854f90e28b3d0f9329b2b8da7bb2e728743540d0
[oota-llvm.git] / docs / ProgrammersManual.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                       "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5   <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
6   <title>LLVM Programmer's Manual</title>
7   <link rel="stylesheet" href="_static/llvm.css" type="text/css">
8 </head>
9 <body>
10
11 <h1>
12   LLVM Programmer's Manual
13 </h1>
14
15 <ol>
16   <li><a href="#introduction">Introduction</a></li>
17   <li><a href="#general">General Information</a>
18     <ul>
19       <li><a href="#stl">The C++ Standard Template Library</a></li>
20 <!--
21       <li>The <tt>-time-passes</tt> option</li>
22       <li>How to use the LLVM Makefile system</li>
23       <li>How to write a regression test</li>
24
25 --> 
26     </ul>
27   </li>
28   <li><a href="#apis">Important and useful LLVM APIs</a>
29     <ul>
30       <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31 and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
32       <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
33 and <tt>Twine</tt> classes)</a>
34         <ul>
35           <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36           <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37         </ul>
38       </li>
39       <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40 option</a>
41         <ul>
42           <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43 and the <tt>-debug-only</tt> option</a> </li>
44         </ul>
45       </li>
46       <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47 option</a></li>
48 <!--
49       <li>The <tt>InstVisitor</tt> template
50       <li>The general graph API
51 --> 
52       <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53     </ul>
54   </li>
55   <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56     <ul>
57     <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58     <ul>
59       <li><a href="#dss_arrayref">llvm/ADT/ArrayRef.h</a></li>
60       <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
61       <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
62       <li><a href="#dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a></li>
63       <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
64       <li><a href="#dss_vector">&lt;vector&gt;</a></li>
65       <li><a href="#dss_deque">&lt;deque&gt;</a></li>
66       <li><a href="#dss_list">&lt;list&gt;</a></li>
67       <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
68       <li><a href="#dss_packedvector">llvm/ADT/PackedVector.h</a></li>
69       <li><a href="#dss_other">Other Sequential Container Options</a></li>
70     </ul></li>
71     <li><a href="#ds_string">String-like containers</a>
72     <ul>
73       <li><a href="#dss_stringref">llvm/ADT/StringRef.h</a></li>
74       <li><a href="#dss_twine">llvm/ADT/Twine.h</a></li>
75       <li><a href="#dss_smallstring">llvm/ADT/SmallString.h</a></li>
76       <li><a href="#dss_stdstring">std::string</a></li>
77     </ul></li>
78     <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
79     <ul>
80       <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
81       <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
82       <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
83       <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
84       <li><a href="#dss_sparseset">"llvm/ADT/SparseSet.h"</a></li>
85       <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
86       <li><a href="#dss_set">&lt;set&gt;</a></li>
87       <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
88       <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
89       <li><a href="#dss_immutableset">"llvm/ADT/ImmutableSet.h"</a></li>
90       <li><a href="#dss_otherset">Other Set-Like Container Options</a></li>
91     </ul></li>
92     <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
93     <ul>
94       <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
95       <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
96       <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
97       <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
98       <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
99       <li><a href="#dss_intervalmap">"llvm/ADT/IntervalMap.h"</a></li>
100       <li><a href="#dss_map">&lt;map&gt;</a></li>
101       <li><a href="#dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a></li>
102       <li><a href="#dss_immutablemap">"llvm/ADT/ImmutableMap.h"</a></li>
103       <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
104     </ul></li>
105     <li><a href="#ds_bit">BitVector-like containers</a>
106     <ul>
107       <li><a href="#dss_bitvector">A dense bitvector</a></li>
108       <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
109       <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
110     </ul></li>
111   </ul>
112   </li>
113   <li><a href="#common">Helpful Hints for Common Operations</a>
114     <ul>
115       <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
116         <ul>
117           <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
118 in a <tt>Function</tt></a> </li>
119           <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
120 in a <tt>BasicBlock</tt></a> </li>
121           <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
122 in a <tt>Function</tt></a> </li>
123           <li><a href="#iterate_convert">Turning an iterator into a
124 class pointer</a> </li>
125           <li><a href="#iterate_complex">Finding call sites: a more
126 complex example</a> </li>
127           <li><a href="#calls_and_invokes">Treating calls and invokes
128 the same way</a> </li>
129           <li><a href="#iterate_chains">Iterating over def-use &amp;
130 use-def chains</a> </li>
131           <li><a href="#iterate_preds">Iterating over predecessors &amp;
132 successors of blocks</a></li>
133         </ul>
134       </li>
135       <li><a href="#simplechanges">Making simple changes</a>
136         <ul>
137           <li><a href="#schanges_creating">Creating and inserting new
138                  <tt>Instruction</tt>s</a> </li>
139           <li><a href="#schanges_deleting">Deleting              <tt>Instruction</tt>s</a> </li>
140           <li><a href="#schanges_replacing">Replacing an                 <tt>Instruction</tt>
141 with another <tt>Value</tt></a> </li>
142           <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>  
143         </ul>
144       </li>
145       <li><a href="#create_types">How to Create Types</a></li>
146 <!--
147     <li>Working with the Control Flow Graph
148     <ul>
149       <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
150       <li>
151       <li>
152     </ul>
153 --> 
154     </ul>
155   </li>
156
157   <li><a href="#threading">Threads and LLVM</a>
158   <ul>
159     <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
160         </a></li>
161     <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
162     <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
163     <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
164     <li><a href="#jitthreading">Threads and the JIT</a></li>
165   </ul>
166   </li>
167
168   <li><a href="#advanced">Advanced Topics</a>
169   <ul>
170
171   <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> class</a></li>
172   <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
173   </ul></li>
174
175   <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
176     <ul>
177       <li><a href="#Type">The <tt>Type</tt> class</a> </li>
178       <li><a href="#Module">The <tt>Module</tt> class</a></li>
179       <li><a href="#Value">The <tt>Value</tt> class</a>
180       <ul>
181         <li><a href="#User">The <tt>User</tt> class</a>
182         <ul>
183           <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
184           <li><a href="#Constant">The <tt>Constant</tt> class</a>
185           <ul>
186             <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
187             <ul>
188               <li><a href="#Function">The <tt>Function</tt> class</a></li>
189               <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
190             </ul>
191             </li>
192           </ul>
193           </li>
194         </ul>
195         </li>
196         <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
197         <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
198       </ul>
199       </li>
200     </ul>
201   </li>
202 </ol>
203
204 <div class="doc_author">    
205   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>, 
206                 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, 
207                 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>, 
208                 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
209                 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
210                 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
211 </div>
212
213 <!-- *********************************************************************** -->
214 <h2>
215   <a name="introduction">Introduction </a>
216 </h2>
217 <!-- *********************************************************************** -->
218
219 <div>
220
221 <p>This document is meant to highlight some of the important classes and
222 interfaces available in the LLVM source-base.  This manual is not
223 intended to explain what LLVM is, how it works, and what LLVM code looks
224 like.  It assumes that you know the basics of LLVM and are interested
225 in writing transformations or otherwise analyzing or manipulating the
226 code.</p>
227
228 <p>This document should get you oriented so that you can find your
229 way in the continuously growing source code that makes up the LLVM
230 infrastructure. Note that this manual is not intended to serve as a
231 replacement for reading the source code, so if you think there should be
232 a method in one of these classes to do something, but it's not listed,
233 check the source.  Links to the <a href="/doxygen/">doxygen</a> sources
234 are provided to make this as easy as possible.</p>
235
236 <p>The first section of this document describes general information that is
237 useful to know when working in the LLVM infrastructure, and the second describes
238 the Core LLVM classes.  In the future this manual will be extended with
239 information describing how to use extension libraries, such as dominator
240 information, CFG traversal routines, and useful utilities like the <tt><a
241 href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
242
243 </div>
244
245 <!-- *********************************************************************** -->
246 <h2>
247   <a name="general">General Information</a>
248 </h2>
249 <!-- *********************************************************************** -->
250
251 <div>
252
253 <p>This section contains general information that is useful if you are working
254 in the LLVM source-base, but that isn't specific to any particular API.</p>
255
256 <!-- ======================================================================= -->
257 <h3>
258   <a name="stl">The C++ Standard Template Library</a>
259 </h3>
260
261 <div>
262
263 <p>LLVM makes heavy use of the C++ Standard Template Library (STL),
264 perhaps much more than you are used to, or have seen before.  Because of
265 this, you might want to do a little background reading in the
266 techniques used and capabilities of the library.  There are many good
267 pages that discuss the STL, and several books on the subject that you
268 can get, so it will not be discussed in this document.</p>
269
270 <p>Here are some useful links:</p>
271
272 <ol>
273
274 <li><a href="http://www.dinkumware.com/manuals/#Standard C++ Library">Dinkumware
275 C++ Library reference</a> - an excellent reference for the STL and other parts
276 of the standard C++ library.</li>
277
278 <li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
279 O'Reilly book in the making.  It has a decent Standard Library
280 Reference that rivals Dinkumware's, and is unfortunately no longer free since the
281 book has been published.</li>
282
283 <li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
284 Questions</a></li>
285
286 <li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
287 Contains a useful <a
288 href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
289 STL</a>.</li>
290
291 <li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
292 Page</a></li>
293
294 <li><a href="http://64.78.49.204/">
295 Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
296 the book).</a></li>
297
298 </ol>
299   
300 <p>You are also encouraged to take a look at the <a
301 href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
302 to write maintainable code more than where to put your curly braces.</p>
303
304 </div>
305
306 <!-- ======================================================================= -->
307 <h3>
308   <a name="stl">Other useful references</a>
309 </h3>
310
311 <div>
312
313 <ol>
314 <li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
315 static and shared libraries across platforms</a></li>
316 </ol>
317
318 </div>
319
320 </div>
321
322 <!-- *********************************************************************** -->
323 <h2>
324   <a name="apis">Important and useful LLVM APIs</a>
325 </h2>
326 <!-- *********************************************************************** -->
327
328 <div>
329
330 <p>Here we highlight some LLVM APIs that are generally useful and good to
331 know about when writing transformations.</p>
332
333 <!-- ======================================================================= -->
334 <h3>
335   <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
336   <tt>dyn_cast&lt;&gt;</tt> templates</a>
337 </h3>
338
339 <div>
340
341 <p>The LLVM source-base makes extensive use of a custom form of RTTI.
342 These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
343 operator, but they don't have some drawbacks (primarily stemming from
344 the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
345 have a v-table). Because they are used so often, you must know what they
346 do and how they work. All of these templates are defined in the <a
347  href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
348 file (note that you very rarely have to include this file directly).</p>
349
350 <dl>
351   <dt><tt>isa&lt;&gt;</tt>: </dt>
352
353   <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
354   "<tt>instanceof</tt>" operator.  It returns true or false depending on whether
355   a reference or pointer points to an instance of the specified class.  This can
356   be very useful for constraint checking of various sorts (example below).</p>
357   </dd>
358
359   <dt><tt>cast&lt;&gt;</tt>: </dt>
360
361   <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
362   converts a pointer or reference from a base class to a derived class, causing
363   an assertion failure if it is not really an instance of the right type.  This
364   should be used in cases where you have some information that makes you believe
365   that something is of the right type.  An example of the <tt>isa&lt;&gt;</tt>
366   and <tt>cast&lt;&gt;</tt> template is:</p>
367
368 <div class="doc_code">
369 <pre>
370 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
371   if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
372     return true;
373
374   // <i>Otherwise, it must be an instruction...</i>
375   return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
376 }
377 </pre>
378 </div>
379
380   <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
381   by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
382   operator.</p>
383
384   </dd>
385
386   <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
387
388   <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
389   It checks to see if the operand is of the specified type, and if so, returns a
390   pointer to it (this operator does not work with references). If the operand is
391   not of the correct type, a null pointer is returned.  Thus, this works very
392   much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
393   used in the same circumstances.  Typically, the <tt>dyn_cast&lt;&gt;</tt>
394   operator is used in an <tt>if</tt> statement or some other flow control
395   statement like this:</p>
396
397 <div class="doc_code">
398 <pre>
399 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
400   // <i>...</i>
401 }
402 </pre>
403 </div>
404    
405   <p>This form of the <tt>if</tt> statement effectively combines together a call
406   to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
407   statement, which is very convenient.</p>
408
409   <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
410   <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
411   abused.  In particular, you should not use big chained <tt>if/then/else</tt>
412   blocks to check for lots of different variants of classes.  If you find
413   yourself wanting to do this, it is much cleaner and more efficient to use the
414   <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
415
416   </dd>
417
418   <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
419   
420   <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
421   <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
422   argument (which it then propagates).  This can sometimes be useful, allowing
423   you to combine several null checks into one.</p></dd>
424
425   <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
426
427   <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
428   <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
429   as an argument (which it then propagates).  This can sometimes be useful,
430   allowing you to combine several null checks into one.</p></dd>
431
432 </dl>
433
434 <p>These five templates can be used with any classes, whether they have a
435 v-table or not.  To add support for these templates, you simply need to add
436 <tt>classof</tt> static methods to the class you are interested casting
437 to. Describing this is currently outside the scope of this document, but there
438 are lots of examples in the LLVM source base.</p>
439
440 </div>
441
442
443 <!-- ======================================================================= -->
444 <h3>
445   <a name="string_apis">Passing strings (the <tt>StringRef</tt>
446 and <tt>Twine</tt> classes)</a>
447 </h3>
448
449 <div>
450
451 <p>Although LLVM generally does not do much string manipulation, we do have
452 several important APIs which take strings.  Two important examples are the
453 Value class -- which has names for instructions, functions, etc. -- and the
454 StringMap class which is used extensively in LLVM and Clang.</p>
455
456 <p>These are generic classes, and they need to be able to accept strings which
457 may have embedded null characters.  Therefore, they cannot simply take
458 a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
459 clients to perform a heap allocation which is usually unnecessary.  Instead,
460 many LLVM APIs use a <tt>StringRef</tt> or a <tt>const Twine&amp;</tt> for
461 passing strings efficiently.</p>
462
463 <!-- _______________________________________________________________________ -->
464 <h4>
465   <a name="StringRef">The <tt>StringRef</tt> class</a>
466 </h4>
467
468 <div>
469
470 <p>The <tt>StringRef</tt> data type represents a reference to a constant string
471 (a character array and a length) and supports the common operations available
472 on <tt>std:string</tt>, but does not require heap allocation.</p>
473
474 <p>It can be implicitly constructed using a C style null-terminated string,
475 an <tt>std::string</tt>, or explicitly with a character pointer and length.
476 For example, the <tt>StringRef</tt> find function is declared as:</p>
477
478 <pre class="doc_code">
479   iterator find(StringRef Key);
480 </pre>
481
482 <p>and clients can call it using any one of:</p>
483
484 <pre class="doc_code">
485   Map.find("foo");                 <i>// Lookup "foo"</i>
486   Map.find(std::string("bar"));    <i>// Lookup "bar"</i>
487   Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
488 </pre>
489
490 <p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
491 instance, which can be used directly or converted to an <tt>std::string</tt>
492 using the <tt>str</tt> member function.  See 
493 "<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
494 for more information.</p>
495
496 <p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
497 pointers to external memory it is not generally safe to store an instance of the
498 class (unless you know that the external storage will not be freed). StringRef is
499 small and pervasive enough in LLVM that it should always be passed by value.</p>
500
501 </div>
502
503 <!-- _______________________________________________________________________ -->
504 <h4>
505   <a name="Twine">The <tt>Twine</tt> class</a>
506 </h4>
507
508 <div>
509
510 <p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
511 strings.  For example, a common LLVM paradigm is to name one instruction based on
512 the name of another instruction with a suffix, for example:</p>
513
514 <div class="doc_code">
515 <pre>
516     New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
517 </pre>
518 </div>
519
520 <p>The <tt>Twine</tt> class is effectively a
521 lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
522 which points to temporary (stack allocated) objects.  Twines can be implicitly
523 constructed as the result of the plus operator applied to strings (i.e., a C
524 strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>).  The twine delays the
525 actual concatenation of strings until it is actually required, at which point
526 it can be efficiently rendered directly into a character array.  This avoids
527 unnecessary heap allocation involved in constructing the temporary results of
528 string concatenation. See
529 "<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
530 for more information.</p>
531
532 <p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
533 and should almost never be stored or mentioned directly.  They are intended
534 solely for use when defining a function which should be able to efficiently
535 accept concatenated strings.</p>
536
537 </div>
538
539 </div>
540
541 <!-- ======================================================================= -->
542 <h3>
543   <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
544 </h3>
545
546 <div>
547
548 <p>Often when working on your pass you will put a bunch of debugging printouts
549 and other code into your pass.  After you get it working, you want to remove
550 it, but you may need it again in the future (to work out new bugs that you run
551 across).</p>
552
553 <p> Naturally, because of this, you don't want to delete the debug printouts,
554 but you don't want them to always be noisy.  A standard compromise is to comment
555 them out, allowing you to enable them if you need them in the future.</p>
556
557 <p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
558 file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
559 this problem.  Basically, you can put arbitrary code into the argument of the
560 <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
561 tool) is run with the '<tt>-debug</tt>' command line argument:</p>
562
563 <div class="doc_code">
564 <pre>
565 DEBUG(errs() &lt;&lt; "I am here!\n");
566 </pre>
567 </div>
568
569 <p>Then you can run your pass like this:</p>
570
571 <div class="doc_code">
572 <pre>
573 $ opt &lt; a.bc &gt; /dev/null -mypass
574 <i>&lt;no output&gt;</i>
575 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
576 I am here!
577 </pre>
578 </div>
579
580 <p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
581 to not have to create "yet another" command line option for the debug output for
582 your pass.  Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
583 so they do not cause a performance impact at all (for the same reason, they
584 should also not contain side-effects!).</p>
585
586 <p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
587 enable or disable it directly in gdb.  Just use "<tt>set DebugFlag=0</tt>" or
588 "<tt>set DebugFlag=1</tt>" from the gdb if the program is running.  If the
589 program hasn't been started yet, you can always just run it with
590 <tt>-debug</tt>.</p>
591
592 <!-- _______________________________________________________________________ -->
593 <h4>
594   <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
595   the <tt>-debug-only</tt> option</a>
596 </h4>
597
598 <div>
599
600 <p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
601 just turns on <b>too much</b> information (such as when working on the code
602 generator).  If you want to enable debug information with more fine-grained
603 control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
604 option as follows:</p>
605
606 <div class="doc_code">
607 <pre>
608 #undef  DEBUG_TYPE
609 DEBUG(errs() &lt;&lt; "No debug type\n");
610 #define DEBUG_TYPE "foo"
611 DEBUG(errs() &lt;&lt; "'foo' debug type\n");
612 #undef  DEBUG_TYPE
613 #define DEBUG_TYPE "bar"
614 DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
615 #undef  DEBUG_TYPE
616 #define DEBUG_TYPE ""
617 DEBUG(errs() &lt;&lt; "No debug type (2)\n");
618 </pre>
619 </div>
620
621 <p>Then you can run your pass like this:</p>
622
623 <div class="doc_code">
624 <pre>
625 $ opt &lt; a.bc &gt; /dev/null -mypass
626 <i>&lt;no output&gt;</i>
627 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
628 No debug type
629 'foo' debug type
630 'bar' debug type
631 No debug type (2)
632 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
633 'foo' debug type
634 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
635 'bar' debug type
636 </pre>
637 </div>
638
639 <p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
640 a file, to specify the debug type for the entire module (if you do this before
641 you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
642 <tt>#undef</tt>'s).  Also, you should use names more meaningful than "foo" and
643 "bar", because there is no system in place to ensure that names do not
644 conflict. If two different modules use the same string, they will all be turned
645 on when the name is specified. This allows, for example, all debug information
646 for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
647 even if the source lives in multiple files.</p>
648
649 <p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
650 would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
651 statement. It takes an additional first parameter, which is the type to use. For
652 example, the preceding example could be written as:</p>
653
654
655 <div class="doc_code">
656 <pre>
657 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
658 DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
659 DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
660 DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
661 </pre>
662 </div>
663
664 </div>
665
666 </div>
667
668 <!-- ======================================================================= -->
669 <h3>
670   <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
671   option</a>
672 </h3>
673
674 <div>
675
676 <p>The "<tt><a
677 href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
678 provides a class named <tt>Statistic</tt> that is used as a unified way to
679 keep track of what the LLVM compiler is doing and how effective various
680 optimizations are.  It is useful to see what optimizations are contributing to
681 making a particular program run faster.</p>
682
683 <p>Often you may run your pass on some big program, and you're interested to see
684 how many times it makes a certain transformation.  Although you can do this with
685 hand inspection, or some ad-hoc method, this is a real pain and not very useful
686 for big programs.  Using the <tt>Statistic</tt> class makes it very easy to
687 keep track of this information, and the calculated information is presented in a
688 uniform manner with the rest of the passes being executed.</p>
689
690 <p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
691 it are as follows:</p>
692
693 <ol>
694     <li><p>Define your statistic like this:</p>
695
696 <div class="doc_code">
697 <pre>
698 #define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname"   <i>// This goes before any #includes.</i>
699 STATISTIC(NumXForms, "The # of times I did stuff");
700 </pre>
701 </div>
702
703   <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
704     specified by the first argument.  The pass name is taken from the DEBUG_TYPE
705     macro, and the description is taken from the second argument.  The variable
706     defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
707
708     <li><p>Whenever you make a transformation, bump the counter:</p>
709
710 <div class="doc_code">
711 <pre>
712 ++NumXForms;   // <i>I did stuff!</i>
713 </pre>
714 </div>
715
716     </li>
717   </ol>
718
719   <p>That's all you have to do.  To get '<tt>opt</tt>' to print out the
720   statistics gathered, use the '<tt>-stats</tt>' option:</p>
721
722 <div class="doc_code">
723 <pre>
724 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
725 <i>... statistics output ...</i>
726 </pre>
727 </div>
728
729   <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
730 suite, it gives a report that looks like this:</p>
731
732 <div class="doc_code">
733 <pre>
734    7646 bitcodewriter   - Number of normal instructions
735     725 bitcodewriter   - Number of oversized instructions
736  129996 bitcodewriter   - Number of bitcode bytes written
737    2817 raise           - Number of insts DCEd or constprop'd
738    3213 raise           - Number of cast-of-self removed
739    5046 raise           - Number of expression trees converted
740      75 raise           - Number of other getelementptr's formed
741     138 raise           - Number of load/store peepholes
742      42 deadtypeelim    - Number of unused typenames removed from symtab
743     392 funcresolve     - Number of varargs functions resolved
744      27 globaldce       - Number of global variables removed
745       2 adce            - Number of basic blocks removed
746     134 cee             - Number of branches revectored
747      49 cee             - Number of setcc instruction eliminated
748     532 gcse            - Number of loads removed
749    2919 gcse            - Number of instructions removed
750      86 indvars         - Number of canonical indvars added
751      87 indvars         - Number of aux indvars removed
752      25 instcombine     - Number of dead inst eliminate
753     434 instcombine     - Number of insts combined
754     248 licm            - Number of load insts hoisted
755    1298 licm            - Number of insts hoisted to a loop pre-header
756       3 licm            - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
757      75 mem2reg         - Number of alloca's promoted
758    1444 cfgsimplify     - Number of blocks simplified
759 </pre>
760 </div>
761
762 <p>Obviously, with so many optimizations, having a unified framework for this
763 stuff is very nice.  Making your pass fit well into the framework makes it more
764 maintainable and useful.</p>
765
766 </div>
767
768 <!-- ======================================================================= -->
769 <h3>
770   <a name="ViewGraph">Viewing graphs while debugging code</a>
771 </h3>
772
773 <div>
774
775 <p>Several of the important data structures in LLVM are graphs: for example
776 CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
777 LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
778 <a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
779 DAGs</a>.  In many cases, while debugging various parts of the compiler, it is
780 nice to instantly visualize these graphs.</p>
781
782 <p>LLVM provides several callbacks that are available in a debug build to do
783 exactly that.  If you call the <tt>Function::viewCFG()</tt> method, for example,
784 the current LLVM tool will pop up a window containing the CFG for the function
785 where each basic block is a node in the graph, and each node contains the
786 instructions in the block.  Similarly, there also exists 
787 <tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
788 <tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
789 and the <tt>SelectionDAG::viewGraph()</tt> methods.  Within GDB, for example,
790 you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
791 up a window.  Alternatively, you can sprinkle calls to these functions in your
792 code in places you want to debug.</p>
793
794 <p>Getting this to work requires a small amount of configuration.  On Unix
795 systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
796 toolkit, and make sure 'dot' and 'gv' are in your path.  If you are running on
797 Mac OS/X, download and install the Mac OS/X <a 
798 href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
799 <tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
800 it) to your path.  Once in your system and path are set up, rerun the LLVM
801 configure script and rebuild LLVM to enable this functionality.</p>
802
803 <p><tt>SelectionDAG</tt> has been extended to make it easier to locate
804 <i>interesting</i> nodes in large complex graphs.  From gdb, if you
805 <tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
806 next <tt>call DAG.viewGraph()</tt> would highlight the node in the
807 specified color (choices of colors can be found at <a
808 href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
809 complex node attributes can be provided with <tt>call
810 DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
811 found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
812 Attributes</a>.)  If you want to restart and clear all the current graph
813 attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
814
815 <p>Note that graph visualization features are compiled out of Release builds
816 to reduce file size.  This means that you need a Debug+Asserts or 
817 Release+Asserts build to use these features.</p>
818
819 </div>
820
821 </div>
822
823 <!-- *********************************************************************** -->
824 <h2>
825   <a name="datastructure">Picking the Right Data Structure for a Task</a>
826 </h2>
827 <!-- *********************************************************************** -->
828
829 <div>
830
831 <p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
832  and we commonly use STL data structures.  This section describes the trade-offs
833  you should consider when you pick one.</p>
834
835 <p>
836 The first step is a choose your own adventure: do you want a sequential
837 container, a set-like container, or a map-like container?  The most important
838 thing when choosing a container is the algorithmic properties of how you plan to
839 access the container.  Based on that, you should use:</p>
840
841 <ul>
842 <li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
843     of an value based on another value.  Map-like containers also support
844     efficient queries for containment (whether a key is in the map).  Map-like
845     containers generally do not support efficient reverse mapping (values to
846     keys).  If you need that, use two maps.  Some map-like containers also
847     support efficient iteration through the keys in sorted order.  Map-like
848     containers are the most expensive sort, only use them if you need one of
849     these capabilities.</li>
850
851 <li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
852     stuff into a container that automatically eliminates duplicates.  Some
853     set-like containers support efficient iteration through the elements in
854     sorted order.  Set-like containers are more expensive than sequential
855     containers.
856 </li>
857
858 <li>a <a href="#ds_sequential">sequential</a> container provides
859     the most efficient way to add elements and keeps track of the order they are
860     added to the collection.  They permit duplicates and support efficient
861     iteration, but do not support efficient look-up based on a key.
862 </li>
863
864 <li>a <a href="#ds_string">string</a> container is a specialized sequential
865     container or reference structure that is used for character or byte
866     arrays.</li>
867
868 <li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
869     perform set operations on sets of numeric id's, while automatically
870     eliminating duplicates.  Bit containers require a maximum of 1 bit for each
871     identifier you want to store.
872 </li>
873 </ul>
874
875 <p>
876 Once the proper category of container is determined, you can fine tune the
877 memory use, constant factors, and cache behaviors of access by intelligently
878 picking a member of the category.  Note that constant factors and cache behavior
879 can be a big deal.  If you have a vector that usually only contains a few
880 elements (but could contain many), for example, it's much better to use
881 <a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
882 .  Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
883 cost of adding the elements to the container. </p>
884
885 <!-- ======================================================================= -->
886 <h3>
887   <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
888 </h3>
889
890 <div>
891 There are a variety of sequential containers available for you, based on your
892 needs.  Pick the first in this section that will do what you want.
893   
894 <!-- _______________________________________________________________________ -->
895 <h4>
896   <a name="dss_arrayref">llvm/ADT/ArrayRef.h</a>
897 </h4>
898
899 <div>
900 <p>The llvm::ArrayRef class is the preferred class to use in an interface that
901    accepts a sequential list of elements in memory and just reads from them.  By
902    taking an ArrayRef, the API can be passed a fixed size array, an std::vector,
903    an llvm::SmallVector and anything else that is contiguous in memory.
904 </p>
905 </div>
906
907
908   
909 <!-- _______________________________________________________________________ -->
910 <h4>
911   <a name="dss_fixedarrays">Fixed Size Arrays</a>
912 </h4>
913
914 <div>
915 <p>Fixed size arrays are very simple and very fast.  They are good if you know
916 exactly how many elements you have, or you have a (low) upper bound on how many
917 you have.</p>
918 </div>
919
920 <!-- _______________________________________________________________________ -->
921 <h4>
922   <a name="dss_heaparrays">Heap Allocated Arrays</a>
923 </h4>
924
925 <div>
926 <p>Heap allocated arrays (new[] + delete[]) are also simple.  They are good if
927 the number of elements is variable, if you know how many elements you will need
928 before the array is allocated, and if the array is usually large (if not,
929 consider a <a href="#dss_smallvector">SmallVector</a>).  The cost of a heap
930 allocated array is the cost of the new/delete (aka malloc/free).  Also note that
931 if you are allocating an array of a type with a constructor, the constructor and
932 destructors will be run for every element in the array (re-sizable vectors only
933 construct those elements actually used).</p>
934 </div>
935
936 <!-- _______________________________________________________________________ -->
937 <h4>
938   <a name="dss_tinyptrvector">"llvm/ADT/TinyPtrVector.h"</a>
939 </h4>
940
941
942 <div>
943 <p><tt>TinyPtrVector&lt;Type&gt;</tt> is a highly specialized collection class
944 that is optimized to avoid allocation in the case when a vector has zero or one
945 elements.  It has two major restrictions: 1) it can only hold values of pointer
946 type, and 2) it cannot hold a null pointer.</p>
947   
948 <p>Since this container is highly specialized, it is rarely used.</p>
949   
950 </div>
951     
952 <!-- _______________________________________________________________________ -->
953 <h4>
954   <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
955 </h4>
956
957 <div>
958 <p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
959 just like <tt>vector&lt;Type&gt;</tt>:
960 it supports efficient iteration, lays out elements in memory order (so you can
961 do pointer arithmetic between elements), supports efficient push_back/pop_back
962 operations, supports efficient random access to its elements, etc.</p>
963
964 <p>The advantage of SmallVector is that it allocates space for
965 some number of elements (N) <b>in the object itself</b>.  Because of this, if
966 the SmallVector is dynamically smaller than N, no malloc is performed.  This can
967 be a big win in cases where the malloc/free call is far more expensive than the
968 code that fiddles around with the elements.</p>
969
970 <p>This is good for vectors that are "usually small" (e.g. the number of
971 predecessors/successors of a block is usually less than 8).  On the other hand,
972 this makes the size of the SmallVector itself large, so you don't want to
973 allocate lots of them (doing so will waste a lot of space).  As such,
974 SmallVectors are most useful when on the stack.</p>
975
976 <p>SmallVector also provides a nice portable and efficient replacement for
977 <tt>alloca</tt>.</p>
978
979 </div>
980
981 <!-- _______________________________________________________________________ -->
982 <h4>
983   <a name="dss_vector">&lt;vector&gt;</a>
984 </h4>
985
986 <div>
987 <p>
988 std::vector is well loved and respected.  It is useful when SmallVector isn't:
989 when the size of the vector is often large (thus the small optimization will
990 rarely be a benefit) or if you will be allocating many instances of the vector
991 itself (which would waste space for elements that aren't in the container).
992 vector is also useful when interfacing with code that expects vectors :).
993 </p>
994
995 <p>One worthwhile note about std::vector: avoid code like this:</p>
996
997 <div class="doc_code">
998 <pre>
999 for ( ... ) {
1000    std::vector&lt;foo&gt; V;
1001    // make use of V.
1002 }
1003 </pre>
1004 </div>
1005
1006 <p>Instead, write this as:</p>
1007
1008 <div class="doc_code">
1009 <pre>
1010 std::vector&lt;foo&gt; V;
1011 for ( ... ) {
1012    // make use of V.
1013    V.clear();
1014 }
1015 </pre>
1016 </div>
1017
1018 <p>Doing so will save (at least) one heap allocation and free per iteration of
1019 the loop.</p>
1020
1021 </div>
1022
1023 <!-- _______________________________________________________________________ -->
1024 <h4>
1025   <a name="dss_deque">&lt;deque&gt;</a>
1026 </h4>
1027
1028 <div>
1029 <p>std::deque is, in some senses, a generalized version of std::vector.  Like
1030 std::vector, it provides constant time random access and other similar
1031 properties, but it also provides efficient access to the front of the list.  It
1032 does not guarantee continuity of elements within memory.</p>
1033
1034 <p>In exchange for this extra flexibility, std::deque has significantly higher
1035 constant factor costs than std::vector.  If possible, use std::vector or
1036 something cheaper.</p>
1037 </div>
1038
1039 <!-- _______________________________________________________________________ -->
1040 <h4>
1041   <a name="dss_list">&lt;list&gt;</a>
1042 </h4>
1043
1044 <div>
1045 <p>std::list is an extremely inefficient class that is rarely useful.
1046 It performs a heap allocation for every element inserted into it, thus having an
1047 extremely high constant factor, particularly for small data types.  std::list
1048 also only supports bidirectional iteration, not random access iteration.</p>
1049
1050 <p>In exchange for this high cost, std::list supports efficient access to both
1051 ends of the list (like std::deque, but unlike std::vector or SmallVector).  In
1052 addition, the iterator invalidation characteristics of std::list are stronger
1053 than that of a vector class: inserting or removing an element into the list does
1054 not invalidate iterator or pointers to other elements in the list.</p>
1055 </div>
1056
1057 <!-- _______________________________________________________________________ -->
1058 <h4>
1059   <a name="dss_ilist">llvm/ADT/ilist.h</a>
1060 </h4>
1061
1062 <div>
1063 <p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list.  It is
1064 intrusive, because it requires the element to store and provide access to the
1065 prev/next pointers for the list.</p>
1066
1067 <p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1068 requires an <tt>ilist_traits</tt> implementation for the element type, but it
1069 provides some novel characteristics.  In particular, it can efficiently store
1070 polymorphic objects, the traits class is informed when an element is inserted or
1071 removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1072 constant-time splice operation.</p>
1073
1074 <p>These properties are exactly what we want for things like
1075 <tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1076 <tt>ilist</tt>s.</p>
1077
1078 Related classes of interest are explained in the following subsections:
1079     <ul>
1080       <li><a href="#dss_ilist_traits">ilist_traits</a></li>
1081       <li><a href="#dss_iplist">iplist</a></li>
1082       <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
1083       <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
1084     </ul>
1085 </div>
1086
1087 <!-- _______________________________________________________________________ -->
1088 <h4>
1089   <a name="dss_packedvector">llvm/ADT/PackedVector.h</a>
1090 </h4>
1091
1092 <div>
1093 <p>
1094 Useful for storing a vector of values using only a few number of bits for each
1095 value. Apart from the standard operations of a vector-like container, it can
1096 also perform an 'or' set operation. 
1097 </p>
1098
1099 <p>For example:</p>
1100
1101 <div class="doc_code">
1102 <pre>
1103 enum State {
1104     None = 0x0,
1105     FirstCondition = 0x1,
1106     SecondCondition = 0x2,
1107     Both = 0x3
1108 };
1109
1110 State get() {
1111     PackedVector&lt;State, 2&gt; Vec1;
1112     Vec1.push_back(FirstCondition);
1113
1114     PackedVector&lt;State, 2&gt; Vec2;
1115     Vec2.push_back(SecondCondition);
1116
1117     Vec1 |= Vec2;
1118     return Vec1[0]; // returns 'Both'.
1119 }
1120 </pre>
1121 </div>
1122
1123 </div>
1124
1125 <!-- _______________________________________________________________________ -->
1126 <h4>
1127   <a name="dss_ilist_traits">ilist_traits</a>
1128 </h4>
1129
1130 <div>
1131 <p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1132 mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1133 publicly derive from this traits class.</p>
1134 </div>
1135
1136 <!-- _______________________________________________________________________ -->
1137 <h4>
1138   <a name="dss_iplist">iplist</a>
1139 </h4>
1140
1141 <div>
1142 <p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
1143 supports a slightly narrower interface. Notably, inserters from
1144 <tt>T&amp;</tt> are absent.</p>
1145
1146 <p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1147 used for a wide variety of customizations.</p>
1148 </div>
1149
1150 <!-- _______________________________________________________________________ -->
1151 <h4>
1152   <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1153 </h4>
1154
1155 <div>
1156 <p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1157 that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1158 in the default manner.</p>
1159
1160 <p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
1161 <tt>T</tt>, usually <tt>T</tt> publicly derives from
1162 <tt>ilist_node&lt;T&gt;</tt>.</p>
1163 </div>
1164
1165 <!-- _______________________________________________________________________ -->
1166 <h4>
1167   <a name="dss_ilist_sentinel">Sentinels</a>
1168 </h4>
1169
1170 <div>
1171 <p><tt>ilist</tt>s have another specialty that must be considered. To be a good
1172 citizen in the C++ ecosystem, it needs to support the standard container
1173 operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1174 <tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1175 case of non-empty <tt>ilist</tt>s.</p>
1176
1177 <p>The only sensible solution to this problem is to allocate a so-called
1178 <i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1179 iterator, providing the back-link to the last element. However conforming to the
1180 C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1181 also must not be dereferenced.</p>
1182
1183 <p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1184 how to allocate and store the sentinel. The corresponding policy is dictated
1185 by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1186 whenever the need for a sentinel arises.</p>
1187
1188 <p>While the default policy is sufficient in most cases, it may break down when
1189 <tt>T</tt> does not provide a default constructor. Also, in the case of many
1190 instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1191 is wasted. To alleviate the situation with numerous and voluminous
1192 <tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1193 sentinels</i>.</p>
1194
1195 <p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1196 which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1197 arithmetic is used to obtain the sentinel, which is relative to the
1198 <tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1199 extra pointer, which serves as the back-link of the sentinel. This is the only
1200 field in the ghostly sentinel which can be legally accessed.</p>
1201 </div>
1202
1203 <!-- _______________________________________________________________________ -->
1204 <h4>
1205   <a name="dss_other">Other Sequential Container options</a>
1206 </h4>
1207
1208 <div>
1209 <p>Other STL containers are available, such as std::string.</p>
1210
1211 <p>There are also various STL adapter classes such as std::queue,
1212 std::priority_queue, std::stack, etc.  These provide simplified access to an
1213 underlying container but don't affect the cost of the container itself.</p>
1214
1215 </div>
1216 </div>
1217
1218 <!-- ======================================================================= -->
1219 <h3>
1220   <a name="ds_string">String-like containers</a>
1221 </h3>
1222
1223 <div>
1224
1225 <p>
1226 There are a variety of ways to pass around and use strings in C and C++, and
1227 LLVM adds a few new options to choose from.  Pick the first option on this list
1228 that will do what you need, they are ordered according to their relative cost.
1229 </p>
1230 <p>
1231 Note that is is generally preferred to <em>not</em> pass strings around as 
1232 "<tt>const char*</tt>"'s.  These have a number of problems, including the fact
1233 that they cannot represent embedded nul ("\0") characters, and do not have a
1234 length available efficiently.  The general replacement for '<tt>const 
1235 char*</tt>' is StringRef.
1236 </p>
1237   
1238 <p>For more information on choosing string containers for APIs, please see
1239 <a href="#string_apis">Passing strings</a>.</p>
1240   
1241   
1242 <!-- _______________________________________________________________________ -->
1243 <h4>
1244   <a name="dss_stringref">llvm/ADT/StringRef.h</a>
1245 </h4>
1246
1247 <div>
1248 <p>
1249 The StringRef class is a simple value class that contains a pointer to a
1250 character and a length, and is quite related to the <a 
1251 href="#dss_arrayref">ArrayRef</a> class (but specialized for arrays of
1252 characters).  Because StringRef carries a length with it, it safely handles
1253 strings with embedded nul characters in it, getting the length does not require
1254 a strlen call, and it even has very convenient APIs for slicing and dicing the
1255 character range that it represents.
1256 </p>
1257   
1258 <p>
1259 StringRef is ideal for passing simple strings around that are known to be live,
1260 either because they are C string literals, std::string, a C array, or a
1261 SmallVector.  Each of these cases has an efficient implicit conversion to
1262 StringRef, which doesn't result in a dynamic strlen being executed.
1263 </p>
1264   
1265 <p>StringRef has a few major limitations which make more powerful string
1266 containers useful:</p>
1267   
1268 <ol>
1269 <li>You cannot directly convert a StringRef to a 'const char*' because there is
1270 no way to add a trailing nul (unlike the .c_str() method on various stronger
1271 classes).</li>
1272
1273   
1274 <li>StringRef doesn't own or keep alive the underlying string bytes.
1275 As such it can easily lead to dangling pointers, and is not suitable for
1276 embedding in datastructures in most cases (instead, use an std::string or
1277 something like that).</li>
1278   
1279 <li>For the same reason, StringRef cannot be used as the return value of a
1280 method if the method "computes" the result string.  Instead, use
1281 std::string.</li>
1282     
1283 <li>StringRef's do not allow you to mutate the pointed-to string bytes and it
1284 doesn't allow you to insert or remove bytes from the range.  For editing 
1285 operations like this, it interoperates with the <a 
1286 href="#dss_twine">Twine</a> class.</li>
1287 </ol>
1288   
1289 <p>Because of its strengths and limitations, it is very common for a function to
1290 take a StringRef and for a method on an object to return a StringRef that
1291 points into some string that it owns.</p>
1292   
1293 </div>
1294   
1295 <!-- _______________________________________________________________________ -->
1296 <h4>
1297   <a name="dss_twine">llvm/ADT/Twine.h</a>
1298 </h4>
1299
1300 <div>
1301   <p>
1302   The Twine class is used as an intermediary datatype for APIs that want to take
1303   a string that can be constructed inline with a series of concatenations.
1304   Twine works by forming recursive instances of the Twine datatype (a simple
1305   value object) on the stack as temporary objects, linking them together into a
1306   tree which is then linearized when the Twine is consumed.  Twine is only safe
1307   to use as the argument to a function, and should always be a const reference,
1308   e.g.:
1309   </p>
1310   
1311   <pre>
1312     void foo(const Twine &amp;T);
1313     ...
1314     StringRef X = ...
1315     unsigned i = ...
1316     foo(X + "." + Twine(i));
1317   </pre>
1318   
1319   <p>This example forms a string like "blarg.42" by concatenating the values
1320   together, and does not form intermediate strings containing "blarg" or
1321   "blarg.".
1322   </p>
1323   
1324   <p>Because Twine is constructed with temporary objects on the stack, and
1325   because these instances are destroyed at the end of the current statement,
1326   it is an inherently dangerous API.  For example, this simple variant contains
1327   undefined behavior and will probably crash:</p>
1328   
1329   <pre>
1330     void foo(const Twine &amp;T);
1331     ...
1332     StringRef X = ...
1333     unsigned i = ...
1334     const Twine &amp;Tmp = X + "." + Twine(i);
1335     foo(Tmp);
1336   </pre>
1337
1338   <p>... because the temporaries are destroyed before the call.  That said,
1339   Twine's are much more efficient than intermediate std::string temporaries, and
1340   they work really well with StringRef.  Just be aware of their limitations.</p>
1341   
1342 </div>
1343
1344   
1345 <!-- _______________________________________________________________________ -->
1346 <h4>
1347   <a name="dss_smallstring">llvm/ADT/SmallString.h</a>
1348 </h4>
1349
1350 <div>
1351   
1352 <p>SmallString is a subclass of <a href="#dss_smallvector">SmallVector</a> that
1353 adds some convenience APIs like += that takes StringRef's.  SmallString avoids
1354 allocating memory in the case when the preallocated space is enough to hold its
1355 data, and it calls back to general heap allocation when required.  Since it owns
1356 its data, it is very safe to use and supports full mutation of the string.</p>
1357   
1358 <p>Like SmallVector's, the big downside to SmallString is their sizeof.  While
1359 they are optimized for small strings, they themselves are not particularly
1360 small.  This means that they work great for temporary scratch buffers on the
1361 stack, but should not generally be put into the heap: it is very rare to 
1362 see a SmallString as the member of a frequently-allocated heap data structure
1363 or returned by-value.
1364 </p>
1365
1366 </div>
1367   
1368 <!-- _______________________________________________________________________ -->
1369 <h4>
1370   <a name="dss_stdstring">std::string</a>
1371 </h4>
1372
1373 <div>
1374   
1375   <p>The standard C++ std::string class is a very general class that (like
1376   SmallString) owns its underlying data.  sizeof(std::string) is very reasonable
1377   so it can be embedded into heap data structures and returned by-value.
1378   On the other hand, std::string is highly inefficient for inline editing (e.g.
1379   concatenating a bunch of stuff together) and because it is provided by the
1380   standard library, its performance characteristics depend a lot of the host
1381   standard library (e.g. libc++ and MSVC provide a highly optimized string
1382   class, GCC contains a really slow implementation).
1383   </p>
1384
1385   <p>The major disadvantage of std::string is that almost every operation that
1386   makes them larger can allocate memory, which is slow.  As such, it is better
1387   to use SmallVector or Twine as a scratch buffer, but then use std::string to
1388   persist the result.</p>
1389
1390   
1391 </div>
1392   
1393 <!-- end of strings -->
1394 </div>
1395
1396   
1397 <!-- ======================================================================= -->
1398 <h3>
1399   <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1400 </h3>
1401
1402 <div>
1403
1404 <p>Set-like containers are useful when you need to canonicalize multiple values
1405 into a single representation.  There are several different choices for how to do
1406 this, providing various trade-offs.</p>
1407
1408 <!-- _______________________________________________________________________ -->
1409 <h4>
1410   <a name="dss_sortedvectorset">A sorted 'vector'</a>
1411 </h4>
1412
1413 <div>
1414
1415 <p>If you intend to insert a lot of elements, then do a lot of queries, a
1416 great approach is to use a vector (or other sequential container) with
1417 std::sort+std::unique to remove duplicates.  This approach works really well if
1418 your usage pattern has these two distinct phases (insert then query), and can be
1419 coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1420 </p>
1421
1422 <p>
1423 This combination provides the several nice properties: the result data is
1424 contiguous in memory (good for cache locality), has few allocations, is easy to
1425 address (iterators in the final vector are just indices or pointers), and can be
1426 efficiently queried with a standard binary or radix search.</p>
1427
1428 </div>
1429
1430 <!-- _______________________________________________________________________ -->
1431 <h4>
1432   <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1433 </h4>
1434
1435 <div>
1436
1437 <p>If you have a set-like data structure that is usually small and whose elements
1438 are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice.  This set
1439 has space for N elements in place (thus, if the set is dynamically smaller than
1440 N, no malloc traffic is required) and accesses them with a simple linear search.
1441 When the set grows beyond 'N' elements, it allocates a more expensive representation that
1442 guarantees efficient access (for most types, it falls back to std::set, but for
1443 pointers it uses something far better, <a
1444 href="#dss_smallptrset">SmallPtrSet</a>).</p>
1445
1446 <p>The magic of this class is that it handles small sets extremely efficiently,
1447 but gracefully handles extremely large sets without loss of efficiency.  The
1448 drawback is that the interface is quite small: it supports insertion, queries
1449 and erasing, but does not support iteration.</p>
1450
1451 </div>
1452
1453 <!-- _______________________________________________________________________ -->
1454 <h4>
1455   <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1456 </h4>
1457
1458 <div>
1459
1460 <p>SmallPtrSet has all the advantages of <tt>SmallSet</tt> (and a <tt>SmallSet</tt> of pointers is 
1461 transparently implemented with a <tt>SmallPtrSet</tt>), but also supports iterators.  If
1462 more than 'N' insertions are performed, a single quadratically
1463 probed hash table is allocated and grows as needed, providing extremely
1464 efficient access (constant time insertion/deleting/queries with low constant
1465 factors) and is very stingy with malloc traffic.</p>
1466
1467 <p>Note that, unlike <tt>std::set</tt>, the iterators of <tt>SmallPtrSet</tt> are invalidated
1468 whenever an insertion occurs.  Also, the values visited by the iterators are not
1469 visited in sorted order.</p>
1470
1471 </div>
1472
1473 <!-- _______________________________________________________________________ -->
1474 <h4>
1475   <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1476 </h4>
1477
1478 <div>
1479
1480 <p>
1481 DenseSet is a simple quadratically probed hash table.  It excels at supporting
1482 small values: it uses a single allocation to hold all of the pairs that
1483 are currently inserted in the set.  DenseSet is a great way to unique small
1484 values that are not simple pointers (use <a 
1485 href="#dss_smallptrset">SmallPtrSet</a> for pointers).  Note that DenseSet has
1486 the same requirements for the value type that <a 
1487 href="#dss_densemap">DenseMap</a> has.
1488 </p>
1489
1490 </div>
1491
1492 <!-- _______________________________________________________________________ -->
1493 <h4>
1494   <a name="dss_sparseset">"llvm/ADT/SparseSet.h"</a>
1495 </h4>
1496
1497 <div>
1498
1499 <p>SparseSet holds a small number of objects identified by unsigned keys of
1500 moderate size. It uses a lot of memory, but provides operations that are
1501 almost as fast as a vector. Typical keys are physical registers, virtual
1502 registers, or numbered basic blocks.</p>
1503
1504 <p>SparseSet is useful for algorithms that need very fast clear/find/insert/erase
1505 and fast iteration over small sets.  It is not intended for building composite
1506 data structures.</p>
1507
1508 </div>
1509
1510 <!-- _______________________________________________________________________ -->
1511 <h4>
1512   <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1513 </h4>
1514
1515 <div>
1516
1517 <p>
1518 FoldingSet is an aggregate class that is really good at uniquing
1519 expensive-to-create or polymorphic objects.  It is a combination of a chained
1520 hash table with intrusive links (uniqued objects are required to inherit from
1521 FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1522 its ID process.</p>
1523
1524 <p>Consider a case where you want to implement a "getOrCreateFoo" method for
1525 a complex object (for example, a node in the code generator).  The client has a
1526 description of *what* it wants to generate (it knows the opcode and all the
1527 operands), but we don't want to 'new' a node, then try inserting it into a set
1528 only to find out it already exists, at which point we would have to delete it
1529 and return the node that already exists.
1530 </p>
1531
1532 <p>To support this style of client, FoldingSet perform a query with a
1533 FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1534 element that we want to query for.  The query either returns the element
1535 matching the ID or it returns an opaque ID that indicates where insertion should
1536 take place.  Construction of the ID usually does not require heap traffic.</p>
1537
1538 <p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1539 in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1540 Because the elements are individually allocated, pointers to the elements are
1541 stable: inserting or removing elements does not invalidate any pointers to other
1542 elements.
1543 </p>
1544
1545 </div>
1546
1547 <!-- _______________________________________________________________________ -->
1548 <h4>
1549   <a name="dss_set">&lt;set&gt;</a>
1550 </h4>
1551
1552 <div>
1553
1554 <p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1555 many things but great at nothing.  std::set allocates memory for each element
1556 inserted (thus it is very malloc intensive) and typically stores three pointers
1557 per element in the set (thus adding a large amount of per-element space
1558 overhead).  It offers guaranteed log(n) performance, which is not particularly
1559 fast from a complexity standpoint (particularly if the elements of the set are
1560 expensive to compare, like strings), and has extremely high constant factors for
1561 lookup, insertion and removal.</p>
1562
1563 <p>The advantages of std::set are that its iterators are stable (deleting or
1564 inserting an element from the set does not affect iterators or pointers to other
1565 elements) and that iteration over the set is guaranteed to be in sorted order.
1566 If the elements in the set are large, then the relative overhead of the pointers
1567 and malloc traffic is not a big deal, but if the elements of the set are small,
1568 std::set is almost never a good choice.</p>
1569
1570 </div>
1571
1572 <!-- _______________________________________________________________________ -->
1573 <h4>
1574   <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1575 </h4>
1576
1577 <div>
1578 <p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1579 a set-like container along with a <a href="#ds_sequential">Sequential 
1580 Container</a>.  The important property
1581 that this provides is efficient insertion with uniquing (duplicate elements are
1582 ignored) with iteration support.  It implements this by inserting elements into
1583 both a set-like container and the sequential container, using the set-like
1584 container for uniquing and the sequential container for iteration.
1585 </p>
1586
1587 <p>The difference between SetVector and other sets is that the order of
1588 iteration is guaranteed to match the order of insertion into the SetVector.
1589 This property is really important for things like sets of pointers.  Because
1590 pointer values are non-deterministic (e.g. vary across runs of the program on
1591 different machines), iterating over the pointers in the set will
1592 not be in a well-defined order.</p>
1593
1594 <p>
1595 The drawback of SetVector is that it requires twice as much space as a normal
1596 set and has the sum of constant factors from the set-like container and the 
1597 sequential container that it uses.  Use it *only* if you need to iterate over 
1598 the elements in a deterministic order.  SetVector is also expensive to delete
1599 elements out of (linear time), unless you use it's "pop_back" method, which is
1600 faster.
1601 </p>
1602
1603 <p><tt>SetVector</tt> is an adapter class that defaults to
1604    using <tt>std::vector</tt> and a size 16 <tt>SmallSet</tt> for the underlying
1605    containers, so it is quite expensive. However,
1606    <tt>"llvm/ADT/SetVector.h"</tt> also provides a <tt>SmallSetVector</tt>
1607    class, which defaults to using a <tt>SmallVector</tt> and <tt>SmallSet</tt>
1608    of a specified size. If you use this, and if your sets are dynamically
1609    smaller than <tt>N</tt>, you will save a lot of heap traffic.</p>
1610
1611 </div>
1612
1613 <!-- _______________________________________________________________________ -->
1614 <h4>
1615   <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1616 </h4>
1617
1618 <div>
1619
1620 <p>
1621 UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1622 retains a unique ID for each element inserted into the set.  It internally
1623 contains a map and a vector, and it assigns a unique ID for each value inserted
1624 into the set.</p>
1625
1626 <p>UniqueVector is very expensive: its cost is the sum of the cost of
1627 maintaining both the map and vector, it has high complexity, high constant
1628 factors, and produces a lot of malloc traffic.  It should be avoided.</p>
1629
1630 </div>
1631
1632 <!-- _______________________________________________________________________ -->
1633 <h4>
1634   <a name="dss_immutableset">"llvm/ADT/ImmutableSet.h"</a>
1635 </h4>
1636
1637 <div>
1638
1639 <p>
1640 ImmutableSet is an immutable (functional) set implementation based on an AVL
1641 tree.
1642 Adding or removing elements is done through a Factory object and results in the
1643 creation of a new ImmutableSet object.
1644 If an ImmutableSet already exists with the given contents, then the existing one
1645 is returned; equality is compared with a FoldingSetNodeID.
1646 The time and space complexity of add or remove operations is logarithmic in the
1647 size of the original set.
1648
1649 <p>
1650 There is no method for returning an element of the set, you can only check for
1651 membership.
1652
1653 </div>
1654
1655
1656 <!-- _______________________________________________________________________ -->
1657 <h4>
1658   <a name="dss_otherset">Other Set-Like Container Options</a>
1659 </h4>
1660
1661 <div>
1662
1663 <p>
1664 The STL provides several other options, such as std::multiset and the various 
1665 "hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1666 never use hash_set and unordered_set because they are generally very expensive 
1667 (each insertion requires a malloc) and very non-portable.
1668 </p>
1669
1670 <p>std::multiset is useful if you're not interested in elimination of
1671 duplicates, but has all the drawbacks of std::set.  A sorted vector (where you 
1672 don't delete duplicate entries) or some other approach is almost always
1673 better.</p>
1674
1675 </div>
1676
1677 </div>
1678
1679 <!-- ======================================================================= -->
1680 <h3>
1681   <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1682 </h3>
1683
1684 <div>
1685 Map-like containers are useful when you want to associate data to a key.  As
1686 usual, there are a lot of different ways to do this. :)
1687
1688 <!-- _______________________________________________________________________ -->
1689 <h4>
1690   <a name="dss_sortedvectormap">A sorted 'vector'</a>
1691 </h4>
1692
1693 <div>
1694
1695 <p>
1696 If your usage pattern follows a strict insert-then-query approach, you can
1697 trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1698 for set-like containers</a>.  The only difference is that your query function
1699 (which uses std::lower_bound to get efficient log(n) lookup) should only compare
1700 the key, not both the key and value.  This yields the same advantages as sorted
1701 vectors for sets.
1702 </p>
1703 </div>
1704
1705 <!-- _______________________________________________________________________ -->
1706 <h4>
1707   <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1708 </h4>
1709
1710 <div>
1711
1712 <p>
1713 Strings are commonly used as keys in maps, and they are difficult to support
1714 efficiently: they are variable length, inefficient to hash and compare when
1715 long, expensive to copy, etc.  StringMap is a specialized container designed to
1716 cope with these issues.  It supports mapping an arbitrary range of bytes to an
1717 arbitrary other object.</p>
1718
1719 <p>The StringMap implementation uses a quadratically-probed hash table, where
1720 the buckets store a pointer to the heap allocated entries (and some other
1721 stuff).  The entries in the map must be heap allocated because the strings are
1722 variable length.  The string data (key) and the element object (value) are
1723 stored in the same allocation with the string data immediately after the element
1724 object.  This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1725 to the key string for a value.</p>
1726
1727 <p>The StringMap is very fast for several reasons: quadratic probing is very
1728 cache efficient for lookups, the hash value of strings in buckets is not
1729 recomputed when looking up an element, StringMap rarely has to touch the
1730 memory for unrelated objects when looking up a value (even when hash collisions
1731 happen), hash table growth does not recompute the hash values for strings
1732 already in the table, and each pair in the map is store in a single allocation
1733 (the string data is stored in the same allocation as the Value of a pair).</p>
1734
1735 <p>StringMap also provides query methods that take byte ranges, so it only ever
1736 copies a string if a value is inserted into the table.</p>
1737
1738 <p>StringMap iteratation order, however, is not guaranteed to be deterministic,
1739 so any uses which require that should instead use a std::map.</p>
1740 </div>
1741
1742 <!-- _______________________________________________________________________ -->
1743 <h4>
1744   <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1745 </h4>
1746
1747 <div>
1748 <p>
1749 IndexedMap is a specialized container for mapping small dense integers (or
1750 values that can be mapped to small dense integers) to some other type.  It is
1751 internally implemented as a vector with a mapping function that maps the keys to
1752 the dense integer range.
1753 </p>
1754
1755 <p>
1756 This is useful for cases like virtual registers in the LLVM code generator: they
1757 have a dense mapping that is offset by a compile-time constant (the first
1758 virtual register ID).</p>
1759
1760 </div>
1761
1762 <!-- _______________________________________________________________________ -->
1763 <h4>
1764   <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1765 </h4>
1766
1767 <div>
1768
1769 <p>
1770 DenseMap is a simple quadratically probed hash table.  It excels at supporting
1771 small keys and values: it uses a single allocation to hold all of the pairs that
1772 are currently inserted in the map.  DenseMap is a great way to map pointers to
1773 pointers, or map other small types to each other.
1774 </p>
1775
1776 <p>
1777 There are several aspects of DenseMap that you should be aware of, however.  The
1778 iterators in a DenseMap are invalidated whenever an insertion occurs, unlike
1779 map.  Also, because DenseMap allocates space for a large number of key/value
1780 pairs (it starts with 64 by default), it will waste a lot of space if your keys
1781 or values are large.  Finally, you must implement a partial specialization of
1782 DenseMapInfo for the key that you want, if it isn't already supported.  This
1783 is required to tell DenseMap about two special marker values (which can never be
1784 inserted into the map) that it needs internally.</p>
1785
1786 <p>
1787 DenseMap's find_as() method supports lookup operations using an alternate key
1788 type. This is useful in cases where the normal key type is expensive to
1789 construct, but cheap to compare against. The DenseMapInfo is responsible for
1790 defining the appropriate comparison and hashing methods for each alternate
1791 key type used.
1792 </p>
1793
1794 </div>
1795
1796 <!-- _______________________________________________________________________ -->
1797 <h4>
1798   <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1799 </h4>
1800
1801 <div>
1802
1803 <p>
1804 ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1805 Value*s (or subclasses) to another type.  When a Value is deleted or RAUW'ed,
1806 ValueMap will update itself so the new version of the key is mapped to the same
1807 value, just as if the key were a WeakVH.  You can configure exactly how this
1808 happens, and what else happens on these two events, by passing
1809 a <code>Config</code> parameter to the ValueMap template.</p>
1810
1811 </div>
1812
1813 <!-- _______________________________________________________________________ -->
1814 <h4>
1815   <a name="dss_intervalmap">"llvm/ADT/IntervalMap.h"</a>
1816 </h4>
1817
1818 <div>
1819
1820 <p> IntervalMap is a compact map for small keys and values. It maps key
1821 intervals instead of single keys, and it will automatically coalesce adjacent
1822 intervals. When then map only contains a few intervals, they are stored in the
1823 map object itself to avoid allocations.</p>
1824
1825 <p> The IntervalMap iterators are quite big, so they should not be passed around
1826 as STL iterators. The heavyweight iterators allow a smaller data structure.</p>
1827
1828 </div>
1829
1830 <!-- _______________________________________________________________________ -->
1831 <h4>
1832   <a name="dss_map">&lt;map&gt;</a>
1833 </h4>
1834
1835 <div>
1836
1837 <p>
1838 std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1839 a single allocation per pair inserted into the map, it offers log(n) lookup with
1840 an extremely large constant factor, imposes a space penalty of 3 pointers per
1841 pair in the map, etc.</p>
1842
1843 <p>std::map is most useful when your keys or values are very large, if you need
1844 to iterate over the collection in sorted order, or if you need stable iterators
1845 into the map (i.e. they don't get invalidated if an insertion or deletion of
1846 another element takes place).</p>
1847
1848 </div>
1849
1850 <!-- _______________________________________________________________________ -->
1851 <h4>
1852   <a name="dss_inteqclasses">"llvm/ADT/IntEqClasses.h"</a>
1853 </h4>
1854
1855 <div>
1856
1857 <p>IntEqClasses provides a compact representation of equivalence classes of
1858 small integers. Initially, each integer in the range 0..n-1 has its own
1859 equivalence class. Classes can be joined by passing two class representatives to
1860 the join(a, b) method. Two integers are in the same class when findLeader()
1861 returns the same representative.</p>
1862
1863 <p>Once all equivalence classes are formed, the map can be compressed so each
1864 integer 0..n-1 maps to an equivalence class number in the range 0..m-1, where m
1865 is the total number of equivalence classes. The map must be uncompressed before
1866 it can be edited again.</p>
1867
1868 </div>
1869
1870 <!-- _______________________________________________________________________ -->
1871 <h4>
1872   <a name="dss_immutablemap">"llvm/ADT/ImmutableMap.h"</a>
1873 </h4>
1874
1875 <div>
1876
1877 <p>
1878 ImmutableMap is an immutable (functional) map implementation based on an AVL
1879 tree.
1880 Adding or removing elements is done through a Factory object and results in the
1881 creation of a new ImmutableMap object.
1882 If an ImmutableMap already exists with the given key set, then the existing one
1883 is returned; equality is compared with a FoldingSetNodeID.
1884 The time and space complexity of add or remove operations is logarithmic in the
1885 size of the original map.
1886
1887 </div>
1888
1889 <!-- _______________________________________________________________________ -->
1890 <h4>
1891   <a name="dss_othermap">Other Map-Like Container Options</a>
1892 </h4>
1893
1894 <div>
1895
1896 <p>
1897 The STL provides several other options, such as std::multimap and the various 
1898 "hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1899 never use hash_set and unordered_set because they are generally very expensive 
1900 (each insertion requires a malloc) and very non-portable.</p>
1901
1902 <p>std::multimap is useful if you want to map a key to multiple values, but has
1903 all the drawbacks of std::map.  A sorted vector or some other approach is almost
1904 always better.</p>
1905
1906 </div>
1907
1908 </div>
1909
1910 <!-- ======================================================================= -->
1911 <h3>
1912   <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1913 </h3>
1914
1915 <div>
1916 <p>Unlike the other containers, there are only two bit storage containers, and 
1917 choosing when to use each is relatively straightforward.</p>
1918
1919 <p>One additional option is 
1920 <tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1921 implementation in many common compilers (e.g. commonly available versions of 
1922 GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1923 deprecate this container and/or change it significantly somehow.  In any case,
1924 please don't use it.</p>
1925
1926 <!-- _______________________________________________________________________ -->
1927 <h4>
1928   <a name="dss_bitvector">BitVector</a>
1929 </h4>
1930
1931 <div>
1932 <p> The BitVector container provides a dynamic size set of bits for manipulation.
1933 It supports individual bit setting/testing, as well as set operations.  The set
1934 operations take time O(size of bitvector), but operations are performed one word
1935 at a time, instead of one bit at a time.  This makes the BitVector very fast for
1936 set operations compared to other containers.  Use the BitVector when you expect
1937 the number of set bits to be high (IE a dense set).
1938 </p>
1939 </div>
1940
1941 <!-- _______________________________________________________________________ -->
1942 <h4>
1943   <a name="dss_smallbitvector">SmallBitVector</a>
1944 </h4>
1945
1946 <div>
1947 <p> The SmallBitVector container provides the same interface as BitVector, but
1948 it is optimized for the case where only a small number of bits, less than
1949 25 or so, are needed. It also transparently supports larger bit counts, but
1950 slightly less efficiently than a plain BitVector, so SmallBitVector should
1951 only be used when larger counts are rare.
1952 </p>
1953
1954 <p>
1955 At this time, SmallBitVector does not support set operations (and, or, xor),
1956 and its operator[] does not provide an assignable lvalue.
1957 </p>
1958 </div>
1959
1960 <!-- _______________________________________________________________________ -->
1961 <h4>
1962   <a name="dss_sparsebitvector">SparseBitVector</a>
1963 </h4>
1964
1965 <div>
1966 <p> The SparseBitVector container is much like BitVector, with one major
1967 difference: Only the bits that are set, are stored.  This makes the
1968 SparseBitVector much more space efficient than BitVector when the set is sparse,
1969 as well as making set operations O(number of set bits) instead of O(size of
1970 universe).  The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1971 (either forwards or reverse) is O(1) worst case.  Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1).  As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1972 </p>
1973 </div>
1974
1975 </div>
1976
1977 </div>
1978
1979 <!-- *********************************************************************** -->
1980 <h2>
1981   <a name="common">Helpful Hints for Common Operations</a>
1982 </h2>
1983 <!-- *********************************************************************** -->
1984
1985 <div>
1986
1987 <p>This section describes how to perform some very simple transformations of
1988 LLVM code.  This is meant to give examples of common idioms used, showing the
1989 practical side of LLVM transformations.  <p> Because this is a "how-to" section,
1990 you should also read about the main classes that you will be working with.  The
1991 <a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1992 and descriptions of the main classes that you should know about.</p>
1993
1994 <!-- NOTE: this section should be heavy on example code -->
1995 <!-- ======================================================================= -->
1996 <h3>
1997   <a name="inspection">Basic Inspection and Traversal Routines</a>
1998 </h3>
1999
2000 <div>
2001
2002 <p>The LLVM compiler infrastructure have many different data structures that may
2003 be traversed.  Following the example of the C++ standard template library, the
2004 techniques used to traverse these various data structures are all basically the
2005 same.  For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
2006 method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
2007 function returns an iterator pointing to one past the last valid element of the
2008 sequence, and there is some <tt>XXXiterator</tt> data type that is common
2009 between the two operations.</p>
2010
2011 <p>Because the pattern for iteration is common across many different aspects of
2012 the program representation, the standard template library algorithms may be used
2013 on them, and it is easier to remember how to iterate. First we show a few common
2014 examples of the data structures that need to be traversed.  Other data
2015 structures are traversed in very similar ways.</p>
2016
2017 <!-- _______________________________________________________________________ -->
2018 <h4>
2019   <a name="iterate_function">Iterating over the </a><a
2020   href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
2021   href="#Function"><tt>Function</tt></a>
2022 </h4>
2023
2024 <div>
2025
2026 <p>It's quite common to have a <tt>Function</tt> instance that you'd like to
2027 transform in some way; in particular, you'd like to manipulate its
2028 <tt>BasicBlock</tt>s.  To facilitate this, you'll need to iterate over all of
2029 the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
2030 an example that prints the name of a <tt>BasicBlock</tt> and the number of
2031 <tt>Instruction</tt>s it contains:</p>
2032
2033 <div class="doc_code">
2034 <pre>
2035 // <i>func is a pointer to a Function instance</i>
2036 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
2037   // <i>Print out the name of the basic block if it has one, and then the</i>
2038   // <i>number of instructions that it contains</i>
2039   errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
2040              &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
2041 </pre>
2042 </div>
2043
2044 <p>Note that i can be used as if it were a pointer for the purposes of
2045 invoking member functions of the <tt>Instruction</tt> class.  This is
2046 because the indirection operator is overloaded for the iterator
2047 classes.  In the above code, the expression <tt>i-&gt;size()</tt> is
2048 exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
2049
2050 </div>
2051
2052 <!-- _______________________________________________________________________ -->
2053 <h4>
2054   <a name="iterate_basicblock">Iterating over the </a><a
2055   href="#Instruction"><tt>Instruction</tt></a>s in a <a
2056   href="#BasicBlock"><tt>BasicBlock</tt></a>
2057 </h4>
2058
2059 <div>
2060
2061 <p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
2062 easy to iterate over the individual instructions that make up
2063 <tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
2064 a <tt>BasicBlock</tt>:</p>
2065
2066 <div class="doc_code">
2067 <pre>
2068 // <i>blk is a pointer to a BasicBlock instance</i>
2069 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
2070    // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
2071    // <i>is overloaded for Instruction&amp;</i>
2072    errs() &lt;&lt; *i &lt;&lt; "\n";
2073 </pre>
2074 </div>
2075
2076 <p>However, this isn't really the best way to print out the contents of a
2077 <tt>BasicBlock</tt>!  Since the ostream operators are overloaded for virtually
2078 anything you'll care about, you could have just invoked the print routine on the
2079 basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
2080
2081 </div>
2082
2083 <!-- _______________________________________________________________________ -->
2084 <h4>
2085   <a name="iterate_institer">Iterating over the </a><a
2086   href="#Instruction"><tt>Instruction</tt></a>s in a <a
2087   href="#Function"><tt>Function</tt></a>
2088 </h4>
2089
2090 <div>
2091
2092 <p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
2093 <tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
2094 <tt>InstIterator</tt> should be used instead. You'll need to include <a
2095 href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
2096 and then instantiate <tt>InstIterator</tt>s explicitly in your code.  Here's a
2097 small example that shows how to dump all instructions in a function to the standard error stream:<p>
2098
2099 <div class="doc_code">
2100 <pre>
2101 #include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
2102
2103 // <i>F is a pointer to a Function instance</i>
2104 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2105   errs() &lt;&lt; *I &lt;&lt; "\n";
2106 </pre>
2107 </div>
2108
2109 <p>Easy, isn't it?  You can also use <tt>InstIterator</tt>s to fill a
2110 work list with its initial contents.  For example, if you wanted to
2111 initialize a work list to contain all instructions in a <tt>Function</tt>
2112 F, all you would need to do is something like:</p>
2113
2114 <div class="doc_code">
2115 <pre>
2116 std::set&lt;Instruction*&gt; worklist;
2117 // or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
2118
2119 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
2120    worklist.insert(&amp;*I);
2121 </pre>
2122 </div>
2123
2124 <p>The STL set <tt>worklist</tt> would now contain all instructions in the
2125 <tt>Function</tt> pointed to by F.</p>
2126
2127 </div>
2128
2129 <!-- _______________________________________________________________________ -->
2130 <h4>
2131   <a name="iterate_convert">Turning an iterator into a class pointer (and
2132   vice-versa)</a>
2133 </h4>
2134
2135 <div>
2136
2137 <p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
2138 instance when all you've got at hand is an iterator.  Well, extracting
2139 a reference or a pointer from an iterator is very straight-forward.
2140 Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
2141 is a <tt>BasicBlock::const_iterator</tt>:</p>
2142
2143 <div class="doc_code">
2144 <pre>
2145 Instruction&amp; inst = *i;   // <i>Grab reference to instruction reference</i>
2146 Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
2147 const Instruction&amp; inst = *j;
2148 </pre>
2149 </div>
2150
2151 <p>However, the iterators you'll be working with in the LLVM framework are
2152 special: they will automatically convert to a ptr-to-instance type whenever they
2153 need to.  Instead of dereferencing the iterator and then taking the address of
2154 the result, you can simply assign the iterator to the proper pointer type and
2155 you get the dereference and address-of operation as a result of the assignment
2156 (behind the scenes, this is a result of overloading casting mechanisms).  Thus
2157 the last line of the last example,</p>
2158
2159 <div class="doc_code">
2160 <pre>
2161 Instruction *pinst = &amp;*i;
2162 </pre>
2163 </div>
2164
2165 <p>is semantically equivalent to</p>
2166
2167 <div class="doc_code">
2168 <pre>
2169 Instruction *pinst = i;
2170 </pre>
2171 </div>
2172
2173 <p>It's also possible to turn a class pointer into the corresponding iterator,
2174 and this is a constant time operation (very efficient).  The following code
2175 snippet illustrates use of the conversion constructors provided by LLVM
2176 iterators.  By using these, you can explicitly grab the iterator of something
2177 without actually obtaining it via iteration over some structure:</p>
2178
2179 <div class="doc_code">
2180 <pre>
2181 void printNextInstruction(Instruction* inst) {
2182   BasicBlock::iterator it(inst);
2183   ++it; // <i>After this line, it refers to the instruction after *inst</i>
2184   if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
2185 }
2186 </pre>
2187 </div>
2188
2189 <p>Unfortunately, these implicit conversions come at a cost; they prevent
2190 these iterators from conforming to standard iterator conventions, and thus
2191 from being usable with standard algorithms and containers. For example, they
2192 prevent the following code, where <tt>B</tt> is a <tt>BasicBlock</tt>,
2193 from compiling:</p>
2194
2195 <div class="doc_code">
2196 <pre>
2197   llvm::SmallVector&lt;llvm::Instruction *, 16&gt;(B-&gt;begin(), B-&gt;end());
2198 </pre>
2199 </div>
2200
2201 <p>Because of this, these implicit conversions may be removed some day,
2202 and <tt>operator*</tt> changed to return a pointer instead of a reference.</p>
2203
2204 </div>
2205
2206 <!--_______________________________________________________________________-->
2207 <h4>
2208   <a name="iterate_complex">Finding call sites: a slightly more complex
2209   example</a>
2210 </h4>
2211
2212 <div>
2213
2214 <p>Say that you're writing a FunctionPass and would like to count all the
2215 locations in the entire module (that is, across every <tt>Function</tt>) where a
2216 certain function (i.e., some <tt>Function</tt>*) is already in scope.  As you'll
2217 learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
2218 much more straight-forward manner, but this example will allow us to explore how
2219 you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
2220 is what we want to do:</p>
2221
2222 <div class="doc_code">
2223 <pre>
2224 initialize callCounter to zero
2225 for each Function f in the Module
2226   for each BasicBlock b in f
2227     for each Instruction i in b
2228       if (i is a CallInst and calls the given function)
2229         increment callCounter
2230 </pre>
2231 </div>
2232
2233 <p>And the actual code is (remember, because we're writing a
2234 <tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
2235 override the <tt>runOnFunction</tt> method):</p>
2236
2237 <div class="doc_code">
2238 <pre>
2239 Function* targetFunc = ...;
2240
2241 class OurFunctionPass : public FunctionPass {
2242   public:
2243     OurFunctionPass(): callCounter(0) { }
2244
2245     virtual runOnFunction(Function&amp; F) {
2246       for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
2247         for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
2248           if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
2249  href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
2250             // <i>We know we've encountered a call instruction, so we</i>
2251             // <i>need to determine if it's a call to the</i>
2252             // <i>function pointed to by m_func or not.</i>
2253             if (callInst-&gt;getCalledFunction() == targetFunc)
2254               ++callCounter;
2255           }
2256         }
2257       }
2258     }
2259
2260   private:
2261     unsigned callCounter;
2262 };
2263 </pre>
2264 </div>
2265
2266 </div>
2267
2268 <!--_______________________________________________________________________-->
2269 <h4>
2270   <a name="calls_and_invokes">Treating calls and invokes the same way</a>
2271 </h4>
2272
2273 <div>
2274
2275 <p>You may have noticed that the previous example was a bit oversimplified in
2276 that it did not deal with call sites generated by 'invoke' instructions. In
2277 this, and in other situations, you may find that you want to treat
2278 <tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
2279 most-specific common base class is <tt>Instruction</tt>, which includes lots of
2280 less closely-related things. For these cases, LLVM provides a handy wrapper
2281 class called <a
2282 href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
2283 It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
2284 methods that provide functionality common to <tt>CallInst</tt>s and
2285 <tt>InvokeInst</tt>s.</p>
2286
2287 <p>This class has "value semantics": it should be passed by value, not by
2288 reference and it should not be dynamically allocated or deallocated using
2289 <tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
2290 assignable and constructable, with costs equivalents to that of a bare pointer.
2291 If you look at its definition, it has only a single pointer member.</p>
2292
2293 </div>
2294
2295 <!--_______________________________________________________________________-->
2296 <h4>
2297   <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
2298 </h4>
2299
2300 <div>
2301
2302 <p>Frequently, we might have an instance of the <a
2303 href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
2304 determine which <tt>User</tt>s use the <tt>Value</tt>.  The list of all
2305 <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
2306 For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
2307 particular function <tt>foo</tt>. Finding all of the instructions that
2308 <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
2309 of <tt>F</tt>:</p>
2310
2311 <div class="doc_code">
2312 <pre>
2313 Function *F = ...;
2314
2315 for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
2316   if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
2317     errs() &lt;&lt; "F is used in instruction:\n";
2318     errs() &lt;&lt; *Inst &lt;&lt; "\n";
2319   }
2320 </pre>
2321 </div>
2322
2323 <p>Note that dereferencing a <tt>Value::use_iterator</tt> is not a very cheap
2324 operation. Instead of performing <tt>*i</tt> above several times, consider
2325 doing it only once in the loop body and reusing its result.</p>
2326
2327 <p>Alternatively, it's common to have an instance of the <a
2328 href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
2329 <tt>Value</tt>s are used by it.  The list of all <tt>Value</tt>s used by a
2330 <tt>User</tt> is known as a <i>use-def</i> chain.  Instances of class
2331 <tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
2332 all of the values that a particular instruction uses (that is, the operands of
2333 the particular <tt>Instruction</tt>):</p>
2334
2335 <div class="doc_code">
2336 <pre>
2337 Instruction *pi = ...;
2338
2339 for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
2340   Value *v = *i;
2341   // <i>...</i>
2342 }
2343 </pre>
2344 </div>
2345
2346 <p>Declaring objects as <tt>const</tt> is an important tool of enforcing
2347 mutation free algorithms (such as analyses, etc.). For this purpose above
2348 iterators come in constant flavors as <tt>Value::const_use_iterator</tt>
2349 and <tt>Value::const_op_iterator</tt>.  They automatically arise when
2350 calling <tt>use/op_begin()</tt> on <tt>const Value*</tt>s or
2351 <tt>const User*</tt>s respectively.  Upon dereferencing, they return
2352 <tt>const Use*</tt>s. Otherwise the above patterns remain unchanged.</p>
2353
2354 </div>
2355
2356 <!--_______________________________________________________________________-->
2357 <h4>
2358   <a name="iterate_preds">Iterating over predecessors &amp;
2359 successors of blocks</a>
2360 </h4>
2361
2362 <div>
2363
2364 <p>Iterating over the predecessors and successors of a block is quite easy
2365 with the routines defined in <tt>"llvm/Support/CFG.h"</tt>.  Just use code like
2366 this to iterate over all predecessors of BB:</p>
2367
2368 <div class="doc_code">
2369 <pre>
2370 #include "llvm/Support/CFG.h"
2371 BasicBlock *BB = ...;
2372
2373 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2374   BasicBlock *Pred = *PI;
2375   // <i>...</i>
2376 }
2377 </pre>
2378 </div>
2379
2380 <p>Similarly, to iterate over successors use
2381 succ_iterator/succ_begin/succ_end.</p>
2382
2383 </div>
2384
2385 </div>
2386
2387 <!-- ======================================================================= -->
2388 <h3>
2389   <a name="simplechanges">Making simple changes</a>
2390 </h3>
2391
2392 <div>
2393
2394 <p>There are some primitive transformation operations present in the LLVM
2395 infrastructure that are worth knowing about.  When performing
2396 transformations, it's fairly common to manipulate the contents of basic
2397 blocks. This section describes some of the common methods for doing so
2398 and gives example code.</p>
2399
2400 <!--_______________________________________________________________________-->
2401 <h4>
2402   <a name="schanges_creating">Creating and inserting new
2403   <tt>Instruction</tt>s</a>
2404 </h4>
2405
2406 <div>
2407
2408 <p><i>Instantiating Instructions</i></p>
2409
2410 <p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2411 constructor for the kind of instruction to instantiate and provide the necessary
2412 parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2413 (const-ptr-to) <tt>Type</tt>. Thus:</p> 
2414
2415 <div class="doc_code">
2416 <pre>
2417 AllocaInst* ai = new AllocaInst(Type::Int32Ty);
2418 </pre>
2419 </div>
2420
2421 <p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2422 one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2423 subclass is likely to have varying default parameters which change the semantics
2424 of the instruction, so refer to the <a
2425 href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2426 Instruction</a> that you're interested in instantiating.</p>
2427
2428 <p><i>Naming values</i></p>
2429
2430 <p>It is very useful to name the values of instructions when you're able to, as
2431 this facilitates the debugging of your transformations.  If you end up looking
2432 at generated LLVM machine code, you definitely want to have logical names
2433 associated with the results of instructions!  By supplying a value for the
2434 <tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2435 associate a logical name with the result of the instruction's execution at
2436 run time.  For example, say that I'm writing a transformation that dynamically
2437 allocates space for an integer on the stack, and that integer is going to be
2438 used as some kind of index by some other code.  To accomplish this, I place an
2439 <tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2440 <tt>Function</tt>, and I'm intending to use it within the same
2441 <tt>Function</tt>. I might do:</p>
2442
2443 <div class="doc_code">
2444 <pre>
2445 AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
2446 </pre>
2447 </div>
2448
2449 <p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2450 execution value, which is a pointer to an integer on the run time stack.</p>
2451
2452 <p><i>Inserting instructions</i></p>
2453
2454 <p>There are essentially two ways to insert an <tt>Instruction</tt>
2455 into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2456
2457 <ul>
2458   <li>Insertion into an explicit instruction list
2459
2460     <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2461     <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2462     before <tt>*pi</tt>, we do the following: </p>
2463
2464 <div class="doc_code">
2465 <pre>
2466 BasicBlock *pb = ...;
2467 Instruction *pi = ...;
2468 Instruction *newInst = new Instruction(...);
2469
2470 pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2471 </pre>
2472 </div>
2473
2474     <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2475     the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2476     classes provide constructors which take a pointer to a
2477     <tt>BasicBlock</tt> to be appended to. For example code that
2478     looked like: </p>
2479
2480 <div class="doc_code">
2481 <pre>
2482 BasicBlock *pb = ...;
2483 Instruction *newInst = new Instruction(...);
2484
2485 pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2486 </pre>
2487 </div>
2488
2489     <p>becomes: </p>
2490
2491 <div class="doc_code">
2492 <pre>
2493 BasicBlock *pb = ...;
2494 Instruction *newInst = new Instruction(..., pb);
2495 </pre>
2496 </div>
2497
2498     <p>which is much cleaner, especially if you are creating
2499     long instruction streams.</p></li>
2500
2501   <li>Insertion into an implicit instruction list
2502
2503     <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2504     are implicitly associated with an existing instruction list: the instruction
2505     list of the enclosing basic block. Thus, we could have accomplished the same
2506     thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2507     </p>
2508
2509 <div class="doc_code">
2510 <pre>
2511 Instruction *pi = ...;
2512 Instruction *newInst = new Instruction(...);
2513
2514 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2515 </pre>
2516 </div>
2517
2518     <p>In fact, this sequence of steps occurs so frequently that the
2519     <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2520     constructors which take (as a default parameter) a pointer to an
2521     <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2522     precede.  That is, <tt>Instruction</tt> constructors are capable of
2523     inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2524     provided instruction, immediately before that instruction.  Using an
2525     <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2526     parameter, the above code becomes:</p>
2527
2528 <div class="doc_code">
2529 <pre>
2530 Instruction* pi = ...;
2531 Instruction* newInst = new Instruction(..., pi);
2532 </pre>
2533 </div>
2534
2535     <p>which is much cleaner, especially if you're creating a lot of
2536     instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2537 </ul>
2538
2539 </div>
2540
2541 <!--_______________________________________________________________________-->
2542 <h4>
2543   <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2544 </h4>
2545
2546 <div>
2547
2548 <p>Deleting an instruction from an existing sequence of instructions that form a
2549 <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward: just
2550 call the instruction's eraseFromParent() method.  For example:</p>
2551
2552 <div class="doc_code">
2553 <pre>
2554 <a href="#Instruction">Instruction</a> *I = .. ;
2555 I-&gt;eraseFromParent();
2556 </pre>
2557 </div>
2558
2559 <p>This unlinks the instruction from its containing basic block and deletes 
2560 it.  If you'd just like to unlink the instruction from its containing basic
2561 block but not delete it, you can use the <tt>removeFromParent()</tt> method.</p>
2562
2563 </div>
2564
2565 <!--_______________________________________________________________________-->
2566 <h4>
2567   <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2568   <tt>Value</tt></a>
2569 </h4>
2570
2571 <div>
2572
2573 <h5><i>Replacing individual instructions</i></h5>
2574
2575 <p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2576 permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2577 and <tt>ReplaceInstWithInst</tt>.</p>
2578
2579 <h5><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h5>
2580
2581 <div>
2582 <ul>
2583   <li><tt>ReplaceInstWithValue</tt>
2584
2585     <p>This function replaces all uses of a given instruction with a value,
2586     and then removes the original instruction. The following example
2587     illustrates the replacement of the result of a particular
2588     <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2589     pointer to an integer.</p>
2590
2591 <div class="doc_code">
2592 <pre>
2593 AllocaInst* instToReplace = ...;
2594 BasicBlock::iterator ii(instToReplace);
2595
2596 ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2597                      Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
2598 </pre></div></li>
2599
2600   <li><tt>ReplaceInstWithInst</tt> 
2601
2602     <p>This function replaces a particular instruction with another
2603     instruction, inserting the new instruction into the basic block at the
2604     location where the old instruction was, and replacing any uses of the old
2605     instruction with the new instruction. The following example illustrates
2606     the replacement of one <tt>AllocaInst</tt> with another.</p>
2607
2608 <div class="doc_code">
2609 <pre>
2610 AllocaInst* instToReplace = ...;
2611 BasicBlock::iterator ii(instToReplace);
2612
2613 ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
2614                     new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
2615 </pre></div></li>
2616 </ul>
2617
2618 </div>
2619
2620 <h5><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></h5>
2621
2622 <p>You can use <tt>Value::replaceAllUsesWith</tt> and
2623 <tt>User::replaceUsesOfWith</tt> to change more than one use at a time.  See the
2624 doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2625 and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2626 information.</p>
2627
2628 <!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2629 include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2630 ReplaceInstWithValue, ReplaceInstWithInst -->
2631
2632 </div>
2633
2634 <!--_______________________________________________________________________-->
2635 <h4>
2636   <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2637 </h4>
2638
2639 <div>
2640
2641 <p>Deleting a global variable from a module is just as easy as deleting an 
2642 Instruction. First, you must have a pointer to the global variable that you wish
2643  to delete.  You use this pointer to erase it from its parent, the module.
2644  For example:</p>
2645
2646 <div class="doc_code">
2647 <pre>
2648 <a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2649
2650 GV-&gt;eraseFromParent();
2651 </pre>
2652 </div>
2653
2654 </div>
2655
2656 </div>
2657
2658 <!-- ======================================================================= -->
2659 <h3>
2660   <a name="create_types">How to Create Types</a>
2661 </h3>
2662
2663 <div>
2664
2665 <p>In generating IR, you may need some complex types.  If you know these types
2666 statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
2667 in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them.  <tt>TypeBuilder</tt>
2668 has two forms depending on whether you're building types for cross-compilation
2669 or native library use.  <tt>TypeBuilder&lt;T, true&gt;</tt> requires
2670 that <tt>T</tt> be independent of the host environment, meaning that it's built
2671 out of types from
2672 the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2673 namespace and pointers, functions, arrays, etc. built of
2674 those.  <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
2675 whose size may depend on the host compiler.  For example,</p>
2676
2677 <div class="doc_code">
2678 <pre>
2679 FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
2680 </pre>
2681 </div>
2682
2683 <p>is easier to read and write than the equivalent</p>
2684
2685 <div class="doc_code">
2686 <pre>
2687 std::vector&lt;const Type*&gt; params;
2688 params.push_back(PointerType::getUnqual(Type::Int32Ty));
2689 FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2690 </pre>
2691 </div>
2692
2693 <p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2694 comment</a> for more details.</p>
2695
2696 </div>
2697
2698 </div>
2699
2700 <!-- *********************************************************************** -->
2701 <h2>
2702   <a name="threading">Threads and LLVM</a>
2703 </h2>
2704 <!-- *********************************************************************** -->
2705
2706 <div>
2707 <p>
2708 This section describes the interaction of the LLVM APIs with multithreading,
2709 both on the part of client applications, and in the JIT, in the hosted
2710 application.
2711 </p>
2712
2713 <p>
2714 Note that LLVM's support for multithreading is still relatively young.  Up 
2715 through version 2.5, the execution of threaded hosted applications was
2716 supported, but not threaded client access to the APIs.  While this use case is
2717 now supported, clients <em>must</em> adhere to the guidelines specified below to
2718 ensure proper operation in multithreaded mode.
2719 </p>
2720
2721 <p>
2722 Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2723 intrinsics in order to support threaded operation.  If you need a
2724 multhreading-capable LLVM on a platform without a suitably modern system
2725 compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and 
2726 using the resultant compiler to build a copy of LLVM with multithreading
2727 support.
2728 </p>
2729
2730 <!-- ======================================================================= -->
2731 <h3>
2732   <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
2733 </h3>
2734
2735 <div>
2736
2737 <p>
2738 In order to properly protect its internal data structures while avoiding 
2739 excessive locking overhead in the single-threaded case, the LLVM must intialize
2740 certain data structures necessary to provide guards around its internals.  To do
2741 so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2742 making any concurrent LLVM API calls.  To subsequently tear down these
2743 structures, use the <tt>llvm_stop_multithreaded()</tt> call.  You can also use
2744 the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2745 mode.
2746 </p>
2747
2748 <p>
2749 Note that both of these calls must be made <em>in isolation</em>.  That is to
2750 say that no other LLVM API calls may be executing at any time during the 
2751 execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2752 </tt>.  It's is the client's responsibility to enforce this isolation.
2753 </p>
2754
2755 <p>
2756 The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2757 failure of the initialization.  Failure typically indicates that your copy of
2758 LLVM was built without multithreading support, typically because GCC atomic
2759 intrinsics were not found in your system compiler.  In this case, the LLVM API
2760 will not be safe for concurrent calls.  However, it <em>will</em> be safe for
2761 hosting threaded applications in the JIT, though <a href="#jitthreading">care
2762 must be taken</a> to ensure that side exits and the like do not accidentally
2763 result in concurrent LLVM API calls.
2764 </p>
2765 </div>
2766
2767 <!-- ======================================================================= -->
2768 <h3>
2769   <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2770 </h3>
2771
2772 <div>
2773 <p>
2774 When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
2775 to deallocate memory used for internal structures.  This will also invoke 
2776 <tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2777 As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2778 <tt>llvm_stop_multithreaded()</tt>.
2779 </p>
2780
2781 <p>
2782 Note that, if you use scope-based shutdown, you can use the
2783 <tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2784 destructor.
2785 </div>
2786
2787 <!-- ======================================================================= -->
2788 <h3>
2789   <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2790 </h3>
2791
2792 <div>
2793 <p>
2794 <tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2795 initialization of static resources, such as the global type tables.  Before the
2796 invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy 
2797 initialization scheme.  Once <tt>llvm_start_multithreaded()</tt> returns,
2798 however, it uses double-checked locking to implement thread-safe lazy
2799 initialization.
2800 </p>
2801
2802 <p>
2803 Note that, because no other threads are allowed to issue LLVM API calls before
2804 <tt>llvm_start_multithreaded()</tt> returns, it is possible to have 
2805 <tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2806 </p>
2807
2808 <p>
2809 The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt> 
2810 APIs provide access to the global lock used to implement the double-checked
2811 locking for lazy initialization.  These should only be used internally to LLVM,
2812 and only if you know what you're doing!
2813 </p>
2814 </div>
2815
2816 <!-- ======================================================================= -->
2817 <h3>
2818   <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2819 </h3>
2820
2821 <div>
2822 <p>
2823 <tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2824 to operate multiple, isolated instances of LLVM concurrently within the same
2825 address space.  For instance, in a hypothetical compile-server, the compilation
2826 of an individual translation unit is conceptually independent from all the 
2827 others, and it would be desirable to be able to compile incoming translation 
2828 units concurrently on independent server threads.  Fortunately, 
2829 <tt>LLVMContext</tt> exists to enable just this kind of scenario!
2830 </p>
2831
2832 <p>
2833 Conceptually, <tt>LLVMContext</tt> provides isolation.  Every LLVM entity 
2834 (<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
2835 in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>.  Entities in 
2836 different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2837 different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2838 to <tt>Module</tt>s in different contexts, etc.  What this means is that is is
2839 safe to compile on multiple threads simultaneously, as long as no two threads
2840 operate on entities within the same context.
2841 </p>
2842
2843 <p>
2844 In practice, very few places in the API require the explicit specification of a
2845 <tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2846 Because every <tt>Type</tt> carries a reference to its owning context, most
2847 other entities can determine what context they belong to by looking at their
2848 own <tt>Type</tt>.  If you are adding new entities to LLVM IR, please try to
2849 maintain this interface design.
2850 </p>
2851
2852 <p>
2853 For clients that do <em>not</em> require the benefits of isolation, LLVM 
2854 provides a convenience API <tt>getGlobalContext()</tt>.  This returns a global,
2855 lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2856 isolation is not a concern.
2857 </p>
2858 </div>
2859
2860 <!-- ======================================================================= -->
2861 <h3>
2862   <a name="jitthreading">Threads and the JIT</a>
2863 </h3>
2864
2865 <div>
2866 <p>
2867 LLVM's "eager" JIT compiler is safe to use in threaded programs.  Multiple
2868 threads can call <tt>ExecutionEngine::getPointerToFunction()</tt> or
2869 <tt>ExecutionEngine::runFunction()</tt> concurrently, and multiple threads can
2870 run code output by the JIT concurrently.  The user must still ensure that only
2871 one thread accesses IR in a given <tt>LLVMContext</tt> while another thread
2872 might be modifying it.  One way to do that is to always hold the JIT lock while
2873 accessing IR outside the JIT (the JIT <em>modifies</em> the IR by adding
2874 <tt>CallbackVH</tt>s).  Another way is to only
2875 call <tt>getPointerToFunction()</tt> from the <tt>LLVMContext</tt>'s thread.
2876 </p>
2877
2878 <p>When the JIT is configured to compile lazily (using
2879 <tt>ExecutionEngine::DisableLazyCompilation(false)</tt>), there is currently a
2880 <a href="http://llvm.org/bugs/show_bug.cgi?id=5184">race condition</a> in
2881 updating call sites after a function is lazily-jitted.  It's still possible to
2882 use the lazy JIT in a threaded program if you ensure that only one thread at a
2883 time can call any particular lazy stub and that the JIT lock guards any IR
2884 access, but we suggest using only the eager JIT in threaded programs.
2885 </p>
2886 </div>
2887
2888 </div>
2889
2890 <!-- *********************************************************************** -->
2891 <h2>
2892   <a name="advanced">Advanced Topics</a>
2893 </h2>
2894 <!-- *********************************************************************** -->
2895
2896 <div>
2897 <p>
2898 This section describes some of the advanced or obscure API's that most clients
2899 do not need to be aware of.  These API's tend manage the inner workings of the
2900 LLVM system, and only need to be accessed in unusual circumstances.
2901 </p>
2902
2903   
2904 <!-- ======================================================================= -->
2905 <h3>
2906   <a name="SymbolTable">The <tt>ValueSymbolTable</tt> class</a>
2907 </h3>
2908
2909 <div>
2910 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2911 ValueSymbolTable</a></tt> class provides a symbol table that the <a
2912 href="#Function"><tt>Function</tt></a> and <a href="#Module">
2913 <tt>Module</tt></a> classes use for naming value definitions. The symbol table
2914 can provide a name for any <a href="#Value"><tt>Value</tt></a>. 
2915 </p>
2916
2917 <p>Note that the <tt>SymbolTable</tt> class should not be directly accessed 
2918 by most clients.  It should only be used when iteration over the symbol table 
2919 names themselves are required, which is very special purpose.  Note that not 
2920 all LLVM
2921 <tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
2922 an empty name) do not exist in the symbol table.
2923 </p>
2924
2925 <p>Symbol tables support iteration over the values in the symbol
2926 table with <tt>begin/end/iterator</tt> and supports querying to see if a
2927 specific name is in the symbol table (with <tt>lookup</tt>).  The
2928 <tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2929 simply call <tt>setName</tt> on a value, which will autoinsert it into the
2930 appropriate symbol table.</p>
2931
2932 </div>
2933
2934
2935
2936 <!-- ======================================================================= -->
2937 <h3>
2938   <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2939 </h3>
2940
2941 <div>
2942 <p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
2943 User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
2944 towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2945 Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
2946 Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
2947 addition and removal.</p>
2948
2949 <!-- ______________________________________________________________________ -->
2950 <h4>
2951   <a name="Use2User">
2952     Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects
2953   </a>
2954 </h4>
2955
2956 <div>
2957 <p>
2958 A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
2959 or refer to them out-of-line by means of a pointer. A mixed variant
2960 (some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2961 that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2962 </p>
2963
2964 <p>
2965 We have 2 different layouts in the <tt>User</tt> (sub)classes:
2966 <ul>
2967 <li><p>Layout a)
2968 The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2969 object and there are a fixed number of them.</p>
2970
2971 <li><p>Layout b)
2972 The <tt>Use</tt> object(s) are referenced by a pointer to an
2973 array from the <tt>User</tt> object and there may be a variable
2974 number of them.</p>
2975 </ul>
2976 <p>
2977 As of v2.4 each layout still possesses a direct pointer to the
2978 start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
2979 we stick to this redundancy for the sake of simplicity.
2980 The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
2981 has. (Theoretically this information can also be calculated
2982 given the scheme presented below.)</p>
2983 <p>
2984 Special forms of allocation operators (<tt>operator new</tt>)
2985 enforce the following memory layouts:</p>
2986
2987 <ul>
2988 <li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
2989
2990 <pre>
2991 ...---.---.---.---.-------...
2992   | P | P | P | P | User
2993 '''---'---'---'---'-------'''
2994 </pre>
2995
2996 <li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
2997 <pre>
2998 .-------...
2999 | User
3000 '-------'''
3001     |
3002     v
3003     .---.---.---.---...
3004     | P | P | P | P |
3005     '---'---'---'---'''
3006 </pre>
3007 </ul>
3008 <i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
3009     is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
3010
3011 </div>
3012
3013 <!-- ______________________________________________________________________ -->
3014 <h4>
3015   <a name="Waymarking">The waymarking algorithm</a>
3016 </h4>
3017
3018 <div>
3019 <p>
3020 Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
3021 their <tt>User</tt> objects, there must be a fast and exact method to
3022 recover it. This is accomplished by the following scheme:</p>
3023
3024 A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
3025 start of the <tt>User</tt> object:
3026 <ul>
3027 <li><tt>00</tt> &mdash;&gt; binary digit 0</li>
3028 <li><tt>01</tt> &mdash;&gt; binary digit 1</li>
3029 <li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
3030 <li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
3031 </ul>
3032 <p>
3033 Given a <tt>Use*</tt>, all we have to do is to walk till we get
3034 a stop and we either have a <tt>User</tt> immediately behind or
3035 we have to walk to the next stop picking up digits
3036 and calculating the offset:</p>
3037 <pre>
3038 .---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
3039 | 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
3040 '---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
3041     |+15                |+10            |+6         |+3     |+1
3042     |                   |               |           |       |__>
3043     |                   |               |           |__________>
3044     |                   |               |______________________>
3045     |                   |______________________________________>
3046     |__________________________________________________________>
3047 </pre>
3048 <p>
3049 Only the significant number of bits need to be stored between the
3050 stops, so that the <i>worst case is 20 memory accesses</i> when there are
3051 1000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
3052
3053 </div>
3054
3055 <!-- ______________________________________________________________________ -->
3056 <h4>
3057   <a name="ReferenceImpl">Reference implementation</a>
3058 </h4>
3059
3060 <div>
3061 <p>
3062 The following literate Haskell fragment demonstrates the concept:</p>
3063
3064 <div class="doc_code">
3065 <pre>
3066 > import Test.QuickCheck
3067
3068 > digits :: Int -> [Char] -> [Char]
3069 > digits 0 acc = '0' : acc
3070 > digits 1 acc = '1' : acc
3071 > digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
3072
3073 > dist :: Int -> [Char] -> [Char]
3074 > dist 0 [] = ['S']
3075 > dist 0 acc = acc
3076 > dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
3077 > dist n acc = dist (n - 1) $ dist 1 acc
3078
3079 > takeLast n ss = reverse $ take n $ reverse ss
3080
3081 > test = takeLast 40 $ dist 20 []
3082
3083 </pre>
3084 </div>
3085 <p>
3086 Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
3087 <p>
3088 The reverse algorithm computes the length of the string just by examining
3089 a certain prefix:</p>
3090
3091 <div class="doc_code">
3092 <pre>
3093 > pref :: [Char] -> Int
3094 > pref "S" = 1
3095 > pref ('s':'1':rest) = decode 2 1 rest
3096 > pref (_:rest) = 1 + pref rest
3097
3098 > decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
3099 > decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
3100 > decode walk acc _ = walk + acc
3101
3102 </pre>
3103 </div>
3104 <p>
3105 Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
3106 <p>
3107 We can <i>quickCheck</i> this with following property:</p>
3108
3109 <div class="doc_code">
3110 <pre>
3111 > testcase = dist 2000 []
3112 > testcaseLength = length testcase
3113
3114 > identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
3115 >     where arr = takeLast n testcase
3116
3117 </pre>
3118 </div>
3119 <p>
3120 As expected &lt;quickCheck identityProp&gt; gives:</p>
3121
3122 <pre>
3123 *Main> quickCheck identityProp
3124 OK, passed 100 tests.
3125 </pre>
3126 <p>
3127 Let's be a bit more exhaustive:</p>
3128
3129 <div class="doc_code">
3130 <pre>
3131
3132 > deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
3133
3134 </pre>
3135 </div>
3136 <p>
3137 And here is the result of &lt;deepCheck identityProp&gt;:</p>
3138
3139 <pre>
3140 *Main> deepCheck identityProp
3141 OK, passed 500 tests.
3142 </pre>
3143
3144 </div>
3145
3146 <!-- ______________________________________________________________________ -->
3147 <h4>
3148   <a name="Tagging">Tagging considerations</a>
3149 </h4>
3150
3151 <div>
3152
3153 <p>
3154 To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
3155 never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
3156 new <tt>Use**</tt> on every modification. Accordingly getters must strip the
3157 tag bits.</p>
3158 <p>
3159 For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
3160 Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
3161 that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
3162 the LSBit set. (Portability is relying on the fact that all known compilers place the
3163 <tt>vptr</tt> in the first word of the instances.)</p>
3164
3165 </div>
3166
3167 </div>
3168
3169 </div>
3170
3171 <!-- *********************************************************************** -->
3172 <h2>
3173   <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
3174 </h2>
3175 <!-- *********************************************************************** -->
3176
3177 <div>
3178 <p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
3179 <br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
3180
3181 <p>The Core LLVM classes are the primary means of representing the program
3182 being inspected or transformed.  The core LLVM classes are defined in
3183 header files in the <tt>include/llvm/</tt> directory, and implemented in
3184 the <tt>lib/VMCore</tt> directory.</p>
3185
3186 <!-- ======================================================================= -->
3187 <h3>
3188   <a name="Type">The <tt>Type</tt> class and Derived Types</a>
3189 </h3>
3190
3191 <div>
3192
3193   <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
3194   a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
3195   through its subclasses. Certain primitive types (<tt>VoidType</tt>,
3196   <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden 
3197   subclasses. They are hidden because they offer no useful functionality beyond
3198   what the <tt>Type</tt> class offers except to distinguish themselves from 
3199   other subclasses of <tt>Type</tt>.</p>
3200   <p>All other types are subclasses of <tt>DerivedType</tt>.  Types can be 
3201   named, but this is not a requirement. There exists exactly 
3202   one instance of a given shape at any one time.  This allows type equality to
3203   be performed with address equality of the Type Instance. That is, given two 
3204   <tt>Type*</tt> values, the types are identical if the pointers are identical.
3205   </p>
3206
3207 <!-- _______________________________________________________________________ -->
3208 <h4>
3209   <a name="m_Type">Important Public Methods</a>
3210 </h4>
3211
3212 <div>
3213
3214 <ul>
3215   <li><tt>bool isIntegerTy() const</tt>: Returns true for any integer type.</li>
3216
3217   <li><tt>bool isFloatingPointTy()</tt>: Return true if this is one of the five
3218   floating point types.</li>
3219
3220   <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
3221   that don't have a size are abstract types, labels and void.</li>
3222
3223 </ul>
3224 </div>
3225
3226 <!-- _______________________________________________________________________ -->
3227 <h4>
3228   <a name="derivedtypes">Important Derived Types</a>
3229 </h4>
3230 <div>
3231 <dl>
3232   <dt><tt>IntegerType</tt></dt>
3233   <dd>Subclass of DerivedType that represents integer types of any bit width. 
3234   Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and 
3235   <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
3236   <ul>
3237     <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
3238     type of a specific bit width.</li>
3239     <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3240     type.</li>
3241   </ul>
3242   </dd>
3243   <dt><tt>SequentialType</tt></dt>
3244   <dd>This is subclassed by ArrayType, PointerType and VectorType.
3245     <ul>
3246       <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3247       of the elements in the sequential type. </li>
3248     </ul>
3249   </dd>
3250   <dt><tt>ArrayType</tt></dt>
3251   <dd>This is a subclass of SequentialType and defines the interface for array 
3252   types.
3253     <ul>
3254       <li><tt>unsigned getNumElements() const</tt>: Returns the number of 
3255       elements in the array. </li>
3256     </ul>
3257   </dd>
3258   <dt><tt>PointerType</tt></dt>
3259   <dd>Subclass of SequentialType for pointer types.</dd>
3260   <dt><tt>VectorType</tt></dt>
3261   <dd>Subclass of SequentialType for vector types. A 
3262   vector type is similar to an ArrayType but is distinguished because it is 
3263   a first class type whereas ArrayType is not. Vector types are used for 
3264   vector operations and are usually small vectors of of an integer or floating 
3265   point type.</dd>
3266   <dt><tt>StructType</tt></dt>
3267   <dd>Subclass of DerivedTypes for struct types.</dd>
3268   <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3269   <dd>Subclass of DerivedTypes for function types.
3270     <ul>
3271       <li><tt>bool isVarArg() const</tt>: Returns true if it's a vararg
3272       function</li>
3273       <li><tt> const Type * getReturnType() const</tt>: Returns the
3274       return type of the function.</li>
3275       <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3276       the type of the ith parameter.</li>
3277       <li><tt> const unsigned getNumParams() const</tt>: Returns the
3278       number of formal parameters.</li>
3279     </ul>
3280   </dd>
3281 </dl>
3282 </div>
3283
3284 </div>
3285
3286 <!-- ======================================================================= -->
3287 <h3>
3288   <a name="Module">The <tt>Module</tt> class</a>
3289 </h3>
3290
3291 <div>
3292
3293 <p><tt>#include "<a
3294 href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3295 <a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3296
3297 <p>The <tt>Module</tt> class represents the top level structure present in LLVM
3298 programs.  An LLVM module is effectively either a translation unit of the
3299 original program or a combination of several translation units merged by the
3300 linker.  The <tt>Module</tt> class keeps track of a list of <a
3301 href="#Function"><tt>Function</tt></a>s, a list of <a
3302 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3303 href="#SymbolTable"><tt>SymbolTable</tt></a>.  Additionally, it contains a few
3304 helpful member functions that try to make common operations easy.</p>
3305
3306 <!-- _______________________________________________________________________ -->
3307 <h4>
3308   <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3309 </h4>
3310
3311 <div>
3312
3313 <ul>
3314   <li><tt>Module::Module(std::string name = "")</tt>
3315
3316   <p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3317 provide a name for it (probably based on the name of the translation unit).</p>
3318   </li>
3319
3320   <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3321     <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3322
3323     <tt>begin()</tt>, <tt>end()</tt>
3324     <tt>size()</tt>, <tt>empty()</tt>
3325
3326     <p>These are forwarding methods that make it easy to access the contents of
3327     a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3328     list.</p></li>
3329
3330   <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3331
3332     <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.  This is
3333     necessary to use when you need to update the list or perform a complex
3334     action that doesn't have a forwarding method.</p>
3335
3336     <p><!--  Global Variable --></p></li> 
3337 </ul>
3338
3339 <hr>
3340
3341 <ul>
3342   <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3343
3344     <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3345
3346     <tt>global_begin()</tt>, <tt>global_end()</tt>
3347     <tt>global_size()</tt>, <tt>global_empty()</tt>
3348
3349     <p> These are forwarding methods that make it easy to access the contents of
3350     a <tt>Module</tt> object's <a
3351     href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3352
3353   <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3354
3355     <p>Returns the list of <a
3356     href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.  This is necessary to
3357     use when you need to update the list or perform a complex action that
3358     doesn't have a forwarding method.</p>
3359
3360     <p><!--  Symbol table stuff --> </p></li>
3361 </ul>
3362
3363 <hr>
3364
3365 <ul>
3366   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3367
3368     <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3369     for this <tt>Module</tt>.</p>
3370
3371     <p><!--  Convenience methods --></p></li>
3372 </ul>
3373
3374 <hr>
3375
3376 <ul>
3377   <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3378   &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3379
3380     <p>Look up the specified function in the <tt>Module</tt> <a
3381     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3382     <tt>null</tt>.</p></li>
3383
3384   <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3385   std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3386
3387     <p>Look up the specified function in the <tt>Module</tt> <a
3388     href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3389     external declaration for the function and return it.</p></li>
3390
3391   <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3392
3393     <p>If there is at least one entry in the <a
3394     href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3395     href="#Type"><tt>Type</tt></a>, return it.  Otherwise return the empty
3396     string.</p></li>
3397
3398   <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3399   href="#Type">Type</a> *Ty)</tt>
3400
3401     <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3402     mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3403     name, true is returned and the <a
3404     href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3405 </ul>
3406
3407 </div>
3408
3409 </div>
3410
3411 <!-- ======================================================================= -->
3412 <h3>
3413   <a name="Value">The <tt>Value</tt> class</a>
3414 </h3>
3415
3416 <div>
3417
3418 <p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3419 <br> 
3420 doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3421
3422 <p>The <tt>Value</tt> class is the most important class in the LLVM Source
3423 base.  It represents a typed value that may be used (among other things) as an
3424 operand to an instruction.  There are many different types of <tt>Value</tt>s,
3425 such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3426 href="#Argument"><tt>Argument</tt></a>s. Even <a
3427 href="#Instruction"><tt>Instruction</tt></a>s and <a
3428 href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3429
3430 <p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3431 for a program.  For example, an incoming argument to a function (represented
3432 with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3433 every instruction in the function that references the argument.  To keep track
3434 of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3435 href="#User"><tt>User</tt></a>s that is using it (the <a
3436 href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3437 graph that can refer to <tt>Value</tt>s).  This use list is how LLVM represents
3438 def-use information in the program, and is accessible through the <tt>use_</tt>*
3439 methods, shown below.</p>
3440
3441 <p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3442 and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3443 method. In addition, all LLVM values can be named.  The "name" of the
3444 <tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3445
3446 <div class="doc_code">
3447 <pre>
3448 %<b>foo</b> = add i32 1, 2
3449 </pre>
3450 </div>
3451
3452 <p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3453 that the name of any value may be missing (an empty string), so names should
3454 <b>ONLY</b> be used for debugging (making the source code easier to read,
3455 debugging printouts), they should not be used to keep track of values or map
3456 between them.  For this purpose, use a <tt>std::map</tt> of pointers to the
3457 <tt>Value</tt> itself instead.</p>
3458
3459 <p>One important aspect of LLVM is that there is no distinction between an SSA
3460 variable and the operation that produces it.  Because of this, any reference to
3461 the value produced by an instruction (or the value available as an incoming
3462 argument, for example) is represented as a direct pointer to the instance of
3463 the class that
3464 represents this value.  Although this may take some getting used to, it
3465 simplifies the representation and makes it easier to manipulate.</p>
3466
3467 <!-- _______________________________________________________________________ -->
3468 <h4>
3469   <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3470 </h4>
3471
3472 <div>
3473
3474 <ul>
3475   <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3476 use-list<br>
3477     <tt>Value::const_use_iterator</tt> - Typedef for const_iterator over
3478 the use-list<br>
3479     <tt>unsigned use_size()</tt> - Returns the number of users of the
3480 value.<br>
3481     <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3482     <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3483 the use-list.<br>
3484     <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3485 use-list.<br>
3486     <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3487 element in the list.
3488     <p> These methods are the interface to access the def-use
3489 information in LLVM.  As with all other iterators in LLVM, the naming
3490 conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3491   </li>
3492   <li><tt><a href="#Type">Type</a> *getType() const</tt>
3493     <p>This method returns the Type of the Value.</p>
3494   </li>
3495   <li><tt>bool hasName() const</tt><br>
3496     <tt>std::string getName() const</tt><br>
3497     <tt>void setName(const std::string &amp;Name)</tt>
3498     <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3499 be aware of the <a href="#nameWarning">precaution above</a>.</p>
3500   </li>
3501   <li><tt>void replaceAllUsesWith(Value *V)</tt>
3502
3503     <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3504     href="#User"><tt>User</tt>s</a> of the current value to refer to
3505     "<tt>V</tt>" instead.  For example, if you detect that an instruction always
3506     produces a constant value (for example through constant folding), you can
3507     replace all uses of the instruction with the constant like this:</p>
3508
3509 <div class="doc_code">
3510 <pre>
3511 Inst-&gt;replaceAllUsesWith(ConstVal);
3512 </pre>
3513 </div>
3514
3515 </ul>
3516
3517 </div>
3518
3519 </div>
3520
3521 <!-- ======================================================================= -->
3522 <h3>
3523   <a name="User">The <tt>User</tt> class</a>
3524 </h3>
3525
3526 <div>
3527   
3528 <p>
3529 <tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3530 doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3531 Superclass: <a href="#Value"><tt>Value</tt></a></p>
3532
3533 <p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3534 refer to <a href="#Value"><tt>Value</tt></a>s.  It exposes a list of "Operands"
3535 that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3536 referring to.  The <tt>User</tt> class itself is a subclass of
3537 <tt>Value</tt>.</p>
3538
3539 <p>The operands of a <tt>User</tt> point directly to the LLVM <a
3540 href="#Value"><tt>Value</tt></a> that it refers to.  Because LLVM uses Static
3541 Single Assignment (SSA) form, there can only be one definition referred to,
3542 allowing this direct connection.  This connection provides the use-def
3543 information in LLVM.</p>
3544
3545 <!-- _______________________________________________________________________ -->
3546 <h4>
3547   <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3548 </h4>
3549
3550 <div>
3551
3552 <p>The <tt>User</tt> class exposes the operand list in two ways: through
3553 an index access interface and through an iterator based interface.</p>
3554
3555 <ul>
3556   <li><tt>Value *getOperand(unsigned i)</tt><br>
3557     <tt>unsigned getNumOperands()</tt>
3558     <p> These two methods expose the operands of the <tt>User</tt> in a
3559 convenient form for direct access.</p></li>
3560
3561   <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3562 list<br>
3563     <tt>op_iterator op_begin()</tt> - Get an iterator to the start of 
3564 the operand list.<br>
3565     <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3566 operand list.
3567     <p> Together, these methods make up the iterator based interface to
3568 the operands of a <tt>User</tt>.</p></li>
3569 </ul>
3570
3571 </div>    
3572
3573 </div>
3574
3575 <!-- ======================================================================= -->
3576 <h3>
3577   <a name="Instruction">The <tt>Instruction</tt> class</a>
3578 </h3>
3579
3580 <div>
3581
3582 <p><tt>#include "</tt><tt><a
3583 href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3584 doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3585 Superclasses: <a href="#User"><tt>User</tt></a>, <a
3586 href="#Value"><tt>Value</tt></a></p>
3587
3588 <p>The <tt>Instruction</tt> class is the common base class for all LLVM
3589 instructions.  It provides only a few methods, but is a very commonly used
3590 class.  The primary data tracked by the <tt>Instruction</tt> class itself is the
3591 opcode (instruction type) and the parent <a
3592 href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3593 into.  To represent a specific type of instruction, one of many subclasses of
3594 <tt>Instruction</tt> are used.</p>
3595
3596 <p> Because the <tt>Instruction</tt> class subclasses the <a
3597 href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3598 way as for other <a href="#User"><tt>User</tt></a>s (with the
3599 <tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3600 <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3601 the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3602 file contains some meta-data about the various different types of instructions
3603 in LLVM.  It describes the enum values that are used as opcodes (for example
3604 <tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3605 concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3606 example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3607 href="#CmpInst">CmpInst</a></tt>).  Unfortunately, the use of macros in
3608 this file confuses doxygen, so these enum values don't show up correctly in the
3609 <a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3610
3611 <!-- _______________________________________________________________________ -->
3612 <h4>
3613   <a name="s_Instruction">
3614     Important Subclasses of the <tt>Instruction</tt> class
3615   </a>
3616 </h4>
3617 <div>
3618   <ul>
3619     <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3620     <p>This subclasses represents all two operand instructions whose operands
3621     must be the same type, except for the comparison instructions.</p></li>
3622     <li><tt><a name="CastInst">CastInst</a></tt>
3623     <p>This subclass is the parent of the 12 casting instructions. It provides
3624     common operations on cast instructions.</p>
3625     <li><tt><a name="CmpInst">CmpInst</a></tt>
3626     <p>This subclass respresents the two comparison instructions, 
3627     <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3628     <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3629     <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3630     <p>This subclass is the parent of all terminator instructions (those which
3631     can terminate a block).</p>
3632   </ul>
3633   </div>
3634
3635 <!-- _______________________________________________________________________ -->
3636 <h4>
3637   <a name="m_Instruction">
3638     Important Public Members of the <tt>Instruction</tt> class
3639   </a>
3640 </h4>
3641
3642 <div>
3643
3644 <ul>
3645   <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3646     <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3647 this  <tt>Instruction</tt> is embedded into.</p></li>
3648   <li><tt>bool mayWriteToMemory()</tt>
3649     <p>Returns true if the instruction writes to memory, i.e. it is a
3650       <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3651   <li><tt>unsigned getOpcode()</tt>
3652     <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3653   <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3654     <p>Returns another instance of the specified instruction, identical
3655 in all ways to the original except that the instruction has no parent
3656 (ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3657 and it has no name</p></li>
3658 </ul>
3659
3660 </div>
3661
3662 </div>
3663
3664 <!-- ======================================================================= -->
3665 <h3>
3666   <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3667 </h3>
3668
3669 <div>
3670
3671 <p>Constant represents a base class for different types of constants. It
3672 is subclassed by ConstantInt, ConstantArray, etc. for representing 
3673 the various types of Constants.  <a href="#GlobalValue">GlobalValue</a> is also
3674 a subclass, which represents the address of a global variable or function.
3675 </p>
3676
3677 <!-- _______________________________________________________________________ -->
3678 <h4>Important Subclasses of Constant</h4>
3679 <div>
3680 <ul>
3681   <li>ConstantInt : This subclass of Constant represents an integer constant of
3682   any width.
3683     <ul>
3684       <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3685       value of this constant, an APInt value.</li>
3686       <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3687       value to an int64_t via sign extension. If the value (not the bit width)
3688       of the APInt is too large to fit in an int64_t, an assertion will result.
3689       For this reason, use of this method is discouraged.</li>
3690       <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3691       value to a uint64_t via zero extension. IF the value (not the bit width)
3692       of the APInt is too large to fit in a uint64_t, an assertion will result.
3693       For this reason, use of this method is discouraged.</li>
3694       <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3695       ConstantInt object that represents the value provided by <tt>Val</tt>.
3696       The type is implied as the IntegerType that corresponds to the bit width
3697       of <tt>Val</tt>.</li>
3698       <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>: 
3699       Returns the ConstantInt object that represents the value provided by 
3700       <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3701     </ul>
3702   </li>
3703   <li>ConstantFP : This class represents a floating point constant.
3704     <ul>
3705       <li><tt>double getValue() const</tt>: Returns the underlying value of 
3706       this constant. </li>
3707     </ul>
3708   </li>
3709   <li>ConstantArray : This represents a constant array.
3710     <ul>
3711       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3712       a vector of component constants that makeup this array. </li>
3713     </ul>
3714   </li>
3715   <li>ConstantStruct : This represents a constant struct.
3716     <ul>
3717       <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns 
3718       a vector of component constants that makeup this array. </li>
3719     </ul>
3720   </li>
3721   <li>GlobalValue : This represents either a global variable or a function. In 
3722   either case, the value is a constant fixed address (after linking). 
3723   </li>
3724 </ul>
3725 </div>
3726
3727 </div>
3728
3729 <!-- ======================================================================= -->
3730 <h3>
3731   <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3732 </h3>
3733
3734 <div>
3735
3736 <p><tt>#include "<a
3737 href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3738 doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3739 Class</a><br>
3740 Superclasses: <a href="#Constant"><tt>Constant</tt></a>, 
3741 <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3742
3743 <p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3744 href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3745 visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3746 Because they are visible at global scope, they are also subject to linking with
3747 other globals defined in different translation units.  To control the linking
3748 process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3749 <tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3750 defined by the <tt>LinkageTypes</tt> enumeration.</p>
3751
3752 <p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3753 <tt>static</tt> in C), it is not visible to code outside the current translation
3754 unit, and does not participate in linking.  If it has external linkage, it is
3755 visible to external code, and does participate in linking.  In addition to
3756 linkage information, <tt>GlobalValue</tt>s keep track of which <a
3757 href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3758
3759 <p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3760 by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3761 global is always a pointer to its contents. It is important to remember this
3762 when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3763 be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3764 subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3765 i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3766 the address of the first element of this array and the value of the
3767 <tt>GlobalVariable</tt> are the same, they have different types. The
3768 <tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3769 is <tt>i32.</tt> Because of this, accessing a global value requires you to
3770 dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3771 can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3772 Language Reference Manual</a>.</p>
3773
3774 <!-- _______________________________________________________________________ -->
3775 <h4>
3776   <a name="m_GlobalValue">
3777     Important Public Members of the <tt>GlobalValue</tt> class
3778   </a>
3779 </h4>
3780
3781 <div>
3782
3783 <ul>
3784   <li><tt>bool hasInternalLinkage() const</tt><br>
3785     <tt>bool hasExternalLinkage() const</tt><br>
3786     <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3787     <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3788     <p> </p>
3789   </li>
3790   <li><tt><a href="#Module">Module</a> *getParent()</tt>
3791     <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3792 GlobalValue is currently embedded into.</p></li>
3793 </ul>
3794
3795 </div>
3796
3797 </div>
3798
3799 <!-- ======================================================================= -->
3800 <h3>
3801   <a name="Function">The <tt>Function</tt> class</a>
3802 </h3>
3803
3804 <div>
3805
3806 <p><tt>#include "<a
3807 href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3808 info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3809 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3810 <a href="#Constant"><tt>Constant</tt></a>, 
3811 <a href="#User"><tt>User</tt></a>, 
3812 <a href="#Value"><tt>Value</tt></a></p>
3813
3814 <p>The <tt>Function</tt> class represents a single procedure in LLVM.  It is
3815 actually one of the more complex classes in the LLVM hierarchy because it must
3816 keep track of a large amount of data.  The <tt>Function</tt> class keeps track
3817 of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal 
3818 <a href="#Argument"><tt>Argument</tt></a>s, and a 
3819 <a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3820
3821 <p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3822 commonly used part of <tt>Function</tt> objects.  The list imposes an implicit
3823 ordering of the blocks in the function, which indicate how the code will be
3824 laid out by the backend.  Additionally, the first <a
3825 href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3826 <tt>Function</tt>.  It is not legal in LLVM to explicitly branch to this initial
3827 block.  There are no implicit exit nodes, and in fact there may be multiple exit
3828 nodes from a single <tt>Function</tt>.  If the <a
3829 href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3830 the <tt>Function</tt> is actually a function declaration: the actual body of the
3831 function hasn't been linked in yet.</p>
3832
3833 <p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3834 <tt>Function</tt> class also keeps track of the list of formal <a
3835 href="#Argument"><tt>Argument</tt></a>s that the function receives.  This
3836 container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3837 nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3838 the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3839
3840 <p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3841 LLVM feature that is only used when you have to look up a value by name.  Aside
3842 from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3843 internally to make sure that there are not conflicts between the names of <a
3844 href="#Instruction"><tt>Instruction</tt></a>s, <a
3845 href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3846 href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3847
3848 <p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3849 and therefore also a <a href="#Constant">Constant</a>. The value of the function
3850 is its address (after linking) which is guaranteed to be constant.</p>
3851
3852 <!-- _______________________________________________________________________ -->
3853 <h4>
3854   <a name="m_Function">
3855     Important Public Members of the <tt>Function</tt> class
3856   </a>
3857 </h4>
3858
3859 <div>
3860
3861 <ul>
3862   <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3863   *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3864
3865     <p>Constructor used when you need to create new <tt>Function</tt>s to add
3866     the the program.  The constructor must specify the type of the function to
3867     create and what type of linkage the function should have. The <a 
3868     href="#FunctionType"><tt>FunctionType</tt></a> argument
3869     specifies the formal arguments and return value for the function. The same
3870     <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3871     create multiple functions. The <tt>Parent</tt> argument specifies the Module
3872     in which the function is defined. If this argument is provided, the function
3873     will automatically be inserted into that module's list of
3874     functions.</p></li>
3875
3876   <li><tt>bool isDeclaration()</tt>
3877
3878     <p>Return whether or not the <tt>Function</tt> has a body defined.  If the
3879     function is "external", it does not have a body, and thus must be resolved
3880     by linking with a function defined in a different translation unit.</p></li>
3881
3882   <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3883     <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3884
3885     <tt>begin()</tt>, <tt>end()</tt>
3886     <tt>size()</tt>, <tt>empty()</tt>
3887
3888     <p>These are forwarding methods that make it easy to access the contents of
3889     a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3890     list.</p></li>
3891
3892   <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3893
3894     <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.  This
3895     is necessary to use when you need to update the list or perform a complex
3896     action that doesn't have a forwarding method.</p></li>
3897
3898   <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3899 iterator<br>
3900     <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3901
3902     <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3903     <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3904
3905     <p>These are forwarding methods that make it easy to access the contents of
3906     a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3907     list.</p></li>
3908
3909   <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3910
3911     <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.  This is
3912     necessary to use when you need to update the list or perform a complex
3913     action that doesn't have a forwarding method.</p></li>
3914
3915   <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3916
3917     <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3918     function.  Because the entry block for the function is always the first
3919     block, this returns the first block of the <tt>Function</tt>.</p></li>
3920
3921   <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3922     <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3923
3924     <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3925     <tt>Function</tt> and returns the return type of the function, or the <a
3926     href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3927     function.</p></li>
3928
3929   <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3930
3931     <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3932     for this <tt>Function</tt>.</p></li>
3933 </ul>
3934
3935 </div>
3936
3937 </div>
3938
3939 <!-- ======================================================================= -->
3940 <h3>
3941   <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3942 </h3>
3943
3944 <div>
3945
3946 <p><tt>#include "<a
3947 href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3948 <br>
3949 doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3950  Class</a><br>
3951 Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, 
3952 <a href="#Constant"><tt>Constant</tt></a>,
3953 <a href="#User"><tt>User</tt></a>,
3954 <a href="#Value"><tt>Value</tt></a></p>
3955
3956 <p>Global variables are represented with the (surprise surprise)
3957 <tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3958 subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3959 always referenced by their address (global values must live in memory, so their
3960 "name" refers to their constant address). See 
3961 <a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this.  Global 
3962 variables may have an initial value (which must be a 
3963 <a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, 
3964 they may be marked as "constant" themselves (indicating that their contents 
3965 never change at runtime).</p>
3966
3967 <!-- _______________________________________________________________________ -->
3968 <h4>
3969   <a name="m_GlobalVariable">
3970     Important Public Members of the <tt>GlobalVariable</tt> class
3971   </a>
3972 </h4>
3973
3974 <div>
3975
3976 <ul>
3977   <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3978   isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3979   *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3980
3981     <p>Create a new global variable of the specified type. If
3982     <tt>isConstant</tt> is true then the global variable will be marked as
3983     unchanging for the program. The Linkage parameter specifies the type of
3984     linkage (internal, external, weak, linkonce, appending) for the variable.
3985     If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3986     LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3987     global variable will have internal linkage.  AppendingLinkage concatenates
3988     together all instances (in different translation units) of the variable
3989     into a single variable but is only applicable to arrays.  &nbsp;See
3990     the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3991     further details on linkage types. Optionally an initializer, a name, and the
3992     module to put the variable into may be specified for the global variable as
3993     well.</p></li>
3994
3995   <li><tt>bool isConstant() const</tt>
3996
3997     <p>Returns true if this is a global variable that is known not to
3998     be modified at runtime.</p></li>
3999
4000   <li><tt>bool hasInitializer()</tt>
4001
4002     <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
4003
4004   <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
4005
4006     <p>Returns the initial value for a <tt>GlobalVariable</tt>.  It is not legal
4007     to call this method if there is no initializer.</p></li>
4008 </ul>
4009
4010 </div>
4011
4012 </div>
4013
4014 <!-- ======================================================================= -->
4015 <h3>
4016   <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
4017 </h3>
4018
4019 <div>
4020
4021 <p><tt>#include "<a
4022 href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
4023 doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
4024 Class</a><br>
4025 Superclass: <a href="#Value"><tt>Value</tt></a></p>
4026
4027 <p>This class represents a single entry single exit section of the code,
4028 commonly known as a basic block by the compiler community.  The
4029 <tt>BasicBlock</tt> class maintains a list of <a
4030 href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
4031 Matching the language definition, the last element of this list of instructions
4032 is always a terminator instruction (a subclass of the <a
4033 href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
4034
4035 <p>In addition to tracking the list of instructions that make up the block, the
4036 <tt>BasicBlock</tt> class also keeps track of the <a
4037 href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
4038
4039 <p>Note that <tt>BasicBlock</tt>s themselves are <a
4040 href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
4041 like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
4042 <tt>label</tt>.</p>
4043
4044 <!-- _______________________________________________________________________ -->
4045 <h4>
4046   <a name="m_BasicBlock">
4047     Important Public Members of the <tt>BasicBlock</tt> class
4048   </a>
4049 </h4>
4050
4051 <div>
4052 <ul>
4053
4054 <li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
4055  href="#Function">Function</a> *Parent = 0)</tt>
4056
4057 <p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
4058 insertion into a function.  The constructor optionally takes a name for the new
4059 block, and a <a href="#Function"><tt>Function</tt></a> to insert it into.  If
4060 the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
4061 automatically inserted at the end of the specified <a
4062 href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
4063 manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
4064
4065 <li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
4066 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
4067 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
4068 <tt>size()</tt>, <tt>empty()</tt>
4069 STL-style functions for accessing the instruction list.
4070
4071 <p>These methods and typedefs are forwarding functions that have the same
4072 semantics as the standard library methods of the same names.  These methods
4073 expose the underlying instruction list of a basic block in a way that is easy to
4074 manipulate.  To get the full complement of container operations (including
4075 operations to update the list), you must use the <tt>getInstList()</tt>
4076 method.</p></li>
4077
4078 <li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
4079
4080 <p>This method is used to get access to the underlying container that actually
4081 holds the Instructions.  This method must be used when there isn't a forwarding
4082 function in the <tt>BasicBlock</tt> class for the operation that you would like
4083 to perform.  Because there are no forwarding functions for "updating"
4084 operations, you need to use this if you want to update the contents of a
4085 <tt>BasicBlock</tt>.</p></li>
4086
4087 <li><tt><a href="#Function">Function</a> *getParent()</tt>
4088
4089 <p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
4090 embedded into, or a null pointer if it is homeless.</p></li>
4091
4092 <li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
4093
4094 <p> Returns a pointer to the terminator instruction that appears at the end of
4095 the <tt>BasicBlock</tt>.  If there is no terminator instruction, or if the last
4096 instruction in the block is not a terminator, then a null pointer is
4097 returned.</p></li>
4098
4099 </ul>
4100
4101 </div>
4102
4103 </div>
4104
4105 <!-- ======================================================================= -->
4106 <h3>
4107   <a name="Argument">The <tt>Argument</tt> class</a>
4108 </h3>
4109
4110 <div>
4111
4112 <p>This subclass of Value defines the interface for incoming formal
4113 arguments to a function. A Function maintains a list of its formal
4114 arguments. An argument has a pointer to the parent Function.</p>
4115
4116 </div>
4117
4118 </div>
4119
4120 <!-- *********************************************************************** -->
4121 <hr>
4122 <address>
4123   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4124   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
4125   <a href="http://validator.w3.org/check/referer"><img
4126   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
4127
4128   <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
4129   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
4130   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
4131   Last modified: $Date$
4132 </address>
4133
4134 </body>
4135 </html>