fff986da623990cf74b649f5288f4c22df81ccf9
[firefly-linux-kernel-4.4.55.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/spinlock.h>
39 #include <linux/uaccess.h>
40 #include <linux/time.h>
41 #include <linux/io.h>
42 #include <linux/reboot.h>
43 #include <linux/bcd.h>
44
45 #include <asm/setup.h>
46 #include <asm/efi.h>
47 #include <asm/time.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51
52 #define EFI_DEBUG       1
53
54 struct efi __read_mostly efi = {
55         .mps        = EFI_INVALID_TABLE_ADDR,
56         .acpi       = EFI_INVALID_TABLE_ADDR,
57         .acpi20     = EFI_INVALID_TABLE_ADDR,
58         .smbios     = EFI_INVALID_TABLE_ADDR,
59         .sal_systab = EFI_INVALID_TABLE_ADDR,
60         .boot_info  = EFI_INVALID_TABLE_ADDR,
61         .hcdp       = EFI_INVALID_TABLE_ADDR,
62         .uga        = EFI_INVALID_TABLE_ADDR,
63         .uv_systab  = EFI_INVALID_TABLE_ADDR,
64 };
65 EXPORT_SYMBOL(efi);
66
67 struct efi_memory_map memmap;
68
69 static struct efi efi_phys __initdata;
70 static efi_system_table_t efi_systab __initdata;
71
72 unsigned long x86_efi_facility;
73
74 /*
75  * Returns 1 if 'facility' is enabled, 0 otherwise.
76  */
77 int efi_enabled(int facility)
78 {
79         return test_bit(facility, &x86_efi_facility) != 0;
80 }
81 EXPORT_SYMBOL(efi_enabled);
82
83 static bool __initdata disable_runtime = false;
84 static int __init setup_noefi(char *arg)
85 {
86         disable_runtime = true;
87         return 0;
88 }
89 early_param("noefi", setup_noefi);
90
91 int add_efi_memmap;
92 EXPORT_SYMBOL(add_efi_memmap);
93
94 static int __init setup_add_efi_memmap(char *arg)
95 {
96         add_efi_memmap = 1;
97         return 0;
98 }
99 early_param("add_efi_memmap", setup_add_efi_memmap);
100
101
102 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
103 {
104         unsigned long flags;
105         efi_status_t status;
106
107         spin_lock_irqsave(&rtc_lock, flags);
108         status = efi_call_virt2(get_time, tm, tc);
109         spin_unlock_irqrestore(&rtc_lock, flags);
110         return status;
111 }
112
113 static efi_status_t virt_efi_set_time(efi_time_t *tm)
114 {
115         unsigned long flags;
116         efi_status_t status;
117
118         spin_lock_irqsave(&rtc_lock, flags);
119         status = efi_call_virt1(set_time, tm);
120         spin_unlock_irqrestore(&rtc_lock, flags);
121         return status;
122 }
123
124 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
125                                              efi_bool_t *pending,
126                                              efi_time_t *tm)
127 {
128         unsigned long flags;
129         efi_status_t status;
130
131         spin_lock_irqsave(&rtc_lock, flags);
132         status = efi_call_virt3(get_wakeup_time,
133                                 enabled, pending, tm);
134         spin_unlock_irqrestore(&rtc_lock, flags);
135         return status;
136 }
137
138 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
139 {
140         unsigned long flags;
141         efi_status_t status;
142
143         spin_lock_irqsave(&rtc_lock, flags);
144         status = efi_call_virt2(set_wakeup_time,
145                                 enabled, tm);
146         spin_unlock_irqrestore(&rtc_lock, flags);
147         return status;
148 }
149
150 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
151                                           efi_guid_t *vendor,
152                                           u32 *attr,
153                                           unsigned long *data_size,
154                                           void *data)
155 {
156         return efi_call_virt5(get_variable,
157                               name, vendor, attr,
158                               data_size, data);
159 }
160
161 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
162                                                efi_char16_t *name,
163                                                efi_guid_t *vendor)
164 {
165         return efi_call_virt3(get_next_variable,
166                               name_size, name, vendor);
167 }
168
169 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
170                                           efi_guid_t *vendor,
171                                           u32 attr,
172                                           unsigned long data_size,
173                                           void *data)
174 {
175         return efi_call_virt5(set_variable,
176                               name, vendor, attr,
177                               data_size, data);
178 }
179
180 static efi_status_t virt_efi_query_variable_info(u32 attr,
181                                                  u64 *storage_space,
182                                                  u64 *remaining_space,
183                                                  u64 *max_variable_size)
184 {
185         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
186                 return EFI_UNSUPPORTED;
187
188         return efi_call_virt4(query_variable_info, attr, storage_space,
189                               remaining_space, max_variable_size);
190 }
191
192 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
193 {
194         return efi_call_virt1(get_next_high_mono_count, count);
195 }
196
197 static void virt_efi_reset_system(int reset_type,
198                                   efi_status_t status,
199                                   unsigned long data_size,
200                                   efi_char16_t *data)
201 {
202         efi_call_virt4(reset_system, reset_type, status,
203                        data_size, data);
204 }
205
206 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
207                                             unsigned long count,
208                                             unsigned long sg_list)
209 {
210         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
211                 return EFI_UNSUPPORTED;
212
213         return efi_call_virt3(update_capsule, capsules, count, sg_list);
214 }
215
216 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
217                                                 unsigned long count,
218                                                 u64 *max_size,
219                                                 int *reset_type)
220 {
221         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
222                 return EFI_UNSUPPORTED;
223
224         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
225                               reset_type);
226 }
227
228 static efi_status_t __init phys_efi_set_virtual_address_map(
229         unsigned long memory_map_size,
230         unsigned long descriptor_size,
231         u32 descriptor_version,
232         efi_memory_desc_t *virtual_map)
233 {
234         efi_status_t status;
235
236         efi_call_phys_prelog();
237         status = efi_call_phys4(efi_phys.set_virtual_address_map,
238                                 memory_map_size, descriptor_size,
239                                 descriptor_version, virtual_map);
240         efi_call_phys_epilog();
241         return status;
242 }
243
244 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
245                                              efi_time_cap_t *tc)
246 {
247         unsigned long flags;
248         efi_status_t status;
249
250         spin_lock_irqsave(&rtc_lock, flags);
251         efi_call_phys_prelog();
252         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
253                                 virt_to_phys(tc));
254         efi_call_phys_epilog();
255         spin_unlock_irqrestore(&rtc_lock, flags);
256         return status;
257 }
258
259 int efi_set_rtc_mmss(unsigned long nowtime)
260 {
261         int real_seconds, real_minutes;
262         efi_status_t    status;
263         efi_time_t      eft;
264         efi_time_cap_t  cap;
265
266         status = efi.get_time(&eft, &cap);
267         if (status != EFI_SUCCESS) {
268                 pr_err("Oops: efitime: can't read time!\n");
269                 return -1;
270         }
271
272         real_seconds = nowtime % 60;
273         real_minutes = nowtime / 60;
274         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
275                 real_minutes += 30;
276         real_minutes %= 60;
277         eft.minute = real_minutes;
278         eft.second = real_seconds;
279
280         status = efi.set_time(&eft);
281         if (status != EFI_SUCCESS) {
282                 pr_err("Oops: efitime: can't write time!\n");
283                 return -1;
284         }
285         return 0;
286 }
287
288 unsigned long efi_get_time(void)
289 {
290         efi_status_t status;
291         efi_time_t eft;
292         efi_time_cap_t cap;
293
294         status = efi.get_time(&eft, &cap);
295         if (status != EFI_SUCCESS)
296                 pr_err("Oops: efitime: can't read time!\n");
297
298         return mktime(eft.year, eft.month, eft.day, eft.hour,
299                       eft.minute, eft.second);
300 }
301
302 /*
303  * Tell the kernel about the EFI memory map.  This might include
304  * more than the max 128 entries that can fit in the e820 legacy
305  * (zeropage) memory map.
306  */
307
308 static void __init do_add_efi_memmap(void)
309 {
310         void *p;
311
312         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
313                 efi_memory_desc_t *md = p;
314                 unsigned long long start = md->phys_addr;
315                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
316                 int e820_type;
317
318                 switch (md->type) {
319                 case EFI_LOADER_CODE:
320                 case EFI_LOADER_DATA:
321                 case EFI_BOOT_SERVICES_CODE:
322                 case EFI_BOOT_SERVICES_DATA:
323                 case EFI_CONVENTIONAL_MEMORY:
324                         if (md->attribute & EFI_MEMORY_WB)
325                                 e820_type = E820_RAM;
326                         else
327                                 e820_type = E820_RESERVED;
328                         break;
329                 case EFI_ACPI_RECLAIM_MEMORY:
330                         e820_type = E820_ACPI;
331                         break;
332                 case EFI_ACPI_MEMORY_NVS:
333                         e820_type = E820_NVS;
334                         break;
335                 case EFI_UNUSABLE_MEMORY:
336                         e820_type = E820_UNUSABLE;
337                         break;
338                 default:
339                         /*
340                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
341                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
342                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
343                          */
344                         e820_type = E820_RESERVED;
345                         break;
346                 }
347                 e820_add_region(start, size, e820_type);
348         }
349         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
350 }
351
352 int __init efi_memblock_x86_reserve_range(void)
353 {
354         struct efi_info *e = &boot_params.efi_info;
355         unsigned long pmap;
356
357 #ifdef CONFIG_X86_32
358         /* Can't handle data above 4GB at this time */
359         if (e->efi_memmap_hi) {
360                 pr_err("Memory map is above 4GB, disabling EFI.\n");
361                 return -EINVAL;
362         }
363         pmap =  e->efi_memmap;
364 #else
365         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
366 #endif
367         memmap.phys_map         = (void *)pmap;
368         memmap.nr_map           = e->efi_memmap_size /
369                                   e->efi_memdesc_size;
370         memmap.desc_size        = e->efi_memdesc_size;
371         memmap.desc_version     = e->efi_memdesc_version;
372
373         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
374
375         return 0;
376 }
377
378 #if EFI_DEBUG
379 static void __init print_efi_memmap(void)
380 {
381         efi_memory_desc_t *md;
382         void *p;
383         int i;
384
385         for (p = memmap.map, i = 0;
386              p < memmap.map_end;
387              p += memmap.desc_size, i++) {
388                 md = p;
389                 pr_info("mem%02u: type=%u, attr=0x%llx, "
390                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
391                         i, md->type, md->attribute, md->phys_addr,
392                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
393                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
394         }
395 }
396 #endif  /*  EFI_DEBUG  */
397
398 void __init efi_reserve_boot_services(void)
399 {
400         void *p;
401
402         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
403                 efi_memory_desc_t *md = p;
404                 u64 start = md->phys_addr;
405                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
406
407                 if (md->type != EFI_BOOT_SERVICES_CODE &&
408                     md->type != EFI_BOOT_SERVICES_DATA)
409                         continue;
410                 /* Only reserve where possible:
411                  * - Not within any already allocated areas
412                  * - Not over any memory area (really needed, if above?)
413                  * - Not within any part of the kernel
414                  * - Not the bios reserved area
415                 */
416                 if ((start+size >= __pa_symbol(_text)
417                                 && start <= __pa_symbol(_end)) ||
418                         !e820_all_mapped(start, start+size, E820_RAM) ||
419                         memblock_is_region_reserved(start, size)) {
420                         /* Could not reserve, skip it */
421                         md->num_pages = 0;
422                         memblock_dbg("Could not reserve boot range "
423                                         "[0x%010llx-0x%010llx]\n",
424                                                 start, start+size-1);
425                 } else
426                         memblock_reserve(start, size);
427         }
428 }
429
430 void __init efi_unmap_memmap(void)
431 {
432         clear_bit(EFI_MEMMAP, &x86_efi_facility);
433         if (memmap.map) {
434                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
435                 memmap.map = NULL;
436         }
437 }
438
439 void __init efi_free_boot_services(void)
440 {
441         void *p;
442
443         if (!efi_is_native())
444                 return;
445
446         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
447                 efi_memory_desc_t *md = p;
448                 unsigned long long start = md->phys_addr;
449                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
450
451                 if (md->type != EFI_BOOT_SERVICES_CODE &&
452                     md->type != EFI_BOOT_SERVICES_DATA)
453                         continue;
454
455                 /* Could not reserve boot area */
456                 if (!size)
457                         continue;
458
459                 free_bootmem_late(start, size);
460         }
461
462         efi_unmap_memmap();
463 }
464
465 static int __init efi_systab_init(void *phys)
466 {
467         if (efi_enabled(EFI_64BIT)) {
468                 efi_system_table_64_t *systab64;
469                 u64 tmp = 0;
470
471                 systab64 = early_ioremap((unsigned long)phys,
472                                          sizeof(*systab64));
473                 if (systab64 == NULL) {
474                         pr_err("Couldn't map the system table!\n");
475                         return -ENOMEM;
476                 }
477
478                 efi_systab.hdr = systab64->hdr;
479                 efi_systab.fw_vendor = systab64->fw_vendor;
480                 tmp |= systab64->fw_vendor;
481                 efi_systab.fw_revision = systab64->fw_revision;
482                 efi_systab.con_in_handle = systab64->con_in_handle;
483                 tmp |= systab64->con_in_handle;
484                 efi_systab.con_in = systab64->con_in;
485                 tmp |= systab64->con_in;
486                 efi_systab.con_out_handle = systab64->con_out_handle;
487                 tmp |= systab64->con_out_handle;
488                 efi_systab.con_out = systab64->con_out;
489                 tmp |= systab64->con_out;
490                 efi_systab.stderr_handle = systab64->stderr_handle;
491                 tmp |= systab64->stderr_handle;
492                 efi_systab.stderr = systab64->stderr;
493                 tmp |= systab64->stderr;
494                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
495                 tmp |= systab64->runtime;
496                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
497                 tmp |= systab64->boottime;
498                 efi_systab.nr_tables = systab64->nr_tables;
499                 efi_systab.tables = systab64->tables;
500                 tmp |= systab64->tables;
501
502                 early_iounmap(systab64, sizeof(*systab64));
503 #ifdef CONFIG_X86_32
504                 if (tmp >> 32) {
505                         pr_err("EFI data located above 4GB, disabling EFI.\n");
506                         return -EINVAL;
507                 }
508 #endif
509         } else {
510                 efi_system_table_32_t *systab32;
511
512                 systab32 = early_ioremap((unsigned long)phys,
513                                          sizeof(*systab32));
514                 if (systab32 == NULL) {
515                         pr_err("Couldn't map the system table!\n");
516                         return -ENOMEM;
517                 }
518
519                 efi_systab.hdr = systab32->hdr;
520                 efi_systab.fw_vendor = systab32->fw_vendor;
521                 efi_systab.fw_revision = systab32->fw_revision;
522                 efi_systab.con_in_handle = systab32->con_in_handle;
523                 efi_systab.con_in = systab32->con_in;
524                 efi_systab.con_out_handle = systab32->con_out_handle;
525                 efi_systab.con_out = systab32->con_out;
526                 efi_systab.stderr_handle = systab32->stderr_handle;
527                 efi_systab.stderr = systab32->stderr;
528                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
529                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
530                 efi_systab.nr_tables = systab32->nr_tables;
531                 efi_systab.tables = systab32->tables;
532
533                 early_iounmap(systab32, sizeof(*systab32));
534         }
535
536         efi.systab = &efi_systab;
537
538         /*
539          * Verify the EFI Table
540          */
541         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
542                 pr_err("System table signature incorrect!\n");
543                 return -EINVAL;
544         }
545         if ((efi.systab->hdr.revision >> 16) == 0)
546                 pr_err("Warning: System table version "
547                        "%d.%02d, expected 1.00 or greater!\n",
548                        efi.systab->hdr.revision >> 16,
549                        efi.systab->hdr.revision & 0xffff);
550
551         return 0;
552 }
553
554 static int __init efi_config_init(u64 tables, int nr_tables)
555 {
556         void *config_tables, *tablep;
557         int i, sz;
558
559         if (efi_enabled(EFI_64BIT))
560                 sz = sizeof(efi_config_table_64_t);
561         else
562                 sz = sizeof(efi_config_table_32_t);
563
564         /*
565          * Let's see what config tables the firmware passed to us.
566          */
567         config_tables = early_ioremap(tables, nr_tables * sz);
568         if (config_tables == NULL) {
569                 pr_err("Could not map Configuration table!\n");
570                 return -ENOMEM;
571         }
572
573         tablep = config_tables;
574         pr_info("");
575         for (i = 0; i < efi.systab->nr_tables; i++) {
576                 efi_guid_t guid;
577                 unsigned long table;
578
579                 if (efi_enabled(EFI_64BIT)) {
580                         u64 table64;
581                         guid = ((efi_config_table_64_t *)tablep)->guid;
582                         table64 = ((efi_config_table_64_t *)tablep)->table;
583                         table = table64;
584 #ifdef CONFIG_X86_32
585                         if (table64 >> 32) {
586                                 pr_cont("\n");
587                                 pr_err("Table located above 4GB, disabling EFI.\n");
588                                 early_iounmap(config_tables,
589                                               efi.systab->nr_tables * sz);
590                                 return -EINVAL;
591                         }
592 #endif
593                 } else {
594                         guid = ((efi_config_table_32_t *)tablep)->guid;
595                         table = ((efi_config_table_32_t *)tablep)->table;
596                 }
597                 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
598                         efi.mps = table;
599                         pr_cont(" MPS=0x%lx ", table);
600                 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
601                         efi.acpi20 = table;
602                         pr_cont(" ACPI 2.0=0x%lx ", table);
603                 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
604                         efi.acpi = table;
605                         pr_cont(" ACPI=0x%lx ", table);
606                 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
607                         efi.smbios = table;
608                         pr_cont(" SMBIOS=0x%lx ", table);
609 #ifdef CONFIG_X86_UV
610                 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
611                         efi.uv_systab = table;
612                         pr_cont(" UVsystab=0x%lx ", table);
613 #endif
614                 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
615                         efi.hcdp = table;
616                         pr_cont(" HCDP=0x%lx ", table);
617                 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
618                         efi.uga = table;
619                         pr_cont(" UGA=0x%lx ", table);
620                 }
621                 tablep += sz;
622         }
623         pr_cont("\n");
624         early_iounmap(config_tables, efi.systab->nr_tables * sz);
625         return 0;
626 }
627
628 static int __init efi_runtime_init(void)
629 {
630         efi_runtime_services_t *runtime;
631
632         /*
633          * Check out the runtime services table. We need to map
634          * the runtime services table so that we can grab the physical
635          * address of several of the EFI runtime functions, needed to
636          * set the firmware into virtual mode.
637          */
638         runtime = early_ioremap((unsigned long)efi.systab->runtime,
639                                 sizeof(efi_runtime_services_t));
640         if (!runtime) {
641                 pr_err("Could not map the runtime service table!\n");
642                 return -ENOMEM;
643         }
644         /*
645          * We will only need *early* access to the following
646          * two EFI runtime services before set_virtual_address_map
647          * is invoked.
648          */
649         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
650         efi_phys.set_virtual_address_map =
651                 (efi_set_virtual_address_map_t *)
652                 runtime->set_virtual_address_map;
653         /*
654          * Make efi_get_time can be called before entering
655          * virtual mode.
656          */
657         efi.get_time = phys_efi_get_time;
658         early_iounmap(runtime, sizeof(efi_runtime_services_t));
659
660         return 0;
661 }
662
663 static int __init efi_memmap_init(void)
664 {
665         /* Map the EFI memory map */
666         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
667                                    memmap.nr_map * memmap.desc_size);
668         if (memmap.map == NULL) {
669                 pr_err("Could not map the memory map!\n");
670                 return -ENOMEM;
671         }
672         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
673
674         if (add_efi_memmap)
675                 do_add_efi_memmap();
676
677         return 0;
678 }
679
680 void __init efi_init(void)
681 {
682         efi_char16_t *c16;
683         char vendor[100] = "unknown";
684         int i = 0;
685         void *tmp;
686
687 #ifdef CONFIG_X86_32
688         if (boot_params.efi_info.efi_systab_hi ||
689             boot_params.efi_info.efi_memmap_hi) {
690                 pr_info("Table located above 4GB, disabling EFI.\n");
691                 return;
692         }
693         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
694 #else
695         efi_phys.systab = (efi_system_table_t *)
696                           (boot_params.efi_info.efi_systab |
697                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
698 #endif
699
700         if (efi_systab_init(efi_phys.systab))
701                 return;
702
703         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
704
705         /*
706          * Show what we know for posterity
707          */
708         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
709         if (c16) {
710                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
711                         vendor[i] = *c16++;
712                 vendor[i] = '\0';
713         } else
714                 pr_err("Could not map the firmware vendor!\n");
715         early_iounmap(tmp, 2);
716
717         pr_info("EFI v%u.%.02u by %s\n",
718                 efi.systab->hdr.revision >> 16,
719                 efi.systab->hdr.revision & 0xffff, vendor);
720
721         if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
722                 return;
723
724         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
725
726         /*
727          * Note: We currently don't support runtime services on an EFI
728          * that doesn't match the kernel 32/64-bit mode.
729          */
730
731         if (!efi_is_native())
732                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
733         else {
734                 if (disable_runtime || efi_runtime_init())
735                         return;
736                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
737         }
738
739         if (efi_memmap_init())
740                 return;
741
742         set_bit(EFI_MEMMAP, &x86_efi_facility);
743
744 #ifdef CONFIG_X86_32
745         if (efi_is_native()) {
746                 x86_platform.get_wallclock = efi_get_time;
747                 x86_platform.set_wallclock = efi_set_rtc_mmss;
748         }
749 #endif
750
751 #if EFI_DEBUG
752         print_efi_memmap();
753 #endif
754 }
755
756 void __init efi_late_init(void)
757 {
758         efi_bgrt_init();
759 }
760
761 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
762 {
763         u64 addr, npages;
764
765         addr = md->virt_addr;
766         npages = md->num_pages;
767
768         memrange_efi_to_native(&addr, &npages);
769
770         if (executable)
771                 set_memory_x(addr, npages);
772         else
773                 set_memory_nx(addr, npages);
774 }
775
776 static void __init runtime_code_page_mkexec(void)
777 {
778         efi_memory_desc_t *md;
779         void *p;
780
781         /* Make EFI runtime service code area executable */
782         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
783                 md = p;
784
785                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
786                         continue;
787
788                 efi_set_executable(md, true);
789         }
790 }
791
792 /*
793  * We can't ioremap data in EFI boot services RAM, because we've already mapped
794  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
795  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
796  */
797 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
798 {
799         void *p;
800         if (WARN_ON(!memmap.map))
801                 return NULL;
802         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
803                 efi_memory_desc_t *md = p;
804                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
805                 u64 end = md->phys_addr + size;
806                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
807                     md->type != EFI_BOOT_SERVICES_CODE &&
808                     md->type != EFI_BOOT_SERVICES_DATA)
809                         continue;
810                 if (!md->virt_addr)
811                         continue;
812                 if (phys_addr >= md->phys_addr && phys_addr < end) {
813                         phys_addr += md->virt_addr - md->phys_addr;
814                         return (__force void __iomem *)(unsigned long)phys_addr;
815                 }
816         }
817         return NULL;
818 }
819
820 void efi_memory_uc(u64 addr, unsigned long size)
821 {
822         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
823         u64 npages;
824
825         npages = round_up(size, page_shift) / page_shift;
826         memrange_efi_to_native(&addr, &npages);
827         set_memory_uc(addr, npages);
828 }
829
830 /*
831  * This function will switch the EFI runtime services to virtual mode.
832  * Essentially, look through the EFI memmap and map every region that
833  * has the runtime attribute bit set in its memory descriptor and update
834  * that memory descriptor with the virtual address obtained from ioremap().
835  * This enables the runtime services to be called without having to
836  * thunk back into physical mode for every invocation.
837  */
838 void __init efi_enter_virtual_mode(void)
839 {
840         efi_memory_desc_t *md, *prev_md = NULL;
841         efi_status_t status;
842         unsigned long size;
843         u64 end, systab, start_pfn, end_pfn;
844         void *p, *va, *new_memmap = NULL;
845         int count = 0;
846
847         efi.systab = NULL;
848
849         /*
850          * We don't do virtual mode, since we don't do runtime services, on
851          * non-native EFI
852          */
853
854         if (!efi_is_native()) {
855                 efi_unmap_memmap();
856                 return;
857         }
858
859         /* Merge contiguous regions of the same type and attribute */
860         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
861                 u64 prev_size;
862                 md = p;
863
864                 if (!prev_md) {
865                         prev_md = md;
866                         continue;
867                 }
868
869                 if (prev_md->type != md->type ||
870                     prev_md->attribute != md->attribute) {
871                         prev_md = md;
872                         continue;
873                 }
874
875                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
876
877                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
878                         prev_md->num_pages += md->num_pages;
879                         md->type = EFI_RESERVED_TYPE;
880                         md->attribute = 0;
881                         continue;
882                 }
883                 prev_md = md;
884         }
885
886         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
887                 md = p;
888                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
889                     md->type != EFI_BOOT_SERVICES_CODE &&
890                     md->type != EFI_BOOT_SERVICES_DATA)
891                         continue;
892
893                 size = md->num_pages << EFI_PAGE_SHIFT;
894                 end = md->phys_addr + size;
895
896                 start_pfn = PFN_DOWN(md->phys_addr);
897                 end_pfn = PFN_UP(end);
898                 if (pfn_range_is_mapped(start_pfn, end_pfn)) {
899                         va = __va(md->phys_addr);
900
901                         if (!(md->attribute & EFI_MEMORY_WB))
902                                 efi_memory_uc((u64)(unsigned long)va, size);
903                 } else
904                         va = efi_ioremap(md->phys_addr, size,
905                                          md->type, md->attribute);
906
907                 md->virt_addr = (u64) (unsigned long) va;
908
909                 if (!va) {
910                         pr_err("ioremap of 0x%llX failed!\n",
911                                (unsigned long long)md->phys_addr);
912                         continue;
913                 }
914
915                 systab = (u64) (unsigned long) efi_phys.systab;
916                 if (md->phys_addr <= systab && systab < end) {
917                         systab += md->virt_addr - md->phys_addr;
918                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
919                 }
920                 new_memmap = krealloc(new_memmap,
921                                       (count + 1) * memmap.desc_size,
922                                       GFP_KERNEL);
923                 memcpy(new_memmap + (count * memmap.desc_size), md,
924                        memmap.desc_size);
925                 count++;
926         }
927
928         BUG_ON(!efi.systab);
929
930         status = phys_efi_set_virtual_address_map(
931                 memmap.desc_size * count,
932                 memmap.desc_size,
933                 memmap.desc_version,
934                 (efi_memory_desc_t *)__pa(new_memmap));
935
936         if (status != EFI_SUCCESS) {
937                 pr_alert("Unable to switch EFI into virtual mode "
938                          "(status=%lx)!\n", status);
939                 panic("EFI call to SetVirtualAddressMap() failed!");
940         }
941
942         /*
943          * Now that EFI is in virtual mode, update the function
944          * pointers in the runtime service table to the new virtual addresses.
945          *
946          * Call EFI services through wrapper functions.
947          */
948         efi.runtime_version = efi_systab.hdr.revision;
949         efi.get_time = virt_efi_get_time;
950         efi.set_time = virt_efi_set_time;
951         efi.get_wakeup_time = virt_efi_get_wakeup_time;
952         efi.set_wakeup_time = virt_efi_set_wakeup_time;
953         efi.get_variable = virt_efi_get_variable;
954         efi.get_next_variable = virt_efi_get_next_variable;
955         efi.set_variable = virt_efi_set_variable;
956         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
957         efi.reset_system = virt_efi_reset_system;
958         efi.set_virtual_address_map = NULL;
959         efi.query_variable_info = virt_efi_query_variable_info;
960         efi.update_capsule = virt_efi_update_capsule;
961         efi.query_capsule_caps = virt_efi_query_capsule_caps;
962         if (__supported_pte_mask & _PAGE_NX)
963                 runtime_code_page_mkexec();
964
965         kfree(new_memmap);
966 }
967
968 /*
969  * Convenience functions to obtain memory types and attributes
970  */
971 u32 efi_mem_type(unsigned long phys_addr)
972 {
973         efi_memory_desc_t *md;
974         void *p;
975
976         if (!efi_enabled(EFI_MEMMAP))
977                 return 0;
978
979         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
980                 md = p;
981                 if ((md->phys_addr <= phys_addr) &&
982                     (phys_addr < (md->phys_addr +
983                                   (md->num_pages << EFI_PAGE_SHIFT))))
984                         return md->type;
985         }
986         return 0;
987 }
988
989 u64 efi_mem_attributes(unsigned long phys_addr)
990 {
991         efi_memory_desc_t *md;
992         void *p;
993
994         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
995                 md = p;
996                 if ((md->phys_addr <= phys_addr) &&
997                     (phys_addr < (md->phys_addr +
998                                   (md->num_pages << EFI_PAGE_SHIFT))))
999                         return md->attribute;
1000         }
1001         return 0;
1002 }