ASoC: soc-compress: Send correct stream event for capture start
[firefly-linux-kernel-4.4.55.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58
59 static int initialized;
60
61 #ifdef CONFIG_PROC_FS
62 static struct proc_dir_entry *proc_ipmi_root;
63 #endif /* CONFIG_PROC_FS */
64
65 /* Remain in auto-maintenance mode for this amount of time (in ms). */
66 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
67
68 #define MAX_EVENTS_IN_QUEUE     25
69
70 /*
71  * Don't let a message sit in a queue forever, always time it with at lest
72  * the max message timer.  This is in milliseconds.
73  */
74 #define MAX_MSG_TIMEOUT         60000
75
76 /*
77  * The main "user" data structure.
78  */
79 struct ipmi_user {
80         struct list_head link;
81
82         /* Set to "0" when the user is destroyed. */
83         int valid;
84
85         struct kref refcount;
86
87         /* The upper layer that handles receive messages. */
88         struct ipmi_user_hndl *handler;
89         void             *handler_data;
90
91         /* The interface this user is bound to. */
92         ipmi_smi_t intf;
93
94         /* Does this interface receive IPMI events? */
95         int gets_events;
96 };
97
98 struct cmd_rcvr {
99         struct list_head link;
100
101         ipmi_user_t   user;
102         unsigned char netfn;
103         unsigned char cmd;
104         unsigned int  chans;
105
106         /*
107          * This is used to form a linked lised during mass deletion.
108          * Since this is in an RCU list, we cannot use the link above
109          * or change any data until the RCU period completes.  So we
110          * use this next variable during mass deletion so we can have
111          * a list and don't have to wait and restart the search on
112          * every individual deletion of a command.
113          */
114         struct cmd_rcvr *next;
115 };
116
117 struct seq_table {
118         unsigned int         inuse : 1;
119         unsigned int         broadcast : 1;
120
121         unsigned long        timeout;
122         unsigned long        orig_timeout;
123         unsigned int         retries_left;
124
125         /*
126          * To verify on an incoming send message response that this is
127          * the message that the response is for, we keep a sequence id
128          * and increment it every time we send a message.
129          */
130         long                 seqid;
131
132         /*
133          * This is held so we can properly respond to the message on a
134          * timeout, and it is used to hold the temporary data for
135          * retransmission, too.
136          */
137         struct ipmi_recv_msg *recv_msg;
138 };
139
140 /*
141  * Store the information in a msgid (long) to allow us to find a
142  * sequence table entry from the msgid.
143  */
144 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
145
146 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
147         do {                                                            \
148                 seq = ((msgid >> 26) & 0x3f);                           \
149                 seqid = (msgid & 0x3fffff);                             \
150         } while (0)
151
152 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
153
154 struct ipmi_channel {
155         unsigned char medium;
156         unsigned char protocol;
157
158         /*
159          * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
160          * but may be changed by the user.
161          */
162         unsigned char address;
163
164         /*
165          * My LUN.  This should generally stay the SMS LUN, but just in
166          * case...
167          */
168         unsigned char lun;
169 };
170
171 #ifdef CONFIG_PROC_FS
172 struct ipmi_proc_entry {
173         char                   *name;
174         struct ipmi_proc_entry *next;
175 };
176 #endif
177
178 struct bmc_device {
179         struct platform_device *dev;
180         struct ipmi_device_id  id;
181         unsigned char          guid[16];
182         int                    guid_set;
183
184         struct kref            refcount;
185
186         /* bmc device attributes */
187         struct device_attribute device_id_attr;
188         struct device_attribute provides_dev_sdrs_attr;
189         struct device_attribute revision_attr;
190         struct device_attribute firmware_rev_attr;
191         struct device_attribute version_attr;
192         struct device_attribute add_dev_support_attr;
193         struct device_attribute manufacturer_id_attr;
194         struct device_attribute product_id_attr;
195         struct device_attribute guid_attr;
196         struct device_attribute aux_firmware_rev_attr;
197 };
198
199 /*
200  * Various statistics for IPMI, these index stats[] in the ipmi_smi
201  * structure.
202  */
203 enum ipmi_stat_indexes {
204         /* Commands we got from the user that were invalid. */
205         IPMI_STAT_sent_invalid_commands = 0,
206
207         /* Commands we sent to the MC. */
208         IPMI_STAT_sent_local_commands,
209
210         /* Responses from the MC that were delivered to a user. */
211         IPMI_STAT_handled_local_responses,
212
213         /* Responses from the MC that were not delivered to a user. */
214         IPMI_STAT_unhandled_local_responses,
215
216         /* Commands we sent out to the IPMB bus. */
217         IPMI_STAT_sent_ipmb_commands,
218
219         /* Commands sent on the IPMB that had errors on the SEND CMD */
220         IPMI_STAT_sent_ipmb_command_errs,
221
222         /* Each retransmit increments this count. */
223         IPMI_STAT_retransmitted_ipmb_commands,
224
225         /*
226          * When a message times out (runs out of retransmits) this is
227          * incremented.
228          */
229         IPMI_STAT_timed_out_ipmb_commands,
230
231         /*
232          * This is like above, but for broadcasts.  Broadcasts are
233          * *not* included in the above count (they are expected to
234          * time out).
235          */
236         IPMI_STAT_timed_out_ipmb_broadcasts,
237
238         /* Responses I have sent to the IPMB bus. */
239         IPMI_STAT_sent_ipmb_responses,
240
241         /* The response was delivered to the user. */
242         IPMI_STAT_handled_ipmb_responses,
243
244         /* The response had invalid data in it. */
245         IPMI_STAT_invalid_ipmb_responses,
246
247         /* The response didn't have anyone waiting for it. */
248         IPMI_STAT_unhandled_ipmb_responses,
249
250         /* Commands we sent out to the IPMB bus. */
251         IPMI_STAT_sent_lan_commands,
252
253         /* Commands sent on the IPMB that had errors on the SEND CMD */
254         IPMI_STAT_sent_lan_command_errs,
255
256         /* Each retransmit increments this count. */
257         IPMI_STAT_retransmitted_lan_commands,
258
259         /*
260          * When a message times out (runs out of retransmits) this is
261          * incremented.
262          */
263         IPMI_STAT_timed_out_lan_commands,
264
265         /* Responses I have sent to the IPMB bus. */
266         IPMI_STAT_sent_lan_responses,
267
268         /* The response was delivered to the user. */
269         IPMI_STAT_handled_lan_responses,
270
271         /* The response had invalid data in it. */
272         IPMI_STAT_invalid_lan_responses,
273
274         /* The response didn't have anyone waiting for it. */
275         IPMI_STAT_unhandled_lan_responses,
276
277         /* The command was delivered to the user. */
278         IPMI_STAT_handled_commands,
279
280         /* The command had invalid data in it. */
281         IPMI_STAT_invalid_commands,
282
283         /* The command didn't have anyone waiting for it. */
284         IPMI_STAT_unhandled_commands,
285
286         /* Invalid data in an event. */
287         IPMI_STAT_invalid_events,
288
289         /* Events that were received with the proper format. */
290         IPMI_STAT_events,
291
292         /* Retransmissions on IPMB that failed. */
293         IPMI_STAT_dropped_rexmit_ipmb_commands,
294
295         /* Retransmissions on LAN that failed. */
296         IPMI_STAT_dropped_rexmit_lan_commands,
297
298         /* This *must* remain last, add new values above this. */
299         IPMI_NUM_STATS
300 };
301
302
303 #define IPMI_IPMB_NUM_SEQ       64
304 #define IPMI_MAX_CHANNELS       16
305 struct ipmi_smi {
306         /* What interface number are we? */
307         int intf_num;
308
309         struct kref refcount;
310
311         /* Used for a list of interfaces. */
312         struct list_head link;
313
314         /*
315          * The list of upper layers that are using me.  seq_lock
316          * protects this.
317          */
318         struct list_head users;
319
320         /* Information to supply to users. */
321         unsigned char ipmi_version_major;
322         unsigned char ipmi_version_minor;
323
324         /* Used for wake ups at startup. */
325         wait_queue_head_t waitq;
326
327         struct bmc_device *bmc;
328         char *my_dev_name;
329         char *sysfs_name;
330
331         /*
332          * This is the lower-layer's sender routine.  Note that you
333          * must either be holding the ipmi_interfaces_mutex or be in
334          * an umpreemptible region to use this.  You must fetch the
335          * value into a local variable and make sure it is not NULL.
336          */
337         struct ipmi_smi_handlers *handlers;
338         void                     *send_info;
339
340 #ifdef CONFIG_PROC_FS
341         /* A list of proc entries for this interface. */
342         struct mutex           proc_entry_lock;
343         struct ipmi_proc_entry *proc_entries;
344 #endif
345
346         /* Driver-model device for the system interface. */
347         struct device          *si_dev;
348
349         /*
350          * A table of sequence numbers for this interface.  We use the
351          * sequence numbers for IPMB messages that go out of the
352          * interface to match them up with their responses.  A routine
353          * is called periodically to time the items in this list.
354          */
355         spinlock_t       seq_lock;
356         struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
357         int curr_seq;
358
359         /*
360          * Messages queued for delivery.  If delivery fails (out of memory
361          * for instance), They will stay in here to be processed later in a
362          * periodic timer interrupt.  The tasklet is for handling received
363          * messages directly from the handler.
364          */
365         spinlock_t       waiting_msgs_lock;
366         struct list_head waiting_msgs;
367         atomic_t         watchdog_pretimeouts_to_deliver;
368         struct tasklet_struct recv_tasklet;
369
370         /*
371          * The list of command receivers that are registered for commands
372          * on this interface.
373          */
374         struct mutex     cmd_rcvrs_mutex;
375         struct list_head cmd_rcvrs;
376
377         /*
378          * Events that were queues because no one was there to receive
379          * them.
380          */
381         spinlock_t       events_lock; /* For dealing with event stuff. */
382         struct list_head waiting_events;
383         unsigned int     waiting_events_count; /* How many events in queue? */
384         char             delivering_events;
385         char             event_msg_printed;
386
387         /*
388          * The event receiver for my BMC, only really used at panic
389          * shutdown as a place to store this.
390          */
391         unsigned char event_receiver;
392         unsigned char event_receiver_lun;
393         unsigned char local_sel_device;
394         unsigned char local_event_generator;
395
396         /* For handling of maintenance mode. */
397         int maintenance_mode;
398         int maintenance_mode_enable;
399         int auto_maintenance_timeout;
400         spinlock_t maintenance_mode_lock; /* Used in a timer... */
401
402         /*
403          * A cheap hack, if this is non-null and a message to an
404          * interface comes in with a NULL user, call this routine with
405          * it.  Note that the message will still be freed by the
406          * caller.  This only works on the system interface.
407          */
408         void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
409
410         /*
411          * When we are scanning the channels for an SMI, this will
412          * tell which channel we are scanning.
413          */
414         int curr_channel;
415
416         /* Channel information */
417         struct ipmi_channel channels[IPMI_MAX_CHANNELS];
418
419         /* Proc FS stuff. */
420         struct proc_dir_entry *proc_dir;
421         char                  proc_dir_name[10];
422
423         atomic_t stats[IPMI_NUM_STATS];
424
425         /*
426          * run_to_completion duplicate of smb_info, smi_info
427          * and ipmi_serial_info structures. Used to decrease numbers of
428          * parameters passed by "low" level IPMI code.
429          */
430         int run_to_completion;
431 };
432 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
433
434 /**
435  * The driver model view of the IPMI messaging driver.
436  */
437 static struct platform_driver ipmidriver = {
438         .driver = {
439                 .name = "ipmi",
440                 .bus = &platform_bus_type
441         }
442 };
443 static DEFINE_MUTEX(ipmidriver_mutex);
444
445 static LIST_HEAD(ipmi_interfaces);
446 static DEFINE_MUTEX(ipmi_interfaces_mutex);
447
448 /*
449  * List of watchers that want to know when smi's are added and deleted.
450  */
451 static LIST_HEAD(smi_watchers);
452 static DEFINE_MUTEX(smi_watchers_mutex);
453
454
455 #define ipmi_inc_stat(intf, stat) \
456         atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
457 #define ipmi_get_stat(intf, stat) \
458         ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
459
460 static int is_lan_addr(struct ipmi_addr *addr)
461 {
462         return addr->addr_type == IPMI_LAN_ADDR_TYPE;
463 }
464
465 static int is_ipmb_addr(struct ipmi_addr *addr)
466 {
467         return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
468 }
469
470 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
471 {
472         return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
473 }
474
475 static void free_recv_msg_list(struct list_head *q)
476 {
477         struct ipmi_recv_msg *msg, *msg2;
478
479         list_for_each_entry_safe(msg, msg2, q, link) {
480                 list_del(&msg->link);
481                 ipmi_free_recv_msg(msg);
482         }
483 }
484
485 static void free_smi_msg_list(struct list_head *q)
486 {
487         struct ipmi_smi_msg *msg, *msg2;
488
489         list_for_each_entry_safe(msg, msg2, q, link) {
490                 list_del(&msg->link);
491                 ipmi_free_smi_msg(msg);
492         }
493 }
494
495 static void clean_up_interface_data(ipmi_smi_t intf)
496 {
497         int              i;
498         struct cmd_rcvr  *rcvr, *rcvr2;
499         struct list_head list;
500
501         tasklet_kill(&intf->recv_tasklet);
502
503         free_smi_msg_list(&intf->waiting_msgs);
504         free_recv_msg_list(&intf->waiting_events);
505
506         /*
507          * Wholesale remove all the entries from the list in the
508          * interface and wait for RCU to know that none are in use.
509          */
510         mutex_lock(&intf->cmd_rcvrs_mutex);
511         INIT_LIST_HEAD(&list);
512         list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
513         mutex_unlock(&intf->cmd_rcvrs_mutex);
514
515         list_for_each_entry_safe(rcvr, rcvr2, &list, link)
516                 kfree(rcvr);
517
518         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
519                 if ((intf->seq_table[i].inuse)
520                                         && (intf->seq_table[i].recv_msg))
521                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
522         }
523 }
524
525 static void intf_free(struct kref *ref)
526 {
527         ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
528
529         clean_up_interface_data(intf);
530         kfree(intf);
531 }
532
533 struct watcher_entry {
534         int              intf_num;
535         ipmi_smi_t       intf;
536         struct list_head link;
537 };
538
539 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
540 {
541         ipmi_smi_t intf;
542         LIST_HEAD(to_deliver);
543         struct watcher_entry *e, *e2;
544
545         mutex_lock(&smi_watchers_mutex);
546
547         mutex_lock(&ipmi_interfaces_mutex);
548
549         /* Build a list of things to deliver. */
550         list_for_each_entry(intf, &ipmi_interfaces, link) {
551                 if (intf->intf_num == -1)
552                         continue;
553                 e = kmalloc(sizeof(*e), GFP_KERNEL);
554                 if (!e)
555                         goto out_err;
556                 kref_get(&intf->refcount);
557                 e->intf = intf;
558                 e->intf_num = intf->intf_num;
559                 list_add_tail(&e->link, &to_deliver);
560         }
561
562         /* We will succeed, so add it to the list. */
563         list_add(&watcher->link, &smi_watchers);
564
565         mutex_unlock(&ipmi_interfaces_mutex);
566
567         list_for_each_entry_safe(e, e2, &to_deliver, link) {
568                 list_del(&e->link);
569                 watcher->new_smi(e->intf_num, e->intf->si_dev);
570                 kref_put(&e->intf->refcount, intf_free);
571                 kfree(e);
572         }
573
574         mutex_unlock(&smi_watchers_mutex);
575
576         return 0;
577
578  out_err:
579         mutex_unlock(&ipmi_interfaces_mutex);
580         mutex_unlock(&smi_watchers_mutex);
581         list_for_each_entry_safe(e, e2, &to_deliver, link) {
582                 list_del(&e->link);
583                 kref_put(&e->intf->refcount, intf_free);
584                 kfree(e);
585         }
586         return -ENOMEM;
587 }
588 EXPORT_SYMBOL(ipmi_smi_watcher_register);
589
590 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
591 {
592         mutex_lock(&smi_watchers_mutex);
593         list_del(&(watcher->link));
594         mutex_unlock(&smi_watchers_mutex);
595         return 0;
596 }
597 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
598
599 /*
600  * Must be called with smi_watchers_mutex held.
601  */
602 static void
603 call_smi_watchers(int i, struct device *dev)
604 {
605         struct ipmi_smi_watcher *w;
606
607         list_for_each_entry(w, &smi_watchers, link) {
608                 if (try_module_get(w->owner)) {
609                         w->new_smi(i, dev);
610                         module_put(w->owner);
611                 }
612         }
613 }
614
615 static int
616 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
617 {
618         if (addr1->addr_type != addr2->addr_type)
619                 return 0;
620
621         if (addr1->channel != addr2->channel)
622                 return 0;
623
624         if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
625                 struct ipmi_system_interface_addr *smi_addr1
626                     = (struct ipmi_system_interface_addr *) addr1;
627                 struct ipmi_system_interface_addr *smi_addr2
628                     = (struct ipmi_system_interface_addr *) addr2;
629                 return (smi_addr1->lun == smi_addr2->lun);
630         }
631
632         if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
633                 struct ipmi_ipmb_addr *ipmb_addr1
634                     = (struct ipmi_ipmb_addr *) addr1;
635                 struct ipmi_ipmb_addr *ipmb_addr2
636                     = (struct ipmi_ipmb_addr *) addr2;
637
638                 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
639                         && (ipmb_addr1->lun == ipmb_addr2->lun));
640         }
641
642         if (is_lan_addr(addr1)) {
643                 struct ipmi_lan_addr *lan_addr1
644                         = (struct ipmi_lan_addr *) addr1;
645                 struct ipmi_lan_addr *lan_addr2
646                     = (struct ipmi_lan_addr *) addr2;
647
648                 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
649                         && (lan_addr1->local_SWID == lan_addr2->local_SWID)
650                         && (lan_addr1->session_handle
651                             == lan_addr2->session_handle)
652                         && (lan_addr1->lun == lan_addr2->lun));
653         }
654
655         return 1;
656 }
657
658 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
659 {
660         if (len < sizeof(struct ipmi_system_interface_addr))
661                 return -EINVAL;
662
663         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
664                 if (addr->channel != IPMI_BMC_CHANNEL)
665                         return -EINVAL;
666                 return 0;
667         }
668
669         if ((addr->channel == IPMI_BMC_CHANNEL)
670             || (addr->channel >= IPMI_MAX_CHANNELS)
671             || (addr->channel < 0))
672                 return -EINVAL;
673
674         if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
675                 if (len < sizeof(struct ipmi_ipmb_addr))
676                         return -EINVAL;
677                 return 0;
678         }
679
680         if (is_lan_addr(addr)) {
681                 if (len < sizeof(struct ipmi_lan_addr))
682                         return -EINVAL;
683                 return 0;
684         }
685
686         return -EINVAL;
687 }
688 EXPORT_SYMBOL(ipmi_validate_addr);
689
690 unsigned int ipmi_addr_length(int addr_type)
691 {
692         if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
693                 return sizeof(struct ipmi_system_interface_addr);
694
695         if ((addr_type == IPMI_IPMB_ADDR_TYPE)
696                         || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
697                 return sizeof(struct ipmi_ipmb_addr);
698
699         if (addr_type == IPMI_LAN_ADDR_TYPE)
700                 return sizeof(struct ipmi_lan_addr);
701
702         return 0;
703 }
704 EXPORT_SYMBOL(ipmi_addr_length);
705
706 static void deliver_response(struct ipmi_recv_msg *msg)
707 {
708         if (!msg->user) {
709                 ipmi_smi_t    intf = msg->user_msg_data;
710
711                 /* Special handling for NULL users. */
712                 if (intf->null_user_handler) {
713                         intf->null_user_handler(intf, msg);
714                         ipmi_inc_stat(intf, handled_local_responses);
715                 } else {
716                         /* No handler, so give up. */
717                         ipmi_inc_stat(intf, unhandled_local_responses);
718                 }
719                 ipmi_free_recv_msg(msg);
720         } else {
721                 ipmi_user_t user = msg->user;
722                 user->handler->ipmi_recv_hndl(msg, user->handler_data);
723         }
724 }
725
726 static void
727 deliver_err_response(struct ipmi_recv_msg *msg, int err)
728 {
729         msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
730         msg->msg_data[0] = err;
731         msg->msg.netfn |= 1; /* Convert to a response. */
732         msg->msg.data_len = 1;
733         msg->msg.data = msg->msg_data;
734         deliver_response(msg);
735 }
736
737 /*
738  * Find the next sequence number not being used and add the given
739  * message with the given timeout to the sequence table.  This must be
740  * called with the interface's seq_lock held.
741  */
742 static int intf_next_seq(ipmi_smi_t           intf,
743                          struct ipmi_recv_msg *recv_msg,
744                          unsigned long        timeout,
745                          int                  retries,
746                          int                  broadcast,
747                          unsigned char        *seq,
748                          long                 *seqid)
749 {
750         int          rv = 0;
751         unsigned int i;
752
753         for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
754                                         i = (i+1)%IPMI_IPMB_NUM_SEQ) {
755                 if (!intf->seq_table[i].inuse)
756                         break;
757         }
758
759         if (!intf->seq_table[i].inuse) {
760                 intf->seq_table[i].recv_msg = recv_msg;
761
762                 /*
763                  * Start with the maximum timeout, when the send response
764                  * comes in we will start the real timer.
765                  */
766                 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
767                 intf->seq_table[i].orig_timeout = timeout;
768                 intf->seq_table[i].retries_left = retries;
769                 intf->seq_table[i].broadcast = broadcast;
770                 intf->seq_table[i].inuse = 1;
771                 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
772                 *seq = i;
773                 *seqid = intf->seq_table[i].seqid;
774                 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
775         } else {
776                 rv = -EAGAIN;
777         }
778
779         return rv;
780 }
781
782 /*
783  * Return the receive message for the given sequence number and
784  * release the sequence number so it can be reused.  Some other data
785  * is passed in to be sure the message matches up correctly (to help
786  * guard against message coming in after their timeout and the
787  * sequence number being reused).
788  */
789 static int intf_find_seq(ipmi_smi_t           intf,
790                          unsigned char        seq,
791                          short                channel,
792                          unsigned char        cmd,
793                          unsigned char        netfn,
794                          struct ipmi_addr     *addr,
795                          struct ipmi_recv_msg **recv_msg)
796 {
797         int           rv = -ENODEV;
798         unsigned long flags;
799
800         if (seq >= IPMI_IPMB_NUM_SEQ)
801                 return -EINVAL;
802
803         spin_lock_irqsave(&(intf->seq_lock), flags);
804         if (intf->seq_table[seq].inuse) {
805                 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
806
807                 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
808                                 && (msg->msg.netfn == netfn)
809                                 && (ipmi_addr_equal(addr, &(msg->addr)))) {
810                         *recv_msg = msg;
811                         intf->seq_table[seq].inuse = 0;
812                         rv = 0;
813                 }
814         }
815         spin_unlock_irqrestore(&(intf->seq_lock), flags);
816
817         return rv;
818 }
819
820
821 /* Start the timer for a specific sequence table entry. */
822 static int intf_start_seq_timer(ipmi_smi_t intf,
823                                 long       msgid)
824 {
825         int           rv = -ENODEV;
826         unsigned long flags;
827         unsigned char seq;
828         unsigned long seqid;
829
830
831         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
832
833         spin_lock_irqsave(&(intf->seq_lock), flags);
834         /*
835          * We do this verification because the user can be deleted
836          * while a message is outstanding.
837          */
838         if ((intf->seq_table[seq].inuse)
839                                 && (intf->seq_table[seq].seqid == seqid)) {
840                 struct seq_table *ent = &(intf->seq_table[seq]);
841                 ent->timeout = ent->orig_timeout;
842                 rv = 0;
843         }
844         spin_unlock_irqrestore(&(intf->seq_lock), flags);
845
846         return rv;
847 }
848
849 /* Got an error for the send message for a specific sequence number. */
850 static int intf_err_seq(ipmi_smi_t   intf,
851                         long         msgid,
852                         unsigned int err)
853 {
854         int                  rv = -ENODEV;
855         unsigned long        flags;
856         unsigned char        seq;
857         unsigned long        seqid;
858         struct ipmi_recv_msg *msg = NULL;
859
860
861         GET_SEQ_FROM_MSGID(msgid, seq, seqid);
862
863         spin_lock_irqsave(&(intf->seq_lock), flags);
864         /*
865          * We do this verification because the user can be deleted
866          * while a message is outstanding.
867          */
868         if ((intf->seq_table[seq].inuse)
869                                 && (intf->seq_table[seq].seqid == seqid)) {
870                 struct seq_table *ent = &(intf->seq_table[seq]);
871
872                 ent->inuse = 0;
873                 msg = ent->recv_msg;
874                 rv = 0;
875         }
876         spin_unlock_irqrestore(&(intf->seq_lock), flags);
877
878         if (msg)
879                 deliver_err_response(msg, err);
880
881         return rv;
882 }
883
884
885 int ipmi_create_user(unsigned int          if_num,
886                      struct ipmi_user_hndl *handler,
887                      void                  *handler_data,
888                      ipmi_user_t           *user)
889 {
890         unsigned long flags;
891         ipmi_user_t   new_user;
892         int           rv = 0;
893         ipmi_smi_t    intf;
894
895         /*
896          * There is no module usecount here, because it's not
897          * required.  Since this can only be used by and called from
898          * other modules, they will implicitly use this module, and
899          * thus this can't be removed unless the other modules are
900          * removed.
901          */
902
903         if (handler == NULL)
904                 return -EINVAL;
905
906         /*
907          * Make sure the driver is actually initialized, this handles
908          * problems with initialization order.
909          */
910         if (!initialized) {
911                 rv = ipmi_init_msghandler();
912                 if (rv)
913                         return rv;
914
915                 /*
916                  * The init code doesn't return an error if it was turned
917                  * off, but it won't initialize.  Check that.
918                  */
919                 if (!initialized)
920                         return -ENODEV;
921         }
922
923         new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
924         if (!new_user)
925                 return -ENOMEM;
926
927         mutex_lock(&ipmi_interfaces_mutex);
928         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
929                 if (intf->intf_num == if_num)
930                         goto found;
931         }
932         /* Not found, return an error */
933         rv = -EINVAL;
934         goto out_kfree;
935
936  found:
937         /* Note that each existing user holds a refcount to the interface. */
938         kref_get(&intf->refcount);
939
940         kref_init(&new_user->refcount);
941         new_user->handler = handler;
942         new_user->handler_data = handler_data;
943         new_user->intf = intf;
944         new_user->gets_events = 0;
945
946         if (!try_module_get(intf->handlers->owner)) {
947                 rv = -ENODEV;
948                 goto out_kref;
949         }
950
951         if (intf->handlers->inc_usecount) {
952                 rv = intf->handlers->inc_usecount(intf->send_info);
953                 if (rv) {
954                         module_put(intf->handlers->owner);
955                         goto out_kref;
956                 }
957         }
958
959         /*
960          * Hold the lock so intf->handlers is guaranteed to be good
961          * until now
962          */
963         mutex_unlock(&ipmi_interfaces_mutex);
964
965         new_user->valid = 1;
966         spin_lock_irqsave(&intf->seq_lock, flags);
967         list_add_rcu(&new_user->link, &intf->users);
968         spin_unlock_irqrestore(&intf->seq_lock, flags);
969         *user = new_user;
970         return 0;
971
972 out_kref:
973         kref_put(&intf->refcount, intf_free);
974 out_kfree:
975         mutex_unlock(&ipmi_interfaces_mutex);
976         kfree(new_user);
977         return rv;
978 }
979 EXPORT_SYMBOL(ipmi_create_user);
980
981 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
982 {
983         int           rv = 0;
984         ipmi_smi_t    intf;
985         struct ipmi_smi_handlers *handlers;
986
987         mutex_lock(&ipmi_interfaces_mutex);
988         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
989                 if (intf->intf_num == if_num)
990                         goto found;
991         }
992         /* Not found, return an error */
993         rv = -EINVAL;
994         mutex_unlock(&ipmi_interfaces_mutex);
995         return rv;
996
997 found:
998         handlers = intf->handlers;
999         rv = -ENOSYS;
1000         if (handlers->get_smi_info)
1001                 rv = handlers->get_smi_info(intf->send_info, data);
1002         mutex_unlock(&ipmi_interfaces_mutex);
1003
1004         return rv;
1005 }
1006 EXPORT_SYMBOL(ipmi_get_smi_info);
1007
1008 static void free_user(struct kref *ref)
1009 {
1010         ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1011         kfree(user);
1012 }
1013
1014 int ipmi_destroy_user(ipmi_user_t user)
1015 {
1016         ipmi_smi_t       intf = user->intf;
1017         int              i;
1018         unsigned long    flags;
1019         struct cmd_rcvr  *rcvr;
1020         struct cmd_rcvr  *rcvrs = NULL;
1021
1022         user->valid = 0;
1023
1024         /* Remove the user from the interface's sequence table. */
1025         spin_lock_irqsave(&intf->seq_lock, flags);
1026         list_del_rcu(&user->link);
1027
1028         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1029                 if (intf->seq_table[i].inuse
1030                     && (intf->seq_table[i].recv_msg->user == user)) {
1031                         intf->seq_table[i].inuse = 0;
1032                         ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1033                 }
1034         }
1035         spin_unlock_irqrestore(&intf->seq_lock, flags);
1036
1037         /*
1038          * Remove the user from the command receiver's table.  First
1039          * we build a list of everything (not using the standard link,
1040          * since other things may be using it till we do
1041          * synchronize_rcu()) then free everything in that list.
1042          */
1043         mutex_lock(&intf->cmd_rcvrs_mutex);
1044         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1045                 if (rcvr->user == user) {
1046                         list_del_rcu(&rcvr->link);
1047                         rcvr->next = rcvrs;
1048                         rcvrs = rcvr;
1049                 }
1050         }
1051         mutex_unlock(&intf->cmd_rcvrs_mutex);
1052         synchronize_rcu();
1053         while (rcvrs) {
1054                 rcvr = rcvrs;
1055                 rcvrs = rcvr->next;
1056                 kfree(rcvr);
1057         }
1058
1059         mutex_lock(&ipmi_interfaces_mutex);
1060         if (intf->handlers) {
1061                 module_put(intf->handlers->owner);
1062                 if (intf->handlers->dec_usecount)
1063                         intf->handlers->dec_usecount(intf->send_info);
1064         }
1065         mutex_unlock(&ipmi_interfaces_mutex);
1066
1067         kref_put(&intf->refcount, intf_free);
1068
1069         kref_put(&user->refcount, free_user);
1070
1071         return 0;
1072 }
1073 EXPORT_SYMBOL(ipmi_destroy_user);
1074
1075 void ipmi_get_version(ipmi_user_t   user,
1076                       unsigned char *major,
1077                       unsigned char *minor)
1078 {
1079         *major = user->intf->ipmi_version_major;
1080         *minor = user->intf->ipmi_version_minor;
1081 }
1082 EXPORT_SYMBOL(ipmi_get_version);
1083
1084 int ipmi_set_my_address(ipmi_user_t   user,
1085                         unsigned int  channel,
1086                         unsigned char address)
1087 {
1088         if (channel >= IPMI_MAX_CHANNELS)
1089                 return -EINVAL;
1090         user->intf->channels[channel].address = address;
1091         return 0;
1092 }
1093 EXPORT_SYMBOL(ipmi_set_my_address);
1094
1095 int ipmi_get_my_address(ipmi_user_t   user,
1096                         unsigned int  channel,
1097                         unsigned char *address)
1098 {
1099         if (channel >= IPMI_MAX_CHANNELS)
1100                 return -EINVAL;
1101         *address = user->intf->channels[channel].address;
1102         return 0;
1103 }
1104 EXPORT_SYMBOL(ipmi_get_my_address);
1105
1106 int ipmi_set_my_LUN(ipmi_user_t   user,
1107                     unsigned int  channel,
1108                     unsigned char LUN)
1109 {
1110         if (channel >= IPMI_MAX_CHANNELS)
1111                 return -EINVAL;
1112         user->intf->channels[channel].lun = LUN & 0x3;
1113         return 0;
1114 }
1115 EXPORT_SYMBOL(ipmi_set_my_LUN);
1116
1117 int ipmi_get_my_LUN(ipmi_user_t   user,
1118                     unsigned int  channel,
1119                     unsigned char *address)
1120 {
1121         if (channel >= IPMI_MAX_CHANNELS)
1122                 return -EINVAL;
1123         *address = user->intf->channels[channel].lun;
1124         return 0;
1125 }
1126 EXPORT_SYMBOL(ipmi_get_my_LUN);
1127
1128 int ipmi_get_maintenance_mode(ipmi_user_t user)
1129 {
1130         int           mode;
1131         unsigned long flags;
1132
1133         spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1134         mode = user->intf->maintenance_mode;
1135         spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1136
1137         return mode;
1138 }
1139 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1140
1141 static void maintenance_mode_update(ipmi_smi_t intf)
1142 {
1143         if (intf->handlers->set_maintenance_mode)
1144                 intf->handlers->set_maintenance_mode(
1145                         intf->send_info, intf->maintenance_mode_enable);
1146 }
1147
1148 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1149 {
1150         int           rv = 0;
1151         unsigned long flags;
1152         ipmi_smi_t    intf = user->intf;
1153
1154         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1155         if (intf->maintenance_mode != mode) {
1156                 switch (mode) {
1157                 case IPMI_MAINTENANCE_MODE_AUTO:
1158                         intf->maintenance_mode = mode;
1159                         intf->maintenance_mode_enable
1160                                 = (intf->auto_maintenance_timeout > 0);
1161                         break;
1162
1163                 case IPMI_MAINTENANCE_MODE_OFF:
1164                         intf->maintenance_mode = mode;
1165                         intf->maintenance_mode_enable = 0;
1166                         break;
1167
1168                 case IPMI_MAINTENANCE_MODE_ON:
1169                         intf->maintenance_mode = mode;
1170                         intf->maintenance_mode_enable = 1;
1171                         break;
1172
1173                 default:
1174                         rv = -EINVAL;
1175                         goto out_unlock;
1176                 }
1177
1178                 maintenance_mode_update(intf);
1179         }
1180  out_unlock:
1181         spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1182
1183         return rv;
1184 }
1185 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1186
1187 int ipmi_set_gets_events(ipmi_user_t user, int val)
1188 {
1189         unsigned long        flags;
1190         ipmi_smi_t           intf = user->intf;
1191         struct ipmi_recv_msg *msg, *msg2;
1192         struct list_head     msgs;
1193
1194         INIT_LIST_HEAD(&msgs);
1195
1196         spin_lock_irqsave(&intf->events_lock, flags);
1197         user->gets_events = val;
1198
1199         if (intf->delivering_events)
1200                 /*
1201                  * Another thread is delivering events for this, so
1202                  * let it handle any new events.
1203                  */
1204                 goto out;
1205
1206         /* Deliver any queued events. */
1207         while (user->gets_events && !list_empty(&intf->waiting_events)) {
1208                 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1209                         list_move_tail(&msg->link, &msgs);
1210                 intf->waiting_events_count = 0;
1211                 if (intf->event_msg_printed) {
1212                         printk(KERN_WARNING PFX "Event queue no longer"
1213                                " full\n");
1214                         intf->event_msg_printed = 0;
1215                 }
1216
1217                 intf->delivering_events = 1;
1218                 spin_unlock_irqrestore(&intf->events_lock, flags);
1219
1220                 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1221                         msg->user = user;
1222                         kref_get(&user->refcount);
1223                         deliver_response(msg);
1224                 }
1225
1226                 spin_lock_irqsave(&intf->events_lock, flags);
1227                 intf->delivering_events = 0;
1228         }
1229
1230  out:
1231         spin_unlock_irqrestore(&intf->events_lock, flags);
1232
1233         return 0;
1234 }
1235 EXPORT_SYMBOL(ipmi_set_gets_events);
1236
1237 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1238                                       unsigned char netfn,
1239                                       unsigned char cmd,
1240                                       unsigned char chan)
1241 {
1242         struct cmd_rcvr *rcvr;
1243
1244         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1245                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1246                                         && (rcvr->chans & (1 << chan)))
1247                         return rcvr;
1248         }
1249         return NULL;
1250 }
1251
1252 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1253                                  unsigned char netfn,
1254                                  unsigned char cmd,
1255                                  unsigned int  chans)
1256 {
1257         struct cmd_rcvr *rcvr;
1258
1259         list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1260                 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1261                                         && (rcvr->chans & chans))
1262                         return 0;
1263         }
1264         return 1;
1265 }
1266
1267 int ipmi_register_for_cmd(ipmi_user_t   user,
1268                           unsigned char netfn,
1269                           unsigned char cmd,
1270                           unsigned int  chans)
1271 {
1272         ipmi_smi_t      intf = user->intf;
1273         struct cmd_rcvr *rcvr;
1274         int             rv = 0;
1275
1276
1277         rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1278         if (!rcvr)
1279                 return -ENOMEM;
1280         rcvr->cmd = cmd;
1281         rcvr->netfn = netfn;
1282         rcvr->chans = chans;
1283         rcvr->user = user;
1284
1285         mutex_lock(&intf->cmd_rcvrs_mutex);
1286         /* Make sure the command/netfn is not already registered. */
1287         if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1288                 rv = -EBUSY;
1289                 goto out_unlock;
1290         }
1291
1292         list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1293
1294  out_unlock:
1295         mutex_unlock(&intf->cmd_rcvrs_mutex);
1296         if (rv)
1297                 kfree(rcvr);
1298
1299         return rv;
1300 }
1301 EXPORT_SYMBOL(ipmi_register_for_cmd);
1302
1303 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1304                             unsigned char netfn,
1305                             unsigned char cmd,
1306                             unsigned int  chans)
1307 {
1308         ipmi_smi_t      intf = user->intf;
1309         struct cmd_rcvr *rcvr;
1310         struct cmd_rcvr *rcvrs = NULL;
1311         int i, rv = -ENOENT;
1312
1313         mutex_lock(&intf->cmd_rcvrs_mutex);
1314         for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1315                 if (((1 << i) & chans) == 0)
1316                         continue;
1317                 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1318                 if (rcvr == NULL)
1319                         continue;
1320                 if (rcvr->user == user) {
1321                         rv = 0;
1322                         rcvr->chans &= ~chans;
1323                         if (rcvr->chans == 0) {
1324                                 list_del_rcu(&rcvr->link);
1325                                 rcvr->next = rcvrs;
1326                                 rcvrs = rcvr;
1327                         }
1328                 }
1329         }
1330         mutex_unlock(&intf->cmd_rcvrs_mutex);
1331         synchronize_rcu();
1332         while (rcvrs) {
1333                 rcvr = rcvrs;
1334                 rcvrs = rcvr->next;
1335                 kfree(rcvr);
1336         }
1337         return rv;
1338 }
1339 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1340
1341 static unsigned char
1342 ipmb_checksum(unsigned char *data, int size)
1343 {
1344         unsigned char csum = 0;
1345
1346         for (; size > 0; size--, data++)
1347                 csum += *data;
1348
1349         return -csum;
1350 }
1351
1352 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1353                                    struct kernel_ipmi_msg *msg,
1354                                    struct ipmi_ipmb_addr *ipmb_addr,
1355                                    long                  msgid,
1356                                    unsigned char         ipmb_seq,
1357                                    int                   broadcast,
1358                                    unsigned char         source_address,
1359                                    unsigned char         source_lun)
1360 {
1361         int i = broadcast;
1362
1363         /* Format the IPMB header data. */
1364         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1365         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1366         smi_msg->data[2] = ipmb_addr->channel;
1367         if (broadcast)
1368                 smi_msg->data[3] = 0;
1369         smi_msg->data[i+3] = ipmb_addr->slave_addr;
1370         smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1371         smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1372         smi_msg->data[i+6] = source_address;
1373         smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1374         smi_msg->data[i+8] = msg->cmd;
1375
1376         /* Now tack on the data to the message. */
1377         if (msg->data_len > 0)
1378                 memcpy(&(smi_msg->data[i+9]), msg->data,
1379                        msg->data_len);
1380         smi_msg->data_size = msg->data_len + 9;
1381
1382         /* Now calculate the checksum and tack it on. */
1383         smi_msg->data[i+smi_msg->data_size]
1384                 = ipmb_checksum(&(smi_msg->data[i+6]),
1385                                 smi_msg->data_size-6);
1386
1387         /*
1388          * Add on the checksum size and the offset from the
1389          * broadcast.
1390          */
1391         smi_msg->data_size += 1 + i;
1392
1393         smi_msg->msgid = msgid;
1394 }
1395
1396 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1397                                   struct kernel_ipmi_msg *msg,
1398                                   struct ipmi_lan_addr  *lan_addr,
1399                                   long                  msgid,
1400                                   unsigned char         ipmb_seq,
1401                                   unsigned char         source_lun)
1402 {
1403         /* Format the IPMB header data. */
1404         smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1405         smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1406         smi_msg->data[2] = lan_addr->channel;
1407         smi_msg->data[3] = lan_addr->session_handle;
1408         smi_msg->data[4] = lan_addr->remote_SWID;
1409         smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1410         smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1411         smi_msg->data[7] = lan_addr->local_SWID;
1412         smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1413         smi_msg->data[9] = msg->cmd;
1414
1415         /* Now tack on the data to the message. */
1416         if (msg->data_len > 0)
1417                 memcpy(&(smi_msg->data[10]), msg->data,
1418                        msg->data_len);
1419         smi_msg->data_size = msg->data_len + 10;
1420
1421         /* Now calculate the checksum and tack it on. */
1422         smi_msg->data[smi_msg->data_size]
1423                 = ipmb_checksum(&(smi_msg->data[7]),
1424                                 smi_msg->data_size-7);
1425
1426         /*
1427          * Add on the checksum size and the offset from the
1428          * broadcast.
1429          */
1430         smi_msg->data_size += 1;
1431
1432         smi_msg->msgid = msgid;
1433 }
1434
1435 /*
1436  * Separate from ipmi_request so that the user does not have to be
1437  * supplied in certain circumstances (mainly at panic time).  If
1438  * messages are supplied, they will be freed, even if an error
1439  * occurs.
1440  */
1441 static int i_ipmi_request(ipmi_user_t          user,
1442                           ipmi_smi_t           intf,
1443                           struct ipmi_addr     *addr,
1444                           long                 msgid,
1445                           struct kernel_ipmi_msg *msg,
1446                           void                 *user_msg_data,
1447                           void                 *supplied_smi,
1448                           struct ipmi_recv_msg *supplied_recv,
1449                           int                  priority,
1450                           unsigned char        source_address,
1451                           unsigned char        source_lun,
1452                           int                  retries,
1453                           unsigned int         retry_time_ms)
1454 {
1455         int                      rv = 0;
1456         struct ipmi_smi_msg      *smi_msg;
1457         struct ipmi_recv_msg     *recv_msg;
1458         unsigned long            flags;
1459         struct ipmi_smi_handlers *handlers;
1460
1461
1462         if (supplied_recv)
1463                 recv_msg = supplied_recv;
1464         else {
1465                 recv_msg = ipmi_alloc_recv_msg();
1466                 if (recv_msg == NULL)
1467                         return -ENOMEM;
1468         }
1469         recv_msg->user_msg_data = user_msg_data;
1470
1471         if (supplied_smi)
1472                 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1473         else {
1474                 smi_msg = ipmi_alloc_smi_msg();
1475                 if (smi_msg == NULL) {
1476                         ipmi_free_recv_msg(recv_msg);
1477                         return -ENOMEM;
1478                 }
1479         }
1480
1481         rcu_read_lock();
1482         handlers = intf->handlers;
1483         if (!handlers) {
1484                 rv = -ENODEV;
1485                 goto out_err;
1486         }
1487
1488         recv_msg->user = user;
1489         if (user)
1490                 kref_get(&user->refcount);
1491         recv_msg->msgid = msgid;
1492         /*
1493          * Store the message to send in the receive message so timeout
1494          * responses can get the proper response data.
1495          */
1496         recv_msg->msg = *msg;
1497
1498         if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1499                 struct ipmi_system_interface_addr *smi_addr;
1500
1501                 if (msg->netfn & 1) {
1502                         /* Responses are not allowed to the SMI. */
1503                         rv = -EINVAL;
1504                         goto out_err;
1505                 }
1506
1507                 smi_addr = (struct ipmi_system_interface_addr *) addr;
1508                 if (smi_addr->lun > 3) {
1509                         ipmi_inc_stat(intf, sent_invalid_commands);
1510                         rv = -EINVAL;
1511                         goto out_err;
1512                 }
1513
1514                 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1515
1516                 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1517                     && ((msg->cmd == IPMI_SEND_MSG_CMD)
1518                         || (msg->cmd == IPMI_GET_MSG_CMD)
1519                         || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1520                         /*
1521                          * We don't let the user do these, since we manage
1522                          * the sequence numbers.
1523                          */
1524                         ipmi_inc_stat(intf, sent_invalid_commands);
1525                         rv = -EINVAL;
1526                         goto out_err;
1527                 }
1528
1529                 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1530                       && ((msg->cmd == IPMI_COLD_RESET_CMD)
1531                           || (msg->cmd == IPMI_WARM_RESET_CMD)))
1532                      || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1533                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1534                         intf->auto_maintenance_timeout
1535                                 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1536                         if (!intf->maintenance_mode
1537                             && !intf->maintenance_mode_enable) {
1538                                 intf->maintenance_mode_enable = 1;
1539                                 maintenance_mode_update(intf);
1540                         }
1541                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1542                                                flags);
1543                 }
1544
1545                 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1546                         ipmi_inc_stat(intf, sent_invalid_commands);
1547                         rv = -EMSGSIZE;
1548                         goto out_err;
1549                 }
1550
1551                 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1552                 smi_msg->data[1] = msg->cmd;
1553                 smi_msg->msgid = msgid;
1554                 smi_msg->user_data = recv_msg;
1555                 if (msg->data_len > 0)
1556                         memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1557                 smi_msg->data_size = msg->data_len + 2;
1558                 ipmi_inc_stat(intf, sent_local_commands);
1559         } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1560                 struct ipmi_ipmb_addr *ipmb_addr;
1561                 unsigned char         ipmb_seq;
1562                 long                  seqid;
1563                 int                   broadcast = 0;
1564
1565                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1566                         ipmi_inc_stat(intf, sent_invalid_commands);
1567                         rv = -EINVAL;
1568                         goto out_err;
1569                 }
1570
1571                 if (intf->channels[addr->channel].medium
1572                                         != IPMI_CHANNEL_MEDIUM_IPMB) {
1573                         ipmi_inc_stat(intf, sent_invalid_commands);
1574                         rv = -EINVAL;
1575                         goto out_err;
1576                 }
1577
1578                 if (retries < 0) {
1579                     if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1580                         retries = 0; /* Don't retry broadcasts. */
1581                     else
1582                         retries = 4;
1583                 }
1584                 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1585                     /*
1586                      * Broadcasts add a zero at the beginning of the
1587                      * message, but otherwise is the same as an IPMB
1588                      * address.
1589                      */
1590                     addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1591                     broadcast = 1;
1592                 }
1593
1594
1595                 /* Default to 1 second retries. */
1596                 if (retry_time_ms == 0)
1597                     retry_time_ms = 1000;
1598
1599                 /*
1600                  * 9 for the header and 1 for the checksum, plus
1601                  * possibly one for the broadcast.
1602                  */
1603                 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1604                         ipmi_inc_stat(intf, sent_invalid_commands);
1605                         rv = -EMSGSIZE;
1606                         goto out_err;
1607                 }
1608
1609                 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1610                 if (ipmb_addr->lun > 3) {
1611                         ipmi_inc_stat(intf, sent_invalid_commands);
1612                         rv = -EINVAL;
1613                         goto out_err;
1614                 }
1615
1616                 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1617
1618                 if (recv_msg->msg.netfn & 0x1) {
1619                         /*
1620                          * It's a response, so use the user's sequence
1621                          * from msgid.
1622                          */
1623                         ipmi_inc_stat(intf, sent_ipmb_responses);
1624                         format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1625                                         msgid, broadcast,
1626                                         source_address, source_lun);
1627
1628                         /*
1629                          * Save the receive message so we can use it
1630                          * to deliver the response.
1631                          */
1632                         smi_msg->user_data = recv_msg;
1633                 } else {
1634                         /* It's a command, so get a sequence for it. */
1635
1636                         spin_lock_irqsave(&(intf->seq_lock), flags);
1637
1638                         /*
1639                          * Create a sequence number with a 1 second
1640                          * timeout and 4 retries.
1641                          */
1642                         rv = intf_next_seq(intf,
1643                                            recv_msg,
1644                                            retry_time_ms,
1645                                            retries,
1646                                            broadcast,
1647                                            &ipmb_seq,
1648                                            &seqid);
1649                         if (rv) {
1650                                 /*
1651                                  * We have used up all the sequence numbers,
1652                                  * probably, so abort.
1653                                  */
1654                                 spin_unlock_irqrestore(&(intf->seq_lock),
1655                                                        flags);
1656                                 goto out_err;
1657                         }
1658
1659                         ipmi_inc_stat(intf, sent_ipmb_commands);
1660
1661                         /*
1662                          * Store the sequence number in the message,
1663                          * so that when the send message response
1664                          * comes back we can start the timer.
1665                          */
1666                         format_ipmb_msg(smi_msg, msg, ipmb_addr,
1667                                         STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1668                                         ipmb_seq, broadcast,
1669                                         source_address, source_lun);
1670
1671                         /*
1672                          * Copy the message into the recv message data, so we
1673                          * can retransmit it later if necessary.
1674                          */
1675                         memcpy(recv_msg->msg_data, smi_msg->data,
1676                                smi_msg->data_size);
1677                         recv_msg->msg.data = recv_msg->msg_data;
1678                         recv_msg->msg.data_len = smi_msg->data_size;
1679
1680                         /*
1681                          * We don't unlock until here, because we need
1682                          * to copy the completed message into the
1683                          * recv_msg before we release the lock.
1684                          * Otherwise, race conditions may bite us.  I
1685                          * know that's pretty paranoid, but I prefer
1686                          * to be correct.
1687                          */
1688                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1689                 }
1690         } else if (is_lan_addr(addr)) {
1691                 struct ipmi_lan_addr  *lan_addr;
1692                 unsigned char         ipmb_seq;
1693                 long                  seqid;
1694
1695                 if (addr->channel >= IPMI_MAX_CHANNELS) {
1696                         ipmi_inc_stat(intf, sent_invalid_commands);
1697                         rv = -EINVAL;
1698                         goto out_err;
1699                 }
1700
1701                 if ((intf->channels[addr->channel].medium
1702                                 != IPMI_CHANNEL_MEDIUM_8023LAN)
1703                     && (intf->channels[addr->channel].medium
1704                                 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1705                         ipmi_inc_stat(intf, sent_invalid_commands);
1706                         rv = -EINVAL;
1707                         goto out_err;
1708                 }
1709
1710                 retries = 4;
1711
1712                 /* Default to 1 second retries. */
1713                 if (retry_time_ms == 0)
1714                     retry_time_ms = 1000;
1715
1716                 /* 11 for the header and 1 for the checksum. */
1717                 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1718                         ipmi_inc_stat(intf, sent_invalid_commands);
1719                         rv = -EMSGSIZE;
1720                         goto out_err;
1721                 }
1722
1723                 lan_addr = (struct ipmi_lan_addr *) addr;
1724                 if (lan_addr->lun > 3) {
1725                         ipmi_inc_stat(intf, sent_invalid_commands);
1726                         rv = -EINVAL;
1727                         goto out_err;
1728                 }
1729
1730                 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1731
1732                 if (recv_msg->msg.netfn & 0x1) {
1733                         /*
1734                          * It's a response, so use the user's sequence
1735                          * from msgid.
1736                          */
1737                         ipmi_inc_stat(intf, sent_lan_responses);
1738                         format_lan_msg(smi_msg, msg, lan_addr, msgid,
1739                                        msgid, source_lun);
1740
1741                         /*
1742                          * Save the receive message so we can use it
1743                          * to deliver the response.
1744                          */
1745                         smi_msg->user_data = recv_msg;
1746                 } else {
1747                         /* It's a command, so get a sequence for it. */
1748
1749                         spin_lock_irqsave(&(intf->seq_lock), flags);
1750
1751                         /*
1752                          * Create a sequence number with a 1 second
1753                          * timeout and 4 retries.
1754                          */
1755                         rv = intf_next_seq(intf,
1756                                            recv_msg,
1757                                            retry_time_ms,
1758                                            retries,
1759                                            0,
1760                                            &ipmb_seq,
1761                                            &seqid);
1762                         if (rv) {
1763                                 /*
1764                                  * We have used up all the sequence numbers,
1765                                  * probably, so abort.
1766                                  */
1767                                 spin_unlock_irqrestore(&(intf->seq_lock),
1768                                                        flags);
1769                                 goto out_err;
1770                         }
1771
1772                         ipmi_inc_stat(intf, sent_lan_commands);
1773
1774                         /*
1775                          * Store the sequence number in the message,
1776                          * so that when the send message response
1777                          * comes back we can start the timer.
1778                          */
1779                         format_lan_msg(smi_msg, msg, lan_addr,
1780                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1781                                        ipmb_seq, source_lun);
1782
1783                         /*
1784                          * Copy the message into the recv message data, so we
1785                          * can retransmit it later if necessary.
1786                          */
1787                         memcpy(recv_msg->msg_data, smi_msg->data,
1788                                smi_msg->data_size);
1789                         recv_msg->msg.data = recv_msg->msg_data;
1790                         recv_msg->msg.data_len = smi_msg->data_size;
1791
1792                         /*
1793                          * We don't unlock until here, because we need
1794                          * to copy the completed message into the
1795                          * recv_msg before we release the lock.
1796                          * Otherwise, race conditions may bite us.  I
1797                          * know that's pretty paranoid, but I prefer
1798                          * to be correct.
1799                          */
1800                         spin_unlock_irqrestore(&(intf->seq_lock), flags);
1801                 }
1802         } else {
1803             /* Unknown address type. */
1804                 ipmi_inc_stat(intf, sent_invalid_commands);
1805                 rv = -EINVAL;
1806                 goto out_err;
1807         }
1808
1809 #ifdef DEBUG_MSGING
1810         {
1811                 int m;
1812                 for (m = 0; m < smi_msg->data_size; m++)
1813                         printk(" %2.2x", smi_msg->data[m]);
1814                 printk("\n");
1815         }
1816 #endif
1817
1818         handlers->sender(intf->send_info, smi_msg, priority);
1819         rcu_read_unlock();
1820
1821         return 0;
1822
1823  out_err:
1824         rcu_read_unlock();
1825         ipmi_free_smi_msg(smi_msg);
1826         ipmi_free_recv_msg(recv_msg);
1827         return rv;
1828 }
1829
1830 static int check_addr(ipmi_smi_t       intf,
1831                       struct ipmi_addr *addr,
1832                       unsigned char    *saddr,
1833                       unsigned char    *lun)
1834 {
1835         if (addr->channel >= IPMI_MAX_CHANNELS)
1836                 return -EINVAL;
1837         *lun = intf->channels[addr->channel].lun;
1838         *saddr = intf->channels[addr->channel].address;
1839         return 0;
1840 }
1841
1842 int ipmi_request_settime(ipmi_user_t      user,
1843                          struct ipmi_addr *addr,
1844                          long             msgid,
1845                          struct kernel_ipmi_msg  *msg,
1846                          void             *user_msg_data,
1847                          int              priority,
1848                          int              retries,
1849                          unsigned int     retry_time_ms)
1850 {
1851         unsigned char saddr, lun;
1852         int           rv;
1853
1854         if (!user)
1855                 return -EINVAL;
1856         rv = check_addr(user->intf, addr, &saddr, &lun);
1857         if (rv)
1858                 return rv;
1859         return i_ipmi_request(user,
1860                               user->intf,
1861                               addr,
1862                               msgid,
1863                               msg,
1864                               user_msg_data,
1865                               NULL, NULL,
1866                               priority,
1867                               saddr,
1868                               lun,
1869                               retries,
1870                               retry_time_ms);
1871 }
1872 EXPORT_SYMBOL(ipmi_request_settime);
1873
1874 int ipmi_request_supply_msgs(ipmi_user_t          user,
1875                              struct ipmi_addr     *addr,
1876                              long                 msgid,
1877                              struct kernel_ipmi_msg *msg,
1878                              void                 *user_msg_data,
1879                              void                 *supplied_smi,
1880                              struct ipmi_recv_msg *supplied_recv,
1881                              int                  priority)
1882 {
1883         unsigned char saddr = 0, lun = 0;
1884         int           rv;
1885
1886         if (!user)
1887                 return -EINVAL;
1888         rv = check_addr(user->intf, addr, &saddr, &lun);
1889         if (rv)
1890                 return rv;
1891         return i_ipmi_request(user,
1892                               user->intf,
1893                               addr,
1894                               msgid,
1895                               msg,
1896                               user_msg_data,
1897                               supplied_smi,
1898                               supplied_recv,
1899                               priority,
1900                               saddr,
1901                               lun,
1902                               -1, 0);
1903 }
1904 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1905
1906 #ifdef CONFIG_PROC_FS
1907 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1908 {
1909         ipmi_smi_t intf = m->private;
1910         int        i;
1911
1912         seq_printf(m, "%x", intf->channels[0].address);
1913         for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1914                 seq_printf(m, " %x", intf->channels[i].address);
1915         return seq_putc(m, '\n');
1916 }
1917
1918 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1919 {
1920         return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1921 }
1922
1923 static const struct file_operations smi_ipmb_proc_ops = {
1924         .open           = smi_ipmb_proc_open,
1925         .read           = seq_read,
1926         .llseek         = seq_lseek,
1927         .release        = single_release,
1928 };
1929
1930 static int smi_version_proc_show(struct seq_file *m, void *v)
1931 {
1932         ipmi_smi_t intf = m->private;
1933
1934         return seq_printf(m, "%u.%u\n",
1935                        ipmi_version_major(&intf->bmc->id),
1936                        ipmi_version_minor(&intf->bmc->id));
1937 }
1938
1939 static int smi_version_proc_open(struct inode *inode, struct file *file)
1940 {
1941         return single_open(file, smi_version_proc_show, PDE_DATA(inode));
1942 }
1943
1944 static const struct file_operations smi_version_proc_ops = {
1945         .open           = smi_version_proc_open,
1946         .read           = seq_read,
1947         .llseek         = seq_lseek,
1948         .release        = single_release,
1949 };
1950
1951 static int smi_stats_proc_show(struct seq_file *m, void *v)
1952 {
1953         ipmi_smi_t intf = m->private;
1954
1955         seq_printf(m, "sent_invalid_commands:       %u\n",
1956                        ipmi_get_stat(intf, sent_invalid_commands));
1957         seq_printf(m, "sent_local_commands:         %u\n",
1958                        ipmi_get_stat(intf, sent_local_commands));
1959         seq_printf(m, "handled_local_responses:     %u\n",
1960                        ipmi_get_stat(intf, handled_local_responses));
1961         seq_printf(m, "unhandled_local_responses:   %u\n",
1962                        ipmi_get_stat(intf, unhandled_local_responses));
1963         seq_printf(m, "sent_ipmb_commands:          %u\n",
1964                        ipmi_get_stat(intf, sent_ipmb_commands));
1965         seq_printf(m, "sent_ipmb_command_errs:      %u\n",
1966                        ipmi_get_stat(intf, sent_ipmb_command_errs));
1967         seq_printf(m, "retransmitted_ipmb_commands: %u\n",
1968                        ipmi_get_stat(intf, retransmitted_ipmb_commands));
1969         seq_printf(m, "timed_out_ipmb_commands:     %u\n",
1970                        ipmi_get_stat(intf, timed_out_ipmb_commands));
1971         seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
1972                        ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1973         seq_printf(m, "sent_ipmb_responses:         %u\n",
1974                        ipmi_get_stat(intf, sent_ipmb_responses));
1975         seq_printf(m, "handled_ipmb_responses:      %u\n",
1976                        ipmi_get_stat(intf, handled_ipmb_responses));
1977         seq_printf(m, "invalid_ipmb_responses:      %u\n",
1978                        ipmi_get_stat(intf, invalid_ipmb_responses));
1979         seq_printf(m, "unhandled_ipmb_responses:    %u\n",
1980                        ipmi_get_stat(intf, unhandled_ipmb_responses));
1981         seq_printf(m, "sent_lan_commands:           %u\n",
1982                        ipmi_get_stat(intf, sent_lan_commands));
1983         seq_printf(m, "sent_lan_command_errs:       %u\n",
1984                        ipmi_get_stat(intf, sent_lan_command_errs));
1985         seq_printf(m, "retransmitted_lan_commands:  %u\n",
1986                        ipmi_get_stat(intf, retransmitted_lan_commands));
1987         seq_printf(m, "timed_out_lan_commands:      %u\n",
1988                        ipmi_get_stat(intf, timed_out_lan_commands));
1989         seq_printf(m, "sent_lan_responses:          %u\n",
1990                        ipmi_get_stat(intf, sent_lan_responses));
1991         seq_printf(m, "handled_lan_responses:       %u\n",
1992                        ipmi_get_stat(intf, handled_lan_responses));
1993         seq_printf(m, "invalid_lan_responses:       %u\n",
1994                        ipmi_get_stat(intf, invalid_lan_responses));
1995         seq_printf(m, "unhandled_lan_responses:     %u\n",
1996                        ipmi_get_stat(intf, unhandled_lan_responses));
1997         seq_printf(m, "handled_commands:            %u\n",
1998                        ipmi_get_stat(intf, handled_commands));
1999         seq_printf(m, "invalid_commands:            %u\n",
2000                        ipmi_get_stat(intf, invalid_commands));
2001         seq_printf(m, "unhandled_commands:          %u\n",
2002                        ipmi_get_stat(intf, unhandled_commands));
2003         seq_printf(m, "invalid_events:              %u\n",
2004                        ipmi_get_stat(intf, invalid_events));
2005         seq_printf(m, "events:                      %u\n",
2006                        ipmi_get_stat(intf, events));
2007         seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2008                        ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2009         seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2010                        ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2011         return 0;
2012 }
2013
2014 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2015 {
2016         return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2017 }
2018
2019 static const struct file_operations smi_stats_proc_ops = {
2020         .open           = smi_stats_proc_open,
2021         .read           = seq_read,
2022         .llseek         = seq_lseek,
2023         .release        = single_release,
2024 };
2025 #endif /* CONFIG_PROC_FS */
2026
2027 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2028                             const struct file_operations *proc_ops,
2029                             void *data)
2030 {
2031         int                    rv = 0;
2032 #ifdef CONFIG_PROC_FS
2033         struct proc_dir_entry  *file;
2034         struct ipmi_proc_entry *entry;
2035
2036         /* Create a list element. */
2037         entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2038         if (!entry)
2039                 return -ENOMEM;
2040         entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
2041         if (!entry->name) {
2042                 kfree(entry);
2043                 return -ENOMEM;
2044         }
2045         strcpy(entry->name, name);
2046
2047         file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2048         if (!file) {
2049                 kfree(entry->name);
2050                 kfree(entry);
2051                 rv = -ENOMEM;
2052         } else {
2053                 mutex_lock(&smi->proc_entry_lock);
2054                 /* Stick it on the list. */
2055                 entry->next = smi->proc_entries;
2056                 smi->proc_entries = entry;
2057                 mutex_unlock(&smi->proc_entry_lock);
2058         }
2059 #endif /* CONFIG_PROC_FS */
2060
2061         return rv;
2062 }
2063 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2064
2065 static int add_proc_entries(ipmi_smi_t smi, int num)
2066 {
2067         int rv = 0;
2068
2069 #ifdef CONFIG_PROC_FS
2070         sprintf(smi->proc_dir_name, "%d", num);
2071         smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2072         if (!smi->proc_dir)
2073                 rv = -ENOMEM;
2074
2075         if (rv == 0)
2076                 rv = ipmi_smi_add_proc_entry(smi, "stats",
2077                                              &smi_stats_proc_ops,
2078                                              smi);
2079
2080         if (rv == 0)
2081                 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2082                                              &smi_ipmb_proc_ops,
2083                                              smi);
2084
2085         if (rv == 0)
2086                 rv = ipmi_smi_add_proc_entry(smi, "version",
2087                                              &smi_version_proc_ops,
2088                                              smi);
2089 #endif /* CONFIG_PROC_FS */
2090
2091         return rv;
2092 }
2093
2094 static void remove_proc_entries(ipmi_smi_t smi)
2095 {
2096 #ifdef CONFIG_PROC_FS
2097         struct ipmi_proc_entry *entry;
2098
2099         mutex_lock(&smi->proc_entry_lock);
2100         while (smi->proc_entries) {
2101                 entry = smi->proc_entries;
2102                 smi->proc_entries = entry->next;
2103
2104                 remove_proc_entry(entry->name, smi->proc_dir);
2105                 kfree(entry->name);
2106                 kfree(entry);
2107         }
2108         mutex_unlock(&smi->proc_entry_lock);
2109         remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2110 #endif /* CONFIG_PROC_FS */
2111 }
2112
2113 static int __find_bmc_guid(struct device *dev, void *data)
2114 {
2115         unsigned char *id = data;
2116         struct bmc_device *bmc = dev_get_drvdata(dev);
2117         return memcmp(bmc->guid, id, 16) == 0;
2118 }
2119
2120 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2121                                              unsigned char *guid)
2122 {
2123         struct device *dev;
2124
2125         dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2126         if (dev)
2127                 return dev_get_drvdata(dev);
2128         else
2129                 return NULL;
2130 }
2131
2132 struct prod_dev_id {
2133         unsigned int  product_id;
2134         unsigned char device_id;
2135 };
2136
2137 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2138 {
2139         struct prod_dev_id *id = data;
2140         struct bmc_device *bmc = dev_get_drvdata(dev);
2141
2142         return (bmc->id.product_id == id->product_id
2143                 && bmc->id.device_id == id->device_id);
2144 }
2145
2146 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2147         struct device_driver *drv,
2148         unsigned int product_id, unsigned char device_id)
2149 {
2150         struct prod_dev_id id = {
2151                 .product_id = product_id,
2152                 .device_id = device_id,
2153         };
2154         struct device *dev;
2155
2156         dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2157         if (dev)
2158                 return dev_get_drvdata(dev);
2159         else
2160                 return NULL;
2161 }
2162
2163 static ssize_t device_id_show(struct device *dev,
2164                               struct device_attribute *attr,
2165                               char *buf)
2166 {
2167         struct bmc_device *bmc = dev_get_drvdata(dev);
2168
2169         return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2170 }
2171
2172 static ssize_t provides_dev_sdrs_show(struct device *dev,
2173                                       struct device_attribute *attr,
2174                                       char *buf)
2175 {
2176         struct bmc_device *bmc = dev_get_drvdata(dev);
2177
2178         return snprintf(buf, 10, "%u\n",
2179                         (bmc->id.device_revision & 0x80) >> 7);
2180 }
2181
2182 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2183                              char *buf)
2184 {
2185         struct bmc_device *bmc = dev_get_drvdata(dev);
2186
2187         return snprintf(buf, 20, "%u\n",
2188                         bmc->id.device_revision & 0x0F);
2189 }
2190
2191 static ssize_t firmware_rev_show(struct device *dev,
2192                                  struct device_attribute *attr,
2193                                  char *buf)
2194 {
2195         struct bmc_device *bmc = dev_get_drvdata(dev);
2196
2197         return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2198                         bmc->id.firmware_revision_2);
2199 }
2200
2201 static ssize_t ipmi_version_show(struct device *dev,
2202                                  struct device_attribute *attr,
2203                                  char *buf)
2204 {
2205         struct bmc_device *bmc = dev_get_drvdata(dev);
2206
2207         return snprintf(buf, 20, "%u.%u\n",
2208                         ipmi_version_major(&bmc->id),
2209                         ipmi_version_minor(&bmc->id));
2210 }
2211
2212 static ssize_t add_dev_support_show(struct device *dev,
2213                                     struct device_attribute *attr,
2214                                     char *buf)
2215 {
2216         struct bmc_device *bmc = dev_get_drvdata(dev);
2217
2218         return snprintf(buf, 10, "0x%02x\n",
2219                         bmc->id.additional_device_support);
2220 }
2221
2222 static ssize_t manufacturer_id_show(struct device *dev,
2223                                     struct device_attribute *attr,
2224                                     char *buf)
2225 {
2226         struct bmc_device *bmc = dev_get_drvdata(dev);
2227
2228         return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2229 }
2230
2231 static ssize_t product_id_show(struct device *dev,
2232                                struct device_attribute *attr,
2233                                char *buf)
2234 {
2235         struct bmc_device *bmc = dev_get_drvdata(dev);
2236
2237         return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2238 }
2239
2240 static ssize_t aux_firmware_rev_show(struct device *dev,
2241                                      struct device_attribute *attr,
2242                                      char *buf)
2243 {
2244         struct bmc_device *bmc = dev_get_drvdata(dev);
2245
2246         return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2247                         bmc->id.aux_firmware_revision[3],
2248                         bmc->id.aux_firmware_revision[2],
2249                         bmc->id.aux_firmware_revision[1],
2250                         bmc->id.aux_firmware_revision[0]);
2251 }
2252
2253 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2254                          char *buf)
2255 {
2256         struct bmc_device *bmc = dev_get_drvdata(dev);
2257
2258         return snprintf(buf, 100, "%Lx%Lx\n",
2259                         (long long) bmc->guid[0],
2260                         (long long) bmc->guid[8]);
2261 }
2262
2263 static void remove_files(struct bmc_device *bmc)
2264 {
2265         if (!bmc->dev)
2266                 return;
2267
2268         device_remove_file(&bmc->dev->dev,
2269                            &bmc->device_id_attr);
2270         device_remove_file(&bmc->dev->dev,
2271                            &bmc->provides_dev_sdrs_attr);
2272         device_remove_file(&bmc->dev->dev,
2273                            &bmc->revision_attr);
2274         device_remove_file(&bmc->dev->dev,
2275                            &bmc->firmware_rev_attr);
2276         device_remove_file(&bmc->dev->dev,
2277                            &bmc->version_attr);
2278         device_remove_file(&bmc->dev->dev,
2279                            &bmc->add_dev_support_attr);
2280         device_remove_file(&bmc->dev->dev,
2281                            &bmc->manufacturer_id_attr);
2282         device_remove_file(&bmc->dev->dev,
2283                            &bmc->product_id_attr);
2284
2285         if (bmc->id.aux_firmware_revision_set)
2286                 device_remove_file(&bmc->dev->dev,
2287                                    &bmc->aux_firmware_rev_attr);
2288         if (bmc->guid_set)
2289                 device_remove_file(&bmc->dev->dev,
2290                                    &bmc->guid_attr);
2291 }
2292
2293 static void
2294 cleanup_bmc_device(struct kref *ref)
2295 {
2296         struct bmc_device *bmc;
2297
2298         bmc = container_of(ref, struct bmc_device, refcount);
2299
2300         remove_files(bmc);
2301         platform_device_unregister(bmc->dev);
2302         kfree(bmc);
2303 }
2304
2305 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2306 {
2307         struct bmc_device *bmc = intf->bmc;
2308
2309         if (intf->sysfs_name) {
2310                 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2311                 kfree(intf->sysfs_name);
2312                 intf->sysfs_name = NULL;
2313         }
2314         if (intf->my_dev_name) {
2315                 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2316                 kfree(intf->my_dev_name);
2317                 intf->my_dev_name = NULL;
2318         }
2319
2320         mutex_lock(&ipmidriver_mutex);
2321         kref_put(&bmc->refcount, cleanup_bmc_device);
2322         intf->bmc = NULL;
2323         mutex_unlock(&ipmidriver_mutex);
2324 }
2325
2326 static int create_files(struct bmc_device *bmc)
2327 {
2328         int err;
2329
2330         bmc->device_id_attr.attr.name = "device_id";
2331         bmc->device_id_attr.attr.mode = S_IRUGO;
2332         bmc->device_id_attr.show = device_id_show;
2333         sysfs_attr_init(&bmc->device_id_attr.attr);
2334
2335         bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2336         bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2337         bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2338         sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2339
2340         bmc->revision_attr.attr.name = "revision";
2341         bmc->revision_attr.attr.mode = S_IRUGO;
2342         bmc->revision_attr.show = revision_show;
2343         sysfs_attr_init(&bmc->revision_attr.attr);
2344
2345         bmc->firmware_rev_attr.attr.name = "firmware_revision";
2346         bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2347         bmc->firmware_rev_attr.show = firmware_rev_show;
2348         sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2349
2350         bmc->version_attr.attr.name = "ipmi_version";
2351         bmc->version_attr.attr.mode = S_IRUGO;
2352         bmc->version_attr.show = ipmi_version_show;
2353         sysfs_attr_init(&bmc->version_attr.attr);
2354
2355         bmc->add_dev_support_attr.attr.name = "additional_device_support";
2356         bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2357         bmc->add_dev_support_attr.show = add_dev_support_show;
2358         sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2359
2360         bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2361         bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2362         bmc->manufacturer_id_attr.show = manufacturer_id_show;
2363         sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2364
2365         bmc->product_id_attr.attr.name = "product_id";
2366         bmc->product_id_attr.attr.mode = S_IRUGO;
2367         bmc->product_id_attr.show = product_id_show;
2368         sysfs_attr_init(&bmc->product_id_attr.attr);
2369
2370         bmc->guid_attr.attr.name = "guid";
2371         bmc->guid_attr.attr.mode = S_IRUGO;
2372         bmc->guid_attr.show = guid_show;
2373         sysfs_attr_init(&bmc->guid_attr.attr);
2374
2375         bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2376         bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2377         bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2378         sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2379
2380         err = device_create_file(&bmc->dev->dev,
2381                            &bmc->device_id_attr);
2382         if (err)
2383                 goto out;
2384         err = device_create_file(&bmc->dev->dev,
2385                            &bmc->provides_dev_sdrs_attr);
2386         if (err)
2387                 goto out_devid;
2388         err = device_create_file(&bmc->dev->dev,
2389                            &bmc->revision_attr);
2390         if (err)
2391                 goto out_sdrs;
2392         err = device_create_file(&bmc->dev->dev,
2393                            &bmc->firmware_rev_attr);
2394         if (err)
2395                 goto out_rev;
2396         err = device_create_file(&bmc->dev->dev,
2397                            &bmc->version_attr);
2398         if (err)
2399                 goto out_firm;
2400         err = device_create_file(&bmc->dev->dev,
2401                            &bmc->add_dev_support_attr);
2402         if (err)
2403                 goto out_version;
2404         err = device_create_file(&bmc->dev->dev,
2405                            &bmc->manufacturer_id_attr);
2406         if (err)
2407                 goto out_add_dev;
2408         err = device_create_file(&bmc->dev->dev,
2409                            &bmc->product_id_attr);
2410         if (err)
2411                 goto out_manu;
2412         if (bmc->id.aux_firmware_revision_set) {
2413                 err = device_create_file(&bmc->dev->dev,
2414                                    &bmc->aux_firmware_rev_attr);
2415                 if (err)
2416                         goto out_prod_id;
2417         }
2418         if (bmc->guid_set) {
2419                 err = device_create_file(&bmc->dev->dev,
2420                                    &bmc->guid_attr);
2421                 if (err)
2422                         goto out_aux_firm;
2423         }
2424
2425         return 0;
2426
2427 out_aux_firm:
2428         if (bmc->id.aux_firmware_revision_set)
2429                 device_remove_file(&bmc->dev->dev,
2430                                    &bmc->aux_firmware_rev_attr);
2431 out_prod_id:
2432         device_remove_file(&bmc->dev->dev,
2433                            &bmc->product_id_attr);
2434 out_manu:
2435         device_remove_file(&bmc->dev->dev,
2436                            &bmc->manufacturer_id_attr);
2437 out_add_dev:
2438         device_remove_file(&bmc->dev->dev,
2439                            &bmc->add_dev_support_attr);
2440 out_version:
2441         device_remove_file(&bmc->dev->dev,
2442                            &bmc->version_attr);
2443 out_firm:
2444         device_remove_file(&bmc->dev->dev,
2445                            &bmc->firmware_rev_attr);
2446 out_rev:
2447         device_remove_file(&bmc->dev->dev,
2448                            &bmc->revision_attr);
2449 out_sdrs:
2450         device_remove_file(&bmc->dev->dev,
2451                            &bmc->provides_dev_sdrs_attr);
2452 out_devid:
2453         device_remove_file(&bmc->dev->dev,
2454                            &bmc->device_id_attr);
2455 out:
2456         return err;
2457 }
2458
2459 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2460                              const char *sysfs_name)
2461 {
2462         int               rv;
2463         struct bmc_device *bmc = intf->bmc;
2464         struct bmc_device *old_bmc;
2465         int               size;
2466         char              dummy[1];
2467
2468         mutex_lock(&ipmidriver_mutex);
2469
2470         /*
2471          * Try to find if there is an bmc_device struct
2472          * representing the interfaced BMC already
2473          */
2474         if (bmc->guid_set)
2475                 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2476         else
2477                 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2478                                                     bmc->id.product_id,
2479                                                     bmc->id.device_id);
2480
2481         /*
2482          * If there is already an bmc_device, free the new one,
2483          * otherwise register the new BMC device
2484          */
2485         if (old_bmc) {
2486                 kfree(bmc);
2487                 intf->bmc = old_bmc;
2488                 bmc = old_bmc;
2489
2490                 kref_get(&bmc->refcount);
2491                 mutex_unlock(&ipmidriver_mutex);
2492
2493                 printk(KERN_INFO
2494                        "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2495                        " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2496                        bmc->id.manufacturer_id,
2497                        bmc->id.product_id,
2498                        bmc->id.device_id);
2499         } else {
2500                 char name[14];
2501                 unsigned char orig_dev_id = bmc->id.device_id;
2502                 int warn_printed = 0;
2503
2504                 snprintf(name, sizeof(name),
2505                          "ipmi_bmc.%4.4x", bmc->id.product_id);
2506
2507                 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2508                                                  bmc->id.product_id,
2509                                                  bmc->id.device_id)) {
2510                         if (!warn_printed) {
2511                                 printk(KERN_WARNING PFX
2512                                        "This machine has two different BMCs"
2513                                        " with the same product id and device"
2514                                        " id.  This is an error in the"
2515                                        " firmware, but incrementing the"
2516                                        " device id to work around the problem."
2517                                        " Prod ID = 0x%x, Dev ID = 0x%x\n",
2518                                        bmc->id.product_id, bmc->id.device_id);
2519                                 warn_printed = 1;
2520                         }
2521                         bmc->id.device_id++; /* Wraps at 255 */
2522                         if (bmc->id.device_id == orig_dev_id) {
2523                                 printk(KERN_ERR PFX
2524                                        "Out of device ids!\n");
2525                                 break;
2526                         }
2527                 }
2528
2529                 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2530                 if (!bmc->dev) {
2531                         mutex_unlock(&ipmidriver_mutex);
2532                         printk(KERN_ERR
2533                                "ipmi_msghandler:"
2534                                " Unable to allocate platform device\n");
2535                         return -ENOMEM;
2536                 }
2537                 bmc->dev->dev.driver = &ipmidriver.driver;
2538                 dev_set_drvdata(&bmc->dev->dev, bmc);
2539                 kref_init(&bmc->refcount);
2540
2541                 rv = platform_device_add(bmc->dev);
2542                 mutex_unlock(&ipmidriver_mutex);
2543                 if (rv) {
2544                         platform_device_put(bmc->dev);
2545                         bmc->dev = NULL;
2546                         printk(KERN_ERR
2547                                "ipmi_msghandler:"
2548                                " Unable to register bmc device: %d\n",
2549                                rv);
2550                         /*
2551                          * Don't go to out_err, you can only do that if
2552                          * the device is registered already.
2553                          */
2554                         return rv;
2555                 }
2556
2557                 rv = create_files(bmc);
2558                 if (rv) {
2559                         mutex_lock(&ipmidriver_mutex);
2560                         platform_device_unregister(bmc->dev);
2561                         mutex_unlock(&ipmidriver_mutex);
2562
2563                         return rv;
2564                 }
2565
2566                 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2567                          "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2568                          bmc->id.manufacturer_id,
2569                          bmc->id.product_id,
2570                          bmc->id.device_id);
2571         }
2572
2573         /*
2574          * create symlink from system interface device to bmc device
2575          * and back.
2576          */
2577         intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2578         if (!intf->sysfs_name) {
2579                 rv = -ENOMEM;
2580                 printk(KERN_ERR
2581                        "ipmi_msghandler: allocate link to BMC: %d\n",
2582                        rv);
2583                 goto out_err;
2584         }
2585
2586         rv = sysfs_create_link(&intf->si_dev->kobj,
2587                                &bmc->dev->dev.kobj, intf->sysfs_name);
2588         if (rv) {
2589                 kfree(intf->sysfs_name);
2590                 intf->sysfs_name = NULL;
2591                 printk(KERN_ERR
2592                        "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2593                        rv);
2594                 goto out_err;
2595         }
2596
2597         size = snprintf(dummy, 0, "ipmi%d", ifnum);
2598         intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2599         if (!intf->my_dev_name) {
2600                 kfree(intf->sysfs_name);
2601                 intf->sysfs_name = NULL;
2602                 rv = -ENOMEM;
2603                 printk(KERN_ERR
2604                        "ipmi_msghandler: allocate link from BMC: %d\n",
2605                        rv);
2606                 goto out_err;
2607         }
2608         snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2609
2610         rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2611                                intf->my_dev_name);
2612         if (rv) {
2613                 kfree(intf->sysfs_name);
2614                 intf->sysfs_name = NULL;
2615                 kfree(intf->my_dev_name);
2616                 intf->my_dev_name = NULL;
2617                 printk(KERN_ERR
2618                        "ipmi_msghandler:"
2619                        " Unable to create symlink to bmc: %d\n",
2620                        rv);
2621                 goto out_err;
2622         }
2623
2624         return 0;
2625
2626 out_err:
2627         ipmi_bmc_unregister(intf);
2628         return rv;
2629 }
2630
2631 static int
2632 send_guid_cmd(ipmi_smi_t intf, int chan)
2633 {
2634         struct kernel_ipmi_msg            msg;
2635         struct ipmi_system_interface_addr si;
2636
2637         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2638         si.channel = IPMI_BMC_CHANNEL;
2639         si.lun = 0;
2640
2641         msg.netfn = IPMI_NETFN_APP_REQUEST;
2642         msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2643         msg.data = NULL;
2644         msg.data_len = 0;
2645         return i_ipmi_request(NULL,
2646                               intf,
2647                               (struct ipmi_addr *) &si,
2648                               0,
2649                               &msg,
2650                               intf,
2651                               NULL,
2652                               NULL,
2653                               0,
2654                               intf->channels[0].address,
2655                               intf->channels[0].lun,
2656                               -1, 0);
2657 }
2658
2659 static void
2660 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2661 {
2662         if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2663             || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2664             || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2665                 /* Not for me */
2666                 return;
2667
2668         if (msg->msg.data[0] != 0) {
2669                 /* Error from getting the GUID, the BMC doesn't have one. */
2670                 intf->bmc->guid_set = 0;
2671                 goto out;
2672         }
2673
2674         if (msg->msg.data_len < 17) {
2675                 intf->bmc->guid_set = 0;
2676                 printk(KERN_WARNING PFX
2677                        "guid_handler: The GUID response from the BMC was too"
2678                        " short, it was %d but should have been 17.  Assuming"
2679                        " GUID is not available.\n",
2680                        msg->msg.data_len);
2681                 goto out;
2682         }
2683
2684         memcpy(intf->bmc->guid, msg->msg.data, 16);
2685         intf->bmc->guid_set = 1;
2686  out:
2687         wake_up(&intf->waitq);
2688 }
2689
2690 static void
2691 get_guid(ipmi_smi_t intf)
2692 {
2693         int rv;
2694
2695         intf->bmc->guid_set = 0x2;
2696         intf->null_user_handler = guid_handler;
2697         rv = send_guid_cmd(intf, 0);
2698         if (rv)
2699                 /* Send failed, no GUID available. */
2700                 intf->bmc->guid_set = 0;
2701         wait_event(intf->waitq, intf->bmc->guid_set != 2);
2702         intf->null_user_handler = NULL;
2703 }
2704
2705 static int
2706 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2707 {
2708         struct kernel_ipmi_msg            msg;
2709         unsigned char                     data[1];
2710         struct ipmi_system_interface_addr si;
2711
2712         si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2713         si.channel = IPMI_BMC_CHANNEL;
2714         si.lun = 0;
2715
2716         msg.netfn = IPMI_NETFN_APP_REQUEST;
2717         msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2718         msg.data = data;
2719         msg.data_len = 1;
2720         data[0] = chan;
2721         return i_ipmi_request(NULL,
2722                               intf,
2723                               (struct ipmi_addr *) &si,
2724                               0,
2725                               &msg,
2726                               intf,
2727                               NULL,
2728                               NULL,
2729                               0,
2730                               intf->channels[0].address,
2731                               intf->channels[0].lun,
2732                               -1, 0);
2733 }
2734
2735 static void
2736 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2737 {
2738         int rv = 0;
2739         int chan;
2740
2741         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2742             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2743             && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2744                 /* It's the one we want */
2745                 if (msg->msg.data[0] != 0) {
2746                         /* Got an error from the channel, just go on. */
2747
2748                         if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2749                                 /*
2750                                  * If the MC does not support this
2751                                  * command, that is legal.  We just
2752                                  * assume it has one IPMB at channel
2753                                  * zero.
2754                                  */
2755                                 intf->channels[0].medium
2756                                         = IPMI_CHANNEL_MEDIUM_IPMB;
2757                                 intf->channels[0].protocol
2758                                         = IPMI_CHANNEL_PROTOCOL_IPMB;
2759                                 rv = -ENOSYS;
2760
2761                                 intf->curr_channel = IPMI_MAX_CHANNELS;
2762                                 wake_up(&intf->waitq);
2763                                 goto out;
2764                         }
2765                         goto next_channel;
2766                 }
2767                 if (msg->msg.data_len < 4) {
2768                         /* Message not big enough, just go on. */
2769                         goto next_channel;
2770                 }
2771                 chan = intf->curr_channel;
2772                 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2773                 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2774
2775  next_channel:
2776                 intf->curr_channel++;
2777                 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2778                         wake_up(&intf->waitq);
2779                 else
2780                         rv = send_channel_info_cmd(intf, intf->curr_channel);
2781
2782                 if (rv) {
2783                         /* Got an error somehow, just give up. */
2784                         intf->curr_channel = IPMI_MAX_CHANNELS;
2785                         wake_up(&intf->waitq);
2786
2787                         printk(KERN_WARNING PFX
2788                                "Error sending channel information: %d\n",
2789                                rv);
2790                 }
2791         }
2792  out:
2793         return;
2794 }
2795
2796 static void ipmi_poll(ipmi_smi_t intf)
2797 {
2798         if (intf->handlers->poll)
2799                 intf->handlers->poll(intf->send_info);
2800         /* In case something came in */
2801         handle_new_recv_msgs(intf);
2802 }
2803
2804 void ipmi_poll_interface(ipmi_user_t user)
2805 {
2806         ipmi_poll(user->intf);
2807 }
2808 EXPORT_SYMBOL(ipmi_poll_interface);
2809
2810 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2811                       void                     *send_info,
2812                       struct ipmi_device_id    *device_id,
2813                       struct device            *si_dev,
2814                       const char               *sysfs_name,
2815                       unsigned char            slave_addr)
2816 {
2817         int              i, j;
2818         int              rv;
2819         ipmi_smi_t       intf;
2820         ipmi_smi_t       tintf;
2821         struct list_head *link;
2822
2823         /*
2824          * Make sure the driver is actually initialized, this handles
2825          * problems with initialization order.
2826          */
2827         if (!initialized) {
2828                 rv = ipmi_init_msghandler();
2829                 if (rv)
2830                         return rv;
2831                 /*
2832                  * The init code doesn't return an error if it was turned
2833                  * off, but it won't initialize.  Check that.
2834                  */
2835                 if (!initialized)
2836                         return -ENODEV;
2837         }
2838
2839         intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2840         if (!intf)
2841                 return -ENOMEM;
2842
2843         intf->ipmi_version_major = ipmi_version_major(device_id);
2844         intf->ipmi_version_minor = ipmi_version_minor(device_id);
2845
2846         intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2847         if (!intf->bmc) {
2848                 kfree(intf);
2849                 return -ENOMEM;
2850         }
2851         intf->intf_num = -1; /* Mark it invalid for now. */
2852         kref_init(&intf->refcount);
2853         intf->bmc->id = *device_id;
2854         intf->si_dev = si_dev;
2855         for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2856                 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2857                 intf->channels[j].lun = 2;
2858         }
2859         if (slave_addr != 0)
2860                 intf->channels[0].address = slave_addr;
2861         INIT_LIST_HEAD(&intf->users);
2862         intf->handlers = handlers;
2863         intf->send_info = send_info;
2864         spin_lock_init(&intf->seq_lock);
2865         for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2866                 intf->seq_table[j].inuse = 0;
2867                 intf->seq_table[j].seqid = 0;
2868         }
2869         intf->curr_seq = 0;
2870 #ifdef CONFIG_PROC_FS
2871         mutex_init(&intf->proc_entry_lock);
2872 #endif
2873         spin_lock_init(&intf->waiting_msgs_lock);
2874         INIT_LIST_HEAD(&intf->waiting_msgs);
2875         tasklet_init(&intf->recv_tasklet,
2876                      smi_recv_tasklet,
2877                      (unsigned long) intf);
2878         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2879         spin_lock_init(&intf->events_lock);
2880         INIT_LIST_HEAD(&intf->waiting_events);
2881         intf->waiting_events_count = 0;
2882         mutex_init(&intf->cmd_rcvrs_mutex);
2883         spin_lock_init(&intf->maintenance_mode_lock);
2884         INIT_LIST_HEAD(&intf->cmd_rcvrs);
2885         init_waitqueue_head(&intf->waitq);
2886         for (i = 0; i < IPMI_NUM_STATS; i++)
2887                 atomic_set(&intf->stats[i], 0);
2888
2889         intf->proc_dir = NULL;
2890
2891         mutex_lock(&smi_watchers_mutex);
2892         mutex_lock(&ipmi_interfaces_mutex);
2893         /* Look for a hole in the numbers. */
2894         i = 0;
2895         link = &ipmi_interfaces;
2896         list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2897                 if (tintf->intf_num != i) {
2898                         link = &tintf->link;
2899                         break;
2900                 }
2901                 i++;
2902         }
2903         /* Add the new interface in numeric order. */
2904         if (i == 0)
2905                 list_add_rcu(&intf->link, &ipmi_interfaces);
2906         else
2907                 list_add_tail_rcu(&intf->link, link);
2908
2909         rv = handlers->start_processing(send_info, intf);
2910         if (rv)
2911                 goto out;
2912
2913         get_guid(intf);
2914
2915         if ((intf->ipmi_version_major > 1)
2916                         || ((intf->ipmi_version_major == 1)
2917                             && (intf->ipmi_version_minor >= 5))) {
2918                 /*
2919                  * Start scanning the channels to see what is
2920                  * available.
2921                  */
2922                 intf->null_user_handler = channel_handler;
2923                 intf->curr_channel = 0;
2924                 rv = send_channel_info_cmd(intf, 0);
2925                 if (rv)
2926                         goto out;
2927
2928                 /* Wait for the channel info to be read. */
2929                 wait_event(intf->waitq,
2930                            intf->curr_channel >= IPMI_MAX_CHANNELS);
2931                 intf->null_user_handler = NULL;
2932         } else {
2933                 /* Assume a single IPMB channel at zero. */
2934                 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2935                 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2936                 intf->curr_channel = IPMI_MAX_CHANNELS;
2937         }
2938
2939         if (rv == 0)
2940                 rv = add_proc_entries(intf, i);
2941
2942         rv = ipmi_bmc_register(intf, i, sysfs_name);
2943
2944  out:
2945         if (rv) {
2946                 if (intf->proc_dir)
2947                         remove_proc_entries(intf);
2948                 intf->handlers = NULL;
2949                 list_del_rcu(&intf->link);
2950                 mutex_unlock(&ipmi_interfaces_mutex);
2951                 mutex_unlock(&smi_watchers_mutex);
2952                 synchronize_rcu();
2953                 kref_put(&intf->refcount, intf_free);
2954         } else {
2955                 /*
2956                  * Keep memory order straight for RCU readers.  Make
2957                  * sure everything else is committed to memory before
2958                  * setting intf_num to mark the interface valid.
2959                  */
2960                 smp_wmb();
2961                 intf->intf_num = i;
2962                 mutex_unlock(&ipmi_interfaces_mutex);
2963                 /* After this point the interface is legal to use. */
2964                 call_smi_watchers(i, intf->si_dev);
2965                 mutex_unlock(&smi_watchers_mutex);
2966         }
2967
2968         return rv;
2969 }
2970 EXPORT_SYMBOL(ipmi_register_smi);
2971
2972 static void cleanup_smi_msgs(ipmi_smi_t intf)
2973 {
2974         int              i;
2975         struct seq_table *ent;
2976
2977         /* No need for locks, the interface is down. */
2978         for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2979                 ent = &(intf->seq_table[i]);
2980                 if (!ent->inuse)
2981                         continue;
2982                 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2983         }
2984 }
2985
2986 int ipmi_unregister_smi(ipmi_smi_t intf)
2987 {
2988         struct ipmi_smi_watcher *w;
2989         int    intf_num = intf->intf_num;
2990
2991         ipmi_bmc_unregister(intf);
2992
2993         mutex_lock(&smi_watchers_mutex);
2994         mutex_lock(&ipmi_interfaces_mutex);
2995         intf->intf_num = -1;
2996         intf->handlers = NULL;
2997         list_del_rcu(&intf->link);
2998         mutex_unlock(&ipmi_interfaces_mutex);
2999         synchronize_rcu();
3000
3001         cleanup_smi_msgs(intf);
3002
3003         remove_proc_entries(intf);
3004
3005         /*
3006          * Call all the watcher interfaces to tell them that
3007          * an interface is gone.
3008          */
3009         list_for_each_entry(w, &smi_watchers, link)
3010                 w->smi_gone(intf_num);
3011         mutex_unlock(&smi_watchers_mutex);
3012
3013         kref_put(&intf->refcount, intf_free);
3014         return 0;
3015 }
3016 EXPORT_SYMBOL(ipmi_unregister_smi);
3017
3018 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3019                                    struct ipmi_smi_msg *msg)
3020 {
3021         struct ipmi_ipmb_addr ipmb_addr;
3022         struct ipmi_recv_msg  *recv_msg;
3023
3024         /*
3025          * This is 11, not 10, because the response must contain a
3026          * completion code.
3027          */
3028         if (msg->rsp_size < 11) {
3029                 /* Message not big enough, just ignore it. */
3030                 ipmi_inc_stat(intf, invalid_ipmb_responses);
3031                 return 0;
3032         }
3033
3034         if (msg->rsp[2] != 0) {
3035                 /* An error getting the response, just ignore it. */
3036                 return 0;
3037         }
3038
3039         ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3040         ipmb_addr.slave_addr = msg->rsp[6];
3041         ipmb_addr.channel = msg->rsp[3] & 0x0f;
3042         ipmb_addr.lun = msg->rsp[7] & 3;
3043
3044         /*
3045          * It's a response from a remote entity.  Look up the sequence
3046          * number and handle the response.
3047          */
3048         if (intf_find_seq(intf,
3049                           msg->rsp[7] >> 2,
3050                           msg->rsp[3] & 0x0f,
3051                           msg->rsp[8],
3052                           (msg->rsp[4] >> 2) & (~1),
3053                           (struct ipmi_addr *) &(ipmb_addr),
3054                           &recv_msg)) {
3055                 /*
3056                  * We were unable to find the sequence number,
3057                  * so just nuke the message.
3058                  */
3059                 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3060                 return 0;
3061         }
3062
3063         memcpy(recv_msg->msg_data,
3064                &(msg->rsp[9]),
3065                msg->rsp_size - 9);
3066         /*
3067          * The other fields matched, so no need to set them, except
3068          * for netfn, which needs to be the response that was
3069          * returned, not the request value.
3070          */
3071         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3072         recv_msg->msg.data = recv_msg->msg_data;
3073         recv_msg->msg.data_len = msg->rsp_size - 10;
3074         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3075         ipmi_inc_stat(intf, handled_ipmb_responses);
3076         deliver_response(recv_msg);
3077
3078         return 0;
3079 }
3080
3081 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3082                                    struct ipmi_smi_msg *msg)
3083 {
3084         struct cmd_rcvr          *rcvr;
3085         int                      rv = 0;
3086         unsigned char            netfn;
3087         unsigned char            cmd;
3088         unsigned char            chan;
3089         ipmi_user_t              user = NULL;
3090         struct ipmi_ipmb_addr    *ipmb_addr;
3091         struct ipmi_recv_msg     *recv_msg;
3092         struct ipmi_smi_handlers *handlers;
3093
3094         if (msg->rsp_size < 10) {
3095                 /* Message not big enough, just ignore it. */
3096                 ipmi_inc_stat(intf, invalid_commands);
3097                 return 0;
3098         }
3099
3100         if (msg->rsp[2] != 0) {
3101                 /* An error getting the response, just ignore it. */
3102                 return 0;
3103         }
3104
3105         netfn = msg->rsp[4] >> 2;
3106         cmd = msg->rsp[8];
3107         chan = msg->rsp[3] & 0xf;
3108
3109         rcu_read_lock();
3110         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3111         if (rcvr) {
3112                 user = rcvr->user;
3113                 kref_get(&user->refcount);
3114         } else
3115                 user = NULL;
3116         rcu_read_unlock();
3117
3118         if (user == NULL) {
3119                 /* We didn't find a user, deliver an error response. */
3120                 ipmi_inc_stat(intf, unhandled_commands);
3121
3122                 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3123                 msg->data[1] = IPMI_SEND_MSG_CMD;
3124                 msg->data[2] = msg->rsp[3];
3125                 msg->data[3] = msg->rsp[6];
3126                 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3127                 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3128                 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3129                 /* rqseq/lun */
3130                 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3131                 msg->data[8] = msg->rsp[8]; /* cmd */
3132                 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3133                 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3134                 msg->data_size = 11;
3135
3136 #ifdef DEBUG_MSGING
3137         {
3138                 int m;
3139                 printk("Invalid command:");
3140                 for (m = 0; m < msg->data_size; m++)
3141                         printk(" %2.2x", msg->data[m]);
3142                 printk("\n");
3143         }
3144 #endif
3145                 rcu_read_lock();
3146                 handlers = intf->handlers;
3147                 if (handlers) {
3148                         handlers->sender(intf->send_info, msg, 0);
3149                         /*
3150                          * We used the message, so return the value
3151                          * that causes it to not be freed or
3152                          * queued.
3153                          */
3154                         rv = -1;
3155                 }
3156                 rcu_read_unlock();
3157         } else {
3158                 /* Deliver the message to the user. */
3159                 ipmi_inc_stat(intf, handled_commands);
3160
3161                 recv_msg = ipmi_alloc_recv_msg();
3162                 if (!recv_msg) {
3163                         /*
3164                          * We couldn't allocate memory for the
3165                          * message, so requeue it for handling
3166                          * later.
3167                          */
3168                         rv = 1;
3169                         kref_put(&user->refcount, free_user);
3170                 } else {
3171                         /* Extract the source address from the data. */
3172                         ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3173                         ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3174                         ipmb_addr->slave_addr = msg->rsp[6];
3175                         ipmb_addr->lun = msg->rsp[7] & 3;
3176                         ipmb_addr->channel = msg->rsp[3] & 0xf;
3177
3178                         /*
3179                          * Extract the rest of the message information
3180                          * from the IPMB header.
3181                          */
3182                         recv_msg->user = user;
3183                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3184                         recv_msg->msgid = msg->rsp[7] >> 2;
3185                         recv_msg->msg.netfn = msg->rsp[4] >> 2;
3186                         recv_msg->msg.cmd = msg->rsp[8];
3187                         recv_msg->msg.data = recv_msg->msg_data;
3188
3189                         /*
3190                          * We chop off 10, not 9 bytes because the checksum
3191                          * at the end also needs to be removed.
3192                          */
3193                         recv_msg->msg.data_len = msg->rsp_size - 10;
3194                         memcpy(recv_msg->msg_data,
3195                                &(msg->rsp[9]),
3196                                msg->rsp_size - 10);
3197                         deliver_response(recv_msg);
3198                 }
3199         }
3200
3201         return rv;
3202 }
3203
3204 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3205                                   struct ipmi_smi_msg *msg)
3206 {
3207         struct ipmi_lan_addr  lan_addr;
3208         struct ipmi_recv_msg  *recv_msg;
3209
3210
3211         /*
3212          * This is 13, not 12, because the response must contain a
3213          * completion code.
3214          */
3215         if (msg->rsp_size < 13) {
3216                 /* Message not big enough, just ignore it. */
3217                 ipmi_inc_stat(intf, invalid_lan_responses);
3218                 return 0;
3219         }
3220
3221         if (msg->rsp[2] != 0) {
3222                 /* An error getting the response, just ignore it. */
3223                 return 0;
3224         }
3225
3226         lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3227         lan_addr.session_handle = msg->rsp[4];
3228         lan_addr.remote_SWID = msg->rsp[8];
3229         lan_addr.local_SWID = msg->rsp[5];
3230         lan_addr.channel = msg->rsp[3] & 0x0f;
3231         lan_addr.privilege = msg->rsp[3] >> 4;
3232         lan_addr.lun = msg->rsp[9] & 3;
3233
3234         /*
3235          * It's a response from a remote entity.  Look up the sequence
3236          * number and handle the response.
3237          */
3238         if (intf_find_seq(intf,
3239                           msg->rsp[9] >> 2,
3240                           msg->rsp[3] & 0x0f,
3241                           msg->rsp[10],
3242                           (msg->rsp[6] >> 2) & (~1),
3243                           (struct ipmi_addr *) &(lan_addr),
3244                           &recv_msg)) {
3245                 /*
3246                  * We were unable to find the sequence number,
3247                  * so just nuke the message.
3248                  */
3249                 ipmi_inc_stat(intf, unhandled_lan_responses);
3250                 return 0;
3251         }
3252
3253         memcpy(recv_msg->msg_data,
3254                &(msg->rsp[11]),
3255                msg->rsp_size - 11);
3256         /*
3257          * The other fields matched, so no need to set them, except
3258          * for netfn, which needs to be the response that was
3259          * returned, not the request value.
3260          */
3261         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3262         recv_msg->msg.data = recv_msg->msg_data;
3263         recv_msg->msg.data_len = msg->rsp_size - 12;
3264         recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3265         ipmi_inc_stat(intf, handled_lan_responses);
3266         deliver_response(recv_msg);
3267
3268         return 0;
3269 }
3270
3271 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3272                                   struct ipmi_smi_msg *msg)
3273 {
3274         struct cmd_rcvr          *rcvr;
3275         int                      rv = 0;
3276         unsigned char            netfn;
3277         unsigned char            cmd;
3278         unsigned char            chan;
3279         ipmi_user_t              user = NULL;
3280         struct ipmi_lan_addr     *lan_addr;
3281         struct ipmi_recv_msg     *recv_msg;
3282
3283         if (msg->rsp_size < 12) {
3284                 /* Message not big enough, just ignore it. */
3285                 ipmi_inc_stat(intf, invalid_commands);
3286                 return 0;
3287         }
3288
3289         if (msg->rsp[2] != 0) {
3290                 /* An error getting the response, just ignore it. */
3291                 return 0;
3292         }
3293
3294         netfn = msg->rsp[6] >> 2;
3295         cmd = msg->rsp[10];
3296         chan = msg->rsp[3] & 0xf;
3297
3298         rcu_read_lock();
3299         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3300         if (rcvr) {
3301                 user = rcvr->user;
3302                 kref_get(&user->refcount);
3303         } else
3304                 user = NULL;
3305         rcu_read_unlock();
3306
3307         if (user == NULL) {
3308                 /* We didn't find a user, just give up. */
3309                 ipmi_inc_stat(intf, unhandled_commands);
3310
3311                 /*
3312                  * Don't do anything with these messages, just allow
3313                  * them to be freed.
3314                  */
3315                 rv = 0;
3316         } else {
3317                 /* Deliver the message to the user. */
3318                 ipmi_inc_stat(intf, handled_commands);
3319
3320                 recv_msg = ipmi_alloc_recv_msg();
3321                 if (!recv_msg) {
3322                         /*
3323                          * We couldn't allocate memory for the
3324                          * message, so requeue it for handling later.
3325                          */
3326                         rv = 1;
3327                         kref_put(&user->refcount, free_user);
3328                 } else {
3329                         /* Extract the source address from the data. */
3330                         lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3331                         lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3332                         lan_addr->session_handle = msg->rsp[4];
3333                         lan_addr->remote_SWID = msg->rsp[8];
3334                         lan_addr->local_SWID = msg->rsp[5];
3335                         lan_addr->lun = msg->rsp[9] & 3;
3336                         lan_addr->channel = msg->rsp[3] & 0xf;
3337                         lan_addr->privilege = msg->rsp[3] >> 4;
3338
3339                         /*
3340                          * Extract the rest of the message information
3341                          * from the IPMB header.
3342                          */
3343                         recv_msg->user = user;
3344                         recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3345                         recv_msg->msgid = msg->rsp[9] >> 2;
3346                         recv_msg->msg.netfn = msg->rsp[6] >> 2;
3347                         recv_msg->msg.cmd = msg->rsp[10];
3348                         recv_msg->msg.data = recv_msg->msg_data;
3349
3350                         /*
3351                          * We chop off 12, not 11 bytes because the checksum
3352                          * at the end also needs to be removed.
3353                          */
3354                         recv_msg->msg.data_len = msg->rsp_size - 12;
3355                         memcpy(recv_msg->msg_data,
3356                                &(msg->rsp[11]),
3357                                msg->rsp_size - 12);
3358                         deliver_response(recv_msg);
3359                 }
3360         }
3361
3362         return rv;
3363 }
3364
3365 /*
3366  * This routine will handle "Get Message" command responses with
3367  * channels that use an OEM Medium. The message format belongs to
3368  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3369  * Chapter 22, sections 22.6 and 22.24 for more details.
3370  */
3371 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3372                                   struct ipmi_smi_msg *msg)
3373 {
3374         struct cmd_rcvr       *rcvr;
3375         int                   rv = 0;
3376         unsigned char         netfn;
3377         unsigned char         cmd;
3378         unsigned char         chan;
3379         ipmi_user_t           user = NULL;
3380         struct ipmi_system_interface_addr *smi_addr;
3381         struct ipmi_recv_msg  *recv_msg;
3382
3383         /*
3384          * We expect the OEM SW to perform error checking
3385          * so we just do some basic sanity checks
3386          */
3387         if (msg->rsp_size < 4) {
3388                 /* Message not big enough, just ignore it. */
3389                 ipmi_inc_stat(intf, invalid_commands);
3390                 return 0;
3391         }
3392
3393         if (msg->rsp[2] != 0) {
3394                 /* An error getting the response, just ignore it. */
3395                 return 0;
3396         }
3397
3398         /*
3399          * This is an OEM Message so the OEM needs to know how
3400          * handle the message. We do no interpretation.
3401          */
3402         netfn = msg->rsp[0] >> 2;
3403         cmd = msg->rsp[1];
3404         chan = msg->rsp[3] & 0xf;
3405
3406         rcu_read_lock();
3407         rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3408         if (rcvr) {
3409                 user = rcvr->user;
3410                 kref_get(&user->refcount);
3411         } else
3412                 user = NULL;
3413         rcu_read_unlock();
3414
3415         if (user == NULL) {
3416                 /* We didn't find a user, just give up. */
3417                 ipmi_inc_stat(intf, unhandled_commands);
3418
3419                 /*
3420                  * Don't do anything with these messages, just allow
3421                  * them to be freed.
3422                  */
3423
3424                 rv = 0;
3425         } else {
3426                 /* Deliver the message to the user. */
3427                 ipmi_inc_stat(intf, handled_commands);
3428
3429                 recv_msg = ipmi_alloc_recv_msg();
3430                 if (!recv_msg) {
3431                         /*
3432                          * We couldn't allocate memory for the
3433                          * message, so requeue it for handling
3434                          * later.
3435                          */
3436                         rv = 1;
3437                         kref_put(&user->refcount, free_user);
3438                 } else {
3439                         /*
3440                          * OEM Messages are expected to be delivered via
3441                          * the system interface to SMS software.  We might
3442                          * need to visit this again depending on OEM
3443                          * requirements
3444                          */
3445                         smi_addr = ((struct ipmi_system_interface_addr *)
3446                                     &(recv_msg->addr));
3447                         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3448                         smi_addr->channel = IPMI_BMC_CHANNEL;
3449                         smi_addr->lun = msg->rsp[0] & 3;
3450
3451                         recv_msg->user = user;
3452                         recv_msg->user_msg_data = NULL;
3453                         recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3454                         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3455                         recv_msg->msg.cmd = msg->rsp[1];
3456                         recv_msg->msg.data = recv_msg->msg_data;
3457
3458                         /*
3459                          * The message starts at byte 4 which follows the
3460                          * the Channel Byte in the "GET MESSAGE" command
3461                          */
3462                         recv_msg->msg.data_len = msg->rsp_size - 4;
3463                         memcpy(recv_msg->msg_data,
3464                                &(msg->rsp[4]),
3465                                msg->rsp_size - 4);
3466                         deliver_response(recv_msg);
3467                 }
3468         }
3469
3470         return rv;
3471 }
3472
3473 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3474                                      struct ipmi_smi_msg  *msg)
3475 {
3476         struct ipmi_system_interface_addr *smi_addr;
3477
3478         recv_msg->msgid = 0;
3479         smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3480         smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3481         smi_addr->channel = IPMI_BMC_CHANNEL;
3482         smi_addr->lun = msg->rsp[0] & 3;
3483         recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3484         recv_msg->msg.netfn = msg->rsp[0] >> 2;
3485         recv_msg->msg.cmd = msg->rsp[1];
3486         memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3487         recv_msg->msg.data = recv_msg->msg_data;
3488         recv_msg->msg.data_len = msg->rsp_size - 3;
3489 }
3490
3491 static int handle_read_event_rsp(ipmi_smi_t          intf,
3492                                  struct ipmi_smi_msg *msg)
3493 {
3494         struct ipmi_recv_msg *recv_msg, *recv_msg2;
3495         struct list_head     msgs;
3496         ipmi_user_t          user;
3497         int                  rv = 0;
3498         int                  deliver_count = 0;
3499         unsigned long        flags;
3500
3501         if (msg->rsp_size < 19) {
3502                 /* Message is too small to be an IPMB event. */
3503                 ipmi_inc_stat(intf, invalid_events);
3504                 return 0;
3505         }
3506
3507         if (msg->rsp[2] != 0) {
3508                 /* An error getting the event, just ignore it. */
3509                 return 0;
3510         }
3511
3512         INIT_LIST_HEAD(&msgs);
3513
3514         spin_lock_irqsave(&intf->events_lock, flags);
3515
3516         ipmi_inc_stat(intf, events);
3517
3518         /*
3519          * Allocate and fill in one message for every user that is
3520          * getting events.
3521          */
3522         rcu_read_lock();
3523         list_for_each_entry_rcu(user, &intf->users, link) {
3524                 if (!user->gets_events)
3525                         continue;
3526
3527                 recv_msg = ipmi_alloc_recv_msg();
3528                 if (!recv_msg) {
3529                         rcu_read_unlock();
3530                         list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3531                                                  link) {
3532                                 list_del(&recv_msg->link);
3533                                 ipmi_free_recv_msg(recv_msg);
3534                         }
3535                         /*
3536                          * We couldn't allocate memory for the
3537                          * message, so requeue it for handling
3538                          * later.
3539                          */
3540                         rv = 1;
3541                         goto out;
3542                 }
3543
3544                 deliver_count++;
3545
3546                 copy_event_into_recv_msg(recv_msg, msg);
3547                 recv_msg->user = user;
3548                 kref_get(&user->refcount);
3549                 list_add_tail(&(recv_msg->link), &msgs);
3550         }
3551         rcu_read_unlock();
3552
3553         if (deliver_count) {
3554                 /* Now deliver all the messages. */
3555                 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3556                         list_del(&recv_msg->link);
3557                         deliver_response(recv_msg);
3558                 }
3559         } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3560                 /*
3561                  * No one to receive the message, put it in queue if there's
3562                  * not already too many things in the queue.
3563                  */
3564                 recv_msg = ipmi_alloc_recv_msg();
3565                 if (!recv_msg) {
3566                         /*
3567                          * We couldn't allocate memory for the
3568                          * message, so requeue it for handling
3569                          * later.
3570                          */
3571                         rv = 1;
3572                         goto out;
3573                 }
3574
3575                 copy_event_into_recv_msg(recv_msg, msg);
3576                 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3577                 intf->waiting_events_count++;
3578         } else if (!intf->event_msg_printed) {
3579                 /*
3580                  * There's too many things in the queue, discard this
3581                  * message.
3582                  */
3583                 printk(KERN_WARNING PFX "Event queue full, discarding"
3584                        " incoming events\n");
3585                 intf->event_msg_printed = 1;
3586         }
3587
3588  out:
3589         spin_unlock_irqrestore(&(intf->events_lock), flags);
3590
3591         return rv;
3592 }
3593
3594 static int handle_bmc_rsp(ipmi_smi_t          intf,
3595                           struct ipmi_smi_msg *msg)
3596 {
3597         struct ipmi_recv_msg *recv_msg;
3598         struct ipmi_user     *user;
3599
3600         recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3601         if (recv_msg == NULL) {
3602                 printk(KERN_WARNING
3603                        "IPMI message received with no owner. This\n"
3604                        "could be because of a malformed message, or\n"
3605                        "because of a hardware error.  Contact your\n"
3606                        "hardware vender for assistance\n");
3607                 return 0;
3608         }
3609
3610         user = recv_msg->user;
3611         /* Make sure the user still exists. */
3612         if (user && !user->valid) {
3613                 /* The user for the message went away, so give up. */
3614                 ipmi_inc_stat(intf, unhandled_local_responses);
3615                 ipmi_free_recv_msg(recv_msg);
3616         } else {
3617                 struct ipmi_system_interface_addr *smi_addr;
3618
3619                 ipmi_inc_stat(intf, handled_local_responses);
3620                 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3621                 recv_msg->msgid = msg->msgid;
3622                 smi_addr = ((struct ipmi_system_interface_addr *)
3623                             &(recv_msg->addr));
3624                 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3625                 smi_addr->channel = IPMI_BMC_CHANNEL;
3626                 smi_addr->lun = msg->rsp[0] & 3;
3627                 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3628                 recv_msg->msg.cmd = msg->rsp[1];
3629                 memcpy(recv_msg->msg_data,
3630                        &(msg->rsp[2]),
3631                        msg->rsp_size - 2);
3632                 recv_msg->msg.data = recv_msg->msg_data;
3633                 recv_msg->msg.data_len = msg->rsp_size - 2;
3634                 deliver_response(recv_msg);
3635         }
3636
3637         return 0;
3638 }
3639
3640 /*
3641  * Handle a received message.  Return 1 if the message should be requeued,
3642  * 0 if the message should be freed, or -1 if the message should not
3643  * be freed or requeued.
3644  */
3645 static int handle_one_recv_msg(ipmi_smi_t          intf,
3646                                struct ipmi_smi_msg *msg)
3647 {
3648         int requeue;
3649         int chan;
3650
3651 #ifdef DEBUG_MSGING
3652         int m;
3653         printk("Recv:");
3654         for (m = 0; m < msg->rsp_size; m++)
3655                 printk(" %2.2x", msg->rsp[m]);
3656         printk("\n");
3657 #endif
3658         if (msg->rsp_size < 2) {
3659                 /* Message is too small to be correct. */
3660                 printk(KERN_WARNING PFX "BMC returned to small a message"
3661                        " for netfn %x cmd %x, got %d bytes\n",
3662                        (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3663
3664                 /* Generate an error response for the message. */
3665                 msg->rsp[0] = msg->data[0] | (1 << 2);
3666                 msg->rsp[1] = msg->data[1];
3667                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3668                 msg->rsp_size = 3;
3669         } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3670                    || (msg->rsp[1] != msg->data[1])) {
3671                 /*
3672                  * The NetFN and Command in the response is not even
3673                  * marginally correct.
3674                  */
3675                 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3676                        " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3677                        (msg->data[0] >> 2) | 1, msg->data[1],
3678                        msg->rsp[0] >> 2, msg->rsp[1]);
3679
3680                 /* Generate an error response for the message. */
3681                 msg->rsp[0] = msg->data[0] | (1 << 2);
3682                 msg->rsp[1] = msg->data[1];
3683                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3684                 msg->rsp_size = 3;
3685         }
3686
3687         if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3688             && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3689             && (msg->user_data != NULL)) {
3690                 /*
3691                  * It's a response to a response we sent.  For this we
3692                  * deliver a send message response to the user.
3693                  */
3694                 struct ipmi_recv_msg     *recv_msg = msg->user_data;
3695
3696                 requeue = 0;
3697                 if (msg->rsp_size < 2)
3698                         /* Message is too small to be correct. */
3699                         goto out;
3700
3701                 chan = msg->data[2] & 0x0f;
3702                 if (chan >= IPMI_MAX_CHANNELS)
3703                         /* Invalid channel number */
3704                         goto out;
3705
3706                 if (!recv_msg)
3707                         goto out;
3708
3709                 /* Make sure the user still exists. */
3710                 if (!recv_msg->user || !recv_msg->user->valid)
3711                         goto out;
3712
3713                 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3714                 recv_msg->msg.data = recv_msg->msg_data;
3715                 recv_msg->msg.data_len = 1;
3716                 recv_msg->msg_data[0] = msg->rsp[2];
3717                 deliver_response(recv_msg);
3718         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3719                    && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3720                 /* It's from the receive queue. */
3721                 chan = msg->rsp[3] & 0xf;
3722                 if (chan >= IPMI_MAX_CHANNELS) {
3723                         /* Invalid channel number */
3724                         requeue = 0;
3725                         goto out;
3726                 }
3727
3728                 /*
3729                  * We need to make sure the channels have been initialized.
3730                  * The channel_handler routine will set the "curr_channel"
3731                  * equal to or greater than IPMI_MAX_CHANNELS when all the
3732                  * channels for this interface have been initialized.
3733                  */
3734                 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3735                         requeue = 0; /* Throw the message away */
3736                         goto out;
3737                 }
3738
3739                 switch (intf->channels[chan].medium) {
3740                 case IPMI_CHANNEL_MEDIUM_IPMB:
3741                         if (msg->rsp[4] & 0x04) {
3742                                 /*
3743                                  * It's a response, so find the
3744                                  * requesting message and send it up.
3745                                  */
3746                                 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3747                         } else {
3748                                 /*
3749                                  * It's a command to the SMS from some other
3750                                  * entity.  Handle that.
3751                                  */
3752                                 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3753                         }
3754                         break;
3755
3756                 case IPMI_CHANNEL_MEDIUM_8023LAN:
3757                 case IPMI_CHANNEL_MEDIUM_ASYNC:
3758                         if (msg->rsp[6] & 0x04) {
3759                                 /*
3760                                  * It's a response, so find the
3761                                  * requesting message and send it up.
3762                                  */
3763                                 requeue = handle_lan_get_msg_rsp(intf, msg);
3764                         } else {
3765                                 /*
3766                                  * It's a command to the SMS from some other
3767                                  * entity.  Handle that.
3768                                  */
3769                                 requeue = handle_lan_get_msg_cmd(intf, msg);
3770                         }
3771                         break;
3772
3773                 default:
3774                         /* Check for OEM Channels.  Clients had better
3775                            register for these commands. */
3776                         if ((intf->channels[chan].medium
3777                              >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3778                             && (intf->channels[chan].medium
3779                                 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3780                                 requeue = handle_oem_get_msg_cmd(intf, msg);
3781                         } else {
3782                                 /*
3783                                  * We don't handle the channel type, so just
3784                                  * free the message.
3785                                  */
3786                                 requeue = 0;
3787                         }
3788                 }
3789
3790         } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3791                    && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3792                 /* It's an asynchronous event. */
3793                 requeue = handle_read_event_rsp(intf, msg);
3794         } else {
3795                 /* It's a response from the local BMC. */
3796                 requeue = handle_bmc_rsp(intf, msg);
3797         }
3798
3799  out:
3800         return requeue;
3801 }
3802
3803 /*
3804  * If there are messages in the queue or pretimeouts, handle them.
3805  */
3806 static void handle_new_recv_msgs(ipmi_smi_t intf)
3807 {
3808         struct ipmi_smi_msg  *smi_msg;
3809         unsigned long        flags = 0;
3810         int                  rv;
3811         int                  run_to_completion = intf->run_to_completion;
3812
3813         /* See if any waiting messages need to be processed. */
3814         if (!run_to_completion)
3815                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3816         while (!list_empty(&intf->waiting_msgs)) {
3817                 smi_msg = list_entry(intf->waiting_msgs.next,
3818                                      struct ipmi_smi_msg, link);
3819                 list_del(&smi_msg->link);
3820                 if (!run_to_completion)
3821                         spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3822                 rv = handle_one_recv_msg(intf, smi_msg);
3823                 if (!run_to_completion)
3824                         spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3825                 if (rv == 0) {
3826                         /* Message handled */
3827                         ipmi_free_smi_msg(smi_msg);
3828                 } else if (rv < 0) {
3829                         /* Fatal error on the message, del but don't free. */
3830                 } else {
3831                         /*
3832                          * To preserve message order, quit if we
3833                          * can't handle a message.
3834                          */
3835                         list_add(&smi_msg->link, &intf->waiting_msgs);
3836                         break;
3837                 }
3838         }
3839         if (!run_to_completion)
3840                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3841
3842         /*
3843          * If the pretimout count is non-zero, decrement one from it and
3844          * deliver pretimeouts to all the users.
3845          */
3846         if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3847                 ipmi_user_t user;
3848
3849                 rcu_read_lock();
3850                 list_for_each_entry_rcu(user, &intf->users, link) {
3851                         if (user->handler->ipmi_watchdog_pretimeout)
3852                                 user->handler->ipmi_watchdog_pretimeout(
3853                                         user->handler_data);
3854                 }
3855                 rcu_read_unlock();
3856         }
3857 }
3858
3859 static void smi_recv_tasklet(unsigned long val)
3860 {
3861         handle_new_recv_msgs((ipmi_smi_t) val);
3862 }
3863
3864 /* Handle a new message from the lower layer. */
3865 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3866                            struct ipmi_smi_msg *msg)
3867 {
3868         unsigned long flags = 0; /* keep us warning-free. */
3869         int           run_to_completion;
3870
3871
3872         if ((msg->data_size >= 2)
3873             && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3874             && (msg->data[1] == IPMI_SEND_MSG_CMD)
3875             && (msg->user_data == NULL)) {
3876                 /*
3877                  * This is the local response to a command send, start
3878                  * the timer for these.  The user_data will not be
3879                  * NULL if this is a response send, and we will let
3880                  * response sends just go through.
3881                  */
3882
3883                 /*
3884                  * Check for errors, if we get certain errors (ones
3885                  * that mean basically we can try again later), we
3886                  * ignore them and start the timer.  Otherwise we
3887                  * report the error immediately.
3888                  */
3889                 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3890                     && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3891                     && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3892                     && (msg->rsp[2] != IPMI_BUS_ERR)
3893                     && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3894                         int chan = msg->rsp[3] & 0xf;
3895
3896                         /* Got an error sending the message, handle it. */
3897                         if (chan >= IPMI_MAX_CHANNELS)
3898                                 ; /* This shouldn't happen */
3899                         else if ((intf->channels[chan].medium
3900                                   == IPMI_CHANNEL_MEDIUM_8023LAN)
3901                                  || (intf->channels[chan].medium
3902                                      == IPMI_CHANNEL_MEDIUM_ASYNC))
3903                                 ipmi_inc_stat(intf, sent_lan_command_errs);
3904                         else
3905                                 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3906                         intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3907                 } else
3908                         /* The message was sent, start the timer. */
3909                         intf_start_seq_timer(intf, msg->msgid);
3910
3911                 ipmi_free_smi_msg(msg);
3912                 goto out;
3913         }
3914
3915         /*
3916          * To preserve message order, if the list is not empty, we
3917          * tack this message onto the end of the list.
3918          */
3919         run_to_completion = intf->run_to_completion;
3920         if (!run_to_completion)
3921                 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3922         list_add_tail(&msg->link, &intf->waiting_msgs);
3923         if (!run_to_completion)
3924                 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3925
3926         tasklet_schedule(&intf->recv_tasklet);
3927  out:
3928         return;
3929 }
3930 EXPORT_SYMBOL(ipmi_smi_msg_received);
3931
3932 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3933 {
3934         atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3935         tasklet_schedule(&intf->recv_tasklet);
3936 }
3937 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3938
3939 static struct ipmi_smi_msg *
3940 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3941                   unsigned char seq, long seqid)
3942 {
3943         struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3944         if (!smi_msg)
3945                 /*
3946                  * If we can't allocate the message, then just return, we
3947                  * get 4 retries, so this should be ok.
3948                  */
3949                 return NULL;
3950
3951         memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3952         smi_msg->data_size = recv_msg->msg.data_len;
3953         smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3954
3955 #ifdef DEBUG_MSGING
3956         {
3957                 int m;
3958                 printk("Resend: ");
3959                 for (m = 0; m < smi_msg->data_size; m++)
3960                         printk(" %2.2x", smi_msg->data[m]);
3961                 printk("\n");
3962         }
3963 #endif
3964         return smi_msg;
3965 }
3966
3967 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3968                               struct list_head *timeouts, long timeout_period,
3969                               int slot, unsigned long *flags)
3970 {
3971         struct ipmi_recv_msg     *msg;
3972         struct ipmi_smi_handlers *handlers;
3973
3974         if (intf->intf_num == -1)
3975                 return;
3976
3977         if (!ent->inuse)
3978                 return;
3979
3980         ent->timeout -= timeout_period;
3981         if (ent->timeout > 0)
3982                 return;
3983
3984         if (ent->retries_left == 0) {
3985                 /* The message has used all its retries. */
3986                 ent->inuse = 0;
3987                 msg = ent->recv_msg;
3988                 list_add_tail(&msg->link, timeouts);
3989                 if (ent->broadcast)
3990                         ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3991                 else if (is_lan_addr(&ent->recv_msg->addr))
3992                         ipmi_inc_stat(intf, timed_out_lan_commands);
3993                 else
3994                         ipmi_inc_stat(intf, timed_out_ipmb_commands);
3995         } else {
3996                 struct ipmi_smi_msg *smi_msg;
3997                 /* More retries, send again. */
3998
3999                 /*
4000                  * Start with the max timer, set to normal timer after
4001                  * the message is sent.
4002                  */
4003                 ent->timeout = MAX_MSG_TIMEOUT;
4004                 ent->retries_left--;
4005                 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4006                                             ent->seqid);
4007                 if (!smi_msg) {
4008                         if (is_lan_addr(&ent->recv_msg->addr))
4009                                 ipmi_inc_stat(intf,
4010                                               dropped_rexmit_lan_commands);
4011                         else
4012                                 ipmi_inc_stat(intf,
4013                                               dropped_rexmit_ipmb_commands);
4014                         return;
4015                 }
4016
4017                 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4018
4019                 /*
4020                  * Send the new message.  We send with a zero
4021                  * priority.  It timed out, I doubt time is that
4022                  * critical now, and high priority messages are really
4023                  * only for messages to the local MC, which don't get
4024                  * resent.
4025                  */
4026                 handlers = intf->handlers;
4027                 if (handlers) {
4028                         if (is_lan_addr(&ent->recv_msg->addr))
4029                                 ipmi_inc_stat(intf,
4030                                               retransmitted_lan_commands);
4031                         else
4032                                 ipmi_inc_stat(intf,
4033                                               retransmitted_ipmb_commands);
4034
4035                         intf->handlers->sender(intf->send_info,
4036                                                smi_msg, 0);
4037                 } else
4038                         ipmi_free_smi_msg(smi_msg);
4039
4040                 spin_lock_irqsave(&intf->seq_lock, *flags);
4041         }
4042 }
4043
4044 static void ipmi_timeout_handler(long timeout_period)
4045 {
4046         ipmi_smi_t           intf;
4047         struct list_head     timeouts;
4048         struct ipmi_recv_msg *msg, *msg2;
4049         unsigned long        flags;
4050         int                  i;
4051
4052         rcu_read_lock();
4053         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4054                 tasklet_schedule(&intf->recv_tasklet);
4055
4056                 /*
4057                  * Go through the seq table and find any messages that
4058                  * have timed out, putting them in the timeouts
4059                  * list.
4060                  */
4061                 INIT_LIST_HEAD(&timeouts);
4062                 spin_lock_irqsave(&intf->seq_lock, flags);
4063                 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4064                         check_msg_timeout(intf, &(intf->seq_table[i]),
4065                                           &timeouts, timeout_period, i,
4066                                           &flags);
4067                 spin_unlock_irqrestore(&intf->seq_lock, flags);
4068
4069                 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4070                         deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4071
4072                 /*
4073                  * Maintenance mode handling.  Check the timeout
4074                  * optimistically before we claim the lock.  It may
4075                  * mean a timeout gets missed occasionally, but that
4076                  * only means the timeout gets extended by one period
4077                  * in that case.  No big deal, and it avoids the lock
4078                  * most of the time.
4079                  */
4080                 if (intf->auto_maintenance_timeout > 0) {
4081                         spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4082                         if (intf->auto_maintenance_timeout > 0) {
4083                                 intf->auto_maintenance_timeout
4084                                         -= timeout_period;
4085                                 if (!intf->maintenance_mode
4086                                     && (intf->auto_maintenance_timeout <= 0)) {
4087                                         intf->maintenance_mode_enable = 0;
4088                                         maintenance_mode_update(intf);
4089                                 }
4090                         }
4091                         spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4092                                                flags);
4093                 }
4094         }
4095         rcu_read_unlock();
4096 }
4097
4098 static void ipmi_request_event(void)
4099 {
4100         ipmi_smi_t               intf;
4101         struct ipmi_smi_handlers *handlers;
4102
4103         rcu_read_lock();
4104         /*
4105          * Called from the timer, no need to check if handlers is
4106          * valid.
4107          */
4108         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4109                 /* No event requests when in maintenance mode. */
4110                 if (intf->maintenance_mode_enable)
4111                         continue;
4112
4113                 handlers = intf->handlers;
4114                 if (handlers)
4115                         handlers->request_events(intf->send_info);
4116         }
4117         rcu_read_unlock();
4118 }
4119
4120 static struct timer_list ipmi_timer;
4121
4122 /* Call every ~1000 ms. */
4123 #define IPMI_TIMEOUT_TIME       1000
4124
4125 /* How many jiffies does it take to get to the timeout time. */
4126 #define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
4127
4128 /*
4129  * Request events from the queue every second (this is the number of
4130  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4131  * future, IPMI will add a way to know immediately if an event is in
4132  * the queue and this silliness can go away.
4133  */
4134 #define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
4135
4136 static atomic_t stop_operation;
4137 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4138
4139 static void ipmi_timeout(unsigned long data)
4140 {
4141         if (atomic_read(&stop_operation))
4142                 return;
4143
4144         ticks_to_req_ev--;
4145         if (ticks_to_req_ev == 0) {
4146                 ipmi_request_event();
4147                 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4148         }
4149
4150         ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4151
4152         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4153 }
4154
4155
4156 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4157 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4158
4159 /* FIXME - convert these to slabs. */
4160 static void free_smi_msg(struct ipmi_smi_msg *msg)
4161 {
4162         atomic_dec(&smi_msg_inuse_count);
4163         kfree(msg);
4164 }
4165
4166 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4167 {
4168         struct ipmi_smi_msg *rv;
4169         rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4170         if (rv) {
4171                 rv->done = free_smi_msg;
4172                 rv->user_data = NULL;
4173                 atomic_inc(&smi_msg_inuse_count);
4174         }
4175         return rv;
4176 }
4177 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4178
4179 static void free_recv_msg(struct ipmi_recv_msg *msg)
4180 {
4181         atomic_dec(&recv_msg_inuse_count);
4182         kfree(msg);
4183 }
4184
4185 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4186 {
4187         struct ipmi_recv_msg *rv;
4188
4189         rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4190         if (rv) {
4191                 rv->user = NULL;
4192                 rv->done = free_recv_msg;
4193                 atomic_inc(&recv_msg_inuse_count);
4194         }
4195         return rv;
4196 }
4197
4198 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4199 {
4200         if (msg->user)
4201                 kref_put(&msg->user->refcount, free_user);
4202         msg->done(msg);
4203 }
4204 EXPORT_SYMBOL(ipmi_free_recv_msg);
4205
4206 #ifdef CONFIG_IPMI_PANIC_EVENT
4207
4208 static atomic_t panic_done_count = ATOMIC_INIT(0);
4209
4210 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4211 {
4212         atomic_dec(&panic_done_count);
4213 }
4214
4215 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4216 {
4217         atomic_dec(&panic_done_count);
4218 }
4219
4220 /*
4221  * Inside a panic, send a message and wait for a response.
4222  */
4223 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4224                                         struct ipmi_addr     *addr,
4225                                         struct kernel_ipmi_msg *msg)
4226 {
4227         struct ipmi_smi_msg  smi_msg;
4228         struct ipmi_recv_msg recv_msg;
4229         int rv;
4230
4231         smi_msg.done = dummy_smi_done_handler;
4232         recv_msg.done = dummy_recv_done_handler;
4233         atomic_add(2, &panic_done_count);
4234         rv = i_ipmi_request(NULL,
4235                             intf,
4236                             addr,
4237                             0,
4238                             msg,
4239                             intf,
4240                             &smi_msg,
4241                             &recv_msg,
4242                             0,
4243                             intf->channels[0].address,
4244                             intf->channels[0].lun,
4245                             0, 1); /* Don't retry, and don't wait. */
4246         if (rv)
4247                 atomic_sub(2, &panic_done_count);
4248         while (atomic_read(&panic_done_count) != 0)
4249                 ipmi_poll(intf);
4250 }
4251
4252 #ifdef CONFIG_IPMI_PANIC_STRING
4253 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4254 {
4255         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4256             && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4257             && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4258             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4259                 /* A get event receiver command, save it. */
4260                 intf->event_receiver = msg->msg.data[1];
4261                 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4262         }
4263 }
4264
4265 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4266 {
4267         if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4268             && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4269             && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4270             && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4271                 /*
4272                  * A get device id command, save if we are an event
4273                  * receiver or generator.
4274                  */
4275                 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4276                 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4277         }
4278 }
4279 #endif
4280
4281 static void send_panic_events(char *str)
4282 {
4283         struct kernel_ipmi_msg            msg;
4284         ipmi_smi_t                        intf;
4285         unsigned char                     data[16];
4286         struct ipmi_system_interface_addr *si;
4287         struct ipmi_addr                  addr;
4288
4289         si = (struct ipmi_system_interface_addr *) &addr;
4290         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4291         si->channel = IPMI_BMC_CHANNEL;
4292         si->lun = 0;
4293
4294         /* Fill in an event telling that we have failed. */
4295         msg.netfn = 0x04; /* Sensor or Event. */
4296         msg.cmd = 2; /* Platform event command. */
4297         msg.data = data;
4298         msg.data_len = 8;
4299         data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4300         data[1] = 0x03; /* This is for IPMI 1.0. */
4301         data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4302         data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4303         data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4304
4305         /*
4306          * Put a few breadcrumbs in.  Hopefully later we can add more things
4307          * to make the panic events more useful.
4308          */
4309         if (str) {
4310                 data[3] = str[0];
4311                 data[6] = str[1];
4312                 data[7] = str[2];
4313         }
4314
4315         /* For every registered interface, send the event. */
4316         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4317                 if (!intf->handlers)
4318                         /* Interface is not ready. */
4319                         continue;
4320
4321                 intf->run_to_completion = 1;
4322                 /* Send the event announcing the panic. */
4323                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4324                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4325         }
4326
4327 #ifdef CONFIG_IPMI_PANIC_STRING
4328         /*
4329          * On every interface, dump a bunch of OEM event holding the
4330          * string.
4331          */
4332         if (!str)
4333                 return;
4334
4335         /* For every registered interface, send the event. */
4336         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4337                 char                  *p = str;
4338                 struct ipmi_ipmb_addr *ipmb;
4339                 int                   j;
4340
4341                 if (intf->intf_num == -1)
4342                         /* Interface was not ready yet. */
4343                         continue;
4344
4345                 /*
4346                  * intf_num is used as an marker to tell if the
4347                  * interface is valid.  Thus we need a read barrier to
4348                  * make sure data fetched before checking intf_num
4349                  * won't be used.
4350                  */
4351                 smp_rmb();
4352
4353                 /*
4354                  * First job here is to figure out where to send the
4355                  * OEM events.  There's no way in IPMI to send OEM
4356                  * events using an event send command, so we have to
4357                  * find the SEL to put them in and stick them in
4358                  * there.
4359                  */
4360
4361                 /* Get capabilities from the get device id. */
4362                 intf->local_sel_device = 0;
4363                 intf->local_event_generator = 0;
4364                 intf->event_receiver = 0;
4365
4366                 /* Request the device info from the local MC. */
4367                 msg.netfn = IPMI_NETFN_APP_REQUEST;
4368                 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4369                 msg.data = NULL;
4370                 msg.data_len = 0;
4371                 intf->null_user_handler = device_id_fetcher;
4372                 ipmi_panic_request_and_wait(intf, &addr, &msg);
4373
4374                 if (intf->local_event_generator) {
4375                         /* Request the event receiver from the local MC. */
4376                         msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4377                         msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4378                         msg.data = NULL;
4379                         msg.data_len = 0;
4380                         intf->null_user_handler = event_receiver_fetcher;
4381                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4382                 }
4383                 intf->null_user_handler = NULL;
4384
4385                 /*
4386                  * Validate the event receiver.  The low bit must not
4387                  * be 1 (it must be a valid IPMB address), it cannot
4388                  * be zero, and it must not be my address.
4389                  */
4390                 if (((intf->event_receiver & 1) == 0)
4391                     && (intf->event_receiver != 0)
4392                     && (intf->event_receiver != intf->channels[0].address)) {
4393                         /*
4394                          * The event receiver is valid, send an IPMB
4395                          * message.
4396                          */
4397                         ipmb = (struct ipmi_ipmb_addr *) &addr;
4398                         ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4399                         ipmb->channel = 0; /* FIXME - is this right? */
4400                         ipmb->lun = intf->event_receiver_lun;
4401                         ipmb->slave_addr = intf->event_receiver;
4402                 } else if (intf->local_sel_device) {
4403                         /*
4404                          * The event receiver was not valid (or was
4405                          * me), but I am an SEL device, just dump it
4406                          * in my SEL.
4407                          */
4408                         si = (struct ipmi_system_interface_addr *) &addr;
4409                         si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4410                         si->channel = IPMI_BMC_CHANNEL;
4411                         si->lun = 0;
4412                 } else
4413                         continue; /* No where to send the event. */
4414
4415                 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4416                 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4417                 msg.data = data;
4418                 msg.data_len = 16;
4419
4420                 j = 0;
4421                 while (*p) {
4422                         int size = strlen(p);
4423
4424                         if (size > 11)
4425                                 size = 11;
4426                         data[0] = 0;
4427                         data[1] = 0;
4428                         data[2] = 0xf0; /* OEM event without timestamp. */
4429                         data[3] = intf->channels[0].address;
4430                         data[4] = j++; /* sequence # */
4431                         /*
4432                          * Always give 11 bytes, so strncpy will fill
4433                          * it with zeroes for me.
4434                          */
4435                         strncpy(data+5, p, 11);
4436                         p += size;
4437
4438                         ipmi_panic_request_and_wait(intf, &addr, &msg);
4439                 }
4440         }
4441 #endif /* CONFIG_IPMI_PANIC_STRING */
4442 }
4443 #endif /* CONFIG_IPMI_PANIC_EVENT */
4444
4445 static int has_panicked;
4446
4447 static int panic_event(struct notifier_block *this,
4448                        unsigned long         event,
4449                        void                  *ptr)
4450 {
4451         ipmi_smi_t intf;
4452
4453         if (has_panicked)
4454                 return NOTIFY_DONE;
4455         has_panicked = 1;
4456
4457         /* For every registered interface, set it to run to completion. */
4458         list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4459                 if (!intf->handlers)
4460                         /* Interface is not ready. */
4461                         continue;
4462
4463                 intf->run_to_completion = 1;
4464                 intf->handlers->set_run_to_completion(intf->send_info, 1);
4465         }
4466
4467 #ifdef CONFIG_IPMI_PANIC_EVENT
4468         send_panic_events(ptr);
4469 #endif
4470
4471         return NOTIFY_DONE;
4472 }
4473
4474 static struct notifier_block panic_block = {
4475         .notifier_call  = panic_event,
4476         .next           = NULL,
4477         .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4478 };
4479
4480 static int ipmi_init_msghandler(void)
4481 {
4482         int rv;
4483
4484         if (initialized)
4485                 return 0;
4486
4487         rv = driver_register(&ipmidriver.driver);
4488         if (rv) {
4489                 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4490                 return rv;
4491         }
4492
4493         printk(KERN_INFO "ipmi message handler version "
4494                IPMI_DRIVER_VERSION "\n");
4495
4496 #ifdef CONFIG_PROC_FS
4497         proc_ipmi_root = proc_mkdir("ipmi", NULL);
4498         if (!proc_ipmi_root) {
4499             printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4500             return -ENOMEM;
4501         }
4502
4503 #endif /* CONFIG_PROC_FS */
4504
4505         setup_timer(&ipmi_timer, ipmi_timeout, 0);
4506         mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4507
4508         atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4509
4510         initialized = 1;
4511
4512         return 0;
4513 }
4514
4515 static int __init ipmi_init_msghandler_mod(void)
4516 {
4517         ipmi_init_msghandler();
4518         return 0;
4519 }
4520
4521 static void __exit cleanup_ipmi(void)
4522 {
4523         int count;
4524
4525         if (!initialized)
4526                 return;
4527
4528         atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4529
4530         /*
4531          * This can't be called if any interfaces exist, so no worry
4532          * about shutting down the interfaces.
4533          */
4534
4535         /*
4536          * Tell the timer to stop, then wait for it to stop.  This
4537          * avoids problems with race conditions removing the timer
4538          * here.
4539          */
4540         atomic_inc(&stop_operation);
4541         del_timer_sync(&ipmi_timer);
4542
4543 #ifdef CONFIG_PROC_FS
4544         proc_remove(proc_ipmi_root);
4545 #endif /* CONFIG_PROC_FS */
4546
4547         driver_unregister(&ipmidriver.driver);
4548
4549         initialized = 0;
4550
4551         /* Check for buffer leaks. */
4552         count = atomic_read(&smi_msg_inuse_count);
4553         if (count != 0)
4554                 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4555                        count);
4556         count = atomic_read(&recv_msg_inuse_count);
4557         if (count != 0)
4558                 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4559                        count);
4560 }
4561 module_exit(cleanup_ipmi);
4562
4563 module_init(ipmi_init_msghandler_mod);
4564 MODULE_LICENSE("GPL");
4565 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4566 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4567                    " interface.");
4568 MODULE_VERSION(IPMI_DRIVER_VERSION);