HID: picolcd: sanity check report size in raw_event() callback
[firefly-linux-kernel-4.4.55.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_protocol.h"
56 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
57
58 #include "drbd_vli.h"
59
60 static DEFINE_MUTEX(drbd_main_mutex);
61 static int drbd_open(struct block_device *bdev, fmode_t mode);
62 static void drbd_release(struct gendisk *gd, fmode_t mode);
63 static int w_md_sync(struct drbd_work *w, int unused);
64 static void md_sync_timer_fn(unsigned long data);
65 static int w_bitmap_io(struct drbd_work *w, int unused);
66 static int w_go_diskless(struct drbd_work *w, int unused);
67
68 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
69               "Lars Ellenberg <lars@linbit.com>");
70 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
71 MODULE_VERSION(REL_VERSION);
72 MODULE_LICENSE("GPL");
73 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
74                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
75 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
76
77 #include <linux/moduleparam.h>
78 /* allow_open_on_secondary */
79 MODULE_PARM_DESC(allow_oos, "DONT USE!");
80 /* thanks to these macros, if compiled into the kernel (not-module),
81  * this becomes the boot parameter drbd.minor_count */
82 module_param(minor_count, uint, 0444);
83 module_param(disable_sendpage, bool, 0644);
84 module_param(allow_oos, bool, 0);
85 module_param(proc_details, int, 0644);
86
87 #ifdef CONFIG_DRBD_FAULT_INJECTION
88 int enable_faults;
89 int fault_rate;
90 static int fault_count;
91 int fault_devs;
92 /* bitmap of enabled faults */
93 module_param(enable_faults, int, 0664);
94 /* fault rate % value - applies to all enabled faults */
95 module_param(fault_rate, int, 0664);
96 /* count of faults inserted */
97 module_param(fault_count, int, 0664);
98 /* bitmap of devices to insert faults on */
99 module_param(fault_devs, int, 0644);
100 #endif
101
102 /* module parameter, defined */
103 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
104 bool disable_sendpage;
105 bool allow_oos;
106 int proc_details;       /* Detail level in proc drbd*/
107
108 /* Module parameter for setting the user mode helper program
109  * to run. Default is /sbin/drbdadm */
110 char usermode_helper[80] = "/sbin/drbdadm";
111
112 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
113
114 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
115  * as member "struct gendisk *vdisk;"
116  */
117 struct idr drbd_devices;
118 struct list_head drbd_resources;
119
120 struct kmem_cache *drbd_request_cache;
121 struct kmem_cache *drbd_ee_cache;       /* peer requests */
122 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
123 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
124 mempool_t *drbd_request_mempool;
125 mempool_t *drbd_ee_mempool;
126 mempool_t *drbd_md_io_page_pool;
127 struct bio_set *drbd_md_io_bio_set;
128
129 /* I do not use a standard mempool, because:
130    1) I want to hand out the pre-allocated objects first.
131    2) I want to be able to interrupt sleeping allocation with a signal.
132    Note: This is a single linked list, the next pointer is the private
133          member of struct page.
134  */
135 struct page *drbd_pp_pool;
136 spinlock_t   drbd_pp_lock;
137 int          drbd_pp_vacant;
138 wait_queue_head_t drbd_pp_wait;
139
140 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
141
142 static const struct block_device_operations drbd_ops = {
143         .owner =   THIS_MODULE,
144         .open =    drbd_open,
145         .release = drbd_release,
146 };
147
148 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
149 {
150         struct bio *bio;
151
152         if (!drbd_md_io_bio_set)
153                 return bio_alloc(gfp_mask, 1);
154
155         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
156         if (!bio)
157                 return NULL;
158         return bio;
159 }
160
161 #ifdef __CHECKER__
162 /* When checking with sparse, and this is an inline function, sparse will
163    give tons of false positives. When this is a real functions sparse works.
164  */
165 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
166 {
167         int io_allowed;
168
169         atomic_inc(&device->local_cnt);
170         io_allowed = (device->state.disk >= mins);
171         if (!io_allowed) {
172                 if (atomic_dec_and_test(&device->local_cnt))
173                         wake_up(&device->misc_wait);
174         }
175         return io_allowed;
176 }
177
178 #endif
179
180 /**
181  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
182  * @connection: DRBD connection.
183  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
184  * @set_size:   Expected number of requests before that barrier.
185  *
186  * In case the passed barrier_nr or set_size does not match the oldest
187  * epoch of not yet barrier-acked requests, this function will cause a
188  * termination of the connection.
189  */
190 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
191                 unsigned int set_size)
192 {
193         struct drbd_request *r;
194         struct drbd_request *req = NULL;
195         int expect_epoch = 0;
196         int expect_size = 0;
197
198         spin_lock_irq(&connection->resource->req_lock);
199
200         /* find oldest not yet barrier-acked write request,
201          * count writes in its epoch. */
202         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
203                 const unsigned s = r->rq_state;
204                 if (!req) {
205                         if (!(s & RQ_WRITE))
206                                 continue;
207                         if (!(s & RQ_NET_MASK))
208                                 continue;
209                         if (s & RQ_NET_DONE)
210                                 continue;
211                         req = r;
212                         expect_epoch = req->epoch;
213                         expect_size ++;
214                 } else {
215                         if (r->epoch != expect_epoch)
216                                 break;
217                         if (!(s & RQ_WRITE))
218                                 continue;
219                         /* if (s & RQ_DONE): not expected */
220                         /* if (!(s & RQ_NET_MASK)): not expected */
221                         expect_size++;
222                 }
223         }
224
225         /* first some paranoia code */
226         if (req == NULL) {
227                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
228                          barrier_nr);
229                 goto bail;
230         }
231         if (expect_epoch != barrier_nr) {
232                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
233                          barrier_nr, expect_epoch);
234                 goto bail;
235         }
236
237         if (expect_size != set_size) {
238                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
239                          barrier_nr, set_size, expect_size);
240                 goto bail;
241         }
242
243         /* Clean up list of requests processed during current epoch. */
244         /* this extra list walk restart is paranoia,
245          * to catch requests being barrier-acked "unexpectedly".
246          * It usually should find the same req again, or some READ preceding it. */
247         list_for_each_entry(req, &connection->transfer_log, tl_requests)
248                 if (req->epoch == expect_epoch)
249                         break;
250         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
251                 if (req->epoch != expect_epoch)
252                         break;
253                 _req_mod(req, BARRIER_ACKED);
254         }
255         spin_unlock_irq(&connection->resource->req_lock);
256
257         return;
258
259 bail:
260         spin_unlock_irq(&connection->resource->req_lock);
261         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
262 }
263
264
265 /**
266  * _tl_restart() - Walks the transfer log, and applies an action to all requests
267  * @device:     DRBD device.
268  * @what:       The action/event to perform with all request objects
269  *
270  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
271  * RESTART_FROZEN_DISK_IO.
272  */
273 /* must hold resource->req_lock */
274 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276         struct drbd_request *req, *r;
277
278         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
279                 _req_mod(req, what);
280 }
281
282 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
283 {
284         spin_lock_irq(&connection->resource->req_lock);
285         _tl_restart(connection, what);
286         spin_unlock_irq(&connection->resource->req_lock);
287 }
288
289 /**
290  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
291  * @device:     DRBD device.
292  *
293  * This is called after the connection to the peer was lost. The storage covered
294  * by the requests on the transfer gets marked as our of sync. Called from the
295  * receiver thread and the worker thread.
296  */
297 void tl_clear(struct drbd_connection *connection)
298 {
299         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
300 }
301
302 /**
303  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
304  * @device:     DRBD device.
305  */
306 void tl_abort_disk_io(struct drbd_device *device)
307 {
308         struct drbd_connection *connection = first_peer_device(device)->connection;
309         struct drbd_request *req, *r;
310
311         spin_lock_irq(&connection->resource->req_lock);
312         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
313                 if (!(req->rq_state & RQ_LOCAL_PENDING))
314                         continue;
315                 if (req->device != device)
316                         continue;
317                 _req_mod(req, ABORT_DISK_IO);
318         }
319         spin_unlock_irq(&connection->resource->req_lock);
320 }
321
322 static int drbd_thread_setup(void *arg)
323 {
324         struct drbd_thread *thi = (struct drbd_thread *) arg;
325         struct drbd_resource *resource = thi->resource;
326         unsigned long flags;
327         int retval;
328
329         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
330                  thi->name[0],
331                  resource->name);
332
333 restart:
334         retval = thi->function(thi);
335
336         spin_lock_irqsave(&thi->t_lock, flags);
337
338         /* if the receiver has been "EXITING", the last thing it did
339          * was set the conn state to "StandAlone",
340          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
341          * and receiver thread will be "started".
342          * drbd_thread_start needs to set "RESTARTING" in that case.
343          * t_state check and assignment needs to be within the same spinlock,
344          * so either thread_start sees EXITING, and can remap to RESTARTING,
345          * or thread_start see NONE, and can proceed as normal.
346          */
347
348         if (thi->t_state == RESTARTING) {
349                 drbd_info(resource, "Restarting %s thread\n", thi->name);
350                 thi->t_state = RUNNING;
351                 spin_unlock_irqrestore(&thi->t_lock, flags);
352                 goto restart;
353         }
354
355         thi->task = NULL;
356         thi->t_state = NONE;
357         smp_mb();
358         complete_all(&thi->stop);
359         spin_unlock_irqrestore(&thi->t_lock, flags);
360
361         drbd_info(resource, "Terminating %s\n", current->comm);
362
363         /* Release mod reference taken when thread was started */
364
365         if (thi->connection)
366                 kref_put(&thi->connection->kref, drbd_destroy_connection);
367         kref_put(&resource->kref, drbd_destroy_resource);
368         module_put(THIS_MODULE);
369         return retval;
370 }
371
372 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
373                              int (*func) (struct drbd_thread *), const char *name)
374 {
375         spin_lock_init(&thi->t_lock);
376         thi->task    = NULL;
377         thi->t_state = NONE;
378         thi->function = func;
379         thi->resource = resource;
380         thi->connection = NULL;
381         thi->name = name;
382 }
383
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386         struct drbd_resource *resource = thi->resource;
387         struct task_struct *nt;
388         unsigned long flags;
389
390         /* is used from state engine doing drbd_thread_stop_nowait,
391          * while holding the req lock irqsave */
392         spin_lock_irqsave(&thi->t_lock, flags);
393
394         switch (thi->t_state) {
395         case NONE:
396                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
397                          thi->name, current->comm, current->pid);
398
399                 /* Get ref on module for thread - this is released when thread exits */
400                 if (!try_module_get(THIS_MODULE)) {
401                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
402                         spin_unlock_irqrestore(&thi->t_lock, flags);
403                         return false;
404                 }
405
406                 kref_get(&resource->kref);
407                 if (thi->connection)
408                         kref_get(&thi->connection->kref);
409
410                 init_completion(&thi->stop);
411                 thi->reset_cpu_mask = 1;
412                 thi->t_state = RUNNING;
413                 spin_unlock_irqrestore(&thi->t_lock, flags);
414                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
415
416                 nt = kthread_create(drbd_thread_setup, (void *) thi,
417                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
418
419                 if (IS_ERR(nt)) {
420                         drbd_err(resource, "Couldn't start thread\n");
421
422                         if (thi->connection)
423                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
424                         kref_put(&resource->kref, drbd_destroy_resource);
425                         module_put(THIS_MODULE);
426                         return false;
427                 }
428                 spin_lock_irqsave(&thi->t_lock, flags);
429                 thi->task = nt;
430                 thi->t_state = RUNNING;
431                 spin_unlock_irqrestore(&thi->t_lock, flags);
432                 wake_up_process(nt);
433                 break;
434         case EXITING:
435                 thi->t_state = RESTARTING;
436                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
437                                 thi->name, current->comm, current->pid);
438                 /* fall through */
439         case RUNNING:
440         case RESTARTING:
441         default:
442                 spin_unlock_irqrestore(&thi->t_lock, flags);
443                 break;
444         }
445
446         return true;
447 }
448
449
450 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
451 {
452         unsigned long flags;
453
454         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
455
456         /* may be called from state engine, holding the req lock irqsave */
457         spin_lock_irqsave(&thi->t_lock, flags);
458
459         if (thi->t_state == NONE) {
460                 spin_unlock_irqrestore(&thi->t_lock, flags);
461                 if (restart)
462                         drbd_thread_start(thi);
463                 return;
464         }
465
466         if (thi->t_state != ns) {
467                 if (thi->task == NULL) {
468                         spin_unlock_irqrestore(&thi->t_lock, flags);
469                         return;
470                 }
471
472                 thi->t_state = ns;
473                 smp_mb();
474                 init_completion(&thi->stop);
475                 if (thi->task != current)
476                         force_sig(DRBD_SIGKILL, thi->task);
477         }
478
479         spin_unlock_irqrestore(&thi->t_lock, flags);
480
481         if (wait)
482                 wait_for_completion(&thi->stop);
483 }
484
485 int conn_lowest_minor(struct drbd_connection *connection)
486 {
487         struct drbd_peer_device *peer_device;
488         int vnr = 0, minor = -1;
489
490         rcu_read_lock();
491         peer_device = idr_get_next(&connection->peer_devices, &vnr);
492         if (peer_device)
493                 minor = device_to_minor(peer_device->device);
494         rcu_read_unlock();
495
496         return minor;
497 }
498
499 #ifdef CONFIG_SMP
500 /**
501  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
502  *
503  * Forces all threads of a resource onto the same CPU. This is beneficial for
504  * DRBD's performance. May be overwritten by user's configuration.
505  */
506 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
507 {
508         unsigned int *resources_per_cpu, min_index = ~0;
509
510         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
511         if (resources_per_cpu) {
512                 struct drbd_resource *resource;
513                 unsigned int cpu, min = ~0;
514
515                 rcu_read_lock();
516                 for_each_resource_rcu(resource, &drbd_resources) {
517                         for_each_cpu(cpu, resource->cpu_mask)
518                                 resources_per_cpu[cpu]++;
519                 }
520                 rcu_read_unlock();
521                 for_each_online_cpu(cpu) {
522                         if (resources_per_cpu[cpu] < min) {
523                                 min = resources_per_cpu[cpu];
524                                 min_index = cpu;
525                         }
526                 }
527                 kfree(resources_per_cpu);
528         }
529         if (min_index == ~0) {
530                 cpumask_setall(*cpu_mask);
531                 return;
532         }
533         cpumask_set_cpu(min_index, *cpu_mask);
534 }
535
536 /**
537  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
538  * @device:     DRBD device.
539  * @thi:        drbd_thread object
540  *
541  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
542  * prematurely.
543  */
544 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
545 {
546         struct drbd_resource *resource = thi->resource;
547         struct task_struct *p = current;
548
549         if (!thi->reset_cpu_mask)
550                 return;
551         thi->reset_cpu_mask = 0;
552         set_cpus_allowed_ptr(p, resource->cpu_mask);
553 }
554 #else
555 #define drbd_calc_cpu_mask(A) ({})
556 #endif
557
558 /**
559  * drbd_header_size  -  size of a packet header
560  *
561  * The header size is a multiple of 8, so any payload following the header is
562  * word aligned on 64-bit architectures.  (The bitmap send and receive code
563  * relies on this.)
564  */
565 unsigned int drbd_header_size(struct drbd_connection *connection)
566 {
567         if (connection->agreed_pro_version >= 100) {
568                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
569                 return sizeof(struct p_header100);
570         } else {
571                 BUILD_BUG_ON(sizeof(struct p_header80) !=
572                              sizeof(struct p_header95));
573                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
574                 return sizeof(struct p_header80);
575         }
576 }
577
578 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
579 {
580         h->magic   = cpu_to_be32(DRBD_MAGIC);
581         h->command = cpu_to_be16(cmd);
582         h->length  = cpu_to_be16(size);
583         return sizeof(struct p_header80);
584 }
585
586 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
587 {
588         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
589         h->command = cpu_to_be16(cmd);
590         h->length = cpu_to_be32(size);
591         return sizeof(struct p_header95);
592 }
593
594 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
595                                       int size, int vnr)
596 {
597         h->magic = cpu_to_be32(DRBD_MAGIC_100);
598         h->volume = cpu_to_be16(vnr);
599         h->command = cpu_to_be16(cmd);
600         h->length = cpu_to_be32(size);
601         h->pad = 0;
602         return sizeof(struct p_header100);
603 }
604
605 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
606                                    void *buffer, enum drbd_packet cmd, int size)
607 {
608         if (connection->agreed_pro_version >= 100)
609                 return prepare_header100(buffer, cmd, size, vnr);
610         else if (connection->agreed_pro_version >= 95 &&
611                  size > DRBD_MAX_SIZE_H80_PACKET)
612                 return prepare_header95(buffer, cmd, size);
613         else
614                 return prepare_header80(buffer, cmd, size);
615 }
616
617 static void *__conn_prepare_command(struct drbd_connection *connection,
618                                     struct drbd_socket *sock)
619 {
620         if (!sock->socket)
621                 return NULL;
622         return sock->sbuf + drbd_header_size(connection);
623 }
624
625 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
626 {
627         void *p;
628
629         mutex_lock(&sock->mutex);
630         p = __conn_prepare_command(connection, sock);
631         if (!p)
632                 mutex_unlock(&sock->mutex);
633
634         return p;
635 }
636
637 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
638 {
639         return conn_prepare_command(peer_device->connection, sock);
640 }
641
642 static int __send_command(struct drbd_connection *connection, int vnr,
643                           struct drbd_socket *sock, enum drbd_packet cmd,
644                           unsigned int header_size, void *data,
645                           unsigned int size)
646 {
647         int msg_flags;
648         int err;
649
650         /*
651          * Called with @data == NULL and the size of the data blocks in @size
652          * for commands that send data blocks.  For those commands, omit the
653          * MSG_MORE flag: this will increase the likelihood that data blocks
654          * which are page aligned on the sender will end up page aligned on the
655          * receiver.
656          */
657         msg_flags = data ? MSG_MORE : 0;
658
659         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
660                                       header_size + size);
661         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
662                             msg_flags);
663         if (data && !err)
664                 err = drbd_send_all(connection, sock->socket, data, size, 0);
665         return err;
666 }
667
668 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
669                                enum drbd_packet cmd, unsigned int header_size,
670                                void *data, unsigned int size)
671 {
672         return __send_command(connection, 0, sock, cmd, header_size, data, size);
673 }
674
675 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
676                       enum drbd_packet cmd, unsigned int header_size,
677                       void *data, unsigned int size)
678 {
679         int err;
680
681         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
682         mutex_unlock(&sock->mutex);
683         return err;
684 }
685
686 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
687                       enum drbd_packet cmd, unsigned int header_size,
688                       void *data, unsigned int size)
689 {
690         int err;
691
692         err = __send_command(peer_device->connection, peer_device->device->vnr,
693                              sock, cmd, header_size, data, size);
694         mutex_unlock(&sock->mutex);
695         return err;
696 }
697
698 int drbd_send_ping(struct drbd_connection *connection)
699 {
700         struct drbd_socket *sock;
701
702         sock = &connection->meta;
703         if (!conn_prepare_command(connection, sock))
704                 return -EIO;
705         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
706 }
707
708 int drbd_send_ping_ack(struct drbd_connection *connection)
709 {
710         struct drbd_socket *sock;
711
712         sock = &connection->meta;
713         if (!conn_prepare_command(connection, sock))
714                 return -EIO;
715         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
716 }
717
718 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
719 {
720         struct drbd_socket *sock;
721         struct p_rs_param_95 *p;
722         int size;
723         const int apv = peer_device->connection->agreed_pro_version;
724         enum drbd_packet cmd;
725         struct net_conf *nc;
726         struct disk_conf *dc;
727
728         sock = &peer_device->connection->data;
729         p = drbd_prepare_command(peer_device, sock);
730         if (!p)
731                 return -EIO;
732
733         rcu_read_lock();
734         nc = rcu_dereference(peer_device->connection->net_conf);
735
736         size = apv <= 87 ? sizeof(struct p_rs_param)
737                 : apv == 88 ? sizeof(struct p_rs_param)
738                         + strlen(nc->verify_alg) + 1
739                 : apv <= 94 ? sizeof(struct p_rs_param_89)
740                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
741
742         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
743
744         /* initialize verify_alg and csums_alg */
745         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
746
747         if (get_ldev(peer_device->device)) {
748                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
749                 p->resync_rate = cpu_to_be32(dc->resync_rate);
750                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
751                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
752                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
753                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
754                 put_ldev(peer_device->device);
755         } else {
756                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
757                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
758                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
759                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
760                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
761         }
762
763         if (apv >= 88)
764                 strcpy(p->verify_alg, nc->verify_alg);
765         if (apv >= 89)
766                 strcpy(p->csums_alg, nc->csums_alg);
767         rcu_read_unlock();
768
769         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
770 }
771
772 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
773 {
774         struct drbd_socket *sock;
775         struct p_protocol *p;
776         struct net_conf *nc;
777         int size, cf;
778
779         sock = &connection->data;
780         p = __conn_prepare_command(connection, sock);
781         if (!p)
782                 return -EIO;
783
784         rcu_read_lock();
785         nc = rcu_dereference(connection->net_conf);
786
787         if (nc->tentative && connection->agreed_pro_version < 92) {
788                 rcu_read_unlock();
789                 mutex_unlock(&sock->mutex);
790                 drbd_err(connection, "--dry-run is not supported by peer");
791                 return -EOPNOTSUPP;
792         }
793
794         size = sizeof(*p);
795         if (connection->agreed_pro_version >= 87)
796                 size += strlen(nc->integrity_alg) + 1;
797
798         p->protocol      = cpu_to_be32(nc->wire_protocol);
799         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
800         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
801         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
802         p->two_primaries = cpu_to_be32(nc->two_primaries);
803         cf = 0;
804         if (nc->discard_my_data)
805                 cf |= CF_DISCARD_MY_DATA;
806         if (nc->tentative)
807                 cf |= CF_DRY_RUN;
808         p->conn_flags    = cpu_to_be32(cf);
809
810         if (connection->agreed_pro_version >= 87)
811                 strcpy(p->integrity_alg, nc->integrity_alg);
812         rcu_read_unlock();
813
814         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816
817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819         int err;
820
821         mutex_lock(&connection->data.mutex);
822         err = __drbd_send_protocol(connection, P_PROTOCOL);
823         mutex_unlock(&connection->data.mutex);
824
825         return err;
826 }
827
828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830         struct drbd_device *device = peer_device->device;
831         struct drbd_socket *sock;
832         struct p_uuids *p;
833         int i;
834
835         if (!get_ldev_if_state(device, D_NEGOTIATING))
836                 return 0;
837
838         sock = &peer_device->connection->data;
839         p = drbd_prepare_command(peer_device, sock);
840         if (!p) {
841                 put_ldev(device);
842                 return -EIO;
843         }
844         spin_lock_irq(&device->ldev->md.uuid_lock);
845         for (i = UI_CURRENT; i < UI_SIZE; i++)
846                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847         spin_unlock_irq(&device->ldev->md.uuid_lock);
848
849         device->comm_bm_set = drbd_bm_total_weight(device);
850         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851         rcu_read_lock();
852         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853         rcu_read_unlock();
854         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857
858         put_ldev(device);
859         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861
862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864         return _drbd_send_uuids(peer_device, 0);
865 }
866
867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869         return _drbd_send_uuids(peer_device, 8);
870 }
871
872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874         if (get_ldev_if_state(device, D_NEGOTIATING)) {
875                 u64 *uuid = device->ldev->md.uuid;
876                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877                      text,
878                      (unsigned long long)uuid[UI_CURRENT],
879                      (unsigned long long)uuid[UI_BITMAP],
880                      (unsigned long long)uuid[UI_HISTORY_START],
881                      (unsigned long long)uuid[UI_HISTORY_END]);
882                 put_ldev(device);
883         } else {
884                 drbd_info(device, "%s effective data uuid: %016llX\n",
885                                 text,
886                                 (unsigned long long)device->ed_uuid);
887         }
888 }
889
890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892         struct drbd_device *device = peer_device->device;
893         struct drbd_socket *sock;
894         struct p_rs_uuid *p;
895         u64 uuid;
896
897         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898
899         uuid = device->ldev->md.uuid[UI_BITMAP];
900         if (uuid && uuid != UUID_JUST_CREATED)
901                 uuid = uuid + UUID_NEW_BM_OFFSET;
902         else
903                 get_random_bytes(&uuid, sizeof(u64));
904         drbd_uuid_set(device, UI_BITMAP, uuid);
905         drbd_print_uuids(device, "updated sync UUID");
906         drbd_md_sync(device);
907
908         sock = &peer_device->connection->data;
909         p = drbd_prepare_command(peer_device, sock);
910         if (p) {
911                 p->uuid = cpu_to_be64(uuid);
912                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913         }
914 }
915
916 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
917 {
918         struct drbd_device *device = peer_device->device;
919         struct drbd_socket *sock;
920         struct p_sizes *p;
921         sector_t d_size, u_size;
922         int q_order_type;
923         unsigned int max_bio_size;
924
925         if (get_ldev_if_state(device, D_NEGOTIATING)) {
926                 D_ASSERT(device, device->ldev->backing_bdev);
927                 d_size = drbd_get_max_capacity(device->ldev);
928                 rcu_read_lock();
929                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
930                 rcu_read_unlock();
931                 q_order_type = drbd_queue_order_type(device);
932                 max_bio_size = queue_max_hw_sectors(device->ldev->backing_bdev->bd_disk->queue) << 9;
933                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
934                 put_ldev(device);
935         } else {
936                 d_size = 0;
937                 u_size = 0;
938                 q_order_type = QUEUE_ORDERED_NONE;
939                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
940         }
941
942         sock = &peer_device->connection->data;
943         p = drbd_prepare_command(peer_device, sock);
944         if (!p)
945                 return -EIO;
946
947         if (peer_device->connection->agreed_pro_version <= 94)
948                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
949         else if (peer_device->connection->agreed_pro_version < 100)
950                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
951
952         p->d_size = cpu_to_be64(d_size);
953         p->u_size = cpu_to_be64(u_size);
954         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
955         p->max_bio_size = cpu_to_be32(max_bio_size);
956         p->queue_order_type = cpu_to_be16(q_order_type);
957         p->dds_flags = cpu_to_be16(flags);
958         return drbd_send_command(peer_device, sock, P_SIZES, sizeof(*p), NULL, 0);
959 }
960
961 /**
962  * drbd_send_current_state() - Sends the drbd state to the peer
963  * @peer_device:        DRBD peer device.
964  */
965 int drbd_send_current_state(struct drbd_peer_device *peer_device)
966 {
967         struct drbd_socket *sock;
968         struct p_state *p;
969
970         sock = &peer_device->connection->data;
971         p = drbd_prepare_command(peer_device, sock);
972         if (!p)
973                 return -EIO;
974         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
975         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
976 }
977
978 /**
979  * drbd_send_state() - After a state change, sends the new state to the peer
980  * @peer_device:      DRBD peer device.
981  * @state:     the state to send, not necessarily the current state.
982  *
983  * Each state change queues an "after_state_ch" work, which will eventually
984  * send the resulting new state to the peer. If more state changes happen
985  * between queuing and processing of the after_state_ch work, we still
986  * want to send each intermediary state in the order it occurred.
987  */
988 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
989 {
990         struct drbd_socket *sock;
991         struct p_state *p;
992
993         sock = &peer_device->connection->data;
994         p = drbd_prepare_command(peer_device, sock);
995         if (!p)
996                 return -EIO;
997         p->state = cpu_to_be32(state.i); /* Within the send mutex */
998         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
999 }
1000
1001 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1002 {
1003         struct drbd_socket *sock;
1004         struct p_req_state *p;
1005
1006         sock = &peer_device->connection->data;
1007         p = drbd_prepare_command(peer_device, sock);
1008         if (!p)
1009                 return -EIO;
1010         p->mask = cpu_to_be32(mask.i);
1011         p->val = cpu_to_be32(val.i);
1012         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1013 }
1014
1015 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1016 {
1017         enum drbd_packet cmd;
1018         struct drbd_socket *sock;
1019         struct p_req_state *p;
1020
1021         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1022         sock = &connection->data;
1023         p = conn_prepare_command(connection, sock);
1024         if (!p)
1025                 return -EIO;
1026         p->mask = cpu_to_be32(mask.i);
1027         p->val = cpu_to_be32(val.i);
1028         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1029 }
1030
1031 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1032 {
1033         struct drbd_socket *sock;
1034         struct p_req_state_reply *p;
1035
1036         sock = &peer_device->connection->meta;
1037         p = drbd_prepare_command(peer_device, sock);
1038         if (p) {
1039                 p->retcode = cpu_to_be32(retcode);
1040                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1041         }
1042 }
1043
1044 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1045 {
1046         struct drbd_socket *sock;
1047         struct p_req_state_reply *p;
1048         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1049
1050         sock = &connection->meta;
1051         p = conn_prepare_command(connection, sock);
1052         if (p) {
1053                 p->retcode = cpu_to_be32(retcode);
1054                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1055         }
1056 }
1057
1058 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1059 {
1060         BUG_ON(code & ~0xf);
1061         p->encoding = (p->encoding & ~0xf) | code;
1062 }
1063
1064 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1065 {
1066         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1067 }
1068
1069 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1070 {
1071         BUG_ON(n & ~0x7);
1072         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1073 }
1074
1075 static int fill_bitmap_rle_bits(struct drbd_device *device,
1076                          struct p_compressed_bm *p,
1077                          unsigned int size,
1078                          struct bm_xfer_ctx *c)
1079 {
1080         struct bitstream bs;
1081         unsigned long plain_bits;
1082         unsigned long tmp;
1083         unsigned long rl;
1084         unsigned len;
1085         unsigned toggle;
1086         int bits, use_rle;
1087
1088         /* may we use this feature? */
1089         rcu_read_lock();
1090         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1091         rcu_read_unlock();
1092         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1093                 return 0;
1094
1095         if (c->bit_offset >= c->bm_bits)
1096                 return 0; /* nothing to do. */
1097
1098         /* use at most thus many bytes */
1099         bitstream_init(&bs, p->code, size, 0);
1100         memset(p->code, 0, size);
1101         /* plain bits covered in this code string */
1102         plain_bits = 0;
1103
1104         /* p->encoding & 0x80 stores whether the first run length is set.
1105          * bit offset is implicit.
1106          * start with toggle == 2 to be able to tell the first iteration */
1107         toggle = 2;
1108
1109         /* see how much plain bits we can stuff into one packet
1110          * using RLE and VLI. */
1111         do {
1112                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1113                                     : _drbd_bm_find_next(device, c->bit_offset);
1114                 if (tmp == -1UL)
1115                         tmp = c->bm_bits;
1116                 rl = tmp - c->bit_offset;
1117
1118                 if (toggle == 2) { /* first iteration */
1119                         if (rl == 0) {
1120                                 /* the first checked bit was set,
1121                                  * store start value, */
1122                                 dcbp_set_start(p, 1);
1123                                 /* but skip encoding of zero run length */
1124                                 toggle = !toggle;
1125                                 continue;
1126                         }
1127                         dcbp_set_start(p, 0);
1128                 }
1129
1130                 /* paranoia: catch zero runlength.
1131                  * can only happen if bitmap is modified while we scan it. */
1132                 if (rl == 0) {
1133                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1134                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1135                         return -1;
1136                 }
1137
1138                 bits = vli_encode_bits(&bs, rl);
1139                 if (bits == -ENOBUFS) /* buffer full */
1140                         break;
1141                 if (bits <= 0) {
1142                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1143                         return 0;
1144                 }
1145
1146                 toggle = !toggle;
1147                 plain_bits += rl;
1148                 c->bit_offset = tmp;
1149         } while (c->bit_offset < c->bm_bits);
1150
1151         len = bs.cur.b - p->code + !!bs.cur.bit;
1152
1153         if (plain_bits < (len << 3)) {
1154                 /* incompressible with this method.
1155                  * we need to rewind both word and bit position. */
1156                 c->bit_offset -= plain_bits;
1157                 bm_xfer_ctx_bit_to_word_offset(c);
1158                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1159                 return 0;
1160         }
1161
1162         /* RLE + VLI was able to compress it just fine.
1163          * update c->word_offset. */
1164         bm_xfer_ctx_bit_to_word_offset(c);
1165
1166         /* store pad_bits */
1167         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1168
1169         return len;
1170 }
1171
1172 /**
1173  * send_bitmap_rle_or_plain
1174  *
1175  * Return 0 when done, 1 when another iteration is needed, and a negative error
1176  * code upon failure.
1177  */
1178 static int
1179 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1180 {
1181         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1182         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1183         struct p_compressed_bm *p = sock->sbuf + header_size;
1184         int len, err;
1185
1186         len = fill_bitmap_rle_bits(device, p,
1187                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1188         if (len < 0)
1189                 return -EIO;
1190
1191         if (len) {
1192                 dcbp_set_code(p, RLE_VLI_Bits);
1193                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1194                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1195                                      NULL, 0);
1196                 c->packets[0]++;
1197                 c->bytes[0] += header_size + sizeof(*p) + len;
1198
1199                 if (c->bit_offset >= c->bm_bits)
1200                         len = 0; /* DONE */
1201         } else {
1202                 /* was not compressible.
1203                  * send a buffer full of plain text bits instead. */
1204                 unsigned int data_size;
1205                 unsigned long num_words;
1206                 unsigned long *p = sock->sbuf + header_size;
1207
1208                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1209                 num_words = min_t(size_t, data_size / sizeof(*p),
1210                                   c->bm_words - c->word_offset);
1211                 len = num_words * sizeof(*p);
1212                 if (len)
1213                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1214                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1215                 c->word_offset += num_words;
1216                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1217
1218                 c->packets[1]++;
1219                 c->bytes[1] += header_size + len;
1220
1221                 if (c->bit_offset > c->bm_bits)
1222                         c->bit_offset = c->bm_bits;
1223         }
1224         if (!err) {
1225                 if (len == 0) {
1226                         INFO_bm_xfer_stats(device, "send", c);
1227                         return 0;
1228                 } else
1229                         return 1;
1230         }
1231         return -EIO;
1232 }
1233
1234 /* See the comment at receive_bitmap() */
1235 static int _drbd_send_bitmap(struct drbd_device *device)
1236 {
1237         struct bm_xfer_ctx c;
1238         int err;
1239
1240         if (!expect(device->bitmap))
1241                 return false;
1242
1243         if (get_ldev(device)) {
1244                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1245                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1246                         drbd_bm_set_all(device);
1247                         if (drbd_bm_write(device)) {
1248                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1249                                  * but otherwise process as per normal - need to tell other
1250                                  * side that a full resync is required! */
1251                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1252                         } else {
1253                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1254                                 drbd_md_sync(device);
1255                         }
1256                 }
1257                 put_ldev(device);
1258         }
1259
1260         c = (struct bm_xfer_ctx) {
1261                 .bm_bits = drbd_bm_bits(device),
1262                 .bm_words = drbd_bm_words(device),
1263         };
1264
1265         do {
1266                 err = send_bitmap_rle_or_plain(device, &c);
1267         } while (err > 0);
1268
1269         return err == 0;
1270 }
1271
1272 int drbd_send_bitmap(struct drbd_device *device)
1273 {
1274         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1275         int err = -1;
1276
1277         mutex_lock(&sock->mutex);
1278         if (sock->socket)
1279                 err = !_drbd_send_bitmap(device);
1280         mutex_unlock(&sock->mutex);
1281         return err;
1282 }
1283
1284 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1285 {
1286         struct drbd_socket *sock;
1287         struct p_barrier_ack *p;
1288
1289         if (connection->cstate < C_WF_REPORT_PARAMS)
1290                 return;
1291
1292         sock = &connection->meta;
1293         p = conn_prepare_command(connection, sock);
1294         if (!p)
1295                 return;
1296         p->barrier = barrier_nr;
1297         p->set_size = cpu_to_be32(set_size);
1298         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1299 }
1300
1301 /**
1302  * _drbd_send_ack() - Sends an ack packet
1303  * @device:     DRBD device.
1304  * @cmd:        Packet command code.
1305  * @sector:     sector, needs to be in big endian byte order
1306  * @blksize:    size in byte, needs to be in big endian byte order
1307  * @block_id:   Id, big endian byte order
1308  */
1309 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1310                           u64 sector, u32 blksize, u64 block_id)
1311 {
1312         struct drbd_socket *sock;
1313         struct p_block_ack *p;
1314
1315         if (peer_device->device->state.conn < C_CONNECTED)
1316                 return -EIO;
1317
1318         sock = &peer_device->connection->meta;
1319         p = drbd_prepare_command(peer_device, sock);
1320         if (!p)
1321                 return -EIO;
1322         p->sector = sector;
1323         p->block_id = block_id;
1324         p->blksize = blksize;
1325         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1326         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1327 }
1328
1329 /* dp->sector and dp->block_id already/still in network byte order,
1330  * data_size is payload size according to dp->head,
1331  * and may need to be corrected for digest size. */
1332 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1333                       struct p_data *dp, int data_size)
1334 {
1335         if (peer_device->connection->peer_integrity_tfm)
1336                 data_size -= crypto_hash_digestsize(peer_device->connection->peer_integrity_tfm);
1337         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1338                        dp->block_id);
1339 }
1340
1341 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1342                       struct p_block_req *rp)
1343 {
1344         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1345 }
1346
1347 /**
1348  * drbd_send_ack() - Sends an ack packet
1349  * @device:     DRBD device
1350  * @cmd:        packet command code
1351  * @peer_req:   peer request
1352  */
1353 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1354                   struct drbd_peer_request *peer_req)
1355 {
1356         return _drbd_send_ack(peer_device, cmd,
1357                               cpu_to_be64(peer_req->i.sector),
1358                               cpu_to_be32(peer_req->i.size),
1359                               peer_req->block_id);
1360 }
1361
1362 /* This function misuses the block_id field to signal if the blocks
1363  * are is sync or not. */
1364 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1365                      sector_t sector, int blksize, u64 block_id)
1366 {
1367         return _drbd_send_ack(peer_device, cmd,
1368                               cpu_to_be64(sector),
1369                               cpu_to_be32(blksize),
1370                               cpu_to_be64(block_id));
1371 }
1372
1373 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1374                        sector_t sector, int size, u64 block_id)
1375 {
1376         struct drbd_socket *sock;
1377         struct p_block_req *p;
1378
1379         sock = &peer_device->connection->data;
1380         p = drbd_prepare_command(peer_device, sock);
1381         if (!p)
1382                 return -EIO;
1383         p->sector = cpu_to_be64(sector);
1384         p->block_id = block_id;
1385         p->blksize = cpu_to_be32(size);
1386         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1387 }
1388
1389 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1390                             void *digest, int digest_size, enum drbd_packet cmd)
1391 {
1392         struct drbd_socket *sock;
1393         struct p_block_req *p;
1394
1395         /* FIXME: Put the digest into the preallocated socket buffer.  */
1396
1397         sock = &peer_device->connection->data;
1398         p = drbd_prepare_command(peer_device, sock);
1399         if (!p)
1400                 return -EIO;
1401         p->sector = cpu_to_be64(sector);
1402         p->block_id = ID_SYNCER /* unused */;
1403         p->blksize = cpu_to_be32(size);
1404         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1405 }
1406
1407 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1408 {
1409         struct drbd_socket *sock;
1410         struct p_block_req *p;
1411
1412         sock = &peer_device->connection->data;
1413         p = drbd_prepare_command(peer_device, sock);
1414         if (!p)
1415                 return -EIO;
1416         p->sector = cpu_to_be64(sector);
1417         p->block_id = ID_SYNCER /* unused */;
1418         p->blksize = cpu_to_be32(size);
1419         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1420 }
1421
1422 /* called on sndtimeo
1423  * returns false if we should retry,
1424  * true if we think connection is dead
1425  */
1426 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1427 {
1428         int drop_it;
1429         /* long elapsed = (long)(jiffies - device->last_received); */
1430
1431         drop_it =   connection->meta.socket == sock
1432                 || !connection->asender.task
1433                 || get_t_state(&connection->asender) != RUNNING
1434                 || connection->cstate < C_WF_REPORT_PARAMS;
1435
1436         if (drop_it)
1437                 return true;
1438
1439         drop_it = !--connection->ko_count;
1440         if (!drop_it) {
1441                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1442                          current->comm, current->pid, connection->ko_count);
1443                 request_ping(connection);
1444         }
1445
1446         return drop_it; /* && (device->state == R_PRIMARY) */;
1447 }
1448
1449 static void drbd_update_congested(struct drbd_connection *connection)
1450 {
1451         struct sock *sk = connection->data.socket->sk;
1452         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1453                 set_bit(NET_CONGESTED, &connection->flags);
1454 }
1455
1456 /* The idea of sendpage seems to be to put some kind of reference
1457  * to the page into the skb, and to hand it over to the NIC. In
1458  * this process get_page() gets called.
1459  *
1460  * As soon as the page was really sent over the network put_page()
1461  * gets called by some part of the network layer. [ NIC driver? ]
1462  *
1463  * [ get_page() / put_page() increment/decrement the count. If count
1464  *   reaches 0 the page will be freed. ]
1465  *
1466  * This works nicely with pages from FSs.
1467  * But this means that in protocol A we might signal IO completion too early!
1468  *
1469  * In order not to corrupt data during a resync we must make sure
1470  * that we do not reuse our own buffer pages (EEs) to early, therefore
1471  * we have the net_ee list.
1472  *
1473  * XFS seems to have problems, still, it submits pages with page_count == 0!
1474  * As a workaround, we disable sendpage on pages
1475  * with page_count == 0 or PageSlab.
1476  */
1477 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1478                               int offset, size_t size, unsigned msg_flags)
1479 {
1480         struct socket *socket;
1481         void *addr;
1482         int err;
1483
1484         socket = peer_device->connection->data.socket;
1485         addr = kmap(page) + offset;
1486         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1487         kunmap(page);
1488         if (!err)
1489                 peer_device->device->send_cnt += size >> 9;
1490         return err;
1491 }
1492
1493 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1494                     int offset, size_t size, unsigned msg_flags)
1495 {
1496         struct socket *socket = peer_device->connection->data.socket;
1497         mm_segment_t oldfs = get_fs();
1498         int len = size;
1499         int err = -EIO;
1500
1501         /* e.g. XFS meta- & log-data is in slab pages, which have a
1502          * page_count of 0 and/or have PageSlab() set.
1503          * we cannot use send_page for those, as that does get_page();
1504          * put_page(); and would cause either a VM_BUG directly, or
1505          * __page_cache_release a page that would actually still be referenced
1506          * by someone, leading to some obscure delayed Oops somewhere else. */
1507         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1508                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1509
1510         msg_flags |= MSG_NOSIGNAL;
1511         drbd_update_congested(peer_device->connection);
1512         set_fs(KERNEL_DS);
1513         do {
1514                 int sent;
1515
1516                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1517                 if (sent <= 0) {
1518                         if (sent == -EAGAIN) {
1519                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1520                                         break;
1521                                 continue;
1522                         }
1523                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1524                              __func__, (int)size, len, sent);
1525                         if (sent < 0)
1526                                 err = sent;
1527                         break;
1528                 }
1529                 len    -= sent;
1530                 offset += sent;
1531         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1532         set_fs(oldfs);
1533         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1534
1535         if (len == 0) {
1536                 err = 0;
1537                 peer_device->device->send_cnt += size >> 9;
1538         }
1539         return err;
1540 }
1541
1542 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1543 {
1544         struct bio_vec bvec;
1545         struct bvec_iter iter;
1546
1547         /* hint all but last page with MSG_MORE */
1548         bio_for_each_segment(bvec, bio, iter) {
1549                 int err;
1550
1551                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1552                                          bvec.bv_offset, bvec.bv_len,
1553                                          bio_iter_last(bvec, iter)
1554                                          ? 0 : MSG_MORE);
1555                 if (err)
1556                         return err;
1557         }
1558         return 0;
1559 }
1560
1561 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1562 {
1563         struct bio_vec bvec;
1564         struct bvec_iter iter;
1565
1566         /* hint all but last page with MSG_MORE */
1567         bio_for_each_segment(bvec, bio, iter) {
1568                 int err;
1569
1570                 err = _drbd_send_page(peer_device, bvec.bv_page,
1571                                       bvec.bv_offset, bvec.bv_len,
1572                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1573                 if (err)
1574                         return err;
1575         }
1576         return 0;
1577 }
1578
1579 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1580                             struct drbd_peer_request *peer_req)
1581 {
1582         struct page *page = peer_req->pages;
1583         unsigned len = peer_req->i.size;
1584         int err;
1585
1586         /* hint all but last page with MSG_MORE */
1587         page_chain_for_each(page) {
1588                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1589
1590                 err = _drbd_send_page(peer_device, page, 0, l,
1591                                       page_chain_next(page) ? MSG_MORE : 0);
1592                 if (err)
1593                         return err;
1594                 len -= l;
1595         }
1596         return 0;
1597 }
1598
1599 static u32 bio_flags_to_wire(struct drbd_connection *connection, unsigned long bi_rw)
1600 {
1601         if (connection->agreed_pro_version >= 95)
1602                 return  (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1603                         (bi_rw & REQ_FUA ? DP_FUA : 0) |
1604                         (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1605                         (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1606         else
1607                 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1608 }
1609
1610 /* Used to send write or TRIM aka REQ_DISCARD requests
1611  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1612  */
1613 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1614 {
1615         struct drbd_device *device = peer_device->device;
1616         struct drbd_socket *sock;
1617         struct p_data *p;
1618         unsigned int dp_flags = 0;
1619         int dgs;
1620         int err;
1621
1622         sock = &peer_device->connection->data;
1623         p = drbd_prepare_command(peer_device, sock);
1624         dgs = peer_device->connection->integrity_tfm ?
1625               crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1626
1627         if (!p)
1628                 return -EIO;
1629         p->sector = cpu_to_be64(req->i.sector);
1630         p->block_id = (unsigned long)req;
1631         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1632         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio->bi_rw);
1633         if (device->state.conn >= C_SYNC_SOURCE &&
1634             device->state.conn <= C_PAUSED_SYNC_T)
1635                 dp_flags |= DP_MAY_SET_IN_SYNC;
1636         if (peer_device->connection->agreed_pro_version >= 100) {
1637                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1638                         dp_flags |= DP_SEND_RECEIVE_ACK;
1639                 if (req->rq_state & RQ_EXP_WRITE_ACK)
1640                         dp_flags |= DP_SEND_WRITE_ACK;
1641         }
1642         p->dp_flags = cpu_to_be32(dp_flags);
1643
1644         if (dp_flags & DP_DISCARD) {
1645                 struct p_trim *t = (struct p_trim*)p;
1646                 t->size = cpu_to_be32(req->i.size);
1647                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1648                 goto out;
1649         }
1650
1651         /* our digest is still only over the payload.
1652          * TRIM does not carry any payload. */
1653         if (dgs)
1654                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, p + 1);
1655         err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1656         if (!err) {
1657                 /* For protocol A, we have to memcpy the payload into
1658                  * socket buffers, as we may complete right away
1659                  * as soon as we handed it over to tcp, at which point the data
1660                  * pages may become invalid.
1661                  *
1662                  * For data-integrity enabled, we copy it as well, so we can be
1663                  * sure that even if the bio pages may still be modified, it
1664                  * won't change the data on the wire, thus if the digest checks
1665                  * out ok after sending on this side, but does not fit on the
1666                  * receiving side, we sure have detected corruption elsewhere.
1667                  */
1668                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1669                         err = _drbd_send_bio(peer_device, req->master_bio);
1670                 else
1671                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1672
1673                 /* double check digest, sometimes buffers have been modified in flight. */
1674                 if (dgs > 0 && dgs <= 64) {
1675                         /* 64 byte, 512 bit, is the largest digest size
1676                          * currently supported in kernel crypto. */
1677                         unsigned char digest[64];
1678                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1679                         if (memcmp(p + 1, digest, dgs)) {
1680                                 drbd_warn(device,
1681                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1682                                         (unsigned long long)req->i.sector, req->i.size);
1683                         }
1684                 } /* else if (dgs > 64) {
1685                      ... Be noisy about digest too large ...
1686                 } */
1687         }
1688 out:
1689         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1690
1691         return err;
1692 }
1693
1694 /* answer packet, used to send data back for read requests:
1695  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1696  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1697  */
1698 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1699                     struct drbd_peer_request *peer_req)
1700 {
1701         struct drbd_device *device = peer_device->device;
1702         struct drbd_socket *sock;
1703         struct p_data *p;
1704         int err;
1705         int dgs;
1706
1707         sock = &peer_device->connection->data;
1708         p = drbd_prepare_command(peer_device, sock);
1709
1710         dgs = peer_device->connection->integrity_tfm ?
1711               crypto_hash_digestsize(peer_device->connection->integrity_tfm) : 0;
1712
1713         if (!p)
1714                 return -EIO;
1715         p->sector = cpu_to_be64(peer_req->i.sector);
1716         p->block_id = peer_req->block_id;
1717         p->seq_num = 0;  /* unused */
1718         p->dp_flags = 0;
1719         if (dgs)
1720                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1721         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1722         if (!err)
1723                 err = _drbd_send_zc_ee(peer_device, peer_req);
1724         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1725
1726         return err;
1727 }
1728
1729 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1730 {
1731         struct drbd_socket *sock;
1732         struct p_block_desc *p;
1733
1734         sock = &peer_device->connection->data;
1735         p = drbd_prepare_command(peer_device, sock);
1736         if (!p)
1737                 return -EIO;
1738         p->sector = cpu_to_be64(req->i.sector);
1739         p->blksize = cpu_to_be32(req->i.size);
1740         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1741 }
1742
1743 /*
1744   drbd_send distinguishes two cases:
1745
1746   Packets sent via the data socket "sock"
1747   and packets sent via the meta data socket "msock"
1748
1749                     sock                      msock
1750   -----------------+-------------------------+------------------------------
1751   timeout           conf.timeout / 2          conf.timeout / 2
1752   timeout action    send a ping via msock     Abort communication
1753                                               and close all sockets
1754 */
1755
1756 /*
1757  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1758  */
1759 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1760               void *buf, size_t size, unsigned msg_flags)
1761 {
1762         struct kvec iov;
1763         struct msghdr msg;
1764         int rv, sent = 0;
1765
1766         if (!sock)
1767                 return -EBADR;
1768
1769         /* THINK  if (signal_pending) return ... ? */
1770
1771         iov.iov_base = buf;
1772         iov.iov_len  = size;
1773
1774         msg.msg_name       = NULL;
1775         msg.msg_namelen    = 0;
1776         msg.msg_control    = NULL;
1777         msg.msg_controllen = 0;
1778         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1779
1780         if (sock == connection->data.socket) {
1781                 rcu_read_lock();
1782                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1783                 rcu_read_unlock();
1784                 drbd_update_congested(connection);
1785         }
1786         do {
1787                 /* STRANGE
1788                  * tcp_sendmsg does _not_ use its size parameter at all ?
1789                  *
1790                  * -EAGAIN on timeout, -EINTR on signal.
1791                  */
1792 /* THINK
1793  * do we need to block DRBD_SIG if sock == &meta.socket ??
1794  * otherwise wake_asender() might interrupt some send_*Ack !
1795  */
1796                 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1797                 if (rv == -EAGAIN) {
1798                         if (we_should_drop_the_connection(connection, sock))
1799                                 break;
1800                         else
1801                                 continue;
1802                 }
1803                 if (rv == -EINTR) {
1804                         flush_signals(current);
1805                         rv = 0;
1806                 }
1807                 if (rv < 0)
1808                         break;
1809                 sent += rv;
1810                 iov.iov_base += rv;
1811                 iov.iov_len  -= rv;
1812         } while (sent < size);
1813
1814         if (sock == connection->data.socket)
1815                 clear_bit(NET_CONGESTED, &connection->flags);
1816
1817         if (rv <= 0) {
1818                 if (rv != -EAGAIN) {
1819                         drbd_err(connection, "%s_sendmsg returned %d\n",
1820                                  sock == connection->meta.socket ? "msock" : "sock",
1821                                  rv);
1822                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1823                 } else
1824                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1825         }
1826
1827         return sent;
1828 }
1829
1830 /**
1831  * drbd_send_all  -  Send an entire buffer
1832  *
1833  * Returns 0 upon success and a negative error value otherwise.
1834  */
1835 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1836                   size_t size, unsigned msg_flags)
1837 {
1838         int err;
1839
1840         err = drbd_send(connection, sock, buffer, size, msg_flags);
1841         if (err < 0)
1842                 return err;
1843         if (err != size)
1844                 return -EIO;
1845         return 0;
1846 }
1847
1848 static int drbd_open(struct block_device *bdev, fmode_t mode)
1849 {
1850         struct drbd_device *device = bdev->bd_disk->private_data;
1851         unsigned long flags;
1852         int rv = 0;
1853
1854         mutex_lock(&drbd_main_mutex);
1855         spin_lock_irqsave(&device->resource->req_lock, flags);
1856         /* to have a stable device->state.role
1857          * and no race with updating open_cnt */
1858
1859         if (device->state.role != R_PRIMARY) {
1860                 if (mode & FMODE_WRITE)
1861                         rv = -EROFS;
1862                 else if (!allow_oos)
1863                         rv = -EMEDIUMTYPE;
1864         }
1865
1866         if (!rv)
1867                 device->open_cnt++;
1868         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1869         mutex_unlock(&drbd_main_mutex);
1870
1871         return rv;
1872 }
1873
1874 static void drbd_release(struct gendisk *gd, fmode_t mode)
1875 {
1876         struct drbd_device *device = gd->private_data;
1877         mutex_lock(&drbd_main_mutex);
1878         device->open_cnt--;
1879         mutex_unlock(&drbd_main_mutex);
1880 }
1881
1882 static void drbd_set_defaults(struct drbd_device *device)
1883 {
1884         /* Beware! The actual layout differs
1885          * between big endian and little endian */
1886         device->state = (union drbd_dev_state) {
1887                 { .role = R_SECONDARY,
1888                   .peer = R_UNKNOWN,
1889                   .conn = C_STANDALONE,
1890                   .disk = D_DISKLESS,
1891                   .pdsk = D_UNKNOWN,
1892                 } };
1893 }
1894
1895 void drbd_init_set_defaults(struct drbd_device *device)
1896 {
1897         /* the memset(,0,) did most of this.
1898          * note: only assignments, no allocation in here */
1899
1900         drbd_set_defaults(device);
1901
1902         atomic_set(&device->ap_bio_cnt, 0);
1903         atomic_set(&device->ap_pending_cnt, 0);
1904         atomic_set(&device->rs_pending_cnt, 0);
1905         atomic_set(&device->unacked_cnt, 0);
1906         atomic_set(&device->local_cnt, 0);
1907         atomic_set(&device->pp_in_use_by_net, 0);
1908         atomic_set(&device->rs_sect_in, 0);
1909         atomic_set(&device->rs_sect_ev, 0);
1910         atomic_set(&device->ap_in_flight, 0);
1911         atomic_set(&device->md_io_in_use, 0);
1912
1913         mutex_init(&device->own_state_mutex);
1914         device->state_mutex = &device->own_state_mutex;
1915
1916         spin_lock_init(&device->al_lock);
1917         spin_lock_init(&device->peer_seq_lock);
1918
1919         INIT_LIST_HEAD(&device->active_ee);
1920         INIT_LIST_HEAD(&device->sync_ee);
1921         INIT_LIST_HEAD(&device->done_ee);
1922         INIT_LIST_HEAD(&device->read_ee);
1923         INIT_LIST_HEAD(&device->net_ee);
1924         INIT_LIST_HEAD(&device->resync_reads);
1925         INIT_LIST_HEAD(&device->resync_work.list);
1926         INIT_LIST_HEAD(&device->unplug_work.list);
1927         INIT_LIST_HEAD(&device->go_diskless.list);
1928         INIT_LIST_HEAD(&device->md_sync_work.list);
1929         INIT_LIST_HEAD(&device->start_resync_work.list);
1930         INIT_LIST_HEAD(&device->bm_io_work.w.list);
1931
1932         device->resync_work.cb  = w_resync_timer;
1933         device->unplug_work.cb  = w_send_write_hint;
1934         device->go_diskless.cb  = w_go_diskless;
1935         device->md_sync_work.cb = w_md_sync;
1936         device->bm_io_work.w.cb = w_bitmap_io;
1937         device->start_resync_work.cb = w_start_resync;
1938
1939         init_timer(&device->resync_timer);
1940         init_timer(&device->md_sync_timer);
1941         init_timer(&device->start_resync_timer);
1942         init_timer(&device->request_timer);
1943         device->resync_timer.function = resync_timer_fn;
1944         device->resync_timer.data = (unsigned long) device;
1945         device->md_sync_timer.function = md_sync_timer_fn;
1946         device->md_sync_timer.data = (unsigned long) device;
1947         device->start_resync_timer.function = start_resync_timer_fn;
1948         device->start_resync_timer.data = (unsigned long) device;
1949         device->request_timer.function = request_timer_fn;
1950         device->request_timer.data = (unsigned long) device;
1951
1952         init_waitqueue_head(&device->misc_wait);
1953         init_waitqueue_head(&device->state_wait);
1954         init_waitqueue_head(&device->ee_wait);
1955         init_waitqueue_head(&device->al_wait);
1956         init_waitqueue_head(&device->seq_wait);
1957
1958         device->resync_wenr = LC_FREE;
1959         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1960         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1961 }
1962
1963 void drbd_device_cleanup(struct drbd_device *device)
1964 {
1965         int i;
1966         if (first_peer_device(device)->connection->receiver.t_state != NONE)
1967                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1968                                 first_peer_device(device)->connection->receiver.t_state);
1969
1970         device->al_writ_cnt  =
1971         device->bm_writ_cnt  =
1972         device->read_cnt     =
1973         device->recv_cnt     =
1974         device->send_cnt     =
1975         device->writ_cnt     =
1976         device->p_size       =
1977         device->rs_start     =
1978         device->rs_total     =
1979         device->rs_failed    = 0;
1980         device->rs_last_events = 0;
1981         device->rs_last_sect_ev = 0;
1982         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1983                 device->rs_mark_left[i] = 0;
1984                 device->rs_mark_time[i] = 0;
1985         }
1986         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
1987
1988         drbd_set_my_capacity(device, 0);
1989         if (device->bitmap) {
1990                 /* maybe never allocated. */
1991                 drbd_bm_resize(device, 0, 1);
1992                 drbd_bm_cleanup(device);
1993         }
1994
1995         drbd_free_bc(device->ldev);
1996         device->ldev = NULL;
1997
1998         clear_bit(AL_SUSPENDED, &device->flags);
1999
2000         D_ASSERT(device, list_empty(&device->active_ee));
2001         D_ASSERT(device, list_empty(&device->sync_ee));
2002         D_ASSERT(device, list_empty(&device->done_ee));
2003         D_ASSERT(device, list_empty(&device->read_ee));
2004         D_ASSERT(device, list_empty(&device->net_ee));
2005         D_ASSERT(device, list_empty(&device->resync_reads));
2006         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2007         D_ASSERT(device, list_empty(&device->resync_work.list));
2008         D_ASSERT(device, list_empty(&device->unplug_work.list));
2009         D_ASSERT(device, list_empty(&device->go_diskless.list));
2010
2011         drbd_set_defaults(device);
2012 }
2013
2014
2015 static void drbd_destroy_mempools(void)
2016 {
2017         struct page *page;
2018
2019         while (drbd_pp_pool) {
2020                 page = drbd_pp_pool;
2021                 drbd_pp_pool = (struct page *)page_private(page);
2022                 __free_page(page);
2023                 drbd_pp_vacant--;
2024         }
2025
2026         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2027
2028         if (drbd_md_io_bio_set)
2029                 bioset_free(drbd_md_io_bio_set);
2030         if (drbd_md_io_page_pool)
2031                 mempool_destroy(drbd_md_io_page_pool);
2032         if (drbd_ee_mempool)
2033                 mempool_destroy(drbd_ee_mempool);
2034         if (drbd_request_mempool)
2035                 mempool_destroy(drbd_request_mempool);
2036         if (drbd_ee_cache)
2037                 kmem_cache_destroy(drbd_ee_cache);
2038         if (drbd_request_cache)
2039                 kmem_cache_destroy(drbd_request_cache);
2040         if (drbd_bm_ext_cache)
2041                 kmem_cache_destroy(drbd_bm_ext_cache);
2042         if (drbd_al_ext_cache)
2043                 kmem_cache_destroy(drbd_al_ext_cache);
2044
2045         drbd_md_io_bio_set   = NULL;
2046         drbd_md_io_page_pool = NULL;
2047         drbd_ee_mempool      = NULL;
2048         drbd_request_mempool = NULL;
2049         drbd_ee_cache        = NULL;
2050         drbd_request_cache   = NULL;
2051         drbd_bm_ext_cache    = NULL;
2052         drbd_al_ext_cache    = NULL;
2053
2054         return;
2055 }
2056
2057 static int drbd_create_mempools(void)
2058 {
2059         struct page *page;
2060         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2061         int i;
2062
2063         /* prepare our caches and mempools */
2064         drbd_request_mempool = NULL;
2065         drbd_ee_cache        = NULL;
2066         drbd_request_cache   = NULL;
2067         drbd_bm_ext_cache    = NULL;
2068         drbd_al_ext_cache    = NULL;
2069         drbd_pp_pool         = NULL;
2070         drbd_md_io_page_pool = NULL;
2071         drbd_md_io_bio_set   = NULL;
2072
2073         /* caches */
2074         drbd_request_cache = kmem_cache_create(
2075                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2076         if (drbd_request_cache == NULL)
2077                 goto Enomem;
2078
2079         drbd_ee_cache = kmem_cache_create(
2080                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2081         if (drbd_ee_cache == NULL)
2082                 goto Enomem;
2083
2084         drbd_bm_ext_cache = kmem_cache_create(
2085                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2086         if (drbd_bm_ext_cache == NULL)
2087                 goto Enomem;
2088
2089         drbd_al_ext_cache = kmem_cache_create(
2090                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2091         if (drbd_al_ext_cache == NULL)
2092                 goto Enomem;
2093
2094         /* mempools */
2095         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2096         if (drbd_md_io_bio_set == NULL)
2097                 goto Enomem;
2098
2099         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2100         if (drbd_md_io_page_pool == NULL)
2101                 goto Enomem;
2102
2103         drbd_request_mempool = mempool_create(number,
2104                 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2105         if (drbd_request_mempool == NULL)
2106                 goto Enomem;
2107
2108         drbd_ee_mempool = mempool_create(number,
2109                 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2110         if (drbd_ee_mempool == NULL)
2111                 goto Enomem;
2112
2113         /* drbd's page pool */
2114         spin_lock_init(&drbd_pp_lock);
2115
2116         for (i = 0; i < number; i++) {
2117                 page = alloc_page(GFP_HIGHUSER);
2118                 if (!page)
2119                         goto Enomem;
2120                 set_page_private(page, (unsigned long)drbd_pp_pool);
2121                 drbd_pp_pool = page;
2122         }
2123         drbd_pp_vacant = number;
2124
2125         return 0;
2126
2127 Enomem:
2128         drbd_destroy_mempools(); /* in case we allocated some */
2129         return -ENOMEM;
2130 }
2131
2132 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2133         void *unused)
2134 {
2135         /* just so we have it.  you never know what interesting things we
2136          * might want to do here some day...
2137          */
2138
2139         return NOTIFY_DONE;
2140 }
2141
2142 static struct notifier_block drbd_notifier = {
2143         .notifier_call = drbd_notify_sys,
2144 };
2145
2146 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2147 {
2148         int rr;
2149
2150         rr = drbd_free_peer_reqs(device, &device->active_ee);
2151         if (rr)
2152                 drbd_err(device, "%d EEs in active list found!\n", rr);
2153
2154         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2155         if (rr)
2156                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2157
2158         rr = drbd_free_peer_reqs(device, &device->read_ee);
2159         if (rr)
2160                 drbd_err(device, "%d EEs in read list found!\n", rr);
2161
2162         rr = drbd_free_peer_reqs(device, &device->done_ee);
2163         if (rr)
2164                 drbd_err(device, "%d EEs in done list found!\n", rr);
2165
2166         rr = drbd_free_peer_reqs(device, &device->net_ee);
2167         if (rr)
2168                 drbd_err(device, "%d EEs in net list found!\n", rr);
2169 }
2170
2171 /* caution. no locking. */
2172 void drbd_destroy_device(struct kref *kref)
2173 {
2174         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2175         struct drbd_resource *resource = device->resource;
2176         struct drbd_connection *connection;
2177
2178         del_timer_sync(&device->request_timer);
2179
2180         /* paranoia asserts */
2181         D_ASSERT(device, device->open_cnt == 0);
2182         /* end paranoia asserts */
2183
2184         /* cleanup stuff that may have been allocated during
2185          * device (re-)configuration or state changes */
2186
2187         if (device->this_bdev)
2188                 bdput(device->this_bdev);
2189
2190         drbd_free_bc(device->ldev);
2191         device->ldev = NULL;
2192
2193         drbd_release_all_peer_reqs(device);
2194
2195         lc_destroy(device->act_log);
2196         lc_destroy(device->resync);
2197
2198         kfree(device->p_uuid);
2199         /* device->p_uuid = NULL; */
2200
2201         if (device->bitmap) /* should no longer be there. */
2202                 drbd_bm_cleanup(device);
2203         __free_page(device->md_io_page);
2204         put_disk(device->vdisk);
2205         blk_cleanup_queue(device->rq_queue);
2206         kfree(device->rs_plan_s);
2207         kfree(first_peer_device(device));
2208         kfree(device);
2209
2210         for_each_connection(connection, resource)
2211                 kref_put(&connection->kref, drbd_destroy_connection);
2212         kref_put(&resource->kref, drbd_destroy_resource);
2213 }
2214
2215 /* One global retry thread, if we need to push back some bio and have it
2216  * reinserted through our make request function.
2217  */
2218 static struct retry_worker {
2219         struct workqueue_struct *wq;
2220         struct work_struct worker;
2221
2222         spinlock_t lock;
2223         struct list_head writes;
2224 } retry;
2225
2226 static void do_retry(struct work_struct *ws)
2227 {
2228         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2229         LIST_HEAD(writes);
2230         struct drbd_request *req, *tmp;
2231
2232         spin_lock_irq(&retry->lock);
2233         list_splice_init(&retry->writes, &writes);
2234         spin_unlock_irq(&retry->lock);
2235
2236         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2237                 struct drbd_device *device = req->device;
2238                 struct bio *bio = req->master_bio;
2239                 unsigned long start_time = req->start_time;
2240                 bool expected;
2241
2242                 expected =
2243                         expect(atomic_read(&req->completion_ref) == 0) &&
2244                         expect(req->rq_state & RQ_POSTPONED) &&
2245                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2246                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2247
2248                 if (!expected)
2249                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2250                                 req, atomic_read(&req->completion_ref),
2251                                 req->rq_state);
2252
2253                 /* We still need to put one kref associated with the
2254                  * "completion_ref" going zero in the code path that queued it
2255                  * here.  The request object may still be referenced by a
2256                  * frozen local req->private_bio, in case we force-detached.
2257                  */
2258                 kref_put(&req->kref, drbd_req_destroy);
2259
2260                 /* A single suspended or otherwise blocking device may stall
2261                  * all others as well.  Fortunately, this code path is to
2262                  * recover from a situation that "should not happen":
2263                  * concurrent writes in multi-primary setup.
2264                  * In a "normal" lifecycle, this workqueue is supposed to be
2265                  * destroyed without ever doing anything.
2266                  * If it turns out to be an issue anyways, we can do per
2267                  * resource (replication group) or per device (minor) retry
2268                  * workqueues instead.
2269                  */
2270
2271                 /* We are not just doing generic_make_request(),
2272                  * as we want to keep the start_time information. */
2273                 inc_ap_bio(device);
2274                 __drbd_make_request(device, bio, start_time);
2275         }
2276 }
2277
2278 void drbd_restart_request(struct drbd_request *req)
2279 {
2280         unsigned long flags;
2281         spin_lock_irqsave(&retry.lock, flags);
2282         list_move_tail(&req->tl_requests, &retry.writes);
2283         spin_unlock_irqrestore(&retry.lock, flags);
2284
2285         /* Drop the extra reference that would otherwise
2286          * have been dropped by complete_master_bio.
2287          * do_retry() needs to grab a new one. */
2288         dec_ap_bio(req->device);
2289
2290         queue_work(retry.wq, &retry.worker);
2291 }
2292
2293 void drbd_destroy_resource(struct kref *kref)
2294 {
2295         struct drbd_resource *resource =
2296                 container_of(kref, struct drbd_resource, kref);
2297
2298         idr_destroy(&resource->devices);
2299         free_cpumask_var(resource->cpu_mask);
2300         kfree(resource->name);
2301         kfree(resource);
2302 }
2303
2304 void drbd_free_resource(struct drbd_resource *resource)
2305 {
2306         struct drbd_connection *connection, *tmp;
2307
2308         for_each_connection_safe(connection, tmp, resource) {
2309                 list_del(&connection->connections);
2310                 kref_put(&connection->kref, drbd_destroy_connection);
2311         }
2312         kref_put(&resource->kref, drbd_destroy_resource);
2313 }
2314
2315 static void drbd_cleanup(void)
2316 {
2317         unsigned int i;
2318         struct drbd_device *device;
2319         struct drbd_resource *resource, *tmp;
2320
2321         unregister_reboot_notifier(&drbd_notifier);
2322
2323         /* first remove proc,
2324          * drbdsetup uses it's presence to detect
2325          * whether DRBD is loaded.
2326          * If we would get stuck in proc removal,
2327          * but have netlink already deregistered,
2328          * some drbdsetup commands may wait forever
2329          * for an answer.
2330          */
2331         if (drbd_proc)
2332                 remove_proc_entry("drbd", NULL);
2333
2334         if (retry.wq)
2335                 destroy_workqueue(retry.wq);
2336
2337         drbd_genl_unregister();
2338
2339         idr_for_each_entry(&drbd_devices, device, i)
2340                 drbd_delete_device(device);
2341
2342         /* not _rcu since, no other updater anymore. Genl already unregistered */
2343         for_each_resource_safe(resource, tmp, &drbd_resources) {
2344                 list_del(&resource->resources);
2345                 drbd_free_resource(resource);
2346         }
2347
2348         drbd_destroy_mempools();
2349         unregister_blkdev(DRBD_MAJOR, "drbd");
2350
2351         idr_destroy(&drbd_devices);
2352
2353         printk(KERN_INFO "drbd: module cleanup done.\n");
2354 }
2355
2356 /**
2357  * drbd_congested() - Callback for the flusher thread
2358  * @congested_data:     User data
2359  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2360  *
2361  * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2362  */
2363 static int drbd_congested(void *congested_data, int bdi_bits)
2364 {
2365         struct drbd_device *device = congested_data;
2366         struct request_queue *q;
2367         char reason = '-';
2368         int r = 0;
2369
2370         if (!may_inc_ap_bio(device)) {
2371                 /* DRBD has frozen IO */
2372                 r = bdi_bits;
2373                 reason = 'd';
2374                 goto out;
2375         }
2376
2377         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2378                 r |= (1 << BDI_async_congested);
2379                 /* Without good local data, we would need to read from remote,
2380                  * and that would need the worker thread as well, which is
2381                  * currently blocked waiting for that usermode helper to
2382                  * finish.
2383                  */
2384                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2385                         r |= (1 << BDI_sync_congested);
2386                 else
2387                         put_ldev(device);
2388                 r &= bdi_bits;
2389                 reason = 'c';
2390                 goto out;
2391         }
2392
2393         if (get_ldev(device)) {
2394                 q = bdev_get_queue(device->ldev->backing_bdev);
2395                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2396                 put_ldev(device);
2397                 if (r)
2398                         reason = 'b';
2399         }
2400
2401         if (bdi_bits & (1 << BDI_async_congested) &&
2402             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2403                 r |= (1 << BDI_async_congested);
2404                 reason = reason == 'b' ? 'a' : 'n';
2405         }
2406
2407 out:
2408         device->congestion_reason = reason;
2409         return r;
2410 }
2411
2412 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2413 {
2414         spin_lock_init(&wq->q_lock);
2415         INIT_LIST_HEAD(&wq->q);
2416         init_waitqueue_head(&wq->q_wait);
2417 }
2418
2419 struct completion_work {
2420         struct drbd_work w;
2421         struct completion done;
2422 };
2423
2424 static int w_complete(struct drbd_work *w, int cancel)
2425 {
2426         struct completion_work *completion_work =
2427                 container_of(w, struct completion_work, w);
2428
2429         complete(&completion_work->done);
2430         return 0;
2431 }
2432
2433 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2434 {
2435         struct completion_work completion_work;
2436
2437         completion_work.w.cb = w_complete;
2438         init_completion(&completion_work.done);
2439         drbd_queue_work(work_queue, &completion_work.w);
2440         wait_for_completion(&completion_work.done);
2441 }
2442
2443 struct drbd_resource *drbd_find_resource(const char *name)
2444 {
2445         struct drbd_resource *resource;
2446
2447         if (!name || !name[0])
2448                 return NULL;
2449
2450         rcu_read_lock();
2451         for_each_resource_rcu(resource, &drbd_resources) {
2452                 if (!strcmp(resource->name, name)) {
2453                         kref_get(&resource->kref);
2454                         goto found;
2455                 }
2456         }
2457         resource = NULL;
2458 found:
2459         rcu_read_unlock();
2460         return resource;
2461 }
2462
2463 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2464                                      void *peer_addr, int peer_addr_len)
2465 {
2466         struct drbd_resource *resource;
2467         struct drbd_connection *connection;
2468
2469         rcu_read_lock();
2470         for_each_resource_rcu(resource, &drbd_resources) {
2471                 for_each_connection_rcu(connection, resource) {
2472                         if (connection->my_addr_len == my_addr_len &&
2473                             connection->peer_addr_len == peer_addr_len &&
2474                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2475                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2476                                 kref_get(&connection->kref);
2477                                 goto found;
2478                         }
2479                 }
2480         }
2481         connection = NULL;
2482 found:
2483         rcu_read_unlock();
2484         return connection;
2485 }
2486
2487 static int drbd_alloc_socket(struct drbd_socket *socket)
2488 {
2489         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2490         if (!socket->rbuf)
2491                 return -ENOMEM;
2492         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2493         if (!socket->sbuf)
2494                 return -ENOMEM;
2495         return 0;
2496 }
2497
2498 static void drbd_free_socket(struct drbd_socket *socket)
2499 {
2500         free_page((unsigned long) socket->sbuf);
2501         free_page((unsigned long) socket->rbuf);
2502 }
2503
2504 void conn_free_crypto(struct drbd_connection *connection)
2505 {
2506         drbd_free_sock(connection);
2507
2508         crypto_free_hash(connection->csums_tfm);
2509         crypto_free_hash(connection->verify_tfm);
2510         crypto_free_hash(connection->cram_hmac_tfm);
2511         crypto_free_hash(connection->integrity_tfm);
2512         crypto_free_hash(connection->peer_integrity_tfm);
2513         kfree(connection->int_dig_in);
2514         kfree(connection->int_dig_vv);
2515
2516         connection->csums_tfm = NULL;
2517         connection->verify_tfm = NULL;
2518         connection->cram_hmac_tfm = NULL;
2519         connection->integrity_tfm = NULL;
2520         connection->peer_integrity_tfm = NULL;
2521         connection->int_dig_in = NULL;
2522         connection->int_dig_vv = NULL;
2523 }
2524
2525 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2526 {
2527         struct drbd_connection *connection;
2528         cpumask_var_t new_cpu_mask;
2529         int err;
2530
2531         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2532                 return -ENOMEM;
2533                 /*
2534                 retcode = ERR_NOMEM;
2535                 drbd_msg_put_info("unable to allocate cpumask");
2536                 */
2537
2538         /* silently ignore cpu mask on UP kernel */
2539         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2540                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2541                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2542                 if (err) {
2543                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2544                         /* retcode = ERR_CPU_MASK_PARSE; */
2545                         goto fail;
2546                 }
2547         }
2548         resource->res_opts = *res_opts;
2549         if (cpumask_empty(new_cpu_mask))
2550                 drbd_calc_cpu_mask(&new_cpu_mask);
2551         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2552                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2553                 for_each_connection_rcu(connection, resource) {
2554                         connection->receiver.reset_cpu_mask = 1;
2555                         connection->asender.reset_cpu_mask = 1;
2556                         connection->worker.reset_cpu_mask = 1;
2557                 }
2558         }
2559         err = 0;
2560
2561 fail:
2562         free_cpumask_var(new_cpu_mask);
2563         return err;
2564
2565 }
2566
2567 struct drbd_resource *drbd_create_resource(const char *name)
2568 {
2569         struct drbd_resource *resource;
2570
2571         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2572         if (!resource)
2573                 goto fail;
2574         resource->name = kstrdup(name, GFP_KERNEL);
2575         if (!resource->name)
2576                 goto fail_free_resource;
2577         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2578                 goto fail_free_name;
2579         kref_init(&resource->kref);
2580         idr_init(&resource->devices);
2581         INIT_LIST_HEAD(&resource->connections);
2582         list_add_tail_rcu(&resource->resources, &drbd_resources);
2583         mutex_init(&resource->conf_update);
2584         mutex_init(&resource->adm_mutex);
2585         spin_lock_init(&resource->req_lock);
2586         return resource;
2587
2588 fail_free_name:
2589         kfree(resource->name);
2590 fail_free_resource:
2591         kfree(resource);
2592 fail:
2593         return NULL;
2594 }
2595
2596 /* caller must be under genl_lock() */
2597 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2598 {
2599         struct drbd_resource *resource;
2600         struct drbd_connection *connection;
2601
2602         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2603         if (!connection)
2604                 return NULL;
2605
2606         if (drbd_alloc_socket(&connection->data))
2607                 goto fail;
2608         if (drbd_alloc_socket(&connection->meta))
2609                 goto fail;
2610
2611         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2612         if (!connection->current_epoch)
2613                 goto fail;
2614
2615         INIT_LIST_HEAD(&connection->transfer_log);
2616
2617         INIT_LIST_HEAD(&connection->current_epoch->list);
2618         connection->epochs = 1;
2619         spin_lock_init(&connection->epoch_lock);
2620         connection->write_ordering = WO_bdev_flush;
2621
2622         connection->send.seen_any_write_yet = false;
2623         connection->send.current_epoch_nr = 0;
2624         connection->send.current_epoch_writes = 0;
2625
2626         resource = drbd_create_resource(name);
2627         if (!resource)
2628                 goto fail;
2629
2630         connection->cstate = C_STANDALONE;
2631         mutex_init(&connection->cstate_mutex);
2632         init_waitqueue_head(&connection->ping_wait);
2633         idr_init(&connection->peer_devices);
2634
2635         drbd_init_workqueue(&connection->sender_work);
2636         mutex_init(&connection->data.mutex);
2637         mutex_init(&connection->meta.mutex);
2638
2639         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2640         connection->receiver.connection = connection;
2641         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2642         connection->worker.connection = connection;
2643         drbd_thread_init(resource, &connection->asender, drbd_asender, "asender");
2644         connection->asender.connection = connection;
2645
2646         kref_init(&connection->kref);
2647
2648         connection->resource = resource;
2649
2650         if (set_resource_options(resource, res_opts))
2651                 goto fail_resource;
2652
2653         kref_get(&resource->kref);
2654         list_add_tail_rcu(&connection->connections, &resource->connections);
2655         return connection;
2656
2657 fail_resource:
2658         list_del(&resource->resources);
2659         drbd_free_resource(resource);
2660 fail:
2661         kfree(connection->current_epoch);
2662         drbd_free_socket(&connection->meta);
2663         drbd_free_socket(&connection->data);
2664         kfree(connection);
2665         return NULL;
2666 }
2667
2668 void drbd_destroy_connection(struct kref *kref)
2669 {
2670         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2671         struct drbd_resource *resource = connection->resource;
2672
2673         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2674                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2675         kfree(connection->current_epoch);
2676
2677         idr_destroy(&connection->peer_devices);
2678
2679         drbd_free_socket(&connection->meta);
2680         drbd_free_socket(&connection->data);
2681         kfree(connection->int_dig_in);
2682         kfree(connection->int_dig_vv);
2683         kfree(connection);
2684         kref_put(&resource->kref, drbd_destroy_resource);
2685 }
2686
2687 static int init_submitter(struct drbd_device *device)
2688 {
2689         /* opencoded create_singlethread_workqueue(),
2690          * to be able to say "drbd%d", ..., minor */
2691         device->submit.wq = alloc_workqueue("drbd%u_submit",
2692                         WQ_UNBOUND | WQ_MEM_RECLAIM, 1, device->minor);
2693         if (!device->submit.wq)
2694                 return -ENOMEM;
2695
2696         INIT_WORK(&device->submit.worker, do_submit);
2697         spin_lock_init(&device->submit.lock);
2698         INIT_LIST_HEAD(&device->submit.writes);
2699         return 0;
2700 }
2701
2702 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2703 {
2704         struct drbd_resource *resource = adm_ctx->resource;
2705         struct drbd_connection *connection;
2706         struct drbd_device *device;
2707         struct drbd_peer_device *peer_device, *tmp_peer_device;
2708         struct gendisk *disk;
2709         struct request_queue *q;
2710         int id;
2711         int vnr = adm_ctx->volume;
2712         enum drbd_ret_code err = ERR_NOMEM;
2713
2714         device = minor_to_device(minor);
2715         if (device)
2716                 return ERR_MINOR_EXISTS;
2717
2718         /* GFP_KERNEL, we are outside of all write-out paths */
2719         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2720         if (!device)
2721                 return ERR_NOMEM;
2722         kref_init(&device->kref);
2723
2724         kref_get(&resource->kref);
2725         device->resource = resource;
2726         device->minor = minor;
2727         device->vnr = vnr;
2728
2729         drbd_init_set_defaults(device);
2730
2731         q = blk_alloc_queue(GFP_KERNEL);
2732         if (!q)
2733                 goto out_no_q;
2734         device->rq_queue = q;
2735         q->queuedata   = device;
2736
2737         disk = alloc_disk(1);
2738         if (!disk)
2739                 goto out_no_disk;
2740         device->vdisk = disk;
2741
2742         set_disk_ro(disk, true);
2743
2744         disk->queue = q;
2745         disk->major = DRBD_MAJOR;
2746         disk->first_minor = minor;
2747         disk->fops = &drbd_ops;
2748         sprintf(disk->disk_name, "drbd%d", minor);
2749         disk->private_data = device;
2750
2751         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2752         /* we have no partitions. we contain only ourselves. */
2753         device->this_bdev->bd_contains = device->this_bdev;
2754
2755         q->backing_dev_info.congested_fn = drbd_congested;
2756         q->backing_dev_info.congested_data = device;
2757
2758         blk_queue_make_request(q, drbd_make_request);
2759         blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2760         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2761            This triggers a max_bio_size message upon first attach or connect */
2762         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2763         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2764         blk_queue_merge_bvec(q, drbd_merge_bvec);
2765         q->queue_lock = &resource->req_lock;
2766
2767         device->md_io_page = alloc_page(GFP_KERNEL);
2768         if (!device->md_io_page)
2769                 goto out_no_io_page;
2770
2771         if (drbd_bm_init(device))
2772                 goto out_no_bitmap;
2773         device->read_requests = RB_ROOT;
2774         device->write_requests = RB_ROOT;
2775
2776         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2777         if (id < 0) {
2778                 if (id == -ENOSPC) {
2779                         err = ERR_MINOR_EXISTS;
2780                         drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2781                 }
2782                 goto out_no_minor_idr;
2783         }
2784         kref_get(&device->kref);
2785
2786         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2787         if (id < 0) {
2788                 if (id == -ENOSPC) {
2789                         err = ERR_MINOR_EXISTS;
2790                         drbd_msg_put_info(adm_ctx->reply_skb, "requested minor exists already");
2791                 }
2792                 goto out_idr_remove_minor;
2793         }
2794         kref_get(&device->kref);
2795
2796         INIT_LIST_HEAD(&device->peer_devices);
2797         for_each_connection(connection, resource) {
2798                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2799                 if (!peer_device)
2800                         goto out_idr_remove_from_resource;
2801                 peer_device->connection = connection;
2802                 peer_device->device = device;
2803
2804                 list_add(&peer_device->peer_devices, &device->peer_devices);
2805                 kref_get(&device->kref);
2806
2807                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2808                 if (id < 0) {
2809                         if (id == -ENOSPC) {
2810                                 err = ERR_INVALID_REQUEST;
2811                                 drbd_msg_put_info(adm_ctx->reply_skb, "requested volume exists already");
2812                         }
2813                         goto out_idr_remove_from_resource;
2814                 }
2815                 kref_get(&connection->kref);
2816         }
2817
2818         if (init_submitter(device)) {
2819                 err = ERR_NOMEM;
2820                 drbd_msg_put_info(adm_ctx->reply_skb, "unable to create submit workqueue");
2821                 goto out_idr_remove_vol;
2822         }
2823
2824         add_disk(disk);
2825
2826         /* inherit the connection state */
2827         device->state.conn = first_connection(resource)->cstate;
2828         if (device->state.conn == C_WF_REPORT_PARAMS) {
2829                 for_each_peer_device(peer_device, device)
2830                         drbd_connected(peer_device);
2831         }
2832
2833         return NO_ERROR;
2834
2835 out_idr_remove_vol:
2836         idr_remove(&connection->peer_devices, vnr);
2837 out_idr_remove_from_resource:
2838         for_each_connection(connection, resource) {
2839                 peer_device = idr_find(&connection->peer_devices, vnr);
2840                 if (peer_device) {
2841                         idr_remove(&connection->peer_devices, vnr);
2842                         kref_put(&connection->kref, drbd_destroy_connection);
2843                 }
2844         }
2845         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2846                 list_del(&peer_device->peer_devices);
2847                 kfree(peer_device);
2848         }
2849         idr_remove(&resource->devices, vnr);
2850 out_idr_remove_minor:
2851         idr_remove(&drbd_devices, minor);
2852         synchronize_rcu();
2853 out_no_minor_idr:
2854         drbd_bm_cleanup(device);
2855 out_no_bitmap:
2856         __free_page(device->md_io_page);
2857 out_no_io_page:
2858         put_disk(disk);
2859 out_no_disk:
2860         blk_cleanup_queue(q);
2861 out_no_q:
2862         kref_put(&resource->kref, drbd_destroy_resource);
2863         kfree(device);
2864         return err;
2865 }
2866
2867 void drbd_delete_device(struct drbd_device *device)
2868 {
2869         struct drbd_resource *resource = device->resource;
2870         struct drbd_connection *connection;
2871         int refs = 3;
2872
2873         for_each_connection(connection, resource) {
2874                 idr_remove(&connection->peer_devices, device->vnr);
2875                 refs++;
2876         }
2877         idr_remove(&resource->devices, device->vnr);
2878         idr_remove(&drbd_devices, device_to_minor(device));
2879         del_gendisk(device->vdisk);
2880         synchronize_rcu();
2881         kref_sub(&device->kref, refs, drbd_destroy_device);
2882 }
2883
2884 int __init drbd_init(void)
2885 {
2886         int err;
2887
2888         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2889                 printk(KERN_ERR
2890                        "drbd: invalid minor_count (%d)\n", minor_count);
2891 #ifdef MODULE
2892                 return -EINVAL;
2893 #else
2894                 minor_count = DRBD_MINOR_COUNT_DEF;
2895 #endif
2896         }
2897
2898         err = register_blkdev(DRBD_MAJOR, "drbd");
2899         if (err) {
2900                 printk(KERN_ERR
2901                        "drbd: unable to register block device major %d\n",
2902                        DRBD_MAJOR);
2903                 return err;
2904         }
2905
2906         register_reboot_notifier(&drbd_notifier);
2907
2908         /*
2909          * allocate all necessary structs
2910          */
2911         init_waitqueue_head(&drbd_pp_wait);
2912
2913         drbd_proc = NULL; /* play safe for drbd_cleanup */
2914         idr_init(&drbd_devices);
2915
2916         rwlock_init(&global_state_lock);
2917         INIT_LIST_HEAD(&drbd_resources);
2918
2919         err = drbd_genl_register();
2920         if (err) {
2921                 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2922                 goto fail;
2923         }
2924
2925         err = drbd_create_mempools();
2926         if (err)
2927                 goto fail;
2928
2929         err = -ENOMEM;
2930         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2931         if (!drbd_proc) {
2932                 printk(KERN_ERR "drbd: unable to register proc file\n");
2933                 goto fail;
2934         }
2935
2936         retry.wq = create_singlethread_workqueue("drbd-reissue");
2937         if (!retry.wq) {
2938                 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2939                 goto fail;
2940         }
2941         INIT_WORK(&retry.worker, do_retry);
2942         spin_lock_init(&retry.lock);
2943         INIT_LIST_HEAD(&retry.writes);
2944
2945         printk(KERN_INFO "drbd: initialized. "
2946                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2947                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2948         printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2949         printk(KERN_INFO "drbd: registered as block device major %d\n",
2950                 DRBD_MAJOR);
2951
2952         return 0; /* Success! */
2953
2954 fail:
2955         drbd_cleanup();
2956         if (err == -ENOMEM)
2957                 printk(KERN_ERR "drbd: ran out of memory\n");
2958         else
2959                 printk(KERN_ERR "drbd: initialization failure\n");
2960         return err;
2961 }
2962
2963 void drbd_free_bc(struct drbd_backing_dev *ldev)
2964 {
2965         if (ldev == NULL)
2966                 return;
2967
2968         blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2969         blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2970
2971         kfree(ldev->disk_conf);
2972         kfree(ldev);
2973 }
2974
2975 void drbd_free_sock(struct drbd_connection *connection)
2976 {
2977         if (connection->data.socket) {
2978                 mutex_lock(&connection->data.mutex);
2979                 kernel_sock_shutdown(connection->data.socket, SHUT_RDWR);
2980                 sock_release(connection->data.socket);
2981                 connection->data.socket = NULL;
2982                 mutex_unlock(&connection->data.mutex);
2983         }
2984         if (connection->meta.socket) {
2985                 mutex_lock(&connection->meta.mutex);
2986                 kernel_sock_shutdown(connection->meta.socket, SHUT_RDWR);
2987                 sock_release(connection->meta.socket);
2988                 connection->meta.socket = NULL;
2989                 mutex_unlock(&connection->meta.mutex);
2990         }
2991 }
2992
2993 /* meta data management */
2994
2995 void conn_md_sync(struct drbd_connection *connection)
2996 {
2997         struct drbd_peer_device *peer_device;
2998         int vnr;
2999
3000         rcu_read_lock();
3001         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3002                 struct drbd_device *device = peer_device->device;
3003
3004                 kref_get(&device->kref);
3005                 rcu_read_unlock();
3006                 drbd_md_sync(device);
3007                 kref_put(&device->kref, drbd_destroy_device);
3008                 rcu_read_lock();
3009         }
3010         rcu_read_unlock();
3011 }
3012
3013 /* aligned 4kByte */
3014 struct meta_data_on_disk {
3015         u64 la_size_sect;      /* last agreed size. */
3016         u64 uuid[UI_SIZE];   /* UUIDs. */
3017         u64 device_uuid;
3018         u64 reserved_u64_1;
3019         u32 flags;             /* MDF */
3020         u32 magic;
3021         u32 md_size_sect;
3022         u32 al_offset;         /* offset to this block */
3023         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3024               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3025         u32 bm_offset;         /* offset to the bitmap, from here */
3026         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3027         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3028
3029         /* see al_tr_number_to_on_disk_sector() */
3030         u32 al_stripes;
3031         u32 al_stripe_size_4k;
3032
3033         u8 reserved_u8[4096 - (7*8 + 10*4)];
3034 } __packed;
3035
3036
3037
3038 void drbd_md_write(struct drbd_device *device, void *b)
3039 {
3040         struct meta_data_on_disk *buffer = b;
3041         sector_t sector;
3042         int i;
3043
3044         memset(buffer, 0, sizeof(*buffer));
3045
3046         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3047         for (i = UI_CURRENT; i < UI_SIZE; i++)
3048                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3049         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3050         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3051
3052         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3053         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3054         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3055         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3056         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3057
3058         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3059         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3060
3061         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3062         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3063
3064         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3065         sector = device->ldev->md.md_offset;
3066
3067         if (drbd_md_sync_page_io(device, device->ldev, sector, WRITE)) {
3068                 /* this was a try anyways ... */
3069                 drbd_err(device, "meta data update failed!\n");
3070                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3071         }
3072 }
3073
3074 /**
3075  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3076  * @device:     DRBD device.
3077  */
3078 void drbd_md_sync(struct drbd_device *device)
3079 {
3080         struct meta_data_on_disk *buffer;
3081
3082         /* Don't accidentally change the DRBD meta data layout. */
3083         BUILD_BUG_ON(UI_SIZE != 4);
3084         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3085
3086         del_timer(&device->md_sync_timer);
3087         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3088         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3089                 return;
3090
3091         /* We use here D_FAILED and not D_ATTACHING because we try to write
3092          * metadata even if we detach due to a disk failure! */
3093         if (!get_ldev_if_state(device, D_FAILED))
3094                 return;
3095
3096         buffer = drbd_md_get_buffer(device);
3097         if (!buffer)
3098                 goto out;
3099
3100         drbd_md_write(device, buffer);
3101
3102         /* Update device->ldev->md.la_size_sect,
3103          * since we updated it on metadata. */
3104         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3105
3106         drbd_md_put_buffer(device);
3107 out:
3108         put_ldev(device);
3109 }
3110
3111 static int check_activity_log_stripe_size(struct drbd_device *device,
3112                 struct meta_data_on_disk *on_disk,
3113                 struct drbd_md *in_core)
3114 {
3115         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3116         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3117         u64 al_size_4k;
3118
3119         /* both not set: default to old fixed size activity log */
3120         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3121                 al_stripes = 1;
3122                 al_stripe_size_4k = MD_32kB_SECT/8;
3123         }
3124
3125         /* some paranoia plausibility checks */
3126
3127         /* we need both values to be set */
3128         if (al_stripes == 0 || al_stripe_size_4k == 0)
3129                 goto err;
3130
3131         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3132
3133         /* Upper limit of activity log area, to avoid potential overflow
3134          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3135          * than 72 * 4k blocks total only increases the amount of history,
3136          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3137         if (al_size_4k > (16 * 1024 * 1024/4))
3138                 goto err;
3139
3140         /* Lower limit: we need at least 8 transaction slots (32kB)
3141          * to not break existing setups */
3142         if (al_size_4k < MD_32kB_SECT/8)
3143                 goto err;
3144
3145         in_core->al_stripe_size_4k = al_stripe_size_4k;
3146         in_core->al_stripes = al_stripes;
3147         in_core->al_size_4k = al_size_4k;
3148
3149         return 0;
3150 err:
3151         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3152                         al_stripes, al_stripe_size_4k);
3153         return -EINVAL;
3154 }
3155
3156 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3157 {
3158         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3159         struct drbd_md *in_core = &bdev->md;
3160         s32 on_disk_al_sect;
3161         s32 on_disk_bm_sect;
3162
3163         /* The on-disk size of the activity log, calculated from offsets, and
3164          * the size of the activity log calculated from the stripe settings,
3165          * should match.
3166          * Though we could relax this a bit: it is ok, if the striped activity log
3167          * fits in the available on-disk activity log size.
3168          * Right now, that would break how resize is implemented.
3169          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3170          * of possible unused padding space in the on disk layout. */
3171         if (in_core->al_offset < 0) {
3172                 if (in_core->bm_offset > in_core->al_offset)
3173                         goto err;
3174                 on_disk_al_sect = -in_core->al_offset;
3175                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3176         } else {
3177                 if (in_core->al_offset != MD_4kB_SECT)
3178                         goto err;
3179                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3180                         goto err;
3181
3182                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3183                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3184         }
3185
3186         /* old fixed size meta data is exactly that: fixed. */
3187         if (in_core->meta_dev_idx >= 0) {
3188                 if (in_core->md_size_sect != MD_128MB_SECT
3189                 ||  in_core->al_offset != MD_4kB_SECT
3190                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3191                 ||  in_core->al_stripes != 1
3192                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3193                         goto err;
3194         }
3195
3196         if (capacity < in_core->md_size_sect)
3197                 goto err;
3198         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3199                 goto err;
3200
3201         /* should be aligned, and at least 32k */
3202         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3203                 goto err;
3204
3205         /* should fit (for now: exactly) into the available on-disk space;
3206          * overflow prevention is in check_activity_log_stripe_size() above. */
3207         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3208                 goto err;
3209
3210         /* again, should be aligned */
3211         if (in_core->bm_offset & 7)
3212                 goto err;
3213
3214         /* FIXME check for device grow with flex external meta data? */
3215
3216         /* can the available bitmap space cover the last agreed device size? */
3217         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3218                 goto err;
3219
3220         return 0;
3221
3222 err:
3223         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3224                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3225                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3226                         in_core->meta_dev_idx,
3227                         in_core->al_stripes, in_core->al_stripe_size_4k,
3228                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3229                         (unsigned long long)in_core->la_size_sect,
3230                         (unsigned long long)capacity);
3231
3232         return -EINVAL;
3233 }
3234
3235
3236 /**
3237  * drbd_md_read() - Reads in the meta data super block
3238  * @device:     DRBD device.
3239  * @bdev:       Device from which the meta data should be read in.
3240  *
3241  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3242  * something goes wrong.
3243  *
3244  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3245  * even before @bdev is assigned to @device->ldev.
3246  */
3247 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3248 {
3249         struct meta_data_on_disk *buffer;
3250         u32 magic, flags;
3251         int i, rv = NO_ERROR;
3252
3253         if (device->state.disk != D_DISKLESS)
3254                 return ERR_DISK_CONFIGURED;
3255
3256         buffer = drbd_md_get_buffer(device);
3257         if (!buffer)
3258                 return ERR_NOMEM;
3259
3260         /* First, figure out where our meta data superblock is located,
3261          * and read it. */
3262         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3263         bdev->md.md_offset = drbd_md_ss(bdev);
3264
3265         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, READ)) {
3266                 /* NOTE: can't do normal error processing here as this is
3267                    called BEFORE disk is attached */
3268                 drbd_err(device, "Error while reading metadata.\n");
3269                 rv = ERR_IO_MD_DISK;
3270                 goto err;
3271         }
3272
3273         magic = be32_to_cpu(buffer->magic);
3274         flags = be32_to_cpu(buffer->flags);
3275         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3276             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3277                         /* btw: that's Activity Log clean, not "all" clean. */
3278                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3279                 rv = ERR_MD_UNCLEAN;
3280                 goto err;
3281         }
3282
3283         rv = ERR_MD_INVALID;
3284         if (magic != DRBD_MD_MAGIC_08) {
3285                 if (magic == DRBD_MD_MAGIC_07)
3286                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3287                 else
3288                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3289                 goto err;
3290         }
3291
3292         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3293                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3294                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3295                 goto err;
3296         }
3297
3298
3299         /* convert to in_core endian */
3300         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3301         for (i = UI_CURRENT; i < UI_SIZE; i++)
3302                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3303         bdev->md.flags = be32_to_cpu(buffer->flags);
3304         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3305
3306         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3307         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3308         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3309
3310         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3311                 goto err;
3312         if (check_offsets_and_sizes(device, bdev))
3313                 goto err;
3314
3315         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3316                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3317                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3318                 goto err;
3319         }
3320         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3321                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3322                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3323                 goto err;
3324         }
3325
3326         rv = NO_ERROR;
3327
3328         spin_lock_irq(&device->resource->req_lock);
3329         if (device->state.conn < C_CONNECTED) {
3330                 unsigned int peer;
3331                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3332                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3333                 device->peer_max_bio_size = peer;
3334         }
3335         spin_unlock_irq(&device->resource->req_lock);
3336
3337  err:
3338         drbd_md_put_buffer(device);
3339
3340         return rv;
3341 }
3342
3343 /**
3344  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3345  * @device:     DRBD device.
3346  *
3347  * Call this function if you change anything that should be written to
3348  * the meta-data super block. This function sets MD_DIRTY, and starts a
3349  * timer that ensures that within five seconds you have to call drbd_md_sync().
3350  */
3351 #ifdef DEBUG
3352 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3353 {
3354         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3355                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3356                 device->last_md_mark_dirty.line = line;
3357                 device->last_md_mark_dirty.func = func;
3358         }
3359 }
3360 #else
3361 void drbd_md_mark_dirty(struct drbd_device *device)
3362 {
3363         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3364                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3365 }
3366 #endif
3367
3368 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3369 {
3370         int i;
3371
3372         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3373                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3374 }
3375
3376 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3377 {
3378         if (idx == UI_CURRENT) {
3379                 if (device->state.role == R_PRIMARY)
3380                         val |= 1;
3381                 else
3382                         val &= ~((u64)1);
3383
3384                 drbd_set_ed_uuid(device, val);
3385         }
3386
3387         device->ldev->md.uuid[idx] = val;
3388         drbd_md_mark_dirty(device);
3389 }
3390
3391 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3392 {
3393         unsigned long flags;
3394         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3395         __drbd_uuid_set(device, idx, val);
3396         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3397 }
3398
3399 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3400 {
3401         unsigned long flags;
3402         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3403         if (device->ldev->md.uuid[idx]) {
3404                 drbd_uuid_move_history(device);
3405                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3406         }
3407         __drbd_uuid_set(device, idx, val);
3408         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3409 }
3410
3411 /**
3412  * drbd_uuid_new_current() - Creates a new current UUID
3413  * @device:     DRBD device.
3414  *
3415  * Creates a new current UUID, and rotates the old current UUID into
3416  * the bitmap slot. Causes an incremental resync upon next connect.
3417  */
3418 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3419 {
3420         u64 val;
3421         unsigned long long bm_uuid;
3422
3423         get_random_bytes(&val, sizeof(u64));
3424
3425         spin_lock_irq(&device->ldev->md.uuid_lock);
3426         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3427
3428         if (bm_uuid)
3429                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3430
3431         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3432         __drbd_uuid_set(device, UI_CURRENT, val);
3433         spin_unlock_irq(&device->ldev->md.uuid_lock);
3434
3435         drbd_print_uuids(device, "new current UUID");
3436         /* get it to stable storage _now_ */
3437         drbd_md_sync(device);
3438 }
3439
3440 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3441 {
3442         unsigned long flags;
3443         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3444                 return;
3445
3446         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3447         if (val == 0) {
3448                 drbd_uuid_move_history(device);
3449                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3450                 device->ldev->md.uuid[UI_BITMAP] = 0;
3451         } else {
3452                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3453                 if (bm_uuid)
3454                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3455
3456                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3457         }
3458         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3459
3460         drbd_md_mark_dirty(device);
3461 }
3462
3463 /**
3464  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3465  * @device:     DRBD device.
3466  *
3467  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3468  */
3469 int drbd_bmio_set_n_write(struct drbd_device *device)
3470 {
3471         int rv = -EIO;
3472
3473         if (get_ldev_if_state(device, D_ATTACHING)) {
3474                 drbd_md_set_flag(device, MDF_FULL_SYNC);
3475                 drbd_md_sync(device);
3476                 drbd_bm_set_all(device);
3477
3478                 rv = drbd_bm_write(device);
3479
3480                 if (!rv) {
3481                         drbd_md_clear_flag(device, MDF_FULL_SYNC);
3482                         drbd_md_sync(device);
3483                 }
3484
3485                 put_ldev(device);
3486         }
3487
3488         return rv;
3489 }
3490
3491 /**
3492  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3493  * @device:     DRBD device.
3494  *
3495  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3496  */
3497 int drbd_bmio_clear_n_write(struct drbd_device *device)
3498 {
3499         int rv = -EIO;
3500
3501         drbd_resume_al(device);
3502         if (get_ldev_if_state(device, D_ATTACHING)) {
3503                 drbd_bm_clear_all(device);
3504                 rv = drbd_bm_write(device);
3505                 put_ldev(device);
3506         }
3507
3508         return rv;
3509 }
3510
3511 static int w_bitmap_io(struct drbd_work *w, int unused)
3512 {
3513         struct drbd_device *device =
3514                 container_of(w, struct drbd_device, bm_io_work.w);
3515         struct bm_io_work *work = &device->bm_io_work;
3516         int rv = -EIO;
3517
3518         D_ASSERT(device, atomic_read(&device->ap_bio_cnt) == 0);
3519
3520         if (get_ldev(device)) {
3521                 drbd_bm_lock(device, work->why, work->flags);
3522                 rv = work->io_fn(device);
3523                 drbd_bm_unlock(device);
3524                 put_ldev(device);
3525         }
3526
3527         clear_bit_unlock(BITMAP_IO, &device->flags);
3528         wake_up(&device->misc_wait);
3529
3530         if (work->done)
3531                 work->done(device, rv);
3532
3533         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3534         work->why = NULL;
3535         work->flags = 0;
3536
3537         return 0;
3538 }
3539
3540 void drbd_ldev_destroy(struct drbd_device *device)
3541 {
3542         lc_destroy(device->resync);
3543         device->resync = NULL;
3544         lc_destroy(device->act_log);
3545         device->act_log = NULL;
3546         __no_warn(local,
3547                 drbd_free_bc(device->ldev);
3548                 device->ldev = NULL;);
3549
3550         clear_bit(GO_DISKLESS, &device->flags);
3551 }
3552
3553 static int w_go_diskless(struct drbd_work *w, int unused)
3554 {
3555         struct drbd_device *device =
3556                 container_of(w, struct drbd_device, go_diskless);
3557
3558         D_ASSERT(device, device->state.disk == D_FAILED);
3559         /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3560          * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3561          * the protected members anymore, though, so once put_ldev reaches zero
3562          * again, it will be safe to free them. */
3563
3564         /* Try to write changed bitmap pages, read errors may have just
3565          * set some bits outside the area covered by the activity log.
3566          *
3567          * If we have an IO error during the bitmap writeout,
3568          * we will want a full sync next time, just in case.
3569          * (Do we want a specific meta data flag for this?)
3570          *
3571          * If that does not make it to stable storage either,
3572          * we cannot do anything about that anymore.
3573          *
3574          * We still need to check if both bitmap and ldev are present, we may
3575          * end up here after a failed attach, before ldev was even assigned.
3576          */
3577         if (device->bitmap && device->ldev) {
3578                 /* An interrupted resync or similar is allowed to recounts bits
3579                  * while we detach.
3580                  * Any modifications would not be expected anymore, though.
3581                  */
3582                 if (drbd_bitmap_io_from_worker(device, drbd_bm_write,
3583                                         "detach", BM_LOCKED_TEST_ALLOWED)) {
3584                         if (test_bit(WAS_READ_ERROR, &device->flags)) {
3585                                 drbd_md_set_flag(device, MDF_FULL_SYNC);
3586                                 drbd_md_sync(device);
3587                         }
3588                 }
3589         }
3590
3591         drbd_force_state(device, NS(disk, D_DISKLESS));
3592         return 0;
3593 }
3594
3595 /**
3596  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3597  * @device:     DRBD device.
3598  * @io_fn:      IO callback to be called when bitmap IO is possible
3599  * @done:       callback to be called after the bitmap IO was performed
3600  * @why:        Descriptive text of the reason for doing the IO
3601  *
3602  * While IO on the bitmap happens we freeze application IO thus we ensure
3603  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3604  * called from worker context. It MUST NOT be used while a previous such
3605  * work is still pending!
3606  */
3607 void drbd_queue_bitmap_io(struct drbd_device *device,
3608                           int (*io_fn)(struct drbd_device *),
3609                           void (*done)(struct drbd_device *, int),
3610                           char *why, enum bm_flag flags)
3611 {
3612         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3613
3614         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3615         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3616         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3617         if (device->bm_io_work.why)
3618                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3619                         why, device->bm_io_work.why);
3620
3621         device->bm_io_work.io_fn = io_fn;
3622         device->bm_io_work.done = done;
3623         device->bm_io_work.why = why;
3624         device->bm_io_work.flags = flags;
3625
3626         spin_lock_irq(&device->resource->req_lock);
3627         set_bit(BITMAP_IO, &device->flags);
3628         if (atomic_read(&device->ap_bio_cnt) == 0) {
3629                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3630                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3631                                         &device->bm_io_work.w);
3632         }
3633         spin_unlock_irq(&device->resource->req_lock);
3634 }
3635
3636 /**
3637  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3638  * @device:     DRBD device.
3639  * @io_fn:      IO callback to be called when bitmap IO is possible
3640  * @why:        Descriptive text of the reason for doing the IO
3641  *
3642  * freezes application IO while that the actual IO operations runs. This
3643  * functions MAY NOT be called from worker context.
3644  */
3645 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3646                 char *why, enum bm_flag flags)
3647 {
3648         int rv;
3649
3650         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3651
3652         if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3653                 drbd_suspend_io(device);
3654
3655         drbd_bm_lock(device, why, flags);
3656         rv = io_fn(device);
3657         drbd_bm_unlock(device);
3658
3659         if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3660                 drbd_resume_io(device);
3661
3662         return rv;
3663 }
3664
3665 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3666 {
3667         if ((device->ldev->md.flags & flag) != flag) {
3668                 drbd_md_mark_dirty(device);
3669                 device->ldev->md.flags |= flag;
3670         }
3671 }
3672
3673 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3674 {
3675         if ((device->ldev->md.flags & flag) != 0) {
3676                 drbd_md_mark_dirty(device);
3677                 device->ldev->md.flags &= ~flag;
3678         }
3679 }
3680 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3681 {
3682         return (bdev->md.flags & flag) != 0;
3683 }
3684
3685 static void md_sync_timer_fn(unsigned long data)
3686 {
3687         struct drbd_device *device = (struct drbd_device *) data;
3688
3689         /* must not double-queue! */
3690         if (list_empty(&device->md_sync_work.list))
3691                 drbd_queue_work_front(&first_peer_device(device)->connection->sender_work,
3692                                       &device->md_sync_work);
3693 }
3694
3695 static int w_md_sync(struct drbd_work *w, int unused)
3696 {
3697         struct drbd_device *device =
3698                 container_of(w, struct drbd_device, md_sync_work);
3699
3700         drbd_warn(device, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3701 #ifdef DEBUG
3702         drbd_warn(device, "last md_mark_dirty: %s:%u\n",
3703                 device->last_md_mark_dirty.func, device->last_md_mark_dirty.line);
3704 #endif
3705         drbd_md_sync(device);
3706         return 0;
3707 }
3708
3709 const char *cmdname(enum drbd_packet cmd)
3710 {
3711         /* THINK may need to become several global tables
3712          * when we want to support more than
3713          * one PRO_VERSION */
3714         static const char *cmdnames[] = {
3715                 [P_DATA]                = "Data",
3716                 [P_DATA_REPLY]          = "DataReply",
3717                 [P_RS_DATA_REPLY]       = "RSDataReply",
3718                 [P_BARRIER]             = "Barrier",
3719                 [P_BITMAP]              = "ReportBitMap",
3720                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3721                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3722                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3723                 [P_DATA_REQUEST]        = "DataRequest",
3724                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3725                 [P_SYNC_PARAM]          = "SyncParam",
3726                 [P_SYNC_PARAM89]        = "SyncParam89",
3727                 [P_PROTOCOL]            = "ReportProtocol",
3728                 [P_UUIDS]               = "ReportUUIDs",
3729                 [P_SIZES]               = "ReportSizes",
3730                 [P_STATE]               = "ReportState",
3731                 [P_SYNC_UUID]           = "ReportSyncUUID",
3732                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3733                 [P_AUTH_RESPONSE]       = "AuthResponse",
3734                 [P_PING]                = "Ping",
3735                 [P_PING_ACK]            = "PingAck",
3736                 [P_RECV_ACK]            = "RecvAck",
3737                 [P_WRITE_ACK]           = "WriteAck",
3738                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3739                 [P_SUPERSEDED]          = "Superseded",
3740                 [P_NEG_ACK]             = "NegAck",
3741                 [P_NEG_DREPLY]          = "NegDReply",
3742                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3743                 [P_BARRIER_ACK]         = "BarrierAck",
3744                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3745                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3746                 [P_OV_REQUEST]          = "OVRequest",
3747                 [P_OV_REPLY]            = "OVReply",
3748                 [P_OV_RESULT]           = "OVResult",
3749                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3750                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3751                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3752                 [P_DELAY_PROBE]         = "DelayProbe",
3753                 [P_OUT_OF_SYNC]         = "OutOfSync",
3754                 [P_RETRY_WRITE]         = "RetryWrite",
3755                 [P_RS_CANCEL]           = "RSCancel",
3756                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3757                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3758                 [P_RETRY_WRITE]         = "retry_write",
3759                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3760
3761                 /* enum drbd_packet, but not commands - obsoleted flags:
3762                  *      P_MAY_IGNORE
3763                  *      P_MAX_OPT_CMD
3764                  */
3765         };
3766
3767         /* too big for the array: 0xfffX */
3768         if (cmd == P_INITIAL_META)
3769                 return "InitialMeta";
3770         if (cmd == P_INITIAL_DATA)
3771                 return "InitialData";
3772         if (cmd == P_CONNECTION_FEATURES)
3773                 return "ConnectionFeatures";
3774         if (cmd >= ARRAY_SIZE(cmdnames))
3775                 return "Unknown";
3776         return cmdnames[cmd];
3777 }
3778
3779 /**
3780  * drbd_wait_misc  -  wait for a request to make progress
3781  * @device:     device associated with the request
3782  * @i:          the struct drbd_interval embedded in struct drbd_request or
3783  *              struct drbd_peer_request
3784  */
3785 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3786 {
3787         struct net_conf *nc;
3788         DEFINE_WAIT(wait);
3789         long timeout;
3790
3791         rcu_read_lock();
3792         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3793         if (!nc) {
3794                 rcu_read_unlock();
3795                 return -ETIMEDOUT;
3796         }
3797         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3798         rcu_read_unlock();
3799
3800         /* Indicate to wake up device->misc_wait on progress.  */
3801         i->waiting = true;
3802         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3803         spin_unlock_irq(&device->resource->req_lock);
3804         timeout = schedule_timeout(timeout);
3805         finish_wait(&device->misc_wait, &wait);
3806         spin_lock_irq(&device->resource->req_lock);
3807         if (!timeout || device->state.conn < C_CONNECTED)
3808                 return -ETIMEDOUT;
3809         if (signal_pending(current))
3810                 return -ERESTARTSYS;
3811         return 0;
3812 }
3813
3814 #ifdef CONFIG_DRBD_FAULT_INJECTION
3815 /* Fault insertion support including random number generator shamelessly
3816  * stolen from kernel/rcutorture.c */
3817 struct fault_random_state {
3818         unsigned long state;
3819         unsigned long count;
3820 };
3821
3822 #define FAULT_RANDOM_MULT 39916801  /* prime */
3823 #define FAULT_RANDOM_ADD        479001701 /* prime */
3824 #define FAULT_RANDOM_REFRESH 10000
3825
3826 /*
3827  * Crude but fast random-number generator.  Uses a linear congruential
3828  * generator, with occasional help from get_random_bytes().
3829  */
3830 static unsigned long
3831 _drbd_fault_random(struct fault_random_state *rsp)
3832 {
3833         long refresh;
3834
3835         if (!rsp->count--) {
3836                 get_random_bytes(&refresh, sizeof(refresh));
3837                 rsp->state += refresh;
3838                 rsp->count = FAULT_RANDOM_REFRESH;
3839         }
3840         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3841         return swahw32(rsp->state);
3842 }
3843
3844 static char *
3845 _drbd_fault_str(unsigned int type) {
3846         static char *_faults[] = {
3847                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3848                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3849                 [DRBD_FAULT_RS_WR] = "Resync write",
3850                 [DRBD_FAULT_RS_RD] = "Resync read",
3851                 [DRBD_FAULT_DT_WR] = "Data write",
3852                 [DRBD_FAULT_DT_RD] = "Data read",
3853                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3854                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3855                 [DRBD_FAULT_AL_EE] = "EE allocation",
3856                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3857         };
3858
3859         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3860 }
3861
3862 unsigned int
3863 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3864 {
3865         static struct fault_random_state rrs = {0, 0};
3866
3867         unsigned int ret = (
3868                 (fault_devs == 0 ||
3869                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3870                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3871
3872         if (ret) {
3873                 fault_count++;
3874
3875                 if (__ratelimit(&drbd_ratelimit_state))
3876                         drbd_warn(device, "***Simulating %s failure\n",
3877                                 _drbd_fault_str(type));
3878         }
3879
3880         return ret;
3881 }
3882 #endif
3883
3884 const char *drbd_buildtag(void)
3885 {
3886         /* DRBD built from external sources has here a reference to the
3887            git hash of the source code. */
3888
3889         static char buildtag[38] = "\0uilt-in";
3890
3891         if (buildtag[0] == 0) {
3892 #ifdef MODULE
3893                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3894 #else
3895                 buildtag[0] = 'b';
3896 #endif
3897         }
3898
3899         return buildtag;
3900 }
3901
3902 module_init(drbd_init)
3903 module_exit(drbd_cleanup)
3904
3905 EXPORT_SYMBOL(drbd_conn_str);
3906 EXPORT_SYMBOL(drbd_role_str);
3907 EXPORT_SYMBOL(drbd_disk_str);
3908 EXPORT_SYMBOL(drbd_set_st_err_str);