debug("Driver did not initialize current freq");
1746                         data->cur = policy.cur;
1747                 } else {
1748                         if (data->cur != policy.cur)
1749                                 cpufreq_out_of_sync(cpu, data->cur,
1750                                                                 policy.cur);
1751                 }
1752         }
1753
1754         ret = __cpufreq_set_policy(data, &policy);
1755
1756         unlock_policy_rwsem_write(cpu);
1757
1758 fail:
1759         cpufreq_cpu_put(data);
1760 no_policy:
1761         return ret;
1762 }
1763 EXPORT_SYMBOL(cpufreq_update_policy);
1764
1765 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1766                                         unsigned long action, void *hcpu)
1767 {
1768         unsigned int cpu = (unsigned long)hcpu;
1769         struct device *dev;
1770
1771         dev = get_cpu_device(cpu);
1772         if (dev) {
1773                 switch (action) {
1774                 case CPU_ONLINE:
1775                 case CPU_ONLINE_FROZEN:
1776                         cpufreq_add_dev(dev, NULL);
1777                         break;
1778                 case CPU_DOWN_PREPARE:
1779                 case CPU_DOWN_PREPARE_FROZEN:
1780                         if (unlikely(lock_policy_rwsem_write(cpu)))
1781                                 BUG();
1782
1783                         __cpufreq_remove_dev(dev, NULL);
1784                         break;
1785                 case CPU_DOWN_FAILED:
1786                 case CPU_DOWN_FAILED_FROZEN:
1787                         cpufreq_add_dev(dev, NULL);
1788                         break;
1789                 }
1790         }
1791         return NOTIFY_OK;
1792 }
1793
1794 static struct notifier_block __refdata cpufreq_cpu_notifier = {
1795     .notifier_call = cpufreq_cpu_callback,
1796 };
1797
1798 /*********************************************************************
1799  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1800  *********************************************************************/
1801
1802 /**
1803  * cpufreq_register_driver - register a CPU Frequency driver
1804  * @driver_data: A struct cpufreq_driver containing the values#
1805  * submitted by the CPU Frequency driver.
1806  *
1807  *   Registers a CPU Frequency driver to this core code. This code
1808  * returns zero on success, -EBUSY when another driver got here first
1809  * (and isn't unregistered in the meantime).
1810  *
1811  */
1812 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1813 {
1814         unsigned long flags;
1815         int ret;
1816
1817         if (!driver_data || !driver_data->verify || !driver_data->init ||
1818             ((!driver_data->setpolicy) && (!driver_data->target)))
1819                 return -EINVAL;
1820
1821         pr_debug("trying to register driver %s\n", driver_data->name);
1822
1823         if (driver_data->setpolicy)
1824                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1825
1826         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1827         if (cpufreq_driver) {
1828                 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829                 return -EBUSY;
1830         }
1831         cpufreq_driver = driver_data;
1832         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1833
1834         ret = subsys_interface_register(&cpufreq_interface);
1835         if (ret)
1836                 goto err_null_driver;
1837
1838         if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839                 int i;
1840                 ret = -ENODEV;
1841
1842                 /* check for at least one working CPU */
1843                 for (i = 0; i < nr_cpu_ids; i++)
1844                         if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845                                 ret = 0;
1846                                 break;
1847                         }
1848
1849                 /* if all ->init() calls failed, unregister */
1850                 if (ret) {
1851                         pr_debug("no CPU initialized for driver %s\n",
1852                                                         driver_data->name);
1853                         goto err_if_unreg;
1854                 }
1855         }
1856
1857         register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858         pr_debug("driver %s up and running\n", driver_data->name);
1859
1860         return 0;
1861 err_if_unreg:
1862         subsys_interface_unregister(&cpufreq_interface);
1863 err_null_driver:
1864         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1865         cpufreq_driver = NULL;
1866         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1867         return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1870
1871
1872 /**
1873  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1874  *
1875  *    Unregister the current CPUFreq driver. Only call this if you have
1876  * the right to do so, i.e. if you have succeeded in initialising before!
1877  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1878  * currently not initialised.
1879  */
1880 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1881 {
1882         unsigned long flags;
1883
1884         if (!cpufreq_driver || (driver != cpufreq_driver))
1885                 return -EINVAL;
1886
1887         pr_debug("unregistering driver %s\n", driver->name);
1888
1889         subsys_interface_unregister(&cpufreq_interface);
1890         unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1891
1892         spin_lock_irqsave(&cpufreq_driver_lock, flags);
1893         cpufreq_driver = NULL;
1894         spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1895
1896         return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1899
1900 static int __init cpufreq_core_init(void)
1901 {
1902         int cpu;
1903
1904         for_each_possible_cpu(cpu) {
1905                 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1906                 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1907         }
1908
1909         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
1910         BUG_ON(!cpufreq_global_kobject);
1911         register_syscore_ops(&cpufreq_syscore_ops);
1912
1913         return 0;
1914 }
1915 core_initcall(cpufreq_core_init);