ARM64: DTS: Add rk3399-firefly uart4 device, node as /dev/ttyS1
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / kmmio.c
1 /* Support for MMIO probes.
2  * Benfit many code from kprobes
3  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
4  *     2007 Alexander Eichner
5  *     2008 Pekka Paalanen <pq@iki.fi>
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/list.h>
11 #include <linux/rculist.h>
12 #include <linux/spinlock.h>
13 #include <linux/hash.h>
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/uaccess.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/percpu.h>
20 #include <linux/kdebug.h>
21 #include <linux/mutex.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <linux/errno.h>
27 #include <asm/debugreg.h>
28 #include <linux/mmiotrace.h>
29
30 #define KMMIO_PAGE_HASH_BITS 4
31 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
32
33 struct kmmio_fault_page {
34         struct list_head list;
35         struct kmmio_fault_page *release_next;
36         unsigned long addr; /* the requested address */
37         pteval_t old_presence; /* page presence prior to arming */
38         bool armed;
39
40         /*
41          * Number of times this page has been registered as a part
42          * of a probe. If zero, page is disarmed and this may be freed.
43          * Used only by writers (RCU) and post_kmmio_handler().
44          * Protected by kmmio_lock, when linked into kmmio_page_table.
45          */
46         int count;
47
48         bool scheduled_for_release;
49 };
50
51 struct kmmio_delayed_release {
52         struct rcu_head rcu;
53         struct kmmio_fault_page *release_list;
54 };
55
56 struct kmmio_context {
57         struct kmmio_fault_page *fpage;
58         struct kmmio_probe *probe;
59         unsigned long saved_flags;
60         unsigned long addr;
61         int active;
62 };
63
64 static DEFINE_SPINLOCK(kmmio_lock);
65
66 /* Protected by kmmio_lock */
67 unsigned int kmmio_count;
68
69 /* Read-protected by RCU, write-protected by kmmio_lock. */
70 static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
71 static LIST_HEAD(kmmio_probes);
72
73 static struct list_head *kmmio_page_list(unsigned long addr)
74 {
75         unsigned int l;
76         pte_t *pte = lookup_address(addr, &l);
77
78         if (!pte)
79                 return NULL;
80         addr &= page_level_mask(l);
81
82         return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
83 }
84
85 /* Accessed per-cpu */
86 static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
87
88 /*
89  * this is basically a dynamic stabbing problem:
90  * Could use the existing prio tree code or
91  * Possible better implementations:
92  * The Interval Skip List: A Data Structure for Finding All Intervals That
93  * Overlap a Point (might be simple)
94  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
95  */
96 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
97 static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
98 {
99         struct kmmio_probe *p;
100         list_for_each_entry_rcu(p, &kmmio_probes, list) {
101                 if (addr >= p->addr && addr < (p->addr + p->len))
102                         return p;
103         }
104         return NULL;
105 }
106
107 /* You must be holding RCU read lock. */
108 static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
109 {
110         struct list_head *head;
111         struct kmmio_fault_page *f;
112         unsigned int l;
113         pte_t *pte = lookup_address(addr, &l);
114
115         if (!pte)
116                 return NULL;
117         addr &= page_level_mask(l);
118         head = kmmio_page_list(addr);
119         list_for_each_entry_rcu(f, head, list) {
120                 if (f->addr == addr)
121                         return f;
122         }
123         return NULL;
124 }
125
126 static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
127 {
128         pmdval_t v = pmd_val(*pmd);
129         if (clear) {
130                 *old = v & _PAGE_PRESENT;
131                 v &= ~_PAGE_PRESENT;
132         } else  /* presume this has been called with clear==true previously */
133                 v |= *old;
134         set_pmd(pmd, __pmd(v));
135 }
136
137 static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
138 {
139         pteval_t v = pte_val(*pte);
140         if (clear) {
141                 *old = v & _PAGE_PRESENT;
142                 v &= ~_PAGE_PRESENT;
143         } else  /* presume this has been called with clear==true previously */
144                 v |= *old;
145         set_pte_atomic(pte, __pte(v));
146 }
147
148 static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
149 {
150         unsigned int level;
151         pte_t *pte = lookup_address(f->addr, &level);
152
153         if (!pte) {
154                 pr_err("no pte for addr 0x%08lx\n", f->addr);
155                 return -1;
156         }
157
158         switch (level) {
159         case PG_LEVEL_2M:
160                 clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
161                 break;
162         case PG_LEVEL_4K:
163                 clear_pte_presence(pte, clear, &f->old_presence);
164                 break;
165         default:
166                 pr_err("unexpected page level 0x%x.\n", level);
167                 return -1;
168         }
169
170         __flush_tlb_one(f->addr);
171         return 0;
172 }
173
174 /*
175  * Mark the given page as not present. Access to it will trigger a fault.
176  *
177  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
178  * protection is ignored here. RCU read lock is assumed held, so the struct
179  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
180  * that double arming the same virtual address (page) cannot occur.
181  *
182  * Double disarming on the other hand is allowed, and may occur when a fault
183  * and mmiotrace shutdown happen simultaneously.
184  */
185 static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
186 {
187         int ret;
188         WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
189         if (f->armed) {
190                 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
191                            f->addr, f->count, !!f->old_presence);
192         }
193         ret = clear_page_presence(f, true);
194         WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
195                   f->addr);
196         f->armed = true;
197         return ret;
198 }
199
200 /** Restore the given page to saved presence state. */
201 static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
202 {
203         int ret = clear_page_presence(f, false);
204         WARN_ONCE(ret < 0,
205                         KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
206         f->armed = false;
207 }
208
209 /*
210  * This is being called from do_page_fault().
211  *
212  * We may be in an interrupt or a critical section. Also prefecthing may
213  * trigger a page fault. We may be in the middle of process switch.
214  * We cannot take any locks, because we could be executing especially
215  * within a kmmio critical section.
216  *
217  * Local interrupts are disabled, so preemption cannot happen.
218  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
219  */
220 /*
221  * Interrupts are disabled on entry as trap3 is an interrupt gate
222  * and they remain disabled throughout this function.
223  */
224 int kmmio_handler(struct pt_regs *regs, unsigned long addr)
225 {
226         struct kmmio_context *ctx;
227         struct kmmio_fault_page *faultpage;
228         int ret = 0; /* default to fault not handled */
229         unsigned long page_base = addr;
230         unsigned int l;
231         pte_t *pte = lookup_address(addr, &l);
232         if (!pte)
233                 return -EINVAL;
234         page_base &= page_level_mask(l);
235
236         /*
237          * Preemption is now disabled to prevent process switch during
238          * single stepping. We can only handle one active kmmio trace
239          * per cpu, so ensure that we finish it before something else
240          * gets to run. We also hold the RCU read lock over single
241          * stepping to avoid looking up the probe and kmmio_fault_page
242          * again.
243          */
244         preempt_disable();
245         rcu_read_lock();
246
247         faultpage = get_kmmio_fault_page(page_base);
248         if (!faultpage) {
249                 /*
250                  * Either this page fault is not caused by kmmio, or
251                  * another CPU just pulled the kmmio probe from under
252                  * our feet. The latter case should not be possible.
253                  */
254                 goto no_kmmio;
255         }
256
257         ctx = &get_cpu_var(kmmio_ctx);
258         if (ctx->active) {
259                 if (page_base == ctx->addr) {
260                         /*
261                          * A second fault on the same page means some other
262                          * condition needs handling by do_page_fault(), the
263                          * page really not being present is the most common.
264                          */
265                         pr_debug("secondary hit for 0x%08lx CPU %d.\n",
266                                  addr, smp_processor_id());
267
268                         if (!faultpage->old_presence)
269                                 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
270                                         addr, smp_processor_id());
271                 } else {
272                         /*
273                          * Prevent overwriting already in-flight context.
274                          * This should not happen, let's hope disarming at
275                          * least prevents a panic.
276                          */
277                         pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
278                                  smp_processor_id(), addr);
279                         pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
280                         disarm_kmmio_fault_page(faultpage);
281                 }
282                 goto no_kmmio_ctx;
283         }
284         ctx->active++;
285
286         ctx->fpage = faultpage;
287         ctx->probe = get_kmmio_probe(page_base);
288         ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
289         ctx->addr = page_base;
290
291         if (ctx->probe && ctx->probe->pre_handler)
292                 ctx->probe->pre_handler(ctx->probe, regs, addr);
293
294         /*
295          * Enable single-stepping and disable interrupts for the faulting
296          * context. Local interrupts must not get enabled during stepping.
297          */
298         regs->flags |= X86_EFLAGS_TF;
299         regs->flags &= ~X86_EFLAGS_IF;
300
301         /* Now we set present bit in PTE and single step. */
302         disarm_kmmio_fault_page(ctx->fpage);
303
304         /*
305          * If another cpu accesses the same page while we are stepping,
306          * the access will not be caught. It will simply succeed and the
307          * only downside is we lose the event. If this becomes a problem,
308          * the user should drop to single cpu before tracing.
309          */
310
311         put_cpu_var(kmmio_ctx);
312         return 1; /* fault handled */
313
314 no_kmmio_ctx:
315         put_cpu_var(kmmio_ctx);
316 no_kmmio:
317         rcu_read_unlock();
318         preempt_enable_no_resched();
319         return ret;
320 }
321
322 /*
323  * Interrupts are disabled on entry as trap1 is an interrupt gate
324  * and they remain disabled throughout this function.
325  * This must always get called as the pair to kmmio_handler().
326  */
327 static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
328 {
329         int ret = 0;
330         struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
331
332         if (!ctx->active) {
333                 /*
334                  * debug traps without an active context are due to either
335                  * something external causing them (f.e. using a debugger while
336                  * mmio tracing enabled), or erroneous behaviour
337                  */
338                 pr_warning("unexpected debug trap on CPU %d.\n",
339                            smp_processor_id());
340                 goto out;
341         }
342
343         if (ctx->probe && ctx->probe->post_handler)
344                 ctx->probe->post_handler(ctx->probe, condition, regs);
345
346         /* Prevent racing against release_kmmio_fault_page(). */
347         spin_lock(&kmmio_lock);
348         if (ctx->fpage->count)
349                 arm_kmmio_fault_page(ctx->fpage);
350         spin_unlock(&kmmio_lock);
351
352         regs->flags &= ~X86_EFLAGS_TF;
353         regs->flags |= ctx->saved_flags;
354
355         /* These were acquired in kmmio_handler(). */
356         ctx->active--;
357         BUG_ON(ctx->active);
358         rcu_read_unlock();
359         preempt_enable_no_resched();
360
361         /*
362          * if somebody else is singlestepping across a probe point, flags
363          * will have TF set, in which case, continue the remaining processing
364          * of do_debug, as if this is not a probe hit.
365          */
366         if (!(regs->flags & X86_EFLAGS_TF))
367                 ret = 1;
368 out:
369         put_cpu_var(kmmio_ctx);
370         return ret;
371 }
372
373 /* You must be holding kmmio_lock. */
374 static int add_kmmio_fault_page(unsigned long addr)
375 {
376         struct kmmio_fault_page *f;
377
378         f = get_kmmio_fault_page(addr);
379         if (f) {
380                 if (!f->count)
381                         arm_kmmio_fault_page(f);
382                 f->count++;
383                 return 0;
384         }
385
386         f = kzalloc(sizeof(*f), GFP_ATOMIC);
387         if (!f)
388                 return -1;
389
390         f->count = 1;
391         f->addr = addr;
392
393         if (arm_kmmio_fault_page(f)) {
394                 kfree(f);
395                 return -1;
396         }
397
398         list_add_rcu(&f->list, kmmio_page_list(f->addr));
399
400         return 0;
401 }
402
403 /* You must be holding kmmio_lock. */
404 static void release_kmmio_fault_page(unsigned long addr,
405                                 struct kmmio_fault_page **release_list)
406 {
407         struct kmmio_fault_page *f;
408
409         f = get_kmmio_fault_page(addr);
410         if (!f)
411                 return;
412
413         f->count--;
414         BUG_ON(f->count < 0);
415         if (!f->count) {
416                 disarm_kmmio_fault_page(f);
417                 if (!f->scheduled_for_release) {
418                         f->release_next = *release_list;
419                         *release_list = f;
420                         f->scheduled_for_release = true;
421                 }
422         }
423 }
424
425 /*
426  * With page-unaligned ioremaps, one or two armed pages may contain
427  * addresses from outside the intended mapping. Events for these addresses
428  * are currently silently dropped. The events may result only from programming
429  * mistakes by accessing addresses before the beginning or past the end of a
430  * mapping.
431  */
432 int register_kmmio_probe(struct kmmio_probe *p)
433 {
434         unsigned long flags;
435         int ret = 0;
436         unsigned long size = 0;
437         const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
438         unsigned int l;
439         pte_t *pte;
440
441         spin_lock_irqsave(&kmmio_lock, flags);
442         if (get_kmmio_probe(p->addr)) {
443                 ret = -EEXIST;
444                 goto out;
445         }
446
447         pte = lookup_address(p->addr, &l);
448         if (!pte) {
449                 ret = -EINVAL;
450                 goto out;
451         }
452
453         kmmio_count++;
454         list_add_rcu(&p->list, &kmmio_probes);
455         while (size < size_lim) {
456                 if (add_kmmio_fault_page(p->addr + size))
457                         pr_err("Unable to set page fault.\n");
458                 size += page_level_size(l);
459         }
460 out:
461         spin_unlock_irqrestore(&kmmio_lock, flags);
462         /*
463          * XXX: What should I do here?
464          * Here was a call to global_flush_tlb(), but it does not exist
465          * anymore. It seems it's not needed after all.
466          */
467         return ret;
468 }
469 EXPORT_SYMBOL(register_kmmio_probe);
470
471 static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
472 {
473         struct kmmio_delayed_release *dr = container_of(
474                                                 head,
475                                                 struct kmmio_delayed_release,
476                                                 rcu);
477         struct kmmio_fault_page *f = dr->release_list;
478         while (f) {
479                 struct kmmio_fault_page *next = f->release_next;
480                 BUG_ON(f->count);
481                 kfree(f);
482                 f = next;
483         }
484         kfree(dr);
485 }
486
487 static void remove_kmmio_fault_pages(struct rcu_head *head)
488 {
489         struct kmmio_delayed_release *dr =
490                 container_of(head, struct kmmio_delayed_release, rcu);
491         struct kmmio_fault_page *f = dr->release_list;
492         struct kmmio_fault_page **prevp = &dr->release_list;
493         unsigned long flags;
494
495         spin_lock_irqsave(&kmmio_lock, flags);
496         while (f) {
497                 if (!f->count) {
498                         list_del_rcu(&f->list);
499                         prevp = &f->release_next;
500                 } else {
501                         *prevp = f->release_next;
502                         f->release_next = NULL;
503                         f->scheduled_for_release = false;
504                 }
505                 f = *prevp;
506         }
507         spin_unlock_irqrestore(&kmmio_lock, flags);
508
509         /* This is the real RCU destroy call. */
510         call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
511 }
512
513 /*
514  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
515  * sure that the callbacks will not be called anymore. Only after that
516  * you may actually release your struct kmmio_probe.
517  *
518  * Unregistering a kmmio fault page has three steps:
519  * 1. release_kmmio_fault_page()
520  *    Disarm the page, wait a grace period to let all faults finish.
521  * 2. remove_kmmio_fault_pages()
522  *    Remove the pages from kmmio_page_table.
523  * 3. rcu_free_kmmio_fault_pages()
524  *    Actually free the kmmio_fault_page structs as with RCU.
525  */
526 void unregister_kmmio_probe(struct kmmio_probe *p)
527 {
528         unsigned long flags;
529         unsigned long size = 0;
530         const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
531         struct kmmio_fault_page *release_list = NULL;
532         struct kmmio_delayed_release *drelease;
533         unsigned int l;
534         pte_t *pte;
535
536         pte = lookup_address(p->addr, &l);
537         if (!pte)
538                 return;
539
540         spin_lock_irqsave(&kmmio_lock, flags);
541         while (size < size_lim) {
542                 release_kmmio_fault_page(p->addr + size, &release_list);
543                 size += page_level_size(l);
544         }
545         list_del_rcu(&p->list);
546         kmmio_count--;
547         spin_unlock_irqrestore(&kmmio_lock, flags);
548
549         if (!release_list)
550                 return;
551
552         drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
553         if (!drelease) {
554                 pr_crit("leaking kmmio_fault_page objects.\n");
555                 return;
556         }
557         drelease->release_list = release_list;
558
559         /*
560          * This is not really RCU here. We have just disarmed a set of
561          * pages so that they cannot trigger page faults anymore. However,
562          * we cannot remove the pages from kmmio_page_table,
563          * because a probe hit might be in flight on another CPU. The
564          * pages are collected into a list, and they will be removed from
565          * kmmio_page_table when it is certain that no probe hit related to
566          * these pages can be in flight. RCU grace period sounds like a
567          * good choice.
568          *
569          * If we removed the pages too early, kmmio page fault handler might
570          * not find the respective kmmio_fault_page and determine it's not
571          * a kmmio fault, when it actually is. This would lead to madness.
572          */
573         call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
574 }
575 EXPORT_SYMBOL(unregister_kmmio_probe);
576
577 static int
578 kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
579 {
580         struct die_args *arg = args;
581         unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
582
583         if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
584                 if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
585                         /*
586                          * Reset the BS bit in dr6 (pointed by args->err) to
587                          * denote completion of processing
588                          */
589                         *dr6_p &= ~DR_STEP;
590                         return NOTIFY_STOP;
591                 }
592
593         return NOTIFY_DONE;
594 }
595
596 static struct notifier_block nb_die = {
597         .notifier_call = kmmio_die_notifier
598 };
599
600 int kmmio_init(void)
601 {
602         int i;
603
604         for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
605                 INIT_LIST_HEAD(&kmmio_page_table[i]);
606
607         return register_die_notifier(&nb_die);
608 }
609
610 void kmmio_cleanup(void)
611 {
612         int i;
613
614         unregister_die_notifier(&nb_die);
615         for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
616                 WARN_ONCE(!list_empty(&kmmio_page_table[i]),
617                         KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
618         }
619 }