Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[firefly-linux-kernel-4.4.55.git] / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
35
36 #include "../base.h"
37 #include "power.h"
38
39 typedef int (*pm_callback_t)(struct device *);
40
41 /*
42  * The entries in the dpm_list list are in a depth first order, simply
43  * because children are guaranteed to be discovered after parents, and
44  * are inserted at the back of the list on discovery.
45  *
46  * Since device_pm_add() may be called with a device lock held,
47  * we must never try to acquire a device lock while holding
48  * dpm_list_mutex.
49  */
50
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
56
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
60
61 static int async_error;
62
63 static char *pm_verb(int event)
64 {
65         switch (event) {
66         case PM_EVENT_SUSPEND:
67                 return "suspend";
68         case PM_EVENT_RESUME:
69                 return "resume";
70         case PM_EVENT_FREEZE:
71                 return "freeze";
72         case PM_EVENT_QUIESCE:
73                 return "quiesce";
74         case PM_EVENT_HIBERNATE:
75                 return "hibernate";
76         case PM_EVENT_THAW:
77                 return "thaw";
78         case PM_EVENT_RESTORE:
79                 return "restore";
80         case PM_EVENT_RECOVER:
81                 return "recover";
82         default:
83                 return "(unknown PM event)";
84         }
85 }
86
87 /**
88  * device_pm_sleep_init - Initialize system suspend-related device fields.
89  * @dev: Device object being initialized.
90  */
91 void device_pm_sleep_init(struct device *dev)
92 {
93         dev->power.is_prepared = false;
94         dev->power.is_suspended = false;
95         dev->power.is_noirq_suspended = false;
96         dev->power.is_late_suspended = false;
97         init_completion(&dev->power.completion);
98         complete_all(&dev->power.completion);
99         dev->power.wakeup = NULL;
100         INIT_LIST_HEAD(&dev->power.entry);
101 }
102
103 /**
104  * device_pm_lock - Lock the list of active devices used by the PM core.
105  */
106 void device_pm_lock(void)
107 {
108         mutex_lock(&dpm_list_mtx);
109 }
110
111 /**
112  * device_pm_unlock - Unlock the list of active devices used by the PM core.
113  */
114 void device_pm_unlock(void)
115 {
116         mutex_unlock(&dpm_list_mtx);
117 }
118
119 /**
120  * device_pm_add - Add a device to the PM core's list of active devices.
121  * @dev: Device to add to the list.
122  */
123 void device_pm_add(struct device *dev)
124 {
125         pr_debug("PM: Adding info for %s:%s\n",
126                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127         mutex_lock(&dpm_list_mtx);
128         if (dev->parent && dev->parent->power.is_prepared)
129                 dev_warn(dev, "parent %s should not be sleeping\n",
130                         dev_name(dev->parent));
131         list_add_tail(&dev->power.entry, &dpm_list);
132         mutex_unlock(&dpm_list_mtx);
133 }
134
135 /**
136  * device_pm_remove - Remove a device from the PM core's list of active devices.
137  * @dev: Device to be removed from the list.
138  */
139 void device_pm_remove(struct device *dev)
140 {
141         pr_debug("PM: Removing info for %s:%s\n",
142                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143         complete_all(&dev->power.completion);
144         mutex_lock(&dpm_list_mtx);
145         list_del_init(&dev->power.entry);
146         mutex_unlock(&dpm_list_mtx);
147         device_wakeup_disable(dev);
148         pm_runtime_remove(dev);
149 }
150
151 /**
152  * device_pm_move_before - Move device in the PM core's list of active devices.
153  * @deva: Device to move in dpm_list.
154  * @devb: Device @deva should come before.
155  */
156 void device_pm_move_before(struct device *deva, struct device *devb)
157 {
158         pr_debug("PM: Moving %s:%s before %s:%s\n",
159                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161         /* Delete deva from dpm_list and reinsert before devb. */
162         list_move_tail(&deva->power.entry, &devb->power.entry);
163 }
164
165 /**
166  * device_pm_move_after - Move device in the PM core's list of active devices.
167  * @deva: Device to move in dpm_list.
168  * @devb: Device @deva should come after.
169  */
170 void device_pm_move_after(struct device *deva, struct device *devb)
171 {
172         pr_debug("PM: Moving %s:%s after %s:%s\n",
173                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175         /* Delete deva from dpm_list and reinsert after devb. */
176         list_move(&deva->power.entry, &devb->power.entry);
177 }
178
179 /**
180  * device_pm_move_last - Move device to end of the PM core's list of devices.
181  * @dev: Device to move in dpm_list.
182  */
183 void device_pm_move_last(struct device *dev)
184 {
185         pr_debug("PM: Moving %s:%s to end of list\n",
186                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187         list_move_tail(&dev->power.entry, &dpm_list);
188 }
189
190 static ktime_t initcall_debug_start(struct device *dev)
191 {
192         ktime_t calltime = ktime_set(0, 0);
193
194         if (pm_print_times_enabled) {
195                 pr_info("calling  %s+ @ %i, parent: %s\n",
196                         dev_name(dev), task_pid_nr(current),
197                         dev->parent ? dev_name(dev->parent) : "none");
198                 calltime = ktime_get();
199         }
200
201         return calltime;
202 }
203
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205                                   int error, pm_message_t state, char *info)
206 {
207         ktime_t rettime;
208         s64 nsecs;
209
210         rettime = ktime_get();
211         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
212
213         if (pm_print_times_enabled) {
214                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215                         error, (unsigned long long)nsecs >> 10);
216         }
217
218         trace_device_pm_report_time(dev, info, nsecs, pm_verb(state.event),
219                                     error);
220 }
221
222 /**
223  * dpm_wait - Wait for a PM operation to complete.
224  * @dev: Device to wait for.
225  * @async: If unset, wait only if the device's power.async_suspend flag is set.
226  */
227 static void dpm_wait(struct device *dev, bool async)
228 {
229         if (!dev)
230                 return;
231
232         if (async || (pm_async_enabled && dev->power.async_suspend))
233                 wait_for_completion(&dev->power.completion);
234 }
235
236 static int dpm_wait_fn(struct device *dev, void *async_ptr)
237 {
238         dpm_wait(dev, *((bool *)async_ptr));
239         return 0;
240 }
241
242 static void dpm_wait_for_children(struct device *dev, bool async)
243 {
244        device_for_each_child(dev, &async, dpm_wait_fn);
245 }
246
247 /**
248  * pm_op - Return the PM operation appropriate for given PM event.
249  * @ops: PM operations to choose from.
250  * @state: PM transition of the system being carried out.
251  */
252 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253 {
254         switch (state.event) {
255 #ifdef CONFIG_SUSPEND
256         case PM_EVENT_SUSPEND:
257                 return ops->suspend;
258         case PM_EVENT_RESUME:
259                 return ops->resume;
260 #endif /* CONFIG_SUSPEND */
261 #ifdef CONFIG_HIBERNATE_CALLBACKS
262         case PM_EVENT_FREEZE:
263         case PM_EVENT_QUIESCE:
264                 return ops->freeze;
265         case PM_EVENT_HIBERNATE:
266                 return ops->poweroff;
267         case PM_EVENT_THAW:
268         case PM_EVENT_RECOVER:
269                 return ops->thaw;
270                 break;
271         case PM_EVENT_RESTORE:
272                 return ops->restore;
273 #endif /* CONFIG_HIBERNATE_CALLBACKS */
274         }
275
276         return NULL;
277 }
278
279 /**
280  * pm_late_early_op - Return the PM operation appropriate for given PM event.
281  * @ops: PM operations to choose from.
282  * @state: PM transition of the system being carried out.
283  *
284  * Runtime PM is disabled for @dev while this function is being executed.
285  */
286 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287                                       pm_message_t state)
288 {
289         switch (state.event) {
290 #ifdef CONFIG_SUSPEND
291         case PM_EVENT_SUSPEND:
292                 return ops->suspend_late;
293         case PM_EVENT_RESUME:
294                 return ops->resume_early;
295 #endif /* CONFIG_SUSPEND */
296 #ifdef CONFIG_HIBERNATE_CALLBACKS
297         case PM_EVENT_FREEZE:
298         case PM_EVENT_QUIESCE:
299                 return ops->freeze_late;
300         case PM_EVENT_HIBERNATE:
301                 return ops->poweroff_late;
302         case PM_EVENT_THAW:
303         case PM_EVENT_RECOVER:
304                 return ops->thaw_early;
305         case PM_EVENT_RESTORE:
306                 return ops->restore_early;
307 #endif /* CONFIG_HIBERNATE_CALLBACKS */
308         }
309
310         return NULL;
311 }
312
313 /**
314  * pm_noirq_op - Return the PM operation appropriate for given PM event.
315  * @ops: PM operations to choose from.
316  * @state: PM transition of the system being carried out.
317  *
318  * The driver of @dev will not receive interrupts while this function is being
319  * executed.
320  */
321 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322 {
323         switch (state.event) {
324 #ifdef CONFIG_SUSPEND
325         case PM_EVENT_SUSPEND:
326                 return ops->suspend_noirq;
327         case PM_EVENT_RESUME:
328                 return ops->resume_noirq;
329 #endif /* CONFIG_SUSPEND */
330 #ifdef CONFIG_HIBERNATE_CALLBACKS
331         case PM_EVENT_FREEZE:
332         case PM_EVENT_QUIESCE:
333                 return ops->freeze_noirq;
334         case PM_EVENT_HIBERNATE:
335                 return ops->poweroff_noirq;
336         case PM_EVENT_THAW:
337         case PM_EVENT_RECOVER:
338                 return ops->thaw_noirq;
339         case PM_EVENT_RESTORE:
340                 return ops->restore_noirq;
341 #endif /* CONFIG_HIBERNATE_CALLBACKS */
342         }
343
344         return NULL;
345 }
346
347 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348 {
349         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351                 ", may wakeup" : "");
352 }
353
354 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355                         int error)
356 {
357         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358                 dev_name(dev), pm_verb(state.event), info, error);
359 }
360
361 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362 {
363         ktime_t calltime;
364         u64 usecs64;
365         int usecs;
366
367         calltime = ktime_get();
368         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369         do_div(usecs64, NSEC_PER_USEC);
370         usecs = usecs64;
371         if (usecs == 0)
372                 usecs = 1;
373         pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374                 info ?: "", info ? " " : "", pm_verb(state.event),
375                 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376 }
377
378 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379                             pm_message_t state, char *info)
380 {
381         ktime_t calltime;
382         int error;
383
384         if (!cb)
385                 return 0;
386
387         calltime = initcall_debug_start(dev);
388
389         pm_dev_dbg(dev, state, info);
390         error = cb(dev);
391         suspend_report_result(cb, error);
392
393         initcall_debug_report(dev, calltime, error, state, info);
394
395         return error;
396 }
397
398 #ifdef CONFIG_DPM_WATCHDOG
399 struct dpm_watchdog {
400         struct device           *dev;
401         struct task_struct      *tsk;
402         struct timer_list       timer;
403 };
404
405 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
406         struct dpm_watchdog wd
407
408 /**
409  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
410  * @data: Watchdog object address.
411  *
412  * Called when a driver has timed out suspending or resuming.
413  * There's not much we can do here to recover so panic() to
414  * capture a crash-dump in pstore.
415  */
416 static void dpm_watchdog_handler(unsigned long data)
417 {
418         struct dpm_watchdog *wd = (void *)data;
419
420         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
421         show_stack(wd->tsk, NULL);
422         panic("%s %s: unrecoverable failure\n",
423                 dev_driver_string(wd->dev), dev_name(wd->dev));
424 }
425
426 /**
427  * dpm_watchdog_set - Enable pm watchdog for given device.
428  * @wd: Watchdog. Must be allocated on the stack.
429  * @dev: Device to handle.
430  */
431 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 {
433         struct timer_list *timer = &wd->timer;
434
435         wd->dev = dev;
436         wd->tsk = current;
437
438         init_timer_on_stack(timer);
439         /* use same timeout value for both suspend and resume */
440         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
441         timer->function = dpm_watchdog_handler;
442         timer->data = (unsigned long)wd;
443         add_timer(timer);
444 }
445
446 /**
447  * dpm_watchdog_clear - Disable suspend/resume watchdog.
448  * @wd: Watchdog to disable.
449  */
450 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 {
452         struct timer_list *timer = &wd->timer;
453
454         del_timer_sync(timer);
455         destroy_timer_on_stack(timer);
456 }
457 #else
458 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
459 #define dpm_watchdog_set(x, y)
460 #define dpm_watchdog_clear(x)
461 #endif
462
463 /*------------------------- Resume routines -------------------------*/
464
465 /**
466  * device_resume_noirq - Execute an "early resume" callback for given device.
467  * @dev: Device to handle.
468  * @state: PM transition of the system being carried out.
469  *
470  * The driver of @dev will not receive interrupts while this function is being
471  * executed.
472  */
473 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 {
475         pm_callback_t callback = NULL;
476         char *info = NULL;
477         int error = 0;
478
479         TRACE_DEVICE(dev);
480         TRACE_RESUME(0);
481
482         if (dev->power.syscore)
483                 goto Out;
484
485         if (!dev->power.is_noirq_suspended)
486                 goto Out;
487
488         dpm_wait(dev->parent, async);
489
490         if (dev->pm_domain) {
491                 info = "noirq power domain ";
492                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
493         } else if (dev->type && dev->type->pm) {
494                 info = "noirq type ";
495                 callback = pm_noirq_op(dev->type->pm, state);
496         } else if (dev->class && dev->class->pm) {
497                 info = "noirq class ";
498                 callback = pm_noirq_op(dev->class->pm, state);
499         } else if (dev->bus && dev->bus->pm) {
500                 info = "noirq bus ";
501                 callback = pm_noirq_op(dev->bus->pm, state);
502         }
503
504         if (!callback && dev->driver && dev->driver->pm) {
505                 info = "noirq driver ";
506                 callback = pm_noirq_op(dev->driver->pm, state);
507         }
508
509         error = dpm_run_callback(callback, dev, state, info);
510         dev->power.is_noirq_suspended = false;
511
512  Out:
513         complete_all(&dev->power.completion);
514         TRACE_RESUME(error);
515         return error;
516 }
517
518 static bool is_async(struct device *dev)
519 {
520         return dev->power.async_suspend && pm_async_enabled
521                 && !pm_trace_is_enabled();
522 }
523
524 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 {
526         struct device *dev = (struct device *)data;
527         int error;
528
529         error = device_resume_noirq(dev, pm_transition, true);
530         if (error)
531                 pm_dev_err(dev, pm_transition, " async", error);
532
533         put_device(dev);
534 }
535
536 /**
537  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
538  * @state: PM transition of the system being carried out.
539  *
540  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
541  * enable device drivers to receive interrupts.
542  */
543 static void dpm_resume_noirq(pm_message_t state)
544 {
545         struct device *dev;
546         ktime_t starttime = ktime_get();
547
548         mutex_lock(&dpm_list_mtx);
549         pm_transition = state;
550
551         /*
552          * Advanced the async threads upfront,
553          * in case the starting of async threads is
554          * delayed by non-async resuming devices.
555          */
556         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
557                 reinit_completion(&dev->power.completion);
558                 if (is_async(dev)) {
559                         get_device(dev);
560                         async_schedule(async_resume_noirq, dev);
561                 }
562         }
563
564         while (!list_empty(&dpm_noirq_list)) {
565                 dev = to_device(dpm_noirq_list.next);
566                 get_device(dev);
567                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
568                 mutex_unlock(&dpm_list_mtx);
569
570                 if (!is_async(dev)) {
571                         int error;
572
573                         error = device_resume_noirq(dev, state, false);
574                         if (error) {
575                                 suspend_stats.failed_resume_noirq++;
576                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
577                                 dpm_save_failed_dev(dev_name(dev));
578                                 pm_dev_err(dev, state, " noirq", error);
579                         }
580                 }
581
582                 mutex_lock(&dpm_list_mtx);
583                 put_device(dev);
584         }
585         mutex_unlock(&dpm_list_mtx);
586         async_synchronize_full();
587         dpm_show_time(starttime, state, "noirq");
588         resume_device_irqs();
589         cpuidle_resume();
590 }
591
592 /**
593  * device_resume_early - Execute an "early resume" callback for given device.
594  * @dev: Device to handle.
595  * @state: PM transition of the system being carried out.
596  *
597  * Runtime PM is disabled for @dev while this function is being executed.
598  */
599 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
600 {
601         pm_callback_t callback = NULL;
602         char *info = NULL;
603         int error = 0;
604
605         TRACE_DEVICE(dev);
606         TRACE_RESUME(0);
607
608         if (dev->power.syscore)
609                 goto Out;
610
611         if (!dev->power.is_late_suspended)
612                 goto Out;
613
614         dpm_wait(dev->parent, async);
615
616         if (dev->pm_domain) {
617                 info = "early power domain ";
618                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
619         } else if (dev->type && dev->type->pm) {
620                 info = "early type ";
621                 callback = pm_late_early_op(dev->type->pm, state);
622         } else if (dev->class && dev->class->pm) {
623                 info = "early class ";
624                 callback = pm_late_early_op(dev->class->pm, state);
625         } else if (dev->bus && dev->bus->pm) {
626                 info = "early bus ";
627                 callback = pm_late_early_op(dev->bus->pm, state);
628         }
629
630         if (!callback && dev->driver && dev->driver->pm) {
631                 info = "early driver ";
632                 callback = pm_late_early_op(dev->driver->pm, state);
633         }
634
635         error = dpm_run_callback(callback, dev, state, info);
636         dev->power.is_late_suspended = false;
637
638  Out:
639         TRACE_RESUME(error);
640
641         pm_runtime_enable(dev);
642         complete_all(&dev->power.completion);
643         return error;
644 }
645
646 static void async_resume_early(void *data, async_cookie_t cookie)
647 {
648         struct device *dev = (struct device *)data;
649         int error;
650
651         error = device_resume_early(dev, pm_transition, true);
652         if (error)
653                 pm_dev_err(dev, pm_transition, " async", error);
654
655         put_device(dev);
656 }
657
658 /**
659  * dpm_resume_early - Execute "early resume" callbacks for all devices.
660  * @state: PM transition of the system being carried out.
661  */
662 static void dpm_resume_early(pm_message_t state)
663 {
664         struct device *dev;
665         ktime_t starttime = ktime_get();
666
667         mutex_lock(&dpm_list_mtx);
668         pm_transition = state;
669
670         /*
671          * Advanced the async threads upfront,
672          * in case the starting of async threads is
673          * delayed by non-async resuming devices.
674          */
675         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
676                 reinit_completion(&dev->power.completion);
677                 if (is_async(dev)) {
678                         get_device(dev);
679                         async_schedule(async_resume_early, dev);
680                 }
681         }
682
683         while (!list_empty(&dpm_late_early_list)) {
684                 dev = to_device(dpm_late_early_list.next);
685                 get_device(dev);
686                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
687                 mutex_unlock(&dpm_list_mtx);
688
689                 if (!is_async(dev)) {
690                         int error;
691
692                         error = device_resume_early(dev, state, false);
693                         if (error) {
694                                 suspend_stats.failed_resume_early++;
695                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
696                                 dpm_save_failed_dev(dev_name(dev));
697                                 pm_dev_err(dev, state, " early", error);
698                         }
699                 }
700                 mutex_lock(&dpm_list_mtx);
701                 put_device(dev);
702         }
703         mutex_unlock(&dpm_list_mtx);
704         async_synchronize_full();
705         dpm_show_time(starttime, state, "early");
706 }
707
708 /**
709  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
710  * @state: PM transition of the system being carried out.
711  */
712 void dpm_resume_start(pm_message_t state)
713 {
714         dpm_resume_noirq(state);
715         dpm_resume_early(state);
716 }
717 EXPORT_SYMBOL_GPL(dpm_resume_start);
718
719 /**
720  * device_resume - Execute "resume" callbacks for given device.
721  * @dev: Device to handle.
722  * @state: PM transition of the system being carried out.
723  * @async: If true, the device is being resumed asynchronously.
724  */
725 static int device_resume(struct device *dev, pm_message_t state, bool async)
726 {
727         pm_callback_t callback = NULL;
728         char *info = NULL;
729         int error = 0;
730         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
731
732         TRACE_DEVICE(dev);
733         TRACE_RESUME(0);
734
735         if (dev->power.syscore)
736                 goto Complete;
737
738         dpm_wait(dev->parent, async);
739         dpm_watchdog_set(&wd, dev);
740         device_lock(dev);
741
742         /*
743          * This is a fib.  But we'll allow new children to be added below
744          * a resumed device, even if the device hasn't been completed yet.
745          */
746         dev->power.is_prepared = false;
747
748         if (!dev->power.is_suspended)
749                 goto Unlock;
750
751         if (dev->pm_domain) {
752                 info = "power domain ";
753                 callback = pm_op(&dev->pm_domain->ops, state);
754                 goto Driver;
755         }
756
757         if (dev->type && dev->type->pm) {
758                 info = "type ";
759                 callback = pm_op(dev->type->pm, state);
760                 goto Driver;
761         }
762
763         if (dev->class) {
764                 if (dev->class->pm) {
765                         info = "class ";
766                         callback = pm_op(dev->class->pm, state);
767                         goto Driver;
768                 } else if (dev->class->resume) {
769                         info = "legacy class ";
770                         callback = dev->class->resume;
771                         goto End;
772                 }
773         }
774
775         if (dev->bus) {
776                 if (dev->bus->pm) {
777                         info = "bus ";
778                         callback = pm_op(dev->bus->pm, state);
779                 } else if (dev->bus->resume) {
780                         info = "legacy bus ";
781                         callback = dev->bus->resume;
782                         goto End;
783                 }
784         }
785
786  Driver:
787         if (!callback && dev->driver && dev->driver->pm) {
788                 info = "driver ";
789                 callback = pm_op(dev->driver->pm, state);
790         }
791
792  End:
793         error = dpm_run_callback(callback, dev, state, info);
794         dev->power.is_suspended = false;
795
796  Unlock:
797         device_unlock(dev);
798         dpm_watchdog_clear(&wd);
799
800  Complete:
801         complete_all(&dev->power.completion);
802
803         TRACE_RESUME(error);
804
805         return error;
806 }
807
808 static void async_resume(void *data, async_cookie_t cookie)
809 {
810         struct device *dev = (struct device *)data;
811         int error;
812
813         error = device_resume(dev, pm_transition, true);
814         if (error)
815                 pm_dev_err(dev, pm_transition, " async", error);
816         put_device(dev);
817 }
818
819 /**
820  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
821  * @state: PM transition of the system being carried out.
822  *
823  * Execute the appropriate "resume" callback for all devices whose status
824  * indicates that they are suspended.
825  */
826 void dpm_resume(pm_message_t state)
827 {
828         struct device *dev;
829         ktime_t starttime = ktime_get();
830
831         might_sleep();
832
833         mutex_lock(&dpm_list_mtx);
834         pm_transition = state;
835         async_error = 0;
836
837         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
838                 reinit_completion(&dev->power.completion);
839                 if (is_async(dev)) {
840                         get_device(dev);
841                         async_schedule(async_resume, dev);
842                 }
843         }
844
845         while (!list_empty(&dpm_suspended_list)) {
846                 dev = to_device(dpm_suspended_list.next);
847                 get_device(dev);
848                 if (!is_async(dev)) {
849                         int error;
850
851                         mutex_unlock(&dpm_list_mtx);
852
853                         error = device_resume(dev, state, false);
854                         if (error) {
855                                 suspend_stats.failed_resume++;
856                                 dpm_save_failed_step(SUSPEND_RESUME);
857                                 dpm_save_failed_dev(dev_name(dev));
858                                 pm_dev_err(dev, state, "", error);
859                         }
860
861                         mutex_lock(&dpm_list_mtx);
862                 }
863                 if (!list_empty(&dev->power.entry))
864                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
865                 put_device(dev);
866         }
867         mutex_unlock(&dpm_list_mtx);
868         async_synchronize_full();
869         dpm_show_time(starttime, state, NULL);
870
871         cpufreq_resume();
872 }
873
874 /**
875  * device_complete - Complete a PM transition for given device.
876  * @dev: Device to handle.
877  * @state: PM transition of the system being carried out.
878  */
879 static void device_complete(struct device *dev, pm_message_t state)
880 {
881         void (*callback)(struct device *) = NULL;
882         char *info = NULL;
883
884         if (dev->power.syscore)
885                 return;
886
887         device_lock(dev);
888
889         if (dev->pm_domain) {
890                 info = "completing power domain ";
891                 callback = dev->pm_domain->ops.complete;
892         } else if (dev->type && dev->type->pm) {
893                 info = "completing type ";
894                 callback = dev->type->pm->complete;
895         } else if (dev->class && dev->class->pm) {
896                 info = "completing class ";
897                 callback = dev->class->pm->complete;
898         } else if (dev->bus && dev->bus->pm) {
899                 info = "completing bus ";
900                 callback = dev->bus->pm->complete;
901         }
902
903         if (!callback && dev->driver && dev->driver->pm) {
904                 info = "completing driver ";
905                 callback = dev->driver->pm->complete;
906         }
907
908         if (callback) {
909                 pm_dev_dbg(dev, state, info);
910                 callback(dev);
911         }
912
913         device_unlock(dev);
914
915         pm_runtime_put(dev);
916 }
917
918 /**
919  * dpm_complete - Complete a PM transition for all non-sysdev devices.
920  * @state: PM transition of the system being carried out.
921  *
922  * Execute the ->complete() callbacks for all devices whose PM status is not
923  * DPM_ON (this allows new devices to be registered).
924  */
925 void dpm_complete(pm_message_t state)
926 {
927         struct list_head list;
928
929         might_sleep();
930
931         INIT_LIST_HEAD(&list);
932         mutex_lock(&dpm_list_mtx);
933         while (!list_empty(&dpm_prepared_list)) {
934                 struct device *dev = to_device(dpm_prepared_list.prev);
935
936                 get_device(dev);
937                 dev->power.is_prepared = false;
938                 list_move(&dev->power.entry, &list);
939                 mutex_unlock(&dpm_list_mtx);
940
941                 device_complete(dev, state);
942
943                 mutex_lock(&dpm_list_mtx);
944                 put_device(dev);
945         }
946         list_splice(&list, &dpm_list);
947         mutex_unlock(&dpm_list_mtx);
948 }
949
950 /**
951  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
952  * @state: PM transition of the system being carried out.
953  *
954  * Execute "resume" callbacks for all devices and complete the PM transition of
955  * the system.
956  */
957 void dpm_resume_end(pm_message_t state)
958 {
959         dpm_resume(state);
960         dpm_complete(state);
961 }
962 EXPORT_SYMBOL_GPL(dpm_resume_end);
963
964
965 /*------------------------- Suspend routines -------------------------*/
966
967 /**
968  * resume_event - Return a "resume" message for given "suspend" sleep state.
969  * @sleep_state: PM message representing a sleep state.
970  *
971  * Return a PM message representing the resume event corresponding to given
972  * sleep state.
973  */
974 static pm_message_t resume_event(pm_message_t sleep_state)
975 {
976         switch (sleep_state.event) {
977         case PM_EVENT_SUSPEND:
978                 return PMSG_RESUME;
979         case PM_EVENT_FREEZE:
980         case PM_EVENT_QUIESCE:
981                 return PMSG_RECOVER;
982         case PM_EVENT_HIBERNATE:
983                 return PMSG_RESTORE;
984         }
985         return PMSG_ON;
986 }
987
988 /**
989  * device_suspend_noirq - Execute a "late suspend" callback for given device.
990  * @dev: Device to handle.
991  * @state: PM transition of the system being carried out.
992  *
993  * The driver of @dev will not receive interrupts while this function is being
994  * executed.
995  */
996 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
997 {
998         pm_callback_t callback = NULL;
999         char *info = NULL;
1000         int error = 0;
1001
1002         if (async_error)
1003                 goto Complete;
1004
1005         if (pm_wakeup_pending()) {
1006                 async_error = -EBUSY;
1007                 goto Complete;
1008         }
1009
1010         if (dev->power.syscore)
1011                 goto Complete;
1012
1013         dpm_wait_for_children(dev, async);
1014
1015         if (dev->pm_domain) {
1016                 info = "noirq power domain ";
1017                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1018         } else if (dev->type && dev->type->pm) {
1019                 info = "noirq type ";
1020                 callback = pm_noirq_op(dev->type->pm, state);
1021         } else if (dev->class && dev->class->pm) {
1022                 info = "noirq class ";
1023                 callback = pm_noirq_op(dev->class->pm, state);
1024         } else if (dev->bus && dev->bus->pm) {
1025                 info = "noirq bus ";
1026                 callback = pm_noirq_op(dev->bus->pm, state);
1027         }
1028
1029         if (!callback && dev->driver && dev->driver->pm) {
1030                 info = "noirq driver ";
1031                 callback = pm_noirq_op(dev->driver->pm, state);
1032         }
1033
1034         error = dpm_run_callback(callback, dev, state, info);
1035         if (!error)
1036                 dev->power.is_noirq_suspended = true;
1037         else
1038                 async_error = error;
1039
1040 Complete:
1041         complete_all(&dev->power.completion);
1042         return error;
1043 }
1044
1045 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1046 {
1047         struct device *dev = (struct device *)data;
1048         int error;
1049
1050         error = __device_suspend_noirq(dev, pm_transition, true);
1051         if (error) {
1052                 dpm_save_failed_dev(dev_name(dev));
1053                 pm_dev_err(dev, pm_transition, " async", error);
1054         }
1055
1056         put_device(dev);
1057 }
1058
1059 static int device_suspend_noirq(struct device *dev)
1060 {
1061         reinit_completion(&dev->power.completion);
1062
1063         if (pm_async_enabled && dev->power.async_suspend) {
1064                 get_device(dev);
1065                 async_schedule(async_suspend_noirq, dev);
1066                 return 0;
1067         }
1068         return __device_suspend_noirq(dev, pm_transition, false);
1069 }
1070
1071 /**
1072  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1073  * @state: PM transition of the system being carried out.
1074  *
1075  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1076  * handlers for all non-sysdev devices.
1077  */
1078 static int dpm_suspend_noirq(pm_message_t state)
1079 {
1080         ktime_t starttime = ktime_get();
1081         int error = 0;
1082
1083         cpuidle_pause();
1084         suspend_device_irqs();
1085         mutex_lock(&dpm_list_mtx);
1086         pm_transition = state;
1087         async_error = 0;
1088
1089         while (!list_empty(&dpm_late_early_list)) {
1090                 struct device *dev = to_device(dpm_late_early_list.prev);
1091
1092                 get_device(dev);
1093                 mutex_unlock(&dpm_list_mtx);
1094
1095                 error = device_suspend_noirq(dev);
1096
1097                 mutex_lock(&dpm_list_mtx);
1098                 if (error) {
1099                         pm_dev_err(dev, state, " noirq", error);
1100                         dpm_save_failed_dev(dev_name(dev));
1101                         put_device(dev);
1102                         break;
1103                 }
1104                 if (!list_empty(&dev->power.entry))
1105                         list_move(&dev->power.entry, &dpm_noirq_list);
1106                 put_device(dev);
1107
1108                 if (async_error)
1109                         break;
1110         }
1111         mutex_unlock(&dpm_list_mtx);
1112         async_synchronize_full();
1113         if (!error)
1114                 error = async_error;
1115
1116         if (error) {
1117                 suspend_stats.failed_suspend_noirq++;
1118                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1119                 dpm_resume_noirq(resume_event(state));
1120         } else {
1121                 dpm_show_time(starttime, state, "noirq");
1122         }
1123         return error;
1124 }
1125
1126 /**
1127  * device_suspend_late - Execute a "late suspend" callback for given device.
1128  * @dev: Device to handle.
1129  * @state: PM transition of the system being carried out.
1130  *
1131  * Runtime PM is disabled for @dev while this function is being executed.
1132  */
1133 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1134 {
1135         pm_callback_t callback = NULL;
1136         char *info = NULL;
1137         int error = 0;
1138
1139         __pm_runtime_disable(dev, false);
1140
1141         if (async_error)
1142                 goto Complete;
1143
1144         if (pm_wakeup_pending()) {
1145                 async_error = -EBUSY;
1146                 goto Complete;
1147         }
1148
1149         if (dev->power.syscore)
1150                 goto Complete;
1151
1152         dpm_wait_for_children(dev, async);
1153
1154         if (dev->pm_domain) {
1155                 info = "late power domain ";
1156                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1157         } else if (dev->type && dev->type->pm) {
1158                 info = "late type ";
1159                 callback = pm_late_early_op(dev->type->pm, state);
1160         } else if (dev->class && dev->class->pm) {
1161                 info = "late class ";
1162                 callback = pm_late_early_op(dev->class->pm, state);
1163         } else if (dev->bus && dev->bus->pm) {
1164                 info = "late bus ";
1165                 callback = pm_late_early_op(dev->bus->pm, state);
1166         }
1167
1168         if (!callback && dev->driver && dev->driver->pm) {
1169                 info = "late driver ";
1170                 callback = pm_late_early_op(dev->driver->pm, state);
1171         }
1172
1173         error = dpm_run_callback(callback, dev, state, info);
1174         if (!error)
1175                 dev->power.is_late_suspended = true;
1176         else
1177                 async_error = error;
1178
1179 Complete:
1180         complete_all(&dev->power.completion);
1181         return error;
1182 }
1183
1184 static void async_suspend_late(void *data, async_cookie_t cookie)
1185 {
1186         struct device *dev = (struct device *)data;
1187         int error;
1188
1189         error = __device_suspend_late(dev, pm_transition, true);
1190         if (error) {
1191                 dpm_save_failed_dev(dev_name(dev));
1192                 pm_dev_err(dev, pm_transition, " async", error);
1193         }
1194         put_device(dev);
1195 }
1196
1197 static int device_suspend_late(struct device *dev)
1198 {
1199         reinit_completion(&dev->power.completion);
1200
1201         if (pm_async_enabled && dev->power.async_suspend) {
1202                 get_device(dev);
1203                 async_schedule(async_suspend_late, dev);
1204                 return 0;
1205         }
1206
1207         return __device_suspend_late(dev, pm_transition, false);
1208 }
1209
1210 /**
1211  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1212  * @state: PM transition of the system being carried out.
1213  */
1214 static int dpm_suspend_late(pm_message_t state)
1215 {
1216         ktime_t starttime = ktime_get();
1217         int error = 0;
1218
1219         mutex_lock(&dpm_list_mtx);
1220         pm_transition = state;
1221         async_error = 0;
1222
1223         while (!list_empty(&dpm_suspended_list)) {
1224                 struct device *dev = to_device(dpm_suspended_list.prev);
1225
1226                 get_device(dev);
1227                 mutex_unlock(&dpm_list_mtx);
1228
1229                 error = device_suspend_late(dev);
1230
1231                 mutex_lock(&dpm_list_mtx);
1232                 if (error) {
1233                         pm_dev_err(dev, state, " late", error);
1234                         dpm_save_failed_dev(dev_name(dev));
1235                         put_device(dev);
1236                         break;
1237                 }
1238                 if (!list_empty(&dev->power.entry))
1239                         list_move(&dev->power.entry, &dpm_late_early_list);
1240                 put_device(dev);
1241
1242                 if (async_error)
1243                         break;
1244         }
1245         mutex_unlock(&dpm_list_mtx);
1246         async_synchronize_full();
1247         if (error) {
1248                 suspend_stats.failed_suspend_late++;
1249                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1250                 dpm_resume_early(resume_event(state));
1251         } else {
1252                 dpm_show_time(starttime, state, "late");
1253         }
1254         return error;
1255 }
1256
1257 /**
1258  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1259  * @state: PM transition of the system being carried out.
1260  */
1261 int dpm_suspend_end(pm_message_t state)
1262 {
1263         int error = dpm_suspend_late(state);
1264         if (error)
1265                 return error;
1266
1267         error = dpm_suspend_noirq(state);
1268         if (error) {
1269                 dpm_resume_early(resume_event(state));
1270                 return error;
1271         }
1272
1273         return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1276
1277 /**
1278  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1279  * @dev: Device to suspend.
1280  * @state: PM transition of the system being carried out.
1281  * @cb: Suspend callback to execute.
1282  */
1283 static int legacy_suspend(struct device *dev, pm_message_t state,
1284                           int (*cb)(struct device *dev, pm_message_t state),
1285                           char *info)
1286 {
1287         int error;
1288         ktime_t calltime;
1289
1290         calltime = initcall_debug_start(dev);
1291
1292         error = cb(dev, state);
1293         suspend_report_result(cb, error);
1294
1295         initcall_debug_report(dev, calltime, error, state, info);
1296
1297         return error;
1298 }
1299
1300 /**
1301  * device_suspend - Execute "suspend" callbacks for given device.
1302  * @dev: Device to handle.
1303  * @state: PM transition of the system being carried out.
1304  * @async: If true, the device is being suspended asynchronously.
1305  */
1306 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1307 {
1308         pm_callback_t callback = NULL;
1309         char *info = NULL;
1310         int error = 0;
1311         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1312
1313         dpm_wait_for_children(dev, async);
1314
1315         if (async_error)
1316                 goto Complete;
1317
1318         /*
1319          * If a device configured to wake up the system from sleep states
1320          * has been suspended at run time and there's a resume request pending
1321          * for it, this is equivalent to the device signaling wakeup, so the
1322          * system suspend operation should be aborted.
1323          */
1324         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1325                 pm_wakeup_event(dev, 0);
1326
1327         if (pm_wakeup_pending()) {
1328                 async_error = -EBUSY;
1329                 goto Complete;
1330         }
1331
1332         if (dev->power.syscore)
1333                 goto Complete;
1334
1335         dpm_watchdog_set(&wd, dev);
1336         device_lock(dev);
1337
1338         if (dev->pm_domain) {
1339                 info = "power domain ";
1340                 callback = pm_op(&dev->pm_domain->ops, state);
1341                 goto Run;
1342         }
1343
1344         if (dev->type && dev->type->pm) {
1345                 info = "type ";
1346                 callback = pm_op(dev->type->pm, state);
1347                 goto Run;
1348         }
1349
1350         if (dev->class) {
1351                 if (dev->class->pm) {
1352                         info = "class ";
1353                         callback = pm_op(dev->class->pm, state);
1354                         goto Run;
1355                 } else if (dev->class->suspend) {
1356                         pm_dev_dbg(dev, state, "legacy class ");
1357                         error = legacy_suspend(dev, state, dev->class->suspend,
1358                                                 "legacy class ");
1359                         goto End;
1360                 }
1361         }
1362
1363         if (dev->bus) {
1364                 if (dev->bus->pm) {
1365                         info = "bus ";
1366                         callback = pm_op(dev->bus->pm, state);
1367                 } else if (dev->bus->suspend) {
1368                         pm_dev_dbg(dev, state, "legacy bus ");
1369                         error = legacy_suspend(dev, state, dev->bus->suspend,
1370                                                 "legacy bus ");
1371                         goto End;
1372                 }
1373         }
1374
1375  Run:
1376         if (!callback && dev->driver && dev->driver->pm) {
1377                 info = "driver ";
1378                 callback = pm_op(dev->driver->pm, state);
1379         }
1380
1381         error = dpm_run_callback(callback, dev, state, info);
1382
1383  End:
1384         if (!error) {
1385                 dev->power.is_suspended = true;
1386                 if (dev->power.wakeup_path
1387                     && dev->parent && !dev->parent->power.ignore_children)
1388                         dev->parent->power.wakeup_path = true;
1389         }
1390
1391         device_unlock(dev);
1392         dpm_watchdog_clear(&wd);
1393
1394  Complete:
1395         complete_all(&dev->power.completion);
1396         if (error)
1397                 async_error = error;
1398
1399         return error;
1400 }
1401
1402 static void async_suspend(void *data, async_cookie_t cookie)
1403 {
1404         struct device *dev = (struct device *)data;
1405         int error;
1406
1407         error = __device_suspend(dev, pm_transition, true);
1408         if (error) {
1409                 dpm_save_failed_dev(dev_name(dev));
1410                 pm_dev_err(dev, pm_transition, " async", error);
1411         }
1412
1413         put_device(dev);
1414 }
1415
1416 static int device_suspend(struct device *dev)
1417 {
1418         reinit_completion(&dev->power.completion);
1419
1420         if (pm_async_enabled && dev->power.async_suspend) {
1421                 get_device(dev);
1422                 async_schedule(async_suspend, dev);
1423                 return 0;
1424         }
1425
1426         return __device_suspend(dev, pm_transition, false);
1427 }
1428
1429 /**
1430  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1431  * @state: PM transition of the system being carried out.
1432  */
1433 int dpm_suspend(pm_message_t state)
1434 {
1435         ktime_t starttime = ktime_get();
1436         int error = 0;
1437
1438         might_sleep();
1439
1440         cpufreq_suspend();
1441
1442         mutex_lock(&dpm_list_mtx);
1443         pm_transition = state;
1444         async_error = 0;
1445         while (!list_empty(&dpm_prepared_list)) {
1446                 struct device *dev = to_device(dpm_prepared_list.prev);
1447
1448                 get_device(dev);
1449                 mutex_unlock(&dpm_list_mtx);
1450
1451                 error = device_suspend(dev);
1452
1453                 mutex_lock(&dpm_list_mtx);
1454                 if (error) {
1455                         pm_dev_err(dev, state, "", error);
1456                         dpm_save_failed_dev(dev_name(dev));
1457                         put_device(dev);
1458                         break;
1459                 }
1460                 if (!list_empty(&dev->power.entry))
1461                         list_move(&dev->power.entry, &dpm_suspended_list);
1462                 put_device(dev);
1463                 if (async_error)
1464                         break;
1465         }
1466         mutex_unlock(&dpm_list_mtx);
1467         async_synchronize_full();
1468         if (!error)
1469                 error = async_error;
1470         if (error) {
1471                 suspend_stats.failed_suspend++;
1472                 dpm_save_failed_step(SUSPEND_SUSPEND);
1473         } else
1474                 dpm_show_time(starttime, state, NULL);
1475         return error;
1476 }
1477
1478 /**
1479  * device_prepare - Prepare a device for system power transition.
1480  * @dev: Device to handle.
1481  * @state: PM transition of the system being carried out.
1482  *
1483  * Execute the ->prepare() callback(s) for given device.  No new children of the
1484  * device may be registered after this function has returned.
1485  */
1486 static int device_prepare(struct device *dev, pm_message_t state)
1487 {
1488         int (*callback)(struct device *) = NULL;
1489         char *info = NULL;
1490         int error = 0;
1491
1492         if (dev->power.syscore)
1493                 return 0;
1494
1495         /*
1496          * If a device's parent goes into runtime suspend at the wrong time,
1497          * it won't be possible to resume the device.  To prevent this we
1498          * block runtime suspend here, during the prepare phase, and allow
1499          * it again during the complete phase.
1500          */
1501         pm_runtime_get_noresume(dev);
1502
1503         device_lock(dev);
1504
1505         dev->power.wakeup_path = device_may_wakeup(dev);
1506
1507         if (dev->pm_domain) {
1508                 info = "preparing power domain ";
1509                 callback = dev->pm_domain->ops.prepare;
1510         } else if (dev->type && dev->type->pm) {
1511                 info = "preparing type ";
1512                 callback = dev->type->pm->prepare;
1513         } else if (dev->class && dev->class->pm) {
1514                 info = "preparing class ";
1515                 callback = dev->class->pm->prepare;
1516         } else if (dev->bus && dev->bus->pm) {
1517                 info = "preparing bus ";
1518                 callback = dev->bus->pm->prepare;
1519         }
1520
1521         if (!callback && dev->driver && dev->driver->pm) {
1522                 info = "preparing driver ";
1523                 callback = dev->driver->pm->prepare;
1524         }
1525
1526         if (callback) {
1527                 error = callback(dev);
1528                 suspend_report_result(callback, error);
1529         }
1530
1531         device_unlock(dev);
1532
1533         if (error)
1534                 pm_runtime_put(dev);
1535
1536         return error;
1537 }
1538
1539 /**
1540  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1541  * @state: PM transition of the system being carried out.
1542  *
1543  * Execute the ->prepare() callback(s) for all devices.
1544  */
1545 int dpm_prepare(pm_message_t state)
1546 {
1547         int error = 0;
1548
1549         might_sleep();
1550
1551         mutex_lock(&dpm_list_mtx);
1552         while (!list_empty(&dpm_list)) {
1553                 struct device *dev = to_device(dpm_list.next);
1554
1555                 get_device(dev);
1556                 mutex_unlock(&dpm_list_mtx);
1557
1558                 error = device_prepare(dev, state);
1559
1560                 mutex_lock(&dpm_list_mtx);
1561                 if (error) {
1562                         if (error == -EAGAIN) {
1563                                 put_device(dev);
1564                                 error = 0;
1565                                 continue;
1566                         }
1567                         printk(KERN_INFO "PM: Device %s not prepared "
1568                                 "for power transition: code %d\n",
1569                                 dev_name(dev), error);
1570                         put_device(dev);
1571                         break;
1572                 }
1573                 dev->power.is_prepared = true;
1574                 if (!list_empty(&dev->power.entry))
1575                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1576                 put_device(dev);
1577         }
1578         mutex_unlock(&dpm_list_mtx);
1579         return error;
1580 }
1581
1582 /**
1583  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1584  * @state: PM transition of the system being carried out.
1585  *
1586  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1587  * callbacks for them.
1588  */
1589 int dpm_suspend_start(pm_message_t state)
1590 {
1591         int error;
1592
1593         error = dpm_prepare(state);
1594         if (error) {
1595                 suspend_stats.failed_prepare++;
1596                 dpm_save_failed_step(SUSPEND_PREPARE);
1597         } else
1598                 error = dpm_suspend(state);
1599         return error;
1600 }
1601 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1602
1603 void __suspend_report_result(const char *function, void *fn, int ret)
1604 {
1605         if (ret)
1606                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1607 }
1608 EXPORT_SYMBOL_GPL(__suspend_report_result);
1609
1610 /**
1611  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1612  * @dev: Device to wait for.
1613  * @subordinate: Device that needs to wait for @dev.
1614  */
1615 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1616 {
1617         dpm_wait(dev, subordinate->power.async_suspend);
1618         return async_error;
1619 }
1620 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1621
1622 /**
1623  * dpm_for_each_dev - device iterator.
1624  * @data: data for the callback.
1625  * @fn: function to be called for each device.
1626  *
1627  * Iterate over devices in dpm_list, and call @fn for each device,
1628  * passing it @data.
1629  */
1630 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1631 {
1632         struct device *dev;
1633
1634         if (!fn)
1635                 return;
1636
1637         device_pm_lock();
1638         list_for_each_entry(dev, &dpm_list, power.entry)
1639                 fn(dev, data);
1640         device_pm_unlock();
1641 }
1642 EXPORT_SYMBOL_GPL(dpm_for_each_dev);