Merge remote-tracking branch 'lsk/v3.10/topic/arm64-misc' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / base / memory.c
1 /*
2  * Memory subsystem support
3  *
4  * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5  *            Dave Hansen <haveblue@us.ibm.com>
6  *
7  * This file provides the necessary infrastructure to represent
8  * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9  * All arch-independent code that assumes MEMORY_HOTPLUG requires
10  * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/mm.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
25
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
28
29 static DEFINE_MUTEX(mem_sysfs_mutex);
30
31 #define MEMORY_CLASS_NAME       "memory"
32
33 static int sections_per_block;
34
35 static inline int base_memory_block_id(int section_nr)
36 {
37         return section_nr / sections_per_block;
38 }
39
40 static struct bus_type memory_subsys = {
41         .name = MEMORY_CLASS_NAME,
42         .dev_name = MEMORY_CLASS_NAME,
43 };
44
45 static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47 int register_memory_notifier(struct notifier_block *nb)
48 {
49         return blocking_notifier_chain_register(&memory_chain, nb);
50 }
51 EXPORT_SYMBOL(register_memory_notifier);
52
53 void unregister_memory_notifier(struct notifier_block *nb)
54 {
55         blocking_notifier_chain_unregister(&memory_chain, nb);
56 }
57 EXPORT_SYMBOL(unregister_memory_notifier);
58
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61 int register_memory_isolate_notifier(struct notifier_block *nb)
62 {
63         return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64 }
65 EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67 void unregister_memory_isolate_notifier(struct notifier_block *nb)
68 {
69         atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70 }
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73 static void memory_block_release(struct device *dev)
74 {
75         struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77         kfree(mem);
78 }
79
80 /*
81  * register_memory - Setup a sysfs device for a memory block
82  */
83 static
84 int register_memory(struct memory_block *memory)
85 {
86         int error;
87
88         memory->dev.bus = &memory_subsys;
89         memory->dev.id = memory->start_section_nr / sections_per_block;
90         memory->dev.release = memory_block_release;
91
92         error = device_register(&memory->dev);
93         return error;
94 }
95
96 unsigned long __weak memory_block_size_bytes(void)
97 {
98         return MIN_MEMORY_BLOCK_SIZE;
99 }
100
101 static unsigned long get_memory_block_size(void)
102 {
103         unsigned long block_sz;
104
105         block_sz = memory_block_size_bytes();
106
107         /* Validate blk_sz is a power of 2 and not less than section size */
108         if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
109                 WARN_ON(1);
110                 block_sz = MIN_MEMORY_BLOCK_SIZE;
111         }
112
113         return block_sz;
114 }
115
116 /*
117  * use this as the physical section index that this memsection
118  * uses.
119  */
120
121 static ssize_t show_mem_start_phys_index(struct device *dev,
122                         struct device_attribute *attr, char *buf)
123 {
124         struct memory_block *mem =
125                 container_of(dev, struct memory_block, dev);
126         unsigned long phys_index;
127
128         phys_index = mem->start_section_nr / sections_per_block;
129         return sprintf(buf, "%08lx\n", phys_index);
130 }
131
132 static ssize_t show_mem_end_phys_index(struct device *dev,
133                         struct device_attribute *attr, char *buf)
134 {
135         struct memory_block *mem =
136                 container_of(dev, struct memory_block, dev);
137         unsigned long phys_index;
138
139         phys_index = mem->end_section_nr / sections_per_block;
140         return sprintf(buf, "%08lx\n", phys_index);
141 }
142
143 /*
144  * Show whether the section of memory is likely to be hot-removable
145  */
146 static ssize_t show_mem_removable(struct device *dev,
147                         struct device_attribute *attr, char *buf)
148 {
149         unsigned long i, pfn;
150         int ret = 1;
151         struct memory_block *mem =
152                 container_of(dev, struct memory_block, dev);
153
154         for (i = 0; i < sections_per_block; i++) {
155                 if (!present_section_nr(mem->start_section_nr + i))
156                         continue;
157                 pfn = section_nr_to_pfn(mem->start_section_nr + i);
158                 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
159         }
160
161         return sprintf(buf, "%d\n", ret);
162 }
163
164 /*
165  * online, offline, going offline, etc.
166  */
167 static ssize_t show_mem_state(struct device *dev,
168                         struct device_attribute *attr, char *buf)
169 {
170         struct memory_block *mem =
171                 container_of(dev, struct memory_block, dev);
172         ssize_t len = 0;
173
174         /*
175          * We can probably put these states in a nice little array
176          * so that they're not open-coded
177          */
178         switch (mem->state) {
179                 case MEM_ONLINE:
180                         len = sprintf(buf, "online\n");
181                         break;
182                 case MEM_OFFLINE:
183                         len = sprintf(buf, "offline\n");
184                         break;
185                 case MEM_GOING_OFFLINE:
186                         len = sprintf(buf, "going-offline\n");
187                         break;
188                 default:
189                         len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
190                                         mem->state);
191                         WARN_ON(1);
192                         break;
193         }
194
195         return len;
196 }
197
198 int memory_notify(unsigned long val, void *v)
199 {
200         return blocking_notifier_call_chain(&memory_chain, val, v);
201 }
202
203 int memory_isolate_notify(unsigned long val, void *v)
204 {
205         return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
206 }
207
208 /*
209  * The probe routines leave the pages reserved, just as the bootmem code does.
210  * Make sure they're still that way.
211  */
212 static bool pages_correctly_reserved(unsigned long start_pfn)
213 {
214         int i, j;
215         struct page *page;
216         unsigned long pfn = start_pfn;
217
218         /*
219          * memmap between sections is not contiguous except with
220          * SPARSEMEM_VMEMMAP. We lookup the page once per section
221          * and assume memmap is contiguous within each section
222          */
223         for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
224                 if (WARN_ON_ONCE(!pfn_valid(pfn)))
225                         return false;
226                 page = pfn_to_page(pfn);
227
228                 for (j = 0; j < PAGES_PER_SECTION; j++) {
229                         if (PageReserved(page + j))
230                                 continue;
231
232                         printk(KERN_WARNING "section number %ld page number %d "
233                                 "not reserved, was it already online?\n",
234                                 pfn_to_section_nr(pfn), j);
235
236                         return false;
237                 }
238         }
239
240         return true;
241 }
242
243 /*
244  * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
245  * OK to have direct references to sparsemem variables in here.
246  */
247 static int
248 memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
249 {
250         unsigned long start_pfn;
251         unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
252         struct page *first_page;
253         int ret;
254
255         first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
256         start_pfn = page_to_pfn(first_page);
257
258         switch (action) {
259                 case MEM_ONLINE:
260                         if (!pages_correctly_reserved(start_pfn))
261                                 return -EBUSY;
262
263                         ret = online_pages(start_pfn, nr_pages, online_type);
264                         break;
265                 case MEM_OFFLINE:
266                         ret = offline_pages(start_pfn, nr_pages);
267                         break;
268                 default:
269                         WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
270                              "%ld\n", __func__, phys_index, action, action);
271                         ret = -EINVAL;
272         }
273
274         return ret;
275 }
276
277 static int __memory_block_change_state(struct memory_block *mem,
278                 unsigned long to_state, unsigned long from_state_req,
279                 int online_type)
280 {
281         int ret = 0;
282
283         if (mem->state != from_state_req) {
284                 ret = -EINVAL;
285                 goto out;
286         }
287
288         if (to_state == MEM_OFFLINE)
289                 mem->state = MEM_GOING_OFFLINE;
290
291         ret = memory_block_action(mem->start_section_nr, to_state, online_type);
292
293         if (ret) {
294                 mem->state = from_state_req;
295                 goto out;
296         }
297
298         mem->state = to_state;
299         switch (mem->state) {
300         case MEM_OFFLINE:
301                 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
302                 break;
303         case MEM_ONLINE:
304                 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
305                 break;
306         default:
307                 break;
308         }
309 out:
310         return ret;
311 }
312
313 static int memory_block_change_state(struct memory_block *mem,
314                 unsigned long to_state, unsigned long from_state_req,
315                 int online_type)
316 {
317         int ret;
318
319         mutex_lock(&mem->state_mutex);
320         ret = __memory_block_change_state(mem, to_state, from_state_req,
321                                           online_type);
322         mutex_unlock(&mem->state_mutex);
323
324         return ret;
325 }
326 static ssize_t
327 store_mem_state(struct device *dev,
328                 struct device_attribute *attr, const char *buf, size_t count)
329 {
330         struct memory_block *mem;
331         int ret = -EINVAL;
332
333         mem = container_of(dev, struct memory_block, dev);
334
335         if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
336                 ret = memory_block_change_state(mem, MEM_ONLINE,
337                                                 MEM_OFFLINE, ONLINE_KERNEL);
338         else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
339                 ret = memory_block_change_state(mem, MEM_ONLINE,
340                                                 MEM_OFFLINE, ONLINE_MOVABLE);
341         else if (!strncmp(buf, "online", min_t(int, count, 6)))
342                 ret = memory_block_change_state(mem, MEM_ONLINE,
343                                                 MEM_OFFLINE, ONLINE_KEEP);
344         else if(!strncmp(buf, "offline", min_t(int, count, 7)))
345                 ret = memory_block_change_state(mem, MEM_OFFLINE,
346                                                 MEM_ONLINE, -1);
347
348         if (ret)
349                 return ret;
350         return count;
351 }
352
353 /*
354  * phys_device is a bad name for this.  What I really want
355  * is a way to differentiate between memory ranges that
356  * are part of physical devices that constitute
357  * a complete removable unit or fru.
358  * i.e. do these ranges belong to the same physical device,
359  * s.t. if I offline all of these sections I can then
360  * remove the physical device?
361  */
362 static ssize_t show_phys_device(struct device *dev,
363                                 struct device_attribute *attr, char *buf)
364 {
365         struct memory_block *mem =
366                 container_of(dev, struct memory_block, dev);
367         return sprintf(buf, "%d\n", mem->phys_device);
368 }
369
370 static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
371 static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
372 static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
373 static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
374 static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
375
376 #define mem_create_simple_file(mem, attr_name)  \
377         device_create_file(&mem->dev, &dev_attr_##attr_name)
378 #define mem_remove_simple_file(mem, attr_name)  \
379         device_remove_file(&mem->dev, &dev_attr_##attr_name)
380
381 /*
382  * Block size attribute stuff
383  */
384 static ssize_t
385 print_block_size(struct device *dev, struct device_attribute *attr,
386                  char *buf)
387 {
388         return sprintf(buf, "%lx\n", get_memory_block_size());
389 }
390
391 static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
392
393 static int block_size_init(void)
394 {
395         return device_create_file(memory_subsys.dev_root,
396                                   &dev_attr_block_size_bytes);
397 }
398
399 /*
400  * Some architectures will have custom drivers to do this, and
401  * will not need to do it from userspace.  The fake hot-add code
402  * as well as ppc64 will do all of their discovery in userspace
403  * and will require this interface.
404  */
405 #ifdef CONFIG_ARCH_MEMORY_PROBE
406 static ssize_t
407 memory_probe_store(struct device *dev, struct device_attribute *attr,
408                    const char *buf, size_t count)
409 {
410         u64 phys_addr;
411         int nid;
412         int i, ret;
413         unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
414
415         phys_addr = simple_strtoull(buf, NULL, 0);
416
417         if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
418                 return -EINVAL;
419
420         for (i = 0; i < sections_per_block; i++) {
421                 nid = memory_add_physaddr_to_nid(phys_addr);
422                 ret = add_memory(nid, phys_addr,
423                                  PAGES_PER_SECTION << PAGE_SHIFT);
424                 if (ret)
425                         goto out;
426
427                 phys_addr += MIN_MEMORY_BLOCK_SIZE;
428         }
429
430         ret = count;
431 out:
432         return ret;
433 }
434 static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
435
436 static int memory_probe_init(void)
437 {
438         return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
439 }
440 #else
441 static inline int memory_probe_init(void)
442 {
443         return 0;
444 }
445 #endif
446
447 #ifdef CONFIG_MEMORY_FAILURE
448 /*
449  * Support for offlining pages of memory
450  */
451
452 /* Soft offline a page */
453 static ssize_t
454 store_soft_offline_page(struct device *dev,
455                         struct device_attribute *attr,
456                         const char *buf, size_t count)
457 {
458         int ret;
459         u64 pfn;
460         if (!capable(CAP_SYS_ADMIN))
461                 return -EPERM;
462         if (strict_strtoull(buf, 0, &pfn) < 0)
463                 return -EINVAL;
464         pfn >>= PAGE_SHIFT;
465         if (!pfn_valid(pfn))
466                 return -ENXIO;
467         ret = soft_offline_page(pfn_to_page(pfn), 0);
468         return ret == 0 ? count : ret;
469 }
470
471 /* Forcibly offline a page, including killing processes. */
472 static ssize_t
473 store_hard_offline_page(struct device *dev,
474                         struct device_attribute *attr,
475                         const char *buf, size_t count)
476 {
477         int ret;
478         u64 pfn;
479         if (!capable(CAP_SYS_ADMIN))
480                 return -EPERM;
481         if (strict_strtoull(buf, 0, &pfn) < 0)
482                 return -EINVAL;
483         pfn >>= PAGE_SHIFT;
484         ret = memory_failure(pfn, 0, 0);
485         return ret ? ret : count;
486 }
487
488 static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
489 static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
490
491 static __init int memory_fail_init(void)
492 {
493         int err;
494
495         err = device_create_file(memory_subsys.dev_root,
496                                 &dev_attr_soft_offline_page);
497         if (!err)
498                 err = device_create_file(memory_subsys.dev_root,
499                                 &dev_attr_hard_offline_page);
500         return err;
501 }
502 #else
503 static inline int memory_fail_init(void)
504 {
505         return 0;
506 }
507 #endif
508
509 /*
510  * Note that phys_device is optional.  It is here to allow for
511  * differentiation between which *physical* devices each
512  * section belongs to...
513  */
514 int __weak arch_get_memory_phys_device(unsigned long start_pfn)
515 {
516         return 0;
517 }
518
519 /*
520  * A reference for the returned object is held and the reference for the
521  * hinted object is released.
522  */
523 struct memory_block *find_memory_block_hinted(struct mem_section *section,
524                                               struct memory_block *hint)
525 {
526         int block_id = base_memory_block_id(__section_nr(section));
527         struct device *hintdev = hint ? &hint->dev : NULL;
528         struct device *dev;
529
530         dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
531         if (hint)
532                 put_device(&hint->dev);
533         if (!dev)
534                 return NULL;
535         return container_of(dev, struct memory_block, dev);
536 }
537
538 /*
539  * For now, we have a linear search to go find the appropriate
540  * memory_block corresponding to a particular phys_index. If
541  * this gets to be a real problem, we can always use a radix
542  * tree or something here.
543  *
544  * This could be made generic for all device subsystems.
545  */
546 struct memory_block *find_memory_block(struct mem_section *section)
547 {
548         return find_memory_block_hinted(section, NULL);
549 }
550
551 static int init_memory_block(struct memory_block **memory,
552                              struct mem_section *section, unsigned long state)
553 {
554         struct memory_block *mem;
555         unsigned long start_pfn;
556         int scn_nr;
557         int ret = 0;
558
559         mem = kzalloc(sizeof(*mem), GFP_KERNEL);
560         if (!mem)
561                 return -ENOMEM;
562
563         scn_nr = __section_nr(section);
564         mem->start_section_nr =
565                         base_memory_block_id(scn_nr) * sections_per_block;
566         mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
567         mem->state = state;
568         mem->section_count++;
569         mutex_init(&mem->state_mutex);
570         start_pfn = section_nr_to_pfn(mem->start_section_nr);
571         mem->phys_device = arch_get_memory_phys_device(start_pfn);
572
573         ret = register_memory(mem);
574         if (!ret)
575                 ret = mem_create_simple_file(mem, phys_index);
576         if (!ret)
577                 ret = mem_create_simple_file(mem, end_phys_index);
578         if (!ret)
579                 ret = mem_create_simple_file(mem, state);
580         if (!ret)
581                 ret = mem_create_simple_file(mem, phys_device);
582         if (!ret)
583                 ret = mem_create_simple_file(mem, removable);
584
585         *memory = mem;
586         return ret;
587 }
588
589 static int add_memory_section(int nid, struct mem_section *section,
590                         struct memory_block **mem_p,
591                         unsigned long state, enum mem_add_context context)
592 {
593         struct memory_block *mem = NULL;
594         int scn_nr = __section_nr(section);
595         int ret = 0;
596
597         mutex_lock(&mem_sysfs_mutex);
598
599         if (context == BOOT) {
600                 /* same memory block ? */
601                 if (mem_p && *mem_p)
602                         if (scn_nr >= (*mem_p)->start_section_nr &&
603                             scn_nr <= (*mem_p)->end_section_nr) {
604                                 mem = *mem_p;
605                                 kobject_get(&mem->dev.kobj);
606                         }
607         } else
608                 mem = find_memory_block(section);
609
610         if (mem) {
611                 mem->section_count++;
612                 kobject_put(&mem->dev.kobj);
613         } else {
614                 ret = init_memory_block(&mem, section, state);
615                 /* store memory_block pointer for next loop */
616                 if (!ret && context == BOOT)
617                         if (mem_p)
618                                 *mem_p = mem;
619         }
620
621         if (!ret) {
622                 if (context == HOTPLUG &&
623                     mem->section_count == sections_per_block)
624                         ret = register_mem_sect_under_node(mem, nid);
625         }
626
627         mutex_unlock(&mem_sysfs_mutex);
628         return ret;
629 }
630
631 /*
632  * need an interface for the VM to add new memory regions,
633  * but without onlining it.
634  */
635 int register_new_memory(int nid, struct mem_section *section)
636 {
637         return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
638 }
639
640 #ifdef CONFIG_MEMORY_HOTREMOVE
641 static void
642 unregister_memory(struct memory_block *memory)
643 {
644         BUG_ON(memory->dev.bus != &memory_subsys);
645
646         /* drop the ref. we got in remove_memory_block() */
647         kobject_put(&memory->dev.kobj);
648         device_unregister(&memory->dev);
649 }
650
651 static int remove_memory_block(unsigned long node_id,
652                                struct mem_section *section, int phys_device)
653 {
654         struct memory_block *mem;
655
656         mutex_lock(&mem_sysfs_mutex);
657         mem = find_memory_block(section);
658         unregister_mem_sect_under_nodes(mem, __section_nr(section));
659
660         mem->section_count--;
661         if (mem->section_count == 0) {
662                 mem_remove_simple_file(mem, phys_index);
663                 mem_remove_simple_file(mem, end_phys_index);
664                 mem_remove_simple_file(mem, state);
665                 mem_remove_simple_file(mem, phys_device);
666                 mem_remove_simple_file(mem, removable);
667                 unregister_memory(mem);
668         } else
669                 kobject_put(&mem->dev.kobj);
670
671         mutex_unlock(&mem_sysfs_mutex);
672         return 0;
673 }
674
675 int unregister_memory_section(struct mem_section *section)
676 {
677         if (!present_section(section))
678                 return -EINVAL;
679
680         return remove_memory_block(0, section, 0);
681 }
682 #endif /* CONFIG_MEMORY_HOTREMOVE */
683
684 /*
685  * offline one memory block. If the memory block has been offlined, do nothing.
686  */
687 int offline_memory_block(struct memory_block *mem)
688 {
689         int ret = 0;
690
691         mutex_lock(&mem->state_mutex);
692         if (mem->state != MEM_OFFLINE)
693                 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
694         mutex_unlock(&mem->state_mutex);
695
696         return ret;
697 }
698
699 /* return true if the memory block is offlined, otherwise, return false */
700 bool is_memblock_offlined(struct memory_block *mem)
701 {
702         return mem->state == MEM_OFFLINE;
703 }
704
705 /*
706  * Initialize the sysfs support for memory devices...
707  */
708 int __init memory_dev_init(void)
709 {
710         unsigned int i;
711         int ret;
712         int err;
713         unsigned long block_sz;
714         struct memory_block *mem = NULL;
715
716         ret = subsys_system_register(&memory_subsys, NULL);
717         if (ret)
718                 goto out;
719
720         block_sz = get_memory_block_size();
721         sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
722
723         /*
724          * Create entries for memory sections that were found
725          * during boot and have been initialized
726          */
727         for (i = 0; i < NR_MEM_SECTIONS; i++) {
728                 if (!present_section_nr(i))
729                         continue;
730                 /* don't need to reuse memory_block if only one per block */
731                 err = add_memory_section(0, __nr_to_section(i),
732                                  (sections_per_block == 1) ? NULL : &mem,
733                                          MEM_ONLINE,
734                                          BOOT);
735                 if (!ret)
736                         ret = err;
737         }
738
739         err = memory_probe_init();
740         if (!ret)
741                 ret = err;
742         err = memory_fail_init();
743         if (!ret)
744                 ret = err;
745         err = block_size_init();
746         if (!ret)
747                 ret = err;
748 out:
749         if (ret)
750                 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
751         return ret;
752 }