Merge tag 'v3.10.72' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/interrupt.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23
24 #include <asm/arch_timer.h>
25 #include <asm/virt.h>
26
27 #include <clocksource/arm_arch_timer.h>
28
29 #define CNTTIDR         0x08
30 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
31
32 #define CNTVCT_LO       0x08
33 #define CNTVCT_HI       0x0c
34 #define CNTFRQ          0x10
35 #define CNTP_TVAL       0x28
36 #define CNTP_CTL        0x2c
37 #define CNTV_TVAL       0x38
38 #define CNTV_CTL        0x3c
39
40 #define ARCH_CP15_TIMER BIT(0)
41 #define ARCH_MEM_TIMER  BIT(1)
42 static unsigned arch_timers_present __initdata;
43
44 static void __iomem *arch_counter_base;
45
46 struct arch_timer {
47         void __iomem *base;
48         struct clock_event_device evt;
49 };
50
51 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
52
53 static u32 arch_timer_rate;
54
55 enum ppi_nr {
56         PHYS_SECURE_PPI,
57         PHYS_NONSECURE_PPI,
58         VIRT_PPI,
59         HYP_PPI,
60         MAX_TIMER_PPI
61 };
62
63 static int arch_timer_ppi[MAX_TIMER_PPI];
64
65 static struct clock_event_device __percpu *arch_timer_evt;
66
67 static bool arch_timer_use_virtual = true;
68 static bool arch_timer_mem_use_virtual;
69
70 /*
71  * Architected system timer support.
72  */
73
74 static __always_inline
75 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
76                 struct clock_event_device *clk)
77 {
78         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
79                 struct arch_timer *timer = to_arch_timer(clk);
80                 switch (reg) {
81                 case ARCH_TIMER_REG_CTRL:
82                         writel_relaxed(val, timer->base + CNTP_CTL);
83                         break;
84                 case ARCH_TIMER_REG_TVAL:
85                         writel_relaxed(val, timer->base + CNTP_TVAL);
86                         break;
87                 }
88         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
89                 struct arch_timer *timer = to_arch_timer(clk);
90                 switch (reg) {
91                 case ARCH_TIMER_REG_CTRL:
92                         writel_relaxed(val, timer->base + CNTV_CTL);
93                         break;
94                 case ARCH_TIMER_REG_TVAL:
95                         writel_relaxed(val, timer->base + CNTV_TVAL);
96                         break;
97                 }
98         } else {
99                 arch_timer_reg_write_cp15(access, reg, val);
100         }
101 }
102
103 static __always_inline
104 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
105                 struct clock_event_device *clk)
106 {
107         u32 val;
108
109         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
110                 struct arch_timer *timer = to_arch_timer(clk);
111                 switch (reg) {
112                 case ARCH_TIMER_REG_CTRL:
113                         val = readl_relaxed(timer->base + CNTP_CTL);
114                         break;
115                 case ARCH_TIMER_REG_TVAL:
116                         val = readl_relaxed(timer->base + CNTP_TVAL);
117                         break;
118                 }
119         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
120                 struct arch_timer *timer = to_arch_timer(clk);
121                 switch (reg) {
122                 case ARCH_TIMER_REG_CTRL:
123                         val = readl_relaxed(timer->base + CNTV_CTL);
124                         break;
125                 case ARCH_TIMER_REG_TVAL:
126                         val = readl_relaxed(timer->base + CNTV_TVAL);
127                         break;
128                 }
129         } else {
130                 val = arch_timer_reg_read_cp15(access, reg);
131         }
132
133         return val;
134 }
135
136 static __always_inline irqreturn_t timer_handler(const int access,
137                                         struct clock_event_device *evt)
138 {
139         unsigned long ctrl;
140         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
141         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
142                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
143                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
144                 evt->event_handler(evt);
145                 return IRQ_HANDLED;
146         }
147
148         return IRQ_NONE;
149 }
150
151 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
152 {
153         struct clock_event_device *evt = dev_id;
154
155         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
156 }
157
158 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
159 {
160         struct clock_event_device *evt = dev_id;
161
162         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
163 }
164
165 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
166 {
167         struct clock_event_device *evt = dev_id;
168
169         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
170 }
171
172 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
173 {
174         struct clock_event_device *evt = dev_id;
175
176         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
177 }
178
179 static __always_inline void timer_set_mode(const int access, int mode,
180                                   struct clock_event_device *clk)
181 {
182         unsigned long ctrl;
183         switch (mode) {
184         case CLOCK_EVT_MODE_UNUSED:
185         case CLOCK_EVT_MODE_SHUTDOWN:
186                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
187                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
188                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
189                 break;
190         default:
191                 break;
192         }
193 }
194
195 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
196                                      struct clock_event_device *clk)
197 {
198         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
199 }
200
201 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
202                                      struct clock_event_device *clk)
203 {
204         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
205 }
206
207 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
208                                          struct clock_event_device *clk)
209 {
210         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
211 }
212
213 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
214                                          struct clock_event_device *clk)
215 {
216         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
217 }
218
219 static __always_inline void set_next_event(const int access, unsigned long evt,
220                                   struct clock_event_device *clk)
221 {
222         unsigned long ctrl;
223         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
224         ctrl |= ARCH_TIMER_CTRL_ENABLE;
225         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
226         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
227         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
228 }
229
230 static int arch_timer_set_next_event_virt(unsigned long evt,
231                                           struct clock_event_device *clk)
232 {
233         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
234         return 0;
235 }
236
237 static int arch_timer_set_next_event_phys(unsigned long evt,
238                                           struct clock_event_device *clk)
239 {
240         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
241         return 0;
242 }
243
244 static void arch_timer_configure_evtstream(void)
245 {
246         int evt_stream_div, pos;
247
248         /* Find the closest power of two to the divisor */
249         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
250         pos = fls(evt_stream_div);
251         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
252                 pos--;
253         /* enable event stream */
254         arch_timer_evtstrm_enable(min(pos, 15));
255 }
256
257 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
258                                               struct clock_event_device *clk)
259 {
260         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
261         return 0;
262 }
263
264 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
265                                               struct clock_event_device *clk)
266 {
267         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
268         return 0;
269 }
270
271 static void __cpuinit __arch_timer_setup(unsigned type,
272                                        struct clock_event_device *clk)
273 {
274         clk->features = CLOCK_EVT_FEAT_ONESHOT;
275
276         if (type == ARCH_CP15_TIMER) {
277                 clk->features |= CLOCK_EVT_FEAT_C3STOP;
278                 clk->name = "arch_sys_timer";
279                 clk->rating = 450;
280                 clk->cpumask = cpumask_of(smp_processor_id());
281                 if (arch_timer_use_virtual) {
282                         clk->irq = arch_timer_ppi[VIRT_PPI];
283                         clk->set_mode = arch_timer_set_mode_virt;
284                         clk->set_next_event = arch_timer_set_next_event_virt;
285                 } else {
286                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
287                         clk->set_mode = arch_timer_set_mode_phys;
288                         clk->set_next_event = arch_timer_set_next_event_phys;
289                 }
290         } else {
291                 clk->name = "arch_mem_timer";
292                 clk->rating = 400;
293                 clk->cpumask = cpu_all_mask;
294                 if (arch_timer_mem_use_virtual) {
295                         clk->set_mode = arch_timer_set_mode_virt_mem;
296                         clk->set_next_event =
297                                 arch_timer_set_next_event_virt_mem;
298                 } else {
299                         clk->set_mode = arch_timer_set_mode_phys_mem;
300                         clk->set_next_event =
301                                 arch_timer_set_next_event_phys_mem;
302                 }
303         }
304
305         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
306
307         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
308 }
309
310 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
311 {
312         __arch_timer_setup(ARCH_CP15_TIMER, clk);
313
314         if (arch_timer_use_virtual)
315                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
316         else {
317                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
318                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
319                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
320         }
321
322         arch_counter_set_user_access();
323         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
324                 arch_timer_configure_evtstream();
325
326         return 0;
327 }
328
329 static void
330 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
331 {
332         /* Who has more than one independent system counter? */
333         if (arch_timer_rate)
334                 return;
335
336         /* Try to determine the frequency from the device tree or CNTFRQ */
337         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
338                 if (cntbase)
339                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
340                 else
341                         arch_timer_rate = arch_timer_get_cntfrq();
342         }
343
344         /* Check the timer frequency. */
345         if (arch_timer_rate == 0)
346                 pr_warn("Architected timer frequency not available\n");
347 }
348
349 static void arch_timer_banner(unsigned type)
350 {
351         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
352                      type & ARCH_CP15_TIMER ? "cp15" : "",
353                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
354                      type & ARCH_MEM_TIMER ? "mmio" : "",
355                      (unsigned long)arch_timer_rate / 1000000,
356                      (unsigned long)(arch_timer_rate / 10000) % 100,
357                      type & ARCH_CP15_TIMER ?
358                         arch_timer_use_virtual ? "virt" : "phys" :
359                         "",
360                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
361                      type & ARCH_MEM_TIMER ?
362                         arch_timer_mem_use_virtual ? "virt" : "phys" :
363                         "");
364 }
365
366 u32 arch_timer_get_rate(void)
367 {
368         return arch_timer_rate;
369 }
370
371 static u64 arch_counter_get_cntvct_mem(void)
372 {
373         u32 vct_lo, vct_hi, tmp_hi;
374
375         do {
376                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
377                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
378                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
379         } while (vct_hi != tmp_hi);
380
381         return ((u64) vct_hi << 32) | vct_lo;
382 }
383
384 /*
385  * Default to cp15 based access because arm64 uses this function for
386  * sched_clock() before DT is probed and the cp15 method is guaranteed
387  * to exist on arm64. arm doesn't use this before DT is probed so even
388  * if we don't have the cp15 accessors we won't have a problem.
389  */
390 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
391
392 static cycle_t arch_counter_read(struct clocksource *cs)
393 {
394         return arch_counter_get_cntvct();
395 }
396
397 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
398 {
399         return arch_counter_get_cntvct();
400 }
401
402 static struct clocksource clocksource_counter = {
403         .name   = "arch_sys_counter",
404         .rating = 400,
405         .read   = arch_counter_read,
406         .mask   = CLOCKSOURCE_MASK(56),
407         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
408 };
409
410 static struct cyclecounter cyclecounter = {
411         .read   = arch_counter_read_cc,
412         .mask   = CLOCKSOURCE_MASK(56),
413 };
414
415 static struct timecounter timecounter;
416
417 struct timecounter *arch_timer_get_timecounter(void)
418 {
419         return &timecounter;
420 }
421
422 static void __init arch_counter_register(unsigned type)
423 {
424         u64 start_count;
425
426         /* Register the CP15 based counter if we have one */
427         if (type & ARCH_CP15_TIMER)
428                 arch_timer_read_counter = arch_counter_get_cntvct;
429         else
430                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
431
432         start_count = arch_timer_read_counter();
433         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
434         cyclecounter.mult = clocksource_counter.mult;
435         cyclecounter.shift = clocksource_counter.shift;
436         timecounter_init(&timecounter, &cyclecounter, start_count);
437 }
438
439 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
440 {
441         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
442                  clk->irq, smp_processor_id());
443
444         if (arch_timer_use_virtual)
445                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
446         else {
447                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
448                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
449                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
450         }
451
452         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
453 }
454
455 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
456                                            unsigned long action, void *hcpu)
457 {
458         /*
459          * Grab cpu pointer in each case to avoid spurious
460          * preemptible warnings
461          */
462         switch (action & ~CPU_TASKS_FROZEN) {
463         case CPU_STARTING:
464                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
465                 break;
466         case CPU_DYING:
467                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
468                 break;
469         }
470
471         return NOTIFY_OK;
472 }
473
474 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
475         .notifier_call = arch_timer_cpu_notify,
476 };
477
478 #ifdef CONFIG_CPU_PM
479 static unsigned int saved_cntkctl;
480 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
481                                     unsigned long action, void *hcpu)
482 {
483         if (action == CPU_PM_ENTER)
484                 saved_cntkctl = arch_timer_get_cntkctl();
485         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
486                 arch_timer_set_cntkctl(saved_cntkctl);
487         return NOTIFY_OK;
488 }
489
490 static struct notifier_block arch_timer_cpu_pm_notifier = {
491         .notifier_call = arch_timer_cpu_pm_notify,
492 };
493
494 static int __init arch_timer_cpu_pm_init(void)
495 {
496         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
497 }
498 #else
499 static int __init arch_timer_cpu_pm_init(void)
500 {
501         return 0;
502 }
503 #endif
504
505 static int __init arch_timer_register(void)
506 {
507         int err;
508         int ppi;
509
510         arch_timer_evt = alloc_percpu(struct clock_event_device);
511         if (!arch_timer_evt) {
512                 err = -ENOMEM;
513                 goto out;
514         }
515
516         if (arch_timer_use_virtual) {
517                 ppi = arch_timer_ppi[VIRT_PPI];
518                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
519                                          "arch_timer", arch_timer_evt);
520         } else {
521                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
522                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
523                                          "arch_timer", arch_timer_evt);
524                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
525                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
526                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
527                                                  "arch_timer", arch_timer_evt);
528                         if (err)
529                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
530                                                 arch_timer_evt);
531                 }
532         }
533
534         if (err) {
535                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
536                        ppi, err);
537                 goto out_free;
538         }
539
540         err = register_cpu_notifier(&arch_timer_cpu_nb);
541         if (err)
542                 goto out_free_irq;
543
544         err = arch_timer_cpu_pm_init();
545         if (err)
546                 goto out_unreg_notify;
547
548         /* Immediately configure the timer on the boot CPU */
549         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
550
551         return 0;
552
553 out_unreg_notify:
554         unregister_cpu_notifier(&arch_timer_cpu_nb);
555 out_free_irq:
556         if (arch_timer_use_virtual)
557                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
558         else {
559                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
560                                 arch_timer_evt);
561                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
562                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
563                                         arch_timer_evt);
564         }
565
566 out_free:
567         free_percpu(arch_timer_evt);
568 out:
569         return err;
570 }
571
572 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
573 {
574         int ret;
575         irq_handler_t func;
576         struct arch_timer *t;
577
578         t = kzalloc(sizeof(*t), GFP_KERNEL);
579         if (!t)
580                 return -ENOMEM;
581
582         t->base = base;
583         t->evt.irq = irq;
584         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
585
586         if (arch_timer_mem_use_virtual)
587                 func = arch_timer_handler_virt_mem;
588         else
589                 func = arch_timer_handler_phys_mem;
590
591         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
592         if (ret) {
593                 pr_err("arch_timer: Failed to request mem timer irq\n");
594                 kfree(t);
595         }
596
597         return ret;
598 }
599
600 static const struct of_device_id arch_timer_of_match[] __initconst = {
601         { .compatible   = "arm,armv7-timer",    },
602         { .compatible   = "arm,armv8-timer",    },
603         {},
604 };
605
606 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
607         { .compatible   = "arm,armv7-timer-mem", },
608         {},
609 };
610
611 static void __init arch_timer_common_init(void)
612 {
613         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
614
615         /* Wait until both nodes are probed if we have two timers */
616         if ((arch_timers_present & mask) != mask) {
617                 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
618                                 !(arch_timers_present & ARCH_MEM_TIMER))
619                         return;
620                 if (of_find_matching_node(NULL, arch_timer_of_match) &&
621                                 !(arch_timers_present & ARCH_CP15_TIMER))
622                         return;
623         }
624
625         arch_timer_banner(arch_timers_present);
626         arch_counter_register(arch_timers_present);
627         arch_timer_arch_init();
628 }
629
630 static void __init arch_timer_init(struct device_node *np)
631 {
632         int i;
633
634         if (arch_timers_present & ARCH_CP15_TIMER) {
635                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
636                 return;
637         }
638
639         arch_timers_present |= ARCH_CP15_TIMER;
640         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
641                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
642         arch_timer_detect_rate(NULL, np);
643
644         /*
645          * If HYP mode is available, we know that the physical timer
646          * has been configured to be accessible from PL1. Use it, so
647          * that a guest can use the virtual timer instead.
648          *
649          * If no interrupt provided for virtual timer, we'll have to
650          * stick to the physical timer. It'd better be accessible...
651          */
652         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
653                 arch_timer_use_virtual = false;
654
655                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
656                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
657                         pr_warn("arch_timer: No interrupt available, giving up\n");
658                         return;
659                 }
660         }
661
662         arch_timer_register();
663         arch_timer_common_init();
664 }
665 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
666 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
667
668 static void __init arch_timer_mem_init(struct device_node *np)
669 {
670         struct device_node *frame, *best_frame = NULL;
671         void __iomem *cntctlbase, *base;
672         unsigned int irq;
673         u32 cnttidr;
674
675         arch_timers_present |= ARCH_MEM_TIMER;
676         cntctlbase = of_iomap(np, 0);
677         if (!cntctlbase) {
678                 pr_err("arch_timer: Can't find CNTCTLBase\n");
679                 return;
680         }
681
682         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
683         iounmap(cntctlbase);
684
685         /*
686          * Try to find a virtual capable frame. Otherwise fall back to a
687          * physical capable frame.
688          */
689         for_each_available_child_of_node(np, frame) {
690                 int n;
691
692                 if (of_property_read_u32(frame, "frame-number", &n)) {
693                         pr_err("arch_timer: Missing frame-number\n");
694                         of_node_put(best_frame);
695                         of_node_put(frame);
696                         return;
697                 }
698
699                 if (cnttidr & CNTTIDR_VIRT(n)) {
700                         of_node_put(best_frame);
701                         best_frame = frame;
702                         arch_timer_mem_use_virtual = true;
703                         break;
704                 }
705                 of_node_put(best_frame);
706                 best_frame = of_node_get(frame);
707         }
708
709         base = arch_counter_base = of_iomap(best_frame, 0);
710         if (!base) {
711                 pr_err("arch_timer: Can't map frame's registers\n");
712                 of_node_put(best_frame);
713                 return;
714         }
715
716         if (arch_timer_mem_use_virtual)
717                 irq = irq_of_parse_and_map(best_frame, 1);
718         else
719                 irq = irq_of_parse_and_map(best_frame, 0);
720         of_node_put(best_frame);
721         if (!irq) {
722                 pr_err("arch_timer: Frame missing %s irq",
723                                 arch_timer_mem_use_virtual ? "virt" : "phys");
724                 return;
725         }
726
727         arch_timer_detect_rate(base, np);
728         arch_timer_mem_register(base, irq);
729         arch_timer_common_init();
730 }
731 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
732                        arch_timer_mem_init);