053d846ab5b108931ccbeacb67ebc7c85696d0f6
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
20
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
23
24 #include <clocksource/arm_arch_timer.h>
25
26 static u32 arch_timer_rate;
27
28 enum ppi_nr {
29         PHYS_SECURE_PPI,
30         PHYS_NONSECURE_PPI,
31         VIRT_PPI,
32         HYP_PPI,
33         MAX_TIMER_PPI
34 };
35
36 static int arch_timer_ppi[MAX_TIMER_PPI];
37
38 static struct clock_event_device __percpu *arch_timer_evt;
39
40 static bool arch_timer_use_virtual = true;
41
42 /*
43  * Architected system timer support.
44  */
45
46 static inline irqreturn_t timer_handler(const int access,
47                                         struct clock_event_device *evt)
48 {
49         unsigned long ctrl;
50         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54                 evt->event_handler(evt);
55                 return IRQ_HANDLED;
56         }
57
58         return IRQ_NONE;
59 }
60
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
62 {
63         struct clock_event_device *evt = dev_id;
64
65         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
66 }
67
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
69 {
70         struct clock_event_device *evt = dev_id;
71
72         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
73 }
74
75 static inline void timer_set_mode(const int access, int mode)
76 {
77         unsigned long ctrl;
78         switch (mode) {
79         case CLOCK_EVT_MODE_UNUSED:
80         case CLOCK_EVT_MODE_SHUTDOWN:
81                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84                 break;
85         default:
86                 break;
87         }
88 }
89
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91                                      struct clock_event_device *clk)
92 {
93         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
94 }
95
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97                                      struct clock_event_device *clk)
98 {
99         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
100 }
101
102 static inline void set_next_event(const int access, unsigned long evt)
103 {
104         unsigned long ctrl;
105         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106         ctrl |= ARCH_TIMER_CTRL_ENABLE;
107         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
110 }
111
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113                                           struct clock_event_device *unused)
114 {
115         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116         return 0;
117 }
118
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120                                           struct clock_event_device *unused)
121 {
122         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123         return 0;
124 }
125
126 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
127 {
128         clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
129         clk->name = "arch_sys_timer";
130         clk->rating = 450;
131         if (arch_timer_use_virtual) {
132                 clk->irq = arch_timer_ppi[VIRT_PPI];
133                 clk->set_mode = arch_timer_set_mode_virt;
134                 clk->set_next_event = arch_timer_set_next_event_virt;
135         } else {
136                 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
137                 clk->set_mode = arch_timer_set_mode_phys;
138                 clk->set_next_event = arch_timer_set_next_event_phys;
139         }
140
141         clk->cpumask = cpumask_of(smp_processor_id());
142
143         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
144
145         clockevents_config_and_register(clk, arch_timer_rate,
146                                         0xf, 0x7fffffff);
147
148         if (arch_timer_use_virtual)
149                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
150         else {
151                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
152                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
153                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
154         }
155
156         arch_counter_set_user_access();
157
158         return 0;
159 }
160
161 static int arch_timer_available(void)
162 {
163         u32 freq;
164
165         if (arch_timer_rate == 0) {
166                 freq = arch_timer_get_cntfrq();
167
168                 /* Check the timer frequency. */
169                 if (freq == 0) {
170                         pr_warn("Architected timer frequency not available\n");
171                         return -EINVAL;
172                 }
173
174                 arch_timer_rate = freq;
175         }
176
177         pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
178                      (unsigned long)arch_timer_rate / 1000000,
179                      (unsigned long)(arch_timer_rate / 10000) % 100,
180                      arch_timer_use_virtual ? "virt" : "phys");
181         return 0;
182 }
183
184 u32 arch_timer_get_rate(void)
185 {
186         return arch_timer_rate;
187 }
188
189 u64 arch_timer_read_counter(void)
190 {
191         return arch_counter_get_cntvct();
192 }
193
194 static cycle_t arch_counter_read(struct clocksource *cs)
195 {
196         return arch_counter_get_cntvct();
197 }
198
199 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
200 {
201         return arch_counter_get_cntvct();
202 }
203
204 static struct clocksource clocksource_counter = {
205         .name   = "arch_sys_counter",
206         .rating = 400,
207         .read   = arch_counter_read,
208         .mask   = CLOCKSOURCE_MASK(56),
209         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
210 };
211
212 static struct cyclecounter cyclecounter = {
213         .read   = arch_counter_read_cc,
214         .mask   = CLOCKSOURCE_MASK(56),
215 };
216
217 static struct timecounter timecounter;
218
219 struct timecounter *arch_timer_get_timecounter(void)
220 {
221         return &timecounter;
222 }
223
224 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
225 {
226         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
227                  clk->irq, smp_processor_id());
228
229         if (arch_timer_use_virtual)
230                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
231         else {
232                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
233                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
234                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
235         }
236
237         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
238 }
239
240 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
241                                            unsigned long action, void *hcpu)
242 {
243         /*
244          * Grab cpu pointer in each case to avoid spurious
245          * preemptible warnings
246          */
247         switch (action & ~CPU_TASKS_FROZEN) {
248         case CPU_STARTING:
249                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
250                 break;
251         case CPU_DYING:
252                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
253                 break;
254         }
255
256         return NOTIFY_OK;
257 }
258
259 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
260         .notifier_call = arch_timer_cpu_notify,
261 };
262
263 static int __init arch_timer_register(void)
264 {
265         int err;
266         int ppi;
267
268         err = arch_timer_available();
269         if (err)
270                 goto out;
271
272         arch_timer_evt = alloc_percpu(struct clock_event_device);
273         if (!arch_timer_evt) {
274                 err = -ENOMEM;
275                 goto out;
276         }
277
278         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
279         cyclecounter.mult = clocksource_counter.mult;
280         cyclecounter.shift = clocksource_counter.shift;
281         timecounter_init(&timecounter, &cyclecounter,
282                          arch_counter_get_cntvct());
283
284         if (arch_timer_use_virtual) {
285                 ppi = arch_timer_ppi[VIRT_PPI];
286                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
287                                          "arch_timer", arch_timer_evt);
288         } else {
289                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
290                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
291                                          "arch_timer", arch_timer_evt);
292                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
293                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
294                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
295                                                  "arch_timer", arch_timer_evt);
296                         if (err)
297                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
298                                                 arch_timer_evt);
299                 }
300         }
301
302         if (err) {
303                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
304                        ppi, err);
305                 goto out_free;
306         }
307
308         err = register_cpu_notifier(&arch_timer_cpu_nb);
309         if (err)
310                 goto out_free_irq;
311
312         /* Immediately configure the timer on the boot CPU */
313         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
314
315         return 0;
316
317 out_free_irq:
318         if (arch_timer_use_virtual)
319                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
320         else {
321                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
322                                 arch_timer_evt);
323                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
324                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
325                                         arch_timer_evt);
326         }
327
328 out_free:
329         free_percpu(arch_timer_evt);
330 out:
331         return err;
332 }
333
334 static void __init arch_timer_init(struct device_node *np)
335 {
336         u32 freq;
337         int i;
338
339         if (arch_timer_get_rate()) {
340                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
341                 return;
342         }
343
344         /* Try to determine the frequency from the device tree or CNTFRQ */
345         if (!of_property_read_u32(np, "clock-frequency", &freq))
346                 arch_timer_rate = freq;
347
348         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
349                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
350
351         of_node_put(np);
352
353         /*
354          * If HYP mode is available, we know that the physical timer
355          * has been configured to be accessible from PL1. Use it, so
356          * that a guest can use the virtual timer instead.
357          *
358          * If no interrupt provided for virtual timer, we'll have to
359          * stick to the physical timer. It'd better be accessible...
360          */
361         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
362                 arch_timer_use_virtual = false;
363
364                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
365                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
366                         pr_warn("arch_timer: No interrupt available, giving up\n");
367                         return;
368                 }
369         }
370
371         arch_timer_register();
372         arch_timer_arch_init();
373 }
374 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
375 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);