848189229b2dcf4cd79c909eab007f8dcbc1c652
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h>      /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>            /* for MAX_DMA_PFN */
19
20 #include "mm_internal.h"
21
22 unsigned long __initdata pgt_buf_start;
23 unsigned long __meminitdata pgt_buf_end;
24 unsigned long __meminitdata pgt_buf_top;
25
26 __ref void *alloc_low_page(void)
27 {
28         unsigned long pfn;
29         void *adr;
30
31 #ifdef CONFIG_X86_64
32         if (after_bootmem) {
33                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
34
35                 return adr;
36         }
37 #endif
38
39         if ((pgt_buf_end + 1) >= pgt_buf_top) {
40                 unsigned long ret;
41                 if (min_pfn_mapped >= max_pfn_mapped)
42                         panic("alloc_low_page: ran out of memory");
43                 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
44                                         max_pfn_mapped << PAGE_SHIFT,
45                                         PAGE_SIZE, PAGE_SIZE);
46                 if (!ret)
47                         panic("alloc_low_page: can not alloc memory");
48                 memblock_reserve(ret, PAGE_SIZE);
49                 pfn = ret >> PAGE_SHIFT;
50         } else
51                 pfn = pgt_buf_end++;
52
53         adr = __va(pfn * PAGE_SIZE);
54         clear_page(adr);
55         return adr;
56 }
57
58 /* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */
59 #define INIT_PGT_BUF_SIZE       (5 * PAGE_SIZE)
60 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
61 void  __init early_alloc_pgt_buf(void)
62 {
63         unsigned long tables = INIT_PGT_BUF_SIZE;
64         phys_addr_t base;
65
66         base = __pa(extend_brk(tables, PAGE_SIZE));
67
68         pgt_buf_start = base >> PAGE_SHIFT;
69         pgt_buf_end = pgt_buf_start;
70         pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
71 }
72
73 int after_bootmem;
74
75 int direct_gbpages
76 #ifdef CONFIG_DIRECT_GBPAGES
77                                 = 1
78 #endif
79 ;
80
81 struct map_range {
82         unsigned long start;
83         unsigned long end;
84         unsigned page_size_mask;
85 };
86
87 static int page_size_mask;
88
89 static void __init probe_page_size_mask(void)
90 {
91 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
92         /*
93          * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
94          * This will simplify cpa(), which otherwise needs to support splitting
95          * large pages into small in interrupt context, etc.
96          */
97         if (direct_gbpages)
98                 page_size_mask |= 1 << PG_LEVEL_1G;
99         if (cpu_has_pse)
100                 page_size_mask |= 1 << PG_LEVEL_2M;
101 #endif
102
103         /* Enable PSE if available */
104         if (cpu_has_pse)
105                 set_in_cr4(X86_CR4_PSE);
106
107         /* Enable PGE if available */
108         if (cpu_has_pge) {
109                 set_in_cr4(X86_CR4_PGE);
110                 __supported_pte_mask |= _PAGE_GLOBAL;
111         }
112 }
113 void __init native_pagetable_reserve(u64 start, u64 end)
114 {
115         memblock_reserve(start, end - start);
116 }
117
118 #ifdef CONFIG_X86_32
119 #define NR_RANGE_MR 3
120 #else /* CONFIG_X86_64 */
121 #define NR_RANGE_MR 5
122 #endif
123
124 static int __meminit save_mr(struct map_range *mr, int nr_range,
125                              unsigned long start_pfn, unsigned long end_pfn,
126                              unsigned long page_size_mask)
127 {
128         if (start_pfn < end_pfn) {
129                 if (nr_range >= NR_RANGE_MR)
130                         panic("run out of range for init_memory_mapping\n");
131                 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
132                 mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
133                 mr[nr_range].page_size_mask = page_size_mask;
134                 nr_range++;
135         }
136
137         return nr_range;
138 }
139
140 /*
141  * adjust the page_size_mask for small range to go with
142  *      big page size instead small one if nearby are ram too.
143  */
144 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
145                                                          int nr_range)
146 {
147         int i;
148
149         for (i = 0; i < nr_range; i++) {
150                 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
151                     !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
152                         unsigned long start = round_down(mr[i].start, PMD_SIZE);
153                         unsigned long end = round_up(mr[i].end, PMD_SIZE);
154
155 #ifdef CONFIG_X86_32
156                         if ((end >> PAGE_SHIFT) > max_low_pfn)
157                                 continue;
158 #endif
159
160                         if (memblock_is_region_memory(start, end - start))
161                                 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
162                 }
163                 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
164                     !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
165                         unsigned long start = round_down(mr[i].start, PUD_SIZE);
166                         unsigned long end = round_up(mr[i].end, PUD_SIZE);
167
168                         if (memblock_is_region_memory(start, end - start))
169                                 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
170                 }
171         }
172 }
173
174 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
175                                      unsigned long start,
176                                      unsigned long end)
177 {
178         unsigned long start_pfn, end_pfn;
179         unsigned long pos;
180         int i;
181
182         /* head if not big page alignment ? */
183         start_pfn = start >> PAGE_SHIFT;
184         pos = start_pfn << PAGE_SHIFT;
185 #ifdef CONFIG_X86_32
186         /*
187          * Don't use a large page for the first 2/4MB of memory
188          * because there are often fixed size MTRRs in there
189          * and overlapping MTRRs into large pages can cause
190          * slowdowns.
191          */
192         if (pos == 0)
193                 end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
194         else
195                 end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
196                                  << (PMD_SHIFT - PAGE_SHIFT);
197 #else /* CONFIG_X86_64 */
198         end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
199                         << (PMD_SHIFT - PAGE_SHIFT);
200 #endif
201         if (end_pfn > (end >> PAGE_SHIFT))
202                 end_pfn = end >> PAGE_SHIFT;
203         if (start_pfn < end_pfn) {
204                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
205                 pos = end_pfn << PAGE_SHIFT;
206         }
207
208         /* big page (2M) range */
209         start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
210                          << (PMD_SHIFT - PAGE_SHIFT);
211 #ifdef CONFIG_X86_32
212         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
213 #else /* CONFIG_X86_64 */
214         end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
215                          << (PUD_SHIFT - PAGE_SHIFT);
216         if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
217                 end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
218 #endif
219
220         if (start_pfn < end_pfn) {
221                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
222                                 page_size_mask & (1<<PG_LEVEL_2M));
223                 pos = end_pfn << PAGE_SHIFT;
224         }
225
226 #ifdef CONFIG_X86_64
227         /* big page (1G) range */
228         start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
229                          << (PUD_SHIFT - PAGE_SHIFT);
230         end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
231         if (start_pfn < end_pfn) {
232                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
233                                 page_size_mask &
234                                  ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
235                 pos = end_pfn << PAGE_SHIFT;
236         }
237
238         /* tail is not big page (1G) alignment */
239         start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
240                          << (PMD_SHIFT - PAGE_SHIFT);
241         end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
242         if (start_pfn < end_pfn) {
243                 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
244                                 page_size_mask & (1<<PG_LEVEL_2M));
245                 pos = end_pfn << PAGE_SHIFT;
246         }
247 #endif
248
249         /* tail is not big page (2M) alignment */
250         start_pfn = pos>>PAGE_SHIFT;
251         end_pfn = end>>PAGE_SHIFT;
252         nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
253
254         /* try to merge same page size and continuous */
255         for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
256                 unsigned long old_start;
257                 if (mr[i].end != mr[i+1].start ||
258                     mr[i].page_size_mask != mr[i+1].page_size_mask)
259                         continue;
260                 /* move it */
261                 old_start = mr[i].start;
262                 memmove(&mr[i], &mr[i+1],
263                         (nr_range - 1 - i) * sizeof(struct map_range));
264                 mr[i--].start = old_start;
265                 nr_range--;
266         }
267
268         if (!after_bootmem)
269                 adjust_range_page_size_mask(mr, nr_range);
270
271         for (i = 0; i < nr_range; i++)
272                 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
273                                 mr[i].start, mr[i].end - 1,
274                         (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
275                          (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
276
277         return nr_range;
278 }
279
280 static struct range pfn_mapped[E820_X_MAX];
281 static int nr_pfn_mapped;
282
283 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
284 {
285         nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
286                                              nr_pfn_mapped, start_pfn, end_pfn);
287         nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
288
289         max_pfn_mapped = max(max_pfn_mapped, end_pfn);
290
291         if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
292                 max_low_pfn_mapped = max(max_low_pfn_mapped,
293                                          min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
294 }
295
296 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
297 {
298         int i;
299
300         for (i = 0; i < nr_pfn_mapped; i++)
301                 if ((start_pfn >= pfn_mapped[i].start) &&
302                     (end_pfn <= pfn_mapped[i].end))
303                         return true;
304
305         return false;
306 }
307
308 /*
309  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
310  * This runs before bootmem is initialized and gets pages directly from
311  * the physical memory. To access them they are temporarily mapped.
312  */
313 unsigned long __init_refok init_memory_mapping(unsigned long start,
314                                                unsigned long end)
315 {
316         struct map_range mr[NR_RANGE_MR];
317         unsigned long ret = 0;
318         int nr_range, i;
319
320         pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
321                start, end - 1);
322
323         memset(mr, 0, sizeof(mr));
324         nr_range = split_mem_range(mr, 0, start, end);
325
326         for (i = 0; i < nr_range; i++)
327                 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
328                                                    mr[i].page_size_mask);
329
330 #ifdef CONFIG_X86_32
331         early_ioremap_page_table_range_init();
332
333         load_cr3(swapper_pg_dir);
334 #endif
335
336         __flush_tlb_all();
337
338         add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
339
340         return ret >> PAGE_SHIFT;
341 }
342
343 /*
344  * would have hole in the middle or ends, and only ram parts will be mapped.
345  */
346 static unsigned long __init init_range_memory_mapping(
347                                            unsigned long range_start,
348                                            unsigned long range_end)
349 {
350         unsigned long start_pfn, end_pfn;
351         unsigned long mapped_ram_size = 0;
352         int i;
353
354         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
355                 u64 start = (u64)start_pfn << PAGE_SHIFT;
356                 u64 end = (u64)end_pfn << PAGE_SHIFT;
357
358                 if (end <= range_start)
359                         continue;
360
361                 if (start < range_start)
362                         start = range_start;
363
364                 if (start >= range_end)
365                         continue;
366
367                 if (end > range_end)
368                         end = range_end;
369
370                 init_memory_mapping(start, end);
371
372                 mapped_ram_size += end - start;
373         }
374
375         return mapped_ram_size;
376 }
377
378 /* (PUD_SHIFT-PMD_SHIFT)/2 */
379 #define STEP_SIZE_SHIFT 5
380 void __init init_mem_mapping(void)
381 {
382         unsigned long end, real_end, start, last_start;
383         unsigned long step_size;
384         unsigned long addr;
385         unsigned long mapped_ram_size = 0;
386         unsigned long new_mapped_ram_size;
387
388         probe_page_size_mask();
389
390 #ifdef CONFIG_X86_64
391         end = max_pfn << PAGE_SHIFT;
392 #else
393         end = max_low_pfn << PAGE_SHIFT;
394 #endif
395
396         /* the ISA range is always mapped regardless of memory holes */
397         init_memory_mapping(0, ISA_END_ADDRESS);
398
399         /* xen has big range in reserved near end of ram, skip it at first */
400         addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE,
401                          PAGE_SIZE);
402         real_end = addr + PMD_SIZE;
403
404         /* step_size need to be small so pgt_buf from BRK could cover it */
405         step_size = PMD_SIZE;
406         max_pfn_mapped = 0; /* will get exact value next */
407         min_pfn_mapped = real_end >> PAGE_SHIFT;
408         last_start = start = real_end;
409         while (last_start > ISA_END_ADDRESS) {
410                 if (last_start > step_size) {
411                         start = round_down(last_start - 1, step_size);
412                         if (start < ISA_END_ADDRESS)
413                                 start = ISA_END_ADDRESS;
414                 } else
415                         start = ISA_END_ADDRESS;
416                 new_mapped_ram_size = init_range_memory_mapping(start,
417                                                         last_start);
418                 last_start = start;
419                 min_pfn_mapped = last_start >> PAGE_SHIFT;
420                 /* only increase step_size after big range get mapped */
421                 if (new_mapped_ram_size > mapped_ram_size)
422                         step_size <<= STEP_SIZE_SHIFT;
423                 mapped_ram_size += new_mapped_ram_size;
424         }
425
426         if (real_end < end)
427                 init_range_memory_mapping(real_end, end);
428
429 #ifdef CONFIG_X86_64
430         if (max_pfn > max_low_pfn) {
431                 /* can we preseve max_low_pfn ?*/
432                 max_low_pfn = max_pfn;
433         }
434 #endif
435         early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
436 }
437
438 /*
439  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
440  * is valid. The argument is a physical page number.
441  *
442  *
443  * On x86, access has to be given to the first megabyte of ram because that area
444  * contains bios code and data regions used by X and dosemu and similar apps.
445  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
446  * mmio resources as well as potential bios/acpi data regions.
447  */
448 int devmem_is_allowed(unsigned long pagenr)
449 {
450         if (pagenr < 256)
451                 return 1;
452         if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
453                 return 0;
454         if (!page_is_ram(pagenr))
455                 return 1;
456         return 0;
457 }
458
459 void free_init_pages(char *what, unsigned long begin, unsigned long end)
460 {
461         unsigned long addr;
462         unsigned long begin_aligned, end_aligned;
463
464         /* Make sure boundaries are page aligned */
465         begin_aligned = PAGE_ALIGN(begin);
466         end_aligned   = end & PAGE_MASK;
467
468         if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
469                 begin = begin_aligned;
470                 end   = end_aligned;
471         }
472
473         if (begin >= end)
474                 return;
475
476         addr = begin;
477
478         /*
479          * If debugging page accesses then do not free this memory but
480          * mark them not present - any buggy init-section access will
481          * create a kernel page fault:
482          */
483 #ifdef CONFIG_DEBUG_PAGEALLOC
484         printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
485                 begin, end - 1);
486         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
487 #else
488         /*
489          * We just marked the kernel text read only above, now that
490          * we are going to free part of that, we need to make that
491          * writeable and non-executable first.
492          */
493         set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
494         set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
495
496         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
497
498         for (; addr < end; addr += PAGE_SIZE) {
499                 ClearPageReserved(virt_to_page(addr));
500                 init_page_count(virt_to_page(addr));
501                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
502                 free_page(addr);
503                 totalram_pages++;
504         }
505 #endif
506 }
507
508 void free_initmem(void)
509 {
510         free_init_pages("unused kernel memory",
511                         (unsigned long)(&__init_begin),
512                         (unsigned long)(&__init_end));
513 }
514
515 #ifdef CONFIG_BLK_DEV_INITRD
516 void __init free_initrd_mem(unsigned long start, unsigned long end)
517 {
518         /*
519          * end could be not aligned, and We can not align that,
520          * decompresser could be confused by aligned initrd_end
521          * We already reserve the end partial page before in
522          *   - i386_start_kernel()
523          *   - x86_64_start_kernel()
524          *   - relocate_initrd()
525          * So here We can do PAGE_ALIGN() safely to get partial page to be freed
526          */
527         free_init_pages("initrd memory", start, PAGE_ALIGN(end));
528 }
529 #endif
530
531 void __init zone_sizes_init(void)
532 {
533         unsigned long max_zone_pfns[MAX_NR_ZONES];
534
535         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
536
537 #ifdef CONFIG_ZONE_DMA
538         max_zone_pfns[ZONE_DMA]         = MAX_DMA_PFN;
539 #endif
540 #ifdef CONFIG_ZONE_DMA32
541         max_zone_pfns[ZONE_DMA32]       = MAX_DMA32_PFN;
542 #endif
543         max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
544 #ifdef CONFIG_HIGHMEM
545         max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
546 #endif
547
548         free_area_init_nodes(max_zone_pfns);
549 }
550