Merge branch 'urgent'
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169         int i;
170         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171                 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176         unsigned slot;
177         struct kvm_shared_msrs *locals
178                 = container_of(urn, struct kvm_shared_msrs, urn);
179         struct kvm_shared_msr_values *values;
180
181         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182                 values = &locals->values[slot];
183                 if (values->host != values->curr) {
184                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
185                         values->curr = values->host;
186                 }
187         }
188         locals->registered = false;
189         user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194         u64 value;
195         unsigned int cpu = smp_processor_id();
196         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
197
198         /* only read, and nobody should modify it at this time,
199          * so don't need lock */
200         if (slot >= shared_msrs_global.nr) {
201                 printk(KERN_ERR "kvm: invalid MSR slot!");
202                 return;
203         }
204         rdmsrl_safe(msr, &value);
205         smsr->values[slot].host = value;
206         smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211         if (slot >= shared_msrs_global.nr)
212                 shared_msrs_global.nr = slot + 1;
213         shared_msrs_global.msrs[slot] = msr;
214         /* we need ensured the shared_msr_global have been updated */
215         smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221         unsigned i;
222
223         for (i = 0; i < shared_msrs_global.nr; ++i)
224                 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229         unsigned int cpu = smp_processor_id();
230         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
231
232         if (((value ^ smsr->values[slot].curr) & mask) == 0)
233                 return;
234         smsr->values[slot].curr = value;
235         wrmsrl(shared_msrs_global.msrs[slot], value);
236         if (!smsr->registered) {
237                 smsr->urn.on_user_return = kvm_on_user_return;
238                 user_return_notifier_register(&smsr->urn);
239                 smsr->registered = true;
240         }
241 }
242 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
243
244 static void drop_user_return_notifiers(void *ignore)
245 {
246         unsigned int cpu = smp_processor_id();
247         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248
249         if (smsr->registered)
250                 kvm_on_user_return(&smsr->urn);
251 }
252
253 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
254 {
255         return vcpu->arch.apic_base;
256 }
257 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
258
259 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
260 {
261         /* TODO: reserve bits check */
262         kvm_lapic_set_base(vcpu, data);
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN            0
267 #define EXCPT_CONTRIBUTORY      1
268 #define EXCPT_PF                2
269
270 static int exception_class(int vector)
271 {
272         switch (vector) {
273         case PF_VECTOR:
274                 return EXCPT_PF;
275         case DE_VECTOR:
276         case TS_VECTOR:
277         case NP_VECTOR:
278         case SS_VECTOR:
279         case GP_VECTOR:
280                 return EXCPT_CONTRIBUTORY;
281         default:
282                 break;
283         }
284         return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288                 unsigned nr, bool has_error, u32 error_code,
289                 bool reinject)
290 {
291         u32 prev_nr;
292         int class1, class2;
293
294         kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296         if (!vcpu->arch.exception.pending) {
297         queue:
298                 vcpu->arch.exception.pending = true;
299                 vcpu->arch.exception.has_error_code = has_error;
300                 vcpu->arch.exception.nr = nr;
301                 vcpu->arch.exception.error_code = error_code;
302                 vcpu->arch.exception.reinject = reinject;
303                 return;
304         }
305
306         /* to check exception */
307         prev_nr = vcpu->arch.exception.nr;
308         if (prev_nr == DF_VECTOR) {
309                 /* triple fault -> shutdown */
310                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311                 return;
312         }
313         class1 = exception_class(prev_nr);
314         class2 = exception_class(nr);
315         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317                 /* generate double fault per SDM Table 5-5 */
318                 vcpu->arch.exception.pending = true;
319                 vcpu->arch.exception.has_error_code = true;
320                 vcpu->arch.exception.nr = DF_VECTOR;
321                 vcpu->arch.exception.error_code = 0;
322         } else
323                 /* replace previous exception with a new one in a hope
324                    that instruction re-execution will regenerate lost
325                    exception */
326                 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337         kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343         if (err)
344                 kvm_inject_gp(vcpu, 0);
345         else
346                 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352         ++vcpu->stat.pf_guest;
353         vcpu->arch.cr2 = fault->address;
354         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362         else
363                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368         atomic_inc(&vcpu->arch.nmi_queued);
369         kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381         kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392                 return true;
393         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394         return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404                             gfn_t ngfn, void *data, int offset, int len,
405                             u32 access)
406 {
407         gfn_t real_gfn;
408         gpa_t ngpa;
409
410         ngpa     = gfn_to_gpa(ngfn);
411         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412         if (real_gfn == UNMAPPED_GVA)
413                 return -EFAULT;
414
415         real_gfn = gpa_to_gfn(real_gfn);
416
417         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422                                void *data, int offset, int len, u32 access)
423 {
424         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425                                        data, offset, len, access);
426 }
427
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435         int i;
436         int ret;
437         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440                                       offset * sizeof(u64), sizeof(pdpte),
441                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
442         if (ret < 0) {
443                 ret = 0;
444                 goto out;
445         }
446         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447                 if (is_present_gpte(pdpte[i]) &&
448                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449                         ret = 0;
450                         goto out;
451                 }
452         }
453         ret = 1;
454
455         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_avail);
458         __set_bit(VCPU_EXREG_PDPTR,
459                   (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462         return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469         bool changed = true;
470         int offset;
471         gfn_t gfn;
472         int r;
473
474         if (is_long_mode(vcpu) || !is_pae(vcpu))
475                 return false;
476
477         if (!test_bit(VCPU_EXREG_PDPTR,
478                       (unsigned long *)&vcpu->arch.regs_avail))
479                 return true;
480
481         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
485         if (r < 0)
486                 goto out;
487         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490         return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495         unsigned long old_cr0 = kvm_read_cr0(vcpu);
496         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497                                     X86_CR0_CD | X86_CR0_NW;
498
499         cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502         if (cr0 & 0xffffffff00000000UL)
503                 return 1;
504 #endif
505
506         cr0 &= ~CR0_RESERVED_BITS;
507
508         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509                 return 1;
510
511         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512                 return 1;
513
514         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516                 if ((vcpu->arch.efer & EFER_LME)) {
517                         int cs_db, cs_l;
518
519                         if (!is_pae(vcpu))
520                                 return 1;
521                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522                         if (cs_l)
523                                 return 1;
524                 } else
525 #endif
526                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527                                                  kvm_read_cr3(vcpu)))
528                         return 1;
529         }
530
531         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532                 return 1;
533
534         kvm_x86_ops->set_cr0(vcpu, cr0);
535
536         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537                 kvm_clear_async_pf_completion_queue(vcpu);
538                 kvm_async_pf_hash_reset(vcpu);
539         }
540
541         if ((cr0 ^ old_cr0) & update_bits)
542                 kvm_mmu_reset_context(vcpu);
543         return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         u64 xcr0;
556
557         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558         if (index != XCR_XFEATURE_ENABLED_MASK)
559                 return 1;
560         xcr0 = xcr;
561         if (kvm_x86_ops->get_cpl(vcpu) != 0)
562                 return 1;
563         if (!(xcr0 & XSTATE_FP))
564                 return 1;
565         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566                 return 1;
567         if (xcr0 & ~host_xcr0)
568                 return 1;
569         vcpu->arch.xcr0 = xcr0;
570         vcpu->guest_xcr0_loaded = 0;
571         return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576         if (__kvm_set_xcr(vcpu, index, xcr)) {
577                 kvm_inject_gp(vcpu, 0);
578                 return 1;
579         }
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586         unsigned long old_cr4 = kvm_read_cr4(vcpu);
587         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588                                    X86_CR4_PAE | X86_CR4_SMEP;
589         if (cr4 & CR4_RESERVED_BITS)
590                 return 1;
591
592         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593                 return 1;
594
595         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596                 return 1;
597
598         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                    kvm_read_cr3(vcpu)))
608                 return 1;
609
610         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611                 if (!guest_cpuid_has_pcid(vcpu))
612                         return 1;
613
614                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616                         return 1;
617         }
618
619         if (kvm_x86_ops->set_cr4(vcpu, cr4))
620                 return 1;
621
622         if (((cr4 ^ old_cr4) & pdptr_bits) ||
623             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 kvm_update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
643                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644                                 return 1;
645                 } else
646                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
647                                 return 1;
648         } else {
649                 if (is_pae(vcpu)) {
650                         if (cr3 & CR3_PAE_RESERVED_BITS)
651                                 return 1;
652                         if (is_paging(vcpu) &&
653                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654                                 return 1;
655                 }
656                 /*
657                  * We don't check reserved bits in nonpae mode, because
658                  * this isn't enforced, and VMware depends on this.
659                  */
660         }
661
662         /*
663          * Does the new cr3 value map to physical memory? (Note, we
664          * catch an invalid cr3 even in real-mode, because it would
665          * cause trouble later on when we turn on paging anyway.)
666          *
667          * A real CPU would silently accept an invalid cr3 and would
668          * attempt to use it - with largely undefined (and often hard
669          * to debug) behavior on the guest side.
670          */
671         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672                 return 1;
673         vcpu->arch.cr3 = cr3;
674         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675         vcpu->arch.mmu.new_cr3(vcpu);
676         return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682         if (cr8 & CR8_RESERVED_BITS)
683                 return 1;
684         if (irqchip_in_kernel(vcpu->kvm))
685                 kvm_lapic_set_tpr(vcpu, cr8);
686         else
687                 vcpu->arch.cr8 = cr8;
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694         if (irqchip_in_kernel(vcpu->kvm))
695                 return kvm_lapic_get_cr8(vcpu);
696         else
697                 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
702 {
703         unsigned long dr7;
704
705         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
706                 dr7 = vcpu->arch.guest_debug_dr7;
707         else
708                 dr7 = vcpu->arch.dr7;
709         kvm_x86_ops->set_dr7(vcpu, dr7);
710         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
711 }
712
713 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
714 {
715         switch (dr) {
716         case 0 ... 3:
717                 vcpu->arch.db[dr] = val;
718                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
719                         vcpu->arch.eff_db[dr] = val;
720                 break;
721         case 4:
722                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
723                         return 1; /* #UD */
724                 /* fall through */
725         case 6:
726                 if (val & 0xffffffff00000000ULL)
727                         return -1; /* #GP */
728                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
729                 break;
730         case 5:
731                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
732                         return 1; /* #UD */
733                 /* fall through */
734         default: /* 7 */
735                 if (val & 0xffffffff00000000ULL)
736                         return -1; /* #GP */
737                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
738                 kvm_update_dr7(vcpu);
739                 break;
740         }
741
742         return 0;
743 }
744
745 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
746 {
747         int res;
748
749         res = __kvm_set_dr(vcpu, dr, val);
750         if (res > 0)
751                 kvm_queue_exception(vcpu, UD_VECTOR);
752         else if (res < 0)
753                 kvm_inject_gp(vcpu, 0);
754
755         return res;
756 }
757 EXPORT_SYMBOL_GPL(kvm_set_dr);
758
759 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
760 {
761         switch (dr) {
762         case 0 ... 3:
763                 *val = vcpu->arch.db[dr];
764                 break;
765         case 4:
766                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
767                         return 1;
768                 /* fall through */
769         case 6:
770                 *val = vcpu->arch.dr6;
771                 break;
772         case 5:
773                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
774                         return 1;
775                 /* fall through */
776         default: /* 7 */
777                 *val = vcpu->arch.dr7;
778                 break;
779         }
780
781         return 0;
782 }
783
784 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
785 {
786         if (_kvm_get_dr(vcpu, dr, val)) {
787                 kvm_queue_exception(vcpu, UD_VECTOR);
788                 return 1;
789         }
790         return 0;
791 }
792 EXPORT_SYMBOL_GPL(kvm_get_dr);
793
794 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
795 {
796         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
797         u64 data;
798         int err;
799
800         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
801         if (err)
802                 return err;
803         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
804         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
805         return err;
806 }
807 EXPORT_SYMBOL_GPL(kvm_rdpmc);
808
809 /*
810  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
811  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
812  *
813  * This list is modified at module load time to reflect the
814  * capabilities of the host cpu. This capabilities test skips MSRs that are
815  * kvm-specific. Those are put in the beginning of the list.
816  */
817
818 #define KVM_SAVE_MSRS_BEGIN     10
819 static u32 msrs_to_save[] = {
820         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
821         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
822         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
823         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
824         MSR_KVM_PV_EOI_EN,
825         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
826         MSR_STAR,
827 #ifdef CONFIG_X86_64
828         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
829 #endif
830         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
831 };
832
833 static unsigned num_msrs_to_save;
834
835 static const u32 emulated_msrs[] = {
836         MSR_IA32_TSC_ADJUST,
837         MSR_IA32_TSCDEADLINE,
838         MSR_IA32_MISC_ENABLE,
839         MSR_IA32_MCG_STATUS,
840         MSR_IA32_MCG_CTL,
841 };
842
843 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
844 {
845         u64 old_efer = vcpu->arch.efer;
846
847         if (efer & efer_reserved_bits)
848                 return 1;
849
850         if (is_paging(vcpu)
851             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
852                 return 1;
853
854         if (efer & EFER_FFXSR) {
855                 struct kvm_cpuid_entry2 *feat;
856
857                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
858                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
859                         return 1;
860         }
861
862         if (efer & EFER_SVME) {
863                 struct kvm_cpuid_entry2 *feat;
864
865                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
866                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
867                         return 1;
868         }
869
870         efer &= ~EFER_LMA;
871         efer |= vcpu->arch.efer & EFER_LMA;
872
873         kvm_x86_ops->set_efer(vcpu, efer);
874
875         /* Update reserved bits */
876         if ((efer ^ old_efer) & EFER_NX)
877                 kvm_mmu_reset_context(vcpu);
878
879         return 0;
880 }
881
882 void kvm_enable_efer_bits(u64 mask)
883 {
884        efer_reserved_bits &= ~mask;
885 }
886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
887
888
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
895 {
896         return kvm_x86_ops->set_msr(vcpu, msr);
897 }
898
899 /*
900  * Adapt set_msr() to msr_io()'s calling convention
901  */
902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
903 {
904         struct msr_data msr;
905
906         msr.data = *data;
907         msr.index = index;
908         msr.host_initiated = true;
909         return kvm_set_msr(vcpu, &msr);
910 }
911
912 #ifdef CONFIG_X86_64
913 struct pvclock_gtod_data {
914         seqcount_t      seq;
915
916         struct { /* extract of a clocksource struct */
917                 int vclock_mode;
918                 cycle_t cycle_last;
919                 cycle_t mask;
920                 u32     mult;
921                 u32     shift;
922         } clock;
923
924         /* open coded 'struct timespec' */
925         u64             monotonic_time_snsec;
926         time_t          monotonic_time_sec;
927 };
928
929 static struct pvclock_gtod_data pvclock_gtod_data;
930
931 static void update_pvclock_gtod(struct timekeeper *tk)
932 {
933         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
934
935         write_seqcount_begin(&vdata->seq);
936
937         /* copy pvclock gtod data */
938         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
939         vdata->clock.cycle_last         = tk->clock->cycle_last;
940         vdata->clock.mask               = tk->clock->mask;
941         vdata->clock.mult               = tk->mult;
942         vdata->clock.shift              = tk->shift;
943
944         vdata->monotonic_time_sec       = tk->xtime_sec
945                                         + tk->wall_to_monotonic.tv_sec;
946         vdata->monotonic_time_snsec     = tk->xtime_nsec
947                                         + (tk->wall_to_monotonic.tv_nsec
948                                                 << tk->shift);
949         while (vdata->monotonic_time_snsec >=
950                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
951                 vdata->monotonic_time_snsec -=
952                                         ((u64)NSEC_PER_SEC) << tk->shift;
953                 vdata->monotonic_time_sec++;
954         }
955
956         write_seqcount_end(&vdata->seq);
957 }
958 #endif
959
960
961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
962 {
963         int version;
964         int r;
965         struct pvclock_wall_clock wc;
966         struct timespec boot;
967
968         if (!wall_clock)
969                 return;
970
971         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
972         if (r)
973                 return;
974
975         if (version & 1)
976                 ++version;  /* first time write, random junk */
977
978         ++version;
979
980         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
981
982         /*
983          * The guest calculates current wall clock time by adding
984          * system time (updated by kvm_guest_time_update below) to the
985          * wall clock specified here.  guest system time equals host
986          * system time for us, thus we must fill in host boot time here.
987          */
988         getboottime(&boot);
989
990         if (kvm->arch.kvmclock_offset) {
991                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
992                 boot = timespec_sub(boot, ts);
993         }
994         wc.sec = boot.tv_sec;
995         wc.nsec = boot.tv_nsec;
996         wc.version = version;
997
998         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
999
1000         version++;
1001         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1002 }
1003
1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1005 {
1006         uint32_t quotient, remainder;
1007
1008         /* Don't try to replace with do_div(), this one calculates
1009          * "(dividend << 32) / divisor" */
1010         __asm__ ( "divl %4"
1011                   : "=a" (quotient), "=d" (remainder)
1012                   : "0" (0), "1" (dividend), "r" (divisor) );
1013         return quotient;
1014 }
1015
1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1017                                s8 *pshift, u32 *pmultiplier)
1018 {
1019         uint64_t scaled64;
1020         int32_t  shift = 0;
1021         uint64_t tps64;
1022         uint32_t tps32;
1023
1024         tps64 = base_khz * 1000LL;
1025         scaled64 = scaled_khz * 1000LL;
1026         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1027                 tps64 >>= 1;
1028                 shift--;
1029         }
1030
1031         tps32 = (uint32_t)tps64;
1032         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1033                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1034                         scaled64 >>= 1;
1035                 else
1036                         tps32 <<= 1;
1037                 shift++;
1038         }
1039
1040         *pshift = shift;
1041         *pmultiplier = div_frac(scaled64, tps32);
1042
1043         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1044                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1045 }
1046
1047 static inline u64 get_kernel_ns(void)
1048 {
1049         struct timespec ts;
1050
1051         WARN_ON(preemptible());
1052         ktime_get_ts(&ts);
1053         monotonic_to_bootbased(&ts);
1054         return timespec_to_ns(&ts);
1055 }
1056
1057 #ifdef CONFIG_X86_64
1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1059 #endif
1060
1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1062 unsigned long max_tsc_khz;
1063
1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1065 {
1066         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1067                                    vcpu->arch.virtual_tsc_shift);
1068 }
1069
1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1071 {
1072         u64 v = (u64)khz * (1000000 + ppm);
1073         do_div(v, 1000000);
1074         return v;
1075 }
1076
1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1078 {
1079         u32 thresh_lo, thresh_hi;
1080         int use_scaling = 0;
1081
1082         /* Compute a scale to convert nanoseconds in TSC cycles */
1083         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1084                            &vcpu->arch.virtual_tsc_shift,
1085                            &vcpu->arch.virtual_tsc_mult);
1086         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1087
1088         /*
1089          * Compute the variation in TSC rate which is acceptable
1090          * within the range of tolerance and decide if the
1091          * rate being applied is within that bounds of the hardware
1092          * rate.  If so, no scaling or compensation need be done.
1093          */
1094         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1095         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1096         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1097                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1098                 use_scaling = 1;
1099         }
1100         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1101 }
1102
1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1104 {
1105         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1106                                       vcpu->arch.virtual_tsc_mult,
1107                                       vcpu->arch.virtual_tsc_shift);
1108         tsc += vcpu->arch.this_tsc_write;
1109         return tsc;
1110 }
1111
1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115         bool vcpus_matched;
1116         bool do_request = false;
1117         struct kvm_arch *ka = &vcpu->kvm->arch;
1118         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1119
1120         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1121                          atomic_read(&vcpu->kvm->online_vcpus));
1122
1123         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1124                 if (!ka->use_master_clock)
1125                         do_request = 1;
1126
1127         if (!vcpus_matched && ka->use_master_clock)
1128                         do_request = 1;
1129
1130         if (do_request)
1131                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1132
1133         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1134                             atomic_read(&vcpu->kvm->online_vcpus),
1135                             ka->use_master_clock, gtod->clock.vclock_mode);
1136 #endif
1137 }
1138
1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1140 {
1141         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1142         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1143 }
1144
1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1146 {
1147         struct kvm *kvm = vcpu->kvm;
1148         u64 offset, ns, elapsed;
1149         unsigned long flags;
1150         s64 usdiff;
1151         bool matched;
1152         u64 data = msr->data;
1153
1154         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1155         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1156         ns = get_kernel_ns();
1157         elapsed = ns - kvm->arch.last_tsc_nsec;
1158
1159         /* n.b - signed multiplication and division required */
1160         usdiff = data - kvm->arch.last_tsc_write;
1161 #ifdef CONFIG_X86_64
1162         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1163 #else
1164         /* do_div() only does unsigned */
1165         asm("idivl %2; xor %%edx, %%edx"
1166             : "=A"(usdiff)
1167             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1168 #endif
1169         do_div(elapsed, 1000);
1170         usdiff -= elapsed;
1171         if (usdiff < 0)
1172                 usdiff = -usdiff;
1173
1174         /*
1175          * Special case: TSC write with a small delta (1 second) of virtual
1176          * cycle time against real time is interpreted as an attempt to
1177          * synchronize the CPU.
1178          *
1179          * For a reliable TSC, we can match TSC offsets, and for an unstable
1180          * TSC, we add elapsed time in this computation.  We could let the
1181          * compensation code attempt to catch up if we fall behind, but
1182          * it's better to try to match offsets from the beginning.
1183          */
1184         if (usdiff < USEC_PER_SEC &&
1185             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1186                 if (!check_tsc_unstable()) {
1187                         offset = kvm->arch.cur_tsc_offset;
1188                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1189                 } else {
1190                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1191                         data += delta;
1192                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1194                 }
1195                 matched = true;
1196         } else {
1197                 /*
1198                  * We split periods of matched TSC writes into generations.
1199                  * For each generation, we track the original measured
1200                  * nanosecond time, offset, and write, so if TSCs are in
1201                  * sync, we can match exact offset, and if not, we can match
1202                  * exact software computation in compute_guest_tsc()
1203                  *
1204                  * These values are tracked in kvm->arch.cur_xxx variables.
1205                  */
1206                 kvm->arch.cur_tsc_generation++;
1207                 kvm->arch.cur_tsc_nsec = ns;
1208                 kvm->arch.cur_tsc_write = data;
1209                 kvm->arch.cur_tsc_offset = offset;
1210                 matched = false;
1211                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1212                          kvm->arch.cur_tsc_generation, data);
1213         }
1214
1215         /*
1216          * We also track th most recent recorded KHZ, write and time to
1217          * allow the matching interval to be extended at each write.
1218          */
1219         kvm->arch.last_tsc_nsec = ns;
1220         kvm->arch.last_tsc_write = data;
1221         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1222
1223         /* Reset of TSC must disable overshoot protection below */
1224         vcpu->arch.hv_clock.tsc_timestamp = 0;
1225         vcpu->arch.last_guest_tsc = data;
1226
1227         /* Keep track of which generation this VCPU has synchronized to */
1228         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1229         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1230         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1231
1232         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1233                 update_ia32_tsc_adjust_msr(vcpu, offset);
1234         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1235         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1236
1237         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1238         if (matched)
1239                 kvm->arch.nr_vcpus_matched_tsc++;
1240         else
1241                 kvm->arch.nr_vcpus_matched_tsc = 0;
1242
1243         kvm_track_tsc_matching(vcpu);
1244         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1245 }
1246
1247 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1248
1249 #ifdef CONFIG_X86_64
1250
1251 static cycle_t read_tsc(void)
1252 {
1253         cycle_t ret;
1254         u64 last;
1255
1256         /*
1257          * Empirically, a fence (of type that depends on the CPU)
1258          * before rdtsc is enough to ensure that rdtsc is ordered
1259          * with respect to loads.  The various CPU manuals are unclear
1260          * as to whether rdtsc can be reordered with later loads,
1261          * but no one has ever seen it happen.
1262          */
1263         rdtsc_barrier();
1264         ret = (cycle_t)vget_cycles();
1265
1266         last = pvclock_gtod_data.clock.cycle_last;
1267
1268         if (likely(ret >= last))
1269                 return ret;
1270
1271         /*
1272          * GCC likes to generate cmov here, but this branch is extremely
1273          * predictable (it's just a funciton of time and the likely is
1274          * very likely) and there's a data dependence, so force GCC
1275          * to generate a branch instead.  I don't barrier() because
1276          * we don't actually need a barrier, and if this function
1277          * ever gets inlined it will generate worse code.
1278          */
1279         asm volatile ("");
1280         return last;
1281 }
1282
1283 static inline u64 vgettsc(cycle_t *cycle_now)
1284 {
1285         long v;
1286         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288         *cycle_now = read_tsc();
1289
1290         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1291         return v * gtod->clock.mult;
1292 }
1293
1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1295 {
1296         unsigned long seq;
1297         u64 ns;
1298         int mode;
1299         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1300
1301         ts->tv_nsec = 0;
1302         do {
1303                 seq = read_seqcount_begin(&gtod->seq);
1304                 mode = gtod->clock.vclock_mode;
1305                 ts->tv_sec = gtod->monotonic_time_sec;
1306                 ns = gtod->monotonic_time_snsec;
1307                 ns += vgettsc(cycle_now);
1308                 ns >>= gtod->clock.shift;
1309         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1310         timespec_add_ns(ts, ns);
1311
1312         return mode;
1313 }
1314
1315 /* returns true if host is using tsc clocksource */
1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1317 {
1318         struct timespec ts;
1319
1320         /* checked again under seqlock below */
1321         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1322                 return false;
1323
1324         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1325                 return false;
1326
1327         monotonic_to_bootbased(&ts);
1328         *kernel_ns = timespec_to_ns(&ts);
1329
1330         return true;
1331 }
1332 #endif
1333
1334 /*
1335  *
1336  * Assuming a stable TSC across physical CPUS, and a stable TSC
1337  * across virtual CPUs, the following condition is possible.
1338  * Each numbered line represents an event visible to both
1339  * CPUs at the next numbered event.
1340  *
1341  * "timespecX" represents host monotonic time. "tscX" represents
1342  * RDTSC value.
1343  *
1344  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1345  *
1346  * 1.  read timespec0,tsc0
1347  * 2.                                   | timespec1 = timespec0 + N
1348  *                                      | tsc1 = tsc0 + M
1349  * 3. transition to guest               | transition to guest
1350  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1351  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1352  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1353  *
1354  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1355  *
1356  *      - ret0 < ret1
1357  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1358  *              ...
1359  *      - 0 < N - M => M < N
1360  *
1361  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1362  * always the case (the difference between two distinct xtime instances
1363  * might be smaller then the difference between corresponding TSC reads,
1364  * when updating guest vcpus pvclock areas).
1365  *
1366  * To avoid that problem, do not allow visibility of distinct
1367  * system_timestamp/tsc_timestamp values simultaneously: use a master
1368  * copy of host monotonic time values. Update that master copy
1369  * in lockstep.
1370  *
1371  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1372  *
1373  */
1374
1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1376 {
1377 #ifdef CONFIG_X86_64
1378         struct kvm_arch *ka = &kvm->arch;
1379         int vclock_mode;
1380         bool host_tsc_clocksource, vcpus_matched;
1381
1382         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1383                         atomic_read(&kvm->online_vcpus));
1384
1385         /*
1386          * If the host uses TSC clock, then passthrough TSC as stable
1387          * to the guest.
1388          */
1389         host_tsc_clocksource = kvm_get_time_and_clockread(
1390                                         &ka->master_kernel_ns,
1391                                         &ka->master_cycle_now);
1392
1393         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1394
1395         if (ka->use_master_clock)
1396                 atomic_set(&kvm_guest_has_master_clock, 1);
1397
1398         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1399         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1400                                         vcpus_matched);
1401 #endif
1402 }
1403
1404 static int kvm_guest_time_update(struct kvm_vcpu *v)
1405 {
1406         unsigned long flags, this_tsc_khz;
1407         struct kvm_vcpu_arch *vcpu = &v->arch;
1408         struct kvm_arch *ka = &v->kvm->arch;
1409         s64 kernel_ns, max_kernel_ns;
1410         u64 tsc_timestamp, host_tsc;
1411         struct pvclock_vcpu_time_info guest_hv_clock;
1412         u8 pvclock_flags;
1413         bool use_master_clock;
1414
1415         kernel_ns = 0;
1416         host_tsc = 0;
1417
1418         /*
1419          * If the host uses TSC clock, then passthrough TSC as stable
1420          * to the guest.
1421          */
1422         spin_lock(&ka->pvclock_gtod_sync_lock);
1423         use_master_clock = ka->use_master_clock;
1424         if (use_master_clock) {
1425                 host_tsc = ka->master_cycle_now;
1426                 kernel_ns = ka->master_kernel_ns;
1427         }
1428         spin_unlock(&ka->pvclock_gtod_sync_lock);
1429
1430         /* Keep irq disabled to prevent changes to the clock */
1431         local_irq_save(flags);
1432         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1433         if (unlikely(this_tsc_khz == 0)) {
1434                 local_irq_restore(flags);
1435                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1436                 return 1;
1437         }
1438         if (!use_master_clock) {
1439                 host_tsc = native_read_tsc();
1440                 kernel_ns = get_kernel_ns();
1441         }
1442
1443         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1444
1445         /*
1446          * We may have to catch up the TSC to match elapsed wall clock
1447          * time for two reasons, even if kvmclock is used.
1448          *   1) CPU could have been running below the maximum TSC rate
1449          *   2) Broken TSC compensation resets the base at each VCPU
1450          *      entry to avoid unknown leaps of TSC even when running
1451          *      again on the same CPU.  This may cause apparent elapsed
1452          *      time to disappear, and the guest to stand still or run
1453          *      very slowly.
1454          */
1455         if (vcpu->tsc_catchup) {
1456                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1457                 if (tsc > tsc_timestamp) {
1458                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1459                         tsc_timestamp = tsc;
1460                 }
1461         }
1462
1463         local_irq_restore(flags);
1464
1465         if (!vcpu->pv_time_enabled)
1466                 return 0;
1467
1468         /*
1469          * Time as measured by the TSC may go backwards when resetting the base
1470          * tsc_timestamp.  The reason for this is that the TSC resolution is
1471          * higher than the resolution of the other clock scales.  Thus, many
1472          * possible measurments of the TSC correspond to one measurement of any
1473          * other clock, and so a spread of values is possible.  This is not a
1474          * problem for the computation of the nanosecond clock; with TSC rates
1475          * around 1GHZ, there can only be a few cycles which correspond to one
1476          * nanosecond value, and any path through this code will inevitably
1477          * take longer than that.  However, with the kernel_ns value itself,
1478          * the precision may be much lower, down to HZ granularity.  If the
1479          * first sampling of TSC against kernel_ns ends in the low part of the
1480          * range, and the second in the high end of the range, we can get:
1481          *
1482          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1483          *
1484          * As the sampling errors potentially range in the thousands of cycles,
1485          * it is possible such a time value has already been observed by the
1486          * guest.  To protect against this, we must compute the system time as
1487          * observed by the guest and ensure the new system time is greater.
1488          */
1489         max_kernel_ns = 0;
1490         if (vcpu->hv_clock.tsc_timestamp) {
1491                 max_kernel_ns = vcpu->last_guest_tsc -
1492                                 vcpu->hv_clock.tsc_timestamp;
1493                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1494                                     vcpu->hv_clock.tsc_to_system_mul,
1495                                     vcpu->hv_clock.tsc_shift);
1496                 max_kernel_ns += vcpu->last_kernel_ns;
1497         }
1498
1499         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1500                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1501                                    &vcpu->hv_clock.tsc_shift,
1502                                    &vcpu->hv_clock.tsc_to_system_mul);
1503                 vcpu->hw_tsc_khz = this_tsc_khz;
1504         }
1505
1506         /* with a master <monotonic time, tsc value> tuple,
1507          * pvclock clock reads always increase at the (scaled) rate
1508          * of guest TSC - no need to deal with sampling errors.
1509          */
1510         if (!use_master_clock) {
1511                 if (max_kernel_ns > kernel_ns)
1512                         kernel_ns = max_kernel_ns;
1513         }
1514         /* With all the info we got, fill in the values */
1515         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1516         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1517         vcpu->last_kernel_ns = kernel_ns;
1518         vcpu->last_guest_tsc = tsc_timestamp;
1519
1520         /*
1521          * The interface expects us to write an even number signaling that the
1522          * update is finished. Since the guest won't see the intermediate
1523          * state, we just increase by 2 at the end.
1524          */
1525         vcpu->hv_clock.version += 2;
1526
1527         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1528                 &guest_hv_clock, sizeof(guest_hv_clock))))
1529                 return 0;
1530
1531         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1532         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1533
1534         if (vcpu->pvclock_set_guest_stopped_request) {
1535                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1536                 vcpu->pvclock_set_guest_stopped_request = false;
1537         }
1538
1539         /* If the host uses TSC clocksource, then it is stable */
1540         if (use_master_clock)
1541                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1542
1543         vcpu->hv_clock.flags = pvclock_flags;
1544
1545         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1546                                 &vcpu->hv_clock,
1547                                 sizeof(vcpu->hv_clock));
1548         return 0;
1549 }
1550
1551 static bool msr_mtrr_valid(unsigned msr)
1552 {
1553         switch (msr) {
1554         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1555         case MSR_MTRRfix64K_00000:
1556         case MSR_MTRRfix16K_80000:
1557         case MSR_MTRRfix16K_A0000:
1558         case MSR_MTRRfix4K_C0000:
1559         case MSR_MTRRfix4K_C8000:
1560         case MSR_MTRRfix4K_D0000:
1561         case MSR_MTRRfix4K_D8000:
1562         case MSR_MTRRfix4K_E0000:
1563         case MSR_MTRRfix4K_E8000:
1564         case MSR_MTRRfix4K_F0000:
1565         case MSR_MTRRfix4K_F8000:
1566         case MSR_MTRRdefType:
1567         case MSR_IA32_CR_PAT:
1568                 return true;
1569         case 0x2f8:
1570                 return true;
1571         }
1572         return false;
1573 }
1574
1575 static bool valid_pat_type(unsigned t)
1576 {
1577         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1578 }
1579
1580 static bool valid_mtrr_type(unsigned t)
1581 {
1582         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1583 }
1584
1585 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1586 {
1587         int i;
1588
1589         if (!msr_mtrr_valid(msr))
1590                 return false;
1591
1592         if (msr == MSR_IA32_CR_PAT) {
1593                 for (i = 0; i < 8; i++)
1594                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1595                                 return false;
1596                 return true;
1597         } else if (msr == MSR_MTRRdefType) {
1598                 if (data & ~0xcff)
1599                         return false;
1600                 return valid_mtrr_type(data & 0xff);
1601         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1602                 for (i = 0; i < 8 ; i++)
1603                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1604                                 return false;
1605                 return true;
1606         }
1607
1608         /* variable MTRRs */
1609         return valid_mtrr_type(data & 0xff);
1610 }
1611
1612 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1613 {
1614         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1615
1616         if (!mtrr_valid(vcpu, msr, data))
1617                 return 1;
1618
1619         if (msr == MSR_MTRRdefType) {
1620                 vcpu->arch.mtrr_state.def_type = data;
1621                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1622         } else if (msr == MSR_MTRRfix64K_00000)
1623                 p[0] = data;
1624         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1625                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1626         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1627                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1628         else if (msr == MSR_IA32_CR_PAT)
1629                 vcpu->arch.pat = data;
1630         else {  /* Variable MTRRs */
1631                 int idx, is_mtrr_mask;
1632                 u64 *pt;
1633
1634                 idx = (msr - 0x200) / 2;
1635                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1636                 if (!is_mtrr_mask)
1637                         pt =
1638                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1639                 else
1640                         pt =
1641                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1642                 *pt = data;
1643         }
1644
1645         kvm_mmu_reset_context(vcpu);
1646         return 0;
1647 }
1648
1649 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1650 {
1651         u64 mcg_cap = vcpu->arch.mcg_cap;
1652         unsigned bank_num = mcg_cap & 0xff;
1653
1654         switch (msr) {
1655         case MSR_IA32_MCG_STATUS:
1656                 vcpu->arch.mcg_status = data;
1657                 break;
1658         case MSR_IA32_MCG_CTL:
1659                 if (!(mcg_cap & MCG_CTL_P))
1660                         return 1;
1661                 if (data != 0 && data != ~(u64)0)
1662                         return -1;
1663                 vcpu->arch.mcg_ctl = data;
1664                 break;
1665         default:
1666                 if (msr >= MSR_IA32_MC0_CTL &&
1667                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1668                         u32 offset = msr - MSR_IA32_MC0_CTL;
1669                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1670                          * some Linux kernels though clear bit 10 in bank 4 to
1671                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1672                          * this to avoid an uncatched #GP in the guest
1673                          */
1674                         if ((offset & 0x3) == 0 &&
1675                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1676                                 return -1;
1677                         vcpu->arch.mce_banks[offset] = data;
1678                         break;
1679                 }
1680                 return 1;
1681         }
1682         return 0;
1683 }
1684
1685 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1686 {
1687         struct kvm *kvm = vcpu->kvm;
1688         int lm = is_long_mode(vcpu);
1689         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1690                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1691         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1692                 : kvm->arch.xen_hvm_config.blob_size_32;
1693         u32 page_num = data & ~PAGE_MASK;
1694         u64 page_addr = data & PAGE_MASK;
1695         u8 *page;
1696         int r;
1697
1698         r = -E2BIG;
1699         if (page_num >= blob_size)
1700                 goto out;
1701         r = -ENOMEM;
1702         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1703         if (IS_ERR(page)) {
1704                 r = PTR_ERR(page);
1705                 goto out;
1706         }
1707         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1708                 goto out_free;
1709         r = 0;
1710 out_free:
1711         kfree(page);
1712 out:
1713         return r;
1714 }
1715
1716 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1717 {
1718         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1719 }
1720
1721 static bool kvm_hv_msr_partition_wide(u32 msr)
1722 {
1723         bool r = false;
1724         switch (msr) {
1725         case HV_X64_MSR_GUEST_OS_ID:
1726         case HV_X64_MSR_HYPERCALL:
1727                 r = true;
1728                 break;
1729         }
1730
1731         return r;
1732 }
1733
1734 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1735 {
1736         struct kvm *kvm = vcpu->kvm;
1737
1738         switch (msr) {
1739         case HV_X64_MSR_GUEST_OS_ID:
1740                 kvm->arch.hv_guest_os_id = data;
1741                 /* setting guest os id to zero disables hypercall page */
1742                 if (!kvm->arch.hv_guest_os_id)
1743                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1744                 break;
1745         case HV_X64_MSR_HYPERCALL: {
1746                 u64 gfn;
1747                 unsigned long addr;
1748                 u8 instructions[4];
1749
1750                 /* if guest os id is not set hypercall should remain disabled */
1751                 if (!kvm->arch.hv_guest_os_id)
1752                         break;
1753                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1754                         kvm->arch.hv_hypercall = data;
1755                         break;
1756                 }
1757                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1758                 addr = gfn_to_hva(kvm, gfn);
1759                 if (kvm_is_error_hva(addr))
1760                         return 1;
1761                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1762                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1763                 if (__copy_to_user((void __user *)addr, instructions, 4))
1764                         return 1;
1765                 kvm->arch.hv_hypercall = data;
1766                 break;
1767         }
1768         default:
1769                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1770                             "data 0x%llx\n", msr, data);
1771                 return 1;
1772         }
1773         return 0;
1774 }
1775
1776 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1777 {
1778         switch (msr) {
1779         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1780                 unsigned long addr;
1781
1782                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1783                         vcpu->arch.hv_vapic = data;
1784                         break;
1785                 }
1786                 addr = gfn_to_hva(vcpu->kvm, data >>
1787                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1788                 if (kvm_is_error_hva(addr))
1789                         return 1;
1790                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1791                         return 1;
1792                 vcpu->arch.hv_vapic = data;
1793                 break;
1794         }
1795         case HV_X64_MSR_EOI:
1796                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1797         case HV_X64_MSR_ICR:
1798                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1799         case HV_X64_MSR_TPR:
1800                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1801         default:
1802                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1803                             "data 0x%llx\n", msr, data);
1804                 return 1;
1805         }
1806
1807         return 0;
1808 }
1809
1810 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1811 {
1812         gpa_t gpa = data & ~0x3f;
1813
1814         /* Bits 2:5 are reserved, Should be zero */
1815         if (data & 0x3c)
1816                 return 1;
1817
1818         vcpu->arch.apf.msr_val = data;
1819
1820         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1821                 kvm_clear_async_pf_completion_queue(vcpu);
1822                 kvm_async_pf_hash_reset(vcpu);
1823                 return 0;
1824         }
1825
1826         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1827                 return 1;
1828
1829         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1830         kvm_async_pf_wakeup_all(vcpu);
1831         return 0;
1832 }
1833
1834 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1835 {
1836         vcpu->arch.pv_time_enabled = false;
1837 }
1838
1839 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1840 {
1841         u64 delta;
1842
1843         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1844                 return;
1845
1846         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1847         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1848         vcpu->arch.st.accum_steal = delta;
1849 }
1850
1851 static void record_steal_time(struct kvm_vcpu *vcpu)
1852 {
1853         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1854                 return;
1855
1856         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1857                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1858                 return;
1859
1860         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1861         vcpu->arch.st.steal.version += 2;
1862         vcpu->arch.st.accum_steal = 0;
1863
1864         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1865                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1866 }
1867
1868 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1869 {
1870         bool pr = false;
1871         u32 msr = msr_info->index;
1872         u64 data = msr_info->data;
1873
1874         switch (msr) {
1875         case MSR_AMD64_NB_CFG:
1876         case MSR_IA32_UCODE_REV:
1877         case MSR_IA32_UCODE_WRITE:
1878         case MSR_VM_HSAVE_PA:
1879         case MSR_AMD64_PATCH_LOADER:
1880         case MSR_AMD64_BU_CFG2:
1881                 break;
1882
1883         case MSR_EFER:
1884                 return set_efer(vcpu, data);
1885         case MSR_K7_HWCR:
1886                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1887                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1888                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1889                 if (data != 0) {
1890                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1891                                     data);
1892                         return 1;
1893                 }
1894                 break;
1895         case MSR_FAM10H_MMIO_CONF_BASE:
1896                 if (data != 0) {
1897                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1898                                     "0x%llx\n", data);
1899                         return 1;
1900                 }
1901                 break;
1902         case MSR_IA32_DEBUGCTLMSR:
1903                 if (!data) {
1904                         /* We support the non-activated case already */
1905                         break;
1906                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1907                         /* Values other than LBR and BTF are vendor-specific,
1908                            thus reserved and should throw a #GP */
1909                         return 1;
1910                 }
1911                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1912                             __func__, data);
1913                 break;
1914         case 0x200 ... 0x2ff:
1915                 return set_msr_mtrr(vcpu, msr, data);
1916         case MSR_IA32_APICBASE:
1917                 kvm_set_apic_base(vcpu, data);
1918                 break;
1919         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1920                 return kvm_x2apic_msr_write(vcpu, msr, data);
1921         case MSR_IA32_TSCDEADLINE:
1922                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1923                 break;
1924         case MSR_IA32_TSC_ADJUST:
1925                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1926                         if (!msr_info->host_initiated) {
1927                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1928                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1929                         }
1930                         vcpu->arch.ia32_tsc_adjust_msr = data;
1931                 }
1932                 break;
1933         case MSR_IA32_MISC_ENABLE:
1934                 vcpu->arch.ia32_misc_enable_msr = data;
1935                 break;
1936         case MSR_KVM_WALL_CLOCK_NEW:
1937         case MSR_KVM_WALL_CLOCK:
1938                 vcpu->kvm->arch.wall_clock = data;
1939                 kvm_write_wall_clock(vcpu->kvm, data);
1940                 break;
1941         case MSR_KVM_SYSTEM_TIME_NEW:
1942         case MSR_KVM_SYSTEM_TIME: {
1943                 u64 gpa_offset;
1944                 kvmclock_reset(vcpu);
1945
1946                 vcpu->arch.time = data;
1947                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1948
1949                 /* we verify if the enable bit is set... */
1950                 if (!(data & 1))
1951                         break;
1952
1953                 gpa_offset = data & ~(PAGE_MASK | 1);
1954
1955                 /* Check that the address is 32-byte aligned. */
1956                 if (gpa_offset & (sizeof(struct pvclock_vcpu_time_info) - 1))
1957                         break;
1958
1959                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1960                      &vcpu->arch.pv_time, data & ~1ULL))
1961                         vcpu->arch.pv_time_enabled = false;
1962                 else
1963                         vcpu->arch.pv_time_enabled = true;
1964
1965                 break;
1966         }
1967         case MSR_KVM_ASYNC_PF_EN:
1968                 if (kvm_pv_enable_async_pf(vcpu, data))
1969                         return 1;
1970                 break;
1971         case MSR_KVM_STEAL_TIME:
1972
1973                 if (unlikely(!sched_info_on()))
1974                         return 1;
1975
1976                 if (data & KVM_STEAL_RESERVED_MASK)
1977                         return 1;
1978
1979                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1980                                                         data & KVM_STEAL_VALID_BITS))
1981                         return 1;
1982
1983                 vcpu->arch.st.msr_val = data;
1984
1985                 if (!(data & KVM_MSR_ENABLED))
1986                         break;
1987
1988                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1989
1990                 preempt_disable();
1991                 accumulate_steal_time(vcpu);
1992                 preempt_enable();
1993
1994                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1995
1996                 break;
1997         case MSR_KVM_PV_EOI_EN:
1998                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1999                         return 1;
2000                 break;
2001
2002         case MSR_IA32_MCG_CTL:
2003         case MSR_IA32_MCG_STATUS:
2004         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2005                 return set_msr_mce(vcpu, msr, data);
2006
2007         /* Performance counters are not protected by a CPUID bit,
2008          * so we should check all of them in the generic path for the sake of
2009          * cross vendor migration.
2010          * Writing a zero into the event select MSRs disables them,
2011          * which we perfectly emulate ;-). Any other value should be at least
2012          * reported, some guests depend on them.
2013          */
2014         case MSR_K7_EVNTSEL0:
2015         case MSR_K7_EVNTSEL1:
2016         case MSR_K7_EVNTSEL2:
2017         case MSR_K7_EVNTSEL3:
2018                 if (data != 0)
2019                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2020                                     "0x%x data 0x%llx\n", msr, data);
2021                 break;
2022         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2023          * so we ignore writes to make it happy.
2024          */
2025         case MSR_K7_PERFCTR0:
2026         case MSR_K7_PERFCTR1:
2027         case MSR_K7_PERFCTR2:
2028         case MSR_K7_PERFCTR3:
2029                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2030                             "0x%x data 0x%llx\n", msr, data);
2031                 break;
2032         case MSR_P6_PERFCTR0:
2033         case MSR_P6_PERFCTR1:
2034                 pr = true;
2035         case MSR_P6_EVNTSEL0:
2036         case MSR_P6_EVNTSEL1:
2037                 if (kvm_pmu_msr(vcpu, msr))
2038                         return kvm_pmu_set_msr(vcpu, msr, data);
2039
2040                 if (pr || data != 0)
2041                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2042                                     "0x%x data 0x%llx\n", msr, data);
2043                 break;
2044         case MSR_K7_CLK_CTL:
2045                 /*
2046                  * Ignore all writes to this no longer documented MSR.
2047                  * Writes are only relevant for old K7 processors,
2048                  * all pre-dating SVM, but a recommended workaround from
2049                  * AMD for these chips. It is possible to specify the
2050                  * affected processor models on the command line, hence
2051                  * the need to ignore the workaround.
2052                  */
2053                 break;
2054         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2055                 if (kvm_hv_msr_partition_wide(msr)) {
2056                         int r;
2057                         mutex_lock(&vcpu->kvm->lock);
2058                         r = set_msr_hyperv_pw(vcpu, msr, data);
2059                         mutex_unlock(&vcpu->kvm->lock);
2060                         return r;
2061                 } else
2062                         return set_msr_hyperv(vcpu, msr, data);
2063                 break;
2064         case MSR_IA32_BBL_CR_CTL3:
2065                 /* Drop writes to this legacy MSR -- see rdmsr
2066                  * counterpart for further detail.
2067                  */
2068                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2069                 break;
2070         case MSR_AMD64_OSVW_ID_LENGTH:
2071                 if (!guest_cpuid_has_osvw(vcpu))
2072                         return 1;
2073                 vcpu->arch.osvw.length = data;
2074                 break;
2075         case MSR_AMD64_OSVW_STATUS:
2076                 if (!guest_cpuid_has_osvw(vcpu))
2077                         return 1;
2078                 vcpu->arch.osvw.status = data;
2079                 break;
2080         default:
2081                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2082                         return xen_hvm_config(vcpu, data);
2083                 if (kvm_pmu_msr(vcpu, msr))
2084                         return kvm_pmu_set_msr(vcpu, msr, data);
2085                 if (!ignore_msrs) {
2086                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2087                                     msr, data);
2088                         return 1;
2089                 } else {
2090                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2091                                     msr, data);
2092                         break;
2093                 }
2094         }
2095         return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2098
2099
2100 /*
2101  * Reads an msr value (of 'msr_index') into 'pdata'.
2102  * Returns 0 on success, non-0 otherwise.
2103  * Assumes vcpu_load() was already called.
2104  */
2105 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2106 {
2107         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2108 }
2109
2110 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2111 {
2112         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2113
2114         if (!msr_mtrr_valid(msr))
2115                 return 1;
2116
2117         if (msr == MSR_MTRRdefType)
2118                 *pdata = vcpu->arch.mtrr_state.def_type +
2119                          (vcpu->arch.mtrr_state.enabled << 10);
2120         else if (msr == MSR_MTRRfix64K_00000)
2121                 *pdata = p[0];
2122         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2123                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2124         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2125                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2126         else if (msr == MSR_IA32_CR_PAT)
2127                 *pdata = vcpu->arch.pat;
2128         else {  /* Variable MTRRs */
2129                 int idx, is_mtrr_mask;
2130                 u64 *pt;
2131
2132                 idx = (msr - 0x200) / 2;
2133                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2134                 if (!is_mtrr_mask)
2135                         pt =
2136                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2137                 else
2138                         pt =
2139                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2140                 *pdata = *pt;
2141         }
2142
2143         return 0;
2144 }
2145
2146 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2147 {
2148         u64 data;
2149         u64 mcg_cap = vcpu->arch.mcg_cap;
2150         unsigned bank_num = mcg_cap & 0xff;
2151
2152         switch (msr) {
2153         case MSR_IA32_P5_MC_ADDR:
2154         case MSR_IA32_P5_MC_TYPE:
2155                 data = 0;
2156                 break;
2157         case MSR_IA32_MCG_CAP:
2158                 data = vcpu->arch.mcg_cap;
2159                 break;
2160         case MSR_IA32_MCG_CTL:
2161                 if (!(mcg_cap & MCG_CTL_P))
2162                         return 1;
2163                 data = vcpu->arch.mcg_ctl;
2164                 break;
2165         case MSR_IA32_MCG_STATUS:
2166                 data = vcpu->arch.mcg_status;
2167                 break;
2168         default:
2169                 if (msr >= MSR_IA32_MC0_CTL &&
2170                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2171                         u32 offset = msr - MSR_IA32_MC0_CTL;
2172                         data = vcpu->arch.mce_banks[offset];
2173                         break;
2174                 }
2175                 return 1;
2176         }
2177         *pdata = data;
2178         return 0;
2179 }
2180
2181 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2182 {
2183         u64 data = 0;
2184         struct kvm *kvm = vcpu->kvm;
2185
2186         switch (msr) {
2187         case HV_X64_MSR_GUEST_OS_ID:
2188                 data = kvm->arch.hv_guest_os_id;
2189                 break;
2190         case HV_X64_MSR_HYPERCALL:
2191                 data = kvm->arch.hv_hypercall;
2192                 break;
2193         default:
2194                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2195                 return 1;
2196         }
2197
2198         *pdata = data;
2199         return 0;
2200 }
2201
2202 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2203 {
2204         u64 data = 0;
2205
2206         switch (msr) {
2207         case HV_X64_MSR_VP_INDEX: {
2208                 int r;
2209                 struct kvm_vcpu *v;
2210                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2211                         if (v == vcpu)
2212                                 data = r;
2213                 break;
2214         }
2215         case HV_X64_MSR_EOI:
2216                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2217         case HV_X64_MSR_ICR:
2218                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2219         case HV_X64_MSR_TPR:
2220                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2221         case HV_X64_MSR_APIC_ASSIST_PAGE:
2222                 data = vcpu->arch.hv_vapic;
2223                 break;
2224         default:
2225                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2226                 return 1;
2227         }
2228         *pdata = data;
2229         return 0;
2230 }
2231
2232 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2233 {
2234         u64 data;
2235
2236         switch (msr) {
2237         case MSR_IA32_PLATFORM_ID:
2238         case MSR_IA32_EBL_CR_POWERON:
2239         case MSR_IA32_DEBUGCTLMSR:
2240         case MSR_IA32_LASTBRANCHFROMIP:
2241         case MSR_IA32_LASTBRANCHTOIP:
2242         case MSR_IA32_LASTINTFROMIP:
2243         case MSR_IA32_LASTINTTOIP:
2244         case MSR_K8_SYSCFG:
2245         case MSR_K7_HWCR:
2246         case MSR_VM_HSAVE_PA:
2247         case MSR_K7_EVNTSEL0:
2248         case MSR_K7_PERFCTR0:
2249         case MSR_K8_INT_PENDING_MSG:
2250         case MSR_AMD64_NB_CFG:
2251         case MSR_FAM10H_MMIO_CONF_BASE:
2252         case MSR_AMD64_BU_CFG2:
2253                 data = 0;
2254                 break;
2255         case MSR_P6_PERFCTR0:
2256         case MSR_P6_PERFCTR1:
2257         case MSR_P6_EVNTSEL0:
2258         case MSR_P6_EVNTSEL1:
2259                 if (kvm_pmu_msr(vcpu, msr))
2260                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2261                 data = 0;
2262                 break;
2263         case MSR_IA32_UCODE_REV:
2264                 data = 0x100000000ULL;
2265                 break;
2266         case MSR_MTRRcap:
2267                 data = 0x500 | KVM_NR_VAR_MTRR;
2268                 break;
2269         case 0x200 ... 0x2ff:
2270                 return get_msr_mtrr(vcpu, msr, pdata);
2271         case 0xcd: /* fsb frequency */
2272                 data = 3;
2273                 break;
2274                 /*
2275                  * MSR_EBC_FREQUENCY_ID
2276                  * Conservative value valid for even the basic CPU models.
2277                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2278                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2279                  * and 266MHz for model 3, or 4. Set Core Clock
2280                  * Frequency to System Bus Frequency Ratio to 1 (bits
2281                  * 31:24) even though these are only valid for CPU
2282                  * models > 2, however guests may end up dividing or
2283                  * multiplying by zero otherwise.
2284                  */
2285         case MSR_EBC_FREQUENCY_ID:
2286                 data = 1 << 24;
2287                 break;
2288         case MSR_IA32_APICBASE:
2289                 data = kvm_get_apic_base(vcpu);
2290                 break;
2291         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2292                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2293                 break;
2294         case MSR_IA32_TSCDEADLINE:
2295                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2296                 break;
2297         case MSR_IA32_TSC_ADJUST:
2298                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2299                 break;
2300         case MSR_IA32_MISC_ENABLE:
2301                 data = vcpu->arch.ia32_misc_enable_msr;
2302                 break;
2303         case MSR_IA32_PERF_STATUS:
2304                 /* TSC increment by tick */
2305                 data = 1000ULL;
2306                 /* CPU multiplier */
2307                 data |= (((uint64_t)4ULL) << 40);
2308                 break;
2309         case MSR_EFER:
2310                 data = vcpu->arch.efer;
2311                 break;
2312         case MSR_KVM_WALL_CLOCK:
2313         case MSR_KVM_WALL_CLOCK_NEW:
2314                 data = vcpu->kvm->arch.wall_clock;
2315                 break;
2316         case MSR_KVM_SYSTEM_TIME:
2317         case MSR_KVM_SYSTEM_TIME_NEW:
2318                 data = vcpu->arch.time;
2319                 break;
2320         case MSR_KVM_ASYNC_PF_EN:
2321                 data = vcpu->arch.apf.msr_val;
2322                 break;
2323         case MSR_KVM_STEAL_TIME:
2324                 data = vcpu->arch.st.msr_val;
2325                 break;
2326         case MSR_KVM_PV_EOI_EN:
2327                 data = vcpu->arch.pv_eoi.msr_val;
2328                 break;
2329         case MSR_IA32_P5_MC_ADDR:
2330         case MSR_IA32_P5_MC_TYPE:
2331         case MSR_IA32_MCG_CAP:
2332         case MSR_IA32_MCG_CTL:
2333         case MSR_IA32_MCG_STATUS:
2334         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2335                 return get_msr_mce(vcpu, msr, pdata);
2336         case MSR_K7_CLK_CTL:
2337                 /*
2338                  * Provide expected ramp-up count for K7. All other
2339                  * are set to zero, indicating minimum divisors for
2340                  * every field.
2341                  *
2342                  * This prevents guest kernels on AMD host with CPU
2343                  * type 6, model 8 and higher from exploding due to
2344                  * the rdmsr failing.
2345                  */
2346                 data = 0x20000000;
2347                 break;
2348         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2349                 if (kvm_hv_msr_partition_wide(msr)) {
2350                         int r;
2351                         mutex_lock(&vcpu->kvm->lock);
2352                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2353                         mutex_unlock(&vcpu->kvm->lock);
2354                         return r;
2355                 } else
2356                         return get_msr_hyperv(vcpu, msr, pdata);
2357                 break;
2358         case MSR_IA32_BBL_CR_CTL3:
2359                 /* This legacy MSR exists but isn't fully documented in current
2360                  * silicon.  It is however accessed by winxp in very narrow
2361                  * scenarios where it sets bit #19, itself documented as
2362                  * a "reserved" bit.  Best effort attempt to source coherent
2363                  * read data here should the balance of the register be
2364                  * interpreted by the guest:
2365                  *
2366                  * L2 cache control register 3: 64GB range, 256KB size,
2367                  * enabled, latency 0x1, configured
2368                  */
2369                 data = 0xbe702111;
2370                 break;
2371         case MSR_AMD64_OSVW_ID_LENGTH:
2372                 if (!guest_cpuid_has_osvw(vcpu))
2373                         return 1;
2374                 data = vcpu->arch.osvw.length;
2375                 break;
2376         case MSR_AMD64_OSVW_STATUS:
2377                 if (!guest_cpuid_has_osvw(vcpu))
2378                         return 1;
2379                 data = vcpu->arch.osvw.status;
2380                 break;
2381         default:
2382                 if (kvm_pmu_msr(vcpu, msr))
2383                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2384                 if (!ignore_msrs) {
2385                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2386                         return 1;
2387                 } else {
2388                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2389                         data = 0;
2390                 }
2391                 break;
2392         }
2393         *pdata = data;
2394         return 0;
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2397
2398 /*
2399  * Read or write a bunch of msrs. All parameters are kernel addresses.
2400  *
2401  * @return number of msrs set successfully.
2402  */
2403 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2404                     struct kvm_msr_entry *entries,
2405                     int (*do_msr)(struct kvm_vcpu *vcpu,
2406                                   unsigned index, u64 *data))
2407 {
2408         int i, idx;
2409
2410         idx = srcu_read_lock(&vcpu->kvm->srcu);
2411         for (i = 0; i < msrs->nmsrs; ++i)
2412                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2413                         break;
2414         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2415
2416         return i;
2417 }
2418
2419 /*
2420  * Read or write a bunch of msrs. Parameters are user addresses.
2421  *
2422  * @return number of msrs set successfully.
2423  */
2424 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2425                   int (*do_msr)(struct kvm_vcpu *vcpu,
2426                                 unsigned index, u64 *data),
2427                   int writeback)
2428 {
2429         struct kvm_msrs msrs;
2430         struct kvm_msr_entry *entries;
2431         int r, n;
2432         unsigned size;
2433
2434         r = -EFAULT;
2435         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2436                 goto out;
2437
2438         r = -E2BIG;
2439         if (msrs.nmsrs >= MAX_IO_MSRS)
2440                 goto out;
2441
2442         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2443         entries = memdup_user(user_msrs->entries, size);
2444         if (IS_ERR(entries)) {
2445                 r = PTR_ERR(entries);
2446                 goto out;
2447         }
2448
2449         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2450         if (r < 0)
2451                 goto out_free;
2452
2453         r = -EFAULT;
2454         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2455                 goto out_free;
2456
2457         r = n;
2458
2459 out_free:
2460         kfree(entries);
2461 out:
2462         return r;
2463 }
2464
2465 int kvm_dev_ioctl_check_extension(long ext)
2466 {
2467         int r;
2468
2469         switch (ext) {
2470         case KVM_CAP_IRQCHIP:
2471         case KVM_CAP_HLT:
2472         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2473         case KVM_CAP_SET_TSS_ADDR:
2474         case KVM_CAP_EXT_CPUID:
2475         case KVM_CAP_CLOCKSOURCE:
2476         case KVM_CAP_PIT:
2477         case KVM_CAP_NOP_IO_DELAY:
2478         case KVM_CAP_MP_STATE:
2479         case KVM_CAP_SYNC_MMU:
2480         case KVM_CAP_USER_NMI:
2481         case KVM_CAP_REINJECT_CONTROL:
2482         case KVM_CAP_IRQ_INJECT_STATUS:
2483         case KVM_CAP_ASSIGN_DEV_IRQ:
2484         case KVM_CAP_IRQFD:
2485         case KVM_CAP_IOEVENTFD:
2486         case KVM_CAP_PIT2:
2487         case KVM_CAP_PIT_STATE2:
2488         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2489         case KVM_CAP_XEN_HVM:
2490         case KVM_CAP_ADJUST_CLOCK:
2491         case KVM_CAP_VCPU_EVENTS:
2492         case KVM_CAP_HYPERV:
2493         case KVM_CAP_HYPERV_VAPIC:
2494         case KVM_CAP_HYPERV_SPIN:
2495         case KVM_CAP_PCI_SEGMENT:
2496         case KVM_CAP_DEBUGREGS:
2497         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2498         case KVM_CAP_XSAVE:
2499         case KVM_CAP_ASYNC_PF:
2500         case KVM_CAP_GET_TSC_KHZ:
2501         case KVM_CAP_PCI_2_3:
2502         case KVM_CAP_KVMCLOCK_CTRL:
2503         case KVM_CAP_READONLY_MEM:
2504         case KVM_CAP_IRQFD_RESAMPLE:
2505                 r = 1;
2506                 break;
2507         case KVM_CAP_COALESCED_MMIO:
2508                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2509                 break;
2510         case KVM_CAP_VAPIC:
2511                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2512                 break;
2513         case KVM_CAP_NR_VCPUS:
2514                 r = KVM_SOFT_MAX_VCPUS;
2515                 break;
2516         case KVM_CAP_MAX_VCPUS:
2517                 r = KVM_MAX_VCPUS;
2518                 break;
2519         case KVM_CAP_NR_MEMSLOTS:
2520                 r = KVM_USER_MEM_SLOTS;
2521                 break;
2522         case KVM_CAP_PV_MMU:    /* obsolete */
2523                 r = 0;
2524                 break;
2525         case KVM_CAP_IOMMU:
2526                 r = iommu_present(&pci_bus_type);
2527                 break;
2528         case KVM_CAP_MCE:
2529                 r = KVM_MAX_MCE_BANKS;
2530                 break;
2531         case KVM_CAP_XCRS:
2532                 r = cpu_has_xsave;
2533                 break;
2534         case KVM_CAP_TSC_CONTROL:
2535                 r = kvm_has_tsc_control;
2536                 break;
2537         case KVM_CAP_TSC_DEADLINE_TIMER:
2538                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2539                 break;
2540         default:
2541                 r = 0;
2542                 break;
2543         }
2544         return r;
2545
2546 }
2547
2548 long kvm_arch_dev_ioctl(struct file *filp,
2549                         unsigned int ioctl, unsigned long arg)
2550 {
2551         void __user *argp = (void __user *)arg;
2552         long r;
2553
2554         switch (ioctl) {
2555         case KVM_GET_MSR_INDEX_LIST: {
2556                 struct kvm_msr_list __user *user_msr_list = argp;
2557                 struct kvm_msr_list msr_list;
2558                 unsigned n;
2559
2560                 r = -EFAULT;
2561                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2562                         goto out;
2563                 n = msr_list.nmsrs;
2564                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2565                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2566                         goto out;
2567                 r = -E2BIG;
2568                 if (n < msr_list.nmsrs)
2569                         goto out;
2570                 r = -EFAULT;
2571                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2572                                  num_msrs_to_save * sizeof(u32)))
2573                         goto out;
2574                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2575                                  &emulated_msrs,
2576                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2577                         goto out;
2578                 r = 0;
2579                 break;
2580         }
2581         case KVM_GET_SUPPORTED_CPUID: {
2582                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2583                 struct kvm_cpuid2 cpuid;
2584
2585                 r = -EFAULT;
2586                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2587                         goto out;
2588                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2589                                                       cpuid_arg->entries);
2590                 if (r)
2591                         goto out;
2592
2593                 r = -EFAULT;
2594                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2595                         goto out;
2596                 r = 0;
2597                 break;
2598         }
2599         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2600                 u64 mce_cap;
2601
2602                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2603                 r = -EFAULT;
2604                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2605                         goto out;
2606                 r = 0;
2607                 break;
2608         }
2609         default:
2610                 r = -EINVAL;
2611         }
2612 out:
2613         return r;
2614 }
2615
2616 static void wbinvd_ipi(void *garbage)
2617 {
2618         wbinvd();
2619 }
2620
2621 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2622 {
2623         return vcpu->kvm->arch.iommu_domain &&
2624                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2625 }
2626
2627 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2628 {
2629         /* Address WBINVD may be executed by guest */
2630         if (need_emulate_wbinvd(vcpu)) {
2631                 if (kvm_x86_ops->has_wbinvd_exit())
2632                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2633                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2634                         smp_call_function_single(vcpu->cpu,
2635                                         wbinvd_ipi, NULL, 1);
2636         }
2637
2638         kvm_x86_ops->vcpu_load(vcpu, cpu);
2639
2640         /* Apply any externally detected TSC adjustments (due to suspend) */
2641         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2642                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2643                 vcpu->arch.tsc_offset_adjustment = 0;
2644                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2645         }
2646
2647         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2648                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2649                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2650                 if (tsc_delta < 0)
2651                         mark_tsc_unstable("KVM discovered backwards TSC");
2652                 if (check_tsc_unstable()) {
2653                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2654                                                 vcpu->arch.last_guest_tsc);
2655                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2656                         vcpu->arch.tsc_catchup = 1;
2657                 }
2658                 /*
2659                  * On a host with synchronized TSC, there is no need to update
2660                  * kvmclock on vcpu->cpu migration
2661                  */
2662                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2663                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2664                 if (vcpu->cpu != cpu)
2665                         kvm_migrate_timers(vcpu);
2666                 vcpu->cpu = cpu;
2667         }
2668
2669         accumulate_steal_time(vcpu);
2670         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2671 }
2672
2673 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2674 {
2675         kvm_x86_ops->vcpu_put(vcpu);
2676         kvm_put_guest_fpu(vcpu);
2677         vcpu->arch.last_host_tsc = native_read_tsc();
2678 }
2679
2680 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2681                                     struct kvm_lapic_state *s)
2682 {
2683         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2684
2685         return 0;
2686 }
2687
2688 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2689                                     struct kvm_lapic_state *s)
2690 {
2691         kvm_apic_post_state_restore(vcpu, s);
2692         update_cr8_intercept(vcpu);
2693
2694         return 0;
2695 }
2696
2697 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2698                                     struct kvm_interrupt *irq)
2699 {
2700         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2701                 return -EINVAL;
2702         if (irqchip_in_kernel(vcpu->kvm))
2703                 return -ENXIO;
2704
2705         kvm_queue_interrupt(vcpu, irq->irq, false);
2706         kvm_make_request(KVM_REQ_EVENT, vcpu);
2707
2708         return 0;
2709 }
2710
2711 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2712 {
2713         kvm_inject_nmi(vcpu);
2714
2715         return 0;
2716 }
2717
2718 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2719                                            struct kvm_tpr_access_ctl *tac)
2720 {
2721         if (tac->flags)
2722                 return -EINVAL;
2723         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2724         return 0;
2725 }
2726
2727 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2728                                         u64 mcg_cap)
2729 {
2730         int r;
2731         unsigned bank_num = mcg_cap & 0xff, bank;
2732
2733         r = -EINVAL;
2734         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2735                 goto out;
2736         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2737                 goto out;
2738         r = 0;
2739         vcpu->arch.mcg_cap = mcg_cap;
2740         /* Init IA32_MCG_CTL to all 1s */
2741         if (mcg_cap & MCG_CTL_P)
2742                 vcpu->arch.mcg_ctl = ~(u64)0;
2743         /* Init IA32_MCi_CTL to all 1s */
2744         for (bank = 0; bank < bank_num; bank++)
2745                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2746 out:
2747         return r;
2748 }
2749
2750 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2751                                       struct kvm_x86_mce *mce)
2752 {
2753         u64 mcg_cap = vcpu->arch.mcg_cap;
2754         unsigned bank_num = mcg_cap & 0xff;
2755         u64 *banks = vcpu->arch.mce_banks;
2756
2757         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2758                 return -EINVAL;
2759         /*
2760          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2761          * reporting is disabled
2762          */
2763         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2764             vcpu->arch.mcg_ctl != ~(u64)0)
2765                 return 0;
2766         banks += 4 * mce->bank;
2767         /*
2768          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2769          * reporting is disabled for the bank
2770          */
2771         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2772                 return 0;
2773         if (mce->status & MCI_STATUS_UC) {
2774                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2775                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2776                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2777                         return 0;
2778                 }
2779                 if (banks[1] & MCI_STATUS_VAL)
2780                         mce->status |= MCI_STATUS_OVER;
2781                 banks[2] = mce->addr;
2782                 banks[3] = mce->misc;
2783                 vcpu->arch.mcg_status = mce->mcg_status;
2784                 banks[1] = mce->status;
2785                 kvm_queue_exception(vcpu, MC_VECTOR);
2786         } else if (!(banks[1] & MCI_STATUS_VAL)
2787                    || !(banks[1] & MCI_STATUS_UC)) {
2788                 if (banks[1] & MCI_STATUS_VAL)
2789                         mce->status |= MCI_STATUS_OVER;
2790                 banks[2] = mce->addr;
2791                 banks[3] = mce->misc;
2792                 banks[1] = mce->status;
2793         } else
2794                 banks[1] |= MCI_STATUS_OVER;
2795         return 0;
2796 }
2797
2798 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2799                                                struct kvm_vcpu_events *events)
2800 {
2801         process_nmi(vcpu);
2802         events->exception.injected =
2803                 vcpu->arch.exception.pending &&
2804                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2805         events->exception.nr = vcpu->arch.exception.nr;
2806         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2807         events->exception.pad = 0;
2808         events->exception.error_code = vcpu->arch.exception.error_code;
2809
2810         events->interrupt.injected =
2811                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2812         events->interrupt.nr = vcpu->arch.interrupt.nr;
2813         events->interrupt.soft = 0;
2814         events->interrupt.shadow =
2815                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2816                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2817
2818         events->nmi.injected = vcpu->arch.nmi_injected;
2819         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2820         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2821         events->nmi.pad = 0;
2822
2823         events->sipi_vector = vcpu->arch.sipi_vector;
2824
2825         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2826                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2827                          | KVM_VCPUEVENT_VALID_SHADOW);
2828         memset(&events->reserved, 0, sizeof(events->reserved));
2829 }
2830
2831 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2832                                               struct kvm_vcpu_events *events)
2833 {
2834         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2835                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2836                               | KVM_VCPUEVENT_VALID_SHADOW))
2837                 return -EINVAL;
2838
2839         process_nmi(vcpu);
2840         vcpu->arch.exception.pending = events->exception.injected;
2841         vcpu->arch.exception.nr = events->exception.nr;
2842         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2843         vcpu->arch.exception.error_code = events->exception.error_code;
2844
2845         vcpu->arch.interrupt.pending = events->interrupt.injected;
2846         vcpu->arch.interrupt.nr = events->interrupt.nr;
2847         vcpu->arch.interrupt.soft = events->interrupt.soft;
2848         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2849                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2850                                                   events->interrupt.shadow);
2851
2852         vcpu->arch.nmi_injected = events->nmi.injected;
2853         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2854                 vcpu->arch.nmi_pending = events->nmi.pending;
2855         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2856
2857         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2858                 vcpu->arch.sipi_vector = events->sipi_vector;
2859
2860         kvm_make_request(KVM_REQ_EVENT, vcpu);
2861
2862         return 0;
2863 }
2864
2865 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2866                                              struct kvm_debugregs *dbgregs)
2867 {
2868         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2869         dbgregs->dr6 = vcpu->arch.dr6;
2870         dbgregs->dr7 = vcpu->arch.dr7;
2871         dbgregs->flags = 0;
2872         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2873 }
2874
2875 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2876                                             struct kvm_debugregs *dbgregs)
2877 {
2878         if (dbgregs->flags)
2879                 return -EINVAL;
2880
2881         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2882         vcpu->arch.dr6 = dbgregs->dr6;
2883         vcpu->arch.dr7 = dbgregs->dr7;
2884
2885         return 0;
2886 }
2887
2888 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2889                                          struct kvm_xsave *guest_xsave)
2890 {
2891         if (cpu_has_xsave)
2892                 memcpy(guest_xsave->region,
2893                         &vcpu->arch.guest_fpu.state->xsave,
2894                         xstate_size);
2895         else {
2896                 memcpy(guest_xsave->region,
2897                         &vcpu->arch.guest_fpu.state->fxsave,
2898                         sizeof(struct i387_fxsave_struct));
2899                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2900                         XSTATE_FPSSE;
2901         }
2902 }
2903
2904 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2905                                         struct kvm_xsave *guest_xsave)
2906 {
2907         u64 xstate_bv =
2908                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2909
2910         if (cpu_has_xsave)
2911                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2912                         guest_xsave->region, xstate_size);
2913         else {
2914                 if (xstate_bv & ~XSTATE_FPSSE)
2915                         return -EINVAL;
2916                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2917                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2918         }
2919         return 0;
2920 }
2921
2922 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2923                                         struct kvm_xcrs *guest_xcrs)
2924 {
2925         if (!cpu_has_xsave) {
2926                 guest_xcrs->nr_xcrs = 0;
2927                 return;
2928         }
2929
2930         guest_xcrs->nr_xcrs = 1;
2931         guest_xcrs->flags = 0;
2932         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2933         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2934 }
2935
2936 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2937                                        struct kvm_xcrs *guest_xcrs)
2938 {
2939         int i, r = 0;
2940
2941         if (!cpu_has_xsave)
2942                 return -EINVAL;
2943
2944         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2945                 return -EINVAL;
2946
2947         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2948                 /* Only support XCR0 currently */
2949                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2950                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2951                                 guest_xcrs->xcrs[0].value);
2952                         break;
2953                 }
2954         if (r)
2955                 r = -EINVAL;
2956         return r;
2957 }
2958
2959 /*
2960  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2961  * stopped by the hypervisor.  This function will be called from the host only.
2962  * EINVAL is returned when the host attempts to set the flag for a guest that
2963  * does not support pv clocks.
2964  */
2965 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2966 {
2967         if (!vcpu->arch.pv_time_enabled)
2968                 return -EINVAL;
2969         vcpu->arch.pvclock_set_guest_stopped_request = true;
2970         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2971         return 0;
2972 }
2973
2974 long kvm_arch_vcpu_ioctl(struct file *filp,
2975                          unsigned int ioctl, unsigned long arg)
2976 {
2977         struct kvm_vcpu *vcpu = filp->private_data;
2978         void __user *argp = (void __user *)arg;
2979         int r;
2980         union {
2981                 struct kvm_lapic_state *lapic;
2982                 struct kvm_xsave *xsave;
2983                 struct kvm_xcrs *xcrs;
2984                 void *buffer;
2985         } u;
2986
2987         u.buffer = NULL;
2988         switch (ioctl) {
2989         case KVM_GET_LAPIC: {
2990                 r = -EINVAL;
2991                 if (!vcpu->arch.apic)
2992                         goto out;
2993                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2994
2995                 r = -ENOMEM;
2996                 if (!u.lapic)
2997                         goto out;
2998                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2999                 if (r)
3000                         goto out;
3001                 r = -EFAULT;
3002                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3003                         goto out;
3004                 r = 0;
3005                 break;
3006         }
3007         case KVM_SET_LAPIC: {
3008                 r = -EINVAL;
3009                 if (!vcpu->arch.apic)
3010                         goto out;
3011                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3012                 if (IS_ERR(u.lapic))
3013                         return PTR_ERR(u.lapic);
3014
3015                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3016                 break;
3017         }
3018         case KVM_INTERRUPT: {
3019                 struct kvm_interrupt irq;
3020
3021                 r = -EFAULT;
3022                 if (copy_from_user(&irq, argp, sizeof irq))
3023                         goto out;
3024                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3025                 break;
3026         }
3027         case KVM_NMI: {
3028                 r = kvm_vcpu_ioctl_nmi(vcpu);
3029                 break;
3030         }
3031         case KVM_SET_CPUID: {
3032                 struct kvm_cpuid __user *cpuid_arg = argp;
3033                 struct kvm_cpuid cpuid;
3034
3035                 r = -EFAULT;
3036                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3037                         goto out;
3038                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3039                 break;
3040         }
3041         case KVM_SET_CPUID2: {
3042                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3043                 struct kvm_cpuid2 cpuid;
3044
3045                 r = -EFAULT;
3046                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3047                         goto out;
3048                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3049                                               cpuid_arg->entries);
3050                 break;
3051         }
3052         case KVM_GET_CPUID2: {
3053                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3054                 struct kvm_cpuid2 cpuid;
3055
3056                 r = -EFAULT;
3057                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3058                         goto out;
3059                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3060                                               cpuid_arg->entries);
3061                 if (r)
3062                         goto out;
3063                 r = -EFAULT;
3064                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3065                         goto out;
3066                 r = 0;
3067                 break;
3068         }
3069         case KVM_GET_MSRS:
3070                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3071                 break;
3072         case KVM_SET_MSRS:
3073                 r = msr_io(vcpu, argp, do_set_msr, 0);
3074                 break;
3075         case KVM_TPR_ACCESS_REPORTING: {
3076                 struct kvm_tpr_access_ctl tac;
3077
3078                 r = -EFAULT;
3079                 if (copy_from_user(&tac, argp, sizeof tac))
3080                         goto out;
3081                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3082                 if (r)
3083                         goto out;
3084                 r = -EFAULT;
3085                 if (copy_to_user(argp, &tac, sizeof tac))
3086                         goto out;
3087                 r = 0;
3088                 break;
3089         };
3090         case KVM_SET_VAPIC_ADDR: {
3091                 struct kvm_vapic_addr va;
3092
3093                 r = -EINVAL;
3094                 if (!irqchip_in_kernel(vcpu->kvm))
3095                         goto out;
3096                 r = -EFAULT;
3097                 if (copy_from_user(&va, argp, sizeof va))
3098                         goto out;
3099                 r = 0;
3100                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3101                 break;
3102         }
3103         case KVM_X86_SETUP_MCE: {
3104                 u64 mcg_cap;
3105
3106                 r = -EFAULT;
3107                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3108                         goto out;
3109                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3110                 break;
3111         }
3112         case KVM_X86_SET_MCE: {
3113                 struct kvm_x86_mce mce;
3114
3115                 r = -EFAULT;
3116                 if (copy_from_user(&mce, argp, sizeof mce))
3117                         goto out;
3118                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3119                 break;
3120         }
3121         case KVM_GET_VCPU_EVENTS: {
3122                 struct kvm_vcpu_events events;
3123
3124                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3125
3126                 r = -EFAULT;
3127                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3128                         break;
3129                 r = 0;
3130                 break;
3131         }
3132         case KVM_SET_VCPU_EVENTS: {
3133                 struct kvm_vcpu_events events;
3134
3135                 r = -EFAULT;
3136                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3137                         break;
3138
3139                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3140                 break;
3141         }
3142         case KVM_GET_DEBUGREGS: {
3143                 struct kvm_debugregs dbgregs;
3144
3145                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3146
3147                 r = -EFAULT;
3148                 if (copy_to_user(argp, &dbgregs,
3149                                  sizeof(struct kvm_debugregs)))
3150                         break;
3151                 r = 0;
3152                 break;
3153         }
3154         case KVM_SET_DEBUGREGS: {
3155                 struct kvm_debugregs dbgregs;
3156
3157                 r = -EFAULT;
3158                 if (copy_from_user(&dbgregs, argp,
3159                                    sizeof(struct kvm_debugregs)))
3160                         break;
3161
3162                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3163                 break;
3164         }
3165         case KVM_GET_XSAVE: {
3166                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3167                 r = -ENOMEM;
3168                 if (!u.xsave)
3169                         break;
3170
3171                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3172
3173                 r = -EFAULT;
3174                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3175                         break;
3176                 r = 0;
3177                 break;
3178         }
3179         case KVM_SET_XSAVE: {
3180                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3181                 if (IS_ERR(u.xsave))
3182                         return PTR_ERR(u.xsave);
3183
3184                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3185                 break;
3186         }
3187         case KVM_GET_XCRS: {
3188                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3189                 r = -ENOMEM;
3190                 if (!u.xcrs)
3191                         break;
3192
3193                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3194
3195                 r = -EFAULT;
3196                 if (copy_to_user(argp, u.xcrs,
3197                                  sizeof(struct kvm_xcrs)))
3198                         break;
3199                 r = 0;
3200                 break;
3201         }
3202         case KVM_SET_XCRS: {
3203                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3204                 if (IS_ERR(u.xcrs))
3205                         return PTR_ERR(u.xcrs);
3206
3207                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3208                 break;
3209         }
3210         case KVM_SET_TSC_KHZ: {
3211                 u32 user_tsc_khz;
3212
3213                 r = -EINVAL;
3214                 user_tsc_khz = (u32)arg;
3215
3216                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3217                         goto out;
3218
3219                 if (user_tsc_khz == 0)
3220                         user_tsc_khz = tsc_khz;
3221
3222                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3223
3224                 r = 0;
3225                 goto out;
3226         }
3227         case KVM_GET_TSC_KHZ: {
3228                 r = vcpu->arch.virtual_tsc_khz;
3229                 goto out;
3230         }
3231         case KVM_KVMCLOCK_CTRL: {
3232                 r = kvm_set_guest_paused(vcpu);
3233                 goto out;
3234         }
3235         default:
3236                 r = -EINVAL;
3237         }
3238 out:
3239         kfree(u.buffer);
3240         return r;
3241 }
3242
3243 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3244 {
3245         return VM_FAULT_SIGBUS;
3246 }
3247
3248 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3249 {
3250         int ret;
3251
3252         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3253                 return -EINVAL;
3254         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3255         return ret;
3256 }
3257
3258 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3259                                               u64 ident_addr)
3260 {
3261         kvm->arch.ept_identity_map_addr = ident_addr;
3262         return 0;
3263 }
3264
3265 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3266                                           u32 kvm_nr_mmu_pages)
3267 {
3268         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3269                 return -EINVAL;
3270
3271         mutex_lock(&kvm->slots_lock);
3272
3273         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3274         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3275
3276         mutex_unlock(&kvm->slots_lock);
3277         return 0;
3278 }
3279
3280 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3281 {
3282         return kvm->arch.n_max_mmu_pages;
3283 }
3284
3285 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3286 {
3287         int r;
3288
3289         r = 0;
3290         switch (chip->chip_id) {
3291         case KVM_IRQCHIP_PIC_MASTER:
3292                 memcpy(&chip->chip.pic,
3293                         &pic_irqchip(kvm)->pics[0],
3294                         sizeof(struct kvm_pic_state));
3295                 break;
3296         case KVM_IRQCHIP_PIC_SLAVE:
3297                 memcpy(&chip->chip.pic,
3298                         &pic_irqchip(kvm)->pics[1],
3299                         sizeof(struct kvm_pic_state));
3300                 break;
3301         case KVM_IRQCHIP_IOAPIC:
3302                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3303                 break;
3304         default:
3305                 r = -EINVAL;
3306                 break;
3307         }
3308         return r;
3309 }
3310
3311 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3312 {
3313         int r;
3314
3315         r = 0;
3316         switch (chip->chip_id) {
3317         case KVM_IRQCHIP_PIC_MASTER:
3318                 spin_lock(&pic_irqchip(kvm)->lock);
3319                 memcpy(&pic_irqchip(kvm)->pics[0],
3320                         &chip->chip.pic,
3321                         sizeof(struct kvm_pic_state));
3322                 spin_unlock(&pic_irqchip(kvm)->lock);
3323                 break;
3324         case KVM_IRQCHIP_PIC_SLAVE:
3325                 spin_lock(&pic_irqchip(kvm)->lock);
3326                 memcpy(&pic_irqchip(kvm)->pics[1],
3327                         &chip->chip.pic,
3328                         sizeof(struct kvm_pic_state));
3329                 spin_unlock(&pic_irqchip(kvm)->lock);
3330                 break;
3331         case KVM_IRQCHIP_IOAPIC:
3332                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3333                 break;
3334         default:
3335                 r = -EINVAL;
3336                 break;
3337         }
3338         kvm_pic_update_irq(pic_irqchip(kvm));
3339         return r;
3340 }
3341
3342 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3343 {
3344         int r = 0;
3345
3346         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3347         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3348         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3349         return r;
3350 }
3351
3352 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3353 {
3354         int r = 0;
3355
3356         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3357         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3358         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3359         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3360         return r;
3361 }
3362
3363 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3364 {
3365         int r = 0;
3366
3367         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3368         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3369                 sizeof(ps->channels));
3370         ps->flags = kvm->arch.vpit->pit_state.flags;
3371         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3372         memset(&ps->reserved, 0, sizeof(ps->reserved));
3373         return r;
3374 }
3375
3376 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3377 {
3378         int r = 0, start = 0;
3379         u32 prev_legacy, cur_legacy;
3380         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3381         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3382         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3383         if (!prev_legacy && cur_legacy)
3384                 start = 1;
3385         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3386                sizeof(kvm->arch.vpit->pit_state.channels));
3387         kvm->arch.vpit->pit_state.flags = ps->flags;
3388         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3389         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3390         return r;
3391 }
3392
3393 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3394                                  struct kvm_reinject_control *control)
3395 {
3396         if (!kvm->arch.vpit)
3397                 return -ENXIO;
3398         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3399         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3400         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3401         return 0;
3402 }
3403
3404 /**
3405  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3406  * @kvm: kvm instance
3407  * @log: slot id and address to which we copy the log
3408  *
3409  * We need to keep it in mind that VCPU threads can write to the bitmap
3410  * concurrently.  So, to avoid losing data, we keep the following order for
3411  * each bit:
3412  *
3413  *   1. Take a snapshot of the bit and clear it if needed.
3414  *   2. Write protect the corresponding page.
3415  *   3. Flush TLB's if needed.
3416  *   4. Copy the snapshot to the userspace.
3417  *
3418  * Between 2 and 3, the guest may write to the page using the remaining TLB
3419  * entry.  This is not a problem because the page will be reported dirty at
3420  * step 4 using the snapshot taken before and step 3 ensures that successive
3421  * writes will be logged for the next call.
3422  */
3423 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3424 {
3425         int r;
3426         struct kvm_memory_slot *memslot;
3427         unsigned long n, i;
3428         unsigned long *dirty_bitmap;
3429         unsigned long *dirty_bitmap_buffer;
3430         bool is_dirty = false;
3431
3432         mutex_lock(&kvm->slots_lock);
3433
3434         r = -EINVAL;
3435         if (log->slot >= KVM_USER_MEM_SLOTS)
3436                 goto out;
3437
3438         memslot = id_to_memslot(kvm->memslots, log->slot);
3439
3440         dirty_bitmap = memslot->dirty_bitmap;
3441         r = -ENOENT;
3442         if (!dirty_bitmap)
3443                 goto out;
3444
3445         n = kvm_dirty_bitmap_bytes(memslot);
3446
3447         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3448         memset(dirty_bitmap_buffer, 0, n);
3449
3450         spin_lock(&kvm->mmu_lock);
3451
3452         for (i = 0; i < n / sizeof(long); i++) {
3453                 unsigned long mask;
3454                 gfn_t offset;
3455
3456                 if (!dirty_bitmap[i])
3457                         continue;
3458
3459                 is_dirty = true;
3460
3461                 mask = xchg(&dirty_bitmap[i], 0);
3462                 dirty_bitmap_buffer[i] = mask;
3463
3464                 offset = i * BITS_PER_LONG;
3465                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3466         }
3467         if (is_dirty)
3468                 kvm_flush_remote_tlbs(kvm);
3469
3470         spin_unlock(&kvm->mmu_lock);
3471
3472         r = -EFAULT;
3473         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3474                 goto out;
3475
3476         r = 0;
3477 out:
3478         mutex_unlock(&kvm->slots_lock);
3479         return r;
3480 }
3481
3482 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3483 {
3484         if (!irqchip_in_kernel(kvm))
3485                 return -ENXIO;
3486
3487         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3488                                         irq_event->irq, irq_event->level);
3489         return 0;
3490 }
3491
3492 long kvm_arch_vm_ioctl(struct file *filp,
3493                        unsigned int ioctl, unsigned long arg)
3494 {
3495         struct kvm *kvm = filp->private_data;
3496         void __user *argp = (void __user *)arg;
3497         int r = -ENOTTY;
3498         /*
3499          * This union makes it completely explicit to gcc-3.x
3500          * that these two variables' stack usage should be
3501          * combined, not added together.
3502          */
3503         union {
3504                 struct kvm_pit_state ps;
3505                 struct kvm_pit_state2 ps2;
3506                 struct kvm_pit_config pit_config;
3507         } u;
3508
3509         switch (ioctl) {
3510         case KVM_SET_TSS_ADDR:
3511                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3512                 break;
3513         case KVM_SET_IDENTITY_MAP_ADDR: {
3514                 u64 ident_addr;
3515
3516                 r = -EFAULT;
3517                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3518                         goto out;
3519                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3520                 break;
3521         }
3522         case KVM_SET_NR_MMU_PAGES:
3523                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3524                 break;
3525         case KVM_GET_NR_MMU_PAGES:
3526                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3527                 break;
3528         case KVM_CREATE_IRQCHIP: {
3529                 struct kvm_pic *vpic;
3530
3531                 mutex_lock(&kvm->lock);
3532                 r = -EEXIST;
3533                 if (kvm->arch.vpic)
3534                         goto create_irqchip_unlock;
3535                 r = -EINVAL;
3536                 if (atomic_read(&kvm->online_vcpus))
3537                         goto create_irqchip_unlock;
3538                 r = -ENOMEM;
3539                 vpic = kvm_create_pic(kvm);
3540                 if (vpic) {
3541                         r = kvm_ioapic_init(kvm);
3542                         if (r) {
3543                                 mutex_lock(&kvm->slots_lock);
3544                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3545                                                           &vpic->dev_master);
3546                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3547                                                           &vpic->dev_slave);
3548                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3549                                                           &vpic->dev_eclr);
3550                                 mutex_unlock(&kvm->slots_lock);
3551                                 kfree(vpic);
3552                                 goto create_irqchip_unlock;
3553                         }
3554                 } else
3555                         goto create_irqchip_unlock;
3556                 smp_wmb();
3557                 kvm->arch.vpic = vpic;
3558                 smp_wmb();
3559                 r = kvm_setup_default_irq_routing(kvm);
3560                 if (r) {
3561                         mutex_lock(&kvm->slots_lock);
3562                         mutex_lock(&kvm->irq_lock);
3563                         kvm_ioapic_destroy(kvm);
3564                         kvm_destroy_pic(kvm);
3565                         mutex_unlock(&kvm->irq_lock);
3566                         mutex_unlock(&kvm->slots_lock);
3567                 }
3568         create_irqchip_unlock:
3569                 mutex_unlock(&kvm->lock);
3570                 break;
3571         }
3572         case KVM_CREATE_PIT:
3573                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3574                 goto create_pit;
3575         case KVM_CREATE_PIT2:
3576                 r = -EFAULT;
3577                 if (copy_from_user(&u.pit_config, argp,
3578                                    sizeof(struct kvm_pit_config)))
3579                         goto out;
3580         create_pit:
3581                 mutex_lock(&kvm->slots_lock);
3582                 r = -EEXIST;
3583                 if (kvm->arch.vpit)
3584                         goto create_pit_unlock;
3585                 r = -ENOMEM;
3586                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3587                 if (kvm->arch.vpit)
3588                         r = 0;
3589         create_pit_unlock:
3590                 mutex_unlock(&kvm->slots_lock);
3591                 break;
3592         case KVM_GET_IRQCHIP: {
3593                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3594                 struct kvm_irqchip *chip;
3595
3596                 chip = memdup_user(argp, sizeof(*chip));
3597                 if (IS_ERR(chip)) {
3598                         r = PTR_ERR(chip);
3599                         goto out;
3600                 }
3601
3602                 r = -ENXIO;
3603                 if (!irqchip_in_kernel(kvm))
3604                         goto get_irqchip_out;
3605                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3606                 if (r)
3607                         goto get_irqchip_out;
3608                 r = -EFAULT;
3609                 if (copy_to_user(argp, chip, sizeof *chip))
3610                         goto get_irqchip_out;
3611                 r = 0;
3612         get_irqchip_out:
3613                 kfree(chip);
3614                 break;
3615         }
3616         case KVM_SET_IRQCHIP: {
3617                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3618                 struct kvm_irqchip *chip;
3619
3620                 chip = memdup_user(argp, sizeof(*chip));
3621                 if (IS_ERR(chip)) {
3622                         r = PTR_ERR(chip);
3623                         goto out;
3624                 }
3625
3626                 r = -ENXIO;
3627                 if (!irqchip_in_kernel(kvm))
3628                         goto set_irqchip_out;
3629                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3630                 if (r)
3631                         goto set_irqchip_out;
3632                 r = 0;
3633         set_irqchip_out:
3634                 kfree(chip);
3635                 break;
3636         }
3637         case KVM_GET_PIT: {
3638                 r = -EFAULT;
3639                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3640                         goto out;
3641                 r = -ENXIO;
3642                 if (!kvm->arch.vpit)
3643                         goto out;
3644                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3645                 if (r)
3646                         goto out;
3647                 r = -EFAULT;
3648                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3649                         goto out;
3650                 r = 0;
3651                 break;
3652         }
3653         case KVM_SET_PIT: {
3654                 r = -EFAULT;
3655                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3656                         goto out;
3657                 r = -ENXIO;
3658                 if (!kvm->arch.vpit)
3659                         goto out;
3660                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3661                 break;
3662         }
3663         case KVM_GET_PIT2: {
3664                 r = -ENXIO;
3665                 if (!kvm->arch.vpit)
3666                         goto out;
3667                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3668                 if (r)
3669                         goto out;
3670                 r = -EFAULT;
3671                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3672                         goto out;
3673                 r = 0;
3674                 break;
3675         }
3676         case KVM_SET_PIT2: {
3677                 r = -EFAULT;
3678                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3679                         goto out;
3680                 r = -ENXIO;
3681                 if (!kvm->arch.vpit)
3682                         goto out;
3683                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3684                 break;
3685         }
3686         case KVM_REINJECT_CONTROL: {
3687                 struct kvm_reinject_control control;
3688                 r =  -EFAULT;
3689                 if (copy_from_user(&control, argp, sizeof(control)))
3690                         goto out;
3691                 r = kvm_vm_ioctl_reinject(kvm, &control);
3692                 break;
3693         }
3694         case KVM_XEN_HVM_CONFIG: {
3695                 r = -EFAULT;
3696                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3697                                    sizeof(struct kvm_xen_hvm_config)))
3698                         goto out;
3699                 r = -EINVAL;
3700                 if (kvm->arch.xen_hvm_config.flags)
3701                         goto out;
3702                 r = 0;
3703                 break;
3704         }
3705         case KVM_SET_CLOCK: {
3706                 struct kvm_clock_data user_ns;
3707                 u64 now_ns;
3708                 s64 delta;
3709
3710                 r = -EFAULT;
3711                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3712                         goto out;
3713
3714                 r = -EINVAL;
3715                 if (user_ns.flags)
3716                         goto out;
3717
3718                 r = 0;
3719                 local_irq_disable();
3720                 now_ns = get_kernel_ns();
3721                 delta = user_ns.clock - now_ns;
3722                 local_irq_enable();
3723                 kvm->arch.kvmclock_offset = delta;
3724                 break;
3725         }
3726         case KVM_GET_CLOCK: {
3727                 struct kvm_clock_data user_ns;
3728                 u64 now_ns;
3729
3730                 local_irq_disable();
3731                 now_ns = get_kernel_ns();
3732                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3733                 local_irq_enable();
3734                 user_ns.flags = 0;
3735                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3736
3737                 r = -EFAULT;
3738                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3739                         goto out;
3740                 r = 0;
3741                 break;
3742         }
3743
3744         default:
3745                 ;
3746         }
3747 out:
3748         return r;
3749 }
3750
3751 static void kvm_init_msr_list(void)
3752 {
3753         u32 dummy[2];
3754         unsigned i, j;
3755
3756         /* skip the first msrs in the list. KVM-specific */
3757         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3758                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3759                         continue;
3760                 if (j < i)
3761                         msrs_to_save[j] = msrs_to_save[i];
3762                 j++;
3763         }
3764         num_msrs_to_save = j;
3765 }
3766
3767 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3768                            const void *v)
3769 {
3770         int handled = 0;
3771         int n;
3772
3773         do {
3774                 n = min(len, 8);
3775                 if (!(vcpu->arch.apic &&
3776                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3777                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3778                         break;
3779                 handled += n;
3780                 addr += n;
3781                 len -= n;
3782                 v += n;
3783         } while (len);
3784
3785         return handled;
3786 }
3787
3788 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3789 {
3790         int handled = 0;
3791         int n;
3792
3793         do {
3794                 n = min(len, 8);
3795                 if (!(vcpu->arch.apic &&
3796                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3797                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3798                         break;
3799                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3800                 handled += n;
3801                 addr += n;
3802                 len -= n;
3803                 v += n;
3804         } while (len);
3805
3806         return handled;
3807 }
3808
3809 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3810                         struct kvm_segment *var, int seg)
3811 {
3812         kvm_x86_ops->set_segment(vcpu, var, seg);
3813 }
3814
3815 void kvm_get_segment(struct kvm_vcpu *vcpu,
3816                      struct kvm_segment *var, int seg)
3817 {
3818         kvm_x86_ops->get_segment(vcpu, var, seg);
3819 }
3820
3821 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3822 {
3823         gpa_t t_gpa;
3824         struct x86_exception exception;
3825
3826         BUG_ON(!mmu_is_nested(vcpu));
3827
3828         /* NPT walks are always user-walks */
3829         access |= PFERR_USER_MASK;
3830         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3831
3832         return t_gpa;
3833 }
3834
3835 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3836                               struct x86_exception *exception)
3837 {
3838         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3839         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3840 }
3841
3842  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3843                                 struct x86_exception *exception)
3844 {
3845         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3846         access |= PFERR_FETCH_MASK;
3847         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3848 }
3849
3850 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3851                                struct x86_exception *exception)
3852 {
3853         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3854         access |= PFERR_WRITE_MASK;
3855         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3856 }
3857
3858 /* uses this to access any guest's mapped memory without checking CPL */
3859 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3860                                 struct x86_exception *exception)
3861 {
3862         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3863 }
3864
3865 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3866                                       struct kvm_vcpu *vcpu, u32 access,
3867                                       struct x86_exception *exception)
3868 {
3869         void *data = val;
3870         int r = X86EMUL_CONTINUE;
3871
3872         while (bytes) {
3873                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3874                                                             exception);
3875                 unsigned offset = addr & (PAGE_SIZE-1);
3876                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3877                 int ret;
3878
3879                 if (gpa == UNMAPPED_GVA)
3880                         return X86EMUL_PROPAGATE_FAULT;
3881                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3882                 if (ret < 0) {
3883                         r = X86EMUL_IO_NEEDED;
3884                         goto out;
3885                 }
3886
3887                 bytes -= toread;
3888                 data += toread;
3889                 addr += toread;
3890         }
3891 out:
3892         return r;
3893 }
3894
3895 /* used for instruction fetching */
3896 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3897                                 gva_t addr, void *val, unsigned int bytes,
3898                                 struct x86_exception *exception)
3899 {
3900         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3901         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3902
3903         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3904                                           access | PFERR_FETCH_MASK,
3905                                           exception);
3906 }
3907
3908 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3909                                gva_t addr, void *val, unsigned int bytes,
3910                                struct x86_exception *exception)
3911 {
3912         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3913         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3914
3915         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3916                                           exception);
3917 }
3918 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3919
3920 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3921                                       gva_t addr, void *val, unsigned int bytes,
3922                                       struct x86_exception *exception)
3923 {
3924         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3925         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3926 }
3927
3928 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3929                                        gva_t addr, void *val,
3930                                        unsigned int bytes,
3931                                        struct x86_exception *exception)
3932 {
3933         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3934         void *data = val;
3935         int r = X86EMUL_CONTINUE;
3936
3937         while (bytes) {
3938                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3939                                                              PFERR_WRITE_MASK,
3940                                                              exception);
3941                 unsigned offset = addr & (PAGE_SIZE-1);
3942                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3943                 int ret;
3944
3945                 if (gpa == UNMAPPED_GVA)
3946                         return X86EMUL_PROPAGATE_FAULT;
3947                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3948                 if (ret < 0) {
3949                         r = X86EMUL_IO_NEEDED;
3950                         goto out;
3951                 }
3952
3953                 bytes -= towrite;
3954                 data += towrite;
3955                 addr += towrite;
3956         }
3957 out:
3958         return r;
3959 }
3960 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3961
3962 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3963                                 gpa_t *gpa, struct x86_exception *exception,
3964                                 bool write)
3965 {
3966         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3967                 | (write ? PFERR_WRITE_MASK : 0);
3968
3969         if (vcpu_match_mmio_gva(vcpu, gva)
3970             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3971                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3972                                         (gva & (PAGE_SIZE - 1));
3973                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3974                 return 1;
3975         }
3976
3977         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3978
3979         if (*gpa == UNMAPPED_GVA)
3980                 return -1;
3981
3982         /* For APIC access vmexit */
3983         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3984                 return 1;
3985
3986         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3987                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3988                 return 1;
3989         }
3990
3991         return 0;
3992 }
3993
3994 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3995                         const void *val, int bytes)
3996 {
3997         int ret;
3998
3999         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4000         if (ret < 0)
4001                 return 0;
4002         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4003         return 1;
4004 }
4005
4006 struct read_write_emulator_ops {
4007         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4008                                   int bytes);
4009         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4010                                   void *val, int bytes);
4011         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4012                                int bytes, void *val);
4013         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4014                                     void *val, int bytes);
4015         bool write;
4016 };
4017
4018 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4019 {
4020         if (vcpu->mmio_read_completed) {
4021                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4022                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4023                 vcpu->mmio_read_completed = 0;
4024                 return 1;
4025         }
4026
4027         return 0;
4028 }
4029
4030 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4031                         void *val, int bytes)
4032 {
4033         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4034 }
4035
4036 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4037                          void *val, int bytes)
4038 {
4039         return emulator_write_phys(vcpu, gpa, val, bytes);
4040 }
4041
4042 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4043 {
4044         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4045         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4046 }
4047
4048 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4049                           void *val, int bytes)
4050 {
4051         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4052         return X86EMUL_IO_NEEDED;
4053 }
4054
4055 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4056                            void *val, int bytes)
4057 {
4058         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4059
4060         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4061         return X86EMUL_CONTINUE;
4062 }
4063
4064 static const struct read_write_emulator_ops read_emultor = {
4065         .read_write_prepare = read_prepare,
4066         .read_write_emulate = read_emulate,
4067         .read_write_mmio = vcpu_mmio_read,
4068         .read_write_exit_mmio = read_exit_mmio,
4069 };
4070
4071 static const struct read_write_emulator_ops write_emultor = {
4072         .read_write_emulate = write_emulate,
4073         .read_write_mmio = write_mmio,
4074         .read_write_exit_mmio = write_exit_mmio,
4075         .write = true,
4076 };
4077
4078 static int emulator_read_write_onepage(unsigned long addr, void *val,
4079                                        unsigned int bytes,
4080                                        struct x86_exception *exception,
4081                                        struct kvm_vcpu *vcpu,
4082                                        const struct read_write_emulator_ops *ops)
4083 {
4084         gpa_t gpa;
4085         int handled, ret;
4086         bool write = ops->write;
4087         struct kvm_mmio_fragment *frag;
4088
4089         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4090
4091         if (ret < 0)
4092                 return X86EMUL_PROPAGATE_FAULT;
4093
4094         /* For APIC access vmexit */
4095         if (ret)
4096                 goto mmio;
4097
4098         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4099                 return X86EMUL_CONTINUE;
4100
4101 mmio:
4102         /*
4103          * Is this MMIO handled locally?
4104          */
4105         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4106         if (handled == bytes)
4107                 return X86EMUL_CONTINUE;
4108
4109         gpa += handled;
4110         bytes -= handled;
4111         val += handled;
4112
4113         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4114         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4115         frag->gpa = gpa;
4116         frag->data = val;
4117         frag->len = bytes;
4118         return X86EMUL_CONTINUE;
4119 }
4120
4121 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4122                         void *val, unsigned int bytes,
4123                         struct x86_exception *exception,
4124                         const struct read_write_emulator_ops *ops)
4125 {
4126         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4127         gpa_t gpa;
4128         int rc;
4129
4130         if (ops->read_write_prepare &&
4131                   ops->read_write_prepare(vcpu, val, bytes))
4132                 return X86EMUL_CONTINUE;
4133
4134         vcpu->mmio_nr_fragments = 0;
4135
4136         /* Crossing a page boundary? */
4137         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4138                 int now;
4139
4140                 now = -addr & ~PAGE_MASK;
4141                 rc = emulator_read_write_onepage(addr, val, now, exception,
4142                                                  vcpu, ops);
4143
4144                 if (rc != X86EMUL_CONTINUE)
4145                         return rc;
4146                 addr += now;
4147                 val += now;
4148                 bytes -= now;
4149         }
4150
4151         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4152                                          vcpu, ops);
4153         if (rc != X86EMUL_CONTINUE)
4154                 return rc;
4155
4156         if (!vcpu->mmio_nr_fragments)
4157                 return rc;
4158
4159         gpa = vcpu->mmio_fragments[0].gpa;
4160
4161         vcpu->mmio_needed = 1;
4162         vcpu->mmio_cur_fragment = 0;
4163
4164         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4165         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4166         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4167         vcpu->run->mmio.phys_addr = gpa;
4168
4169         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4170 }
4171
4172 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4173                                   unsigned long addr,
4174                                   void *val,
4175                                   unsigned int bytes,
4176                                   struct x86_exception *exception)
4177 {
4178         return emulator_read_write(ctxt, addr, val, bytes,
4179                                    exception, &read_emultor);
4180 }
4181
4182 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4183                             unsigned long addr,
4184                             const void *val,
4185                             unsigned int bytes,
4186                             struct x86_exception *exception)
4187 {
4188         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4189                                    exception, &write_emultor);
4190 }
4191
4192 #define CMPXCHG_TYPE(t, ptr, old, new) \
4193         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4194
4195 #ifdef CONFIG_X86_64
4196 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4197 #else
4198 #  define CMPXCHG64(ptr, old, new) \
4199         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4200 #endif
4201
4202 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4203                                      unsigned long addr,
4204                                      const void *old,
4205                                      const void *new,
4206                                      unsigned int bytes,
4207                                      struct x86_exception *exception)
4208 {
4209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4210         gpa_t gpa;
4211         struct page *page;
4212         char *kaddr;
4213         bool exchanged;
4214
4215         /* guests cmpxchg8b have to be emulated atomically */
4216         if (bytes > 8 || (bytes & (bytes - 1)))
4217                 goto emul_write;
4218
4219         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4220
4221         if (gpa == UNMAPPED_GVA ||
4222             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4223                 goto emul_write;
4224
4225         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4226                 goto emul_write;
4227
4228         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4229         if (is_error_page(page))
4230                 goto emul_write;
4231
4232         kaddr = kmap_atomic(page);
4233         kaddr += offset_in_page(gpa);
4234         switch (bytes) {
4235         case 1:
4236                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4237                 break;
4238         case 2:
4239                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4240                 break;
4241         case 4:
4242                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4243                 break;
4244         case 8:
4245                 exchanged = CMPXCHG64(kaddr, old, new);
4246                 break;
4247         default:
4248                 BUG();
4249         }
4250         kunmap_atomic(kaddr);
4251         kvm_release_page_dirty(page);
4252
4253         if (!exchanged)
4254                 return X86EMUL_CMPXCHG_FAILED;
4255
4256         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4257
4258         return X86EMUL_CONTINUE;
4259
4260 emul_write:
4261         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4262
4263         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4264 }
4265
4266 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4267 {
4268         /* TODO: String I/O for in kernel device */
4269         int r;
4270
4271         if (vcpu->arch.pio.in)
4272                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4273                                     vcpu->arch.pio.size, pd);
4274         else
4275                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4276                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4277                                      pd);
4278         return r;
4279 }
4280
4281 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4282                                unsigned short port, void *val,
4283                                unsigned int count, bool in)
4284 {
4285         trace_kvm_pio(!in, port, size, count);
4286
4287         vcpu->arch.pio.port = port;
4288         vcpu->arch.pio.in = in;
4289         vcpu->arch.pio.count  = count;
4290         vcpu->arch.pio.size = size;
4291
4292         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4293                 vcpu->arch.pio.count = 0;
4294                 return 1;
4295         }
4296
4297         vcpu->run->exit_reason = KVM_EXIT_IO;
4298         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4299         vcpu->run->io.size = size;
4300         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4301         vcpu->run->io.count = count;
4302         vcpu->run->io.port = port;
4303
4304         return 0;
4305 }
4306
4307 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4308                                     int size, unsigned short port, void *val,
4309                                     unsigned int count)
4310 {
4311         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4312         int ret;
4313
4314         if (vcpu->arch.pio.count)
4315                 goto data_avail;
4316
4317         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4318         if (ret) {
4319 data_avail:
4320                 memcpy(val, vcpu->arch.pio_data, size * count);
4321                 vcpu->arch.pio.count = 0;
4322                 return 1;
4323         }
4324
4325         return 0;
4326 }
4327
4328 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4329                                      int size, unsigned short port,
4330                                      const void *val, unsigned int count)
4331 {
4332         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4333
4334         memcpy(vcpu->arch.pio_data, val, size * count);
4335         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4336 }
4337
4338 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4339 {
4340         return kvm_x86_ops->get_segment_base(vcpu, seg);
4341 }
4342
4343 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4344 {
4345         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4346 }
4347
4348 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4349 {
4350         if (!need_emulate_wbinvd(vcpu))
4351                 return X86EMUL_CONTINUE;
4352
4353         if (kvm_x86_ops->has_wbinvd_exit()) {
4354                 int cpu = get_cpu();
4355
4356                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4357                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4358                                 wbinvd_ipi, NULL, 1);
4359                 put_cpu();
4360                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4361         } else
4362                 wbinvd();
4363         return X86EMUL_CONTINUE;
4364 }
4365 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4366
4367 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4368 {
4369         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4370 }
4371
4372 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4373 {
4374         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4375 }
4376
4377 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4378 {
4379
4380         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4381 }
4382
4383 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4384 {
4385         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4386 }
4387
4388 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4389 {
4390         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4391         unsigned long value;
4392
4393         switch (cr) {
4394         case 0:
4395                 value = kvm_read_cr0(vcpu);
4396                 break;
4397         case 2:
4398                 value = vcpu->arch.cr2;
4399                 break;
4400         case 3:
4401                 value = kvm_read_cr3(vcpu);
4402                 break;
4403         case 4:
4404                 value = kvm_read_cr4(vcpu);
4405                 break;
4406         case 8:
4407                 value = kvm_get_cr8(vcpu);
4408                 break;
4409         default:
4410                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4411                 return 0;
4412         }
4413
4414         return value;
4415 }
4416
4417 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4418 {
4419         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4420         int res = 0;
4421
4422         switch (cr) {
4423         case 0:
4424                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4425                 break;
4426         case 2:
4427                 vcpu->arch.cr2 = val;
4428                 break;
4429         case 3:
4430                 res = kvm_set_cr3(vcpu, val);
4431                 break;
4432         case 4:
4433                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4434                 break;
4435         case 8:
4436                 res = kvm_set_cr8(vcpu, val);
4437                 break;
4438         default:
4439                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4440                 res = -1;
4441         }
4442
4443         return res;
4444 }
4445
4446 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4447 {
4448         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4449 }
4450
4451 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4452 {
4453         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4454 }
4455
4456 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4457 {
4458         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4459 }
4460
4461 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4462 {
4463         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4464 }
4465
4466 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4467 {
4468         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4469 }
4470
4471 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4472 {
4473         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4474 }
4475
4476 static unsigned long emulator_get_cached_segment_base(
4477         struct x86_emulate_ctxt *ctxt, int seg)
4478 {
4479         return get_segment_base(emul_to_vcpu(ctxt), seg);
4480 }
4481
4482 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4483                                  struct desc_struct *desc, u32 *base3,
4484                                  int seg)
4485 {
4486         struct kvm_segment var;
4487
4488         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4489         *selector = var.selector;
4490
4491         if (var.unusable) {
4492                 memset(desc, 0, sizeof(*desc));
4493                 return false;
4494         }
4495
4496         if (var.g)
4497                 var.limit >>= 12;
4498         set_desc_limit(desc, var.limit);
4499         set_desc_base(desc, (unsigned long)var.base);
4500 #ifdef CONFIG_X86_64
4501         if (base3)
4502                 *base3 = var.base >> 32;
4503 #endif
4504         desc->type = var.type;
4505         desc->s = var.s;
4506         desc->dpl = var.dpl;
4507         desc->p = var.present;
4508         desc->avl = var.avl;
4509         desc->l = var.l;
4510         desc->d = var.db;
4511         desc->g = var.g;
4512
4513         return true;
4514 }
4515
4516 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4517                                  struct desc_struct *desc, u32 base3,
4518                                  int seg)
4519 {
4520         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521         struct kvm_segment var;
4522
4523         var.selector = selector;
4524         var.base = get_desc_base(desc);
4525 #ifdef CONFIG_X86_64
4526         var.base |= ((u64)base3) << 32;
4527 #endif
4528         var.limit = get_desc_limit(desc);
4529         if (desc->g)
4530                 var.limit = (var.limit << 12) | 0xfff;
4531         var.type = desc->type;
4532         var.present = desc->p;
4533         var.dpl = desc->dpl;
4534         var.db = desc->d;
4535         var.s = desc->s;
4536         var.l = desc->l;
4537         var.g = desc->g;
4538         var.avl = desc->avl;
4539         var.present = desc->p;
4540         var.unusable = !var.present;
4541         var.padding = 0;
4542
4543         kvm_set_segment(vcpu, &var, seg);
4544         return;
4545 }
4546
4547 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4548                             u32 msr_index, u64 *pdata)
4549 {
4550         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4551 }
4552
4553 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4554                             u32 msr_index, u64 data)
4555 {
4556         struct msr_data msr;
4557
4558         msr.data = data;
4559         msr.index = msr_index;
4560         msr.host_initiated = false;
4561         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4562 }
4563
4564 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4565                              u32 pmc, u64 *pdata)
4566 {
4567         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4568 }
4569
4570 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4571 {
4572         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4573 }
4574
4575 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4576 {
4577         preempt_disable();
4578         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4579         /*
4580          * CR0.TS may reference the host fpu state, not the guest fpu state,
4581          * so it may be clear at this point.
4582          */
4583         clts();
4584 }
4585
4586 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4587 {
4588         preempt_enable();
4589 }
4590
4591 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4592                               struct x86_instruction_info *info,
4593                               enum x86_intercept_stage stage)
4594 {
4595         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4596 }
4597
4598 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4599                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4600 {
4601         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4602 }
4603
4604 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4605 {
4606         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4607 }
4608
4609 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4610 {
4611         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4612 }
4613
4614 static const struct x86_emulate_ops emulate_ops = {
4615         .read_gpr            = emulator_read_gpr,
4616         .write_gpr           = emulator_write_gpr,
4617         .read_std            = kvm_read_guest_virt_system,
4618         .write_std           = kvm_write_guest_virt_system,
4619         .fetch               = kvm_fetch_guest_virt,
4620         .read_emulated       = emulator_read_emulated,
4621         .write_emulated      = emulator_write_emulated,
4622         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4623         .invlpg              = emulator_invlpg,
4624         .pio_in_emulated     = emulator_pio_in_emulated,
4625         .pio_out_emulated    = emulator_pio_out_emulated,
4626         .get_segment         = emulator_get_segment,
4627         .set_segment         = emulator_set_segment,
4628         .get_cached_segment_base = emulator_get_cached_segment_base,
4629         .get_gdt             = emulator_get_gdt,
4630         .get_idt             = emulator_get_idt,
4631         .set_gdt             = emulator_set_gdt,
4632         .set_idt             = emulator_set_idt,
4633         .get_cr              = emulator_get_cr,
4634         .set_cr              = emulator_set_cr,
4635         .set_rflags          = emulator_set_rflags,
4636         .cpl                 = emulator_get_cpl,
4637         .get_dr              = emulator_get_dr,
4638         .set_dr              = emulator_set_dr,
4639         .set_msr             = emulator_set_msr,
4640         .get_msr             = emulator_get_msr,
4641         .read_pmc            = emulator_read_pmc,
4642         .halt                = emulator_halt,
4643         .wbinvd              = emulator_wbinvd,
4644         .fix_hypercall       = emulator_fix_hypercall,
4645         .get_fpu             = emulator_get_fpu,
4646         .put_fpu             = emulator_put_fpu,
4647         .intercept           = emulator_intercept,
4648         .get_cpuid           = emulator_get_cpuid,
4649 };
4650
4651 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4652 {
4653         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4654         /*
4655          * an sti; sti; sequence only disable interrupts for the first
4656          * instruction. So, if the last instruction, be it emulated or
4657          * not, left the system with the INT_STI flag enabled, it
4658          * means that the last instruction is an sti. We should not
4659          * leave the flag on in this case. The same goes for mov ss
4660          */
4661         if (!(int_shadow & mask))
4662                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4663 }
4664
4665 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4666 {
4667         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4668         if (ctxt->exception.vector == PF_VECTOR)
4669                 kvm_propagate_fault(vcpu, &ctxt->exception);
4670         else if (ctxt->exception.error_code_valid)
4671                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4672                                       ctxt->exception.error_code);
4673         else
4674                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4675 }
4676
4677 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4678 {
4679         memset(&ctxt->twobyte, 0,
4680                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4681
4682         ctxt->fetch.start = 0;
4683         ctxt->fetch.end = 0;
4684         ctxt->io_read.pos = 0;
4685         ctxt->io_read.end = 0;
4686         ctxt->mem_read.pos = 0;
4687         ctxt->mem_read.end = 0;
4688 }
4689
4690 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4691 {
4692         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4693         int cs_db, cs_l;
4694
4695         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4696
4697         ctxt->eflags = kvm_get_rflags(vcpu);
4698         ctxt->eip = kvm_rip_read(vcpu);
4699         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4700                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4701                      cs_l                               ? X86EMUL_MODE_PROT64 :
4702                      cs_db                              ? X86EMUL_MODE_PROT32 :
4703                                                           X86EMUL_MODE_PROT16;
4704         ctxt->guest_mode = is_guest_mode(vcpu);
4705
4706         init_decode_cache(ctxt);
4707         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4708 }
4709
4710 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4711 {
4712         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713         int ret;
4714
4715         init_emulate_ctxt(vcpu);
4716
4717         ctxt->op_bytes = 2;
4718         ctxt->ad_bytes = 2;
4719         ctxt->_eip = ctxt->eip + inc_eip;
4720         ret = emulate_int_real(ctxt, irq);
4721
4722         if (ret != X86EMUL_CONTINUE)
4723                 return EMULATE_FAIL;
4724
4725         ctxt->eip = ctxt->_eip;
4726         kvm_rip_write(vcpu, ctxt->eip);
4727         kvm_set_rflags(vcpu, ctxt->eflags);
4728
4729         if (irq == NMI_VECTOR)
4730                 vcpu->arch.nmi_pending = 0;
4731         else
4732                 vcpu->arch.interrupt.pending = false;
4733
4734         return EMULATE_DONE;
4735 }
4736 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4737
4738 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4739 {
4740         int r = EMULATE_DONE;
4741
4742         ++vcpu->stat.insn_emulation_fail;
4743         trace_kvm_emulate_insn_failed(vcpu);
4744         if (!is_guest_mode(vcpu)) {
4745                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4746                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4747                 vcpu->run->internal.ndata = 0;
4748                 r = EMULATE_FAIL;
4749         }
4750         kvm_queue_exception(vcpu, UD_VECTOR);
4751
4752         return r;
4753 }
4754
4755 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4756                                   bool write_fault_to_shadow_pgtable)
4757 {
4758         gpa_t gpa = cr2;
4759         pfn_t pfn;
4760
4761         if (!vcpu->arch.mmu.direct_map) {
4762                 /*
4763                  * Write permission should be allowed since only
4764                  * write access need to be emulated.
4765                  */
4766                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4767
4768                 /*
4769                  * If the mapping is invalid in guest, let cpu retry
4770                  * it to generate fault.
4771                  */
4772                 if (gpa == UNMAPPED_GVA)
4773                         return true;
4774         }
4775
4776         /*
4777          * Do not retry the unhandleable instruction if it faults on the
4778          * readonly host memory, otherwise it will goto a infinite loop:
4779          * retry instruction -> write #PF -> emulation fail -> retry
4780          * instruction -> ...
4781          */
4782         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4783
4784         /*
4785          * If the instruction failed on the error pfn, it can not be fixed,
4786          * report the error to userspace.
4787          */
4788         if (is_error_noslot_pfn(pfn))
4789                 return false;
4790
4791         kvm_release_pfn_clean(pfn);
4792
4793         /* The instructions are well-emulated on direct mmu. */
4794         if (vcpu->arch.mmu.direct_map) {
4795                 unsigned int indirect_shadow_pages;
4796
4797                 spin_lock(&vcpu->kvm->mmu_lock);
4798                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4799                 spin_unlock(&vcpu->kvm->mmu_lock);
4800
4801                 if (indirect_shadow_pages)
4802                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4803
4804                 return true;
4805         }
4806
4807         /*
4808          * if emulation was due to access to shadowed page table
4809          * and it failed try to unshadow page and re-enter the
4810          * guest to let CPU execute the instruction.
4811          */
4812         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4813
4814         /*
4815          * If the access faults on its page table, it can not
4816          * be fixed by unprotecting shadow page and it should
4817          * be reported to userspace.
4818          */
4819         return !write_fault_to_shadow_pgtable;
4820 }
4821
4822 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4823                               unsigned long cr2,  int emulation_type)
4824 {
4825         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4826         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4827
4828         last_retry_eip = vcpu->arch.last_retry_eip;
4829         last_retry_addr = vcpu->arch.last_retry_addr;
4830
4831         /*
4832          * If the emulation is caused by #PF and it is non-page_table
4833          * writing instruction, it means the VM-EXIT is caused by shadow
4834          * page protected, we can zap the shadow page and retry this
4835          * instruction directly.
4836          *
4837          * Note: if the guest uses a non-page-table modifying instruction
4838          * on the PDE that points to the instruction, then we will unmap
4839          * the instruction and go to an infinite loop. So, we cache the
4840          * last retried eip and the last fault address, if we meet the eip
4841          * and the address again, we can break out of the potential infinite
4842          * loop.
4843          */
4844         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4845
4846         if (!(emulation_type & EMULTYPE_RETRY))
4847                 return false;
4848
4849         if (x86_page_table_writing_insn(ctxt))
4850                 return false;
4851
4852         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4853                 return false;
4854
4855         vcpu->arch.last_retry_eip = ctxt->eip;
4856         vcpu->arch.last_retry_addr = cr2;
4857
4858         if (!vcpu->arch.mmu.direct_map)
4859                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4860
4861         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4862
4863         return true;
4864 }
4865
4866 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4867 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4868
4869 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4870                             unsigned long cr2,
4871                             int emulation_type,
4872                             void *insn,
4873                             int insn_len)
4874 {
4875         int r;
4876         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4877         bool writeback = true;
4878         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4879
4880         /*
4881          * Clear write_fault_to_shadow_pgtable here to ensure it is
4882          * never reused.
4883          */
4884         vcpu->arch.write_fault_to_shadow_pgtable = false;
4885         kvm_clear_exception_queue(vcpu);
4886
4887         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4888                 init_emulate_ctxt(vcpu);
4889                 ctxt->interruptibility = 0;
4890                 ctxt->have_exception = false;
4891                 ctxt->perm_ok = false;
4892
4893                 ctxt->only_vendor_specific_insn
4894                         = emulation_type & EMULTYPE_TRAP_UD;
4895
4896                 r = x86_decode_insn(ctxt, insn, insn_len);
4897
4898                 trace_kvm_emulate_insn_start(vcpu);
4899                 ++vcpu->stat.insn_emulation;
4900                 if (r != EMULATION_OK)  {
4901                         if (emulation_type & EMULTYPE_TRAP_UD)
4902                                 return EMULATE_FAIL;
4903                         if (reexecute_instruction(vcpu, cr2,
4904                                                   write_fault_to_spt))
4905                                 return EMULATE_DONE;
4906                         if (emulation_type & EMULTYPE_SKIP)
4907                                 return EMULATE_FAIL;
4908                         return handle_emulation_failure(vcpu);
4909                 }
4910         }
4911
4912         if (emulation_type & EMULTYPE_SKIP) {
4913                 kvm_rip_write(vcpu, ctxt->_eip);
4914                 return EMULATE_DONE;
4915         }
4916
4917         if (retry_instruction(ctxt, cr2, emulation_type))
4918                 return EMULATE_DONE;
4919
4920         /* this is needed for vmware backdoor interface to work since it
4921            changes registers values  during IO operation */
4922         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4923                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4924                 emulator_invalidate_register_cache(ctxt);
4925         }
4926
4927 restart:
4928         r = x86_emulate_insn(ctxt);
4929
4930         if (r == EMULATION_INTERCEPTED)
4931                 return EMULATE_DONE;
4932
4933         if (r == EMULATION_FAILED) {
4934                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt))
4935                         return EMULATE_DONE;
4936
4937                 return handle_emulation_failure(vcpu);
4938         }
4939
4940         if (ctxt->have_exception) {
4941                 inject_emulated_exception(vcpu);
4942                 r = EMULATE_DONE;
4943         } else if (vcpu->arch.pio.count) {
4944                 if (!vcpu->arch.pio.in)
4945                         vcpu->arch.pio.count = 0;
4946                 else {
4947                         writeback = false;
4948                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4949                 }
4950                 r = EMULATE_DO_MMIO;
4951         } else if (vcpu->mmio_needed) {
4952                 if (!vcpu->mmio_is_write)
4953                         writeback = false;
4954                 r = EMULATE_DO_MMIO;
4955                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4956         } else if (r == EMULATION_RESTART)
4957                 goto restart;
4958         else
4959                 r = EMULATE_DONE;
4960
4961         if (writeback) {
4962                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4963                 kvm_set_rflags(vcpu, ctxt->eflags);
4964                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4965                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4966                 kvm_rip_write(vcpu, ctxt->eip);
4967         } else
4968                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4969
4970         return r;
4971 }
4972 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4973
4974 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4975 {
4976         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4977         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4978                                             size, port, &val, 1);
4979         /* do not return to emulator after return from userspace */
4980         vcpu->arch.pio.count = 0;
4981         return ret;
4982 }
4983 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4984
4985 static void tsc_bad(void *info)
4986 {
4987         __this_cpu_write(cpu_tsc_khz, 0);
4988 }
4989
4990 static void tsc_khz_changed(void *data)
4991 {
4992         struct cpufreq_freqs *freq = data;
4993         unsigned long khz = 0;
4994
4995         if (data)
4996                 khz = freq->new;
4997         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4998                 khz = cpufreq_quick_get(raw_smp_processor_id());
4999         if (!khz)
5000                 khz = tsc_khz;
5001         __this_cpu_write(cpu_tsc_khz, khz);
5002 }
5003
5004 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5005                                      void *data)
5006 {
5007         struct cpufreq_freqs *freq = data;
5008         struct kvm *kvm;
5009         struct kvm_vcpu *vcpu;
5010         int i, send_ipi = 0;
5011
5012         /*
5013          * We allow guests to temporarily run on slowing clocks,
5014          * provided we notify them after, or to run on accelerating
5015          * clocks, provided we notify them before.  Thus time never
5016          * goes backwards.
5017          *
5018          * However, we have a problem.  We can't atomically update
5019          * the frequency of a given CPU from this function; it is
5020          * merely a notifier, which can be called from any CPU.
5021          * Changing the TSC frequency at arbitrary points in time
5022          * requires a recomputation of local variables related to
5023          * the TSC for each VCPU.  We must flag these local variables
5024          * to be updated and be sure the update takes place with the
5025          * new frequency before any guests proceed.
5026          *
5027          * Unfortunately, the combination of hotplug CPU and frequency
5028          * change creates an intractable locking scenario; the order
5029          * of when these callouts happen is undefined with respect to
5030          * CPU hotplug, and they can race with each other.  As such,
5031          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5032          * undefined; you can actually have a CPU frequency change take
5033          * place in between the computation of X and the setting of the
5034          * variable.  To protect against this problem, all updates of
5035          * the per_cpu tsc_khz variable are done in an interrupt
5036          * protected IPI, and all callers wishing to update the value
5037          * must wait for a synchronous IPI to complete (which is trivial
5038          * if the caller is on the CPU already).  This establishes the
5039          * necessary total order on variable updates.
5040          *
5041          * Note that because a guest time update may take place
5042          * anytime after the setting of the VCPU's request bit, the
5043          * correct TSC value must be set before the request.  However,
5044          * to ensure the update actually makes it to any guest which
5045          * starts running in hardware virtualization between the set
5046          * and the acquisition of the spinlock, we must also ping the
5047          * CPU after setting the request bit.
5048          *
5049          */
5050
5051         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5052                 return 0;
5053         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5054                 return 0;
5055
5056         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5057
5058         raw_spin_lock(&kvm_lock);
5059         list_for_each_entry(kvm, &vm_list, vm_list) {
5060                 kvm_for_each_vcpu(i, vcpu, kvm) {
5061                         if (vcpu->cpu != freq->cpu)
5062                                 continue;
5063                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5064                         if (vcpu->cpu != smp_processor_id())
5065                                 send_ipi = 1;
5066                 }
5067         }
5068         raw_spin_unlock(&kvm_lock);
5069
5070         if (freq->old < freq->new && send_ipi) {
5071                 /*
5072                  * We upscale the frequency.  Must make the guest
5073                  * doesn't see old kvmclock values while running with
5074                  * the new frequency, otherwise we risk the guest sees
5075                  * time go backwards.
5076                  *
5077                  * In case we update the frequency for another cpu
5078                  * (which might be in guest context) send an interrupt
5079                  * to kick the cpu out of guest context.  Next time
5080                  * guest context is entered kvmclock will be updated,
5081                  * so the guest will not see stale values.
5082                  */
5083                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5084         }
5085         return 0;
5086 }
5087
5088 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5089         .notifier_call  = kvmclock_cpufreq_notifier
5090 };
5091
5092 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5093                                         unsigned long action, void *hcpu)
5094 {
5095         unsigned int cpu = (unsigned long)hcpu;
5096
5097         switch (action) {
5098                 case CPU_ONLINE:
5099                 case CPU_DOWN_FAILED:
5100                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5101                         break;
5102                 case CPU_DOWN_PREPARE:
5103                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5104                         break;
5105         }
5106         return NOTIFY_OK;
5107 }
5108
5109 static struct notifier_block kvmclock_cpu_notifier_block = {
5110         .notifier_call  = kvmclock_cpu_notifier,
5111         .priority = -INT_MAX
5112 };
5113
5114 static void kvm_timer_init(void)
5115 {
5116         int cpu;
5117
5118         max_tsc_khz = tsc_khz;
5119         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5120         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5121 #ifdef CONFIG_CPU_FREQ
5122                 struct cpufreq_policy policy;
5123                 memset(&policy, 0, sizeof(policy));
5124                 cpu = get_cpu();
5125                 cpufreq_get_policy(&policy, cpu);
5126                 if (policy.cpuinfo.max_freq)
5127                         max_tsc_khz = policy.cpuinfo.max_freq;
5128                 put_cpu();
5129 #endif
5130                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5131                                           CPUFREQ_TRANSITION_NOTIFIER);
5132         }
5133         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5134         for_each_online_cpu(cpu)
5135                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5136 }
5137
5138 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5139
5140 int kvm_is_in_guest(void)
5141 {
5142         return __this_cpu_read(current_vcpu) != NULL;
5143 }
5144
5145 static int kvm_is_user_mode(void)
5146 {
5147         int user_mode = 3;
5148
5149         if (__this_cpu_read(current_vcpu))
5150                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5151
5152         return user_mode != 0;
5153 }
5154
5155 static unsigned long kvm_get_guest_ip(void)
5156 {
5157         unsigned long ip = 0;
5158
5159         if (__this_cpu_read(current_vcpu))
5160                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5161
5162         return ip;
5163 }
5164
5165 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5166         .is_in_guest            = kvm_is_in_guest,
5167         .is_user_mode           = kvm_is_user_mode,
5168         .get_guest_ip           = kvm_get_guest_ip,
5169 };
5170
5171 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5172 {
5173         __this_cpu_write(current_vcpu, vcpu);
5174 }
5175 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5176
5177 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5178 {
5179         __this_cpu_write(current_vcpu, NULL);
5180 }
5181 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5182
5183 static void kvm_set_mmio_spte_mask(void)
5184 {
5185         u64 mask;
5186         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5187
5188         /*
5189          * Set the reserved bits and the present bit of an paging-structure
5190          * entry to generate page fault with PFER.RSV = 1.
5191          */
5192         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5193         mask |= 1ull;
5194
5195 #ifdef CONFIG_X86_64
5196         /*
5197          * If reserved bit is not supported, clear the present bit to disable
5198          * mmio page fault.
5199          */
5200         if (maxphyaddr == 52)
5201                 mask &= ~1ull;
5202 #endif
5203
5204         kvm_mmu_set_mmio_spte_mask(mask);
5205 }
5206
5207 #ifdef CONFIG_X86_64
5208 static void pvclock_gtod_update_fn(struct work_struct *work)
5209 {
5210         struct kvm *kvm;
5211
5212         struct kvm_vcpu *vcpu;
5213         int i;
5214
5215         raw_spin_lock(&kvm_lock);
5216         list_for_each_entry(kvm, &vm_list, vm_list)
5217                 kvm_for_each_vcpu(i, vcpu, kvm)
5218                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5219         atomic_set(&kvm_guest_has_master_clock, 0);
5220         raw_spin_unlock(&kvm_lock);
5221 }
5222
5223 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5224
5225 /*
5226  * Notification about pvclock gtod data update.
5227  */
5228 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5229                                void *priv)
5230 {
5231         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5232         struct timekeeper *tk = priv;
5233
5234         update_pvclock_gtod(tk);
5235
5236         /* disable master clock if host does not trust, or does not
5237          * use, TSC clocksource
5238          */
5239         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5240             atomic_read(&kvm_guest_has_master_clock) != 0)
5241                 queue_work(system_long_wq, &pvclock_gtod_work);
5242
5243         return 0;
5244 }
5245
5246 static struct notifier_block pvclock_gtod_notifier = {
5247         .notifier_call = pvclock_gtod_notify,
5248 };
5249 #endif
5250
5251 int kvm_arch_init(void *opaque)
5252 {
5253         int r;
5254         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5255
5256         if (kvm_x86_ops) {
5257                 printk(KERN_ERR "kvm: already loaded the other module\n");
5258                 r = -EEXIST;
5259                 goto out;
5260         }
5261
5262         if (!ops->cpu_has_kvm_support()) {
5263                 printk(KERN_ERR "kvm: no hardware support\n");
5264                 r = -EOPNOTSUPP;
5265                 goto out;
5266         }
5267         if (ops->disabled_by_bios()) {
5268                 printk(KERN_ERR "kvm: disabled by bios\n");
5269                 r = -EOPNOTSUPP;
5270                 goto out;
5271         }
5272
5273         r = -ENOMEM;
5274         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5275         if (!shared_msrs) {
5276                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5277                 goto out;
5278         }
5279
5280         r = kvm_mmu_module_init();
5281         if (r)
5282                 goto out_free_percpu;
5283
5284         kvm_set_mmio_spte_mask();
5285         kvm_init_msr_list();
5286
5287         kvm_x86_ops = ops;
5288         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5289                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5290
5291         kvm_timer_init();
5292
5293         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5294
5295         if (cpu_has_xsave)
5296                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5297
5298         kvm_lapic_init();
5299 #ifdef CONFIG_X86_64
5300         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5301 #endif
5302
5303         return 0;
5304
5305 out_free_percpu:
5306         free_percpu(shared_msrs);
5307 out:
5308         return r;
5309 }
5310
5311 void kvm_arch_exit(void)
5312 {
5313         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5314
5315         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5316                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5317                                             CPUFREQ_TRANSITION_NOTIFIER);
5318         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5319 #ifdef CONFIG_X86_64
5320         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5321 #endif
5322         kvm_x86_ops = NULL;
5323         kvm_mmu_module_exit();
5324         free_percpu(shared_msrs);
5325 }
5326
5327 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5328 {
5329         ++vcpu->stat.halt_exits;
5330         if (irqchip_in_kernel(vcpu->kvm)) {
5331                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5332                 return 1;
5333         } else {
5334                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5335                 return 0;
5336         }
5337 }
5338 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5339
5340 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5341 {
5342         u64 param, ingpa, outgpa, ret;
5343         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5344         bool fast, longmode;
5345         int cs_db, cs_l;
5346
5347         /*
5348          * hypercall generates UD from non zero cpl and real mode
5349          * per HYPER-V spec
5350          */
5351         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5352                 kvm_queue_exception(vcpu, UD_VECTOR);
5353                 return 0;
5354         }
5355
5356         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5357         longmode = is_long_mode(vcpu) && cs_l == 1;
5358
5359         if (!longmode) {
5360                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5361                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5362                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5363                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5364                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5365                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5366         }
5367 #ifdef CONFIG_X86_64
5368         else {
5369                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5370                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5371                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5372         }
5373 #endif
5374
5375         code = param & 0xffff;
5376         fast = (param >> 16) & 0x1;
5377         rep_cnt = (param >> 32) & 0xfff;
5378         rep_idx = (param >> 48) & 0xfff;
5379
5380         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5381
5382         switch (code) {
5383         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5384                 kvm_vcpu_on_spin(vcpu);
5385                 break;
5386         default:
5387                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5388                 break;
5389         }
5390
5391         ret = res | (((u64)rep_done & 0xfff) << 32);
5392         if (longmode) {
5393                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5394         } else {
5395                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5396                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5397         }
5398
5399         return 1;
5400 }
5401
5402 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5403 {
5404         unsigned long nr, a0, a1, a2, a3, ret;
5405         int r = 1;
5406
5407         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5408                 return kvm_hv_hypercall(vcpu);
5409
5410         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5411         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5412         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5413         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5414         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5415
5416         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5417
5418         if (!is_long_mode(vcpu)) {
5419                 nr &= 0xFFFFFFFF;
5420                 a0 &= 0xFFFFFFFF;
5421                 a1 &= 0xFFFFFFFF;
5422                 a2 &= 0xFFFFFFFF;
5423                 a3 &= 0xFFFFFFFF;
5424         }
5425
5426         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5427                 ret = -KVM_EPERM;
5428                 goto out;
5429         }
5430
5431         switch (nr) {
5432         case KVM_HC_VAPIC_POLL_IRQ:
5433                 ret = 0;
5434                 break;
5435         default:
5436                 ret = -KVM_ENOSYS;
5437                 break;
5438         }
5439 out:
5440         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5441         ++vcpu->stat.hypercalls;
5442         return r;
5443 }
5444 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5445
5446 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5447 {
5448         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5449         char instruction[3];
5450         unsigned long rip = kvm_rip_read(vcpu);
5451
5452         /*
5453          * Blow out the MMU to ensure that no other VCPU has an active mapping
5454          * to ensure that the updated hypercall appears atomically across all
5455          * VCPUs.
5456          */
5457         kvm_mmu_zap_all(vcpu->kvm);
5458
5459         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5460
5461         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5462 }
5463
5464 /*
5465  * Check if userspace requested an interrupt window, and that the
5466  * interrupt window is open.
5467  *
5468  * No need to exit to userspace if we already have an interrupt queued.
5469  */
5470 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5471 {
5472         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5473                 vcpu->run->request_interrupt_window &&
5474                 kvm_arch_interrupt_allowed(vcpu));
5475 }
5476
5477 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5478 {
5479         struct kvm_run *kvm_run = vcpu->run;
5480
5481         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5482         kvm_run->cr8 = kvm_get_cr8(vcpu);
5483         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5484         if (irqchip_in_kernel(vcpu->kvm))
5485                 kvm_run->ready_for_interrupt_injection = 1;
5486         else
5487                 kvm_run->ready_for_interrupt_injection =
5488                         kvm_arch_interrupt_allowed(vcpu) &&
5489                         !kvm_cpu_has_interrupt(vcpu) &&
5490                         !kvm_event_needs_reinjection(vcpu);
5491 }
5492
5493 static int vapic_enter(struct kvm_vcpu *vcpu)
5494 {
5495         struct kvm_lapic *apic = vcpu->arch.apic;
5496         struct page *page;
5497
5498         if (!apic || !apic->vapic_addr)
5499                 return 0;
5500
5501         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5502         if (is_error_page(page))
5503                 return -EFAULT;
5504
5505         vcpu->arch.apic->vapic_page = page;
5506         return 0;
5507 }
5508
5509 static void vapic_exit(struct kvm_vcpu *vcpu)
5510 {
5511         struct kvm_lapic *apic = vcpu->arch.apic;
5512         int idx;
5513
5514         if (!apic || !apic->vapic_addr)
5515                 return;
5516
5517         idx = srcu_read_lock(&vcpu->kvm->srcu);
5518         kvm_release_page_dirty(apic->vapic_page);
5519         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5520         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5521 }
5522
5523 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5524 {
5525         int max_irr, tpr;
5526
5527         if (!kvm_x86_ops->update_cr8_intercept)
5528                 return;
5529
5530         if (!vcpu->arch.apic)
5531                 return;
5532
5533         if (!vcpu->arch.apic->vapic_addr)
5534                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5535         else
5536                 max_irr = -1;
5537
5538         if (max_irr != -1)
5539                 max_irr >>= 4;
5540
5541         tpr = kvm_lapic_get_cr8(vcpu);
5542
5543         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5544 }
5545
5546 static void inject_pending_event(struct kvm_vcpu *vcpu)
5547 {
5548         /* try to reinject previous events if any */
5549         if (vcpu->arch.exception.pending) {
5550                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5551                                         vcpu->arch.exception.has_error_code,
5552                                         vcpu->arch.exception.error_code);
5553                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5554                                           vcpu->arch.exception.has_error_code,
5555                                           vcpu->arch.exception.error_code,
5556                                           vcpu->arch.exception.reinject);
5557                 return;
5558         }
5559
5560         if (vcpu->arch.nmi_injected) {
5561                 kvm_x86_ops->set_nmi(vcpu);
5562                 return;
5563         }
5564
5565         if (vcpu->arch.interrupt.pending) {
5566                 kvm_x86_ops->set_irq(vcpu);
5567                 return;
5568         }
5569
5570         /* try to inject new event if pending */
5571         if (vcpu->arch.nmi_pending) {
5572                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5573                         --vcpu->arch.nmi_pending;
5574                         vcpu->arch.nmi_injected = true;
5575                         kvm_x86_ops->set_nmi(vcpu);
5576                 }
5577         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5578                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5579                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5580                                             false);
5581                         kvm_x86_ops->set_irq(vcpu);
5582                 }
5583         }
5584 }
5585
5586 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5587 {
5588         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5589                         !vcpu->guest_xcr0_loaded) {
5590                 /* kvm_set_xcr() also depends on this */
5591                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5592                 vcpu->guest_xcr0_loaded = 1;
5593         }
5594 }
5595
5596 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5597 {
5598         if (vcpu->guest_xcr0_loaded) {
5599                 if (vcpu->arch.xcr0 != host_xcr0)
5600                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5601                 vcpu->guest_xcr0_loaded = 0;
5602         }
5603 }
5604
5605 static void process_nmi(struct kvm_vcpu *vcpu)
5606 {
5607         unsigned limit = 2;
5608
5609         /*
5610          * x86 is limited to one NMI running, and one NMI pending after it.
5611          * If an NMI is already in progress, limit further NMIs to just one.
5612          * Otherwise, allow two (and we'll inject the first one immediately).
5613          */
5614         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5615                 limit = 1;
5616
5617         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5618         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5619         kvm_make_request(KVM_REQ_EVENT, vcpu);
5620 }
5621
5622 static void kvm_gen_update_masterclock(struct kvm *kvm)
5623 {
5624 #ifdef CONFIG_X86_64
5625         int i;
5626         struct kvm_vcpu *vcpu;
5627         struct kvm_arch *ka = &kvm->arch;
5628
5629         spin_lock(&ka->pvclock_gtod_sync_lock);
5630         kvm_make_mclock_inprogress_request(kvm);
5631         /* no guest entries from this point */
5632         pvclock_update_vm_gtod_copy(kvm);
5633
5634         kvm_for_each_vcpu(i, vcpu, kvm)
5635                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5636
5637         /* guest entries allowed */
5638         kvm_for_each_vcpu(i, vcpu, kvm)
5639                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5640
5641         spin_unlock(&ka->pvclock_gtod_sync_lock);
5642 #endif
5643 }
5644
5645 static void update_eoi_exitmap(struct kvm_vcpu *vcpu)
5646 {
5647         u64 eoi_exit_bitmap[4];
5648
5649         memset(eoi_exit_bitmap, 0, 32);
5650
5651         kvm_ioapic_calculate_eoi_exitmap(vcpu, eoi_exit_bitmap);
5652         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5653 }
5654
5655 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5656 {
5657         int r;
5658         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5659                 vcpu->run->request_interrupt_window;
5660         bool req_immediate_exit = 0;
5661
5662         if (vcpu->requests) {
5663                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5664                         kvm_mmu_unload(vcpu);
5665                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5666                         __kvm_migrate_timers(vcpu);
5667                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5668                         kvm_gen_update_masterclock(vcpu->kvm);
5669                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5670                         r = kvm_guest_time_update(vcpu);
5671                         if (unlikely(r))
5672                                 goto out;
5673                 }
5674                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5675                         kvm_mmu_sync_roots(vcpu);
5676                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5677                         kvm_x86_ops->tlb_flush(vcpu);
5678                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5679                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5680                         r = 0;
5681                         goto out;
5682                 }
5683                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5684                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5685                         r = 0;
5686                         goto out;
5687                 }
5688                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5689                         vcpu->fpu_active = 0;
5690                         kvm_x86_ops->fpu_deactivate(vcpu);
5691                 }
5692                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5693                         /* Page is swapped out. Do synthetic halt */
5694                         vcpu->arch.apf.halted = true;
5695                         r = 1;
5696                         goto out;
5697                 }
5698                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5699                         record_steal_time(vcpu);
5700                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5701                         process_nmi(vcpu);
5702                 req_immediate_exit =
5703                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5704                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5705                         kvm_handle_pmu_event(vcpu);
5706                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5707                         kvm_deliver_pmi(vcpu);
5708                 if (kvm_check_request(KVM_REQ_EOIBITMAP, vcpu))
5709                         update_eoi_exitmap(vcpu);
5710         }
5711
5712         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5713                 inject_pending_event(vcpu);
5714
5715                 /* enable NMI/IRQ window open exits if needed */
5716                 if (vcpu->arch.nmi_pending)
5717                         kvm_x86_ops->enable_nmi_window(vcpu);
5718                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5719                         kvm_x86_ops->enable_irq_window(vcpu);
5720
5721                 if (kvm_lapic_enabled(vcpu)) {
5722                         /*
5723                          * Update architecture specific hints for APIC
5724                          * virtual interrupt delivery.
5725                          */
5726                         if (kvm_x86_ops->hwapic_irr_update)
5727                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5728                                         kvm_lapic_find_highest_irr(vcpu));
5729                         update_cr8_intercept(vcpu);
5730                         kvm_lapic_sync_to_vapic(vcpu);
5731                 }
5732         }
5733
5734         r = kvm_mmu_reload(vcpu);
5735         if (unlikely(r)) {
5736                 goto cancel_injection;
5737         }
5738
5739         preempt_disable();
5740
5741         kvm_x86_ops->prepare_guest_switch(vcpu);
5742         if (vcpu->fpu_active)
5743                 kvm_load_guest_fpu(vcpu);
5744         kvm_load_guest_xcr0(vcpu);
5745
5746         vcpu->mode = IN_GUEST_MODE;
5747
5748         /* We should set ->mode before check ->requests,
5749          * see the comment in make_all_cpus_request.
5750          */
5751         smp_mb();
5752
5753         local_irq_disable();
5754
5755         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5756             || need_resched() || signal_pending(current)) {
5757                 vcpu->mode = OUTSIDE_GUEST_MODE;
5758                 smp_wmb();
5759                 local_irq_enable();
5760                 preempt_enable();
5761                 r = 1;
5762                 goto cancel_injection;
5763         }
5764
5765         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5766
5767         if (req_immediate_exit)
5768                 smp_send_reschedule(vcpu->cpu);
5769
5770         kvm_guest_enter();
5771
5772         if (unlikely(vcpu->arch.switch_db_regs)) {
5773                 set_debugreg(0, 7);
5774                 set_debugreg(vcpu->arch.eff_db[0], 0);
5775                 set_debugreg(vcpu->arch.eff_db[1], 1);
5776                 set_debugreg(vcpu->arch.eff_db[2], 2);
5777                 set_debugreg(vcpu->arch.eff_db[3], 3);
5778         }
5779
5780         trace_kvm_entry(vcpu->vcpu_id);
5781         kvm_x86_ops->run(vcpu);
5782
5783         /*
5784          * If the guest has used debug registers, at least dr7
5785          * will be disabled while returning to the host.
5786          * If we don't have active breakpoints in the host, we don't
5787          * care about the messed up debug address registers. But if
5788          * we have some of them active, restore the old state.
5789          */
5790         if (hw_breakpoint_active())
5791                 hw_breakpoint_restore();
5792
5793         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5794                                                            native_read_tsc());
5795
5796         vcpu->mode = OUTSIDE_GUEST_MODE;
5797         smp_wmb();
5798         local_irq_enable();
5799
5800         ++vcpu->stat.exits;
5801
5802         /*
5803          * We must have an instruction between local_irq_enable() and
5804          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5805          * the interrupt shadow.  The stat.exits increment will do nicely.
5806          * But we need to prevent reordering, hence this barrier():
5807          */
5808         barrier();
5809
5810         kvm_guest_exit();
5811
5812         preempt_enable();
5813
5814         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5815
5816         /*
5817          * Profile KVM exit RIPs:
5818          */
5819         if (unlikely(prof_on == KVM_PROFILING)) {
5820                 unsigned long rip = kvm_rip_read(vcpu);
5821                 profile_hit(KVM_PROFILING, (void *)rip);
5822         }
5823
5824         if (unlikely(vcpu->arch.tsc_always_catchup))
5825                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5826
5827         if (vcpu->arch.apic_attention)
5828                 kvm_lapic_sync_from_vapic(vcpu);
5829
5830         r = kvm_x86_ops->handle_exit(vcpu);
5831         return r;
5832
5833 cancel_injection:
5834         kvm_x86_ops->cancel_injection(vcpu);
5835         if (unlikely(vcpu->arch.apic_attention))
5836                 kvm_lapic_sync_from_vapic(vcpu);
5837 out:
5838         return r;
5839 }
5840
5841
5842 static int __vcpu_run(struct kvm_vcpu *vcpu)
5843 {
5844         int r;
5845         struct kvm *kvm = vcpu->kvm;
5846
5847         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5848                 pr_debug("vcpu %d received sipi with vector # %x\n",
5849                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5850                 kvm_lapic_reset(vcpu);
5851                 r = kvm_vcpu_reset(vcpu);
5852                 if (r)
5853                         return r;
5854                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5855         }
5856
5857         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5858         r = vapic_enter(vcpu);
5859         if (r) {
5860                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5861                 return r;
5862         }
5863
5864         r = 1;
5865         while (r > 0) {
5866                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5867                     !vcpu->arch.apf.halted)
5868                         r = vcpu_enter_guest(vcpu);
5869                 else {
5870                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5871                         kvm_vcpu_block(vcpu);
5872                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5873                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5874                         {
5875                                 switch(vcpu->arch.mp_state) {
5876                                 case KVM_MP_STATE_HALTED:
5877                                         vcpu->arch.mp_state =
5878                                                 KVM_MP_STATE_RUNNABLE;
5879                                 case KVM_MP_STATE_RUNNABLE:
5880                                         vcpu->arch.apf.halted = false;
5881                                         break;
5882                                 case KVM_MP_STATE_SIPI_RECEIVED:
5883                                 default:
5884                                         r = -EINTR;
5885                                         break;
5886                                 }
5887                         }
5888                 }
5889
5890                 if (r <= 0)
5891                         break;
5892
5893                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5894                 if (kvm_cpu_has_pending_timer(vcpu))
5895                         kvm_inject_pending_timer_irqs(vcpu);
5896
5897                 if (dm_request_for_irq_injection(vcpu)) {
5898                         r = -EINTR;
5899                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5900                         ++vcpu->stat.request_irq_exits;
5901                 }
5902
5903                 kvm_check_async_pf_completion(vcpu);
5904
5905                 if (signal_pending(current)) {
5906                         r = -EINTR;
5907                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5908                         ++vcpu->stat.signal_exits;
5909                 }
5910                 if (need_resched()) {
5911                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5912                         kvm_resched(vcpu);
5913                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5914                 }
5915         }
5916
5917         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5918
5919         vapic_exit(vcpu);
5920
5921         return r;
5922 }
5923
5924 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5925 {
5926         int r;
5927         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5928         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5929         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5930         if (r != EMULATE_DONE)
5931                 return 0;
5932         return 1;
5933 }
5934
5935 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5936 {
5937         BUG_ON(!vcpu->arch.pio.count);
5938
5939         return complete_emulated_io(vcpu);
5940 }
5941
5942 /*
5943  * Implements the following, as a state machine:
5944  *
5945  * read:
5946  *   for each fragment
5947  *     for each mmio piece in the fragment
5948  *       write gpa, len
5949  *       exit
5950  *       copy data
5951  *   execute insn
5952  *
5953  * write:
5954  *   for each fragment
5955  *     for each mmio piece in the fragment
5956  *       write gpa, len
5957  *       copy data
5958  *       exit
5959  */
5960 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5961 {
5962         struct kvm_run *run = vcpu->run;
5963         struct kvm_mmio_fragment *frag;
5964         unsigned len;
5965
5966         BUG_ON(!vcpu->mmio_needed);
5967
5968         /* Complete previous fragment */
5969         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5970         len = min(8u, frag->len);
5971         if (!vcpu->mmio_is_write)
5972                 memcpy(frag->data, run->mmio.data, len);
5973
5974         if (frag->len <= 8) {
5975                 /* Switch to the next fragment. */
5976                 frag++;
5977                 vcpu->mmio_cur_fragment++;
5978         } else {
5979                 /* Go forward to the next mmio piece. */
5980                 frag->data += len;
5981                 frag->gpa += len;
5982                 frag->len -= len;
5983         }
5984
5985         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5986                 vcpu->mmio_needed = 0;
5987                 if (vcpu->mmio_is_write)
5988                         return 1;
5989                 vcpu->mmio_read_completed = 1;
5990                 return complete_emulated_io(vcpu);
5991         }
5992
5993         run->exit_reason = KVM_EXIT_MMIO;
5994         run->mmio.phys_addr = frag->gpa;
5995         if (vcpu->mmio_is_write)
5996                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5997         run->mmio.len = min(8u, frag->len);
5998         run->mmio.is_write = vcpu->mmio_is_write;
5999         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6000         return 0;
6001 }
6002
6003
6004 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6005 {
6006         int r;
6007         sigset_t sigsaved;
6008
6009         if (!tsk_used_math(current) && init_fpu(current))
6010                 return -ENOMEM;
6011
6012         if (vcpu->sigset_active)
6013                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6014
6015         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6016                 kvm_vcpu_block(vcpu);
6017                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6018                 r = -EAGAIN;
6019                 goto out;
6020         }
6021
6022         /* re-sync apic's tpr */
6023         if (!irqchip_in_kernel(vcpu->kvm)) {
6024                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6025                         r = -EINVAL;
6026                         goto out;
6027                 }
6028         }
6029
6030         if (unlikely(vcpu->arch.complete_userspace_io)) {
6031                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6032                 vcpu->arch.complete_userspace_io = NULL;
6033                 r = cui(vcpu);
6034                 if (r <= 0)
6035                         goto out;
6036         } else
6037                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6038
6039         r = __vcpu_run(vcpu);
6040
6041 out:
6042         post_kvm_run_save(vcpu);
6043         if (vcpu->sigset_active)
6044                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6045
6046         return r;
6047 }
6048
6049 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6050 {
6051         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6052                 /*
6053                  * We are here if userspace calls get_regs() in the middle of
6054                  * instruction emulation. Registers state needs to be copied
6055                  * back from emulation context to vcpu. Userspace shouldn't do
6056                  * that usually, but some bad designed PV devices (vmware
6057                  * backdoor interface) need this to work
6058                  */
6059                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6060                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6061         }
6062         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6063         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6064         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6065         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6066         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6067         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6068         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6069         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6070 #ifdef CONFIG_X86_64
6071         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6072         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6073         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6074         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6075         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6076         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6077         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6078         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6079 #endif
6080
6081         regs->rip = kvm_rip_read(vcpu);
6082         regs->rflags = kvm_get_rflags(vcpu);
6083
6084         return 0;
6085 }
6086
6087 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6088 {
6089         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6090         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6091
6092         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6093         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6094         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6095         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6096         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6097         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6098         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6099         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6100 #ifdef CONFIG_X86_64
6101         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6102         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6103         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6104         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6105         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6106         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6107         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6108         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6109 #endif
6110
6111         kvm_rip_write(vcpu, regs->rip);
6112         kvm_set_rflags(vcpu, regs->rflags);
6113
6114         vcpu->arch.exception.pending = false;
6115
6116         kvm_make_request(KVM_REQ_EVENT, vcpu);
6117
6118         return 0;
6119 }
6120
6121 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6122 {
6123         struct kvm_segment cs;
6124
6125         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6126         *db = cs.db;
6127         *l = cs.l;
6128 }
6129 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6130
6131 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6132                                   struct kvm_sregs *sregs)
6133 {
6134         struct desc_ptr dt;
6135
6136         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6137         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6138         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6139         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6140         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6141         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6142
6143         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6144         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6145
6146         kvm_x86_ops->get_idt(vcpu, &dt);
6147         sregs->idt.limit = dt.size;
6148         sregs->idt.base = dt.address;
6149         kvm_x86_ops->get_gdt(vcpu, &dt);
6150         sregs->gdt.limit = dt.size;
6151         sregs->gdt.base = dt.address;
6152
6153         sregs->cr0 = kvm_read_cr0(vcpu);
6154         sregs->cr2 = vcpu->arch.cr2;
6155         sregs->cr3 = kvm_read_cr3(vcpu);
6156         sregs->cr4 = kvm_read_cr4(vcpu);
6157         sregs->cr8 = kvm_get_cr8(vcpu);
6158         sregs->efer = vcpu->arch.efer;
6159         sregs->apic_base = kvm_get_apic_base(vcpu);
6160
6161         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6162
6163         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6164                 set_bit(vcpu->arch.interrupt.nr,
6165                         (unsigned long *)sregs->interrupt_bitmap);
6166
6167         return 0;
6168 }
6169
6170 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6171                                     struct kvm_mp_state *mp_state)
6172 {
6173         mp_state->mp_state = vcpu->arch.mp_state;
6174         return 0;
6175 }
6176
6177 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6178                                     struct kvm_mp_state *mp_state)
6179 {
6180         vcpu->arch.mp_state = mp_state->mp_state;
6181         kvm_make_request(KVM_REQ_EVENT, vcpu);
6182         return 0;
6183 }
6184
6185 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6186                     int reason, bool has_error_code, u32 error_code)
6187 {
6188         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6189         int ret;
6190
6191         init_emulate_ctxt(vcpu);
6192
6193         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6194                                    has_error_code, error_code);
6195
6196         if (ret)
6197                 return EMULATE_FAIL;
6198
6199         kvm_rip_write(vcpu, ctxt->eip);
6200         kvm_set_rflags(vcpu, ctxt->eflags);
6201         kvm_make_request(KVM_REQ_EVENT, vcpu);
6202         return EMULATE_DONE;
6203 }
6204 EXPORT_SYMBOL_GPL(kvm_task_switch);
6205
6206 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6207                                   struct kvm_sregs *sregs)
6208 {
6209         int mmu_reset_needed = 0;
6210         int pending_vec, max_bits, idx;
6211         struct desc_ptr dt;
6212
6213         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6214                 return -EINVAL;
6215
6216         dt.size = sregs->idt.limit;
6217         dt.address = sregs->idt.base;
6218         kvm_x86_ops->set_idt(vcpu, &dt);
6219         dt.size = sregs->gdt.limit;
6220         dt.address = sregs->gdt.base;
6221         kvm_x86_ops->set_gdt(vcpu, &dt);
6222
6223         vcpu->arch.cr2 = sregs->cr2;
6224         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6225         vcpu->arch.cr3 = sregs->cr3;
6226         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6227
6228         kvm_set_cr8(vcpu, sregs->cr8);
6229
6230         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6231         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6232         kvm_set_apic_base(vcpu, sregs->apic_base);
6233
6234         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6235         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6236         vcpu->arch.cr0 = sregs->cr0;
6237
6238         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6239         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6240         if (sregs->cr4 & X86_CR4_OSXSAVE)
6241                 kvm_update_cpuid(vcpu);
6242
6243         idx = srcu_read_lock(&vcpu->kvm->srcu);
6244         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6245                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6246                 mmu_reset_needed = 1;
6247         }
6248         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6249
6250         if (mmu_reset_needed)
6251                 kvm_mmu_reset_context(vcpu);
6252
6253         max_bits = KVM_NR_INTERRUPTS;
6254         pending_vec = find_first_bit(
6255                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6256         if (pending_vec < max_bits) {
6257                 kvm_queue_interrupt(vcpu, pending_vec, false);
6258                 pr_debug("Set back pending irq %d\n", pending_vec);
6259         }
6260
6261         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6262         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6263         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6264         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6265         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6266         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6267
6268         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6269         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6270
6271         update_cr8_intercept(vcpu);
6272
6273         /* Older userspace won't unhalt the vcpu on reset. */
6274         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6275             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6276             !is_protmode(vcpu))
6277                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6278
6279         kvm_make_request(KVM_REQ_EVENT, vcpu);
6280
6281         return 0;
6282 }
6283
6284 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6285                                         struct kvm_guest_debug *dbg)
6286 {
6287         unsigned long rflags;
6288         int i, r;
6289
6290         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6291                 r = -EBUSY;
6292                 if (vcpu->arch.exception.pending)
6293                         goto out;
6294                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6295                         kvm_queue_exception(vcpu, DB_VECTOR);
6296                 else
6297                         kvm_queue_exception(vcpu, BP_VECTOR);
6298         }
6299
6300         /*
6301          * Read rflags as long as potentially injected trace flags are still
6302          * filtered out.
6303          */
6304         rflags = kvm_get_rflags(vcpu);
6305
6306         vcpu->guest_debug = dbg->control;
6307         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6308                 vcpu->guest_debug = 0;
6309
6310         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6311                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6312                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6313                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6314         } else {
6315                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6316                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6317         }
6318         kvm_update_dr7(vcpu);
6319
6320         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6321                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6322                         get_segment_base(vcpu, VCPU_SREG_CS);
6323
6324         /*
6325          * Trigger an rflags update that will inject or remove the trace
6326          * flags.
6327          */
6328         kvm_set_rflags(vcpu, rflags);
6329
6330         kvm_x86_ops->update_db_bp_intercept(vcpu);
6331
6332         r = 0;
6333
6334 out:
6335
6336         return r;
6337 }
6338
6339 /*
6340  * Translate a guest virtual address to a guest physical address.
6341  */
6342 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6343                                     struct kvm_translation *tr)
6344 {
6345         unsigned long vaddr = tr->linear_address;
6346         gpa_t gpa;
6347         int idx;
6348
6349         idx = srcu_read_lock(&vcpu->kvm->srcu);
6350         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6351         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6352         tr->physical_address = gpa;
6353         tr->valid = gpa != UNMAPPED_GVA;
6354         tr->writeable = 1;
6355         tr->usermode = 0;
6356
6357         return 0;
6358 }
6359
6360 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6361 {
6362         struct i387_fxsave_struct *fxsave =
6363                         &vcpu->arch.guest_fpu.state->fxsave;
6364
6365         memcpy(fpu->fpr, fxsave->st_space, 128);
6366         fpu->fcw = fxsave->cwd;
6367         fpu->fsw = fxsave->swd;
6368         fpu->ftwx = fxsave->twd;
6369         fpu->last_opcode = fxsave->fop;
6370         fpu->last_ip = fxsave->rip;
6371         fpu->last_dp = fxsave->rdp;
6372         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6373
6374         return 0;
6375 }
6376
6377 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6378 {
6379         struct i387_fxsave_struct *fxsave =
6380                         &vcpu->arch.guest_fpu.state->fxsave;
6381
6382         memcpy(fxsave->st_space, fpu->fpr, 128);
6383         fxsave->cwd = fpu->fcw;
6384         fxsave->swd = fpu->fsw;
6385         fxsave->twd = fpu->ftwx;
6386         fxsave->fop = fpu->last_opcode;
6387         fxsave->rip = fpu->last_ip;
6388         fxsave->rdp = fpu->last_dp;
6389         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6390
6391         return 0;
6392 }
6393
6394 int fx_init(struct kvm_vcpu *vcpu)
6395 {
6396         int err;
6397
6398         err = fpu_alloc(&vcpu->arch.guest_fpu);
6399         if (err)
6400                 return err;
6401
6402         fpu_finit(&vcpu->arch.guest_fpu);
6403
6404         /*
6405          * Ensure guest xcr0 is valid for loading
6406          */
6407         vcpu->arch.xcr0 = XSTATE_FP;
6408
6409         vcpu->arch.cr0 |= X86_CR0_ET;
6410
6411         return 0;
6412 }
6413 EXPORT_SYMBOL_GPL(fx_init);
6414
6415 static void fx_free(struct kvm_vcpu *vcpu)
6416 {
6417         fpu_free(&vcpu->arch.guest_fpu);
6418 }
6419
6420 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6421 {
6422         if (vcpu->guest_fpu_loaded)
6423                 return;
6424
6425         /*
6426          * Restore all possible states in the guest,
6427          * and assume host would use all available bits.
6428          * Guest xcr0 would be loaded later.
6429          */
6430         kvm_put_guest_xcr0(vcpu);
6431         vcpu->guest_fpu_loaded = 1;
6432         __kernel_fpu_begin();
6433         fpu_restore_checking(&vcpu->arch.guest_fpu);
6434         trace_kvm_fpu(1);
6435 }
6436
6437 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6438 {
6439         kvm_put_guest_xcr0(vcpu);
6440
6441         if (!vcpu->guest_fpu_loaded)
6442                 return;
6443
6444         vcpu->guest_fpu_loaded = 0;
6445         fpu_save_init(&vcpu->arch.guest_fpu);
6446         __kernel_fpu_end();
6447         ++vcpu->stat.fpu_reload;
6448         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6449         trace_kvm_fpu(0);
6450 }
6451
6452 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6453 {
6454         kvmclock_reset(vcpu);
6455
6456         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6457         fx_free(vcpu);
6458         kvm_x86_ops->vcpu_free(vcpu);
6459 }
6460
6461 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6462                                                 unsigned int id)
6463 {
6464         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6465                 printk_once(KERN_WARNING
6466                 "kvm: SMP vm created on host with unstable TSC; "
6467                 "guest TSC will not be reliable\n");
6468         return kvm_x86_ops->vcpu_create(kvm, id);
6469 }
6470
6471 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6472 {
6473         int r;
6474
6475         vcpu->arch.mtrr_state.have_fixed = 1;
6476         r = vcpu_load(vcpu);
6477         if (r)
6478                 return r;
6479         r = kvm_vcpu_reset(vcpu);
6480         if (r == 0)
6481                 r = kvm_mmu_setup(vcpu);
6482         vcpu_put(vcpu);
6483
6484         return r;
6485 }
6486
6487 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6488 {
6489         int r;
6490         struct msr_data msr;
6491
6492         r = vcpu_load(vcpu);
6493         if (r)
6494                 return r;
6495         msr.data = 0x0;
6496         msr.index = MSR_IA32_TSC;
6497         msr.host_initiated = true;
6498         kvm_write_tsc(vcpu, &msr);
6499         vcpu_put(vcpu);
6500
6501         return r;
6502 }
6503
6504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6505 {
6506         int r;
6507         vcpu->arch.apf.msr_val = 0;
6508
6509         r = vcpu_load(vcpu);
6510         BUG_ON(r);
6511         kvm_mmu_unload(vcpu);
6512         vcpu_put(vcpu);
6513
6514         fx_free(vcpu);
6515         kvm_x86_ops->vcpu_free(vcpu);
6516 }
6517
6518 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6519 {
6520         atomic_set(&vcpu->arch.nmi_queued, 0);
6521         vcpu->arch.nmi_pending = 0;
6522         vcpu->arch.nmi_injected = false;
6523
6524         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6525         vcpu->arch.dr6 = DR6_FIXED_1;
6526         vcpu->arch.dr7 = DR7_FIXED_1;
6527         kvm_update_dr7(vcpu);
6528
6529         kvm_make_request(KVM_REQ_EVENT, vcpu);
6530         vcpu->arch.apf.msr_val = 0;
6531         vcpu->arch.st.msr_val = 0;
6532
6533         kvmclock_reset(vcpu);
6534
6535         kvm_clear_async_pf_completion_queue(vcpu);
6536         kvm_async_pf_hash_reset(vcpu);
6537         vcpu->arch.apf.halted = false;
6538
6539         kvm_pmu_reset(vcpu);
6540
6541         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6542         vcpu->arch.regs_avail = ~0;
6543         vcpu->arch.regs_dirty = ~0;
6544
6545         return kvm_x86_ops->vcpu_reset(vcpu);
6546 }
6547
6548 int kvm_arch_hardware_enable(void *garbage)
6549 {
6550         struct kvm *kvm;
6551         struct kvm_vcpu *vcpu;
6552         int i;
6553         int ret;
6554         u64 local_tsc;
6555         u64 max_tsc = 0;
6556         bool stable, backwards_tsc = false;
6557
6558         kvm_shared_msr_cpu_online();
6559         ret = kvm_x86_ops->hardware_enable(garbage);
6560         if (ret != 0)
6561                 return ret;
6562
6563         local_tsc = native_read_tsc();
6564         stable = !check_tsc_unstable();
6565         list_for_each_entry(kvm, &vm_list, vm_list) {
6566                 kvm_for_each_vcpu(i, vcpu, kvm) {
6567                         if (!stable && vcpu->cpu == smp_processor_id())
6568                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6569                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6570                                 backwards_tsc = true;
6571                                 if (vcpu->arch.last_host_tsc > max_tsc)
6572                                         max_tsc = vcpu->arch.last_host_tsc;
6573                         }
6574                 }
6575         }
6576
6577         /*
6578          * Sometimes, even reliable TSCs go backwards.  This happens on
6579          * platforms that reset TSC during suspend or hibernate actions, but
6580          * maintain synchronization.  We must compensate.  Fortunately, we can
6581          * detect that condition here, which happens early in CPU bringup,
6582          * before any KVM threads can be running.  Unfortunately, we can't
6583          * bring the TSCs fully up to date with real time, as we aren't yet far
6584          * enough into CPU bringup that we know how much real time has actually
6585          * elapsed; our helper function, get_kernel_ns() will be using boot
6586          * variables that haven't been updated yet.
6587          *
6588          * So we simply find the maximum observed TSC above, then record the
6589          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6590          * the adjustment will be applied.  Note that we accumulate
6591          * adjustments, in case multiple suspend cycles happen before some VCPU
6592          * gets a chance to run again.  In the event that no KVM threads get a
6593          * chance to run, we will miss the entire elapsed period, as we'll have
6594          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6595          * loose cycle time.  This isn't too big a deal, since the loss will be
6596          * uniform across all VCPUs (not to mention the scenario is extremely
6597          * unlikely). It is possible that a second hibernate recovery happens
6598          * much faster than a first, causing the observed TSC here to be
6599          * smaller; this would require additional padding adjustment, which is
6600          * why we set last_host_tsc to the local tsc observed here.
6601          *
6602          * N.B. - this code below runs only on platforms with reliable TSC,
6603          * as that is the only way backwards_tsc is set above.  Also note
6604          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6605          * have the same delta_cyc adjustment applied if backwards_tsc
6606          * is detected.  Note further, this adjustment is only done once,
6607          * as we reset last_host_tsc on all VCPUs to stop this from being
6608          * called multiple times (one for each physical CPU bringup).
6609          *
6610          * Platforms with unreliable TSCs don't have to deal with this, they
6611          * will be compensated by the logic in vcpu_load, which sets the TSC to
6612          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6613          * guarantee that they stay in perfect synchronization.
6614          */
6615         if (backwards_tsc) {
6616                 u64 delta_cyc = max_tsc - local_tsc;
6617                 list_for_each_entry(kvm, &vm_list, vm_list) {
6618                         kvm_for_each_vcpu(i, vcpu, kvm) {
6619                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6620                                 vcpu->arch.last_host_tsc = local_tsc;
6621                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6622                                         &vcpu->requests);
6623                         }
6624
6625                         /*
6626                          * We have to disable TSC offset matching.. if you were
6627                          * booting a VM while issuing an S4 host suspend....
6628                          * you may have some problem.  Solving this issue is
6629                          * left as an exercise to the reader.
6630                          */
6631                         kvm->arch.last_tsc_nsec = 0;
6632                         kvm->arch.last_tsc_write = 0;
6633                 }
6634
6635         }
6636         return 0;
6637 }
6638
6639 void kvm_arch_hardware_disable(void *garbage)
6640 {
6641         kvm_x86_ops->hardware_disable(garbage);
6642         drop_user_return_notifiers(garbage);
6643 }
6644
6645 int kvm_arch_hardware_setup(void)
6646 {
6647         return kvm_x86_ops->hardware_setup();
6648 }
6649
6650 void kvm_arch_hardware_unsetup(void)
6651 {
6652         kvm_x86_ops->hardware_unsetup();
6653 }
6654
6655 void kvm_arch_check_processor_compat(void *rtn)
6656 {
6657         kvm_x86_ops->check_processor_compatibility(rtn);
6658 }
6659
6660 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6661 {
6662         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6663 }
6664
6665 struct static_key kvm_no_apic_vcpu __read_mostly;
6666
6667 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6668 {
6669         struct page *page;
6670         struct kvm *kvm;
6671         int r;
6672
6673         BUG_ON(vcpu->kvm == NULL);
6674         kvm = vcpu->kvm;
6675
6676         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6677         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6678                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6679         else
6680                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6681
6682         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6683         if (!page) {
6684                 r = -ENOMEM;
6685                 goto fail;
6686         }
6687         vcpu->arch.pio_data = page_address(page);
6688
6689         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6690
6691         r = kvm_mmu_create(vcpu);
6692         if (r < 0)
6693                 goto fail_free_pio_data;
6694
6695         if (irqchip_in_kernel(kvm)) {
6696                 r = kvm_create_lapic(vcpu);
6697                 if (r < 0)
6698                         goto fail_mmu_destroy;
6699         } else
6700                 static_key_slow_inc(&kvm_no_apic_vcpu);
6701
6702         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6703                                        GFP_KERNEL);
6704         if (!vcpu->arch.mce_banks) {
6705                 r = -ENOMEM;
6706                 goto fail_free_lapic;
6707         }
6708         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6709
6710         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6711                 goto fail_free_mce_banks;
6712
6713         r = fx_init(vcpu);
6714         if (r)
6715                 goto fail_free_wbinvd_dirty_mask;
6716
6717         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6718         vcpu->arch.pv_time_enabled = false;
6719         kvm_async_pf_hash_reset(vcpu);
6720         kvm_pmu_init(vcpu);
6721
6722         return 0;
6723 fail_free_wbinvd_dirty_mask:
6724         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6725 fail_free_mce_banks:
6726         kfree(vcpu->arch.mce_banks);
6727 fail_free_lapic:
6728         kvm_free_lapic(vcpu);
6729 fail_mmu_destroy:
6730         kvm_mmu_destroy(vcpu);
6731 fail_free_pio_data:
6732         free_page((unsigned long)vcpu->arch.pio_data);
6733 fail:
6734         return r;
6735 }
6736
6737 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6738 {
6739         int idx;
6740
6741         kvm_pmu_destroy(vcpu);
6742         kfree(vcpu->arch.mce_banks);
6743         kvm_free_lapic(vcpu);
6744         idx = srcu_read_lock(&vcpu->kvm->srcu);
6745         kvm_mmu_destroy(vcpu);
6746         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6747         free_page((unsigned long)vcpu->arch.pio_data);
6748         if (!irqchip_in_kernel(vcpu->kvm))
6749                 static_key_slow_dec(&kvm_no_apic_vcpu);
6750 }
6751
6752 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6753 {
6754         if (type)
6755                 return -EINVAL;
6756
6757         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6758         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6759
6760         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6761         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6762         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6763         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6764                 &kvm->arch.irq_sources_bitmap);
6765
6766         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6767         mutex_init(&kvm->arch.apic_map_lock);
6768         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6769
6770         pvclock_update_vm_gtod_copy(kvm);
6771
6772         return 0;
6773 }
6774
6775 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6776 {
6777         int r;
6778         r = vcpu_load(vcpu);
6779         BUG_ON(r);
6780         kvm_mmu_unload(vcpu);
6781         vcpu_put(vcpu);
6782 }
6783
6784 static void kvm_free_vcpus(struct kvm *kvm)
6785 {
6786         unsigned int i;
6787         struct kvm_vcpu *vcpu;
6788
6789         /*
6790          * Unpin any mmu pages first.
6791          */
6792         kvm_for_each_vcpu(i, vcpu, kvm) {
6793                 kvm_clear_async_pf_completion_queue(vcpu);
6794                 kvm_unload_vcpu_mmu(vcpu);
6795         }
6796         kvm_for_each_vcpu(i, vcpu, kvm)
6797                 kvm_arch_vcpu_free(vcpu);
6798
6799         mutex_lock(&kvm->lock);
6800         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6801                 kvm->vcpus[i] = NULL;
6802
6803         atomic_set(&kvm->online_vcpus, 0);
6804         mutex_unlock(&kvm->lock);
6805 }
6806
6807 void kvm_arch_sync_events(struct kvm *kvm)
6808 {
6809         kvm_free_all_assigned_devices(kvm);
6810         kvm_free_pit(kvm);
6811 }
6812
6813 void kvm_arch_destroy_vm(struct kvm *kvm)
6814 {
6815         kvm_iommu_unmap_guest(kvm);
6816         kfree(kvm->arch.vpic);
6817         kfree(kvm->arch.vioapic);
6818         kvm_free_vcpus(kvm);
6819         if (kvm->arch.apic_access_page)
6820                 put_page(kvm->arch.apic_access_page);
6821         if (kvm->arch.ept_identity_pagetable)
6822                 put_page(kvm->arch.ept_identity_pagetable);
6823         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6824 }
6825
6826 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6827                            struct kvm_memory_slot *dont)
6828 {
6829         int i;
6830
6831         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6832                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6833                         kvm_kvfree(free->arch.rmap[i]);
6834                         free->arch.rmap[i] = NULL;
6835                 }
6836                 if (i == 0)
6837                         continue;
6838
6839                 if (!dont || free->arch.lpage_info[i - 1] !=
6840                              dont->arch.lpage_info[i - 1]) {
6841                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6842                         free->arch.lpage_info[i - 1] = NULL;
6843                 }
6844         }
6845 }
6846
6847 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6848 {
6849         int i;
6850
6851         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6852                 unsigned long ugfn;
6853                 int lpages;
6854                 int level = i + 1;
6855
6856                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6857                                       slot->base_gfn, level) + 1;
6858
6859                 slot->arch.rmap[i] =
6860                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6861                 if (!slot->arch.rmap[i])
6862                         goto out_free;
6863                 if (i == 0)
6864                         continue;
6865
6866                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6867                                         sizeof(*slot->arch.lpage_info[i - 1]));
6868                 if (!slot->arch.lpage_info[i - 1])
6869                         goto out_free;
6870
6871                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6872                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6873                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6874                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6875                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6876                 /*
6877                  * If the gfn and userspace address are not aligned wrt each
6878                  * other, or if explicitly asked to, disable large page
6879                  * support for this slot
6880                  */
6881                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6882                     !kvm_largepages_enabled()) {
6883                         unsigned long j;
6884
6885                         for (j = 0; j < lpages; ++j)
6886                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6887                 }
6888         }
6889
6890         return 0;
6891
6892 out_free:
6893         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6894                 kvm_kvfree(slot->arch.rmap[i]);
6895                 slot->arch.rmap[i] = NULL;
6896                 if (i == 0)
6897                         continue;
6898
6899                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6900                 slot->arch.lpage_info[i - 1] = NULL;
6901         }
6902         return -ENOMEM;
6903 }
6904
6905 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6906                                 struct kvm_memory_slot *memslot,
6907                                 struct kvm_memory_slot old,
6908                                 struct kvm_userspace_memory_region *mem,
6909                                 bool user_alloc)
6910 {
6911         int npages = memslot->npages;
6912
6913         /*
6914          * Only private memory slots need to be mapped here since
6915          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6916          */
6917         if ((memslot->id >= KVM_USER_MEM_SLOTS) && npages && !old.npages) {
6918                 unsigned long userspace_addr;
6919
6920                 /*
6921                  * MAP_SHARED to prevent internal slot pages from being moved
6922                  * by fork()/COW.
6923                  */
6924                 userspace_addr = vm_mmap(NULL, 0, npages * PAGE_SIZE,
6925                                          PROT_READ | PROT_WRITE,
6926                                          MAP_SHARED | MAP_ANONYMOUS, 0);
6927
6928                 if (IS_ERR((void *)userspace_addr))
6929                         return PTR_ERR((void *)userspace_addr);
6930
6931                 memslot->userspace_addr = userspace_addr;
6932         }
6933
6934         return 0;
6935 }
6936
6937 void kvm_arch_commit_memory_region(struct kvm *kvm,
6938                                 struct kvm_userspace_memory_region *mem,
6939                                 struct kvm_memory_slot old,
6940                                 bool user_alloc)
6941 {
6942
6943         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6944
6945         if ((mem->slot >= KVM_USER_MEM_SLOTS) && old.npages && !npages) {
6946                 int ret;
6947
6948                 ret = vm_munmap(old.userspace_addr,
6949                                 old.npages * PAGE_SIZE);
6950                 if (ret < 0)
6951                         printk(KERN_WARNING
6952                                "kvm_vm_ioctl_set_memory_region: "
6953                                "failed to munmap memory\n");
6954         }
6955
6956         if (!kvm->arch.n_requested_mmu_pages)
6957                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6958
6959         if (nr_mmu_pages)
6960                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6961         /*
6962          * Write protect all pages for dirty logging.
6963          * Existing largepage mappings are destroyed here and new ones will
6964          * not be created until the end of the logging.
6965          */
6966         if (npages && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
6967                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6968         /*
6969          * If memory slot is created, or moved, we need to clear all
6970          * mmio sptes.
6971          */
6972         if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) {
6973                 kvm_mmu_zap_all(kvm);
6974                 kvm_reload_remote_mmus(kvm);
6975         }
6976 }
6977
6978 void kvm_arch_flush_shadow_all(struct kvm *kvm)
6979 {
6980         kvm_mmu_zap_all(kvm);
6981         kvm_reload_remote_mmus(kvm);
6982 }
6983
6984 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6985                                    struct kvm_memory_slot *slot)
6986 {
6987         kvm_arch_flush_shadow_all(kvm);
6988 }
6989
6990 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6991 {
6992         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6993                 !vcpu->arch.apf.halted)
6994                 || !list_empty_careful(&vcpu->async_pf.done)
6995                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6996                 || atomic_read(&vcpu->arch.nmi_queued) ||
6997                 (kvm_arch_interrupt_allowed(vcpu) &&
6998                  kvm_cpu_has_interrupt(vcpu));
6999 }
7000
7001 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7002 {
7003         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7004 }
7005
7006 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7007 {
7008         return kvm_x86_ops->interrupt_allowed(vcpu);
7009 }
7010
7011 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7012 {
7013         unsigned long current_rip = kvm_rip_read(vcpu) +
7014                 get_segment_base(vcpu, VCPU_SREG_CS);
7015
7016         return current_rip == linear_rip;
7017 }
7018 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7019
7020 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7021 {
7022         unsigned long rflags;
7023
7024         rflags = kvm_x86_ops->get_rflags(vcpu);
7025         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7026                 rflags &= ~X86_EFLAGS_TF;
7027         return rflags;
7028 }
7029 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7030
7031 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7032 {
7033         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7034             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7035                 rflags |= X86_EFLAGS_TF;
7036         kvm_x86_ops->set_rflags(vcpu, rflags);
7037         kvm_make_request(KVM_REQ_EVENT, vcpu);
7038 }
7039 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7040
7041 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7042 {
7043         int r;
7044
7045         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7046               is_error_page(work->page))
7047                 return;
7048
7049         r = kvm_mmu_reload(vcpu);
7050         if (unlikely(r))
7051                 return;
7052
7053         if (!vcpu->arch.mmu.direct_map &&
7054               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7055                 return;
7056
7057         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7058 }
7059
7060 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7061 {
7062         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7063 }
7064
7065 static inline u32 kvm_async_pf_next_probe(u32 key)
7066 {
7067         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7068 }
7069
7070 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7071 {
7072         u32 key = kvm_async_pf_hash_fn(gfn);
7073
7074         while (vcpu->arch.apf.gfns[key] != ~0)
7075                 key = kvm_async_pf_next_probe(key);
7076
7077         vcpu->arch.apf.gfns[key] = gfn;
7078 }
7079
7080 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7081 {
7082         int i;
7083         u32 key = kvm_async_pf_hash_fn(gfn);
7084
7085         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7086                      (vcpu->arch.apf.gfns[key] != gfn &&
7087                       vcpu->arch.apf.gfns[key] != ~0); i++)
7088                 key = kvm_async_pf_next_probe(key);
7089
7090         return key;
7091 }
7092
7093 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7094 {
7095         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7096 }
7097
7098 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7099 {
7100         u32 i, j, k;
7101
7102         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7103         while (true) {
7104                 vcpu->arch.apf.gfns[i] = ~0;
7105                 do {
7106                         j = kvm_async_pf_next_probe(j);
7107                         if (vcpu->arch.apf.gfns[j] == ~0)
7108                                 return;
7109                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7110                         /*
7111                          * k lies cyclically in ]i,j]
7112                          * |    i.k.j |
7113                          * |....j i.k.| or  |.k..j i...|
7114                          */
7115                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7116                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7117                 i = j;
7118         }
7119 }
7120
7121 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7122 {
7123
7124         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7125                                       sizeof(val));
7126 }
7127
7128 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7129                                      struct kvm_async_pf *work)
7130 {
7131         struct x86_exception fault;
7132
7133         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7134         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7135
7136         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7137             (vcpu->arch.apf.send_user_only &&
7138              kvm_x86_ops->get_cpl(vcpu) == 0))
7139                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7140         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7141                 fault.vector = PF_VECTOR;
7142                 fault.error_code_valid = true;
7143                 fault.error_code = 0;
7144                 fault.nested_page_fault = false;
7145                 fault.address = work->arch.token;
7146                 kvm_inject_page_fault(vcpu, &fault);
7147         }
7148 }
7149
7150 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7151                                  struct kvm_async_pf *work)
7152 {
7153         struct x86_exception fault;
7154
7155         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7156         if (is_error_page(work->page))
7157                 work->arch.token = ~0; /* broadcast wakeup */
7158         else
7159                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7160
7161         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7162             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7163                 fault.vector = PF_VECTOR;
7164                 fault.error_code_valid = true;
7165                 fault.error_code = 0;
7166                 fault.nested_page_fault = false;
7167                 fault.address = work->arch.token;
7168                 kvm_inject_page_fault(vcpu, &fault);
7169         }
7170         vcpu->arch.apf.halted = false;
7171         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7172 }
7173
7174 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7175 {
7176         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7177                 return true;
7178         else
7179                 return !kvm_event_needs_reinjection(vcpu) &&
7180                         kvm_x86_ops->interrupt_allowed(vcpu);
7181 }
7182
7183 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7184 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7185 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7186 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7187 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7188 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7189 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7190 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7191 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7192 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7193 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7194 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);