drivers: clocksource: add support for ARM architected timer event stream
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
20
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
23
24 #include <clocksource/arm_arch_timer.h>
25
26 static u32 arch_timer_rate;
27
28 enum ppi_nr {
29         PHYS_SECURE_PPI,
30         PHYS_NONSECURE_PPI,
31         VIRT_PPI,
32         HYP_PPI,
33         MAX_TIMER_PPI
34 };
35
36 static int arch_timer_ppi[MAX_TIMER_PPI];
37
38 static struct clock_event_device __percpu *arch_timer_evt;
39
40 static bool arch_timer_use_virtual = true;
41
42 /*
43  * Architected system timer support.
44  */
45
46 static inline irqreturn_t timer_handler(const int access,
47                                         struct clock_event_device *evt)
48 {
49         unsigned long ctrl;
50         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54                 evt->event_handler(evt);
55                 return IRQ_HANDLED;
56         }
57
58         return IRQ_NONE;
59 }
60
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
62 {
63         struct clock_event_device *evt = dev_id;
64
65         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
66 }
67
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
69 {
70         struct clock_event_device *evt = dev_id;
71
72         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
73 }
74
75 static inline void timer_set_mode(const int access, int mode)
76 {
77         unsigned long ctrl;
78         switch (mode) {
79         case CLOCK_EVT_MODE_UNUSED:
80         case CLOCK_EVT_MODE_SHUTDOWN:
81                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84                 break;
85         default:
86                 break;
87         }
88 }
89
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91                                      struct clock_event_device *clk)
92 {
93         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
94 }
95
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97                                      struct clock_event_device *clk)
98 {
99         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
100 }
101
102 static inline void set_next_event(const int access, unsigned long evt)
103 {
104         unsigned long ctrl;
105         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106         ctrl |= ARCH_TIMER_CTRL_ENABLE;
107         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
110 }
111
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113                                           struct clock_event_device *unused)
114 {
115         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116         return 0;
117 }
118
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120                                           struct clock_event_device *unused)
121 {
122         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123         return 0;
124 }
125
126 static void arch_timer_configure_evtstream(void)
127 {
128         int evt_stream_div, pos;
129
130         /* Find the closest power of two to the divisor */
131         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
132         pos = fls(evt_stream_div);
133         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
134                 pos--;
135         /* enable event stream */
136         arch_timer_evtstrm_enable(min(pos, 15));
137 }
138
139 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
140 {
141         clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
142         clk->name = "arch_sys_timer";
143         clk->rating = 450;
144         if (arch_timer_use_virtual) {
145                 clk->irq = arch_timer_ppi[VIRT_PPI];
146                 clk->set_mode = arch_timer_set_mode_virt;
147                 clk->set_next_event = arch_timer_set_next_event_virt;
148         } else {
149                 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
150                 clk->set_mode = arch_timer_set_mode_phys;
151                 clk->set_next_event = arch_timer_set_next_event_phys;
152         }
153
154         clk->cpumask = cpumask_of(smp_processor_id());
155
156         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
157
158         clockevents_config_and_register(clk, arch_timer_rate,
159                                         0xf, 0x7fffffff);
160
161         if (arch_timer_use_virtual)
162                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
163         else {
164                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
165                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
166                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
167         }
168
169         arch_counter_set_user_access();
170         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
171                 arch_timer_configure_evtstream();
172
173         return 0;
174 }
175
176 static int arch_timer_available(void)
177 {
178         u32 freq;
179
180         if (arch_timer_rate == 0) {
181                 freq = arch_timer_get_cntfrq();
182
183                 /* Check the timer frequency. */
184                 if (freq == 0) {
185                         pr_warn("Architected timer frequency not available\n");
186                         return -EINVAL;
187                 }
188
189                 arch_timer_rate = freq;
190         }
191
192         pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
193                      (unsigned long)arch_timer_rate / 1000000,
194                      (unsigned long)(arch_timer_rate / 10000) % 100,
195                      arch_timer_use_virtual ? "virt" : "phys");
196         return 0;
197 }
198
199 u32 arch_timer_get_rate(void)
200 {
201         return arch_timer_rate;
202 }
203
204 u64 arch_timer_read_counter(void)
205 {
206         return arch_counter_get_cntvct();
207 }
208
209 static cycle_t arch_counter_read(struct clocksource *cs)
210 {
211         return arch_counter_get_cntvct();
212 }
213
214 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
215 {
216         return arch_counter_get_cntvct();
217 }
218
219 static struct clocksource clocksource_counter = {
220         .name   = "arch_sys_counter",
221         .rating = 400,
222         .read   = arch_counter_read,
223         .mask   = CLOCKSOURCE_MASK(56),
224         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
225 };
226
227 static struct cyclecounter cyclecounter = {
228         .read   = arch_counter_read_cc,
229         .mask   = CLOCKSOURCE_MASK(56),
230 };
231
232 static struct timecounter timecounter;
233
234 struct timecounter *arch_timer_get_timecounter(void)
235 {
236         return &timecounter;
237 }
238
239 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
240 {
241         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
242                  clk->irq, smp_processor_id());
243
244         if (arch_timer_use_virtual)
245                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
246         else {
247                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
248                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
249                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
250         }
251
252         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
253 }
254
255 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
256                                            unsigned long action, void *hcpu)
257 {
258         /*
259          * Grab cpu pointer in each case to avoid spurious
260          * preemptible warnings
261          */
262         switch (action & ~CPU_TASKS_FROZEN) {
263         case CPU_STARTING:
264                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
265                 break;
266         case CPU_DYING:
267                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
268                 break;
269         }
270
271         return NOTIFY_OK;
272 }
273
274 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
275         .notifier_call = arch_timer_cpu_notify,
276 };
277
278 static int __init arch_timer_register(void)
279 {
280         int err;
281         int ppi;
282
283         err = arch_timer_available();
284         if (err)
285                 goto out;
286
287         arch_timer_evt = alloc_percpu(struct clock_event_device);
288         if (!arch_timer_evt) {
289                 err = -ENOMEM;
290                 goto out;
291         }
292
293         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
294         cyclecounter.mult = clocksource_counter.mult;
295         cyclecounter.shift = clocksource_counter.shift;
296         timecounter_init(&timecounter, &cyclecounter,
297                          arch_counter_get_cntvct());
298
299         if (arch_timer_use_virtual) {
300                 ppi = arch_timer_ppi[VIRT_PPI];
301                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
302                                          "arch_timer", arch_timer_evt);
303         } else {
304                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
305                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
306                                          "arch_timer", arch_timer_evt);
307                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
308                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
309                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
310                                                  "arch_timer", arch_timer_evt);
311                         if (err)
312                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
313                                                 arch_timer_evt);
314                 }
315         }
316
317         if (err) {
318                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
319                        ppi, err);
320                 goto out_free;
321         }
322
323         err = register_cpu_notifier(&arch_timer_cpu_nb);
324         if (err)
325                 goto out_free_irq;
326
327         /* Immediately configure the timer on the boot CPU */
328         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
329
330         return 0;
331
332 out_free_irq:
333         if (arch_timer_use_virtual)
334                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
335         else {
336                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
337                                 arch_timer_evt);
338                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
339                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
340                                         arch_timer_evt);
341         }
342
343 out_free:
344         free_percpu(arch_timer_evt);
345 out:
346         return err;
347 }
348
349 static void __init arch_timer_init(struct device_node *np)
350 {
351         u32 freq;
352         int i;
353
354         if (arch_timer_get_rate()) {
355                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
356                 return;
357         }
358
359         /* Try to determine the frequency from the device tree or CNTFRQ */
360         if (!of_property_read_u32(np, "clock-frequency", &freq))
361                 arch_timer_rate = freq;
362
363         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
364                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
365
366         of_node_put(np);
367
368         /*
369          * If HYP mode is available, we know that the physical timer
370          * has been configured to be accessible from PL1. Use it, so
371          * that a guest can use the virtual timer instead.
372          *
373          * If no interrupt provided for virtual timer, we'll have to
374          * stick to the physical timer. It'd better be accessible...
375          */
376         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
377                 arch_timer_use_virtual = false;
378
379                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
380                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
381                         pr_warn("arch_timer: No interrupt available, giving up\n");
382                         return;
383                 }
384         }
385
386         arch_timer_register();
387         arch_timer_arch_init();
388 }
389 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
390 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);