Merge tag 'fbdev-updates-for-3.6' of git://github.com/schandinat/linux-2.6
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45
46 #include "trace.h"
47
48 #define __ex(x) __kvm_handle_fault_on_reboot(x)
49 #define __ex_clear(x, reg) \
50         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static const struct x86_cpu_id vmx_cpu_id[] = {
56         X86_FEATURE_MATCH(X86_FEATURE_VMX),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
60
61 static bool __read_mostly enable_vpid = 1;
62 module_param_named(vpid, enable_vpid, bool, 0444);
63
64 static bool __read_mostly flexpriority_enabled = 1;
65 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
66
67 static bool __read_mostly enable_ept = 1;
68 module_param_named(ept, enable_ept, bool, S_IRUGO);
69
70 static bool __read_mostly enable_unrestricted_guest = 1;
71 module_param_named(unrestricted_guest,
72                         enable_unrestricted_guest, bool, S_IRUGO);
73
74 static bool __read_mostly enable_ept_ad_bits = 1;
75 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
76
77 static bool __read_mostly emulate_invalid_guest_state = true;
78 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
79
80 static bool __read_mostly vmm_exclusive = 1;
81 module_param(vmm_exclusive, bool, S_IRUGO);
82
83 static bool __read_mostly fasteoi = 1;
84 module_param(fasteoi, bool, S_IRUGO);
85
86 /*
87  * If nested=1, nested virtualization is supported, i.e., guests may use
88  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
89  * use VMX instructions.
90  */
91 static bool __read_mostly nested = 0;
92 module_param(nested, bool, S_IRUGO);
93
94 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
95         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
96 #define KVM_GUEST_CR0_MASK                                              \
97         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
98 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
99         (X86_CR0_WP | X86_CR0_NE)
100 #define KVM_VM_CR0_ALWAYS_ON                                            \
101         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
102 #define KVM_CR4_GUEST_OWNED_BITS                                      \
103         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
104          | X86_CR4_OSXMMEXCPT)
105
106 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
107 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
108
109 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
110
111 /*
112  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
113  * ple_gap:    upper bound on the amount of time between two successive
114  *             executions of PAUSE in a loop. Also indicate if ple enabled.
115  *             According to test, this time is usually smaller than 128 cycles.
116  * ple_window: upper bound on the amount of time a guest is allowed to execute
117  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
118  *             less than 2^12 cycles
119  * Time is measured based on a counter that runs at the same rate as the TSC,
120  * refer SDM volume 3b section 21.6.13 & 22.1.3.
121  */
122 #define KVM_VMX_DEFAULT_PLE_GAP    128
123 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
124 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
125 module_param(ple_gap, int, S_IRUGO);
126
127 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
128 module_param(ple_window, int, S_IRUGO);
129
130 #define NR_AUTOLOAD_MSRS 8
131 #define VMCS02_POOL_SIZE 1
132
133 struct vmcs {
134         u32 revision_id;
135         u32 abort;
136         char data[0];
137 };
138
139 /*
140  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
141  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
142  * loaded on this CPU (so we can clear them if the CPU goes down).
143  */
144 struct loaded_vmcs {
145         struct vmcs *vmcs;
146         int cpu;
147         int launched;
148         struct list_head loaded_vmcss_on_cpu_link;
149 };
150
151 struct shared_msr_entry {
152         unsigned index;
153         u64 data;
154         u64 mask;
155 };
156
157 /*
158  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
159  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
160  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
161  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
162  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
163  * More than one of these structures may exist, if L1 runs multiple L2 guests.
164  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
165  * underlying hardware which will be used to run L2.
166  * This structure is packed to ensure that its layout is identical across
167  * machines (necessary for live migration).
168  * If there are changes in this struct, VMCS12_REVISION must be changed.
169  */
170 typedef u64 natural_width;
171 struct __packed vmcs12 {
172         /* According to the Intel spec, a VMCS region must start with the
173          * following two fields. Then follow implementation-specific data.
174          */
175         u32 revision_id;
176         u32 abort;
177
178         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
179         u32 padding[7]; /* room for future expansion */
180
181         u64 io_bitmap_a;
182         u64 io_bitmap_b;
183         u64 msr_bitmap;
184         u64 vm_exit_msr_store_addr;
185         u64 vm_exit_msr_load_addr;
186         u64 vm_entry_msr_load_addr;
187         u64 tsc_offset;
188         u64 virtual_apic_page_addr;
189         u64 apic_access_addr;
190         u64 ept_pointer;
191         u64 guest_physical_address;
192         u64 vmcs_link_pointer;
193         u64 guest_ia32_debugctl;
194         u64 guest_ia32_pat;
195         u64 guest_ia32_efer;
196         u64 guest_ia32_perf_global_ctrl;
197         u64 guest_pdptr0;
198         u64 guest_pdptr1;
199         u64 guest_pdptr2;
200         u64 guest_pdptr3;
201         u64 host_ia32_pat;
202         u64 host_ia32_efer;
203         u64 host_ia32_perf_global_ctrl;
204         u64 padding64[8]; /* room for future expansion */
205         /*
206          * To allow migration of L1 (complete with its L2 guests) between
207          * machines of different natural widths (32 or 64 bit), we cannot have
208          * unsigned long fields with no explict size. We use u64 (aliased
209          * natural_width) instead. Luckily, x86 is little-endian.
210          */
211         natural_width cr0_guest_host_mask;
212         natural_width cr4_guest_host_mask;
213         natural_width cr0_read_shadow;
214         natural_width cr4_read_shadow;
215         natural_width cr3_target_value0;
216         natural_width cr3_target_value1;
217         natural_width cr3_target_value2;
218         natural_width cr3_target_value3;
219         natural_width exit_qualification;
220         natural_width guest_linear_address;
221         natural_width guest_cr0;
222         natural_width guest_cr3;
223         natural_width guest_cr4;
224         natural_width guest_es_base;
225         natural_width guest_cs_base;
226         natural_width guest_ss_base;
227         natural_width guest_ds_base;
228         natural_width guest_fs_base;
229         natural_width guest_gs_base;
230         natural_width guest_ldtr_base;
231         natural_width guest_tr_base;
232         natural_width guest_gdtr_base;
233         natural_width guest_idtr_base;
234         natural_width guest_dr7;
235         natural_width guest_rsp;
236         natural_width guest_rip;
237         natural_width guest_rflags;
238         natural_width guest_pending_dbg_exceptions;
239         natural_width guest_sysenter_esp;
240         natural_width guest_sysenter_eip;
241         natural_width host_cr0;
242         natural_width host_cr3;
243         natural_width host_cr4;
244         natural_width host_fs_base;
245         natural_width host_gs_base;
246         natural_width host_tr_base;
247         natural_width host_gdtr_base;
248         natural_width host_idtr_base;
249         natural_width host_ia32_sysenter_esp;
250         natural_width host_ia32_sysenter_eip;
251         natural_width host_rsp;
252         natural_width host_rip;
253         natural_width paddingl[8]; /* room for future expansion */
254         u32 pin_based_vm_exec_control;
255         u32 cpu_based_vm_exec_control;
256         u32 exception_bitmap;
257         u32 page_fault_error_code_mask;
258         u32 page_fault_error_code_match;
259         u32 cr3_target_count;
260         u32 vm_exit_controls;
261         u32 vm_exit_msr_store_count;
262         u32 vm_exit_msr_load_count;
263         u32 vm_entry_controls;
264         u32 vm_entry_msr_load_count;
265         u32 vm_entry_intr_info_field;
266         u32 vm_entry_exception_error_code;
267         u32 vm_entry_instruction_len;
268         u32 tpr_threshold;
269         u32 secondary_vm_exec_control;
270         u32 vm_instruction_error;
271         u32 vm_exit_reason;
272         u32 vm_exit_intr_info;
273         u32 vm_exit_intr_error_code;
274         u32 idt_vectoring_info_field;
275         u32 idt_vectoring_error_code;
276         u32 vm_exit_instruction_len;
277         u32 vmx_instruction_info;
278         u32 guest_es_limit;
279         u32 guest_cs_limit;
280         u32 guest_ss_limit;
281         u32 guest_ds_limit;
282         u32 guest_fs_limit;
283         u32 guest_gs_limit;
284         u32 guest_ldtr_limit;
285         u32 guest_tr_limit;
286         u32 guest_gdtr_limit;
287         u32 guest_idtr_limit;
288         u32 guest_es_ar_bytes;
289         u32 guest_cs_ar_bytes;
290         u32 guest_ss_ar_bytes;
291         u32 guest_ds_ar_bytes;
292         u32 guest_fs_ar_bytes;
293         u32 guest_gs_ar_bytes;
294         u32 guest_ldtr_ar_bytes;
295         u32 guest_tr_ar_bytes;
296         u32 guest_interruptibility_info;
297         u32 guest_activity_state;
298         u32 guest_sysenter_cs;
299         u32 host_ia32_sysenter_cs;
300         u32 padding32[8]; /* room for future expansion */
301         u16 virtual_processor_id;
302         u16 guest_es_selector;
303         u16 guest_cs_selector;
304         u16 guest_ss_selector;
305         u16 guest_ds_selector;
306         u16 guest_fs_selector;
307         u16 guest_gs_selector;
308         u16 guest_ldtr_selector;
309         u16 guest_tr_selector;
310         u16 host_es_selector;
311         u16 host_cs_selector;
312         u16 host_ss_selector;
313         u16 host_ds_selector;
314         u16 host_fs_selector;
315         u16 host_gs_selector;
316         u16 host_tr_selector;
317 };
318
319 /*
320  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
321  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
322  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
323  */
324 #define VMCS12_REVISION 0x11e57ed0
325
326 /*
327  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
328  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
329  * current implementation, 4K are reserved to avoid future complications.
330  */
331 #define VMCS12_SIZE 0x1000
332
333 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
334 struct vmcs02_list {
335         struct list_head list;
336         gpa_t vmptr;
337         struct loaded_vmcs vmcs02;
338 };
339
340 /*
341  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
342  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
343  */
344 struct nested_vmx {
345         /* Has the level1 guest done vmxon? */
346         bool vmxon;
347
348         /* The guest-physical address of the current VMCS L1 keeps for L2 */
349         gpa_t current_vmptr;
350         /* The host-usable pointer to the above */
351         struct page *current_vmcs12_page;
352         struct vmcs12 *current_vmcs12;
353
354         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
355         struct list_head vmcs02_pool;
356         int vmcs02_num;
357         u64 vmcs01_tsc_offset;
358         /* L2 must run next, and mustn't decide to exit to L1. */
359         bool nested_run_pending;
360         /*
361          * Guest pages referred to in vmcs02 with host-physical pointers, so
362          * we must keep them pinned while L2 runs.
363          */
364         struct page *apic_access_page;
365 };
366
367 struct vcpu_vmx {
368         struct kvm_vcpu       vcpu;
369         unsigned long         host_rsp;
370         u8                    fail;
371         u8                    cpl;
372         bool                  nmi_known_unmasked;
373         u32                   exit_intr_info;
374         u32                   idt_vectoring_info;
375         ulong                 rflags;
376         struct shared_msr_entry *guest_msrs;
377         int                   nmsrs;
378         int                   save_nmsrs;
379 #ifdef CONFIG_X86_64
380         u64                   msr_host_kernel_gs_base;
381         u64                   msr_guest_kernel_gs_base;
382 #endif
383         /*
384          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
385          * non-nested (L1) guest, it always points to vmcs01. For a nested
386          * guest (L2), it points to a different VMCS.
387          */
388         struct loaded_vmcs    vmcs01;
389         struct loaded_vmcs   *loaded_vmcs;
390         bool                  __launched; /* temporary, used in vmx_vcpu_run */
391         struct msr_autoload {
392                 unsigned nr;
393                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
394                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
395         } msr_autoload;
396         struct {
397                 int           loaded;
398                 u16           fs_sel, gs_sel, ldt_sel;
399 #ifdef CONFIG_X86_64
400                 u16           ds_sel, es_sel;
401 #endif
402                 int           gs_ldt_reload_needed;
403                 int           fs_reload_needed;
404         } host_state;
405         struct {
406                 int vm86_active;
407                 ulong save_rflags;
408                 struct kvm_save_segment {
409                         u16 selector;
410                         unsigned long base;
411                         u32 limit;
412                         u32 ar;
413                 } tr, es, ds, fs, gs;
414         } rmode;
415         struct {
416                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
417                 struct kvm_save_segment seg[8];
418         } segment_cache;
419         int vpid;
420         bool emulation_required;
421
422         /* Support for vnmi-less CPUs */
423         int soft_vnmi_blocked;
424         ktime_t entry_time;
425         s64 vnmi_blocked_time;
426         u32 exit_reason;
427
428         bool rdtscp_enabled;
429
430         /* Support for a guest hypervisor (nested VMX) */
431         struct nested_vmx nested;
432 };
433
434 enum segment_cache_field {
435         SEG_FIELD_SEL = 0,
436         SEG_FIELD_BASE = 1,
437         SEG_FIELD_LIMIT = 2,
438         SEG_FIELD_AR = 3,
439
440         SEG_FIELD_NR = 4
441 };
442
443 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
444 {
445         return container_of(vcpu, struct vcpu_vmx, vcpu);
446 }
447
448 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
449 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
450 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
451                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
452
453 static unsigned short vmcs_field_to_offset_table[] = {
454         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
455         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
456         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
457         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
458         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
459         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
460         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
461         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
462         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
463         FIELD(HOST_ES_SELECTOR, host_es_selector),
464         FIELD(HOST_CS_SELECTOR, host_cs_selector),
465         FIELD(HOST_SS_SELECTOR, host_ss_selector),
466         FIELD(HOST_DS_SELECTOR, host_ds_selector),
467         FIELD(HOST_FS_SELECTOR, host_fs_selector),
468         FIELD(HOST_GS_SELECTOR, host_gs_selector),
469         FIELD(HOST_TR_SELECTOR, host_tr_selector),
470         FIELD64(IO_BITMAP_A, io_bitmap_a),
471         FIELD64(IO_BITMAP_B, io_bitmap_b),
472         FIELD64(MSR_BITMAP, msr_bitmap),
473         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
474         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
475         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
476         FIELD64(TSC_OFFSET, tsc_offset),
477         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
478         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
479         FIELD64(EPT_POINTER, ept_pointer),
480         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
481         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
482         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
483         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
484         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
485         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
486         FIELD64(GUEST_PDPTR0, guest_pdptr0),
487         FIELD64(GUEST_PDPTR1, guest_pdptr1),
488         FIELD64(GUEST_PDPTR2, guest_pdptr2),
489         FIELD64(GUEST_PDPTR3, guest_pdptr3),
490         FIELD64(HOST_IA32_PAT, host_ia32_pat),
491         FIELD64(HOST_IA32_EFER, host_ia32_efer),
492         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
493         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
494         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
495         FIELD(EXCEPTION_BITMAP, exception_bitmap),
496         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
497         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
498         FIELD(CR3_TARGET_COUNT, cr3_target_count),
499         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
500         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
501         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
502         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
503         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
504         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
505         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
506         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
507         FIELD(TPR_THRESHOLD, tpr_threshold),
508         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
509         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
510         FIELD(VM_EXIT_REASON, vm_exit_reason),
511         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
512         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
513         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
514         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
515         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
516         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
517         FIELD(GUEST_ES_LIMIT, guest_es_limit),
518         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
519         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
520         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
521         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
522         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
523         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
524         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
525         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
526         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
527         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
528         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
529         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
530         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
531         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
532         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
533         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
534         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
535         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
536         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
537         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
538         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
539         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
540         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
541         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
542         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
543         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
544         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
545         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
546         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
547         FIELD(EXIT_QUALIFICATION, exit_qualification),
548         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
549         FIELD(GUEST_CR0, guest_cr0),
550         FIELD(GUEST_CR3, guest_cr3),
551         FIELD(GUEST_CR4, guest_cr4),
552         FIELD(GUEST_ES_BASE, guest_es_base),
553         FIELD(GUEST_CS_BASE, guest_cs_base),
554         FIELD(GUEST_SS_BASE, guest_ss_base),
555         FIELD(GUEST_DS_BASE, guest_ds_base),
556         FIELD(GUEST_FS_BASE, guest_fs_base),
557         FIELD(GUEST_GS_BASE, guest_gs_base),
558         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
559         FIELD(GUEST_TR_BASE, guest_tr_base),
560         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
561         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
562         FIELD(GUEST_DR7, guest_dr7),
563         FIELD(GUEST_RSP, guest_rsp),
564         FIELD(GUEST_RIP, guest_rip),
565         FIELD(GUEST_RFLAGS, guest_rflags),
566         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
567         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
568         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
569         FIELD(HOST_CR0, host_cr0),
570         FIELD(HOST_CR3, host_cr3),
571         FIELD(HOST_CR4, host_cr4),
572         FIELD(HOST_FS_BASE, host_fs_base),
573         FIELD(HOST_GS_BASE, host_gs_base),
574         FIELD(HOST_TR_BASE, host_tr_base),
575         FIELD(HOST_GDTR_BASE, host_gdtr_base),
576         FIELD(HOST_IDTR_BASE, host_idtr_base),
577         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
578         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
579         FIELD(HOST_RSP, host_rsp),
580         FIELD(HOST_RIP, host_rip),
581 };
582 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
583
584 static inline short vmcs_field_to_offset(unsigned long field)
585 {
586         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
587                 return -1;
588         return vmcs_field_to_offset_table[field];
589 }
590
591 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
592 {
593         return to_vmx(vcpu)->nested.current_vmcs12;
594 }
595
596 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
597 {
598         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
599         if (is_error_page(page)) {
600                 kvm_release_page_clean(page);
601                 return NULL;
602         }
603         return page;
604 }
605
606 static void nested_release_page(struct page *page)
607 {
608         kvm_release_page_dirty(page);
609 }
610
611 static void nested_release_page_clean(struct page *page)
612 {
613         kvm_release_page_clean(page);
614 }
615
616 static u64 construct_eptp(unsigned long root_hpa);
617 static void kvm_cpu_vmxon(u64 addr);
618 static void kvm_cpu_vmxoff(void);
619 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
620 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
621 static void vmx_set_segment(struct kvm_vcpu *vcpu,
622                             struct kvm_segment *var, int seg);
623 static void vmx_get_segment(struct kvm_vcpu *vcpu,
624                             struct kvm_segment *var, int seg);
625
626 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
627 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
628 /*
629  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
630  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
631  */
632 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
633 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
634
635 static unsigned long *vmx_io_bitmap_a;
636 static unsigned long *vmx_io_bitmap_b;
637 static unsigned long *vmx_msr_bitmap_legacy;
638 static unsigned long *vmx_msr_bitmap_longmode;
639
640 static bool cpu_has_load_ia32_efer;
641 static bool cpu_has_load_perf_global_ctrl;
642
643 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
644 static DEFINE_SPINLOCK(vmx_vpid_lock);
645
646 static struct vmcs_config {
647         int size;
648         int order;
649         u32 revision_id;
650         u32 pin_based_exec_ctrl;
651         u32 cpu_based_exec_ctrl;
652         u32 cpu_based_2nd_exec_ctrl;
653         u32 vmexit_ctrl;
654         u32 vmentry_ctrl;
655 } vmcs_config;
656
657 static struct vmx_capability {
658         u32 ept;
659         u32 vpid;
660 } vmx_capability;
661
662 #define VMX_SEGMENT_FIELD(seg)                                  \
663         [VCPU_SREG_##seg] = {                                   \
664                 .selector = GUEST_##seg##_SELECTOR,             \
665                 .base = GUEST_##seg##_BASE,                     \
666                 .limit = GUEST_##seg##_LIMIT,                   \
667                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
668         }
669
670 static struct kvm_vmx_segment_field {
671         unsigned selector;
672         unsigned base;
673         unsigned limit;
674         unsigned ar_bytes;
675 } kvm_vmx_segment_fields[] = {
676         VMX_SEGMENT_FIELD(CS),
677         VMX_SEGMENT_FIELD(DS),
678         VMX_SEGMENT_FIELD(ES),
679         VMX_SEGMENT_FIELD(FS),
680         VMX_SEGMENT_FIELD(GS),
681         VMX_SEGMENT_FIELD(SS),
682         VMX_SEGMENT_FIELD(TR),
683         VMX_SEGMENT_FIELD(LDTR),
684 };
685
686 static u64 host_efer;
687
688 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
689
690 /*
691  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
692  * away by decrementing the array size.
693  */
694 static const u32 vmx_msr_index[] = {
695 #ifdef CONFIG_X86_64
696         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
697 #endif
698         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
699 };
700 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
701
702 static inline bool is_page_fault(u32 intr_info)
703 {
704         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705                              INTR_INFO_VALID_MASK)) ==
706                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
707 }
708
709 static inline bool is_no_device(u32 intr_info)
710 {
711         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
712                              INTR_INFO_VALID_MASK)) ==
713                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
714 }
715
716 static inline bool is_invalid_opcode(u32 intr_info)
717 {
718         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
719                              INTR_INFO_VALID_MASK)) ==
720                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
721 }
722
723 static inline bool is_external_interrupt(u32 intr_info)
724 {
725         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
726                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
727 }
728
729 static inline bool is_machine_check(u32 intr_info)
730 {
731         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
732                              INTR_INFO_VALID_MASK)) ==
733                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
734 }
735
736 static inline bool cpu_has_vmx_msr_bitmap(void)
737 {
738         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
739 }
740
741 static inline bool cpu_has_vmx_tpr_shadow(void)
742 {
743         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
744 }
745
746 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
747 {
748         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
749 }
750
751 static inline bool cpu_has_secondary_exec_ctrls(void)
752 {
753         return vmcs_config.cpu_based_exec_ctrl &
754                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
755 }
756
757 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
758 {
759         return vmcs_config.cpu_based_2nd_exec_ctrl &
760                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
761 }
762
763 static inline bool cpu_has_vmx_flexpriority(void)
764 {
765         return cpu_has_vmx_tpr_shadow() &&
766                 cpu_has_vmx_virtualize_apic_accesses();
767 }
768
769 static inline bool cpu_has_vmx_ept_execute_only(void)
770 {
771         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
772 }
773
774 static inline bool cpu_has_vmx_eptp_uncacheable(void)
775 {
776         return vmx_capability.ept & VMX_EPTP_UC_BIT;
777 }
778
779 static inline bool cpu_has_vmx_eptp_writeback(void)
780 {
781         return vmx_capability.ept & VMX_EPTP_WB_BIT;
782 }
783
784 static inline bool cpu_has_vmx_ept_2m_page(void)
785 {
786         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
787 }
788
789 static inline bool cpu_has_vmx_ept_1g_page(void)
790 {
791         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
792 }
793
794 static inline bool cpu_has_vmx_ept_4levels(void)
795 {
796         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
797 }
798
799 static inline bool cpu_has_vmx_ept_ad_bits(void)
800 {
801         return vmx_capability.ept & VMX_EPT_AD_BIT;
802 }
803
804 static inline bool cpu_has_vmx_invept_individual_addr(void)
805 {
806         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
807 }
808
809 static inline bool cpu_has_vmx_invept_context(void)
810 {
811         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
812 }
813
814 static inline bool cpu_has_vmx_invept_global(void)
815 {
816         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
817 }
818
819 static inline bool cpu_has_vmx_invvpid_single(void)
820 {
821         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
822 }
823
824 static inline bool cpu_has_vmx_invvpid_global(void)
825 {
826         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
827 }
828
829 static inline bool cpu_has_vmx_ept(void)
830 {
831         return vmcs_config.cpu_based_2nd_exec_ctrl &
832                 SECONDARY_EXEC_ENABLE_EPT;
833 }
834
835 static inline bool cpu_has_vmx_unrestricted_guest(void)
836 {
837         return vmcs_config.cpu_based_2nd_exec_ctrl &
838                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
839 }
840
841 static inline bool cpu_has_vmx_ple(void)
842 {
843         return vmcs_config.cpu_based_2nd_exec_ctrl &
844                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
845 }
846
847 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
848 {
849         return flexpriority_enabled && irqchip_in_kernel(kvm);
850 }
851
852 static inline bool cpu_has_vmx_vpid(void)
853 {
854         return vmcs_config.cpu_based_2nd_exec_ctrl &
855                 SECONDARY_EXEC_ENABLE_VPID;
856 }
857
858 static inline bool cpu_has_vmx_rdtscp(void)
859 {
860         return vmcs_config.cpu_based_2nd_exec_ctrl &
861                 SECONDARY_EXEC_RDTSCP;
862 }
863
864 static inline bool cpu_has_vmx_invpcid(void)
865 {
866         return vmcs_config.cpu_based_2nd_exec_ctrl &
867                 SECONDARY_EXEC_ENABLE_INVPCID;
868 }
869
870 static inline bool cpu_has_virtual_nmis(void)
871 {
872         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
873 }
874
875 static inline bool cpu_has_vmx_wbinvd_exit(void)
876 {
877         return vmcs_config.cpu_based_2nd_exec_ctrl &
878                 SECONDARY_EXEC_WBINVD_EXITING;
879 }
880
881 static inline bool report_flexpriority(void)
882 {
883         return flexpriority_enabled;
884 }
885
886 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
887 {
888         return vmcs12->cpu_based_vm_exec_control & bit;
889 }
890
891 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
892 {
893         return (vmcs12->cpu_based_vm_exec_control &
894                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
895                 (vmcs12->secondary_vm_exec_control & bit);
896 }
897
898 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
899         struct kvm_vcpu *vcpu)
900 {
901         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
902 }
903
904 static inline bool is_exception(u32 intr_info)
905 {
906         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
907                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
908 }
909
910 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
911 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
912                         struct vmcs12 *vmcs12,
913                         u32 reason, unsigned long qualification);
914
915 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
916 {
917         int i;
918
919         for (i = 0; i < vmx->nmsrs; ++i)
920                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
921                         return i;
922         return -1;
923 }
924
925 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
926 {
927     struct {
928         u64 vpid : 16;
929         u64 rsvd : 48;
930         u64 gva;
931     } operand = { vpid, 0, gva };
932
933     asm volatile (__ex(ASM_VMX_INVVPID)
934                   /* CF==1 or ZF==1 --> rc = -1 */
935                   "; ja 1f ; ud2 ; 1:"
936                   : : "a"(&operand), "c"(ext) : "cc", "memory");
937 }
938
939 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
940 {
941         struct {
942                 u64 eptp, gpa;
943         } operand = {eptp, gpa};
944
945         asm volatile (__ex(ASM_VMX_INVEPT)
946                         /* CF==1 or ZF==1 --> rc = -1 */
947                         "; ja 1f ; ud2 ; 1:\n"
948                         : : "a" (&operand), "c" (ext) : "cc", "memory");
949 }
950
951 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
952 {
953         int i;
954
955         i = __find_msr_index(vmx, msr);
956         if (i >= 0)
957                 return &vmx->guest_msrs[i];
958         return NULL;
959 }
960
961 static void vmcs_clear(struct vmcs *vmcs)
962 {
963         u64 phys_addr = __pa(vmcs);
964         u8 error;
965
966         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
967                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
968                       : "cc", "memory");
969         if (error)
970                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
971                        vmcs, phys_addr);
972 }
973
974 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
975 {
976         vmcs_clear(loaded_vmcs->vmcs);
977         loaded_vmcs->cpu = -1;
978         loaded_vmcs->launched = 0;
979 }
980
981 static void vmcs_load(struct vmcs *vmcs)
982 {
983         u64 phys_addr = __pa(vmcs);
984         u8 error;
985
986         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
987                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
988                         : "cc", "memory");
989         if (error)
990                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
991                        vmcs, phys_addr);
992 }
993
994 static void __loaded_vmcs_clear(void *arg)
995 {
996         struct loaded_vmcs *loaded_vmcs = arg;
997         int cpu = raw_smp_processor_id();
998
999         if (loaded_vmcs->cpu != cpu)
1000                 return; /* vcpu migration can race with cpu offline */
1001         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1002                 per_cpu(current_vmcs, cpu) = NULL;
1003         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1004         loaded_vmcs_init(loaded_vmcs);
1005 }
1006
1007 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1008 {
1009         if (loaded_vmcs->cpu != -1)
1010                 smp_call_function_single(
1011                         loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
1012 }
1013
1014 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1015 {
1016         if (vmx->vpid == 0)
1017                 return;
1018
1019         if (cpu_has_vmx_invvpid_single())
1020                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1021 }
1022
1023 static inline void vpid_sync_vcpu_global(void)
1024 {
1025         if (cpu_has_vmx_invvpid_global())
1026                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1027 }
1028
1029 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1030 {
1031         if (cpu_has_vmx_invvpid_single())
1032                 vpid_sync_vcpu_single(vmx);
1033         else
1034                 vpid_sync_vcpu_global();
1035 }
1036
1037 static inline void ept_sync_global(void)
1038 {
1039         if (cpu_has_vmx_invept_global())
1040                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1041 }
1042
1043 static inline void ept_sync_context(u64 eptp)
1044 {
1045         if (enable_ept) {
1046                 if (cpu_has_vmx_invept_context())
1047                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1048                 else
1049                         ept_sync_global();
1050         }
1051 }
1052
1053 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1054 {
1055         if (enable_ept) {
1056                 if (cpu_has_vmx_invept_individual_addr())
1057                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1058                                         eptp, gpa);
1059                 else
1060                         ept_sync_context(eptp);
1061         }
1062 }
1063
1064 static __always_inline unsigned long vmcs_readl(unsigned long field)
1065 {
1066         unsigned long value;
1067
1068         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1069                       : "=a"(value) : "d"(field) : "cc");
1070         return value;
1071 }
1072
1073 static __always_inline u16 vmcs_read16(unsigned long field)
1074 {
1075         return vmcs_readl(field);
1076 }
1077
1078 static __always_inline u32 vmcs_read32(unsigned long field)
1079 {
1080         return vmcs_readl(field);
1081 }
1082
1083 static __always_inline u64 vmcs_read64(unsigned long field)
1084 {
1085 #ifdef CONFIG_X86_64
1086         return vmcs_readl(field);
1087 #else
1088         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1089 #endif
1090 }
1091
1092 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1093 {
1094         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1095                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1096         dump_stack();
1097 }
1098
1099 static void vmcs_writel(unsigned long field, unsigned long value)
1100 {
1101         u8 error;
1102
1103         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1104                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1105         if (unlikely(error))
1106                 vmwrite_error(field, value);
1107 }
1108
1109 static void vmcs_write16(unsigned long field, u16 value)
1110 {
1111         vmcs_writel(field, value);
1112 }
1113
1114 static void vmcs_write32(unsigned long field, u32 value)
1115 {
1116         vmcs_writel(field, value);
1117 }
1118
1119 static void vmcs_write64(unsigned long field, u64 value)
1120 {
1121         vmcs_writel(field, value);
1122 #ifndef CONFIG_X86_64
1123         asm volatile ("");
1124         vmcs_writel(field+1, value >> 32);
1125 #endif
1126 }
1127
1128 static void vmcs_clear_bits(unsigned long field, u32 mask)
1129 {
1130         vmcs_writel(field, vmcs_readl(field) & ~mask);
1131 }
1132
1133 static void vmcs_set_bits(unsigned long field, u32 mask)
1134 {
1135         vmcs_writel(field, vmcs_readl(field) | mask);
1136 }
1137
1138 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1139 {
1140         vmx->segment_cache.bitmask = 0;
1141 }
1142
1143 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1144                                        unsigned field)
1145 {
1146         bool ret;
1147         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1148
1149         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1150                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1151                 vmx->segment_cache.bitmask = 0;
1152         }
1153         ret = vmx->segment_cache.bitmask & mask;
1154         vmx->segment_cache.bitmask |= mask;
1155         return ret;
1156 }
1157
1158 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1159 {
1160         u16 *p = &vmx->segment_cache.seg[seg].selector;
1161
1162         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1163                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1164         return *p;
1165 }
1166
1167 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1168 {
1169         ulong *p = &vmx->segment_cache.seg[seg].base;
1170
1171         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1172                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1173         return *p;
1174 }
1175
1176 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1177 {
1178         u32 *p = &vmx->segment_cache.seg[seg].limit;
1179
1180         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1181                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1182         return *p;
1183 }
1184
1185 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1186 {
1187         u32 *p = &vmx->segment_cache.seg[seg].ar;
1188
1189         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1190                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1191         return *p;
1192 }
1193
1194 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1195 {
1196         u32 eb;
1197
1198         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1199              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1200         if ((vcpu->guest_debug &
1201              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1202             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1203                 eb |= 1u << BP_VECTOR;
1204         if (to_vmx(vcpu)->rmode.vm86_active)
1205                 eb = ~0;
1206         if (enable_ept)
1207                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1208         if (vcpu->fpu_active)
1209                 eb &= ~(1u << NM_VECTOR);
1210
1211         /* When we are running a nested L2 guest and L1 specified for it a
1212          * certain exception bitmap, we must trap the same exceptions and pass
1213          * them to L1. When running L2, we will only handle the exceptions
1214          * specified above if L1 did not want them.
1215          */
1216         if (is_guest_mode(vcpu))
1217                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1218
1219         vmcs_write32(EXCEPTION_BITMAP, eb);
1220 }
1221
1222 static void clear_atomic_switch_msr_special(unsigned long entry,
1223                 unsigned long exit)
1224 {
1225         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1226         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1227 }
1228
1229 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1230 {
1231         unsigned i;
1232         struct msr_autoload *m = &vmx->msr_autoload;
1233
1234         switch (msr) {
1235         case MSR_EFER:
1236                 if (cpu_has_load_ia32_efer) {
1237                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1238                                         VM_EXIT_LOAD_IA32_EFER);
1239                         return;
1240                 }
1241                 break;
1242         case MSR_CORE_PERF_GLOBAL_CTRL:
1243                 if (cpu_has_load_perf_global_ctrl) {
1244                         clear_atomic_switch_msr_special(
1245                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1246                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1247                         return;
1248                 }
1249                 break;
1250         }
1251
1252         for (i = 0; i < m->nr; ++i)
1253                 if (m->guest[i].index == msr)
1254                         break;
1255
1256         if (i == m->nr)
1257                 return;
1258         --m->nr;
1259         m->guest[i] = m->guest[m->nr];
1260         m->host[i] = m->host[m->nr];
1261         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1262         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1263 }
1264
1265 static void add_atomic_switch_msr_special(unsigned long entry,
1266                 unsigned long exit, unsigned long guest_val_vmcs,
1267                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1268 {
1269         vmcs_write64(guest_val_vmcs, guest_val);
1270         vmcs_write64(host_val_vmcs, host_val);
1271         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1272         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1273 }
1274
1275 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1276                                   u64 guest_val, u64 host_val)
1277 {
1278         unsigned i;
1279         struct msr_autoload *m = &vmx->msr_autoload;
1280
1281         switch (msr) {
1282         case MSR_EFER:
1283                 if (cpu_has_load_ia32_efer) {
1284                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1285                                         VM_EXIT_LOAD_IA32_EFER,
1286                                         GUEST_IA32_EFER,
1287                                         HOST_IA32_EFER,
1288                                         guest_val, host_val);
1289                         return;
1290                 }
1291                 break;
1292         case MSR_CORE_PERF_GLOBAL_CTRL:
1293                 if (cpu_has_load_perf_global_ctrl) {
1294                         add_atomic_switch_msr_special(
1295                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1296                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1297                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1298                                         HOST_IA32_PERF_GLOBAL_CTRL,
1299                                         guest_val, host_val);
1300                         return;
1301                 }
1302                 break;
1303         }
1304
1305         for (i = 0; i < m->nr; ++i)
1306                 if (m->guest[i].index == msr)
1307                         break;
1308
1309         if (i == NR_AUTOLOAD_MSRS) {
1310                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1311                                 "Can't add msr %x\n", msr);
1312                 return;
1313         } else if (i == m->nr) {
1314                 ++m->nr;
1315                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1316                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1317         }
1318
1319         m->guest[i].index = msr;
1320         m->guest[i].value = guest_val;
1321         m->host[i].index = msr;
1322         m->host[i].value = host_val;
1323 }
1324
1325 static void reload_tss(void)
1326 {
1327         /*
1328          * VT restores TR but not its size.  Useless.
1329          */
1330         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1331         struct desc_struct *descs;
1332
1333         descs = (void *)gdt->address;
1334         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1335         load_TR_desc();
1336 }
1337
1338 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1339 {
1340         u64 guest_efer;
1341         u64 ignore_bits;
1342
1343         guest_efer = vmx->vcpu.arch.efer;
1344
1345         /*
1346          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1347          * outside long mode
1348          */
1349         ignore_bits = EFER_NX | EFER_SCE;
1350 #ifdef CONFIG_X86_64
1351         ignore_bits |= EFER_LMA | EFER_LME;
1352         /* SCE is meaningful only in long mode on Intel */
1353         if (guest_efer & EFER_LMA)
1354                 ignore_bits &= ~(u64)EFER_SCE;
1355 #endif
1356         guest_efer &= ~ignore_bits;
1357         guest_efer |= host_efer & ignore_bits;
1358         vmx->guest_msrs[efer_offset].data = guest_efer;
1359         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1360
1361         clear_atomic_switch_msr(vmx, MSR_EFER);
1362         /* On ept, can't emulate nx, and must switch nx atomically */
1363         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1364                 guest_efer = vmx->vcpu.arch.efer;
1365                 if (!(guest_efer & EFER_LMA))
1366                         guest_efer &= ~EFER_LME;
1367                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1368                 return false;
1369         }
1370
1371         return true;
1372 }
1373
1374 static unsigned long segment_base(u16 selector)
1375 {
1376         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1377         struct desc_struct *d;
1378         unsigned long table_base;
1379         unsigned long v;
1380
1381         if (!(selector & ~3))
1382                 return 0;
1383
1384         table_base = gdt->address;
1385
1386         if (selector & 4) {           /* from ldt */
1387                 u16 ldt_selector = kvm_read_ldt();
1388
1389                 if (!(ldt_selector & ~3))
1390                         return 0;
1391
1392                 table_base = segment_base(ldt_selector);
1393         }
1394         d = (struct desc_struct *)(table_base + (selector & ~7));
1395         v = get_desc_base(d);
1396 #ifdef CONFIG_X86_64
1397        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1398                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1399 #endif
1400         return v;
1401 }
1402
1403 static inline unsigned long kvm_read_tr_base(void)
1404 {
1405         u16 tr;
1406         asm("str %0" : "=g"(tr));
1407         return segment_base(tr);
1408 }
1409
1410 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1411 {
1412         struct vcpu_vmx *vmx = to_vmx(vcpu);
1413         int i;
1414
1415         if (vmx->host_state.loaded)
1416                 return;
1417
1418         vmx->host_state.loaded = 1;
1419         /*
1420          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1421          * allow segment selectors with cpl > 0 or ti == 1.
1422          */
1423         vmx->host_state.ldt_sel = kvm_read_ldt();
1424         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1425         savesegment(fs, vmx->host_state.fs_sel);
1426         if (!(vmx->host_state.fs_sel & 7)) {
1427                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1428                 vmx->host_state.fs_reload_needed = 0;
1429         } else {
1430                 vmcs_write16(HOST_FS_SELECTOR, 0);
1431                 vmx->host_state.fs_reload_needed = 1;
1432         }
1433         savesegment(gs, vmx->host_state.gs_sel);
1434         if (!(vmx->host_state.gs_sel & 7))
1435                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1436         else {
1437                 vmcs_write16(HOST_GS_SELECTOR, 0);
1438                 vmx->host_state.gs_ldt_reload_needed = 1;
1439         }
1440
1441 #ifdef CONFIG_X86_64
1442         savesegment(ds, vmx->host_state.ds_sel);
1443         savesegment(es, vmx->host_state.es_sel);
1444 #endif
1445
1446 #ifdef CONFIG_X86_64
1447         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1448         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1449 #else
1450         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1451         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1452 #endif
1453
1454 #ifdef CONFIG_X86_64
1455         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1456         if (is_long_mode(&vmx->vcpu))
1457                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1458 #endif
1459         for (i = 0; i < vmx->save_nmsrs; ++i)
1460                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1461                                    vmx->guest_msrs[i].data,
1462                                    vmx->guest_msrs[i].mask);
1463 }
1464
1465 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1466 {
1467         if (!vmx->host_state.loaded)
1468                 return;
1469
1470         ++vmx->vcpu.stat.host_state_reload;
1471         vmx->host_state.loaded = 0;
1472 #ifdef CONFIG_X86_64
1473         if (is_long_mode(&vmx->vcpu))
1474                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1475 #endif
1476         if (vmx->host_state.gs_ldt_reload_needed) {
1477                 kvm_load_ldt(vmx->host_state.ldt_sel);
1478 #ifdef CONFIG_X86_64
1479                 load_gs_index(vmx->host_state.gs_sel);
1480 #else
1481                 loadsegment(gs, vmx->host_state.gs_sel);
1482 #endif
1483         }
1484         if (vmx->host_state.fs_reload_needed)
1485                 loadsegment(fs, vmx->host_state.fs_sel);
1486 #ifdef CONFIG_X86_64
1487         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1488                 loadsegment(ds, vmx->host_state.ds_sel);
1489                 loadsegment(es, vmx->host_state.es_sel);
1490         }
1491 #else
1492         /*
1493          * The sysexit path does not restore ds/es, so we must set them to
1494          * a reasonable value ourselves.
1495          */
1496         loadsegment(ds, __USER_DS);
1497         loadsegment(es, __USER_DS);
1498 #endif
1499         reload_tss();
1500 #ifdef CONFIG_X86_64
1501         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1502 #endif
1503         if (user_has_fpu())
1504                 clts();
1505         load_gdt(&__get_cpu_var(host_gdt));
1506 }
1507
1508 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1509 {
1510         preempt_disable();
1511         __vmx_load_host_state(vmx);
1512         preempt_enable();
1513 }
1514
1515 /*
1516  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1517  * vcpu mutex is already taken.
1518  */
1519 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1520 {
1521         struct vcpu_vmx *vmx = to_vmx(vcpu);
1522         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1523
1524         if (!vmm_exclusive)
1525                 kvm_cpu_vmxon(phys_addr);
1526         else if (vmx->loaded_vmcs->cpu != cpu)
1527                 loaded_vmcs_clear(vmx->loaded_vmcs);
1528
1529         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1530                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1531                 vmcs_load(vmx->loaded_vmcs->vmcs);
1532         }
1533
1534         if (vmx->loaded_vmcs->cpu != cpu) {
1535                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1536                 unsigned long sysenter_esp;
1537
1538                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1539                 local_irq_disable();
1540                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1541                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1542                 local_irq_enable();
1543
1544                 /*
1545                  * Linux uses per-cpu TSS and GDT, so set these when switching
1546                  * processors.
1547                  */
1548                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1549                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1550
1551                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1552                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1553                 vmx->loaded_vmcs->cpu = cpu;
1554         }
1555 }
1556
1557 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1558 {
1559         __vmx_load_host_state(to_vmx(vcpu));
1560         if (!vmm_exclusive) {
1561                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1562                 vcpu->cpu = -1;
1563                 kvm_cpu_vmxoff();
1564         }
1565 }
1566
1567 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1568 {
1569         ulong cr0;
1570
1571         if (vcpu->fpu_active)
1572                 return;
1573         vcpu->fpu_active = 1;
1574         cr0 = vmcs_readl(GUEST_CR0);
1575         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1576         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1577         vmcs_writel(GUEST_CR0, cr0);
1578         update_exception_bitmap(vcpu);
1579         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1580         if (is_guest_mode(vcpu))
1581                 vcpu->arch.cr0_guest_owned_bits &=
1582                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1583         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1584 }
1585
1586 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1587
1588 /*
1589  * Return the cr0 value that a nested guest would read. This is a combination
1590  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1591  * its hypervisor (cr0_read_shadow).
1592  */
1593 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1594 {
1595         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1596                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1597 }
1598 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1599 {
1600         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1601                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1602 }
1603
1604 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1605 {
1606         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1607          * set this *before* calling this function.
1608          */
1609         vmx_decache_cr0_guest_bits(vcpu);
1610         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1611         update_exception_bitmap(vcpu);
1612         vcpu->arch.cr0_guest_owned_bits = 0;
1613         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1614         if (is_guest_mode(vcpu)) {
1615                 /*
1616                  * L1's specified read shadow might not contain the TS bit,
1617                  * so now that we turned on shadowing of this bit, we need to
1618                  * set this bit of the shadow. Like in nested_vmx_run we need
1619                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1620                  * up-to-date here because we just decached cr0.TS (and we'll
1621                  * only update vmcs12->guest_cr0 on nested exit).
1622                  */
1623                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1624                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1625                         (vcpu->arch.cr0 & X86_CR0_TS);
1626                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1627         } else
1628                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1629 }
1630
1631 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1632 {
1633         unsigned long rflags, save_rflags;
1634
1635         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1636                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1637                 rflags = vmcs_readl(GUEST_RFLAGS);
1638                 if (to_vmx(vcpu)->rmode.vm86_active) {
1639                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1640                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1641                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1642                 }
1643                 to_vmx(vcpu)->rflags = rflags;
1644         }
1645         return to_vmx(vcpu)->rflags;
1646 }
1647
1648 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1649 {
1650         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1651         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1652         to_vmx(vcpu)->rflags = rflags;
1653         if (to_vmx(vcpu)->rmode.vm86_active) {
1654                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1655                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1656         }
1657         vmcs_writel(GUEST_RFLAGS, rflags);
1658 }
1659
1660 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1661 {
1662         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1663         int ret = 0;
1664
1665         if (interruptibility & GUEST_INTR_STATE_STI)
1666                 ret |= KVM_X86_SHADOW_INT_STI;
1667         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1668                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1669
1670         return ret & mask;
1671 }
1672
1673 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1674 {
1675         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1676         u32 interruptibility = interruptibility_old;
1677
1678         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1679
1680         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1681                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1682         else if (mask & KVM_X86_SHADOW_INT_STI)
1683                 interruptibility |= GUEST_INTR_STATE_STI;
1684
1685         if ((interruptibility != interruptibility_old))
1686                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1687 }
1688
1689 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1690 {
1691         unsigned long rip;
1692
1693         rip = kvm_rip_read(vcpu);
1694         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1695         kvm_rip_write(vcpu, rip);
1696
1697         /* skipping an emulated instruction also counts */
1698         vmx_set_interrupt_shadow(vcpu, 0);
1699 }
1700
1701 /*
1702  * KVM wants to inject page-faults which it got to the guest. This function
1703  * checks whether in a nested guest, we need to inject them to L1 or L2.
1704  * This function assumes it is called with the exit reason in vmcs02 being
1705  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1706  * is running).
1707  */
1708 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1709 {
1710         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1711
1712         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1713         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1714                 return 0;
1715
1716         nested_vmx_vmexit(vcpu);
1717         return 1;
1718 }
1719
1720 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1721                                 bool has_error_code, u32 error_code,
1722                                 bool reinject)
1723 {
1724         struct vcpu_vmx *vmx = to_vmx(vcpu);
1725         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1726
1727         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1728                 nested_pf_handled(vcpu))
1729                 return;
1730
1731         if (has_error_code) {
1732                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1733                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1734         }
1735
1736         if (vmx->rmode.vm86_active) {
1737                 int inc_eip = 0;
1738                 if (kvm_exception_is_soft(nr))
1739                         inc_eip = vcpu->arch.event_exit_inst_len;
1740                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1741                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1742                 return;
1743         }
1744
1745         if (kvm_exception_is_soft(nr)) {
1746                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1747                              vmx->vcpu.arch.event_exit_inst_len);
1748                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1749         } else
1750                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1751
1752         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1753 }
1754
1755 static bool vmx_rdtscp_supported(void)
1756 {
1757         return cpu_has_vmx_rdtscp();
1758 }
1759
1760 static bool vmx_invpcid_supported(void)
1761 {
1762         return cpu_has_vmx_invpcid() && enable_ept;
1763 }
1764
1765 /*
1766  * Swap MSR entry in host/guest MSR entry array.
1767  */
1768 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1769 {
1770         struct shared_msr_entry tmp;
1771
1772         tmp = vmx->guest_msrs[to];
1773         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1774         vmx->guest_msrs[from] = tmp;
1775 }
1776
1777 /*
1778  * Set up the vmcs to automatically save and restore system
1779  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1780  * mode, as fiddling with msrs is very expensive.
1781  */
1782 static void setup_msrs(struct vcpu_vmx *vmx)
1783 {
1784         int save_nmsrs, index;
1785         unsigned long *msr_bitmap;
1786
1787         save_nmsrs = 0;
1788 #ifdef CONFIG_X86_64
1789         if (is_long_mode(&vmx->vcpu)) {
1790                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1791                 if (index >= 0)
1792                         move_msr_up(vmx, index, save_nmsrs++);
1793                 index = __find_msr_index(vmx, MSR_LSTAR);
1794                 if (index >= 0)
1795                         move_msr_up(vmx, index, save_nmsrs++);
1796                 index = __find_msr_index(vmx, MSR_CSTAR);
1797                 if (index >= 0)
1798                         move_msr_up(vmx, index, save_nmsrs++);
1799                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1800                 if (index >= 0 && vmx->rdtscp_enabled)
1801                         move_msr_up(vmx, index, save_nmsrs++);
1802                 /*
1803                  * MSR_STAR is only needed on long mode guests, and only
1804                  * if efer.sce is enabled.
1805                  */
1806                 index = __find_msr_index(vmx, MSR_STAR);
1807                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1808                         move_msr_up(vmx, index, save_nmsrs++);
1809         }
1810 #endif
1811         index = __find_msr_index(vmx, MSR_EFER);
1812         if (index >= 0 && update_transition_efer(vmx, index))
1813                 move_msr_up(vmx, index, save_nmsrs++);
1814
1815         vmx->save_nmsrs = save_nmsrs;
1816
1817         if (cpu_has_vmx_msr_bitmap()) {
1818                 if (is_long_mode(&vmx->vcpu))
1819                         msr_bitmap = vmx_msr_bitmap_longmode;
1820                 else
1821                         msr_bitmap = vmx_msr_bitmap_legacy;
1822
1823                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1824         }
1825 }
1826
1827 /*
1828  * reads and returns guest's timestamp counter "register"
1829  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1830  */
1831 static u64 guest_read_tsc(void)
1832 {
1833         u64 host_tsc, tsc_offset;
1834
1835         rdtscll(host_tsc);
1836         tsc_offset = vmcs_read64(TSC_OFFSET);
1837         return host_tsc + tsc_offset;
1838 }
1839
1840 /*
1841  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1842  * counter, even if a nested guest (L2) is currently running.
1843  */
1844 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1845 {
1846         u64 host_tsc, tsc_offset;
1847
1848         rdtscll(host_tsc);
1849         tsc_offset = is_guest_mode(vcpu) ?
1850                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1851                 vmcs_read64(TSC_OFFSET);
1852         return host_tsc + tsc_offset;
1853 }
1854
1855 /*
1856  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
1857  * software catchup for faster rates on slower CPUs.
1858  */
1859 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1860 {
1861         if (!scale)
1862                 return;
1863
1864         if (user_tsc_khz > tsc_khz) {
1865                 vcpu->arch.tsc_catchup = 1;
1866                 vcpu->arch.tsc_always_catchup = 1;
1867         } else
1868                 WARN(1, "user requested TSC rate below hardware speed\n");
1869 }
1870
1871 /*
1872  * writes 'offset' into guest's timestamp counter offset register
1873  */
1874 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1875 {
1876         if (is_guest_mode(vcpu)) {
1877                 /*
1878                  * We're here if L1 chose not to trap WRMSR to TSC. According
1879                  * to the spec, this should set L1's TSC; The offset that L1
1880                  * set for L2 remains unchanged, and still needs to be added
1881                  * to the newly set TSC to get L2's TSC.
1882                  */
1883                 struct vmcs12 *vmcs12;
1884                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1885                 /* recalculate vmcs02.TSC_OFFSET: */
1886                 vmcs12 = get_vmcs12(vcpu);
1887                 vmcs_write64(TSC_OFFSET, offset +
1888                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1889                          vmcs12->tsc_offset : 0));
1890         } else {
1891                 vmcs_write64(TSC_OFFSET, offset);
1892         }
1893 }
1894
1895 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1896 {
1897         u64 offset = vmcs_read64(TSC_OFFSET);
1898         vmcs_write64(TSC_OFFSET, offset + adjustment);
1899         if (is_guest_mode(vcpu)) {
1900                 /* Even when running L2, the adjustment needs to apply to L1 */
1901                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1902         }
1903 }
1904
1905 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1906 {
1907         return target_tsc - native_read_tsc();
1908 }
1909
1910 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1911 {
1912         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1913         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1914 }
1915
1916 /*
1917  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1918  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1919  * all guests if the "nested" module option is off, and can also be disabled
1920  * for a single guest by disabling its VMX cpuid bit.
1921  */
1922 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1923 {
1924         return nested && guest_cpuid_has_vmx(vcpu);
1925 }
1926
1927 /*
1928  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1929  * returned for the various VMX controls MSRs when nested VMX is enabled.
1930  * The same values should also be used to verify that vmcs12 control fields are
1931  * valid during nested entry from L1 to L2.
1932  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1933  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1934  * bit in the high half is on if the corresponding bit in the control field
1935  * may be on. See also vmx_control_verify().
1936  * TODO: allow these variables to be modified (downgraded) by module options
1937  * or other means.
1938  */
1939 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1940 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1941 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1942 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1943 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1944 static __init void nested_vmx_setup_ctls_msrs(void)
1945 {
1946         /*
1947          * Note that as a general rule, the high half of the MSRs (bits in
1948          * the control fields which may be 1) should be initialized by the
1949          * intersection of the underlying hardware's MSR (i.e., features which
1950          * can be supported) and the list of features we want to expose -
1951          * because they are known to be properly supported in our code.
1952          * Also, usually, the low half of the MSRs (bits which must be 1) can
1953          * be set to 0, meaning that L1 may turn off any of these bits. The
1954          * reason is that if one of these bits is necessary, it will appear
1955          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1956          * fields of vmcs01 and vmcs02, will turn these bits off - and
1957          * nested_vmx_exit_handled() will not pass related exits to L1.
1958          * These rules have exceptions below.
1959          */
1960
1961         /* pin-based controls */
1962         /*
1963          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1964          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1965          */
1966         nested_vmx_pinbased_ctls_low = 0x16 ;
1967         nested_vmx_pinbased_ctls_high = 0x16 |
1968                 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1969                 PIN_BASED_VIRTUAL_NMIS;
1970
1971         /* exit controls */
1972         nested_vmx_exit_ctls_low = 0;
1973         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1974 #ifdef CONFIG_X86_64
1975         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1976 #else
1977         nested_vmx_exit_ctls_high = 0;
1978 #endif
1979
1980         /* entry controls */
1981         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1982                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1983         nested_vmx_entry_ctls_low = 0;
1984         nested_vmx_entry_ctls_high &=
1985                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1986
1987         /* cpu-based controls */
1988         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1989                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1990         nested_vmx_procbased_ctls_low = 0;
1991         nested_vmx_procbased_ctls_high &=
1992                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1993                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1994                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1995                 CPU_BASED_CR3_STORE_EXITING |
1996 #ifdef CONFIG_X86_64
1997                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1998 #endif
1999                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2000                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2001                 CPU_BASED_RDPMC_EXITING |
2002                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2003         /*
2004          * We can allow some features even when not supported by the
2005          * hardware. For example, L1 can specify an MSR bitmap - and we
2006          * can use it to avoid exits to L1 - even when L0 runs L2
2007          * without MSR bitmaps.
2008          */
2009         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2010
2011         /* secondary cpu-based controls */
2012         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2013                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2014         nested_vmx_secondary_ctls_low = 0;
2015         nested_vmx_secondary_ctls_high &=
2016                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2017 }
2018
2019 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2020 {
2021         /*
2022          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2023          */
2024         return ((control & high) | low) == control;
2025 }
2026
2027 static inline u64 vmx_control_msr(u32 low, u32 high)
2028 {
2029         return low | ((u64)high << 32);
2030 }
2031
2032 /*
2033  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2034  * also let it use VMX-specific MSRs.
2035  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2036  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2037  * like all other MSRs).
2038  */
2039 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2040 {
2041         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2042                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2043                 /*
2044                  * According to the spec, processors which do not support VMX
2045                  * should throw a #GP(0) when VMX capability MSRs are read.
2046                  */
2047                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2048                 return 1;
2049         }
2050
2051         switch (msr_index) {
2052         case MSR_IA32_FEATURE_CONTROL:
2053                 *pdata = 0;
2054                 break;
2055         case MSR_IA32_VMX_BASIC:
2056                 /*
2057                  * This MSR reports some information about VMX support. We
2058                  * should return information about the VMX we emulate for the
2059                  * guest, and the VMCS structure we give it - not about the
2060                  * VMX support of the underlying hardware.
2061                  */
2062                 *pdata = VMCS12_REVISION |
2063                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2064                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2065                 break;
2066         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2067         case MSR_IA32_VMX_PINBASED_CTLS:
2068                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2069                                         nested_vmx_pinbased_ctls_high);
2070                 break;
2071         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2072         case MSR_IA32_VMX_PROCBASED_CTLS:
2073                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2074                                         nested_vmx_procbased_ctls_high);
2075                 break;
2076         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2077         case MSR_IA32_VMX_EXIT_CTLS:
2078                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2079                                         nested_vmx_exit_ctls_high);
2080                 break;
2081         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2082         case MSR_IA32_VMX_ENTRY_CTLS:
2083                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2084                                         nested_vmx_entry_ctls_high);
2085                 break;
2086         case MSR_IA32_VMX_MISC:
2087                 *pdata = 0;
2088                 break;
2089         /*
2090          * These MSRs specify bits which the guest must keep fixed (on or off)
2091          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2092          * We picked the standard core2 setting.
2093          */
2094 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2095 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2096         case MSR_IA32_VMX_CR0_FIXED0:
2097                 *pdata = VMXON_CR0_ALWAYSON;
2098                 break;
2099         case MSR_IA32_VMX_CR0_FIXED1:
2100                 *pdata = -1ULL;
2101                 break;
2102         case MSR_IA32_VMX_CR4_FIXED0:
2103                 *pdata = VMXON_CR4_ALWAYSON;
2104                 break;
2105         case MSR_IA32_VMX_CR4_FIXED1:
2106                 *pdata = -1ULL;
2107                 break;
2108         case MSR_IA32_VMX_VMCS_ENUM:
2109                 *pdata = 0x1f;
2110                 break;
2111         case MSR_IA32_VMX_PROCBASED_CTLS2:
2112                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2113                                         nested_vmx_secondary_ctls_high);
2114                 break;
2115         case MSR_IA32_VMX_EPT_VPID_CAP:
2116                 /* Currently, no nested ept or nested vpid */
2117                 *pdata = 0;
2118                 break;
2119         default:
2120                 return 0;
2121         }
2122
2123         return 1;
2124 }
2125
2126 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2127 {
2128         if (!nested_vmx_allowed(vcpu))
2129                 return 0;
2130
2131         if (msr_index == MSR_IA32_FEATURE_CONTROL)
2132                 /* TODO: the right thing. */
2133                 return 1;
2134         /*
2135          * No need to treat VMX capability MSRs specially: If we don't handle
2136          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2137          */
2138         return 0;
2139 }
2140
2141 /*
2142  * Reads an msr value (of 'msr_index') into 'pdata'.
2143  * Returns 0 on success, non-0 otherwise.
2144  * Assumes vcpu_load() was already called.
2145  */
2146 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2147 {
2148         u64 data;
2149         struct shared_msr_entry *msr;
2150
2151         if (!pdata) {
2152                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2153                 return -EINVAL;
2154         }
2155
2156         switch (msr_index) {
2157 #ifdef CONFIG_X86_64
2158         case MSR_FS_BASE:
2159                 data = vmcs_readl(GUEST_FS_BASE);
2160                 break;
2161         case MSR_GS_BASE:
2162                 data = vmcs_readl(GUEST_GS_BASE);
2163                 break;
2164         case MSR_KERNEL_GS_BASE:
2165                 vmx_load_host_state(to_vmx(vcpu));
2166                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2167                 break;
2168 #endif
2169         case MSR_EFER:
2170                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2171         case MSR_IA32_TSC:
2172                 data = guest_read_tsc();
2173                 break;
2174         case MSR_IA32_SYSENTER_CS:
2175                 data = vmcs_read32(GUEST_SYSENTER_CS);
2176                 break;
2177         case MSR_IA32_SYSENTER_EIP:
2178                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2179                 break;
2180         case MSR_IA32_SYSENTER_ESP:
2181                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2182                 break;
2183         case MSR_TSC_AUX:
2184                 if (!to_vmx(vcpu)->rdtscp_enabled)
2185                         return 1;
2186                 /* Otherwise falls through */
2187         default:
2188                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2189                         return 0;
2190                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2191                 if (msr) {
2192                         data = msr->data;
2193                         break;
2194                 }
2195                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2196         }
2197
2198         *pdata = data;
2199         return 0;
2200 }
2201
2202 /*
2203  * Writes msr value into into the appropriate "register".
2204  * Returns 0 on success, non-0 otherwise.
2205  * Assumes vcpu_load() was already called.
2206  */
2207 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2208 {
2209         struct vcpu_vmx *vmx = to_vmx(vcpu);
2210         struct shared_msr_entry *msr;
2211         int ret = 0;
2212
2213         switch (msr_index) {
2214         case MSR_EFER:
2215                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2216                 break;
2217 #ifdef CONFIG_X86_64
2218         case MSR_FS_BASE:
2219                 vmx_segment_cache_clear(vmx);
2220                 vmcs_writel(GUEST_FS_BASE, data);
2221                 break;
2222         case MSR_GS_BASE:
2223                 vmx_segment_cache_clear(vmx);
2224                 vmcs_writel(GUEST_GS_BASE, data);
2225                 break;
2226         case MSR_KERNEL_GS_BASE:
2227                 vmx_load_host_state(vmx);
2228                 vmx->msr_guest_kernel_gs_base = data;
2229                 break;
2230 #endif
2231         case MSR_IA32_SYSENTER_CS:
2232                 vmcs_write32(GUEST_SYSENTER_CS, data);
2233                 break;
2234         case MSR_IA32_SYSENTER_EIP:
2235                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2236                 break;
2237         case MSR_IA32_SYSENTER_ESP:
2238                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2239                 break;
2240         case MSR_IA32_TSC:
2241                 kvm_write_tsc(vcpu, data);
2242                 break;
2243         case MSR_IA32_CR_PAT:
2244                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2245                         vmcs_write64(GUEST_IA32_PAT, data);
2246                         vcpu->arch.pat = data;
2247                         break;
2248                 }
2249                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2250                 break;
2251         case MSR_TSC_AUX:
2252                 if (!vmx->rdtscp_enabled)
2253                         return 1;
2254                 /* Check reserved bit, higher 32 bits should be zero */
2255                 if ((data >> 32) != 0)
2256                         return 1;
2257                 /* Otherwise falls through */
2258         default:
2259                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2260                         break;
2261                 msr = find_msr_entry(vmx, msr_index);
2262                 if (msr) {
2263                         msr->data = data;
2264                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2265                                 preempt_disable();
2266                                 kvm_set_shared_msr(msr->index, msr->data,
2267                                                    msr->mask);
2268                                 preempt_enable();
2269                         }
2270                         break;
2271                 }
2272                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2273         }
2274
2275         return ret;
2276 }
2277
2278 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2279 {
2280         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2281         switch (reg) {
2282         case VCPU_REGS_RSP:
2283                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2284                 break;
2285         case VCPU_REGS_RIP:
2286                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2287                 break;
2288         case VCPU_EXREG_PDPTR:
2289                 if (enable_ept)
2290                         ept_save_pdptrs(vcpu);
2291                 break;
2292         default:
2293                 break;
2294         }
2295 }
2296
2297 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2298 {
2299         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2300                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2301         else
2302                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2303
2304         update_exception_bitmap(vcpu);
2305 }
2306
2307 static __init int cpu_has_kvm_support(void)
2308 {
2309         return cpu_has_vmx();
2310 }
2311
2312 static __init int vmx_disabled_by_bios(void)
2313 {
2314         u64 msr;
2315
2316         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2317         if (msr & FEATURE_CONTROL_LOCKED) {
2318                 /* launched w/ TXT and VMX disabled */
2319                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2320                         && tboot_enabled())
2321                         return 1;
2322                 /* launched w/o TXT and VMX only enabled w/ TXT */
2323                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2324                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2325                         && !tboot_enabled()) {
2326                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2327                                 "activate TXT before enabling KVM\n");
2328                         return 1;
2329                 }
2330                 /* launched w/o TXT and VMX disabled */
2331                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2332                         && !tboot_enabled())
2333                         return 1;
2334         }
2335
2336         return 0;
2337 }
2338
2339 static void kvm_cpu_vmxon(u64 addr)
2340 {
2341         asm volatile (ASM_VMX_VMXON_RAX
2342                         : : "a"(&addr), "m"(addr)
2343                         : "memory", "cc");
2344 }
2345
2346 static int hardware_enable(void *garbage)
2347 {
2348         int cpu = raw_smp_processor_id();
2349         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2350         u64 old, test_bits;
2351
2352         if (read_cr4() & X86_CR4_VMXE)
2353                 return -EBUSY;
2354
2355         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2356         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2357
2358         test_bits = FEATURE_CONTROL_LOCKED;
2359         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2360         if (tboot_enabled())
2361                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2362
2363         if ((old & test_bits) != test_bits) {
2364                 /* enable and lock */
2365                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2366         }
2367         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2368
2369         if (vmm_exclusive) {
2370                 kvm_cpu_vmxon(phys_addr);
2371                 ept_sync_global();
2372         }
2373
2374         store_gdt(&__get_cpu_var(host_gdt));
2375
2376         return 0;
2377 }
2378
2379 static void vmclear_local_loaded_vmcss(void)
2380 {
2381         int cpu = raw_smp_processor_id();
2382         struct loaded_vmcs *v, *n;
2383
2384         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2385                                  loaded_vmcss_on_cpu_link)
2386                 __loaded_vmcs_clear(v);
2387 }
2388
2389
2390 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2391  * tricks.
2392  */
2393 static void kvm_cpu_vmxoff(void)
2394 {
2395         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2396 }
2397
2398 static void hardware_disable(void *garbage)
2399 {
2400         if (vmm_exclusive) {
2401                 vmclear_local_loaded_vmcss();
2402                 kvm_cpu_vmxoff();
2403         }
2404         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2405 }
2406
2407 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2408                                       u32 msr, u32 *result)
2409 {
2410         u32 vmx_msr_low, vmx_msr_high;
2411         u32 ctl = ctl_min | ctl_opt;
2412
2413         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2414
2415         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2416         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2417
2418         /* Ensure minimum (required) set of control bits are supported. */
2419         if (ctl_min & ~ctl)
2420                 return -EIO;
2421
2422         *result = ctl;
2423         return 0;
2424 }
2425
2426 static __init bool allow_1_setting(u32 msr, u32 ctl)
2427 {
2428         u32 vmx_msr_low, vmx_msr_high;
2429
2430         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2431         return vmx_msr_high & ctl;
2432 }
2433
2434 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2435 {
2436         u32 vmx_msr_low, vmx_msr_high;
2437         u32 min, opt, min2, opt2;
2438         u32 _pin_based_exec_control = 0;
2439         u32 _cpu_based_exec_control = 0;
2440         u32 _cpu_based_2nd_exec_control = 0;
2441         u32 _vmexit_control = 0;
2442         u32 _vmentry_control = 0;
2443
2444         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2445         opt = PIN_BASED_VIRTUAL_NMIS;
2446         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2447                                 &_pin_based_exec_control) < 0)
2448                 return -EIO;
2449
2450         min = CPU_BASED_HLT_EXITING |
2451 #ifdef CONFIG_X86_64
2452               CPU_BASED_CR8_LOAD_EXITING |
2453               CPU_BASED_CR8_STORE_EXITING |
2454 #endif
2455               CPU_BASED_CR3_LOAD_EXITING |
2456               CPU_BASED_CR3_STORE_EXITING |
2457               CPU_BASED_USE_IO_BITMAPS |
2458               CPU_BASED_MOV_DR_EXITING |
2459               CPU_BASED_USE_TSC_OFFSETING |
2460               CPU_BASED_MWAIT_EXITING |
2461               CPU_BASED_MONITOR_EXITING |
2462               CPU_BASED_INVLPG_EXITING |
2463               CPU_BASED_RDPMC_EXITING;
2464
2465         opt = CPU_BASED_TPR_SHADOW |
2466               CPU_BASED_USE_MSR_BITMAPS |
2467               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2468         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2469                                 &_cpu_based_exec_control) < 0)
2470                 return -EIO;
2471 #ifdef CONFIG_X86_64
2472         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2473                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2474                                            ~CPU_BASED_CR8_STORE_EXITING;
2475 #endif
2476         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2477                 min2 = 0;
2478                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2479                         SECONDARY_EXEC_WBINVD_EXITING |
2480                         SECONDARY_EXEC_ENABLE_VPID |
2481                         SECONDARY_EXEC_ENABLE_EPT |
2482                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2483                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2484                         SECONDARY_EXEC_RDTSCP |
2485                         SECONDARY_EXEC_ENABLE_INVPCID;
2486                 if (adjust_vmx_controls(min2, opt2,
2487                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2488                                         &_cpu_based_2nd_exec_control) < 0)
2489                         return -EIO;
2490         }
2491 #ifndef CONFIG_X86_64
2492         if (!(_cpu_based_2nd_exec_control &
2493                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2494                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2495 #endif
2496         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2497                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2498                    enabled */
2499                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2500                                              CPU_BASED_CR3_STORE_EXITING |
2501                                              CPU_BASED_INVLPG_EXITING);
2502                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2503                       vmx_capability.ept, vmx_capability.vpid);
2504         }
2505
2506         min = 0;
2507 #ifdef CONFIG_X86_64
2508         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2509 #endif
2510         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2511         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2512                                 &_vmexit_control) < 0)
2513                 return -EIO;
2514
2515         min = 0;
2516         opt = VM_ENTRY_LOAD_IA32_PAT;
2517         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2518                                 &_vmentry_control) < 0)
2519                 return -EIO;
2520
2521         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2522
2523         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2524         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2525                 return -EIO;
2526
2527 #ifdef CONFIG_X86_64
2528         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2529         if (vmx_msr_high & (1u<<16))
2530                 return -EIO;
2531 #endif
2532
2533         /* Require Write-Back (WB) memory type for VMCS accesses. */
2534         if (((vmx_msr_high >> 18) & 15) != 6)
2535                 return -EIO;
2536
2537         vmcs_conf->size = vmx_msr_high & 0x1fff;
2538         vmcs_conf->order = get_order(vmcs_config.size);
2539         vmcs_conf->revision_id = vmx_msr_low;
2540
2541         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2542         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2543         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2544         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2545         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2546
2547         cpu_has_load_ia32_efer =
2548                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2549                                 VM_ENTRY_LOAD_IA32_EFER)
2550                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2551                                    VM_EXIT_LOAD_IA32_EFER);
2552
2553         cpu_has_load_perf_global_ctrl =
2554                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2555                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2556                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2557                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2558
2559         /*
2560          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2561          * but due to arrata below it can't be used. Workaround is to use
2562          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2563          *
2564          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2565          *
2566          * AAK155             (model 26)
2567          * AAP115             (model 30)
2568          * AAT100             (model 37)
2569          * BC86,AAY89,BD102   (model 44)
2570          * BA97               (model 46)
2571          *
2572          */
2573         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2574                 switch (boot_cpu_data.x86_model) {
2575                 case 26:
2576                 case 30:
2577                 case 37:
2578                 case 44:
2579                 case 46:
2580                         cpu_has_load_perf_global_ctrl = false;
2581                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2582                                         "does not work properly. Using workaround\n");
2583                         break;
2584                 default:
2585                         break;
2586                 }
2587         }
2588
2589         return 0;
2590 }
2591
2592 static struct vmcs *alloc_vmcs_cpu(int cpu)
2593 {
2594         int node = cpu_to_node(cpu);
2595         struct page *pages;
2596         struct vmcs *vmcs;
2597
2598         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2599         if (!pages)
2600                 return NULL;
2601         vmcs = page_address(pages);
2602         memset(vmcs, 0, vmcs_config.size);
2603         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2604         return vmcs;
2605 }
2606
2607 static struct vmcs *alloc_vmcs(void)
2608 {
2609         return alloc_vmcs_cpu(raw_smp_processor_id());
2610 }
2611
2612 static void free_vmcs(struct vmcs *vmcs)
2613 {
2614         free_pages((unsigned long)vmcs, vmcs_config.order);
2615 }
2616
2617 /*
2618  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2619  */
2620 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2621 {
2622         if (!loaded_vmcs->vmcs)
2623                 return;
2624         loaded_vmcs_clear(loaded_vmcs);
2625         free_vmcs(loaded_vmcs->vmcs);
2626         loaded_vmcs->vmcs = NULL;
2627 }
2628
2629 static void free_kvm_area(void)
2630 {
2631         int cpu;
2632
2633         for_each_possible_cpu(cpu) {
2634                 free_vmcs(per_cpu(vmxarea, cpu));
2635                 per_cpu(vmxarea, cpu) = NULL;
2636         }
2637 }
2638
2639 static __init int alloc_kvm_area(void)
2640 {
2641         int cpu;
2642
2643         for_each_possible_cpu(cpu) {
2644                 struct vmcs *vmcs;
2645
2646                 vmcs = alloc_vmcs_cpu(cpu);
2647                 if (!vmcs) {
2648                         free_kvm_area();
2649                         return -ENOMEM;
2650                 }
2651
2652                 per_cpu(vmxarea, cpu) = vmcs;
2653         }
2654         return 0;
2655 }
2656
2657 static __init int hardware_setup(void)
2658 {
2659         if (setup_vmcs_config(&vmcs_config) < 0)
2660                 return -EIO;
2661
2662         if (boot_cpu_has(X86_FEATURE_NX))
2663                 kvm_enable_efer_bits(EFER_NX);
2664
2665         if (!cpu_has_vmx_vpid())
2666                 enable_vpid = 0;
2667
2668         if (!cpu_has_vmx_ept() ||
2669             !cpu_has_vmx_ept_4levels()) {
2670                 enable_ept = 0;
2671                 enable_unrestricted_guest = 0;
2672                 enable_ept_ad_bits = 0;
2673         }
2674
2675         if (!cpu_has_vmx_ept_ad_bits())
2676                 enable_ept_ad_bits = 0;
2677
2678         if (!cpu_has_vmx_unrestricted_guest())
2679                 enable_unrestricted_guest = 0;
2680
2681         if (!cpu_has_vmx_flexpriority())
2682                 flexpriority_enabled = 0;
2683
2684         if (!cpu_has_vmx_tpr_shadow())
2685                 kvm_x86_ops->update_cr8_intercept = NULL;
2686
2687         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2688                 kvm_disable_largepages();
2689
2690         if (!cpu_has_vmx_ple())
2691                 ple_gap = 0;
2692
2693         if (nested)
2694                 nested_vmx_setup_ctls_msrs();
2695
2696         return alloc_kvm_area();
2697 }
2698
2699 static __exit void hardware_unsetup(void)
2700 {
2701         free_kvm_area();
2702 }
2703
2704 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2705 {
2706         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2707
2708         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2709                 vmcs_write16(sf->selector, save->selector);
2710                 vmcs_writel(sf->base, save->base);
2711                 vmcs_write32(sf->limit, save->limit);
2712                 vmcs_write32(sf->ar_bytes, save->ar);
2713         } else {
2714                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2715                         << AR_DPL_SHIFT;
2716                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2717         }
2718 }
2719
2720 static void enter_pmode(struct kvm_vcpu *vcpu)
2721 {
2722         unsigned long flags;
2723         struct vcpu_vmx *vmx = to_vmx(vcpu);
2724
2725         vmx->emulation_required = 1;
2726         vmx->rmode.vm86_active = 0;
2727
2728         vmx_segment_cache_clear(vmx);
2729
2730         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2731         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2732         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2733         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2734
2735         flags = vmcs_readl(GUEST_RFLAGS);
2736         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2737         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2738         vmcs_writel(GUEST_RFLAGS, flags);
2739
2740         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2741                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2742
2743         update_exception_bitmap(vcpu);
2744
2745         if (emulate_invalid_guest_state)
2746                 return;
2747
2748         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2749         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2750         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2751         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2752
2753         vmx_segment_cache_clear(vmx);
2754
2755         vmcs_write16(GUEST_SS_SELECTOR, 0);
2756         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2757
2758         vmcs_write16(GUEST_CS_SELECTOR,
2759                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2760         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2761 }
2762
2763 static gva_t rmode_tss_base(struct kvm *kvm)
2764 {
2765         if (!kvm->arch.tss_addr) {
2766                 struct kvm_memslots *slots;
2767                 struct kvm_memory_slot *slot;
2768                 gfn_t base_gfn;
2769
2770                 slots = kvm_memslots(kvm);
2771                 slot = id_to_memslot(slots, 0);
2772                 base_gfn = slot->base_gfn + slot->npages - 3;
2773
2774                 return base_gfn << PAGE_SHIFT;
2775         }
2776         return kvm->arch.tss_addr;
2777 }
2778
2779 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2780 {
2781         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2782
2783         save->selector = vmcs_read16(sf->selector);
2784         save->base = vmcs_readl(sf->base);
2785         save->limit = vmcs_read32(sf->limit);
2786         save->ar = vmcs_read32(sf->ar_bytes);
2787         vmcs_write16(sf->selector, save->base >> 4);
2788         vmcs_write32(sf->base, save->base & 0xffff0);
2789         vmcs_write32(sf->limit, 0xffff);
2790         vmcs_write32(sf->ar_bytes, 0xf3);
2791         if (save->base & 0xf)
2792                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2793                             " aligned when entering protected mode (seg=%d)",
2794                             seg);
2795 }
2796
2797 static void enter_rmode(struct kvm_vcpu *vcpu)
2798 {
2799         unsigned long flags;
2800         struct vcpu_vmx *vmx = to_vmx(vcpu);
2801         struct kvm_segment var;
2802
2803         if (enable_unrestricted_guest)
2804                 return;
2805
2806         vmx->emulation_required = 1;
2807         vmx->rmode.vm86_active = 1;
2808
2809         /*
2810          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2811          * vcpu. Call it here with phys address pointing 16M below 4G.
2812          */
2813         if (!vcpu->kvm->arch.tss_addr) {
2814                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2815                              "called before entering vcpu\n");
2816                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2817                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2818                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2819         }
2820
2821         vmx_segment_cache_clear(vmx);
2822
2823         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2824         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2825         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2826
2827         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2828         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2829
2830         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2831         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2832
2833         flags = vmcs_readl(GUEST_RFLAGS);
2834         vmx->rmode.save_rflags = flags;
2835
2836         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2837
2838         vmcs_writel(GUEST_RFLAGS, flags);
2839         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2840         update_exception_bitmap(vcpu);
2841
2842         if (emulate_invalid_guest_state)
2843                 goto continue_rmode;
2844
2845         vmx_get_segment(vcpu, &var, VCPU_SREG_SS);
2846         vmx_set_segment(vcpu, &var, VCPU_SREG_SS);
2847
2848         vmx_get_segment(vcpu, &var, VCPU_SREG_CS);
2849         vmx_set_segment(vcpu, &var, VCPU_SREG_CS);
2850
2851         vmx_get_segment(vcpu, &var, VCPU_SREG_ES);
2852         vmx_set_segment(vcpu, &var, VCPU_SREG_ES);
2853
2854         vmx_get_segment(vcpu, &var, VCPU_SREG_DS);
2855         vmx_set_segment(vcpu, &var, VCPU_SREG_DS);
2856
2857         vmx_get_segment(vcpu, &var, VCPU_SREG_GS);
2858         vmx_set_segment(vcpu, &var, VCPU_SREG_GS);
2859
2860         vmx_get_segment(vcpu, &var, VCPU_SREG_FS);
2861         vmx_set_segment(vcpu, &var, VCPU_SREG_FS);
2862
2863 continue_rmode:
2864         kvm_mmu_reset_context(vcpu);
2865 }
2866
2867 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2868 {
2869         struct vcpu_vmx *vmx = to_vmx(vcpu);
2870         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2871
2872         if (!msr)
2873                 return;
2874
2875         /*
2876          * Force kernel_gs_base reloading before EFER changes, as control
2877          * of this msr depends on is_long_mode().
2878          */
2879         vmx_load_host_state(to_vmx(vcpu));
2880         vcpu->arch.efer = efer;
2881         if (efer & EFER_LMA) {
2882                 vmcs_write32(VM_ENTRY_CONTROLS,
2883                              vmcs_read32(VM_ENTRY_CONTROLS) |
2884                              VM_ENTRY_IA32E_MODE);
2885                 msr->data = efer;
2886         } else {
2887                 vmcs_write32(VM_ENTRY_CONTROLS,
2888                              vmcs_read32(VM_ENTRY_CONTROLS) &
2889                              ~VM_ENTRY_IA32E_MODE);
2890
2891                 msr->data = efer & ~EFER_LME;
2892         }
2893         setup_msrs(vmx);
2894 }
2895
2896 #ifdef CONFIG_X86_64
2897
2898 static void enter_lmode(struct kvm_vcpu *vcpu)
2899 {
2900         u32 guest_tr_ar;
2901
2902         vmx_segment_cache_clear(to_vmx(vcpu));
2903
2904         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2905         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2906                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2907                                      __func__);
2908                 vmcs_write32(GUEST_TR_AR_BYTES,
2909                              (guest_tr_ar & ~AR_TYPE_MASK)
2910                              | AR_TYPE_BUSY_64_TSS);
2911         }
2912         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2913 }
2914
2915 static void exit_lmode(struct kvm_vcpu *vcpu)
2916 {
2917         vmcs_write32(VM_ENTRY_CONTROLS,
2918                      vmcs_read32(VM_ENTRY_CONTROLS)
2919                      & ~VM_ENTRY_IA32E_MODE);
2920         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2921 }
2922
2923 #endif
2924
2925 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2926 {
2927         vpid_sync_context(to_vmx(vcpu));
2928         if (enable_ept) {
2929                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2930                         return;
2931                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2932         }
2933 }
2934
2935 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2936 {
2937         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2938
2939         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2940         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2941 }
2942
2943 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2944 {
2945         if (enable_ept && is_paging(vcpu))
2946                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2947         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2948 }
2949
2950 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2951 {
2952         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2953
2954         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2955         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2956 }
2957
2958 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2959 {
2960         if (!test_bit(VCPU_EXREG_PDPTR,
2961                       (unsigned long *)&vcpu->arch.regs_dirty))
2962                 return;
2963
2964         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2965                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2966                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2967                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2968                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2969         }
2970 }
2971
2972 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2973 {
2974         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2975                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2976                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2977                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2978                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2979         }
2980
2981         __set_bit(VCPU_EXREG_PDPTR,
2982                   (unsigned long *)&vcpu->arch.regs_avail);
2983         __set_bit(VCPU_EXREG_PDPTR,
2984                   (unsigned long *)&vcpu->arch.regs_dirty);
2985 }
2986
2987 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2988
2989 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2990                                         unsigned long cr0,
2991                                         struct kvm_vcpu *vcpu)
2992 {
2993         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2994                 vmx_decache_cr3(vcpu);
2995         if (!(cr0 & X86_CR0_PG)) {
2996                 /* From paging/starting to nonpaging */
2997                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2998                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2999                              (CPU_BASED_CR3_LOAD_EXITING |
3000                               CPU_BASED_CR3_STORE_EXITING));
3001                 vcpu->arch.cr0 = cr0;
3002                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3003         } else if (!is_paging(vcpu)) {
3004                 /* From nonpaging to paging */
3005                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3006                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3007                              ~(CPU_BASED_CR3_LOAD_EXITING |
3008                                CPU_BASED_CR3_STORE_EXITING));
3009                 vcpu->arch.cr0 = cr0;
3010                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3011         }
3012
3013         if (!(cr0 & X86_CR0_WP))
3014                 *hw_cr0 &= ~X86_CR0_WP;
3015 }
3016
3017 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3018 {
3019         struct vcpu_vmx *vmx = to_vmx(vcpu);
3020         unsigned long hw_cr0;
3021
3022         if (enable_unrestricted_guest)
3023                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
3024                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3025         else
3026                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
3027
3028         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3029                 enter_pmode(vcpu);
3030
3031         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3032                 enter_rmode(vcpu);
3033
3034 #ifdef CONFIG_X86_64
3035         if (vcpu->arch.efer & EFER_LME) {
3036                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3037                         enter_lmode(vcpu);
3038                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3039                         exit_lmode(vcpu);
3040         }
3041 #endif
3042
3043         if (enable_ept)
3044                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3045
3046         if (!vcpu->fpu_active)
3047                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3048
3049         vmcs_writel(CR0_READ_SHADOW, cr0);
3050         vmcs_writel(GUEST_CR0, hw_cr0);
3051         vcpu->arch.cr0 = cr0;
3052         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3053 }
3054
3055 static u64 construct_eptp(unsigned long root_hpa)
3056 {
3057         u64 eptp;
3058
3059         /* TODO write the value reading from MSR */
3060         eptp = VMX_EPT_DEFAULT_MT |
3061                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3062         if (enable_ept_ad_bits)
3063                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3064         eptp |= (root_hpa & PAGE_MASK);
3065
3066         return eptp;
3067 }
3068
3069 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3070 {
3071         unsigned long guest_cr3;
3072         u64 eptp;
3073
3074         guest_cr3 = cr3;
3075         if (enable_ept) {
3076                 eptp = construct_eptp(cr3);
3077                 vmcs_write64(EPT_POINTER, eptp);
3078                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3079                         vcpu->kvm->arch.ept_identity_map_addr;
3080                 ept_load_pdptrs(vcpu);
3081         }
3082
3083         vmx_flush_tlb(vcpu);
3084         vmcs_writel(GUEST_CR3, guest_cr3);
3085 }
3086
3087 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3088 {
3089         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3090                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3091
3092         if (cr4 & X86_CR4_VMXE) {
3093                 /*
3094                  * To use VMXON (and later other VMX instructions), a guest
3095                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3096                  * So basically the check on whether to allow nested VMX
3097                  * is here.
3098                  */
3099                 if (!nested_vmx_allowed(vcpu))
3100                         return 1;
3101         } else if (to_vmx(vcpu)->nested.vmxon)
3102                 return 1;
3103
3104         vcpu->arch.cr4 = cr4;
3105         if (enable_ept) {
3106                 if (!is_paging(vcpu)) {
3107                         hw_cr4 &= ~X86_CR4_PAE;
3108                         hw_cr4 |= X86_CR4_PSE;
3109                 } else if (!(cr4 & X86_CR4_PAE)) {
3110                         hw_cr4 &= ~X86_CR4_PAE;
3111                 }
3112         }
3113
3114         vmcs_writel(CR4_READ_SHADOW, cr4);
3115         vmcs_writel(GUEST_CR4, hw_cr4);
3116         return 0;
3117 }
3118
3119 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3120                             struct kvm_segment *var, int seg)
3121 {
3122         struct vcpu_vmx *vmx = to_vmx(vcpu);
3123         struct kvm_save_segment *save;
3124         u32 ar;
3125
3126         if (vmx->rmode.vm86_active
3127             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3128                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3129                 || seg == VCPU_SREG_GS)
3130             && !emulate_invalid_guest_state) {
3131                 switch (seg) {
3132                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3133                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3134                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3135                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3136                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3137                 default: BUG();
3138                 }
3139                 var->selector = save->selector;
3140                 var->base = save->base;
3141                 var->limit = save->limit;
3142                 ar = save->ar;
3143                 if (seg == VCPU_SREG_TR
3144                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3145                         goto use_saved_rmode_seg;
3146         }
3147         var->base = vmx_read_guest_seg_base(vmx, seg);
3148         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3149         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3150         ar = vmx_read_guest_seg_ar(vmx, seg);
3151 use_saved_rmode_seg:
3152         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3153                 ar = 0;
3154         var->type = ar & 15;
3155         var->s = (ar >> 4) & 1;
3156         var->dpl = (ar >> 5) & 3;
3157         var->present = (ar >> 7) & 1;
3158         var->avl = (ar >> 12) & 1;
3159         var->l = (ar >> 13) & 1;
3160         var->db = (ar >> 14) & 1;
3161         var->g = (ar >> 15) & 1;
3162         var->unusable = (ar >> 16) & 1;
3163 }
3164
3165 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3166 {
3167         struct kvm_segment s;
3168
3169         if (to_vmx(vcpu)->rmode.vm86_active) {
3170                 vmx_get_segment(vcpu, &s, seg);
3171                 return s.base;
3172         }
3173         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3174 }
3175
3176 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3177 {
3178         if (!is_protmode(vcpu))
3179                 return 0;
3180
3181         if (!is_long_mode(vcpu)
3182             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3183                 return 3;
3184
3185         return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3186 }
3187
3188 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3189 {
3190         struct vcpu_vmx *vmx = to_vmx(vcpu);
3191
3192         /*
3193          * If we enter real mode with cs.sel & 3 != 0, the normal CPL calculations
3194          * fail; use the cache instead.
3195          */
3196         if (unlikely(vmx->emulation_required && emulate_invalid_guest_state)) {
3197                 return vmx->cpl;
3198         }
3199
3200         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3201                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3202                 vmx->cpl = __vmx_get_cpl(vcpu);
3203         }
3204
3205         return vmx->cpl;
3206 }
3207
3208
3209 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3210 {
3211         u32 ar;
3212
3213         if (var->unusable || !var->present)
3214                 ar = 1 << 16;
3215         else {
3216                 ar = var->type & 15;
3217                 ar |= (var->s & 1) << 4;
3218                 ar |= (var->dpl & 3) << 5;
3219                 ar |= (var->present & 1) << 7;
3220                 ar |= (var->avl & 1) << 12;
3221                 ar |= (var->l & 1) << 13;
3222                 ar |= (var->db & 1) << 14;
3223                 ar |= (var->g & 1) << 15;
3224         }
3225
3226         return ar;
3227 }
3228
3229 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3230                             struct kvm_segment *var, int seg)
3231 {
3232         struct vcpu_vmx *vmx = to_vmx(vcpu);
3233         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3234         u32 ar;
3235
3236         vmx_segment_cache_clear(vmx);
3237
3238         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3239                 vmcs_write16(sf->selector, var->selector);
3240                 vmx->rmode.tr.selector = var->selector;
3241                 vmx->rmode.tr.base = var->base;
3242                 vmx->rmode.tr.limit = var->limit;
3243                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3244                 return;
3245         }
3246         vmcs_writel(sf->base, var->base);
3247         vmcs_write32(sf->limit, var->limit);
3248         vmcs_write16(sf->selector, var->selector);
3249         if (vmx->rmode.vm86_active && var->s) {
3250                 /*
3251                  * Hack real-mode segments into vm86 compatibility.
3252                  */
3253                 if (var->base == 0xffff0000 && var->selector == 0xf000)
3254                         vmcs_writel(sf->base, 0xf0000);
3255                 ar = 0xf3;
3256         } else
3257                 ar = vmx_segment_access_rights(var);
3258
3259         /*
3260          *   Fix the "Accessed" bit in AR field of segment registers for older
3261          * qemu binaries.
3262          *   IA32 arch specifies that at the time of processor reset the
3263          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3264          * is setting it to 0 in the usedland code. This causes invalid guest
3265          * state vmexit when "unrestricted guest" mode is turned on.
3266          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3267          * tree. Newer qemu binaries with that qemu fix would not need this
3268          * kvm hack.
3269          */
3270         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3271                 ar |= 0x1; /* Accessed */
3272
3273         vmcs_write32(sf->ar_bytes, ar);
3274         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3275
3276         /*
3277          * Fix segments for real mode guest in hosts that don't have
3278          * "unrestricted_mode" or it was disabled.
3279          * This is done to allow migration of the guests from hosts with
3280          * unrestricted guest like Westmere to older host that don't have
3281          * unrestricted guest like Nehelem.
3282          */
3283         if (!enable_unrestricted_guest && vmx->rmode.vm86_active) {
3284                 switch (seg) {
3285                 case VCPU_SREG_CS:
3286                         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
3287                         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
3288                         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
3289                                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
3290                         vmcs_write16(GUEST_CS_SELECTOR,
3291                                      vmcs_readl(GUEST_CS_BASE) >> 4);
3292                         break;
3293                 case VCPU_SREG_ES:
3294                         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
3295                         break;
3296                 case VCPU_SREG_DS:
3297                         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
3298                         break;
3299                 case VCPU_SREG_GS:
3300                         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
3301                         break;
3302                 case VCPU_SREG_FS:
3303                         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
3304                         break;
3305                 case VCPU_SREG_SS:
3306                         vmcs_write16(GUEST_SS_SELECTOR,
3307                                      vmcs_readl(GUEST_SS_BASE) >> 4);
3308                         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
3309                         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
3310                         break;
3311                 }
3312         }
3313 }
3314
3315 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3316 {
3317         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3318
3319         *db = (ar >> 14) & 1;
3320         *l = (ar >> 13) & 1;
3321 }
3322
3323 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3324 {
3325         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3326         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3327 }
3328
3329 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3330 {
3331         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3332         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3333 }
3334
3335 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3336 {
3337         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3338         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3339 }
3340
3341 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3342 {
3343         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3344         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3345 }
3346
3347 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3348 {
3349         struct kvm_segment var;
3350         u32 ar;
3351
3352         vmx_get_segment(vcpu, &var, seg);
3353         ar = vmx_segment_access_rights(&var);
3354
3355         if (var.base != (var.selector << 4))
3356                 return false;
3357         if (var.limit != 0xffff)
3358                 return false;
3359         if (ar != 0xf3)
3360                 return false;
3361
3362         return true;
3363 }
3364
3365 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3366 {
3367         struct kvm_segment cs;
3368         unsigned int cs_rpl;
3369
3370         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3371         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3372
3373         if (cs.unusable)
3374                 return false;
3375         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3376                 return false;
3377         if (!cs.s)
3378                 return false;
3379         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3380                 if (cs.dpl > cs_rpl)
3381                         return false;
3382         } else {
3383                 if (cs.dpl != cs_rpl)
3384                         return false;
3385         }
3386         if (!cs.present)
3387                 return false;
3388
3389         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3390         return true;
3391 }
3392
3393 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395         struct kvm_segment ss;
3396         unsigned int ss_rpl;
3397
3398         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3399         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3400
3401         if (ss.unusable)
3402                 return true;
3403         if (ss.type != 3 && ss.type != 7)
3404                 return false;
3405         if (!ss.s)
3406                 return false;
3407         if (ss.dpl != ss_rpl) /* DPL != RPL */
3408                 return false;
3409         if (!ss.present)
3410                 return false;
3411
3412         return true;
3413 }
3414
3415 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3416 {
3417         struct kvm_segment var;
3418         unsigned int rpl;
3419
3420         vmx_get_segment(vcpu, &var, seg);
3421         rpl = var.selector & SELECTOR_RPL_MASK;
3422
3423         if (var.unusable)
3424                 return true;
3425         if (!var.s)
3426                 return false;
3427         if (!var.present)
3428                 return false;
3429         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3430                 if (var.dpl < rpl) /* DPL < RPL */
3431                         return false;
3432         }
3433
3434         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3435          * rights flags
3436          */
3437         return true;
3438 }
3439
3440 static bool tr_valid(struct kvm_vcpu *vcpu)
3441 {
3442         struct kvm_segment tr;
3443
3444         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3445
3446         if (tr.unusable)
3447                 return false;
3448         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3449                 return false;
3450         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3451                 return false;
3452         if (!tr.present)
3453                 return false;
3454
3455         return true;
3456 }
3457
3458 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3459 {
3460         struct kvm_segment ldtr;
3461
3462         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3463
3464         if (ldtr.unusable)
3465                 return true;
3466         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3467                 return false;
3468         if (ldtr.type != 2)
3469                 return false;
3470         if (!ldtr.present)
3471                 return false;
3472
3473         return true;
3474 }
3475
3476 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3477 {
3478         struct kvm_segment cs, ss;
3479
3480         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3481         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3482
3483         return ((cs.selector & SELECTOR_RPL_MASK) ==
3484                  (ss.selector & SELECTOR_RPL_MASK));
3485 }
3486
3487 /*
3488  * Check if guest state is valid. Returns true if valid, false if
3489  * not.
3490  * We assume that registers are always usable
3491  */
3492 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3493 {
3494         /* real mode guest state checks */
3495         if (!is_protmode(vcpu)) {
3496                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3497                         return false;
3498                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3499                         return false;
3500                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3501                         return false;
3502                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3503                         return false;
3504                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3505                         return false;
3506                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3507                         return false;
3508         } else {
3509         /* protected mode guest state checks */
3510                 if (!cs_ss_rpl_check(vcpu))
3511                         return false;
3512                 if (!code_segment_valid(vcpu))
3513                         return false;
3514                 if (!stack_segment_valid(vcpu))
3515                         return false;
3516                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3517                         return false;
3518                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3519                         return false;
3520                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3521                         return false;
3522                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3523                         return false;
3524                 if (!tr_valid(vcpu))
3525                         return false;
3526                 if (!ldtr_valid(vcpu))
3527                         return false;
3528         }
3529         /* TODO:
3530          * - Add checks on RIP
3531          * - Add checks on RFLAGS
3532          */
3533
3534         return true;
3535 }
3536
3537 static int init_rmode_tss(struct kvm *kvm)
3538 {
3539         gfn_t fn;
3540         u16 data = 0;
3541         int r, idx, ret = 0;
3542
3543         idx = srcu_read_lock(&kvm->srcu);
3544         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3545         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3546         if (r < 0)
3547                 goto out;
3548         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3549         r = kvm_write_guest_page(kvm, fn++, &data,
3550                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3551         if (r < 0)
3552                 goto out;
3553         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3554         if (r < 0)
3555                 goto out;
3556         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3557         if (r < 0)
3558                 goto out;
3559         data = ~0;
3560         r = kvm_write_guest_page(kvm, fn, &data,
3561                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3562                                  sizeof(u8));
3563         if (r < 0)
3564                 goto out;
3565
3566         ret = 1;
3567 out:
3568         srcu_read_unlock(&kvm->srcu, idx);
3569         return ret;
3570 }
3571
3572 static int init_rmode_identity_map(struct kvm *kvm)
3573 {
3574         int i, idx, r, ret;
3575         pfn_t identity_map_pfn;
3576         u32 tmp;
3577
3578         if (!enable_ept)
3579                 return 1;
3580         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3581                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3582                         "haven't been allocated!\n");
3583                 return 0;
3584         }
3585         if (likely(kvm->arch.ept_identity_pagetable_done))
3586                 return 1;
3587         ret = 0;
3588         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3589         idx = srcu_read_lock(&kvm->srcu);
3590         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3591         if (r < 0)
3592                 goto out;
3593         /* Set up identity-mapping pagetable for EPT in real mode */
3594         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3595                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3596                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3597                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3598                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3599                 if (r < 0)
3600                         goto out;
3601         }
3602         kvm->arch.ept_identity_pagetable_done = true;
3603         ret = 1;
3604 out:
3605         srcu_read_unlock(&kvm->srcu, idx);
3606         return ret;
3607 }
3608
3609 static void seg_setup(int seg)
3610 {
3611         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3612         unsigned int ar;
3613
3614         vmcs_write16(sf->selector, 0);
3615         vmcs_writel(sf->base, 0);
3616         vmcs_write32(sf->limit, 0xffff);
3617         if (enable_unrestricted_guest) {
3618                 ar = 0x93;
3619                 if (seg == VCPU_SREG_CS)
3620                         ar |= 0x08; /* code segment */
3621         } else
3622                 ar = 0xf3;
3623
3624         vmcs_write32(sf->ar_bytes, ar);
3625 }
3626
3627 static int alloc_apic_access_page(struct kvm *kvm)
3628 {
3629         struct kvm_userspace_memory_region kvm_userspace_mem;
3630         int r = 0;
3631
3632         mutex_lock(&kvm->slots_lock);
3633         if (kvm->arch.apic_access_page)
3634                 goto out;
3635         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3636         kvm_userspace_mem.flags = 0;
3637         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3638         kvm_userspace_mem.memory_size = PAGE_SIZE;
3639         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3640         if (r)
3641                 goto out;
3642
3643         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3644 out:
3645         mutex_unlock(&kvm->slots_lock);
3646         return r;
3647 }
3648
3649 static int alloc_identity_pagetable(struct kvm *kvm)
3650 {
3651         struct kvm_userspace_memory_region kvm_userspace_mem;
3652         int r = 0;
3653
3654         mutex_lock(&kvm->slots_lock);
3655         if (kvm->arch.ept_identity_pagetable)
3656                 goto out;
3657         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3658         kvm_userspace_mem.flags = 0;
3659         kvm_userspace_mem.guest_phys_addr =
3660                 kvm->arch.ept_identity_map_addr;
3661         kvm_userspace_mem.memory_size = PAGE_SIZE;
3662         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3663         if (r)
3664                 goto out;
3665
3666         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3667                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3668 out:
3669         mutex_unlock(&kvm->slots_lock);
3670         return r;
3671 }
3672
3673 static void allocate_vpid(struct vcpu_vmx *vmx)
3674 {
3675         int vpid;
3676
3677         vmx->vpid = 0;
3678         if (!enable_vpid)
3679                 return;
3680         spin_lock(&vmx_vpid_lock);
3681         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3682         if (vpid < VMX_NR_VPIDS) {
3683                 vmx->vpid = vpid;
3684                 __set_bit(vpid, vmx_vpid_bitmap);
3685         }
3686         spin_unlock(&vmx_vpid_lock);
3687 }
3688
3689 static void free_vpid(struct vcpu_vmx *vmx)
3690 {
3691         if (!enable_vpid)
3692                 return;
3693         spin_lock(&vmx_vpid_lock);
3694         if (vmx->vpid != 0)
3695                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3696         spin_unlock(&vmx_vpid_lock);
3697 }
3698
3699 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3700 {
3701         int f = sizeof(unsigned long);
3702
3703         if (!cpu_has_vmx_msr_bitmap())
3704                 return;
3705
3706         /*
3707          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3708          * have the write-low and read-high bitmap offsets the wrong way round.
3709          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3710          */
3711         if (msr <= 0x1fff) {
3712                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3713                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3714         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3715                 msr &= 0x1fff;
3716                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3717                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3718         }
3719 }
3720
3721 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3722 {
3723         if (!longmode_only)
3724                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3725         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3726 }
3727
3728 /*
3729  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3730  * will not change in the lifetime of the guest.
3731  * Note that host-state that does change is set elsewhere. E.g., host-state
3732  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3733  */
3734 static void vmx_set_constant_host_state(void)
3735 {
3736         u32 low32, high32;
3737         unsigned long tmpl;
3738         struct desc_ptr dt;
3739
3740         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
3741         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3742         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3743
3744         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3745 #ifdef CONFIG_X86_64
3746         /*
3747          * Load null selectors, so we can avoid reloading them in
3748          * __vmx_load_host_state(), in case userspace uses the null selectors
3749          * too (the expected case).
3750          */
3751         vmcs_write16(HOST_DS_SELECTOR, 0);
3752         vmcs_write16(HOST_ES_SELECTOR, 0);
3753 #else
3754         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3755         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3756 #endif
3757         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3758         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3759
3760         native_store_idt(&dt);
3761         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3762
3763         asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3764         vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3765
3766         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3767         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3768         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3769         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3770
3771         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3772                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3773                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3774         }
3775 }
3776
3777 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3778 {
3779         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3780         if (enable_ept)
3781                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3782         if (is_guest_mode(&vmx->vcpu))
3783                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3784                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3785         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3786 }
3787
3788 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3789 {
3790         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3791         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3792                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3793 #ifdef CONFIG_X86_64
3794                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3795                                 CPU_BASED_CR8_LOAD_EXITING;
3796 #endif
3797         }
3798         if (!enable_ept)
3799                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3800                                 CPU_BASED_CR3_LOAD_EXITING  |
3801                                 CPU_BASED_INVLPG_EXITING;
3802         return exec_control;
3803 }
3804
3805 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3806 {
3807         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3808         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3809                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3810         if (vmx->vpid == 0)
3811                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3812         if (!enable_ept) {
3813                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3814                 enable_unrestricted_guest = 0;
3815                 /* Enable INVPCID for non-ept guests may cause performance regression. */
3816                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3817         }
3818         if (!enable_unrestricted_guest)
3819                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3820         if (!ple_gap)
3821                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3822         return exec_control;
3823 }
3824
3825 static void ept_set_mmio_spte_mask(void)
3826 {
3827         /*
3828          * EPT Misconfigurations can be generated if the value of bits 2:0
3829          * of an EPT paging-structure entry is 110b (write/execute).
3830          * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3831          * spte.
3832          */
3833         kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3834 }
3835
3836 /*
3837  * Sets up the vmcs for emulated real mode.
3838  */
3839 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3840 {
3841 #ifdef CONFIG_X86_64
3842         unsigned long a;
3843 #endif
3844         int i;
3845
3846         /* I/O */
3847         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3848         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3849
3850         if (cpu_has_vmx_msr_bitmap())
3851                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3852
3853         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3854
3855         /* Control */
3856         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3857                 vmcs_config.pin_based_exec_ctrl);
3858
3859         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3860
3861         if (cpu_has_secondary_exec_ctrls()) {
3862                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3863                                 vmx_secondary_exec_control(vmx));
3864         }
3865
3866         if (ple_gap) {
3867                 vmcs_write32(PLE_GAP, ple_gap);
3868                 vmcs_write32(PLE_WINDOW, ple_window);
3869         }
3870
3871         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3872         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3873         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3874
3875         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3876         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3877         vmx_set_constant_host_state();
3878 #ifdef CONFIG_X86_64
3879         rdmsrl(MSR_FS_BASE, a);
3880         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3881         rdmsrl(MSR_GS_BASE, a);
3882         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3883 #else
3884         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3885         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3886 #endif
3887
3888         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3889         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3890         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3891         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3892         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3893
3894         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3895                 u32 msr_low, msr_high;
3896                 u64 host_pat;
3897                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3898                 host_pat = msr_low | ((u64) msr_high << 32);
3899                 /* Write the default value follow host pat */
3900                 vmcs_write64(GUEST_IA32_PAT, host_pat);
3901                 /* Keep arch.pat sync with GUEST_IA32_PAT */
3902                 vmx->vcpu.arch.pat = host_pat;
3903         }
3904
3905         for (i = 0; i < NR_VMX_MSR; ++i) {
3906                 u32 index = vmx_msr_index[i];
3907                 u32 data_low, data_high;
3908                 int j = vmx->nmsrs;
3909
3910                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3911                         continue;
3912                 if (wrmsr_safe(index, data_low, data_high) < 0)
3913                         continue;
3914                 vmx->guest_msrs[j].index = i;
3915                 vmx->guest_msrs[j].data = 0;
3916                 vmx->guest_msrs[j].mask = -1ull;
3917                 ++vmx->nmsrs;
3918         }
3919
3920         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3921
3922         /* 22.2.1, 20.8.1 */
3923         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3924
3925         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3926         set_cr4_guest_host_mask(vmx);
3927
3928         kvm_write_tsc(&vmx->vcpu, 0);
3929
3930         return 0;
3931 }
3932
3933 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3934 {
3935         struct vcpu_vmx *vmx = to_vmx(vcpu);
3936         u64 msr;
3937         int ret;
3938
3939         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3940
3941         vmx->rmode.vm86_active = 0;
3942
3943         vmx->soft_vnmi_blocked = 0;
3944
3945         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3946         kvm_set_cr8(&vmx->vcpu, 0);
3947         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3948         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3949                 msr |= MSR_IA32_APICBASE_BSP;
3950         kvm_set_apic_base(&vmx->vcpu, msr);
3951
3952         ret = fx_init(&vmx->vcpu);
3953         if (ret != 0)
3954                 goto out;
3955
3956         vmx_segment_cache_clear(vmx);
3957
3958         seg_setup(VCPU_SREG_CS);
3959         /*
3960          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3961          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3962          */
3963         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3964                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3965                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3966         } else {
3967                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3968                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3969         }
3970
3971         seg_setup(VCPU_SREG_DS);
3972         seg_setup(VCPU_SREG_ES);
3973         seg_setup(VCPU_SREG_FS);
3974         seg_setup(VCPU_SREG_GS);
3975         seg_setup(VCPU_SREG_SS);
3976
3977         vmcs_write16(GUEST_TR_SELECTOR, 0);
3978         vmcs_writel(GUEST_TR_BASE, 0);
3979         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3980         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3981
3982         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3983         vmcs_writel(GUEST_LDTR_BASE, 0);
3984         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3985         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3986
3987         vmcs_write32(GUEST_SYSENTER_CS, 0);
3988         vmcs_writel(GUEST_SYSENTER_ESP, 0);
3989         vmcs_writel(GUEST_SYSENTER_EIP, 0);
3990
3991         vmcs_writel(GUEST_RFLAGS, 0x02);
3992         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3993                 kvm_rip_write(vcpu, 0xfff0);
3994         else
3995                 kvm_rip_write(vcpu, 0);
3996         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3997
3998         vmcs_writel(GUEST_DR7, 0x400);
3999
4000         vmcs_writel(GUEST_GDTR_BASE, 0);
4001         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4002
4003         vmcs_writel(GUEST_IDTR_BASE, 0);
4004         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4005
4006         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4007         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4008         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4009
4010         /* Special registers */
4011         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4012
4013         setup_msrs(vmx);
4014
4015         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4016
4017         if (cpu_has_vmx_tpr_shadow()) {
4018                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4019                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4020                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4021                                      __pa(vmx->vcpu.arch.apic->regs));
4022                 vmcs_write32(TPR_THRESHOLD, 0);
4023         }
4024
4025         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4026                 vmcs_write64(APIC_ACCESS_ADDR,
4027                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4028
4029         if (vmx->vpid != 0)
4030                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4031
4032         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4033         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4034         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4035         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4036         vmx_set_cr4(&vmx->vcpu, 0);
4037         vmx_set_efer(&vmx->vcpu, 0);
4038         vmx_fpu_activate(&vmx->vcpu);
4039         update_exception_bitmap(&vmx->vcpu);
4040
4041         vpid_sync_context(vmx);
4042
4043         ret = 0;
4044
4045         /* HACK: Don't enable emulation on guest boot/reset */
4046         vmx->emulation_required = 0;
4047
4048 out:
4049         return ret;
4050 }
4051
4052 /*
4053  * In nested virtualization, check if L1 asked to exit on external interrupts.
4054  * For most existing hypervisors, this will always return true.
4055  */
4056 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4057 {
4058         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4059                 PIN_BASED_EXT_INTR_MASK;
4060 }
4061
4062 static void enable_irq_window(struct kvm_vcpu *vcpu)
4063 {
4064         u32 cpu_based_vm_exec_control;
4065         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4066                 /*
4067                  * We get here if vmx_interrupt_allowed() said we can't
4068                  * inject to L1 now because L2 must run. Ask L2 to exit
4069                  * right after entry, so we can inject to L1 more promptly.
4070                  */
4071                 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
4072                 return;
4073         }
4074
4075         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4076         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4077         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4078 }
4079
4080 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4081 {
4082         u32 cpu_based_vm_exec_control;
4083
4084         if (!cpu_has_virtual_nmis()) {
4085                 enable_irq_window(vcpu);
4086                 return;
4087         }
4088
4089         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4090                 enable_irq_window(vcpu);
4091                 return;
4092         }
4093         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4094         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4095         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4096 }
4097
4098 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4099 {
4100         struct vcpu_vmx *vmx = to_vmx(vcpu);
4101         uint32_t intr;
4102         int irq = vcpu->arch.interrupt.nr;
4103
4104         trace_kvm_inj_virq(irq);
4105
4106         ++vcpu->stat.irq_injections;
4107         if (vmx->rmode.vm86_active) {
4108                 int inc_eip = 0;
4109                 if (vcpu->arch.interrupt.soft)
4110                         inc_eip = vcpu->arch.event_exit_inst_len;
4111                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4112                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4113                 return;
4114         }
4115         intr = irq | INTR_INFO_VALID_MASK;
4116         if (vcpu->arch.interrupt.soft) {
4117                 intr |= INTR_TYPE_SOFT_INTR;
4118                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4119                              vmx->vcpu.arch.event_exit_inst_len);
4120         } else
4121                 intr |= INTR_TYPE_EXT_INTR;
4122         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4123 }
4124
4125 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4126 {
4127         struct vcpu_vmx *vmx = to_vmx(vcpu);
4128
4129         if (is_guest_mode(vcpu))
4130                 return;
4131
4132         if (!cpu_has_virtual_nmis()) {
4133                 /*
4134                  * Tracking the NMI-blocked state in software is built upon
4135                  * finding the next open IRQ window. This, in turn, depends on
4136                  * well-behaving guests: They have to keep IRQs disabled at
4137                  * least as long as the NMI handler runs. Otherwise we may
4138                  * cause NMI nesting, maybe breaking the guest. But as this is
4139                  * highly unlikely, we can live with the residual risk.
4140                  */
4141                 vmx->soft_vnmi_blocked = 1;
4142                 vmx->vnmi_blocked_time = 0;
4143         }
4144
4145         ++vcpu->stat.nmi_injections;
4146         vmx->nmi_known_unmasked = false;
4147         if (vmx->rmode.vm86_active) {
4148                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4149                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4150                 return;
4151         }
4152         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4153                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4154 }
4155
4156 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4157 {
4158         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4159                 return 0;
4160
4161         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4162                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4163                    | GUEST_INTR_STATE_NMI));
4164 }
4165
4166 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4167 {
4168         if (!cpu_has_virtual_nmis())
4169                 return to_vmx(vcpu)->soft_vnmi_blocked;
4170         if (to_vmx(vcpu)->nmi_known_unmasked)
4171                 return false;
4172         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4173 }
4174
4175 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4176 {
4177         struct vcpu_vmx *vmx = to_vmx(vcpu);
4178
4179         if (!cpu_has_virtual_nmis()) {
4180                 if (vmx->soft_vnmi_blocked != masked) {
4181                         vmx->soft_vnmi_blocked = masked;
4182                         vmx->vnmi_blocked_time = 0;
4183                 }
4184         } else {
4185                 vmx->nmi_known_unmasked = !masked;
4186                 if (masked)
4187                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4188                                       GUEST_INTR_STATE_NMI);
4189                 else
4190                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4191                                         GUEST_INTR_STATE_NMI);
4192         }
4193 }
4194
4195 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4196 {
4197         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4198                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4199                 if (to_vmx(vcpu)->nested.nested_run_pending ||
4200                     (vmcs12->idt_vectoring_info_field &
4201                      VECTORING_INFO_VALID_MASK))
4202                         return 0;
4203                 nested_vmx_vmexit(vcpu);
4204                 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4205                 vmcs12->vm_exit_intr_info = 0;
4206                 /* fall through to normal code, but now in L1, not L2 */
4207         }
4208
4209         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4210                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4211                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4212 }
4213
4214 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4215 {
4216         int ret;
4217         struct kvm_userspace_memory_region tss_mem = {
4218                 .slot = TSS_PRIVATE_MEMSLOT,
4219                 .guest_phys_addr = addr,
4220                 .memory_size = PAGE_SIZE * 3,
4221                 .flags = 0,
4222         };
4223
4224         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4225         if (ret)
4226                 return ret;
4227         kvm->arch.tss_addr = addr;
4228         if (!init_rmode_tss(kvm))
4229                 return  -ENOMEM;
4230
4231         return 0;
4232 }
4233
4234 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4235                                   int vec, u32 err_code)
4236 {
4237         /*
4238          * Instruction with address size override prefix opcode 0x67
4239          * Cause the #SS fault with 0 error code in VM86 mode.
4240          */
4241         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4242                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4243                         return 1;
4244         /*
4245          * Forward all other exceptions that are valid in real mode.
4246          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4247          *        the required debugging infrastructure rework.
4248          */
4249         switch (vec) {
4250         case DB_VECTOR:
4251                 if (vcpu->guest_debug &
4252                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4253                         return 0;
4254                 kvm_queue_exception(vcpu, vec);
4255                 return 1;
4256         case BP_VECTOR:
4257                 /*
4258                  * Update instruction length as we may reinject the exception
4259                  * from user space while in guest debugging mode.
4260                  */
4261                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4262                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4263                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4264                         return 0;
4265                 /* fall through */
4266         case DE_VECTOR:
4267         case OF_VECTOR:
4268         case BR_VECTOR:
4269         case UD_VECTOR:
4270         case DF_VECTOR:
4271         case SS_VECTOR:
4272         case GP_VECTOR:
4273         case MF_VECTOR:
4274                 kvm_queue_exception(vcpu, vec);
4275                 return 1;
4276         }
4277         return 0;
4278 }
4279
4280 /*
4281  * Trigger machine check on the host. We assume all the MSRs are already set up
4282  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4283  * We pass a fake environment to the machine check handler because we want
4284  * the guest to be always treated like user space, no matter what context
4285  * it used internally.
4286  */
4287 static void kvm_machine_check(void)
4288 {
4289 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4290         struct pt_regs regs = {
4291                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4292                 .flags = X86_EFLAGS_IF,
4293         };
4294
4295         do_machine_check(&regs, 0);
4296 #endif
4297 }
4298
4299 static int handle_machine_check(struct kvm_vcpu *vcpu)
4300 {
4301         /* already handled by vcpu_run */
4302         return 1;
4303 }
4304
4305 static int handle_exception(struct kvm_vcpu *vcpu)
4306 {
4307         struct vcpu_vmx *vmx = to_vmx(vcpu);
4308         struct kvm_run *kvm_run = vcpu->run;
4309         u32 intr_info, ex_no, error_code;
4310         unsigned long cr2, rip, dr6;
4311         u32 vect_info;
4312         enum emulation_result er;
4313
4314         vect_info = vmx->idt_vectoring_info;
4315         intr_info = vmx->exit_intr_info;
4316
4317         if (is_machine_check(intr_info))
4318                 return handle_machine_check(vcpu);
4319
4320         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4321             !is_page_fault(intr_info)) {
4322                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4323                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4324                 vcpu->run->internal.ndata = 2;
4325                 vcpu->run->internal.data[0] = vect_info;
4326                 vcpu->run->internal.data[1] = intr_info;
4327                 return 0;
4328         }
4329
4330         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4331                 return 1;  /* already handled by vmx_vcpu_run() */
4332
4333         if (is_no_device(intr_info)) {
4334                 vmx_fpu_activate(vcpu);
4335                 return 1;
4336         }
4337
4338         if (is_invalid_opcode(intr_info)) {
4339                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4340                 if (er != EMULATE_DONE)
4341                         kvm_queue_exception(vcpu, UD_VECTOR);
4342                 return 1;
4343         }
4344
4345         error_code = 0;
4346         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4347                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4348         if (is_page_fault(intr_info)) {
4349                 /* EPT won't cause page fault directly */
4350                 BUG_ON(enable_ept);
4351                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4352                 trace_kvm_page_fault(cr2, error_code);
4353
4354                 if (kvm_event_needs_reinjection(vcpu))
4355                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4356                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4357         }
4358
4359         if (vmx->rmode.vm86_active &&
4360             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4361                                                                 error_code)) {
4362                 if (vcpu->arch.halt_request) {
4363                         vcpu->arch.halt_request = 0;
4364                         return kvm_emulate_halt(vcpu);
4365                 }
4366                 return 1;
4367         }
4368
4369         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4370         switch (ex_no) {
4371         case DB_VECTOR:
4372                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4373                 if (!(vcpu->guest_debug &
4374                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4375                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4376                         kvm_queue_exception(vcpu, DB_VECTOR);
4377                         return 1;
4378                 }
4379                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4380                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4381                 /* fall through */
4382         case BP_VECTOR:
4383                 /*
4384                  * Update instruction length as we may reinject #BP from
4385                  * user space while in guest debugging mode. Reading it for
4386                  * #DB as well causes no harm, it is not used in that case.
4387                  */
4388                 vmx->vcpu.arch.event_exit_inst_len =
4389                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4390                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4391                 rip = kvm_rip_read(vcpu);
4392                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4393                 kvm_run->debug.arch.exception = ex_no;
4394                 break;
4395         default:
4396                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4397                 kvm_run->ex.exception = ex_no;
4398                 kvm_run->ex.error_code = error_code;
4399                 break;
4400         }
4401         return 0;
4402 }
4403
4404 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4405 {
4406         ++vcpu->stat.irq_exits;
4407         return 1;
4408 }
4409
4410 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4411 {
4412         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4413         return 0;
4414 }
4415
4416 static int handle_io(struct kvm_vcpu *vcpu)
4417 {
4418         unsigned long exit_qualification;
4419         int size, in, string;
4420         unsigned port;
4421
4422         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4423         string = (exit_qualification & 16) != 0;
4424         in = (exit_qualification & 8) != 0;
4425
4426         ++vcpu->stat.io_exits;
4427
4428         if (string || in)
4429                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4430
4431         port = exit_qualification >> 16;
4432         size = (exit_qualification & 7) + 1;
4433         skip_emulated_instruction(vcpu);
4434
4435         return kvm_fast_pio_out(vcpu, size, port);
4436 }
4437
4438 static void
4439 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4440 {
4441         /*
4442          * Patch in the VMCALL instruction:
4443          */
4444         hypercall[0] = 0x0f;
4445         hypercall[1] = 0x01;
4446         hypercall[2] = 0xc1;
4447 }
4448
4449 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4450 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4451 {
4452         if (to_vmx(vcpu)->nested.vmxon &&
4453             ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4454                 return 1;
4455
4456         if (is_guest_mode(vcpu)) {
4457                 /*
4458                  * We get here when L2 changed cr0 in a way that did not change
4459                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4460                  * but did change L0 shadowed bits. This can currently happen
4461                  * with the TS bit: L0 may want to leave TS on (for lazy fpu
4462                  * loading) while pretending to allow the guest to change it.
4463                  */
4464                 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4465                          (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4466                         return 1;
4467                 vmcs_writel(CR0_READ_SHADOW, val);
4468                 return 0;
4469         } else
4470                 return kvm_set_cr0(vcpu, val);
4471 }
4472
4473 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4474 {
4475         if (is_guest_mode(vcpu)) {
4476                 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4477                          (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4478                         return 1;
4479                 vmcs_writel(CR4_READ_SHADOW, val);
4480                 return 0;
4481         } else
4482                 return kvm_set_cr4(vcpu, val);
4483 }
4484
4485 /* called to set cr0 as approriate for clts instruction exit. */
4486 static void handle_clts(struct kvm_vcpu *vcpu)
4487 {
4488         if (is_guest_mode(vcpu)) {
4489                 /*
4490                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4491                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4492                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4493                  */
4494                 vmcs_writel(CR0_READ_SHADOW,
4495                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4496                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4497         } else
4498                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4499 }
4500
4501 static int handle_cr(struct kvm_vcpu *vcpu)
4502 {
4503         unsigned long exit_qualification, val;
4504         int cr;
4505         int reg;
4506         int err;
4507
4508         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4509         cr = exit_qualification & 15;
4510         reg = (exit_qualification >> 8) & 15;
4511         switch ((exit_qualification >> 4) & 3) {
4512         case 0: /* mov to cr */
4513                 val = kvm_register_read(vcpu, reg);
4514                 trace_kvm_cr_write(cr, val);
4515                 switch (cr) {
4516                 case 0:
4517                         err = handle_set_cr0(vcpu, val);
4518                         kvm_complete_insn_gp(vcpu, err);
4519                         return 1;
4520                 case 3:
4521                         err = kvm_set_cr3(vcpu, val);
4522                         kvm_complete_insn_gp(vcpu, err);
4523                         return 1;
4524                 case 4:
4525                         err = handle_set_cr4(vcpu, val);
4526                         kvm_complete_insn_gp(vcpu, err);
4527                         return 1;
4528                 case 8: {
4529                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4530                                 u8 cr8 = kvm_register_read(vcpu, reg);
4531                                 err = kvm_set_cr8(vcpu, cr8);
4532                                 kvm_complete_insn_gp(vcpu, err);
4533                                 if (irqchip_in_kernel(vcpu->kvm))
4534                                         return 1;
4535                                 if (cr8_prev <= cr8)
4536                                         return 1;
4537                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4538                                 return 0;
4539                         }
4540                 };
4541                 break;
4542         case 2: /* clts */
4543                 handle_clts(vcpu);
4544                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4545                 skip_emulated_instruction(vcpu);
4546                 vmx_fpu_activate(vcpu);
4547                 return 1;
4548         case 1: /*mov from cr*/
4549                 switch (cr) {
4550                 case 3:
4551                         val = kvm_read_cr3(vcpu);
4552                         kvm_register_write(vcpu, reg, val);
4553                         trace_kvm_cr_read(cr, val);
4554                         skip_emulated_instruction(vcpu);
4555                         return 1;
4556                 case 8:
4557                         val = kvm_get_cr8(vcpu);
4558                         kvm_register_write(vcpu, reg, val);
4559                         trace_kvm_cr_read(cr, val);
4560                         skip_emulated_instruction(vcpu);
4561                         return 1;
4562                 }
4563                 break;
4564         case 3: /* lmsw */
4565                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4566                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4567                 kvm_lmsw(vcpu, val);
4568
4569                 skip_emulated_instruction(vcpu);
4570                 return 1;
4571         default:
4572                 break;
4573         }
4574         vcpu->run->exit_reason = 0;
4575         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4576                (int)(exit_qualification >> 4) & 3, cr);
4577         return 0;
4578 }
4579
4580 static int handle_dr(struct kvm_vcpu *vcpu)
4581 {
4582         unsigned long exit_qualification;
4583         int dr, reg;
4584
4585         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4586         if (!kvm_require_cpl(vcpu, 0))
4587                 return 1;
4588         dr = vmcs_readl(GUEST_DR7);
4589         if (dr & DR7_GD) {
4590                 /*
4591                  * As the vm-exit takes precedence over the debug trap, we
4592                  * need to emulate the latter, either for the host or the
4593                  * guest debugging itself.
4594                  */
4595                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4596                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4597                         vcpu->run->debug.arch.dr7 = dr;
4598                         vcpu->run->debug.arch.pc =
4599                                 vmcs_readl(GUEST_CS_BASE) +
4600                                 vmcs_readl(GUEST_RIP);
4601                         vcpu->run->debug.arch.exception = DB_VECTOR;
4602                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4603                         return 0;
4604                 } else {
4605                         vcpu->arch.dr7 &= ~DR7_GD;
4606                         vcpu->arch.dr6 |= DR6_BD;
4607                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4608                         kvm_queue_exception(vcpu, DB_VECTOR);
4609                         return 1;
4610                 }
4611         }
4612
4613         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4614         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4615         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4616         if (exit_qualification & TYPE_MOV_FROM_DR) {
4617                 unsigned long val;
4618                 if (!kvm_get_dr(vcpu, dr, &val))
4619                         kvm_register_write(vcpu, reg, val);
4620         } else
4621                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4622         skip_emulated_instruction(vcpu);
4623         return 1;
4624 }
4625
4626 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4627 {
4628         vmcs_writel(GUEST_DR7, val);
4629 }
4630
4631 static int handle_cpuid(struct kvm_vcpu *vcpu)
4632 {
4633         kvm_emulate_cpuid(vcpu);
4634         return 1;
4635 }
4636
4637 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4638 {
4639         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4640         u64 data;
4641
4642         if (vmx_get_msr(vcpu, ecx, &data)) {
4643                 trace_kvm_msr_read_ex(ecx);
4644                 kvm_inject_gp(vcpu, 0);
4645                 return 1;
4646         }
4647
4648         trace_kvm_msr_read(ecx, data);
4649
4650         /* FIXME: handling of bits 32:63 of rax, rdx */
4651         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4652         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4653         skip_emulated_instruction(vcpu);
4654         return 1;
4655 }
4656
4657 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4658 {
4659         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4660         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4661                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4662
4663         if (vmx_set_msr(vcpu, ecx, data) != 0) {
4664                 trace_kvm_msr_write_ex(ecx, data);
4665                 kvm_inject_gp(vcpu, 0);
4666                 return 1;
4667         }
4668
4669         trace_kvm_msr_write(ecx, data);
4670         skip_emulated_instruction(vcpu);
4671         return 1;
4672 }
4673
4674 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4675 {
4676         kvm_make_request(KVM_REQ_EVENT, vcpu);
4677         return 1;
4678 }
4679
4680 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4681 {
4682         u32 cpu_based_vm_exec_control;
4683
4684         /* clear pending irq */
4685         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4686         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4687         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4688
4689         kvm_make_request(KVM_REQ_EVENT, vcpu);
4690
4691         ++vcpu->stat.irq_window_exits;
4692
4693         /*
4694          * If the user space waits to inject interrupts, exit as soon as
4695          * possible
4696          */
4697         if (!irqchip_in_kernel(vcpu->kvm) &&
4698             vcpu->run->request_interrupt_window &&
4699             !kvm_cpu_has_interrupt(vcpu)) {
4700                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4701                 return 0;
4702         }
4703         return 1;
4704 }
4705
4706 static int handle_halt(struct kvm_vcpu *vcpu)
4707 {
4708         skip_emulated_instruction(vcpu);
4709         return kvm_emulate_halt(vcpu);
4710 }
4711
4712 static int handle_vmcall(struct kvm_vcpu *vcpu)
4713 {
4714         skip_emulated_instruction(vcpu);
4715         kvm_emulate_hypercall(vcpu);
4716         return 1;
4717 }
4718
4719 static int handle_invd(struct kvm_vcpu *vcpu)
4720 {
4721         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4722 }
4723
4724 static int handle_invlpg(struct kvm_vcpu *vcpu)
4725 {
4726         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4727
4728         kvm_mmu_invlpg(vcpu, exit_qualification);
4729         skip_emulated_instruction(vcpu);
4730         return 1;
4731 }
4732
4733 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4734 {
4735         int err;
4736
4737         err = kvm_rdpmc(vcpu);
4738         kvm_complete_insn_gp(vcpu, err);
4739
4740         return 1;
4741 }
4742
4743 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4744 {
4745         skip_emulated_instruction(vcpu);
4746         kvm_emulate_wbinvd(vcpu);
4747         return 1;
4748 }
4749
4750 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4751 {
4752         u64 new_bv = kvm_read_edx_eax(vcpu);
4753         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4754
4755         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4756                 skip_emulated_instruction(vcpu);
4757         return 1;
4758 }
4759
4760 static int handle_apic_access(struct kvm_vcpu *vcpu)
4761 {
4762         if (likely(fasteoi)) {
4763                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4764                 int access_type, offset;
4765
4766                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4767                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4768                 /*
4769                  * Sane guest uses MOV to write EOI, with written value
4770                  * not cared. So make a short-circuit here by avoiding
4771                  * heavy instruction emulation.
4772                  */
4773                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4774                     (offset == APIC_EOI)) {
4775                         kvm_lapic_set_eoi(vcpu);
4776                         skip_emulated_instruction(vcpu);
4777                         return 1;
4778                 }
4779         }
4780         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4781 }
4782
4783 static int handle_task_switch(struct kvm_vcpu *vcpu)
4784 {
4785         struct vcpu_vmx *vmx = to_vmx(vcpu);
4786         unsigned long exit_qualification;
4787         bool has_error_code = false;
4788         u32 error_code = 0;
4789         u16 tss_selector;
4790         int reason, type, idt_v, idt_index;
4791
4792         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4793         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4794         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4795
4796         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4797
4798         reason = (u32)exit_qualification >> 30;
4799         if (reason == TASK_SWITCH_GATE && idt_v) {
4800                 switch (type) {
4801                 case INTR_TYPE_NMI_INTR:
4802                         vcpu->arch.nmi_injected = false;
4803                         vmx_set_nmi_mask(vcpu, true);
4804                         break;
4805                 case INTR_TYPE_EXT_INTR:
4806                 case INTR_TYPE_SOFT_INTR:
4807                         kvm_clear_interrupt_queue(vcpu);
4808                         break;
4809                 case INTR_TYPE_HARD_EXCEPTION:
4810                         if (vmx->idt_vectoring_info &
4811                             VECTORING_INFO_DELIVER_CODE_MASK) {
4812                                 has_error_code = true;
4813                                 error_code =
4814                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
4815                         }
4816                         /* fall through */
4817                 case INTR_TYPE_SOFT_EXCEPTION:
4818                         kvm_clear_exception_queue(vcpu);
4819                         break;
4820                 default:
4821                         break;
4822                 }
4823         }
4824         tss_selector = exit_qualification;
4825
4826         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4827                        type != INTR_TYPE_EXT_INTR &&
4828                        type != INTR_TYPE_NMI_INTR))
4829                 skip_emulated_instruction(vcpu);
4830
4831         if (kvm_task_switch(vcpu, tss_selector,
4832                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4833                             has_error_code, error_code) == EMULATE_FAIL) {
4834                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4835                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4836                 vcpu->run->internal.ndata = 0;
4837                 return 0;
4838         }
4839
4840         /* clear all local breakpoint enable flags */
4841         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4842
4843         /*
4844          * TODO: What about debug traps on tss switch?
4845          *       Are we supposed to inject them and update dr6?
4846          */
4847
4848         return 1;
4849 }
4850
4851 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4852 {
4853         unsigned long exit_qualification;
4854         gpa_t gpa;
4855         u32 error_code;
4856         int gla_validity;
4857
4858         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4859
4860         if (exit_qualification & (1 << 6)) {
4861                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4862                 return -EINVAL;
4863         }
4864
4865         gla_validity = (exit_qualification >> 7) & 0x3;
4866         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4867                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4868                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4869                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4870                         vmcs_readl(GUEST_LINEAR_ADDRESS));
4871                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4872                         (long unsigned int)exit_qualification);
4873                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4874                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4875                 return 0;
4876         }
4877
4878         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4879         trace_kvm_page_fault(gpa, exit_qualification);
4880
4881         /* It is a write fault? */
4882         error_code = exit_qualification & (1U << 1);
4883         /* ept page table is present? */
4884         error_code |= (exit_qualification >> 3) & 0x1;
4885
4886         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
4887 }
4888
4889 static u64 ept_rsvd_mask(u64 spte, int level)
4890 {
4891         int i;
4892         u64 mask = 0;
4893
4894         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4895                 mask |= (1ULL << i);
4896
4897         if (level > 2)
4898                 /* bits 7:3 reserved */
4899                 mask |= 0xf8;
4900         else if (level == 2) {
4901                 if (spte & (1ULL << 7))
4902                         /* 2MB ref, bits 20:12 reserved */
4903                         mask |= 0x1ff000;
4904                 else
4905                         /* bits 6:3 reserved */
4906                         mask |= 0x78;
4907         }
4908
4909         return mask;
4910 }
4911
4912 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4913                                        int level)
4914 {
4915         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4916
4917         /* 010b (write-only) */
4918         WARN_ON((spte & 0x7) == 0x2);
4919
4920         /* 110b (write/execute) */
4921         WARN_ON((spte & 0x7) == 0x6);
4922
4923         /* 100b (execute-only) and value not supported by logical processor */
4924         if (!cpu_has_vmx_ept_execute_only())
4925                 WARN_ON((spte & 0x7) == 0x4);
4926
4927         /* not 000b */
4928         if ((spte & 0x7)) {
4929                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4930
4931                 if (rsvd_bits != 0) {
4932                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4933                                          __func__, rsvd_bits);
4934                         WARN_ON(1);
4935                 }
4936
4937                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4938                         u64 ept_mem_type = (spte & 0x38) >> 3;
4939
4940                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
4941                             ept_mem_type == 7) {
4942                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4943                                                 __func__, ept_mem_type);
4944                                 WARN_ON(1);
4945                         }
4946                 }
4947         }
4948 }
4949
4950 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4951 {
4952         u64 sptes[4];
4953         int nr_sptes, i, ret;
4954         gpa_t gpa;
4955
4956         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4957
4958         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4959         if (likely(ret == 1))
4960                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4961                                               EMULATE_DONE;
4962         if (unlikely(!ret))
4963                 return 1;
4964
4965         /* It is the real ept misconfig */
4966         printk(KERN_ERR "EPT: Misconfiguration.\n");
4967         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4968
4969         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4970
4971         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4972                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4973
4974         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4975         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4976
4977         return 0;
4978 }
4979
4980 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4981 {
4982         u32 cpu_based_vm_exec_control;
4983
4984         /* clear pending NMI */
4985         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4986         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4987         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4988         ++vcpu->stat.nmi_window_exits;
4989         kvm_make_request(KVM_REQ_EVENT, vcpu);
4990
4991         return 1;
4992 }
4993
4994 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4995 {
4996         struct vcpu_vmx *vmx = to_vmx(vcpu);
4997         enum emulation_result err = EMULATE_DONE;
4998         int ret = 1;
4999         u32 cpu_exec_ctrl;
5000         bool intr_window_requested;
5001         unsigned count = 130;
5002
5003         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5004         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5005
5006         while (!guest_state_valid(vcpu) && count-- != 0) {
5007                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5008                         return handle_interrupt_window(&vmx->vcpu);
5009
5010                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5011                         return 1;
5012
5013                 err = emulate_instruction(vcpu, 0);
5014
5015                 if (err == EMULATE_DO_MMIO) {
5016                         ret = 0;
5017                         goto out;
5018                 }
5019
5020                 if (err != EMULATE_DONE) {
5021                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5022                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5023                         vcpu->run->internal.ndata = 0;
5024                         return 0;
5025                 }
5026
5027                 if (signal_pending(current))
5028                         goto out;
5029                 if (need_resched())
5030                         schedule();
5031         }
5032
5033         vmx->emulation_required = !guest_state_valid(vcpu);
5034 out:
5035         return ret;
5036 }
5037
5038 /*
5039  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5040  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5041  */
5042 static int handle_pause(struct kvm_vcpu *vcpu)
5043 {
5044         skip_emulated_instruction(vcpu);
5045         kvm_vcpu_on_spin(vcpu);
5046
5047         return 1;
5048 }
5049
5050 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5051 {
5052         kvm_queue_exception(vcpu, UD_VECTOR);
5053         return 1;
5054 }
5055
5056 /*
5057  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5058  * We could reuse a single VMCS for all the L2 guests, but we also want the
5059  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5060  * allows keeping them loaded on the processor, and in the future will allow
5061  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5062  * every entry if they never change.
5063  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5064  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5065  *
5066  * The following functions allocate and free a vmcs02 in this pool.
5067  */
5068
5069 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5070 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5071 {
5072         struct vmcs02_list *item;
5073         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5074                 if (item->vmptr == vmx->nested.current_vmptr) {
5075                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5076                         return &item->vmcs02;
5077                 }
5078
5079         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5080                 /* Recycle the least recently used VMCS. */
5081                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5082                         struct vmcs02_list, list);
5083                 item->vmptr = vmx->nested.current_vmptr;
5084                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5085                 return &item->vmcs02;
5086         }
5087
5088         /* Create a new VMCS */
5089         item = (struct vmcs02_list *)
5090                 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5091         if (!item)
5092                 return NULL;
5093         item->vmcs02.vmcs = alloc_vmcs();
5094         if (!item->vmcs02.vmcs) {
5095                 kfree(item);
5096                 return NULL;
5097         }
5098         loaded_vmcs_init(&item->vmcs02);
5099         item->vmptr = vmx->nested.current_vmptr;
5100         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5101         vmx->nested.vmcs02_num++;
5102         return &item->vmcs02;
5103 }
5104
5105 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5106 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5107 {
5108         struct vmcs02_list *item;
5109         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5110                 if (item->vmptr == vmptr) {
5111                         free_loaded_vmcs(&item->vmcs02);
5112                         list_del(&item->list);
5113                         kfree(item);
5114                         vmx->nested.vmcs02_num--;
5115                         return;
5116                 }
5117 }
5118
5119 /*
5120  * Free all VMCSs saved for this vcpu, except the one pointed by
5121  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5122  * currently used, if running L2), and vmcs01 when running L2.
5123  */
5124 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5125 {
5126         struct vmcs02_list *item, *n;
5127         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5128                 if (vmx->loaded_vmcs != &item->vmcs02)
5129                         free_loaded_vmcs(&item->vmcs02);
5130                 list_del(&item->list);
5131                 kfree(item);
5132         }
5133         vmx->nested.vmcs02_num = 0;
5134
5135         if (vmx->loaded_vmcs != &vmx->vmcs01)
5136                 free_loaded_vmcs(&vmx->vmcs01);
5137 }
5138
5139 /*
5140  * Emulate the VMXON instruction.
5141  * Currently, we just remember that VMX is active, and do not save or even
5142  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5143  * do not currently need to store anything in that guest-allocated memory
5144  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5145  * argument is different from the VMXON pointer (which the spec says they do).
5146  */
5147 static int handle_vmon(struct kvm_vcpu *vcpu)
5148 {
5149         struct kvm_segment cs;
5150         struct vcpu_vmx *vmx = to_vmx(vcpu);
5151
5152         /* The Intel VMX Instruction Reference lists a bunch of bits that
5153          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5154          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5155          * Otherwise, we should fail with #UD. We test these now:
5156          */
5157         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5158             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5159             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5160                 kvm_queue_exception(vcpu, UD_VECTOR);
5161                 return 1;
5162         }
5163
5164         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5165         if (is_long_mode(vcpu) && !cs.l) {
5166                 kvm_queue_exception(vcpu, UD_VECTOR);
5167                 return 1;
5168         }
5169
5170         if (vmx_get_cpl(vcpu)) {
5171                 kvm_inject_gp(vcpu, 0);
5172                 return 1;
5173         }
5174
5175         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5176         vmx->nested.vmcs02_num = 0;
5177
5178         vmx->nested.vmxon = true;
5179
5180         skip_emulated_instruction(vcpu);
5181         return 1;
5182 }
5183
5184 /*
5185  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5186  * for running VMX instructions (except VMXON, whose prerequisites are
5187  * slightly different). It also specifies what exception to inject otherwise.
5188  */
5189 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5190 {
5191         struct kvm_segment cs;
5192         struct vcpu_vmx *vmx = to_vmx(vcpu);
5193
5194         if (!vmx->nested.vmxon) {
5195                 kvm_queue_exception(vcpu, UD_VECTOR);
5196                 return 0;
5197         }
5198
5199         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5200         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5201             (is_long_mode(vcpu) && !cs.l)) {
5202                 kvm_queue_exception(vcpu, UD_VECTOR);
5203                 return 0;
5204         }
5205
5206         if (vmx_get_cpl(vcpu)) {
5207                 kvm_inject_gp(vcpu, 0);
5208                 return 0;
5209         }
5210
5211         return 1;
5212 }
5213
5214 /*
5215  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5216  * just stops using VMX.
5217  */
5218 static void free_nested(struct vcpu_vmx *vmx)
5219 {
5220         if (!vmx->nested.vmxon)
5221                 return;
5222         vmx->nested.vmxon = false;
5223         if (vmx->nested.current_vmptr != -1ull) {
5224                 kunmap(vmx->nested.current_vmcs12_page);
5225                 nested_release_page(vmx->nested.current_vmcs12_page);
5226                 vmx->nested.current_vmptr = -1ull;
5227                 vmx->nested.current_vmcs12 = NULL;
5228         }
5229         /* Unpin physical memory we referred to in current vmcs02 */
5230         if (vmx->nested.apic_access_page) {
5231                 nested_release_page(vmx->nested.apic_access_page);
5232                 vmx->nested.apic_access_page = 0;
5233         }
5234
5235         nested_free_all_saved_vmcss(vmx);
5236 }
5237
5238 /* Emulate the VMXOFF instruction */
5239 static int handle_vmoff(struct kvm_vcpu *vcpu)
5240 {
5241         if (!nested_vmx_check_permission(vcpu))
5242                 return 1;
5243         free_nested(to_vmx(vcpu));
5244         skip_emulated_instruction(vcpu);
5245         return 1;
5246 }
5247
5248 /*
5249  * Decode the memory-address operand of a vmx instruction, as recorded on an
5250  * exit caused by such an instruction (run by a guest hypervisor).
5251  * On success, returns 0. When the operand is invalid, returns 1 and throws
5252  * #UD or #GP.
5253  */
5254 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5255                                  unsigned long exit_qualification,
5256                                  u32 vmx_instruction_info, gva_t *ret)
5257 {
5258         /*
5259          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5260          * Execution", on an exit, vmx_instruction_info holds most of the
5261          * addressing components of the operand. Only the displacement part
5262          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5263          * For how an actual address is calculated from all these components,
5264          * refer to Vol. 1, "Operand Addressing".
5265          */
5266         int  scaling = vmx_instruction_info & 3;
5267         int  addr_size = (vmx_instruction_info >> 7) & 7;
5268         bool is_reg = vmx_instruction_info & (1u << 10);
5269         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5270         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5271         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5272         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5273         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5274
5275         if (is_reg) {
5276                 kvm_queue_exception(vcpu, UD_VECTOR);
5277                 return 1;
5278         }
5279
5280         /* Addr = segment_base + offset */
5281         /* offset = base + [index * scale] + displacement */
5282         *ret = vmx_get_segment_base(vcpu, seg_reg);
5283         if (base_is_valid)
5284                 *ret += kvm_register_read(vcpu, base_reg);
5285         if (index_is_valid)
5286                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5287         *ret += exit_qualification; /* holds the displacement */
5288
5289         if (addr_size == 1) /* 32 bit */
5290                 *ret &= 0xffffffff;
5291
5292         /*
5293          * TODO: throw #GP (and return 1) in various cases that the VM*
5294          * instructions require it - e.g., offset beyond segment limit,
5295          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5296          * address, and so on. Currently these are not checked.
5297          */
5298         return 0;
5299 }
5300
5301 /*
5302  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5303  * set the success or error code of an emulated VMX instruction, as specified
5304  * by Vol 2B, VMX Instruction Reference, "Conventions".
5305  */
5306 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5307 {
5308         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5309                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5310                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5311 }
5312
5313 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5314 {
5315         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5316                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5317                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5318                         | X86_EFLAGS_CF);
5319 }
5320
5321 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5322                                         u32 vm_instruction_error)
5323 {
5324         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5325                 /*
5326                  * failValid writes the error number to the current VMCS, which
5327                  * can't be done there isn't a current VMCS.
5328                  */
5329                 nested_vmx_failInvalid(vcpu);
5330                 return;
5331         }
5332         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5333                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5334                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5335                         | X86_EFLAGS_ZF);
5336         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5337 }
5338
5339 /* Emulate the VMCLEAR instruction */
5340 static int handle_vmclear(struct kvm_vcpu *vcpu)
5341 {
5342         struct vcpu_vmx *vmx = to_vmx(vcpu);
5343         gva_t gva;
5344         gpa_t vmptr;
5345         struct vmcs12 *vmcs12;
5346         struct page *page;
5347         struct x86_exception e;
5348
5349         if (!nested_vmx_check_permission(vcpu))
5350                 return 1;
5351
5352         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5353                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5354                 return 1;
5355
5356         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5357                                 sizeof(vmptr), &e)) {
5358                 kvm_inject_page_fault(vcpu, &e);
5359                 return 1;
5360         }
5361
5362         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5363                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5364                 skip_emulated_instruction(vcpu);
5365                 return 1;
5366         }
5367
5368         if (vmptr == vmx->nested.current_vmptr) {
5369                 kunmap(vmx->nested.current_vmcs12_page);
5370                 nested_release_page(vmx->nested.current_vmcs12_page);
5371                 vmx->nested.current_vmptr = -1ull;
5372                 vmx->nested.current_vmcs12 = NULL;
5373         }
5374
5375         page = nested_get_page(vcpu, vmptr);
5376         if (page == NULL) {
5377                 /*
5378                  * For accurate processor emulation, VMCLEAR beyond available
5379                  * physical memory should do nothing at all. However, it is
5380                  * possible that a nested vmx bug, not a guest hypervisor bug,
5381                  * resulted in this case, so let's shut down before doing any
5382                  * more damage:
5383                  */
5384                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5385                 return 1;
5386         }
5387         vmcs12 = kmap(page);
5388         vmcs12->launch_state = 0;
5389         kunmap(page);
5390         nested_release_page(page);
5391
5392         nested_free_vmcs02(vmx, vmptr);
5393
5394         skip_emulated_instruction(vcpu);
5395         nested_vmx_succeed(vcpu);
5396         return 1;
5397 }
5398
5399 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5400
5401 /* Emulate the VMLAUNCH instruction */
5402 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5403 {
5404         return nested_vmx_run(vcpu, true);
5405 }
5406
5407 /* Emulate the VMRESUME instruction */
5408 static int handle_vmresume(struct kvm_vcpu *vcpu)
5409 {
5410
5411         return nested_vmx_run(vcpu, false);
5412 }
5413
5414 enum vmcs_field_type {
5415         VMCS_FIELD_TYPE_U16 = 0,
5416         VMCS_FIELD_TYPE_U64 = 1,
5417         VMCS_FIELD_TYPE_U32 = 2,
5418         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5419 };
5420
5421 static inline int vmcs_field_type(unsigned long field)
5422 {
5423         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5424                 return VMCS_FIELD_TYPE_U32;
5425         return (field >> 13) & 0x3 ;
5426 }
5427
5428 static inline int vmcs_field_readonly(unsigned long field)
5429 {
5430         return (((field >> 10) & 0x3) == 1);
5431 }
5432
5433 /*
5434  * Read a vmcs12 field. Since these can have varying lengths and we return
5435  * one type, we chose the biggest type (u64) and zero-extend the return value
5436  * to that size. Note that the caller, handle_vmread, might need to use only
5437  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5438  * 64-bit fields are to be returned).
5439  */
5440 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5441                                         unsigned long field, u64 *ret)
5442 {
5443         short offset = vmcs_field_to_offset(field);
5444         char *p;
5445
5446         if (offset < 0)
5447                 return 0;
5448
5449         p = ((char *)(get_vmcs12(vcpu))) + offset;
5450
5451         switch (vmcs_field_type(field)) {
5452         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5453                 *ret = *((natural_width *)p);
5454                 return 1;
5455         case VMCS_FIELD_TYPE_U16:
5456                 *ret = *((u16 *)p);
5457                 return 1;
5458         case VMCS_FIELD_TYPE_U32:
5459                 *ret = *((u32 *)p);
5460                 return 1;
5461         case VMCS_FIELD_TYPE_U64:
5462                 *ret = *((u64 *)p);
5463                 return 1;
5464         default:
5465                 return 0; /* can never happen. */
5466         }
5467 }
5468
5469 /*
5470  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5471  * used before) all generate the same failure when it is missing.
5472  */
5473 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5474 {
5475         struct vcpu_vmx *vmx = to_vmx(vcpu);
5476         if (vmx->nested.current_vmptr == -1ull) {
5477                 nested_vmx_failInvalid(vcpu);
5478                 skip_emulated_instruction(vcpu);
5479                 return 0;
5480         }
5481         return 1;
5482 }
5483
5484 static int handle_vmread(struct kvm_vcpu *vcpu)
5485 {
5486         unsigned long field;
5487         u64 field_value;
5488         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5489         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5490         gva_t gva = 0;
5491
5492         if (!nested_vmx_check_permission(vcpu) ||
5493             !nested_vmx_check_vmcs12(vcpu))
5494                 return 1;
5495
5496         /* Decode instruction info and find the field to read */
5497         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5498         /* Read the field, zero-extended to a u64 field_value */
5499         if (!vmcs12_read_any(vcpu, field, &field_value)) {
5500                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5501                 skip_emulated_instruction(vcpu);
5502                 return 1;
5503         }
5504         /*
5505          * Now copy part of this value to register or memory, as requested.
5506          * Note that the number of bits actually copied is 32 or 64 depending
5507          * on the guest's mode (32 or 64 bit), not on the given field's length.
5508          */
5509         if (vmx_instruction_info & (1u << 10)) {
5510                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5511                         field_value);
5512         } else {
5513                 if (get_vmx_mem_address(vcpu, exit_qualification,
5514                                 vmx_instruction_info, &gva))
5515                         return 1;
5516                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5517                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5518                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5519         }
5520
5521         nested_vmx_succeed(vcpu);
5522         skip_emulated_instruction(vcpu);
5523         return 1;
5524 }
5525
5526
5527 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5528 {
5529         unsigned long field;
5530         gva_t gva;
5531         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5532         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5533         char *p;
5534         short offset;
5535         /* The value to write might be 32 or 64 bits, depending on L1's long
5536          * mode, and eventually we need to write that into a field of several
5537          * possible lengths. The code below first zero-extends the value to 64
5538          * bit (field_value), and then copies only the approriate number of
5539          * bits into the vmcs12 field.
5540          */
5541         u64 field_value = 0;
5542         struct x86_exception e;
5543
5544         if (!nested_vmx_check_permission(vcpu) ||
5545             !nested_vmx_check_vmcs12(vcpu))
5546                 return 1;
5547
5548         if (vmx_instruction_info & (1u << 10))
5549                 field_value = kvm_register_read(vcpu,
5550                         (((vmx_instruction_info) >> 3) & 0xf));
5551         else {
5552                 if (get_vmx_mem_address(vcpu, exit_qualification,
5553                                 vmx_instruction_info, &gva))
5554                         return 1;
5555                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5556                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5557                         kvm_inject_page_fault(vcpu, &e);
5558                         return 1;
5559                 }
5560         }
5561
5562
5563         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5564         if (vmcs_field_readonly(field)) {
5565                 nested_vmx_failValid(vcpu,
5566                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5567                 skip_emulated_instruction(vcpu);
5568                 return 1;
5569         }
5570
5571         offset = vmcs_field_to_offset(field);
5572         if (offset < 0) {
5573                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5574                 skip_emulated_instruction(vcpu);
5575                 return 1;
5576         }
5577         p = ((char *) get_vmcs12(vcpu)) + offset;
5578
5579         switch (vmcs_field_type(field)) {
5580         case VMCS_FIELD_TYPE_U16:
5581                 *(u16 *)p = field_value;
5582                 break;
5583         case VMCS_FIELD_TYPE_U32:
5584                 *(u32 *)p = field_value;
5585                 break;
5586         case VMCS_FIELD_TYPE_U64:
5587                 *(u64 *)p = field_value;
5588                 break;
5589         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5590                 *(natural_width *)p = field_value;
5591                 break;
5592         default:
5593                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5594                 skip_emulated_instruction(vcpu);
5595                 return 1;
5596         }
5597
5598         nested_vmx_succeed(vcpu);
5599         skip_emulated_instruction(vcpu);
5600         return 1;
5601 }
5602
5603 /* Emulate the VMPTRLD instruction */
5604 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5605 {
5606         struct vcpu_vmx *vmx = to_vmx(vcpu);
5607         gva_t gva;
5608         gpa_t vmptr;
5609         struct x86_exception e;
5610
5611         if (!nested_vmx_check_permission(vcpu))
5612                 return 1;
5613
5614         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5615                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5616                 return 1;
5617
5618         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5619                                 sizeof(vmptr), &e)) {
5620                 kvm_inject_page_fault(vcpu, &e);
5621                 return 1;
5622         }
5623
5624         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5625                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5626                 skip_emulated_instruction(vcpu);
5627                 return 1;
5628         }
5629
5630         if (vmx->nested.current_vmptr != vmptr) {
5631                 struct vmcs12 *new_vmcs12;
5632                 struct page *page;
5633                 page = nested_get_page(vcpu, vmptr);
5634                 if (page == NULL) {
5635                         nested_vmx_failInvalid(vcpu);
5636                         skip_emulated_instruction(vcpu);
5637                         return 1;
5638                 }
5639                 new_vmcs12 = kmap(page);
5640                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5641                         kunmap(page);
5642                         nested_release_page_clean(page);
5643                         nested_vmx_failValid(vcpu,
5644                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5645                         skip_emulated_instruction(vcpu);
5646                         return 1;
5647                 }
5648                 if (vmx->nested.current_vmptr != -1ull) {
5649                         kunmap(vmx->nested.current_vmcs12_page);
5650                         nested_release_page(vmx->nested.current_vmcs12_page);
5651                 }
5652
5653                 vmx->nested.current_vmptr = vmptr;
5654                 vmx->nested.current_vmcs12 = new_vmcs12;
5655                 vmx->nested.current_vmcs12_page = page;
5656         }
5657
5658         nested_vmx_succeed(vcpu);
5659         skip_emulated_instruction(vcpu);
5660         return 1;
5661 }
5662
5663 /* Emulate the VMPTRST instruction */
5664 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5665 {
5666         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5667         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5668         gva_t vmcs_gva;
5669         struct x86_exception e;
5670
5671         if (!nested_vmx_check_permission(vcpu))
5672                 return 1;
5673
5674         if (get_vmx_mem_address(vcpu, exit_qualification,
5675                         vmx_instruction_info, &vmcs_gva))
5676                 return 1;
5677         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5678         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5679                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
5680                                  sizeof(u64), &e)) {
5681                 kvm_inject_page_fault(vcpu, &e);
5682                 return 1;
5683         }
5684         nested_vmx_succeed(vcpu);
5685         skip_emulated_instruction(vcpu);
5686         return 1;
5687 }
5688
5689 /*
5690  * The exit handlers return 1 if the exit was handled fully and guest execution
5691  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5692  * to be done to userspace and return 0.
5693  */
5694 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5695         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5696         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5697         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5698         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5699         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5700         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5701         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5702         [EXIT_REASON_CPUID]                   = handle_cpuid,
5703         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5704         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5705         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5706         [EXIT_REASON_HLT]                     = handle_halt,
5707         [EXIT_REASON_INVD]                    = handle_invd,
5708         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5709         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5710         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5711         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
5712         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5713         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5714         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5715         [EXIT_REASON_VMREAD]                  = handle_vmread,
5716         [EXIT_REASON_VMRESUME]                = handle_vmresume,
5717         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5718         [EXIT_REASON_VMOFF]                   = handle_vmoff,
5719         [EXIT_REASON_VMON]                    = handle_vmon,
5720         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5721         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5722         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5723         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5724         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5725         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5726         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5727         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5728         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5729         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
5730         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5731 };
5732
5733 static const int kvm_vmx_max_exit_handlers =
5734         ARRAY_SIZE(kvm_vmx_exit_handlers);
5735
5736 /*
5737  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5738  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5739  * disinterest in the current event (read or write a specific MSR) by using an
5740  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5741  */
5742 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5743         struct vmcs12 *vmcs12, u32 exit_reason)
5744 {
5745         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5746         gpa_t bitmap;
5747
5748         if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5749                 return 1;
5750
5751         /*
5752          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5753          * for the four combinations of read/write and low/high MSR numbers.
5754          * First we need to figure out which of the four to use:
5755          */
5756         bitmap = vmcs12->msr_bitmap;
5757         if (exit_reason == EXIT_REASON_MSR_WRITE)
5758                 bitmap += 2048;
5759         if (msr_index >= 0xc0000000) {
5760                 msr_index -= 0xc0000000;
5761                 bitmap += 1024;
5762         }
5763
5764         /* Then read the msr_index'th bit from this bitmap: */
5765         if (msr_index < 1024*8) {
5766                 unsigned char b;
5767                 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5768                 return 1 & (b >> (msr_index & 7));
5769         } else
5770                 return 1; /* let L1 handle the wrong parameter */
5771 }
5772
5773 /*
5774  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5775  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5776  * intercept (via guest_host_mask etc.) the current event.
5777  */
5778 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5779         struct vmcs12 *vmcs12)
5780 {
5781         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5782         int cr = exit_qualification & 15;
5783         int reg = (exit_qualification >> 8) & 15;
5784         unsigned long val = kvm_register_read(vcpu, reg);
5785
5786         switch ((exit_qualification >> 4) & 3) {
5787         case 0: /* mov to cr */
5788                 switch (cr) {
5789                 case 0:
5790                         if (vmcs12->cr0_guest_host_mask &
5791                             (val ^ vmcs12->cr0_read_shadow))
5792                                 return 1;
5793                         break;
5794                 case 3:
5795                         if ((vmcs12->cr3_target_count >= 1 &&
5796                                         vmcs12->cr3_target_value0 == val) ||
5797                                 (vmcs12->cr3_target_count >= 2 &&
5798                                         vmcs12->cr3_target_value1 == val) ||
5799                                 (vmcs12->cr3_target_count >= 3 &&
5800                                         vmcs12->cr3_target_value2 == val) ||
5801                                 (vmcs12->cr3_target_count >= 4 &&
5802                                         vmcs12->cr3_target_value3 == val))
5803                                 return 0;
5804                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5805                                 return 1;
5806                         break;
5807                 case 4:
5808                         if (vmcs12->cr4_guest_host_mask &
5809                             (vmcs12->cr4_read_shadow ^ val))
5810                                 return 1;
5811                         break;
5812                 case 8:
5813                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5814                                 return 1;
5815                         break;
5816                 }
5817                 break;
5818         case 2: /* clts */
5819                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5820                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5821                         return 1;
5822                 break;
5823         case 1: /* mov from cr */
5824                 switch (cr) {
5825                 case 3:
5826                         if (vmcs12->cpu_based_vm_exec_control &
5827                             CPU_BASED_CR3_STORE_EXITING)
5828                                 return 1;
5829                         break;
5830                 case 8:
5831                         if (vmcs12->cpu_based_vm_exec_control &
5832                             CPU_BASED_CR8_STORE_EXITING)
5833                                 return 1;
5834                         break;
5835                 }
5836                 break;
5837         case 3: /* lmsw */
5838                 /*
5839                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5840                  * cr0. Other attempted changes are ignored, with no exit.
5841                  */
5842                 if (vmcs12->cr0_guest_host_mask & 0xe &
5843                     (val ^ vmcs12->cr0_read_shadow))
5844                         return 1;
5845                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5846                     !(vmcs12->cr0_read_shadow & 0x1) &&
5847                     (val & 0x1))
5848                         return 1;
5849                 break;
5850         }
5851         return 0;
5852 }
5853
5854 /*
5855  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5856  * should handle it ourselves in L0 (and then continue L2). Only call this
5857  * when in is_guest_mode (L2).
5858  */
5859 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5860 {
5861         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5862         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5863         struct vcpu_vmx *vmx = to_vmx(vcpu);
5864         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5865
5866         if (vmx->nested.nested_run_pending)
5867                 return 0;
5868
5869         if (unlikely(vmx->fail)) {
5870                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5871                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5872                 return 1;
5873         }
5874
5875         switch (exit_reason) {
5876         case EXIT_REASON_EXCEPTION_NMI:
5877                 if (!is_exception(intr_info))
5878                         return 0;
5879                 else if (is_page_fault(intr_info))
5880                         return enable_ept;
5881                 return vmcs12->exception_bitmap &
5882                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5883         case EXIT_REASON_EXTERNAL_INTERRUPT:
5884                 return 0;
5885         case EXIT_REASON_TRIPLE_FAULT:
5886                 return 1;
5887         case EXIT_REASON_PENDING_INTERRUPT:
5888         case EXIT_REASON_NMI_WINDOW:
5889                 /*
5890                  * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5891                  * (aka Interrupt Window Exiting) only when L1 turned it on,
5892                  * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5893                  * Same for NMI Window Exiting.
5894                  */
5895                 return 1;
5896         case EXIT_REASON_TASK_SWITCH:
5897                 return 1;
5898         case EXIT_REASON_CPUID:
5899                 return 1;
5900         case EXIT_REASON_HLT:
5901                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5902         case EXIT_REASON_INVD:
5903                 return 1;
5904         case EXIT_REASON_INVLPG:
5905                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5906         case EXIT_REASON_RDPMC:
5907                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5908         case EXIT_REASON_RDTSC:
5909                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5910         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5911         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5912         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5913         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5914         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5915                 /*
5916                  * VMX instructions trap unconditionally. This allows L1 to
5917                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5918                  */
5919                 return 1;
5920         case EXIT_REASON_CR_ACCESS:
5921                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5922         case EXIT_REASON_DR_ACCESS:
5923                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5924         case EXIT_REASON_IO_INSTRUCTION:
5925                 /* TODO: support IO bitmaps */
5926                 return 1;
5927         case EXIT_REASON_MSR_READ:
5928         case EXIT_REASON_MSR_WRITE:
5929                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5930         case EXIT_REASON_INVALID_STATE:
5931                 return 1;
5932         case EXIT_REASON_MWAIT_INSTRUCTION:
5933                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5934         case EXIT_REASON_MONITOR_INSTRUCTION:
5935                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5936         case EXIT_REASON_PAUSE_INSTRUCTION:
5937                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5938                         nested_cpu_has2(vmcs12,
5939                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5940         case EXIT_REASON_MCE_DURING_VMENTRY:
5941                 return 0;
5942         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5943                 return 1;
5944         case EXIT_REASON_APIC_ACCESS:
5945                 return nested_cpu_has2(vmcs12,
5946                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5947         case EXIT_REASON_EPT_VIOLATION:
5948         case EXIT_REASON_EPT_MISCONFIG:
5949                 return 0;
5950         case EXIT_REASON_WBINVD:
5951                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5952         case EXIT_REASON_XSETBV:
5953                 return 1;
5954         default:
5955                 return 1;
5956         }
5957 }
5958
5959 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5960 {
5961         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5962         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5963 }
5964
5965 /*
5966  * The guest has exited.  See if we can fix it or if we need userspace
5967  * assistance.
5968  */
5969 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5970 {
5971         struct vcpu_vmx *vmx = to_vmx(vcpu);
5972         u32 exit_reason = vmx->exit_reason;
5973         u32 vectoring_info = vmx->idt_vectoring_info;
5974
5975         /* If guest state is invalid, start emulating */
5976         if (vmx->emulation_required && emulate_invalid_guest_state)
5977                 return handle_invalid_guest_state(vcpu);
5978
5979         /*
5980          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5981          * we did not inject a still-pending event to L1 now because of
5982          * nested_run_pending, we need to re-enable this bit.
5983          */
5984         if (vmx->nested.nested_run_pending)
5985                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5986
5987         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5988             exit_reason == EXIT_REASON_VMRESUME))
5989                 vmx->nested.nested_run_pending = 1;
5990         else
5991                 vmx->nested.nested_run_pending = 0;
5992
5993         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5994                 nested_vmx_vmexit(vcpu);
5995                 return 1;
5996         }
5997
5998         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5999                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6000                 vcpu->run->fail_entry.hardware_entry_failure_reason
6001                         = exit_reason;
6002                 return 0;
6003         }
6004
6005         if (unlikely(vmx->fail)) {
6006                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6007                 vcpu->run->fail_entry.hardware_entry_failure_reason
6008                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6009                 return 0;
6010         }
6011
6012         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6013                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6014                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6015                         exit_reason != EXIT_REASON_TASK_SWITCH))
6016                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
6017                        "(0x%x) and exit reason is 0x%x\n",
6018                        __func__, vectoring_info, exit_reason);
6019
6020         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6021             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6022                                         get_vmcs12(vcpu), vcpu)))) {
6023                 if (vmx_interrupt_allowed(vcpu)) {
6024                         vmx->soft_vnmi_blocked = 0;
6025                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6026                            vcpu->arch.nmi_pending) {
6027                         /*
6028                          * This CPU don't support us in finding the end of an
6029                          * NMI-blocked window if the guest runs with IRQs
6030                          * disabled. So we pull the trigger after 1 s of
6031                          * futile waiting, but inform the user about this.
6032                          */
6033                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6034                                "state on VCPU %d after 1 s timeout\n",
6035                                __func__, vcpu->vcpu_id);
6036                         vmx->soft_vnmi_blocked = 0;
6037                 }
6038         }
6039
6040         if (exit_reason < kvm_vmx_max_exit_handlers
6041             && kvm_vmx_exit_handlers[exit_reason])
6042                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6043         else {
6044                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6045                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6046         }
6047         return 0;
6048 }
6049
6050 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6051 {
6052         if (irr == -1 || tpr < irr) {
6053                 vmcs_write32(TPR_THRESHOLD, 0);
6054                 return;
6055         }
6056
6057         vmcs_write32(TPR_THRESHOLD, irr);
6058 }
6059
6060 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6061 {
6062         u32 exit_intr_info;
6063
6064         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6065               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6066                 return;
6067
6068         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6069         exit_intr_info = vmx->exit_intr_info;
6070
6071         /* Handle machine checks before interrupts are enabled */
6072         if (is_machine_check(exit_intr_info))
6073                 kvm_machine_check();
6074
6075         /* We need to handle NMIs before interrupts are enabled */
6076         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6077             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6078                 kvm_before_handle_nmi(&vmx->vcpu);
6079                 asm("int $2");
6080                 kvm_after_handle_nmi(&vmx->vcpu);
6081         }
6082 }
6083
6084 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6085 {
6086         u32 exit_intr_info;
6087         bool unblock_nmi;
6088         u8 vector;
6089         bool idtv_info_valid;
6090
6091         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6092
6093         if (cpu_has_virtual_nmis()) {
6094                 if (vmx->nmi_known_unmasked)
6095                         return;
6096                 /*
6097                  * Can't use vmx->exit_intr_info since we're not sure what
6098                  * the exit reason is.
6099                  */
6100                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6101                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6102                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6103                 /*
6104                  * SDM 3: 27.7.1.2 (September 2008)
6105                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6106                  * a guest IRET fault.
6107                  * SDM 3: 23.2.2 (September 2008)
6108                  * Bit 12 is undefined in any of the following cases:
6109                  *  If the VM exit sets the valid bit in the IDT-vectoring
6110                  *   information field.
6111                  *  If the VM exit is due to a double fault.
6112                  */
6113                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6114                     vector != DF_VECTOR && !idtv_info_valid)
6115                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6116                                       GUEST_INTR_STATE_NMI);
6117                 else
6118                         vmx->nmi_known_unmasked =
6119                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6120                                   & GUEST_INTR_STATE_NMI);
6121         } else if (unlikely(vmx->soft_vnmi_blocked))
6122                 vmx->vnmi_blocked_time +=
6123                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6124 }
6125
6126 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6127                                       u32 idt_vectoring_info,
6128                                       int instr_len_field,
6129                                       int error_code_field)
6130 {
6131         u8 vector;
6132         int type;
6133         bool idtv_info_valid;
6134
6135         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6136
6137         vmx->vcpu.arch.nmi_injected = false;
6138         kvm_clear_exception_queue(&vmx->vcpu);
6139         kvm_clear_interrupt_queue(&vmx->vcpu);
6140
6141         if (!idtv_info_valid)
6142                 return;
6143
6144         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6145
6146         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6147         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6148
6149         switch (type) {
6150         case INTR_TYPE_NMI_INTR:
6151                 vmx->vcpu.arch.nmi_injected = true;
6152                 /*
6153                  * SDM 3: 27.7.1.2 (September 2008)
6154                  * Clear bit "block by NMI" before VM entry if a NMI
6155                  * delivery faulted.
6156                  */
6157                 vmx_set_nmi_mask(&vmx->vcpu, false);
6158                 break;
6159         case INTR_TYPE_SOFT_EXCEPTION:
6160                 vmx->vcpu.arch.event_exit_inst_len =
6161                         vmcs_read32(instr_len_field);
6162                 /* fall through */
6163         case INTR_TYPE_HARD_EXCEPTION:
6164                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6165                         u32 err = vmcs_read32(error_code_field);
6166                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
6167                 } else
6168                         kvm_queue_exception(&vmx->vcpu, vector);
6169                 break;
6170         case INTR_TYPE_SOFT_INTR:
6171                 vmx->vcpu.arch.event_exit_inst_len =
6172                         vmcs_read32(instr_len_field);
6173                 /* fall through */
6174         case INTR_TYPE_EXT_INTR:
6175                 kvm_queue_interrupt(&vmx->vcpu, vector,
6176                         type == INTR_TYPE_SOFT_INTR);
6177                 break;
6178         default:
6179                 break;
6180         }
6181 }
6182
6183 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6184 {
6185         if (is_guest_mode(&vmx->vcpu))
6186                 return;
6187         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6188                                   VM_EXIT_INSTRUCTION_LEN,
6189                                   IDT_VECTORING_ERROR_CODE);
6190 }
6191
6192 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6193 {
6194         if (is_guest_mode(vcpu))
6195                 return;
6196         __vmx_complete_interrupts(to_vmx(vcpu),
6197                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6198                                   VM_ENTRY_INSTRUCTION_LEN,
6199                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6200
6201         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6202 }
6203
6204 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6205 {
6206         int i, nr_msrs;
6207         struct perf_guest_switch_msr *msrs;
6208
6209         msrs = perf_guest_get_msrs(&nr_msrs);
6210
6211         if (!msrs)
6212                 return;
6213
6214         for (i = 0; i < nr_msrs; i++)
6215                 if (msrs[i].host == msrs[i].guest)
6216                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6217                 else
6218                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6219                                         msrs[i].host);
6220 }
6221
6222 #ifdef CONFIG_X86_64
6223 #define R "r"
6224 #define Q "q"
6225 #else
6226 #define R "e"
6227 #define Q "l"
6228 #endif
6229
6230 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6231 {
6232         struct vcpu_vmx *vmx = to_vmx(vcpu);
6233
6234         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6235                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6236                 if (vmcs12->idt_vectoring_info_field &
6237                                 VECTORING_INFO_VALID_MASK) {
6238                         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6239                                 vmcs12->idt_vectoring_info_field);
6240                         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6241                                 vmcs12->vm_exit_instruction_len);
6242                         if (vmcs12->idt_vectoring_info_field &
6243                                         VECTORING_INFO_DELIVER_CODE_MASK)
6244                                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6245                                         vmcs12->idt_vectoring_error_code);
6246                 }
6247         }
6248
6249         /* Record the guest's net vcpu time for enforced NMI injections. */
6250         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6251                 vmx->entry_time = ktime_get();
6252
6253         /* Don't enter VMX if guest state is invalid, let the exit handler
6254            start emulation until we arrive back to a valid state */
6255         if (vmx->emulation_required && emulate_invalid_guest_state)
6256                 return;
6257
6258         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6259                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6260         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6261                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6262
6263         /* When single-stepping over STI and MOV SS, we must clear the
6264          * corresponding interruptibility bits in the guest state. Otherwise
6265          * vmentry fails as it then expects bit 14 (BS) in pending debug
6266          * exceptions being set, but that's not correct for the guest debugging
6267          * case. */
6268         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6269                 vmx_set_interrupt_shadow(vcpu, 0);
6270
6271         atomic_switch_perf_msrs(vmx);
6272
6273         vmx->__launched = vmx->loaded_vmcs->launched;
6274         asm(
6275                 /* Store host registers */
6276                 "push %%"R"dx; push %%"R"bp;"
6277                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6278                 "push %%"R"cx \n\t"
6279                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6280                 "je 1f \n\t"
6281                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6282                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6283                 "1: \n\t"
6284                 /* Reload cr2 if changed */
6285                 "mov %c[cr2](%0), %%"R"ax \n\t"
6286                 "mov %%cr2, %%"R"dx \n\t"
6287                 "cmp %%"R"ax, %%"R"dx \n\t"
6288                 "je 2f \n\t"
6289                 "mov %%"R"ax, %%cr2 \n\t"
6290                 "2: \n\t"
6291                 /* Check if vmlaunch of vmresume is needed */
6292                 "cmpl $0, %c[launched](%0) \n\t"
6293                 /* Load guest registers.  Don't clobber flags. */
6294                 "mov %c[rax](%0), %%"R"ax \n\t"
6295                 "mov %c[rbx](%0), %%"R"bx \n\t"
6296                 "mov %c[rdx](%0), %%"R"dx \n\t"
6297                 "mov %c[rsi](%0), %%"R"si \n\t"
6298                 "mov %c[rdi](%0), %%"R"di \n\t"
6299                 "mov %c[rbp](%0), %%"R"bp \n\t"
6300 #ifdef CONFIG_X86_64
6301                 "mov %c[r8](%0),  %%r8  \n\t"
6302                 "mov %c[r9](%0),  %%r9  \n\t"
6303                 "mov %c[r10](%0), %%r10 \n\t"
6304                 "mov %c[r11](%0), %%r11 \n\t"
6305                 "mov %c[r12](%0), %%r12 \n\t"
6306                 "mov %c[r13](%0), %%r13 \n\t"
6307                 "mov %c[r14](%0), %%r14 \n\t"
6308                 "mov %c[r15](%0), %%r15 \n\t"
6309 #endif
6310                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6311
6312                 /* Enter guest mode */
6313                 "jne .Llaunched \n\t"
6314                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6315                 "jmp .Lkvm_vmx_return \n\t"
6316                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6317                 ".Lkvm_vmx_return: "
6318                 /* Save guest registers, load host registers, keep flags */
6319                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6320                 "pop %0 \n\t"
6321                 "mov %%"R"ax, %c[rax](%0) \n\t"
6322                 "mov %%"R"bx, %c[rbx](%0) \n\t"
6323                 "pop"Q" %c[rcx](%0) \n\t"
6324                 "mov %%"R"dx, %c[rdx](%0) \n\t"
6325                 "mov %%"R"si, %c[rsi](%0) \n\t"
6326                 "mov %%"R"di, %c[rdi](%0) \n\t"
6327                 "mov %%"R"bp, %c[rbp](%0) \n\t"
6328 #ifdef CONFIG_X86_64
6329                 "mov %%r8,  %c[r8](%0) \n\t"
6330                 "mov %%r9,  %c[r9](%0) \n\t"
6331                 "mov %%r10, %c[r10](%0) \n\t"
6332                 "mov %%r11, %c[r11](%0) \n\t"
6333                 "mov %%r12, %c[r12](%0) \n\t"
6334                 "mov %%r13, %c[r13](%0) \n\t"
6335                 "mov %%r14, %c[r14](%0) \n\t"
6336                 "mov %%r15, %c[r15](%0) \n\t"
6337 #endif
6338                 "mov %%cr2, %%"R"ax   \n\t"
6339                 "mov %%"R"ax, %c[cr2](%0) \n\t"
6340
6341                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
6342                 "setbe %c[fail](%0) \n\t"
6343               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6344                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6345                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6346                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6347                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6348                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6349                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6350                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6351                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6352                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6353                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6354 #ifdef CONFIG_X86_64
6355                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6356                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6357                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6358                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6359                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6360                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6361                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6362                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6363 #endif
6364                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6365                 [wordsize]"i"(sizeof(ulong))
6366               : "cc", "memory"
6367                 , R"ax", R"bx", R"di", R"si"
6368 #ifdef CONFIG_X86_64
6369                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6370 #endif
6371               );
6372
6373         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6374                                   | (1 << VCPU_EXREG_RFLAGS)
6375                                   | (1 << VCPU_EXREG_CPL)
6376                                   | (1 << VCPU_EXREG_PDPTR)
6377                                   | (1 << VCPU_EXREG_SEGMENTS)
6378                                   | (1 << VCPU_EXREG_CR3));
6379         vcpu->arch.regs_dirty = 0;
6380
6381         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6382
6383         if (is_guest_mode(vcpu)) {
6384                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6385                 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6386                 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6387                         vmcs12->idt_vectoring_error_code =
6388                                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6389                         vmcs12->vm_exit_instruction_len =
6390                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6391                 }
6392         }
6393
6394         vmx->loaded_vmcs->launched = 1;
6395
6396         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6397         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6398
6399         vmx_complete_atomic_exit(vmx);
6400         vmx_recover_nmi_blocking(vmx);
6401         vmx_complete_interrupts(vmx);
6402 }
6403
6404 #undef R
6405 #undef Q
6406
6407 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6408 {
6409         struct vcpu_vmx *vmx = to_vmx(vcpu);
6410
6411         free_vpid(vmx);
6412         free_nested(vmx);
6413         free_loaded_vmcs(vmx->loaded_vmcs);
6414         kfree(vmx->guest_msrs);
6415         kvm_vcpu_uninit(vcpu);
6416         kmem_cache_free(kvm_vcpu_cache, vmx);
6417 }
6418
6419 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6420 {
6421         int err;
6422         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6423         int cpu;
6424
6425         if (!vmx)
6426                 return ERR_PTR(-ENOMEM);
6427
6428         allocate_vpid(vmx);
6429
6430         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6431         if (err)
6432                 goto free_vcpu;
6433
6434         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6435         err = -ENOMEM;
6436         if (!vmx->guest_msrs) {
6437                 goto uninit_vcpu;
6438         }
6439
6440         vmx->loaded_vmcs = &vmx->vmcs01;
6441         vmx->loaded_vmcs->vmcs = alloc_vmcs();
6442         if (!vmx->loaded_vmcs->vmcs)
6443                 goto free_msrs;
6444         if (!vmm_exclusive)
6445                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6446         loaded_vmcs_init(vmx->loaded_vmcs);
6447         if (!vmm_exclusive)
6448                 kvm_cpu_vmxoff();
6449
6450         cpu = get_cpu();
6451         vmx_vcpu_load(&vmx->vcpu, cpu);
6452         vmx->vcpu.cpu = cpu;
6453         err = vmx_vcpu_setup(vmx);
6454         vmx_vcpu_put(&vmx->vcpu);
6455         put_cpu();
6456         if (err)
6457                 goto free_vmcs;
6458         if (vm_need_virtualize_apic_accesses(kvm))
6459                 err = alloc_apic_access_page(kvm);
6460                 if (err)
6461                         goto free_vmcs;
6462
6463         if (enable_ept) {
6464                 if (!kvm->arch.ept_identity_map_addr)
6465                         kvm->arch.ept_identity_map_addr =
6466                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6467                 err = -ENOMEM;
6468                 if (alloc_identity_pagetable(kvm) != 0)
6469                         goto free_vmcs;
6470                 if (!init_rmode_identity_map(kvm))
6471                         goto free_vmcs;
6472         }
6473
6474         vmx->nested.current_vmptr = -1ull;
6475         vmx->nested.current_vmcs12 = NULL;
6476
6477         return &vmx->vcpu;
6478
6479 free_vmcs:
6480         free_loaded_vmcs(vmx->loaded_vmcs);
6481 free_msrs:
6482         kfree(vmx->guest_msrs);
6483 uninit_vcpu:
6484         kvm_vcpu_uninit(&vmx->vcpu);
6485 free_vcpu:
6486         free_vpid(vmx);
6487         kmem_cache_free(kvm_vcpu_cache, vmx);
6488         return ERR_PTR(err);
6489 }
6490
6491 static void __init vmx_check_processor_compat(void *rtn)
6492 {
6493         struct vmcs_config vmcs_conf;
6494
6495         *(int *)rtn = 0;
6496         if (setup_vmcs_config(&vmcs_conf) < 0)
6497                 *(int *)rtn = -EIO;
6498         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6499                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6500                                 smp_processor_id());
6501                 *(int *)rtn = -EIO;
6502         }
6503 }
6504
6505 static int get_ept_level(void)
6506 {
6507         return VMX_EPT_DEFAULT_GAW + 1;
6508 }
6509
6510 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6511 {
6512         u64 ret;
6513
6514         /* For VT-d and EPT combination
6515          * 1. MMIO: always map as UC
6516          * 2. EPT with VT-d:
6517          *   a. VT-d without snooping control feature: can't guarantee the
6518          *      result, try to trust guest.
6519          *   b. VT-d with snooping control feature: snooping control feature of
6520          *      VT-d engine can guarantee the cache correctness. Just set it
6521          *      to WB to keep consistent with host. So the same as item 3.
6522          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6523          *    consistent with host MTRR
6524          */
6525         if (is_mmio)
6526                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6527         else if (vcpu->kvm->arch.iommu_domain &&
6528                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6529                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6530                       VMX_EPT_MT_EPTE_SHIFT;
6531         else
6532                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6533                         | VMX_EPT_IPAT_BIT;
6534
6535         return ret;
6536 }
6537
6538 static int vmx_get_lpage_level(void)
6539 {
6540         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6541                 return PT_DIRECTORY_LEVEL;
6542         else
6543                 /* For shadow and EPT supported 1GB page */
6544                 return PT_PDPE_LEVEL;
6545 }
6546
6547 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6548 {
6549         struct kvm_cpuid_entry2 *best;
6550         struct vcpu_vmx *vmx = to_vmx(vcpu);
6551         u32 exec_control;
6552
6553         vmx->rdtscp_enabled = false;
6554         if (vmx_rdtscp_supported()) {
6555                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6556                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6557                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6558                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6559                                 vmx->rdtscp_enabled = true;
6560                         else {
6561                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6562                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6563                                                 exec_control);
6564                         }
6565                 }
6566         }
6567
6568         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6569         /* Exposing INVPCID only when PCID is exposed */
6570         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6571         if (vmx_invpcid_supported() &&
6572             best && (best->ecx & bit(X86_FEATURE_INVPCID)) &&
6573             guest_cpuid_has_pcid(vcpu)) {
6574                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
6575                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6576                              exec_control);
6577         } else {
6578                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6579                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6580                              exec_control);
6581                 if (best)
6582                         best->ecx &= ~bit(X86_FEATURE_INVPCID);
6583         }
6584 }
6585
6586 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6587 {
6588         if (func == 1 && nested)
6589                 entry->ecx |= bit(X86_FEATURE_VMX);
6590 }
6591
6592 /*
6593  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6594  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6595  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6596  * guest in a way that will both be appropriate to L1's requests, and our
6597  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6598  * function also has additional necessary side-effects, like setting various
6599  * vcpu->arch fields.
6600  */
6601 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6602 {
6603         struct vcpu_vmx *vmx = to_vmx(vcpu);
6604         u32 exec_control;
6605
6606         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6607         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6608         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6609         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6610         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6611         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6612         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6613         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6614         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6615         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6616         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6617         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6618         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6619         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6620         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6621         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6622         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6623         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6624         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6625         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6626         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6627         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6628         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6629         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6630         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6631         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6632         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6633         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6634         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6635         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6636         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6637         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6638         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6639         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6640         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6641         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6642
6643         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6644         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6645                 vmcs12->vm_entry_intr_info_field);
6646         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6647                 vmcs12->vm_entry_exception_error_code);
6648         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6649                 vmcs12->vm_entry_instruction_len);
6650         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6651                 vmcs12->guest_interruptibility_info);
6652         vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6653         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6654         vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6655         vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6656         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6657                 vmcs12->guest_pending_dbg_exceptions);
6658         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6659         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6660
6661         vmcs_write64(VMCS_LINK_POINTER, -1ull);
6662
6663         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6664                 (vmcs_config.pin_based_exec_ctrl |
6665                  vmcs12->pin_based_vm_exec_control));
6666
6667         /*
6668          * Whether page-faults are trapped is determined by a combination of
6669          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6670          * If enable_ept, L0 doesn't care about page faults and we should
6671          * set all of these to L1's desires. However, if !enable_ept, L0 does
6672          * care about (at least some) page faults, and because it is not easy
6673          * (if at all possible?) to merge L0 and L1's desires, we simply ask
6674          * to exit on each and every L2 page fault. This is done by setting
6675          * MASK=MATCH=0 and (see below) EB.PF=1.
6676          * Note that below we don't need special code to set EB.PF beyond the
6677          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6678          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6679          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6680          *
6681          * A problem with this approach (when !enable_ept) is that L1 may be
6682          * injected with more page faults than it asked for. This could have
6683          * caused problems, but in practice existing hypervisors don't care.
6684          * To fix this, we will need to emulate the PFEC checking (on the L1
6685          * page tables), using walk_addr(), when injecting PFs to L1.
6686          */
6687         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6688                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6689         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6690                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6691
6692         if (cpu_has_secondary_exec_ctrls()) {
6693                 u32 exec_control = vmx_secondary_exec_control(vmx);
6694                 if (!vmx->rdtscp_enabled)
6695                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
6696                 /* Take the following fields only from vmcs12 */
6697                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6698                 if (nested_cpu_has(vmcs12,
6699                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6700                         exec_control |= vmcs12->secondary_vm_exec_control;
6701
6702                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6703                         /*
6704                          * Translate L1 physical address to host physical
6705                          * address for vmcs02. Keep the page pinned, so this
6706                          * physical address remains valid. We keep a reference
6707                          * to it so we can release it later.
6708                          */
6709                         if (vmx->nested.apic_access_page) /* shouldn't happen */
6710                                 nested_release_page(vmx->nested.apic_access_page);
6711                         vmx->nested.apic_access_page =
6712                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
6713                         /*
6714                          * If translation failed, no matter: This feature asks
6715                          * to exit when accessing the given address, and if it
6716                          * can never be accessed, this feature won't do
6717                          * anything anyway.
6718                          */
6719                         if (!vmx->nested.apic_access_page)
6720                                 exec_control &=
6721                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6722                         else
6723                                 vmcs_write64(APIC_ACCESS_ADDR,
6724                                   page_to_phys(vmx->nested.apic_access_page));
6725                 }
6726
6727                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6728         }
6729
6730
6731         /*
6732          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6733          * Some constant fields are set here by vmx_set_constant_host_state().
6734          * Other fields are different per CPU, and will be set later when
6735          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6736          */
6737         vmx_set_constant_host_state();
6738
6739         /*
6740          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6741          * entry, but only if the current (host) sp changed from the value
6742          * we wrote last (vmx->host_rsp). This cache is no longer relevant
6743          * if we switch vmcs, and rather than hold a separate cache per vmcs,
6744          * here we just force the write to happen on entry.
6745          */
6746         vmx->host_rsp = 0;
6747
6748         exec_control = vmx_exec_control(vmx); /* L0's desires */
6749         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6750         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6751         exec_control &= ~CPU_BASED_TPR_SHADOW;
6752         exec_control |= vmcs12->cpu_based_vm_exec_control;
6753         /*
6754          * Merging of IO and MSR bitmaps not currently supported.
6755          * Rather, exit every time.
6756          */
6757         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6758         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6759         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6760
6761         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6762
6763         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6764          * bitwise-or of what L1 wants to trap for L2, and what we want to
6765          * trap. Note that CR0.TS also needs updating - we do this later.
6766          */
6767         update_exception_bitmap(vcpu);
6768         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6769         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6770
6771         /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6772         vmcs_write32(VM_EXIT_CONTROLS,
6773                 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6774         vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6775                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6776
6777         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6778                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6779         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6780                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6781
6782
6783         set_cr4_guest_host_mask(vmx);
6784
6785         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6786                 vmcs_write64(TSC_OFFSET,
6787                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6788         else
6789                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6790
6791         if (enable_vpid) {
6792                 /*
6793                  * Trivially support vpid by letting L2s share their parent
6794                  * L1's vpid. TODO: move to a more elaborate solution, giving
6795                  * each L2 its own vpid and exposing the vpid feature to L1.
6796                  */
6797                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6798                 vmx_flush_tlb(vcpu);
6799         }
6800
6801         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6802                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6803         if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6804                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6805         else
6806                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6807         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6808         vmx_set_efer(vcpu, vcpu->arch.efer);
6809
6810         /*
6811          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6812          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6813          * The CR0_READ_SHADOW is what L2 should have expected to read given
6814          * the specifications by L1; It's not enough to take
6815          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6816          * have more bits than L1 expected.
6817          */
6818         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6819         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6820
6821         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6822         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6823
6824         /* shadow page tables on either EPT or shadow page tables */
6825         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6826         kvm_mmu_reset_context(vcpu);
6827
6828         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6829         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6830 }
6831
6832 /*
6833  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6834  * for running an L2 nested guest.
6835  */
6836 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6837 {
6838         struct vmcs12 *vmcs12;
6839         struct vcpu_vmx *vmx = to_vmx(vcpu);
6840         int cpu;
6841         struct loaded_vmcs *vmcs02;
6842
6843         if (!nested_vmx_check_permission(vcpu) ||
6844             !nested_vmx_check_vmcs12(vcpu))
6845                 return 1;
6846
6847         skip_emulated_instruction(vcpu);
6848         vmcs12 = get_vmcs12(vcpu);
6849
6850         /*
6851          * The nested entry process starts with enforcing various prerequisites
6852          * on vmcs12 as required by the Intel SDM, and act appropriately when
6853          * they fail: As the SDM explains, some conditions should cause the
6854          * instruction to fail, while others will cause the instruction to seem
6855          * to succeed, but return an EXIT_REASON_INVALID_STATE.
6856          * To speed up the normal (success) code path, we should avoid checking
6857          * for misconfigurations which will anyway be caught by the processor
6858          * when using the merged vmcs02.
6859          */
6860         if (vmcs12->launch_state == launch) {
6861                 nested_vmx_failValid(vcpu,
6862                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6863                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6864                 return 1;
6865         }
6866
6867         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6868                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6869                 /*TODO: Also verify bits beyond physical address width are 0*/
6870                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6871                 return 1;
6872         }
6873
6874         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6875                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6876                 /*TODO: Also verify bits beyond physical address width are 0*/
6877                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6878                 return 1;
6879         }
6880
6881         if (vmcs12->vm_entry_msr_load_count > 0 ||
6882             vmcs12->vm_exit_msr_load_count > 0 ||
6883             vmcs12->vm_exit_msr_store_count > 0) {
6884                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6885                                     __func__);
6886                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6887                 return 1;
6888         }
6889
6890         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6891               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6892             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6893               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6894             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6895               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6896             !vmx_control_verify(vmcs12->vm_exit_controls,
6897               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6898             !vmx_control_verify(vmcs12->vm_entry_controls,
6899               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6900         {
6901                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6902                 return 1;
6903         }
6904
6905         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6906             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6907                 nested_vmx_failValid(vcpu,
6908                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6909                 return 1;
6910         }
6911
6912         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6913             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6914                 nested_vmx_entry_failure(vcpu, vmcs12,
6915                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6916                 return 1;
6917         }
6918         if (vmcs12->vmcs_link_pointer != -1ull) {
6919                 nested_vmx_entry_failure(vcpu, vmcs12,
6920                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6921                 return 1;
6922         }
6923
6924         /*
6925          * We're finally done with prerequisite checking, and can start with
6926          * the nested entry.
6927          */
6928
6929         vmcs02 = nested_get_current_vmcs02(vmx);
6930         if (!vmcs02)
6931                 return -ENOMEM;
6932
6933         enter_guest_mode(vcpu);
6934
6935         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6936
6937         cpu = get_cpu();
6938         vmx->loaded_vmcs = vmcs02;
6939         vmx_vcpu_put(vcpu);
6940         vmx_vcpu_load(vcpu, cpu);
6941         vcpu->cpu = cpu;
6942         put_cpu();
6943
6944         vmcs12->launch_state = 1;
6945
6946         prepare_vmcs02(vcpu, vmcs12);
6947
6948         /*
6949          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6950          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6951          * returned as far as L1 is concerned. It will only return (and set
6952          * the success flag) when L2 exits (see nested_vmx_vmexit()).
6953          */
6954         return 1;
6955 }
6956
6957 /*
6958  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6959  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6960  * This function returns the new value we should put in vmcs12.guest_cr0.
6961  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6962  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6963  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6964  *     didn't trap the bit, because if L1 did, so would L0).
6965  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6966  *     been modified by L2, and L1 knows it. So just leave the old value of
6967  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6968  *     isn't relevant, because if L0 traps this bit it can set it to anything.
6969  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6970  *     changed these bits, and therefore they need to be updated, but L0
6971  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6972  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6973  */
6974 static inline unsigned long
6975 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6976 {
6977         return
6978         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6979         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6980         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6981                         vcpu->arch.cr0_guest_owned_bits));
6982 }
6983
6984 static inline unsigned long
6985 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6986 {
6987         return
6988         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6989         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6990         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6991                         vcpu->arch.cr4_guest_owned_bits));
6992 }
6993
6994 /*
6995  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6996  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6997  * and this function updates it to reflect the changes to the guest state while
6998  * L2 was running (and perhaps made some exits which were handled directly by L0
6999  * without going back to L1), and to reflect the exit reason.
7000  * Note that we do not have to copy here all VMCS fields, just those that
7001  * could have changed by the L2 guest or the exit - i.e., the guest-state and
7002  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7003  * which already writes to vmcs12 directly.
7004  */
7005 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7006 {
7007         /* update guest state fields: */
7008         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7009         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7010
7011         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7012         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7013         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7014         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7015
7016         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7017         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7018         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7019         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7020         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7021         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7022         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7023         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7024         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7025         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7026         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7027         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7028         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7029         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7030         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7031         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7032         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7033         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7034         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7035         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7036         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7037         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7038         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7039         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7040         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7041         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7042         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7043         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7044         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7045         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7046         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7047         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7048         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7049         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7050         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7051         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7052
7053         vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
7054         vmcs12->guest_interruptibility_info =
7055                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7056         vmcs12->guest_pending_dbg_exceptions =
7057                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7058
7059         /* TODO: These cannot have changed unless we have MSR bitmaps and
7060          * the relevant bit asks not to trap the change */
7061         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7062         if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
7063                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7064         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7065         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7066         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7067
7068         /* update exit information fields: */
7069
7070         vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
7071         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7072
7073         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7074         vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7075         vmcs12->idt_vectoring_info_field =
7076                 vmcs_read32(IDT_VECTORING_INFO_FIELD);
7077         vmcs12->idt_vectoring_error_code =
7078                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
7079         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7080         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7081
7082         /* clear vm-entry fields which are to be cleared on exit */
7083         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
7084                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7085 }
7086
7087 /*
7088  * A part of what we need to when the nested L2 guest exits and we want to
7089  * run its L1 parent, is to reset L1's guest state to the host state specified
7090  * in vmcs12.
7091  * This function is to be called not only on normal nested exit, but also on
7092  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7093  * Failures During or After Loading Guest State").
7094  * This function should be called when the active VMCS is L1's (vmcs01).
7095  */
7096 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7097 {
7098         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7099                 vcpu->arch.efer = vmcs12->host_ia32_efer;
7100         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7101                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7102         else
7103                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7104         vmx_set_efer(vcpu, vcpu->arch.efer);
7105
7106         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7107         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7108         /*
7109          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7110          * actually changed, because it depends on the current state of
7111          * fpu_active (which may have changed).
7112          * Note that vmx_set_cr0 refers to efer set above.
7113          */
7114         kvm_set_cr0(vcpu, vmcs12->host_cr0);
7115         /*
7116          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7117          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7118          * but we also need to update cr0_guest_host_mask and exception_bitmap.
7119          */
7120         update_exception_bitmap(vcpu);
7121         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7122         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7123
7124         /*
7125          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7126          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7127          */
7128         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7129         kvm_set_cr4(vcpu, vmcs12->host_cr4);
7130
7131         /* shadow page tables on either EPT or shadow page tables */
7132         kvm_set_cr3(vcpu, vmcs12->host_cr3);
7133         kvm_mmu_reset_context(vcpu);
7134
7135         if (enable_vpid) {
7136                 /*
7137                  * Trivially support vpid by letting L2s share their parent
7138                  * L1's vpid. TODO: move to a more elaborate solution, giving
7139                  * each L2 its own vpid and exposing the vpid feature to L1.
7140                  */
7141                 vmx_flush_tlb(vcpu);
7142         }
7143
7144
7145         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7146         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7147         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7148         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7149         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7150         vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7151         vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7152         vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7153         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7154         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7155         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7156         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7157         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7158         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7159         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7160
7161         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7162                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7163         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7164                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7165                         vmcs12->host_ia32_perf_global_ctrl);
7166 }
7167
7168 /*
7169  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7170  * and modify vmcs12 to make it see what it would expect to see there if
7171  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7172  */
7173 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7174 {
7175         struct vcpu_vmx *vmx = to_vmx(vcpu);
7176         int cpu;
7177         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7178
7179         leave_guest_mode(vcpu);
7180         prepare_vmcs12(vcpu, vmcs12);
7181
7182         cpu = get_cpu();
7183         vmx->loaded_vmcs = &vmx->vmcs01;
7184         vmx_vcpu_put(vcpu);
7185         vmx_vcpu_load(vcpu, cpu);
7186         vcpu->cpu = cpu;
7187         put_cpu();
7188
7189         /* if no vmcs02 cache requested, remove the one we used */
7190         if (VMCS02_POOL_SIZE == 0)
7191                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7192
7193         load_vmcs12_host_state(vcpu, vmcs12);
7194
7195         /* Update TSC_OFFSET if TSC was changed while L2 ran */
7196         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7197
7198         /* This is needed for same reason as it was needed in prepare_vmcs02 */
7199         vmx->host_rsp = 0;
7200
7201         /* Unpin physical memory we referred to in vmcs02 */
7202         if (vmx->nested.apic_access_page) {
7203                 nested_release_page(vmx->nested.apic_access_page);
7204                 vmx->nested.apic_access_page = 0;
7205         }
7206
7207         /*
7208          * Exiting from L2 to L1, we're now back to L1 which thinks it just
7209          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7210          * success or failure flag accordingly.
7211          */
7212         if (unlikely(vmx->fail)) {
7213                 vmx->fail = 0;
7214                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7215         } else
7216                 nested_vmx_succeed(vcpu);
7217 }
7218
7219 /*
7220  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7221  * 23.7 "VM-entry failures during or after loading guest state" (this also
7222  * lists the acceptable exit-reason and exit-qualification parameters).
7223  * It should only be called before L2 actually succeeded to run, and when
7224  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7225  */
7226 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7227                         struct vmcs12 *vmcs12,
7228                         u32 reason, unsigned long qualification)
7229 {
7230         load_vmcs12_host_state(vcpu, vmcs12);
7231         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7232         vmcs12->exit_qualification = qualification;
7233         nested_vmx_succeed(vcpu);
7234 }
7235
7236 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7237                                struct x86_instruction_info *info,
7238                                enum x86_intercept_stage stage)
7239 {
7240         return X86EMUL_CONTINUE;
7241 }
7242
7243 static struct kvm_x86_ops vmx_x86_ops = {
7244         .cpu_has_kvm_support = cpu_has_kvm_support,
7245         .disabled_by_bios = vmx_disabled_by_bios,
7246         .hardware_setup = hardware_setup,
7247         .hardware_unsetup = hardware_unsetup,
7248         .check_processor_compatibility = vmx_check_processor_compat,
7249         .hardware_enable = hardware_enable,
7250         .hardware_disable = hardware_disable,
7251         .cpu_has_accelerated_tpr = report_flexpriority,
7252
7253         .vcpu_create = vmx_create_vcpu,
7254         .vcpu_free = vmx_free_vcpu,
7255         .vcpu_reset = vmx_vcpu_reset,
7256
7257         .prepare_guest_switch = vmx_save_host_state,
7258         .vcpu_load = vmx_vcpu_load,
7259         .vcpu_put = vmx_vcpu_put,
7260
7261         .set_guest_debug = set_guest_debug,
7262         .get_msr = vmx_get_msr,
7263         .set_msr = vmx_set_msr,
7264         .get_segment_base = vmx_get_segment_base,
7265         .get_segment = vmx_get_segment,
7266         .set_segment = vmx_set_segment,
7267         .get_cpl = vmx_get_cpl,
7268         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7269         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7270         .decache_cr3 = vmx_decache_cr3,
7271         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7272         .set_cr0 = vmx_set_cr0,
7273         .set_cr3 = vmx_set_cr3,
7274         .set_cr4 = vmx_set_cr4,
7275         .set_efer = vmx_set_efer,
7276         .get_idt = vmx_get_idt,
7277         .set_idt = vmx_set_idt,
7278         .get_gdt = vmx_get_gdt,
7279         .set_gdt = vmx_set_gdt,
7280         .set_dr7 = vmx_set_dr7,
7281         .cache_reg = vmx_cache_reg,
7282         .get_rflags = vmx_get_rflags,
7283         .set_rflags = vmx_set_rflags,
7284         .fpu_activate = vmx_fpu_activate,
7285         .fpu_deactivate = vmx_fpu_deactivate,
7286
7287         .tlb_flush = vmx_flush_tlb,
7288
7289         .run = vmx_vcpu_run,
7290         .handle_exit = vmx_handle_exit,
7291         .skip_emulated_instruction = skip_emulated_instruction,
7292         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7293         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7294         .patch_hypercall = vmx_patch_hypercall,
7295         .set_irq = vmx_inject_irq,
7296         .set_nmi = vmx_inject_nmi,
7297         .queue_exception = vmx_queue_exception,
7298         .cancel_injection = vmx_cancel_injection,
7299         .interrupt_allowed = vmx_interrupt_allowed,
7300         .nmi_allowed = vmx_nmi_allowed,
7301         .get_nmi_mask = vmx_get_nmi_mask,
7302         .set_nmi_mask = vmx_set_nmi_mask,
7303         .enable_nmi_window = enable_nmi_window,
7304         .enable_irq_window = enable_irq_window,
7305         .update_cr8_intercept = update_cr8_intercept,
7306
7307         .set_tss_addr = vmx_set_tss_addr,
7308         .get_tdp_level = get_ept_level,
7309         .get_mt_mask = vmx_get_mt_mask,
7310
7311         .get_exit_info = vmx_get_exit_info,
7312
7313         .get_lpage_level = vmx_get_lpage_level,
7314
7315         .cpuid_update = vmx_cpuid_update,
7316
7317         .rdtscp_supported = vmx_rdtscp_supported,
7318         .invpcid_supported = vmx_invpcid_supported,
7319
7320         .set_supported_cpuid = vmx_set_supported_cpuid,
7321
7322         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7323
7324         .set_tsc_khz = vmx_set_tsc_khz,
7325         .write_tsc_offset = vmx_write_tsc_offset,
7326         .adjust_tsc_offset = vmx_adjust_tsc_offset,
7327         .compute_tsc_offset = vmx_compute_tsc_offset,
7328         .read_l1_tsc = vmx_read_l1_tsc,
7329
7330         .set_tdp_cr3 = vmx_set_cr3,
7331
7332         .check_intercept = vmx_check_intercept,
7333 };
7334
7335 static int __init vmx_init(void)
7336 {
7337         int r, i;
7338
7339         rdmsrl_safe(MSR_EFER, &host_efer);
7340
7341         for (i = 0; i < NR_VMX_MSR; ++i)
7342                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7343
7344         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7345         if (!vmx_io_bitmap_a)
7346                 return -ENOMEM;
7347
7348         r = -ENOMEM;
7349
7350         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7351         if (!vmx_io_bitmap_b)
7352                 goto out;
7353
7354         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7355         if (!vmx_msr_bitmap_legacy)
7356                 goto out1;
7357
7358
7359         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7360         if (!vmx_msr_bitmap_longmode)
7361                 goto out2;
7362
7363
7364         /*
7365          * Allow direct access to the PC debug port (it is often used for I/O
7366          * delays, but the vmexits simply slow things down).
7367          */
7368         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7369         clear_bit(0x80, vmx_io_bitmap_a);
7370
7371         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7372
7373         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7374         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7375
7376         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7377
7378         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7379                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7380         if (r)
7381                 goto out3;
7382
7383         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7384         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7385         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7386         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7387         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7388         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7389
7390         if (enable_ept) {
7391                 kvm_mmu_set_mask_ptes(0ull,
7392                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
7393                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
7394                         0ull, VMX_EPT_EXECUTABLE_MASK);
7395                 ept_set_mmio_spte_mask();
7396                 kvm_enable_tdp();
7397         } else
7398                 kvm_disable_tdp();
7399
7400         return 0;
7401
7402 out3:
7403         free_page((unsigned long)vmx_msr_bitmap_longmode);
7404 out2:
7405         free_page((unsigned long)vmx_msr_bitmap_legacy);
7406 out1:
7407         free_page((unsigned long)vmx_io_bitmap_b);
7408 out:
7409         free_page((unsigned long)vmx_io_bitmap_a);
7410         return r;
7411 }
7412
7413 static void __exit vmx_exit(void)
7414 {
7415         free_page((unsigned long)vmx_msr_bitmap_legacy);
7416         free_page((unsigned long)vmx_msr_bitmap_longmode);
7417         free_page((unsigned long)vmx_io_bitmap_b);
7418         free_page((unsigned long)vmx_io_bitmap_a);
7419
7420         kvm_exit();
7421 }
7422
7423 module_init(vmx_init)
7424 module_exit(vmx_exit)