drivers: clocksource: add support for ARM architected timer event stream
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
20
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
23
24 #include <clocksource/arm_arch_timer.h>
25
26 static u32 arch_timer_rate;
27
28 enum ppi_nr {
29         PHYS_SECURE_PPI,
30         PHYS_NONSECURE_PPI,
31         VIRT_PPI,
32         HYP_PPI,
33         MAX_TIMER_PPI
34 };
35
36 static int arch_timer_ppi[MAX_TIMER_PPI];
37
38 static struct clock_event_device __percpu *arch_timer_evt;
39
40 static bool arch_timer_use_virtual = true;
41
42 /*
43  * Architected system timer support.
44  */
45
46 static inline irqreturn_t timer_handler(const int access,
47                                         struct clock_event_device *evt)
48 {
49         unsigned long ctrl;
50         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54                 evt->event_handler(evt);
55                 return IRQ_HANDLED;
56         }
57
58         return IRQ_NONE;
59 }
60
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
62 {
63         struct clock_event_device *evt = dev_id;
64
65         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
66 }
67
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
69 {
70         struct clock_event_device *evt = dev_id;
71
72         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
73 }
74
75 static inline void timer_set_mode(const int access, int mode)
76 {
77         unsigned long ctrl;
78         switch (mode) {
79         case CLOCK_EVT_MODE_UNUSED:
80         case CLOCK_EVT_MODE_SHUTDOWN:
81                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84                 break;
85         default:
86                 break;
87         }
88 }
89
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91                                      struct clock_event_device *clk)
92 {
93         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
94 }
95
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97                                      struct clock_event_device *clk)
98 {
99         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
100 }
101
102 static inline void set_next_event(const int access, unsigned long evt)
103 {
104         unsigned long ctrl;
105         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106         ctrl |= ARCH_TIMER_CTRL_ENABLE;
107         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
110 }
111
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113                                           struct clock_event_device *unused)
114 {
115         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116         return 0;
117 }
118
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120                                           struct clock_event_device *unused)
121 {
122         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123         return 0;
124 }
125
126 static void arch_timer_configure_evtstream(void)
127 {
128         int evt_stream_div, pos;
129
130         /* Find the closest power of two to the divisor */
131         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
132         pos = fls(evt_stream_div);
133         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
134                 pos--;
135         /* enable event stream */
136         arch_timer_evtstrm_enable(min(pos, 15));
137 }
138
139 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
140 {
141         clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
142         clk->name = "arch_sys_timer";
143         clk->rating = 450;
144         if (arch_timer_use_virtual) {
145                 clk->irq = arch_timer_ppi[VIRT_PPI];
146                 clk->set_mode = arch_timer_set_mode_virt;
147                 clk->set_next_event = arch_timer_set_next_event_virt;
148         } else {
149                 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
150                 clk->set_mode = arch_timer_set_mode_phys;
151                 clk->set_next_event = arch_timer_set_next_event_phys;
152         }
153
154         clk->cpumask = cpumask_of(smp_processor_id());
155
156         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
157
158         clockevents_config_and_register(clk, arch_timer_rate,
159                                         0xf, 0x7fffffff);
160
161         if (arch_timer_use_virtual)
162                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
163         else {
164                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
165                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
166                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
167         }
168
169         arch_counter_set_user_access();
170         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
171                 arch_timer_configure_evtstream();
172
173         return 0;
174 }
175
176 static int arch_timer_available(void)
177 {
178         u32 freq;
179
180         if (arch_timer_rate == 0) {
181                 freq = arch_timer_get_cntfrq();
182
183                 /* Check the timer frequency. */
184                 if (freq == 0) {
185                         pr_warn("Architected timer frequency not available\n");
186                         return -EINVAL;
187                 }
188
189                 arch_timer_rate = freq;
190         }
191
192         pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
193                      (unsigned long)arch_timer_rate / 1000000,
194                      (unsigned long)(arch_timer_rate / 10000) % 100,
195                      arch_timer_use_virtual ? "virt" : "phys");
196         return 0;
197 }
198
199 u32 arch_timer_get_rate(void)
200 {
201         return arch_timer_rate;
202 }
203
204 /*
205  * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
206  * call it before it has been initialised. Rather than incur a performance
207  * penalty checking for initialisation, provide a default implementation that
208  * won't lead to time appearing to jump backwards.
209  */
210 static u64 arch_timer_read_zero(void)
211 {
212         return 0;
213 }
214
215 u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
216
217 static cycle_t arch_counter_read(struct clocksource *cs)
218 {
219         return arch_timer_read_counter();
220 }
221
222 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
223 {
224         return arch_timer_read_counter();
225 }
226
227 static struct clocksource clocksource_counter = {
228         .name   = "arch_sys_counter",
229         .rating = 400,
230         .read   = arch_counter_read,
231         .mask   = CLOCKSOURCE_MASK(56),
232         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
233 };
234
235 static struct cyclecounter cyclecounter = {
236         .read   = arch_counter_read_cc,
237         .mask   = CLOCKSOURCE_MASK(56),
238 };
239
240 static struct timecounter timecounter;
241
242 struct timecounter *arch_timer_get_timecounter(void)
243 {
244         return &timecounter;
245 }
246
247 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
248 {
249         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
250                  clk->irq, smp_processor_id());
251
252         if (arch_timer_use_virtual)
253                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
254         else {
255                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
256                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
257                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
258         }
259
260         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
261 }
262
263 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
264                                            unsigned long action, void *hcpu)
265 {
266         /*
267          * Grab cpu pointer in each case to avoid spurious
268          * preemptible warnings
269          */
270         switch (action & ~CPU_TASKS_FROZEN) {
271         case CPU_STARTING:
272                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
273                 break;
274         case CPU_DYING:
275                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
276                 break;
277         }
278
279         return NOTIFY_OK;
280 }
281
282 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
283         .notifier_call = arch_timer_cpu_notify,
284 };
285
286 static int __init arch_timer_register(void)
287 {
288         int err;
289         int ppi;
290
291         err = arch_timer_available();
292         if (err)
293                 goto out;
294
295         arch_timer_evt = alloc_percpu(struct clock_event_device);
296         if (!arch_timer_evt) {
297                 err = -ENOMEM;
298                 goto out;
299         }
300
301         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
302         cyclecounter.mult = clocksource_counter.mult;
303         cyclecounter.shift = clocksource_counter.shift;
304         timecounter_init(&timecounter, &cyclecounter,
305                          arch_counter_get_cntpct());
306
307         if (arch_timer_use_virtual) {
308                 ppi = arch_timer_ppi[VIRT_PPI];
309                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
310                                          "arch_timer", arch_timer_evt);
311         } else {
312                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
313                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
314                                          "arch_timer", arch_timer_evt);
315                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
316                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
317                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
318                                                  "arch_timer", arch_timer_evt);
319                         if (err)
320                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
321                                                 arch_timer_evt);
322                 }
323         }
324
325         if (err) {
326                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
327                        ppi, err);
328                 goto out_free;
329         }
330
331         err = register_cpu_notifier(&arch_timer_cpu_nb);
332         if (err)
333                 goto out_free_irq;
334
335         /* Immediately configure the timer on the boot CPU */
336         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
337
338         return 0;
339
340 out_free_irq:
341         if (arch_timer_use_virtual)
342                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
343         else {
344                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
345                                 arch_timer_evt);
346                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
347                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
348                                         arch_timer_evt);
349         }
350
351 out_free:
352         free_percpu(arch_timer_evt);
353 out:
354         return err;
355 }
356
357 static void __init arch_timer_init(struct device_node *np)
358 {
359         u32 freq;
360         int i;
361
362         if (arch_timer_get_rate()) {
363                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
364                 return;
365         }
366
367         /* Try to determine the frequency from the device tree or CNTFRQ */
368         if (!of_property_read_u32(np, "clock-frequency", &freq))
369                 arch_timer_rate = freq;
370
371         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
372                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
373
374         of_node_put(np);
375
376         /*
377          * If HYP mode is available, we know that the physical timer
378          * has been configured to be accessible from PL1. Use it, so
379          * that a guest can use the virtual timer instead.
380          *
381          * If no interrupt provided for virtual timer, we'll have to
382          * stick to the physical timer. It'd better be accessible...
383          */
384         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
385                 arch_timer_use_virtual = false;
386
387                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
388                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
389                         pr_warn("arch_timer: No interrupt available, giving up\n");
390                         return;
391                 }
392         }
393
394         if (arch_timer_use_virtual)
395                 arch_timer_read_counter = arch_counter_get_cntvct;
396         else
397                 arch_timer_read_counter = arch_counter_get_cntpct;
398
399         arch_timer_register();
400         arch_timer_arch_init();
401 }
402 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
403 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);