8c14d6a455b00ed446c7b97b6bdd5288214a728c
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include "kvm_cache_regs.h"
36 #include "x86.h"
37
38 #include <asm/io.h>
39 #include <asm/desc.h>
40 #include <asm/vmx.h>
41 #include <asm/virtext.h>
42 #include <asm/mce.h>
43 #include <asm/i387.h>
44 #include <asm/xcr.h>
45 #include <asm/perf_event.h>
46 #include <asm/debugreg.h>
47 #include <asm/kexec.h>
48 #include <asm/apic.h>
49
50 #include "trace.h"
51
52 #define __ex(x) __kvm_handle_fault_on_reboot(x)
53 #define __ex_clear(x, reg) \
54         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
55
56 MODULE_AUTHOR("Qumranet");
57 MODULE_LICENSE("GPL");
58
59 static const struct x86_cpu_id vmx_cpu_id[] = {
60         X86_FEATURE_MATCH(X86_FEATURE_VMX),
61         {}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
64
65 static bool __read_mostly enable_vpid = 1;
66 module_param_named(vpid, enable_vpid, bool, 0444);
67
68 static bool __read_mostly flexpriority_enabled = 1;
69 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
70
71 static bool __read_mostly enable_ept = 1;
72 module_param_named(ept, enable_ept, bool, S_IRUGO);
73
74 static bool __read_mostly enable_unrestricted_guest = 1;
75 module_param_named(unrestricted_guest,
76                         enable_unrestricted_guest, bool, S_IRUGO);
77
78 static bool __read_mostly enable_ept_ad_bits = 1;
79 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
80
81 static bool __read_mostly emulate_invalid_guest_state = true;
82 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
83
84 static bool __read_mostly vmm_exclusive = 1;
85 module_param(vmm_exclusive, bool, S_IRUGO);
86
87 static bool __read_mostly fasteoi = 1;
88 module_param(fasteoi, bool, S_IRUGO);
89
90 static bool __read_mostly enable_apicv = 1;
91 module_param(enable_apicv, bool, S_IRUGO);
92
93 static bool __read_mostly enable_shadow_vmcs = 1;
94 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
95 /*
96  * If nested=1, nested virtualization is supported, i.e., guests may use
97  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
98  * use VMX instructions.
99  */
100 static bool __read_mostly nested = 0;
101 module_param(nested, bool, S_IRUGO);
102
103 static u64 __read_mostly host_xss;
104
105 static bool __read_mostly enable_pml = 1;
106 module_param_named(pml, enable_pml, bool, S_IRUGO);
107
108 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
109 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
110 #define KVM_VM_CR0_ALWAYS_ON                                            \
111         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
112 #define KVM_CR4_GUEST_OWNED_BITS                                      \
113         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
114          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
115
116 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
117 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
118
119 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
120
121 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
122
123 /*
124  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
125  * ple_gap:    upper bound on the amount of time between two successive
126  *             executions of PAUSE in a loop. Also indicate if ple enabled.
127  *             According to test, this time is usually smaller than 128 cycles.
128  * ple_window: upper bound on the amount of time a guest is allowed to execute
129  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
130  *             less than 2^12 cycles
131  * Time is measured based on a counter that runs at the same rate as the TSC,
132  * refer SDM volume 3b section 21.6.13 & 22.1.3.
133  */
134 #define KVM_VMX_DEFAULT_PLE_GAP           128
135 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
136 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
137 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
138 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
139                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
140
141 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
142 module_param(ple_gap, int, S_IRUGO);
143
144 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
145 module_param(ple_window, int, S_IRUGO);
146
147 /* Default doubles per-vcpu window every exit. */
148 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
149 module_param(ple_window_grow, int, S_IRUGO);
150
151 /* Default resets per-vcpu window every exit to ple_window. */
152 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
153 module_param(ple_window_shrink, int, S_IRUGO);
154
155 /* Default is to compute the maximum so we can never overflow. */
156 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
157 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
158 module_param(ple_window_max, int, S_IRUGO);
159
160 extern const ulong vmx_return;
161
162 #define NR_AUTOLOAD_MSRS 8
163 #define VMCS02_POOL_SIZE 1
164
165 struct vmcs {
166         u32 revision_id;
167         u32 abort;
168         char data[0];
169 };
170
171 /*
172  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
173  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
174  * loaded on this CPU (so we can clear them if the CPU goes down).
175  */
176 struct loaded_vmcs {
177         struct vmcs *vmcs;
178         int cpu;
179         int launched;
180         struct list_head loaded_vmcss_on_cpu_link;
181 };
182
183 struct shared_msr_entry {
184         unsigned index;
185         u64 data;
186         u64 mask;
187 };
188
189 /*
190  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
191  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
192  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
193  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
194  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
195  * More than one of these structures may exist, if L1 runs multiple L2 guests.
196  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
197  * underlying hardware which will be used to run L2.
198  * This structure is packed to ensure that its layout is identical across
199  * machines (necessary for live migration).
200  * If there are changes in this struct, VMCS12_REVISION must be changed.
201  */
202 typedef u64 natural_width;
203 struct __packed vmcs12 {
204         /* According to the Intel spec, a VMCS region must start with the
205          * following two fields. Then follow implementation-specific data.
206          */
207         u32 revision_id;
208         u32 abort;
209
210         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
211         u32 padding[7]; /* room for future expansion */
212
213         u64 io_bitmap_a;
214         u64 io_bitmap_b;
215         u64 msr_bitmap;
216         u64 vm_exit_msr_store_addr;
217         u64 vm_exit_msr_load_addr;
218         u64 vm_entry_msr_load_addr;
219         u64 tsc_offset;
220         u64 virtual_apic_page_addr;
221         u64 apic_access_addr;
222         u64 posted_intr_desc_addr;
223         u64 ept_pointer;
224         u64 eoi_exit_bitmap0;
225         u64 eoi_exit_bitmap1;
226         u64 eoi_exit_bitmap2;
227         u64 eoi_exit_bitmap3;
228         u64 xss_exit_bitmap;
229         u64 guest_physical_address;
230         u64 vmcs_link_pointer;
231         u64 guest_ia32_debugctl;
232         u64 guest_ia32_pat;
233         u64 guest_ia32_efer;
234         u64 guest_ia32_perf_global_ctrl;
235         u64 guest_pdptr0;
236         u64 guest_pdptr1;
237         u64 guest_pdptr2;
238         u64 guest_pdptr3;
239         u64 guest_bndcfgs;
240         u64 host_ia32_pat;
241         u64 host_ia32_efer;
242         u64 host_ia32_perf_global_ctrl;
243         u64 padding64[8]; /* room for future expansion */
244         /*
245          * To allow migration of L1 (complete with its L2 guests) between
246          * machines of different natural widths (32 or 64 bit), we cannot have
247          * unsigned long fields with no explict size. We use u64 (aliased
248          * natural_width) instead. Luckily, x86 is little-endian.
249          */
250         natural_width cr0_guest_host_mask;
251         natural_width cr4_guest_host_mask;
252         natural_width cr0_read_shadow;
253         natural_width cr4_read_shadow;
254         natural_width cr3_target_value0;
255         natural_width cr3_target_value1;
256         natural_width cr3_target_value2;
257         natural_width cr3_target_value3;
258         natural_width exit_qualification;
259         natural_width guest_linear_address;
260         natural_width guest_cr0;
261         natural_width guest_cr3;
262         natural_width guest_cr4;
263         natural_width guest_es_base;
264         natural_width guest_cs_base;
265         natural_width guest_ss_base;
266         natural_width guest_ds_base;
267         natural_width guest_fs_base;
268         natural_width guest_gs_base;
269         natural_width guest_ldtr_base;
270         natural_width guest_tr_base;
271         natural_width guest_gdtr_base;
272         natural_width guest_idtr_base;
273         natural_width guest_dr7;
274         natural_width guest_rsp;
275         natural_width guest_rip;
276         natural_width guest_rflags;
277         natural_width guest_pending_dbg_exceptions;
278         natural_width guest_sysenter_esp;
279         natural_width guest_sysenter_eip;
280         natural_width host_cr0;
281         natural_width host_cr3;
282         natural_width host_cr4;
283         natural_width host_fs_base;
284         natural_width host_gs_base;
285         natural_width host_tr_base;
286         natural_width host_gdtr_base;
287         natural_width host_idtr_base;
288         natural_width host_ia32_sysenter_esp;
289         natural_width host_ia32_sysenter_eip;
290         natural_width host_rsp;
291         natural_width host_rip;
292         natural_width paddingl[8]; /* room for future expansion */
293         u32 pin_based_vm_exec_control;
294         u32 cpu_based_vm_exec_control;
295         u32 exception_bitmap;
296         u32 page_fault_error_code_mask;
297         u32 page_fault_error_code_match;
298         u32 cr3_target_count;
299         u32 vm_exit_controls;
300         u32 vm_exit_msr_store_count;
301         u32 vm_exit_msr_load_count;
302         u32 vm_entry_controls;
303         u32 vm_entry_msr_load_count;
304         u32 vm_entry_intr_info_field;
305         u32 vm_entry_exception_error_code;
306         u32 vm_entry_instruction_len;
307         u32 tpr_threshold;
308         u32 secondary_vm_exec_control;
309         u32 vm_instruction_error;
310         u32 vm_exit_reason;
311         u32 vm_exit_intr_info;
312         u32 vm_exit_intr_error_code;
313         u32 idt_vectoring_info_field;
314         u32 idt_vectoring_error_code;
315         u32 vm_exit_instruction_len;
316         u32 vmx_instruction_info;
317         u32 guest_es_limit;
318         u32 guest_cs_limit;
319         u32 guest_ss_limit;
320         u32 guest_ds_limit;
321         u32 guest_fs_limit;
322         u32 guest_gs_limit;
323         u32 guest_ldtr_limit;
324         u32 guest_tr_limit;
325         u32 guest_gdtr_limit;
326         u32 guest_idtr_limit;
327         u32 guest_es_ar_bytes;
328         u32 guest_cs_ar_bytes;
329         u32 guest_ss_ar_bytes;
330         u32 guest_ds_ar_bytes;
331         u32 guest_fs_ar_bytes;
332         u32 guest_gs_ar_bytes;
333         u32 guest_ldtr_ar_bytes;
334         u32 guest_tr_ar_bytes;
335         u32 guest_interruptibility_info;
336         u32 guest_activity_state;
337         u32 guest_sysenter_cs;
338         u32 host_ia32_sysenter_cs;
339         u32 vmx_preemption_timer_value;
340         u32 padding32[7]; /* room for future expansion */
341         u16 virtual_processor_id;
342         u16 posted_intr_nv;
343         u16 guest_es_selector;
344         u16 guest_cs_selector;
345         u16 guest_ss_selector;
346         u16 guest_ds_selector;
347         u16 guest_fs_selector;
348         u16 guest_gs_selector;
349         u16 guest_ldtr_selector;
350         u16 guest_tr_selector;
351         u16 guest_intr_status;
352         u16 host_es_selector;
353         u16 host_cs_selector;
354         u16 host_ss_selector;
355         u16 host_ds_selector;
356         u16 host_fs_selector;
357         u16 host_gs_selector;
358         u16 host_tr_selector;
359 };
360
361 /*
362  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
363  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
364  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
365  */
366 #define VMCS12_REVISION 0x11e57ed0
367
368 /*
369  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
370  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
371  * current implementation, 4K are reserved to avoid future complications.
372  */
373 #define VMCS12_SIZE 0x1000
374
375 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
376 struct vmcs02_list {
377         struct list_head list;
378         gpa_t vmptr;
379         struct loaded_vmcs vmcs02;
380 };
381
382 /*
383  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
384  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
385  */
386 struct nested_vmx {
387         /* Has the level1 guest done vmxon? */
388         bool vmxon;
389         gpa_t vmxon_ptr;
390
391         /* The guest-physical address of the current VMCS L1 keeps for L2 */
392         gpa_t current_vmptr;
393         /* The host-usable pointer to the above */
394         struct page *current_vmcs12_page;
395         struct vmcs12 *current_vmcs12;
396         struct vmcs *current_shadow_vmcs;
397         /*
398          * Indicates if the shadow vmcs must be updated with the
399          * data hold by vmcs12
400          */
401         bool sync_shadow_vmcs;
402
403         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
404         struct list_head vmcs02_pool;
405         int vmcs02_num;
406         u64 vmcs01_tsc_offset;
407         /* L2 must run next, and mustn't decide to exit to L1. */
408         bool nested_run_pending;
409         /*
410          * Guest pages referred to in vmcs02 with host-physical pointers, so
411          * we must keep them pinned while L2 runs.
412          */
413         struct page *apic_access_page;
414         struct page *virtual_apic_page;
415         struct page *pi_desc_page;
416         struct pi_desc *pi_desc;
417         bool pi_pending;
418         u16 posted_intr_nv;
419         u64 msr_ia32_feature_control;
420
421         struct hrtimer preemption_timer;
422         bool preemption_timer_expired;
423
424         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
425         u64 vmcs01_debugctl;
426
427         u32 nested_vmx_procbased_ctls_low;
428         u32 nested_vmx_procbased_ctls_high;
429         u32 nested_vmx_true_procbased_ctls_low;
430         u32 nested_vmx_secondary_ctls_low;
431         u32 nested_vmx_secondary_ctls_high;
432         u32 nested_vmx_pinbased_ctls_low;
433         u32 nested_vmx_pinbased_ctls_high;
434         u32 nested_vmx_exit_ctls_low;
435         u32 nested_vmx_exit_ctls_high;
436         u32 nested_vmx_true_exit_ctls_low;
437         u32 nested_vmx_entry_ctls_low;
438         u32 nested_vmx_entry_ctls_high;
439         u32 nested_vmx_true_entry_ctls_low;
440         u32 nested_vmx_misc_low;
441         u32 nested_vmx_misc_high;
442         u32 nested_vmx_ept_caps;
443 };
444
445 #define POSTED_INTR_ON  0
446 /* Posted-Interrupt Descriptor */
447 struct pi_desc {
448         u32 pir[8];     /* Posted interrupt requested */
449         u32 control;    /* bit 0 of control is outstanding notification bit */
450         u32 rsvd[7];
451 } __aligned(64);
452
453 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
454 {
455         return test_and_set_bit(POSTED_INTR_ON,
456                         (unsigned long *)&pi_desc->control);
457 }
458
459 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
460 {
461         return test_and_clear_bit(POSTED_INTR_ON,
462                         (unsigned long *)&pi_desc->control);
463 }
464
465 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
466 {
467         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
468 }
469
470 struct vcpu_vmx {
471         struct kvm_vcpu       vcpu;
472         unsigned long         host_rsp;
473         u8                    fail;
474         bool                  nmi_known_unmasked;
475         u32                   exit_intr_info;
476         u32                   idt_vectoring_info;
477         ulong                 rflags;
478         struct shared_msr_entry *guest_msrs;
479         int                   nmsrs;
480         int                   save_nmsrs;
481         unsigned long         host_idt_base;
482 #ifdef CONFIG_X86_64
483         u64                   msr_host_kernel_gs_base;
484         u64                   msr_guest_kernel_gs_base;
485 #endif
486         u32 vm_entry_controls_shadow;
487         u32 vm_exit_controls_shadow;
488         /*
489          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
490          * non-nested (L1) guest, it always points to vmcs01. For a nested
491          * guest (L2), it points to a different VMCS.
492          */
493         struct loaded_vmcs    vmcs01;
494         struct loaded_vmcs   *loaded_vmcs;
495         bool                  __launched; /* temporary, used in vmx_vcpu_run */
496         struct msr_autoload {
497                 unsigned nr;
498                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
499                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
500         } msr_autoload;
501         struct {
502                 int           loaded;
503                 u16           fs_sel, gs_sel, ldt_sel;
504 #ifdef CONFIG_X86_64
505                 u16           ds_sel, es_sel;
506 #endif
507                 int           gs_ldt_reload_needed;
508                 int           fs_reload_needed;
509                 u64           msr_host_bndcfgs;
510                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
511         } host_state;
512         struct {
513                 int vm86_active;
514                 ulong save_rflags;
515                 struct kvm_segment segs[8];
516         } rmode;
517         struct {
518                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
519                 struct kvm_save_segment {
520                         u16 selector;
521                         unsigned long base;
522                         u32 limit;
523                         u32 ar;
524                 } seg[8];
525         } segment_cache;
526         int vpid;
527         bool emulation_required;
528
529         /* Support for vnmi-less CPUs */
530         int soft_vnmi_blocked;
531         ktime_t entry_time;
532         s64 vnmi_blocked_time;
533         u32 exit_reason;
534
535         bool rdtscp_enabled;
536
537         /* Posted interrupt descriptor */
538         struct pi_desc pi_desc;
539
540         /* Support for a guest hypervisor (nested VMX) */
541         struct nested_vmx nested;
542
543         /* Dynamic PLE window. */
544         int ple_window;
545         bool ple_window_dirty;
546
547         /* Support for PML */
548 #define PML_ENTITY_NUM          512
549         struct page *pml_pg;
550 };
551
552 enum segment_cache_field {
553         SEG_FIELD_SEL = 0,
554         SEG_FIELD_BASE = 1,
555         SEG_FIELD_LIMIT = 2,
556         SEG_FIELD_AR = 3,
557
558         SEG_FIELD_NR = 4
559 };
560
561 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
562 {
563         return container_of(vcpu, struct vcpu_vmx, vcpu);
564 }
565
566 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
567 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
568 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
569                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
570
571
572 static unsigned long shadow_read_only_fields[] = {
573         /*
574          * We do NOT shadow fields that are modified when L0
575          * traps and emulates any vmx instruction (e.g. VMPTRLD,
576          * VMXON...) executed by L1.
577          * For example, VM_INSTRUCTION_ERROR is read
578          * by L1 if a vmx instruction fails (part of the error path).
579          * Note the code assumes this logic. If for some reason
580          * we start shadowing these fields then we need to
581          * force a shadow sync when L0 emulates vmx instructions
582          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
583          * by nested_vmx_failValid)
584          */
585         VM_EXIT_REASON,
586         VM_EXIT_INTR_INFO,
587         VM_EXIT_INSTRUCTION_LEN,
588         IDT_VECTORING_INFO_FIELD,
589         IDT_VECTORING_ERROR_CODE,
590         VM_EXIT_INTR_ERROR_CODE,
591         EXIT_QUALIFICATION,
592         GUEST_LINEAR_ADDRESS,
593         GUEST_PHYSICAL_ADDRESS
594 };
595 static int max_shadow_read_only_fields =
596         ARRAY_SIZE(shadow_read_only_fields);
597
598 static unsigned long shadow_read_write_fields[] = {
599         TPR_THRESHOLD,
600         GUEST_RIP,
601         GUEST_RSP,
602         GUEST_CR0,
603         GUEST_CR3,
604         GUEST_CR4,
605         GUEST_INTERRUPTIBILITY_INFO,
606         GUEST_RFLAGS,
607         GUEST_CS_SELECTOR,
608         GUEST_CS_AR_BYTES,
609         GUEST_CS_LIMIT,
610         GUEST_CS_BASE,
611         GUEST_ES_BASE,
612         GUEST_BNDCFGS,
613         CR0_GUEST_HOST_MASK,
614         CR0_READ_SHADOW,
615         CR4_READ_SHADOW,
616         TSC_OFFSET,
617         EXCEPTION_BITMAP,
618         CPU_BASED_VM_EXEC_CONTROL,
619         VM_ENTRY_EXCEPTION_ERROR_CODE,
620         VM_ENTRY_INTR_INFO_FIELD,
621         VM_ENTRY_INSTRUCTION_LEN,
622         VM_ENTRY_EXCEPTION_ERROR_CODE,
623         HOST_FS_BASE,
624         HOST_GS_BASE,
625         HOST_FS_SELECTOR,
626         HOST_GS_SELECTOR
627 };
628 static int max_shadow_read_write_fields =
629         ARRAY_SIZE(shadow_read_write_fields);
630
631 static const unsigned short vmcs_field_to_offset_table[] = {
632         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
633         FIELD(POSTED_INTR_NV, posted_intr_nv),
634         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
635         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
636         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
637         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
638         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
639         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
640         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
641         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
642         FIELD(GUEST_INTR_STATUS, guest_intr_status),
643         FIELD(HOST_ES_SELECTOR, host_es_selector),
644         FIELD(HOST_CS_SELECTOR, host_cs_selector),
645         FIELD(HOST_SS_SELECTOR, host_ss_selector),
646         FIELD(HOST_DS_SELECTOR, host_ds_selector),
647         FIELD(HOST_FS_SELECTOR, host_fs_selector),
648         FIELD(HOST_GS_SELECTOR, host_gs_selector),
649         FIELD(HOST_TR_SELECTOR, host_tr_selector),
650         FIELD64(IO_BITMAP_A, io_bitmap_a),
651         FIELD64(IO_BITMAP_B, io_bitmap_b),
652         FIELD64(MSR_BITMAP, msr_bitmap),
653         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
654         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
655         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
656         FIELD64(TSC_OFFSET, tsc_offset),
657         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
658         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
659         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
660         FIELD64(EPT_POINTER, ept_pointer),
661         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
662         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
663         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
664         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
665         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
666         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
667         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
668         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
669         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
670         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
671         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
672         FIELD64(GUEST_PDPTR0, guest_pdptr0),
673         FIELD64(GUEST_PDPTR1, guest_pdptr1),
674         FIELD64(GUEST_PDPTR2, guest_pdptr2),
675         FIELD64(GUEST_PDPTR3, guest_pdptr3),
676         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
677         FIELD64(HOST_IA32_PAT, host_ia32_pat),
678         FIELD64(HOST_IA32_EFER, host_ia32_efer),
679         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
680         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
681         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
682         FIELD(EXCEPTION_BITMAP, exception_bitmap),
683         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
684         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
685         FIELD(CR3_TARGET_COUNT, cr3_target_count),
686         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
687         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
688         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
689         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
690         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
691         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
692         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
693         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
694         FIELD(TPR_THRESHOLD, tpr_threshold),
695         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
696         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
697         FIELD(VM_EXIT_REASON, vm_exit_reason),
698         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
699         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
700         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
701         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
702         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
703         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
704         FIELD(GUEST_ES_LIMIT, guest_es_limit),
705         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
706         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
707         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
708         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
709         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
710         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
711         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
712         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
713         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
714         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
715         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
716         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
717         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
718         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
719         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
720         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
721         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
722         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
723         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
724         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
725         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
726         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
727         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
728         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
729         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
730         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
731         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
732         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
733         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
734         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
735         FIELD(EXIT_QUALIFICATION, exit_qualification),
736         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
737         FIELD(GUEST_CR0, guest_cr0),
738         FIELD(GUEST_CR3, guest_cr3),
739         FIELD(GUEST_CR4, guest_cr4),
740         FIELD(GUEST_ES_BASE, guest_es_base),
741         FIELD(GUEST_CS_BASE, guest_cs_base),
742         FIELD(GUEST_SS_BASE, guest_ss_base),
743         FIELD(GUEST_DS_BASE, guest_ds_base),
744         FIELD(GUEST_FS_BASE, guest_fs_base),
745         FIELD(GUEST_GS_BASE, guest_gs_base),
746         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
747         FIELD(GUEST_TR_BASE, guest_tr_base),
748         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
749         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
750         FIELD(GUEST_DR7, guest_dr7),
751         FIELD(GUEST_RSP, guest_rsp),
752         FIELD(GUEST_RIP, guest_rip),
753         FIELD(GUEST_RFLAGS, guest_rflags),
754         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
755         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
756         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
757         FIELD(HOST_CR0, host_cr0),
758         FIELD(HOST_CR3, host_cr3),
759         FIELD(HOST_CR4, host_cr4),
760         FIELD(HOST_FS_BASE, host_fs_base),
761         FIELD(HOST_GS_BASE, host_gs_base),
762         FIELD(HOST_TR_BASE, host_tr_base),
763         FIELD(HOST_GDTR_BASE, host_gdtr_base),
764         FIELD(HOST_IDTR_BASE, host_idtr_base),
765         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
766         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
767         FIELD(HOST_RSP, host_rsp),
768         FIELD(HOST_RIP, host_rip),
769 };
770
771 static inline short vmcs_field_to_offset(unsigned long field)
772 {
773         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
774
775         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
776             vmcs_field_to_offset_table[field] == 0)
777                 return -ENOENT;
778
779         return vmcs_field_to_offset_table[field];
780 }
781
782 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
783 {
784         return to_vmx(vcpu)->nested.current_vmcs12;
785 }
786
787 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
788 {
789         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
790         if (is_error_page(page))
791                 return NULL;
792
793         return page;
794 }
795
796 static void nested_release_page(struct page *page)
797 {
798         kvm_release_page_dirty(page);
799 }
800
801 static void nested_release_page_clean(struct page *page)
802 {
803         kvm_release_page_clean(page);
804 }
805
806 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
807 static u64 construct_eptp(unsigned long root_hpa);
808 static void kvm_cpu_vmxon(u64 addr);
809 static void kvm_cpu_vmxoff(void);
810 static bool vmx_mpx_supported(void);
811 static bool vmx_xsaves_supported(void);
812 static int vmx_vm_has_apicv(struct kvm *kvm);
813 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
814 static void vmx_set_segment(struct kvm_vcpu *vcpu,
815                             struct kvm_segment *var, int seg);
816 static void vmx_get_segment(struct kvm_vcpu *vcpu,
817                             struct kvm_segment *var, int seg);
818 static bool guest_state_valid(struct kvm_vcpu *vcpu);
819 static u32 vmx_segment_access_rights(struct kvm_segment *var);
820 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
821 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
822 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
823 static int alloc_identity_pagetable(struct kvm *kvm);
824
825 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
826 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
827 /*
828  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
829  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
830  */
831 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
832 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
833
834 static unsigned long *vmx_io_bitmap_a;
835 static unsigned long *vmx_io_bitmap_b;
836 static unsigned long *vmx_msr_bitmap_legacy;
837 static unsigned long *vmx_msr_bitmap_longmode;
838 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
839 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
840 static unsigned long *vmx_msr_bitmap_nested;
841 static unsigned long *vmx_vmread_bitmap;
842 static unsigned long *vmx_vmwrite_bitmap;
843
844 static bool cpu_has_load_ia32_efer;
845 static bool cpu_has_load_perf_global_ctrl;
846
847 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
848 static DEFINE_SPINLOCK(vmx_vpid_lock);
849
850 static struct vmcs_config {
851         int size;
852         int order;
853         u32 revision_id;
854         u32 pin_based_exec_ctrl;
855         u32 cpu_based_exec_ctrl;
856         u32 cpu_based_2nd_exec_ctrl;
857         u32 vmexit_ctrl;
858         u32 vmentry_ctrl;
859 } vmcs_config;
860
861 static struct vmx_capability {
862         u32 ept;
863         u32 vpid;
864 } vmx_capability;
865
866 #define VMX_SEGMENT_FIELD(seg)                                  \
867         [VCPU_SREG_##seg] = {                                   \
868                 .selector = GUEST_##seg##_SELECTOR,             \
869                 .base = GUEST_##seg##_BASE,                     \
870                 .limit = GUEST_##seg##_LIMIT,                   \
871                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
872         }
873
874 static const struct kvm_vmx_segment_field {
875         unsigned selector;
876         unsigned base;
877         unsigned limit;
878         unsigned ar_bytes;
879 } kvm_vmx_segment_fields[] = {
880         VMX_SEGMENT_FIELD(CS),
881         VMX_SEGMENT_FIELD(DS),
882         VMX_SEGMENT_FIELD(ES),
883         VMX_SEGMENT_FIELD(FS),
884         VMX_SEGMENT_FIELD(GS),
885         VMX_SEGMENT_FIELD(SS),
886         VMX_SEGMENT_FIELD(TR),
887         VMX_SEGMENT_FIELD(LDTR),
888 };
889
890 static u64 host_efer;
891
892 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
893
894 /*
895  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
896  * away by decrementing the array size.
897  */
898 static const u32 vmx_msr_index[] = {
899 #ifdef CONFIG_X86_64
900         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
901 #endif
902         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
903 };
904
905 static inline bool is_page_fault(u32 intr_info)
906 {
907         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
908                              INTR_INFO_VALID_MASK)) ==
909                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
910 }
911
912 static inline bool is_no_device(u32 intr_info)
913 {
914         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
915                              INTR_INFO_VALID_MASK)) ==
916                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
917 }
918
919 static inline bool is_invalid_opcode(u32 intr_info)
920 {
921         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
922                              INTR_INFO_VALID_MASK)) ==
923                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
924 }
925
926 static inline bool is_external_interrupt(u32 intr_info)
927 {
928         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
929                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
930 }
931
932 static inline bool is_machine_check(u32 intr_info)
933 {
934         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
935                              INTR_INFO_VALID_MASK)) ==
936                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
937 }
938
939 static inline bool cpu_has_vmx_msr_bitmap(void)
940 {
941         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
942 }
943
944 static inline bool cpu_has_vmx_tpr_shadow(void)
945 {
946         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
947 }
948
949 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
950 {
951         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
952 }
953
954 static inline bool cpu_has_secondary_exec_ctrls(void)
955 {
956         return vmcs_config.cpu_based_exec_ctrl &
957                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
958 }
959
960 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
961 {
962         return vmcs_config.cpu_based_2nd_exec_ctrl &
963                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
964 }
965
966 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
967 {
968         return vmcs_config.cpu_based_2nd_exec_ctrl &
969                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
970 }
971
972 static inline bool cpu_has_vmx_apic_register_virt(void)
973 {
974         return vmcs_config.cpu_based_2nd_exec_ctrl &
975                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
976 }
977
978 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
979 {
980         return vmcs_config.cpu_based_2nd_exec_ctrl &
981                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
982 }
983
984 static inline bool cpu_has_vmx_posted_intr(void)
985 {
986         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
987 }
988
989 static inline bool cpu_has_vmx_apicv(void)
990 {
991         return cpu_has_vmx_apic_register_virt() &&
992                 cpu_has_vmx_virtual_intr_delivery() &&
993                 cpu_has_vmx_posted_intr();
994 }
995
996 static inline bool cpu_has_vmx_flexpriority(void)
997 {
998         return cpu_has_vmx_tpr_shadow() &&
999                 cpu_has_vmx_virtualize_apic_accesses();
1000 }
1001
1002 static inline bool cpu_has_vmx_ept_execute_only(void)
1003 {
1004         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005 }
1006
1007 static inline bool cpu_has_vmx_ept_2m_page(void)
1008 {
1009         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010 }
1011
1012 static inline bool cpu_has_vmx_ept_1g_page(void)
1013 {
1014         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015 }
1016
1017 static inline bool cpu_has_vmx_ept_4levels(void)
1018 {
1019         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020 }
1021
1022 static inline bool cpu_has_vmx_ept_ad_bits(void)
1023 {
1024         return vmx_capability.ept & VMX_EPT_AD_BIT;
1025 }
1026
1027 static inline bool cpu_has_vmx_invept_context(void)
1028 {
1029         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030 }
1031
1032 static inline bool cpu_has_vmx_invept_global(void)
1033 {
1034         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035 }
1036
1037 static inline bool cpu_has_vmx_invvpid_single(void)
1038 {
1039         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040 }
1041
1042 static inline bool cpu_has_vmx_invvpid_global(void)
1043 {
1044         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045 }
1046
1047 static inline bool cpu_has_vmx_ept(void)
1048 {
1049         return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                 SECONDARY_EXEC_ENABLE_EPT;
1051 }
1052
1053 static inline bool cpu_has_vmx_unrestricted_guest(void)
1054 {
1055         return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057 }
1058
1059 static inline bool cpu_has_vmx_ple(void)
1060 {
1061         return vmcs_config.cpu_based_2nd_exec_ctrl &
1062                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063 }
1064
1065 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066 {
1067         return flexpriority_enabled && irqchip_in_kernel(kvm);
1068 }
1069
1070 static inline bool cpu_has_vmx_vpid(void)
1071 {
1072         return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                 SECONDARY_EXEC_ENABLE_VPID;
1074 }
1075
1076 static inline bool cpu_has_vmx_rdtscp(void)
1077 {
1078         return vmcs_config.cpu_based_2nd_exec_ctrl &
1079                 SECONDARY_EXEC_RDTSCP;
1080 }
1081
1082 static inline bool cpu_has_vmx_invpcid(void)
1083 {
1084         return vmcs_config.cpu_based_2nd_exec_ctrl &
1085                 SECONDARY_EXEC_ENABLE_INVPCID;
1086 }
1087
1088 static inline bool cpu_has_virtual_nmis(void)
1089 {
1090         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091 }
1092
1093 static inline bool cpu_has_vmx_wbinvd_exit(void)
1094 {
1095         return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                 SECONDARY_EXEC_WBINVD_EXITING;
1097 }
1098
1099 static inline bool cpu_has_vmx_shadow_vmcs(void)
1100 {
1101         u64 vmx_msr;
1102         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103         /* check if the cpu supports writing r/o exit information fields */
1104         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105                 return false;
1106
1107         return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                 SECONDARY_EXEC_SHADOW_VMCS;
1109 }
1110
1111 static inline bool cpu_has_vmx_pml(void)
1112 {
1113         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114 }
1115
1116 static inline bool report_flexpriority(void)
1117 {
1118         return flexpriority_enabled;
1119 }
1120
1121 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122 {
1123         return vmcs12->cpu_based_vm_exec_control & bit;
1124 }
1125
1126 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127 {
1128         return (vmcs12->cpu_based_vm_exec_control &
1129                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130                 (vmcs12->secondary_vm_exec_control & bit);
1131 }
1132
1133 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134 {
1135         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136 }
1137
1138 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139 {
1140         return vmcs12->pin_based_vm_exec_control &
1141                 PIN_BASED_VMX_PREEMPTION_TIMER;
1142 }
1143
1144 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145 {
1146         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147 }
1148
1149 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150 {
1151         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152                 vmx_xsaves_supported();
1153 }
1154
1155 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156 {
1157         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158 }
1159
1160 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161 {
1162         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163 }
1164
1165 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166 {
1167         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168 }
1169
1170 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171 {
1172         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173 }
1174
1175 static inline bool is_exception(u32 intr_info)
1176 {
1177         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179 }
1180
1181 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182                               u32 exit_intr_info,
1183                               unsigned long exit_qualification);
1184 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185                         struct vmcs12 *vmcs12,
1186                         u32 reason, unsigned long qualification);
1187
1188 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189 {
1190         int i;
1191
1192         for (i = 0; i < vmx->nmsrs; ++i)
1193                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194                         return i;
1195         return -1;
1196 }
1197
1198 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199 {
1200     struct {
1201         u64 vpid : 16;
1202         u64 rsvd : 48;
1203         u64 gva;
1204     } operand = { vpid, 0, gva };
1205
1206     asm volatile (__ex(ASM_VMX_INVVPID)
1207                   /* CF==1 or ZF==1 --> rc = -1 */
1208                   "; ja 1f ; ud2 ; 1:"
1209                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1210 }
1211
1212 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213 {
1214         struct {
1215                 u64 eptp, gpa;
1216         } operand = {eptp, gpa};
1217
1218         asm volatile (__ex(ASM_VMX_INVEPT)
1219                         /* CF==1 or ZF==1 --> rc = -1 */
1220                         "; ja 1f ; ud2 ; 1:\n"
1221                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1222 }
1223
1224 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225 {
1226         int i;
1227
1228         i = __find_msr_index(vmx, msr);
1229         if (i >= 0)
1230                 return &vmx->guest_msrs[i];
1231         return NULL;
1232 }
1233
1234 static void vmcs_clear(struct vmcs *vmcs)
1235 {
1236         u64 phys_addr = __pa(vmcs);
1237         u8 error;
1238
1239         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241                       : "cc", "memory");
1242         if (error)
1243                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244                        vmcs, phys_addr);
1245 }
1246
1247 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248 {
1249         vmcs_clear(loaded_vmcs->vmcs);
1250         loaded_vmcs->cpu = -1;
1251         loaded_vmcs->launched = 0;
1252 }
1253
1254 static void vmcs_load(struct vmcs *vmcs)
1255 {
1256         u64 phys_addr = __pa(vmcs);
1257         u8 error;
1258
1259         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261                         : "cc", "memory");
1262         if (error)
1263                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264                        vmcs, phys_addr);
1265 }
1266
1267 #ifdef CONFIG_KEXEC
1268 /*
1269  * This bitmap is used to indicate whether the vmclear
1270  * operation is enabled on all cpus. All disabled by
1271  * default.
1272  */
1273 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275 static inline void crash_enable_local_vmclear(int cpu)
1276 {
1277         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278 }
1279
1280 static inline void crash_disable_local_vmclear(int cpu)
1281 {
1282         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283 }
1284
1285 static inline int crash_local_vmclear_enabled(int cpu)
1286 {
1287         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288 }
1289
1290 static void crash_vmclear_local_loaded_vmcss(void)
1291 {
1292         int cpu = raw_smp_processor_id();
1293         struct loaded_vmcs *v;
1294
1295         if (!crash_local_vmclear_enabled(cpu))
1296                 return;
1297
1298         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299                             loaded_vmcss_on_cpu_link)
1300                 vmcs_clear(v->vmcs);
1301 }
1302 #else
1303 static inline void crash_enable_local_vmclear(int cpu) { }
1304 static inline void crash_disable_local_vmclear(int cpu) { }
1305 #endif /* CONFIG_KEXEC */
1306
1307 static void __loaded_vmcs_clear(void *arg)
1308 {
1309         struct loaded_vmcs *loaded_vmcs = arg;
1310         int cpu = raw_smp_processor_id();
1311
1312         if (loaded_vmcs->cpu != cpu)
1313                 return; /* vcpu migration can race with cpu offline */
1314         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315                 per_cpu(current_vmcs, cpu) = NULL;
1316         crash_disable_local_vmclear(cpu);
1317         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319         /*
1320          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321          * is before setting loaded_vmcs->vcpu to -1 which is done in
1322          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323          * then adds the vmcs into percpu list before it is deleted.
1324          */
1325         smp_wmb();
1326
1327         loaded_vmcs_init(loaded_vmcs);
1328         crash_enable_local_vmclear(cpu);
1329 }
1330
1331 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332 {
1333         int cpu = loaded_vmcs->cpu;
1334
1335         if (cpu != -1)
1336                 smp_call_function_single(cpu,
1337                          __loaded_vmcs_clear, loaded_vmcs, 1);
1338 }
1339
1340 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341 {
1342         if (vmx->vpid == 0)
1343                 return;
1344
1345         if (cpu_has_vmx_invvpid_single())
1346                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347 }
1348
1349 static inline void vpid_sync_vcpu_global(void)
1350 {
1351         if (cpu_has_vmx_invvpid_global())
1352                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353 }
1354
1355 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356 {
1357         if (cpu_has_vmx_invvpid_single())
1358                 vpid_sync_vcpu_single(vmx);
1359         else
1360                 vpid_sync_vcpu_global();
1361 }
1362
1363 static inline void ept_sync_global(void)
1364 {
1365         if (cpu_has_vmx_invept_global())
1366                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367 }
1368
1369 static inline void ept_sync_context(u64 eptp)
1370 {
1371         if (enable_ept) {
1372                 if (cpu_has_vmx_invept_context())
1373                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374                 else
1375                         ept_sync_global();
1376         }
1377 }
1378
1379 static __always_inline unsigned long vmcs_readl(unsigned long field)
1380 {
1381         unsigned long value;
1382
1383         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384                       : "=a"(value) : "d"(field) : "cc");
1385         return value;
1386 }
1387
1388 static __always_inline u16 vmcs_read16(unsigned long field)
1389 {
1390         return vmcs_readl(field);
1391 }
1392
1393 static __always_inline u32 vmcs_read32(unsigned long field)
1394 {
1395         return vmcs_readl(field);
1396 }
1397
1398 static __always_inline u64 vmcs_read64(unsigned long field)
1399 {
1400 #ifdef CONFIG_X86_64
1401         return vmcs_readl(field);
1402 #else
1403         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404 #endif
1405 }
1406
1407 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408 {
1409         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411         dump_stack();
1412 }
1413
1414 static void vmcs_writel(unsigned long field, unsigned long value)
1415 {
1416         u8 error;
1417
1418         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1420         if (unlikely(error))
1421                 vmwrite_error(field, value);
1422 }
1423
1424 static void vmcs_write16(unsigned long field, u16 value)
1425 {
1426         vmcs_writel(field, value);
1427 }
1428
1429 static void vmcs_write32(unsigned long field, u32 value)
1430 {
1431         vmcs_writel(field, value);
1432 }
1433
1434 static void vmcs_write64(unsigned long field, u64 value)
1435 {
1436         vmcs_writel(field, value);
1437 #ifndef CONFIG_X86_64
1438         asm volatile ("");
1439         vmcs_writel(field+1, value >> 32);
1440 #endif
1441 }
1442
1443 static void vmcs_clear_bits(unsigned long field, u32 mask)
1444 {
1445         vmcs_writel(field, vmcs_readl(field) & ~mask);
1446 }
1447
1448 static void vmcs_set_bits(unsigned long field, u32 mask)
1449 {
1450         vmcs_writel(field, vmcs_readl(field) | mask);
1451 }
1452
1453 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454 {
1455         vmcs_write32(VM_ENTRY_CONTROLS, val);
1456         vmx->vm_entry_controls_shadow = val;
1457 }
1458
1459 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460 {
1461         if (vmx->vm_entry_controls_shadow != val)
1462                 vm_entry_controls_init(vmx, val);
1463 }
1464
1465 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466 {
1467         return vmx->vm_entry_controls_shadow;
1468 }
1469
1470
1471 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472 {
1473         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474 }
1475
1476 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477 {
1478         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479 }
1480
1481 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482 {
1483         vmcs_write32(VM_EXIT_CONTROLS, val);
1484         vmx->vm_exit_controls_shadow = val;
1485 }
1486
1487 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488 {
1489         if (vmx->vm_exit_controls_shadow != val)
1490                 vm_exit_controls_init(vmx, val);
1491 }
1492
1493 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494 {
1495         return vmx->vm_exit_controls_shadow;
1496 }
1497
1498
1499 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500 {
1501         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502 }
1503
1504 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505 {
1506         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507 }
1508
1509 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510 {
1511         vmx->segment_cache.bitmask = 0;
1512 }
1513
1514 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515                                        unsigned field)
1516 {
1517         bool ret;
1518         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522                 vmx->segment_cache.bitmask = 0;
1523         }
1524         ret = vmx->segment_cache.bitmask & mask;
1525         vmx->segment_cache.bitmask |= mask;
1526         return ret;
1527 }
1528
1529 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530 {
1531         u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535         return *p;
1536 }
1537
1538 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539 {
1540         ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544         return *p;
1545 }
1546
1547 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548 {
1549         u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553         return *p;
1554 }
1555
1556 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557 {
1558         u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562         return *p;
1563 }
1564
1565 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566 {
1567         u32 eb;
1568
1569         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571         if ((vcpu->guest_debug &
1572              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574                 eb |= 1u << BP_VECTOR;
1575         if (to_vmx(vcpu)->rmode.vm86_active)
1576                 eb = ~0;
1577         if (enable_ept)
1578                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579         if (vcpu->fpu_active)
1580                 eb &= ~(1u << NM_VECTOR);
1581
1582         /* When we are running a nested L2 guest and L1 specified for it a
1583          * certain exception bitmap, we must trap the same exceptions and pass
1584          * them to L1. When running L2, we will only handle the exceptions
1585          * specified above if L1 did not want them.
1586          */
1587         if (is_guest_mode(vcpu))
1588                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590         vmcs_write32(EXCEPTION_BITMAP, eb);
1591 }
1592
1593 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594                 unsigned long entry, unsigned long exit)
1595 {
1596         vm_entry_controls_clearbit(vmx, entry);
1597         vm_exit_controls_clearbit(vmx, exit);
1598 }
1599
1600 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601 {
1602         unsigned i;
1603         struct msr_autoload *m = &vmx->msr_autoload;
1604
1605         switch (msr) {
1606         case MSR_EFER:
1607                 if (cpu_has_load_ia32_efer) {
1608                         clear_atomic_switch_msr_special(vmx,
1609                                         VM_ENTRY_LOAD_IA32_EFER,
1610                                         VM_EXIT_LOAD_IA32_EFER);
1611                         return;
1612                 }
1613                 break;
1614         case MSR_CORE_PERF_GLOBAL_CTRL:
1615                 if (cpu_has_load_perf_global_ctrl) {
1616                         clear_atomic_switch_msr_special(vmx,
1617                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619                         return;
1620                 }
1621                 break;
1622         }
1623
1624         for (i = 0; i < m->nr; ++i)
1625                 if (m->guest[i].index == msr)
1626                         break;
1627
1628         if (i == m->nr)
1629                 return;
1630         --m->nr;
1631         m->guest[i] = m->guest[m->nr];
1632         m->host[i] = m->host[m->nr];
1633         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635 }
1636
1637 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638                 unsigned long entry, unsigned long exit,
1639                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640                 u64 guest_val, u64 host_val)
1641 {
1642         vmcs_write64(guest_val_vmcs, guest_val);
1643         vmcs_write64(host_val_vmcs, host_val);
1644         vm_entry_controls_setbit(vmx, entry);
1645         vm_exit_controls_setbit(vmx, exit);
1646 }
1647
1648 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649                                   u64 guest_val, u64 host_val)
1650 {
1651         unsigned i;
1652         struct msr_autoload *m = &vmx->msr_autoload;
1653
1654         switch (msr) {
1655         case MSR_EFER:
1656                 if (cpu_has_load_ia32_efer) {
1657                         add_atomic_switch_msr_special(vmx,
1658                                         VM_ENTRY_LOAD_IA32_EFER,
1659                                         VM_EXIT_LOAD_IA32_EFER,
1660                                         GUEST_IA32_EFER,
1661                                         HOST_IA32_EFER,
1662                                         guest_val, host_val);
1663                         return;
1664                 }
1665                 break;
1666         case MSR_CORE_PERF_GLOBAL_CTRL:
1667                 if (cpu_has_load_perf_global_ctrl) {
1668                         add_atomic_switch_msr_special(vmx,
1669                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1672                                         HOST_IA32_PERF_GLOBAL_CTRL,
1673                                         guest_val, host_val);
1674                         return;
1675                 }
1676                 break;
1677         }
1678
1679         for (i = 0; i < m->nr; ++i)
1680                 if (m->guest[i].index == msr)
1681                         break;
1682
1683         if (i == NR_AUTOLOAD_MSRS) {
1684                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1685                                 "Can't add msr %x\n", msr);
1686                 return;
1687         } else if (i == m->nr) {
1688                 ++m->nr;
1689                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691         }
1692
1693         m->guest[i].index = msr;
1694         m->guest[i].value = guest_val;
1695         m->host[i].index = msr;
1696         m->host[i].value = host_val;
1697 }
1698
1699 static void reload_tss(void)
1700 {
1701         /*
1702          * VT restores TR but not its size.  Useless.
1703          */
1704         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1705         struct desc_struct *descs;
1706
1707         descs = (void *)gdt->address;
1708         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709         load_TR_desc();
1710 }
1711
1712 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1713 {
1714         u64 guest_efer;
1715         u64 ignore_bits;
1716
1717         guest_efer = vmx->vcpu.arch.efer;
1718
1719         /*
1720          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1721          * outside long mode
1722          */
1723         ignore_bits = EFER_NX | EFER_SCE;
1724 #ifdef CONFIG_X86_64
1725         ignore_bits |= EFER_LMA | EFER_LME;
1726         /* SCE is meaningful only in long mode on Intel */
1727         if (guest_efer & EFER_LMA)
1728                 ignore_bits &= ~(u64)EFER_SCE;
1729 #endif
1730         guest_efer &= ~ignore_bits;
1731         guest_efer |= host_efer & ignore_bits;
1732         vmx->guest_msrs[efer_offset].data = guest_efer;
1733         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1734
1735         clear_atomic_switch_msr(vmx, MSR_EFER);
1736
1737         /*
1738          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739          * On CPUs that support "load IA32_EFER", always switch EFER
1740          * atomically, since it's faster than switching it manually.
1741          */
1742         if (cpu_has_load_ia32_efer ||
1743             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1744                 guest_efer = vmx->vcpu.arch.efer;
1745                 if (!(guest_efer & EFER_LMA))
1746                         guest_efer &= ~EFER_LME;
1747                 if (guest_efer != host_efer)
1748                         add_atomic_switch_msr(vmx, MSR_EFER,
1749                                               guest_efer, host_efer);
1750                 return false;
1751         }
1752
1753         return true;
1754 }
1755
1756 static unsigned long segment_base(u16 selector)
1757 {
1758         struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1759         struct desc_struct *d;
1760         unsigned long table_base;
1761         unsigned long v;
1762
1763         if (!(selector & ~3))
1764                 return 0;
1765
1766         table_base = gdt->address;
1767
1768         if (selector & 4) {           /* from ldt */
1769                 u16 ldt_selector = kvm_read_ldt();
1770
1771                 if (!(ldt_selector & ~3))
1772                         return 0;
1773
1774                 table_base = segment_base(ldt_selector);
1775         }
1776         d = (struct desc_struct *)(table_base + (selector & ~7));
1777         v = get_desc_base(d);
1778 #ifdef CONFIG_X86_64
1779        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781 #endif
1782         return v;
1783 }
1784
1785 static inline unsigned long kvm_read_tr_base(void)
1786 {
1787         u16 tr;
1788         asm("str %0" : "=g"(tr));
1789         return segment_base(tr);
1790 }
1791
1792 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1793 {
1794         struct vcpu_vmx *vmx = to_vmx(vcpu);
1795         int i;
1796
1797         if (vmx->host_state.loaded)
1798                 return;
1799
1800         vmx->host_state.loaded = 1;
1801         /*
1802          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1803          * allow segment selectors with cpl > 0 or ti == 1.
1804          */
1805         vmx->host_state.ldt_sel = kvm_read_ldt();
1806         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1807         savesegment(fs, vmx->host_state.fs_sel);
1808         if (!(vmx->host_state.fs_sel & 7)) {
1809                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1810                 vmx->host_state.fs_reload_needed = 0;
1811         } else {
1812                 vmcs_write16(HOST_FS_SELECTOR, 0);
1813                 vmx->host_state.fs_reload_needed = 1;
1814         }
1815         savesegment(gs, vmx->host_state.gs_sel);
1816         if (!(vmx->host_state.gs_sel & 7))
1817                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1818         else {
1819                 vmcs_write16(HOST_GS_SELECTOR, 0);
1820                 vmx->host_state.gs_ldt_reload_needed = 1;
1821         }
1822
1823 #ifdef CONFIG_X86_64
1824         savesegment(ds, vmx->host_state.ds_sel);
1825         savesegment(es, vmx->host_state.es_sel);
1826 #endif
1827
1828 #ifdef CONFIG_X86_64
1829         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831 #else
1832         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1834 #endif
1835
1836 #ifdef CONFIG_X86_64
1837         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838         if (is_long_mode(&vmx->vcpu))
1839                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1840 #endif
1841         if (boot_cpu_has(X86_FEATURE_MPX))
1842                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1843         for (i = 0; i < vmx->save_nmsrs; ++i)
1844                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1845                                    vmx->guest_msrs[i].data,
1846                                    vmx->guest_msrs[i].mask);
1847 }
1848
1849 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1850 {
1851         if (!vmx->host_state.loaded)
1852                 return;
1853
1854         ++vmx->vcpu.stat.host_state_reload;
1855         vmx->host_state.loaded = 0;
1856 #ifdef CONFIG_X86_64
1857         if (is_long_mode(&vmx->vcpu))
1858                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859 #endif
1860         if (vmx->host_state.gs_ldt_reload_needed) {
1861                 kvm_load_ldt(vmx->host_state.ldt_sel);
1862 #ifdef CONFIG_X86_64
1863                 load_gs_index(vmx->host_state.gs_sel);
1864 #else
1865                 loadsegment(gs, vmx->host_state.gs_sel);
1866 #endif
1867         }
1868         if (vmx->host_state.fs_reload_needed)
1869                 loadsegment(fs, vmx->host_state.fs_sel);
1870 #ifdef CONFIG_X86_64
1871         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872                 loadsegment(ds, vmx->host_state.ds_sel);
1873                 loadsegment(es, vmx->host_state.es_sel);
1874         }
1875 #endif
1876         reload_tss();
1877 #ifdef CONFIG_X86_64
1878         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1879 #endif
1880         if (vmx->host_state.msr_host_bndcfgs)
1881                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1882         /*
1883          * If the FPU is not active (through the host task or
1884          * the guest vcpu), then restore the cr0.TS bit.
1885          */
1886         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1887                 stts();
1888         load_gdt(this_cpu_ptr(&host_gdt));
1889 }
1890
1891 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892 {
1893         preempt_disable();
1894         __vmx_load_host_state(vmx);
1895         preempt_enable();
1896 }
1897
1898 /*
1899  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900  * vcpu mutex is already taken.
1901  */
1902 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1903 {
1904         struct vcpu_vmx *vmx = to_vmx(vcpu);
1905         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1906
1907         if (!vmm_exclusive)
1908                 kvm_cpu_vmxon(phys_addr);
1909         else if (vmx->loaded_vmcs->cpu != cpu)
1910                 loaded_vmcs_clear(vmx->loaded_vmcs);
1911
1912         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914                 vmcs_load(vmx->loaded_vmcs->vmcs);
1915         }
1916
1917         if (vmx->loaded_vmcs->cpu != cpu) {
1918                 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1919                 unsigned long sysenter_esp;
1920
1921                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1922                 local_irq_disable();
1923                 crash_disable_local_vmclear(cpu);
1924
1925                 /*
1926                  * Read loaded_vmcs->cpu should be before fetching
1927                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928                  * See the comments in __loaded_vmcs_clear().
1929                  */
1930                 smp_rmb();
1931
1932                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1934                 crash_enable_local_vmclear(cpu);
1935                 local_irq_enable();
1936
1937                 /*
1938                  * Linux uses per-cpu TSS and GDT, so set these when switching
1939                  * processors.
1940                  */
1941                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1942                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1943
1944                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1946                 vmx->loaded_vmcs->cpu = cpu;
1947         }
1948 }
1949
1950 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951 {
1952         __vmx_load_host_state(to_vmx(vcpu));
1953         if (!vmm_exclusive) {
1954                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955                 vcpu->cpu = -1;
1956                 kvm_cpu_vmxoff();
1957         }
1958 }
1959
1960 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961 {
1962         ulong cr0;
1963
1964         if (vcpu->fpu_active)
1965                 return;
1966         vcpu->fpu_active = 1;
1967         cr0 = vmcs_readl(GUEST_CR0);
1968         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970         vmcs_writel(GUEST_CR0, cr0);
1971         update_exception_bitmap(vcpu);
1972         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1973         if (is_guest_mode(vcpu))
1974                 vcpu->arch.cr0_guest_owned_bits &=
1975                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1976         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1977 }
1978
1979 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
1981 /*
1982  * Return the cr0 value that a nested guest would read. This is a combination
1983  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984  * its hypervisor (cr0_read_shadow).
1985  */
1986 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987 {
1988         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990 }
1991 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992 {
1993         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995 }
1996
1997 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998 {
1999         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000          * set this *before* calling this function.
2001          */
2002         vmx_decache_cr0_guest_bits(vcpu);
2003         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2004         update_exception_bitmap(vcpu);
2005         vcpu->arch.cr0_guest_owned_bits = 0;
2006         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2007         if (is_guest_mode(vcpu)) {
2008                 /*
2009                  * L1's specified read shadow might not contain the TS bit,
2010                  * so now that we turned on shadowing of this bit, we need to
2011                  * set this bit of the shadow. Like in nested_vmx_run we need
2012                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013                  * up-to-date here because we just decached cr0.TS (and we'll
2014                  * only update vmcs12->guest_cr0 on nested exit).
2015                  */
2016                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018                         (vcpu->arch.cr0 & X86_CR0_TS);
2019                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020         } else
2021                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2022 }
2023
2024 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025 {
2026         unsigned long rflags, save_rflags;
2027
2028         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030                 rflags = vmcs_readl(GUEST_RFLAGS);
2031                 if (to_vmx(vcpu)->rmode.vm86_active) {
2032                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035                 }
2036                 to_vmx(vcpu)->rflags = rflags;
2037         }
2038         return to_vmx(vcpu)->rflags;
2039 }
2040
2041 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042 {
2043         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044         to_vmx(vcpu)->rflags = rflags;
2045         if (to_vmx(vcpu)->rmode.vm86_active) {
2046                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2047                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2048         }
2049         vmcs_writel(GUEST_RFLAGS, rflags);
2050 }
2051
2052 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2053 {
2054         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055         int ret = 0;
2056
2057         if (interruptibility & GUEST_INTR_STATE_STI)
2058                 ret |= KVM_X86_SHADOW_INT_STI;
2059         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2060                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2061
2062         return ret;
2063 }
2064
2065 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066 {
2067         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068         u32 interruptibility = interruptibility_old;
2069
2070         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
2072         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2073                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2074         else if (mask & KVM_X86_SHADOW_INT_STI)
2075                 interruptibility |= GUEST_INTR_STATE_STI;
2076
2077         if ((interruptibility != interruptibility_old))
2078                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079 }
2080
2081 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082 {
2083         unsigned long rip;
2084
2085         rip = kvm_rip_read(vcpu);
2086         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2087         kvm_rip_write(vcpu, rip);
2088
2089         /* skipping an emulated instruction also counts */
2090         vmx_set_interrupt_shadow(vcpu, 0);
2091 }
2092
2093 /*
2094  * KVM wants to inject page-faults which it got to the guest. This function
2095  * checks whether in a nested guest, we need to inject them to L1 or L2.
2096  */
2097 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2098 {
2099         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101         if (!(vmcs12->exception_bitmap & (1u << nr)))
2102                 return 0;
2103
2104         nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105                           vmcs_read32(VM_EXIT_INTR_INFO),
2106                           vmcs_readl(EXIT_QUALIFICATION));
2107         return 1;
2108 }
2109
2110 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2111                                 bool has_error_code, u32 error_code,
2112                                 bool reinject)
2113 {
2114         struct vcpu_vmx *vmx = to_vmx(vcpu);
2115         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2116
2117         if (!reinject && is_guest_mode(vcpu) &&
2118             nested_vmx_check_exception(vcpu, nr))
2119                 return;
2120
2121         if (has_error_code) {
2122                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2123                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124         }
2125
2126         if (vmx->rmode.vm86_active) {
2127                 int inc_eip = 0;
2128                 if (kvm_exception_is_soft(nr))
2129                         inc_eip = vcpu->arch.event_exit_inst_len;
2130                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2131                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2132                 return;
2133         }
2134
2135         if (kvm_exception_is_soft(nr)) {
2136                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137                              vmx->vcpu.arch.event_exit_inst_len);
2138                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139         } else
2140                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2143 }
2144
2145 static bool vmx_rdtscp_supported(void)
2146 {
2147         return cpu_has_vmx_rdtscp();
2148 }
2149
2150 static bool vmx_invpcid_supported(void)
2151 {
2152         return cpu_has_vmx_invpcid() && enable_ept;
2153 }
2154
2155 /*
2156  * Swap MSR entry in host/guest MSR entry array.
2157  */
2158 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2159 {
2160         struct shared_msr_entry tmp;
2161
2162         tmp = vmx->guest_msrs[to];
2163         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164         vmx->guest_msrs[from] = tmp;
2165 }
2166
2167 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168 {
2169         unsigned long *msr_bitmap;
2170
2171         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2172                 if (is_long_mode(vcpu))
2173                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2174                 else
2175                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2176         } else {
2177                 if (is_long_mode(vcpu))
2178                         msr_bitmap = vmx_msr_bitmap_longmode;
2179                 else
2180                         msr_bitmap = vmx_msr_bitmap_legacy;
2181         }
2182
2183         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2184 }
2185
2186 /*
2187  * Set up the vmcs to automatically save and restore system
2188  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2189  * mode, as fiddling with msrs is very expensive.
2190  */
2191 static void setup_msrs(struct vcpu_vmx *vmx)
2192 {
2193         int save_nmsrs, index;
2194
2195         save_nmsrs = 0;
2196 #ifdef CONFIG_X86_64
2197         if (is_long_mode(&vmx->vcpu)) {
2198                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2199                 if (index >= 0)
2200                         move_msr_up(vmx, index, save_nmsrs++);
2201                 index = __find_msr_index(vmx, MSR_LSTAR);
2202                 if (index >= 0)
2203                         move_msr_up(vmx, index, save_nmsrs++);
2204                 index = __find_msr_index(vmx, MSR_CSTAR);
2205                 if (index >= 0)
2206                         move_msr_up(vmx, index, save_nmsrs++);
2207                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2208                 if (index >= 0 && vmx->rdtscp_enabled)
2209                         move_msr_up(vmx, index, save_nmsrs++);
2210                 /*
2211                  * MSR_STAR is only needed on long mode guests, and only
2212                  * if efer.sce is enabled.
2213                  */
2214                 index = __find_msr_index(vmx, MSR_STAR);
2215                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2216                         move_msr_up(vmx, index, save_nmsrs++);
2217         }
2218 #endif
2219         index = __find_msr_index(vmx, MSR_EFER);
2220         if (index >= 0 && update_transition_efer(vmx, index))
2221                 move_msr_up(vmx, index, save_nmsrs++);
2222
2223         vmx->save_nmsrs = save_nmsrs;
2224
2225         if (cpu_has_vmx_msr_bitmap())
2226                 vmx_set_msr_bitmap(&vmx->vcpu);
2227 }
2228
2229 /*
2230  * reads and returns guest's timestamp counter "register"
2231  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2232  */
2233 static u64 guest_read_tsc(void)
2234 {
2235         u64 host_tsc, tsc_offset;
2236
2237         rdtscll(host_tsc);
2238         tsc_offset = vmcs_read64(TSC_OFFSET);
2239         return host_tsc + tsc_offset;
2240 }
2241
2242 /*
2243  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2244  * counter, even if a nested guest (L2) is currently running.
2245  */
2246 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2247 {
2248         u64 tsc_offset;
2249
2250         tsc_offset = is_guest_mode(vcpu) ?
2251                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2252                 vmcs_read64(TSC_OFFSET);
2253         return host_tsc + tsc_offset;
2254 }
2255
2256 /*
2257  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2258  * software catchup for faster rates on slower CPUs.
2259  */
2260 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2261 {
2262         if (!scale)
2263                 return;
2264
2265         if (user_tsc_khz > tsc_khz) {
2266                 vcpu->arch.tsc_catchup = 1;
2267                 vcpu->arch.tsc_always_catchup = 1;
2268         } else
2269                 WARN(1, "user requested TSC rate below hardware speed\n");
2270 }
2271
2272 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2273 {
2274         return vmcs_read64(TSC_OFFSET);
2275 }
2276
2277 /*
2278  * writes 'offset' into guest's timestamp counter offset register
2279  */
2280 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2281 {
2282         if (is_guest_mode(vcpu)) {
2283                 /*
2284                  * We're here if L1 chose not to trap WRMSR to TSC. According
2285                  * to the spec, this should set L1's TSC; The offset that L1
2286                  * set for L2 remains unchanged, and still needs to be added
2287                  * to the newly set TSC to get L2's TSC.
2288                  */
2289                 struct vmcs12 *vmcs12;
2290                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2291                 /* recalculate vmcs02.TSC_OFFSET: */
2292                 vmcs12 = get_vmcs12(vcpu);
2293                 vmcs_write64(TSC_OFFSET, offset +
2294                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2295                          vmcs12->tsc_offset : 0));
2296         } else {
2297                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2298                                            vmcs_read64(TSC_OFFSET), offset);
2299                 vmcs_write64(TSC_OFFSET, offset);
2300         }
2301 }
2302
2303 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2304 {
2305         u64 offset = vmcs_read64(TSC_OFFSET);
2306
2307         vmcs_write64(TSC_OFFSET, offset + adjustment);
2308         if (is_guest_mode(vcpu)) {
2309                 /* Even when running L2, the adjustment needs to apply to L1 */
2310                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2311         } else
2312                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2313                                            offset + adjustment);
2314 }
2315
2316 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2317 {
2318         return target_tsc - native_read_tsc();
2319 }
2320
2321 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2322 {
2323         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2324         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2325 }
2326
2327 /*
2328  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2329  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2330  * all guests if the "nested" module option is off, and can also be disabled
2331  * for a single guest by disabling its VMX cpuid bit.
2332  */
2333 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2334 {
2335         return nested && guest_cpuid_has_vmx(vcpu);
2336 }
2337
2338 /*
2339  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2340  * returned for the various VMX controls MSRs when nested VMX is enabled.
2341  * The same values should also be used to verify that vmcs12 control fields are
2342  * valid during nested entry from L1 to L2.
2343  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2344  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2345  * bit in the high half is on if the corresponding bit in the control field
2346  * may be on. See also vmx_control_verify().
2347  */
2348 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2349 {
2350         /*
2351          * Note that as a general rule, the high half of the MSRs (bits in
2352          * the control fields which may be 1) should be initialized by the
2353          * intersection of the underlying hardware's MSR (i.e., features which
2354          * can be supported) and the list of features we want to expose -
2355          * because they are known to be properly supported in our code.
2356          * Also, usually, the low half of the MSRs (bits which must be 1) can
2357          * be set to 0, meaning that L1 may turn off any of these bits. The
2358          * reason is that if one of these bits is necessary, it will appear
2359          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2360          * fields of vmcs01 and vmcs02, will turn these bits off - and
2361          * nested_vmx_exit_handled() will not pass related exits to L1.
2362          * These rules have exceptions below.
2363          */
2364
2365         /* pin-based controls */
2366         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2367                 vmx->nested.nested_vmx_pinbased_ctls_low,
2368                 vmx->nested.nested_vmx_pinbased_ctls_high);
2369         vmx->nested.nested_vmx_pinbased_ctls_low |=
2370                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2371         vmx->nested.nested_vmx_pinbased_ctls_high &=
2372                 PIN_BASED_EXT_INTR_MASK |
2373                 PIN_BASED_NMI_EXITING |
2374                 PIN_BASED_VIRTUAL_NMIS;
2375         vmx->nested.nested_vmx_pinbased_ctls_high |=
2376                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2377                 PIN_BASED_VMX_PREEMPTION_TIMER;
2378         if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2379                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2380                         PIN_BASED_POSTED_INTR;
2381
2382         /* exit controls */
2383         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2384                 vmx->nested.nested_vmx_exit_ctls_low,
2385                 vmx->nested.nested_vmx_exit_ctls_high);
2386         vmx->nested.nested_vmx_exit_ctls_low =
2387                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2388
2389         vmx->nested.nested_vmx_exit_ctls_high &=
2390 #ifdef CONFIG_X86_64
2391                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2392 #endif
2393                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2394         vmx->nested.nested_vmx_exit_ctls_high |=
2395                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2396                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2397                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2398
2399         if (vmx_mpx_supported())
2400                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2401
2402         /* We support free control of debug control saving. */
2403         vmx->nested.nested_vmx_true_exit_ctls_low =
2404                 vmx->nested.nested_vmx_exit_ctls_low &
2405                 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2406
2407         /* entry controls */
2408         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2409                 vmx->nested.nested_vmx_entry_ctls_low,
2410                 vmx->nested.nested_vmx_entry_ctls_high);
2411         vmx->nested.nested_vmx_entry_ctls_low =
2412                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2413         vmx->nested.nested_vmx_entry_ctls_high &=
2414 #ifdef CONFIG_X86_64
2415                 VM_ENTRY_IA32E_MODE |
2416 #endif
2417                 VM_ENTRY_LOAD_IA32_PAT;
2418         vmx->nested.nested_vmx_entry_ctls_high |=
2419                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2420         if (vmx_mpx_supported())
2421                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2422
2423         /* We support free control of debug control loading. */
2424         vmx->nested.nested_vmx_true_entry_ctls_low =
2425                 vmx->nested.nested_vmx_entry_ctls_low &
2426                 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2427
2428         /* cpu-based controls */
2429         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2430                 vmx->nested.nested_vmx_procbased_ctls_low,
2431                 vmx->nested.nested_vmx_procbased_ctls_high);
2432         vmx->nested.nested_vmx_procbased_ctls_low =
2433                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2434         vmx->nested.nested_vmx_procbased_ctls_high &=
2435                 CPU_BASED_VIRTUAL_INTR_PENDING |
2436                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2437                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2438                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2439                 CPU_BASED_CR3_STORE_EXITING |
2440 #ifdef CONFIG_X86_64
2441                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2442 #endif
2443                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2444                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2445                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2446                 CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2447                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2448         /*
2449          * We can allow some features even when not supported by the
2450          * hardware. For example, L1 can specify an MSR bitmap - and we
2451          * can use it to avoid exits to L1 - even when L0 runs L2
2452          * without MSR bitmaps.
2453          */
2454         vmx->nested.nested_vmx_procbased_ctls_high |=
2455                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2456                 CPU_BASED_USE_MSR_BITMAPS;
2457
2458         /* We support free control of CR3 access interception. */
2459         vmx->nested.nested_vmx_true_procbased_ctls_low =
2460                 vmx->nested.nested_vmx_procbased_ctls_low &
2461                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2462
2463         /* secondary cpu-based controls */
2464         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2465                 vmx->nested.nested_vmx_secondary_ctls_low,
2466                 vmx->nested.nested_vmx_secondary_ctls_high);
2467         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2468         vmx->nested.nested_vmx_secondary_ctls_high &=
2469                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2470                 SECONDARY_EXEC_RDTSCP |
2471                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2472                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2474                 SECONDARY_EXEC_WBINVD_EXITING |
2475                 SECONDARY_EXEC_XSAVES;
2476
2477         if (enable_ept) {
2478                 /* nested EPT: emulate EPT also to L1 */
2479                 vmx->nested.nested_vmx_secondary_ctls_high |=
2480                         SECONDARY_EXEC_ENABLE_EPT |
2481                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2482                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2483                          VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2484                          VMX_EPT_INVEPT_BIT;
2485                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2486                 /*
2487                  * For nested guests, we don't do anything specific
2488                  * for single context invalidation. Hence, only advertise
2489                  * support for global context invalidation.
2490                  */
2491                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2492         } else
2493                 vmx->nested.nested_vmx_ept_caps = 0;
2494
2495         /* miscellaneous data */
2496         rdmsr(MSR_IA32_VMX_MISC,
2497                 vmx->nested.nested_vmx_misc_low,
2498                 vmx->nested.nested_vmx_misc_high);
2499         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2500         vmx->nested.nested_vmx_misc_low |=
2501                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2502                 VMX_MISC_ACTIVITY_HLT;
2503         vmx->nested.nested_vmx_misc_high = 0;
2504 }
2505
2506 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2507 {
2508         /*
2509          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2510          */
2511         return ((control & high) | low) == control;
2512 }
2513
2514 static inline u64 vmx_control_msr(u32 low, u32 high)
2515 {
2516         return low | ((u64)high << 32);
2517 }
2518
2519 /* Returns 0 on success, non-0 otherwise. */
2520 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2521 {
2522         struct vcpu_vmx *vmx = to_vmx(vcpu);
2523
2524         switch (msr_index) {
2525         case MSR_IA32_VMX_BASIC:
2526                 /*
2527                  * This MSR reports some information about VMX support. We
2528                  * should return information about the VMX we emulate for the
2529                  * guest, and the VMCS structure we give it - not about the
2530                  * VMX support of the underlying hardware.
2531                  */
2532                 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2533                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2534                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2535                 break;
2536         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2537         case MSR_IA32_VMX_PINBASED_CTLS:
2538                 *pdata = vmx_control_msr(
2539                         vmx->nested.nested_vmx_pinbased_ctls_low,
2540                         vmx->nested.nested_vmx_pinbased_ctls_high);
2541                 break;
2542         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2543                 *pdata = vmx_control_msr(
2544                         vmx->nested.nested_vmx_true_procbased_ctls_low,
2545                         vmx->nested.nested_vmx_procbased_ctls_high);
2546                 break;
2547         case MSR_IA32_VMX_PROCBASED_CTLS:
2548                 *pdata = vmx_control_msr(
2549                         vmx->nested.nested_vmx_procbased_ctls_low,
2550                         vmx->nested.nested_vmx_procbased_ctls_high);
2551                 break;
2552         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2553                 *pdata = vmx_control_msr(
2554                         vmx->nested.nested_vmx_true_exit_ctls_low,
2555                         vmx->nested.nested_vmx_exit_ctls_high);
2556                 break;
2557         case MSR_IA32_VMX_EXIT_CTLS:
2558                 *pdata = vmx_control_msr(
2559                         vmx->nested.nested_vmx_exit_ctls_low,
2560                         vmx->nested.nested_vmx_exit_ctls_high);
2561                 break;
2562         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2563                 *pdata = vmx_control_msr(
2564                         vmx->nested.nested_vmx_true_entry_ctls_low,
2565                         vmx->nested.nested_vmx_entry_ctls_high);
2566                 break;
2567         case MSR_IA32_VMX_ENTRY_CTLS:
2568                 *pdata = vmx_control_msr(
2569                         vmx->nested.nested_vmx_entry_ctls_low,
2570                         vmx->nested.nested_vmx_entry_ctls_high);
2571                 break;
2572         case MSR_IA32_VMX_MISC:
2573                 *pdata = vmx_control_msr(
2574                         vmx->nested.nested_vmx_misc_low,
2575                         vmx->nested.nested_vmx_misc_high);
2576                 break;
2577         /*
2578          * These MSRs specify bits which the guest must keep fixed (on or off)
2579          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2580          * We picked the standard core2 setting.
2581          */
2582 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2583 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2584         case MSR_IA32_VMX_CR0_FIXED0:
2585                 *pdata = VMXON_CR0_ALWAYSON;
2586                 break;
2587         case MSR_IA32_VMX_CR0_FIXED1:
2588                 *pdata = -1ULL;
2589                 break;
2590         case MSR_IA32_VMX_CR4_FIXED0:
2591                 *pdata = VMXON_CR4_ALWAYSON;
2592                 break;
2593         case MSR_IA32_VMX_CR4_FIXED1:
2594                 *pdata = -1ULL;
2595                 break;
2596         case MSR_IA32_VMX_VMCS_ENUM:
2597                 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2598                 break;
2599         case MSR_IA32_VMX_PROCBASED_CTLS2:
2600                 *pdata = vmx_control_msr(
2601                         vmx->nested.nested_vmx_secondary_ctls_low,
2602                         vmx->nested.nested_vmx_secondary_ctls_high);
2603                 break;
2604         case MSR_IA32_VMX_EPT_VPID_CAP:
2605                 /* Currently, no nested vpid support */
2606                 *pdata = vmx->nested.nested_vmx_ept_caps;
2607                 break;
2608         default:
2609                 return 1;
2610         }
2611
2612         return 0;
2613 }
2614
2615 /*
2616  * Reads an msr value (of 'msr_index') into 'pdata'.
2617  * Returns 0 on success, non-0 otherwise.
2618  * Assumes vcpu_load() was already called.
2619  */
2620 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2621 {
2622         u64 data;
2623         struct shared_msr_entry *msr;
2624
2625         if (!pdata) {
2626                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2627                 return -EINVAL;
2628         }
2629
2630         switch (msr_index) {
2631 #ifdef CONFIG_X86_64
2632         case MSR_FS_BASE:
2633                 data = vmcs_readl(GUEST_FS_BASE);
2634                 break;
2635         case MSR_GS_BASE:
2636                 data = vmcs_readl(GUEST_GS_BASE);
2637                 break;
2638         case MSR_KERNEL_GS_BASE:
2639                 vmx_load_host_state(to_vmx(vcpu));
2640                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2641                 break;
2642 #endif
2643         case MSR_EFER:
2644                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2645         case MSR_IA32_TSC:
2646                 data = guest_read_tsc();
2647                 break;
2648         case MSR_IA32_SYSENTER_CS:
2649                 data = vmcs_read32(GUEST_SYSENTER_CS);
2650                 break;
2651         case MSR_IA32_SYSENTER_EIP:
2652                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2653                 break;
2654         case MSR_IA32_SYSENTER_ESP:
2655                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2656                 break;
2657         case MSR_IA32_BNDCFGS:
2658                 if (!vmx_mpx_supported())
2659                         return 1;
2660                 data = vmcs_read64(GUEST_BNDCFGS);
2661                 break;
2662         case MSR_IA32_FEATURE_CONTROL:
2663                 if (!nested_vmx_allowed(vcpu))
2664                         return 1;
2665                 data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2666                 break;
2667         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2668                 if (!nested_vmx_allowed(vcpu))
2669                         return 1;
2670                 return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2671         case MSR_IA32_XSS:
2672                 if (!vmx_xsaves_supported())
2673                         return 1;
2674                 data = vcpu->arch.ia32_xss;
2675                 break;
2676         case MSR_TSC_AUX:
2677                 if (!to_vmx(vcpu)->rdtscp_enabled)
2678                         return 1;
2679                 /* Otherwise falls through */
2680         default:
2681                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2682                 if (msr) {
2683                         data = msr->data;
2684                         break;
2685                 }
2686                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2687         }
2688
2689         *pdata = data;
2690         return 0;
2691 }
2692
2693 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2694
2695 /*
2696  * Writes msr value into into the appropriate "register".
2697  * Returns 0 on success, non-0 otherwise.
2698  * Assumes vcpu_load() was already called.
2699  */
2700 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2701 {
2702         struct vcpu_vmx *vmx = to_vmx(vcpu);
2703         struct shared_msr_entry *msr;
2704         int ret = 0;
2705         u32 msr_index = msr_info->index;
2706         u64 data = msr_info->data;
2707
2708         switch (msr_index) {
2709         case MSR_EFER:
2710                 ret = kvm_set_msr_common(vcpu, msr_info);
2711                 break;
2712 #ifdef CONFIG_X86_64
2713         case MSR_FS_BASE:
2714                 vmx_segment_cache_clear(vmx);
2715                 vmcs_writel(GUEST_FS_BASE, data);
2716                 break;
2717         case MSR_GS_BASE:
2718                 vmx_segment_cache_clear(vmx);
2719                 vmcs_writel(GUEST_GS_BASE, data);
2720                 break;
2721         case MSR_KERNEL_GS_BASE:
2722                 vmx_load_host_state(vmx);
2723                 vmx->msr_guest_kernel_gs_base = data;
2724                 break;
2725 #endif
2726         case MSR_IA32_SYSENTER_CS:
2727                 vmcs_write32(GUEST_SYSENTER_CS, data);
2728                 break;
2729         case MSR_IA32_SYSENTER_EIP:
2730                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2731                 break;
2732         case MSR_IA32_SYSENTER_ESP:
2733                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2734                 break;
2735         case MSR_IA32_BNDCFGS:
2736                 if (!vmx_mpx_supported())
2737                         return 1;
2738                 vmcs_write64(GUEST_BNDCFGS, data);
2739                 break;
2740         case MSR_IA32_TSC:
2741                 kvm_write_tsc(vcpu, msr_info);
2742                 break;
2743         case MSR_IA32_CR_PAT:
2744                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2745                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2746                                 return 1;
2747                         vmcs_write64(GUEST_IA32_PAT, data);
2748                         vcpu->arch.pat = data;
2749                         break;
2750                 }
2751                 ret = kvm_set_msr_common(vcpu, msr_info);
2752                 break;
2753         case MSR_IA32_TSC_ADJUST:
2754                 ret = kvm_set_msr_common(vcpu, msr_info);
2755                 break;
2756         case MSR_IA32_FEATURE_CONTROL:
2757                 if (!nested_vmx_allowed(vcpu) ||
2758                     (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2759                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2760                         return 1;
2761                 vmx->nested.msr_ia32_feature_control = data;
2762                 if (msr_info->host_initiated && data == 0)
2763                         vmx_leave_nested(vcpu);
2764                 break;
2765         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2766                 return 1; /* they are read-only */
2767         case MSR_IA32_XSS:
2768                 if (!vmx_xsaves_supported())
2769                         return 1;
2770                 /*
2771                  * The only supported bit as of Skylake is bit 8, but
2772                  * it is not supported on KVM.
2773                  */
2774                 if (data != 0)
2775                         return 1;
2776                 vcpu->arch.ia32_xss = data;
2777                 if (vcpu->arch.ia32_xss != host_xss)
2778                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2779                                 vcpu->arch.ia32_xss, host_xss);
2780                 else
2781                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2782                 break;
2783         case MSR_TSC_AUX:
2784                 if (!vmx->rdtscp_enabled)
2785                         return 1;
2786                 /* Check reserved bit, higher 32 bits should be zero */
2787                 if ((data >> 32) != 0)
2788                         return 1;
2789                 /* Otherwise falls through */
2790         default:
2791                 msr = find_msr_entry(vmx, msr_index);
2792                 if (msr) {
2793                         u64 old_msr_data = msr->data;
2794                         msr->data = data;
2795                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2796                                 preempt_disable();
2797                                 ret = kvm_set_shared_msr(msr->index, msr->data,
2798                                                          msr->mask);
2799                                 preempt_enable();
2800                                 if (ret)
2801                                         msr->data = old_msr_data;
2802                         }
2803                         break;
2804                 }
2805                 ret = kvm_set_msr_common(vcpu, msr_info);
2806         }
2807
2808         return ret;
2809 }
2810
2811 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2812 {
2813         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2814         switch (reg) {
2815         case VCPU_REGS_RSP:
2816                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2817                 break;
2818         case VCPU_REGS_RIP:
2819                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2820                 break;
2821         case VCPU_EXREG_PDPTR:
2822                 if (enable_ept)
2823                         ept_save_pdptrs(vcpu);
2824                 break;
2825         default:
2826                 break;
2827         }
2828 }
2829
2830 static __init int cpu_has_kvm_support(void)
2831 {
2832         return cpu_has_vmx();
2833 }
2834
2835 static __init int vmx_disabled_by_bios(void)
2836 {
2837         u64 msr;
2838
2839         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2840         if (msr & FEATURE_CONTROL_LOCKED) {
2841                 /* launched w/ TXT and VMX disabled */
2842                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2843                         && tboot_enabled())
2844                         return 1;
2845                 /* launched w/o TXT and VMX only enabled w/ TXT */
2846                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2847                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2848                         && !tboot_enabled()) {
2849                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2850                                 "activate TXT before enabling KVM\n");
2851                         return 1;
2852                 }
2853                 /* launched w/o TXT and VMX disabled */
2854                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2855                         && !tboot_enabled())
2856                         return 1;
2857         }
2858
2859         return 0;
2860 }
2861
2862 static void kvm_cpu_vmxon(u64 addr)
2863 {
2864         asm volatile (ASM_VMX_VMXON_RAX
2865                         : : "a"(&addr), "m"(addr)
2866                         : "memory", "cc");
2867 }
2868
2869 static int hardware_enable(void)
2870 {
2871         int cpu = raw_smp_processor_id();
2872         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2873         u64 old, test_bits;
2874
2875         if (cr4_read_shadow() & X86_CR4_VMXE)
2876                 return -EBUSY;
2877
2878         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2879
2880         /*
2881          * Now we can enable the vmclear operation in kdump
2882          * since the loaded_vmcss_on_cpu list on this cpu
2883          * has been initialized.
2884          *
2885          * Though the cpu is not in VMX operation now, there
2886          * is no problem to enable the vmclear operation
2887          * for the loaded_vmcss_on_cpu list is empty!
2888          */
2889         crash_enable_local_vmclear(cpu);
2890
2891         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2892
2893         test_bits = FEATURE_CONTROL_LOCKED;
2894         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2895         if (tboot_enabled())
2896                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2897
2898         if ((old & test_bits) != test_bits) {
2899                 /* enable and lock */
2900                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2901         }
2902         cr4_set_bits(X86_CR4_VMXE);
2903
2904         if (vmm_exclusive) {
2905                 kvm_cpu_vmxon(phys_addr);
2906                 ept_sync_global();
2907         }
2908
2909         native_store_gdt(this_cpu_ptr(&host_gdt));
2910
2911         return 0;
2912 }
2913
2914 static void vmclear_local_loaded_vmcss(void)
2915 {
2916         int cpu = raw_smp_processor_id();
2917         struct loaded_vmcs *v, *n;
2918
2919         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2920                                  loaded_vmcss_on_cpu_link)
2921                 __loaded_vmcs_clear(v);
2922 }
2923
2924
2925 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2926  * tricks.
2927  */
2928 static void kvm_cpu_vmxoff(void)
2929 {
2930         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2931 }
2932
2933 static void hardware_disable(void)
2934 {
2935         if (vmm_exclusive) {
2936                 vmclear_local_loaded_vmcss();
2937                 kvm_cpu_vmxoff();
2938         }
2939         cr4_clear_bits(X86_CR4_VMXE);
2940 }
2941
2942 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2943                                       u32 msr, u32 *result)
2944 {
2945         u32 vmx_msr_low, vmx_msr_high;
2946         u32 ctl = ctl_min | ctl_opt;
2947
2948         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2949
2950         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2951         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2952
2953         /* Ensure minimum (required) set of control bits are supported. */
2954         if (ctl_min & ~ctl)
2955                 return -EIO;
2956
2957         *result = ctl;
2958         return 0;
2959 }
2960
2961 static __init bool allow_1_setting(u32 msr, u32 ctl)
2962 {
2963         u32 vmx_msr_low, vmx_msr_high;
2964
2965         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2966         return vmx_msr_high & ctl;
2967 }
2968
2969 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2970 {
2971         u32 vmx_msr_low, vmx_msr_high;
2972         u32 min, opt, min2, opt2;
2973         u32 _pin_based_exec_control = 0;
2974         u32 _cpu_based_exec_control = 0;
2975         u32 _cpu_based_2nd_exec_control = 0;
2976         u32 _vmexit_control = 0;
2977         u32 _vmentry_control = 0;
2978
2979         min = CPU_BASED_HLT_EXITING |
2980 #ifdef CONFIG_X86_64
2981               CPU_BASED_CR8_LOAD_EXITING |
2982               CPU_BASED_CR8_STORE_EXITING |
2983 #endif
2984               CPU_BASED_CR3_LOAD_EXITING |
2985               CPU_BASED_CR3_STORE_EXITING |
2986               CPU_BASED_USE_IO_BITMAPS |
2987               CPU_BASED_MOV_DR_EXITING |
2988               CPU_BASED_USE_TSC_OFFSETING |
2989               CPU_BASED_MWAIT_EXITING |
2990               CPU_BASED_MONITOR_EXITING |
2991               CPU_BASED_INVLPG_EXITING |
2992               CPU_BASED_RDPMC_EXITING;
2993
2994         opt = CPU_BASED_TPR_SHADOW |
2995               CPU_BASED_USE_MSR_BITMAPS |
2996               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2997         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2998                                 &_cpu_based_exec_control) < 0)
2999                 return -EIO;
3000 #ifdef CONFIG_X86_64
3001         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3002                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3003                                            ~CPU_BASED_CR8_STORE_EXITING;
3004 #endif
3005         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3006                 min2 = 0;
3007                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3008                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3009                         SECONDARY_EXEC_WBINVD_EXITING |
3010                         SECONDARY_EXEC_ENABLE_VPID |
3011                         SECONDARY_EXEC_ENABLE_EPT |
3012                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3013                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3014                         SECONDARY_EXEC_RDTSCP |
3015                         SECONDARY_EXEC_ENABLE_INVPCID |
3016                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3017                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3018                         SECONDARY_EXEC_SHADOW_VMCS |
3019                         SECONDARY_EXEC_XSAVES |
3020                         SECONDARY_EXEC_ENABLE_PML;
3021                 if (adjust_vmx_controls(min2, opt2,
3022                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3023                                         &_cpu_based_2nd_exec_control) < 0)
3024                         return -EIO;
3025         }
3026 #ifndef CONFIG_X86_64
3027         if (!(_cpu_based_2nd_exec_control &
3028                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3029                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3030 #endif
3031
3032         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3033                 _cpu_based_2nd_exec_control &= ~(
3034                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3035                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3036                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3037
3038         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3039                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3040                    enabled */
3041                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3042                                              CPU_BASED_CR3_STORE_EXITING |
3043                                              CPU_BASED_INVLPG_EXITING);
3044                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3045                       vmx_capability.ept, vmx_capability.vpid);
3046         }
3047
3048         min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3049 #ifdef CONFIG_X86_64
3050         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3051 #endif
3052         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3053                 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3054         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3055                                 &_vmexit_control) < 0)
3056                 return -EIO;
3057
3058         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3059         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3060         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3061                                 &_pin_based_exec_control) < 0)
3062                 return -EIO;
3063
3064         if (!(_cpu_based_2nd_exec_control &
3065                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3066                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3067                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3068
3069         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3070         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3071         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3072                                 &_vmentry_control) < 0)
3073                 return -EIO;
3074
3075         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3076
3077         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3078         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3079                 return -EIO;
3080
3081 #ifdef CONFIG_X86_64
3082         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3083         if (vmx_msr_high & (1u<<16))
3084                 return -EIO;
3085 #endif
3086
3087         /* Require Write-Back (WB) memory type for VMCS accesses. */
3088         if (((vmx_msr_high >> 18) & 15) != 6)
3089                 return -EIO;
3090
3091         vmcs_conf->size = vmx_msr_high & 0x1fff;
3092         vmcs_conf->order = get_order(vmcs_config.size);
3093         vmcs_conf->revision_id = vmx_msr_low;
3094
3095         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3096         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3097         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3098         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3099         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3100
3101         cpu_has_load_ia32_efer =
3102                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3103                                 VM_ENTRY_LOAD_IA32_EFER)
3104                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3105                                    VM_EXIT_LOAD_IA32_EFER);
3106
3107         cpu_has_load_perf_global_ctrl =
3108                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3109                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3110                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3111                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3112
3113         /*
3114          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3115          * but due to arrata below it can't be used. Workaround is to use
3116          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3117          *
3118          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3119          *
3120          * AAK155             (model 26)
3121          * AAP115             (model 30)
3122          * AAT100             (model 37)
3123          * BC86,AAY89,BD102   (model 44)
3124          * BA97               (model 46)
3125          *
3126          */
3127         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3128                 switch (boot_cpu_data.x86_model) {
3129                 case 26:
3130                 case 30:
3131                 case 37:
3132                 case 44:
3133                 case 46:
3134                         cpu_has_load_perf_global_ctrl = false;
3135                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3136                                         "does not work properly. Using workaround\n");
3137                         break;
3138                 default:
3139                         break;
3140                 }
3141         }
3142
3143         if (cpu_has_xsaves)
3144                 rdmsrl(MSR_IA32_XSS, host_xss);
3145
3146         return 0;
3147 }
3148
3149 static struct vmcs *alloc_vmcs_cpu(int cpu)
3150 {
3151         int node = cpu_to_node(cpu);
3152         struct page *pages;
3153         struct vmcs *vmcs;
3154
3155         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3156         if (!pages)
3157                 return NULL;
3158         vmcs = page_address(pages);
3159         memset(vmcs, 0, vmcs_config.size);
3160         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3161         return vmcs;
3162 }
3163
3164 static struct vmcs *alloc_vmcs(void)
3165 {
3166         return alloc_vmcs_cpu(raw_smp_processor_id());
3167 }
3168
3169 static void free_vmcs(struct vmcs *vmcs)
3170 {
3171         free_pages((unsigned long)vmcs, vmcs_config.order);
3172 }
3173
3174 /*
3175  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3176  */
3177 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3178 {
3179         if (!loaded_vmcs->vmcs)
3180                 return;
3181         loaded_vmcs_clear(loaded_vmcs);
3182         free_vmcs(loaded_vmcs->vmcs);
3183         loaded_vmcs->vmcs = NULL;
3184 }
3185
3186 static void free_kvm_area(void)
3187 {
3188         int cpu;
3189
3190         for_each_possible_cpu(cpu) {
3191                 free_vmcs(per_cpu(vmxarea, cpu));
3192                 per_cpu(vmxarea, cpu) = NULL;
3193         }
3194 }
3195
3196 static void init_vmcs_shadow_fields(void)
3197 {
3198         int i, j;
3199
3200         /* No checks for read only fields yet */
3201
3202         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3203                 switch (shadow_read_write_fields[i]) {
3204                 case GUEST_BNDCFGS:
3205                         if (!vmx_mpx_supported())
3206                                 continue;
3207                         break;
3208                 default:
3209                         break;
3210                 }
3211
3212                 if (j < i)
3213                         shadow_read_write_fields[j] =
3214                                 shadow_read_write_fields[i];
3215                 j++;
3216         }
3217         max_shadow_read_write_fields = j;
3218
3219         /* shadowed fields guest access without vmexit */
3220         for (i = 0; i < max_shadow_read_write_fields; i++) {
3221                 clear_bit(shadow_read_write_fields[i],
3222                           vmx_vmwrite_bitmap);
3223                 clear_bit(shadow_read_write_fields[i],
3224                           vmx_vmread_bitmap);
3225         }
3226         for (i = 0; i < max_shadow_read_only_fields; i++)
3227                 clear_bit(shadow_read_only_fields[i],
3228                           vmx_vmread_bitmap);
3229 }
3230
3231 static __init int alloc_kvm_area(void)
3232 {
3233         int cpu;
3234
3235         for_each_possible_cpu(cpu) {
3236                 struct vmcs *vmcs;
3237
3238                 vmcs = alloc_vmcs_cpu(cpu);
3239                 if (!vmcs) {
3240                         free_kvm_area();
3241                         return -ENOMEM;
3242                 }
3243
3244                 per_cpu(vmxarea, cpu) = vmcs;
3245         }
3246         return 0;
3247 }
3248
3249 static bool emulation_required(struct kvm_vcpu *vcpu)
3250 {
3251         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3252 }
3253
3254 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3255                 struct kvm_segment *save)
3256 {
3257         if (!emulate_invalid_guest_state) {
3258                 /*
3259                  * CS and SS RPL should be equal during guest entry according
3260                  * to VMX spec, but in reality it is not always so. Since vcpu
3261                  * is in the middle of the transition from real mode to
3262                  * protected mode it is safe to assume that RPL 0 is a good
3263                  * default value.
3264                  */
3265                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3266                         save->selector &= ~SEGMENT_RPL_MASK;
3267                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3268                 save->s = 1;
3269         }
3270         vmx_set_segment(vcpu, save, seg);
3271 }
3272
3273 static void enter_pmode(struct kvm_vcpu *vcpu)
3274 {
3275         unsigned long flags;
3276         struct vcpu_vmx *vmx = to_vmx(vcpu);
3277
3278         /*
3279          * Update real mode segment cache. It may be not up-to-date if sement
3280          * register was written while vcpu was in a guest mode.
3281          */
3282         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3283         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3284         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3285         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3286         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3287         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3288
3289         vmx->rmode.vm86_active = 0;
3290
3291         vmx_segment_cache_clear(vmx);
3292
3293         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3294
3295         flags = vmcs_readl(GUEST_RFLAGS);
3296         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3297         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3298         vmcs_writel(GUEST_RFLAGS, flags);
3299
3300         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3301                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3302
3303         update_exception_bitmap(vcpu);
3304
3305         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3306         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3307         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3308         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3309         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3310         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3311 }
3312
3313 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3314 {
3315         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3316         struct kvm_segment var = *save;
3317
3318         var.dpl = 0x3;
3319         if (seg == VCPU_SREG_CS)
3320                 var.type = 0x3;
3321
3322         if (!emulate_invalid_guest_state) {
3323                 var.selector = var.base >> 4;
3324                 var.base = var.base & 0xffff0;
3325                 var.limit = 0xffff;
3326                 var.g = 0;
3327                 var.db = 0;
3328                 var.present = 1;
3329                 var.s = 1;
3330                 var.l = 0;
3331                 var.unusable = 0;
3332                 var.type = 0x3;
3333                 var.avl = 0;
3334                 if (save->base & 0xf)
3335                         printk_once(KERN_WARNING "kvm: segment base is not "
3336                                         "paragraph aligned when entering "
3337                                         "protected mode (seg=%d)", seg);
3338         }
3339
3340         vmcs_write16(sf->selector, var.selector);
3341         vmcs_write32(sf->base, var.base);
3342         vmcs_write32(sf->limit, var.limit);
3343         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3344 }
3345
3346 static void enter_rmode(struct kvm_vcpu *vcpu)
3347 {
3348         unsigned long flags;
3349         struct vcpu_vmx *vmx = to_vmx(vcpu);
3350
3351         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3352         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3353         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3354         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3355         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3356         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3357         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3358
3359         vmx->rmode.vm86_active = 1;
3360
3361         /*
3362          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3363          * vcpu. Warn the user that an update is overdue.
3364          */
3365         if (!vcpu->kvm->arch.tss_addr)
3366                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3367                              "called before entering vcpu\n");
3368
3369         vmx_segment_cache_clear(vmx);
3370
3371         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3372         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3373         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3374
3375         flags = vmcs_readl(GUEST_RFLAGS);
3376         vmx->rmode.save_rflags = flags;
3377
3378         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3379
3380         vmcs_writel(GUEST_RFLAGS, flags);
3381         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3382         update_exception_bitmap(vcpu);
3383
3384         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3385         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3386         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3387         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3388         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3389         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3390
3391         kvm_mmu_reset_context(vcpu);
3392 }
3393
3394 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3395 {
3396         struct vcpu_vmx *vmx = to_vmx(vcpu);
3397         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3398
3399         if (!msr)
3400                 return;
3401
3402         /*
3403          * Force kernel_gs_base reloading before EFER changes, as control
3404          * of this msr depends on is_long_mode().
3405          */
3406         vmx_load_host_state(to_vmx(vcpu));
3407         vcpu->arch.efer = efer;
3408         if (efer & EFER_LMA) {
3409                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3410                 msr->data = efer;
3411         } else {
3412                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3413
3414                 msr->data = efer & ~EFER_LME;
3415         }
3416         setup_msrs(vmx);
3417 }
3418
3419 #ifdef CONFIG_X86_64
3420
3421 static void enter_lmode(struct kvm_vcpu *vcpu)
3422 {
3423         u32 guest_tr_ar;
3424
3425         vmx_segment_cache_clear(to_vmx(vcpu));
3426
3427         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3428         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3429                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3430                                      __func__);
3431                 vmcs_write32(GUEST_TR_AR_BYTES,
3432                              (guest_tr_ar & ~AR_TYPE_MASK)
3433                              | AR_TYPE_BUSY_64_TSS);
3434         }
3435         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3436 }
3437
3438 static void exit_lmode(struct kvm_vcpu *vcpu)
3439 {
3440         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3441         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3442 }
3443
3444 #endif
3445
3446 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3447 {
3448         vpid_sync_context(to_vmx(vcpu));
3449         if (enable_ept) {
3450                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3451                         return;
3452                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3453         }
3454 }
3455
3456 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3457 {
3458         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3459
3460         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3461         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3462 }
3463
3464 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3465 {
3466         if (enable_ept && is_paging(vcpu))
3467                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3468         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3469 }
3470
3471 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3472 {
3473         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3474
3475         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3476         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3477 }
3478
3479 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3480 {
3481         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3482
3483         if (!test_bit(VCPU_EXREG_PDPTR,
3484                       (unsigned long *)&vcpu->arch.regs_dirty))
3485                 return;
3486
3487         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3488                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3489                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3490                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3491                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3492         }
3493 }
3494
3495 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3496 {
3497         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3498
3499         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3500                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3501                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3502                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3503                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3504         }
3505
3506         __set_bit(VCPU_EXREG_PDPTR,
3507                   (unsigned long *)&vcpu->arch.regs_avail);
3508         __set_bit(VCPU_EXREG_PDPTR,
3509                   (unsigned long *)&vcpu->arch.regs_dirty);
3510 }
3511
3512 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3513
3514 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3515                                         unsigned long cr0,
3516                                         struct kvm_vcpu *vcpu)
3517 {
3518         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3519                 vmx_decache_cr3(vcpu);
3520         if (!(cr0 & X86_CR0_PG)) {
3521                 /* From paging/starting to nonpaging */
3522                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3523                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3524                              (CPU_BASED_CR3_LOAD_EXITING |
3525                               CPU_BASED_CR3_STORE_EXITING));
3526                 vcpu->arch.cr0 = cr0;
3527                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3528         } else if (!is_paging(vcpu)) {
3529                 /* From nonpaging to paging */
3530                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3531                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3532                              ~(CPU_BASED_CR3_LOAD_EXITING |
3533                                CPU_BASED_CR3_STORE_EXITING));
3534                 vcpu->arch.cr0 = cr0;
3535                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3536         }
3537
3538         if (!(cr0 & X86_CR0_WP))
3539                 *hw_cr0 &= ~X86_CR0_WP;
3540 }
3541
3542 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3543 {
3544         struct vcpu_vmx *vmx = to_vmx(vcpu);
3545         unsigned long hw_cr0;
3546
3547         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3548         if (enable_unrestricted_guest)
3549                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3550         else {
3551                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3552
3553                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3554                         enter_pmode(vcpu);
3555
3556                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3557                         enter_rmode(vcpu);
3558         }
3559
3560 #ifdef CONFIG_X86_64
3561         if (vcpu->arch.efer & EFER_LME) {
3562                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3563                         enter_lmode(vcpu);
3564                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3565                         exit_lmode(vcpu);
3566         }
3567 #endif
3568
3569         if (enable_ept)
3570                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3571
3572         if (!vcpu->fpu_active)
3573                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3574
3575         vmcs_writel(CR0_READ_SHADOW, cr0);
3576         vmcs_writel(GUEST_CR0, hw_cr0);
3577         vcpu->arch.cr0 = cr0;
3578
3579         /* depends on vcpu->arch.cr0 to be set to a new value */
3580         vmx->emulation_required = emulation_required(vcpu);
3581 }
3582
3583 static u64 construct_eptp(unsigned long root_hpa)
3584 {
3585         u64 eptp;
3586
3587         /* TODO write the value reading from MSR */
3588         eptp = VMX_EPT_DEFAULT_MT |
3589                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3590         if (enable_ept_ad_bits)
3591                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3592         eptp |= (root_hpa & PAGE_MASK);
3593
3594         return eptp;
3595 }
3596
3597 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3598 {
3599         unsigned long guest_cr3;
3600         u64 eptp;
3601
3602         guest_cr3 = cr3;
3603         if (enable_ept) {
3604                 eptp = construct_eptp(cr3);
3605                 vmcs_write64(EPT_POINTER, eptp);
3606                 if (is_paging(vcpu) || is_guest_mode(vcpu))
3607                         guest_cr3 = kvm_read_cr3(vcpu);
3608                 else
3609                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3610                 ept_load_pdptrs(vcpu);
3611         }
3612
3613         vmx_flush_tlb(vcpu);
3614         vmcs_writel(GUEST_CR3, guest_cr3);
3615 }
3616
3617 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3618 {
3619         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3620                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3621
3622         if (cr4 & X86_CR4_VMXE) {
3623                 /*
3624                  * To use VMXON (and later other VMX instructions), a guest
3625                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3626                  * So basically the check on whether to allow nested VMX
3627                  * is here.
3628                  */
3629                 if (!nested_vmx_allowed(vcpu))
3630                         return 1;
3631         }
3632         if (to_vmx(vcpu)->nested.vmxon &&
3633             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3634                 return 1;
3635
3636         vcpu->arch.cr4 = cr4;
3637         if (enable_ept) {
3638                 if (!is_paging(vcpu)) {
3639                         hw_cr4 &= ~X86_CR4_PAE;
3640                         hw_cr4 |= X86_CR4_PSE;
3641                         /*
3642                          * SMEP/SMAP is disabled if CPU is in non-paging mode
3643                          * in hardware. However KVM always uses paging mode to
3644                          * emulate guest non-paging mode with TDP.
3645                          * To emulate this behavior, SMEP/SMAP needs to be
3646                          * manually disabled when guest switches to non-paging
3647                          * mode.
3648                          */
3649                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3650                 } else if (!(cr4 & X86_CR4_PAE)) {
3651                         hw_cr4 &= ~X86_CR4_PAE;
3652                 }
3653         }
3654
3655         vmcs_writel(CR4_READ_SHADOW, cr4);
3656         vmcs_writel(GUEST_CR4, hw_cr4);
3657         return 0;
3658 }
3659
3660 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3661                             struct kvm_segment *var, int seg)
3662 {
3663         struct vcpu_vmx *vmx = to_vmx(vcpu);
3664         u32 ar;
3665
3666         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3667                 *var = vmx->rmode.segs[seg];
3668                 if (seg == VCPU_SREG_TR
3669                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3670                         return;
3671                 var->base = vmx_read_guest_seg_base(vmx, seg);
3672                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3673                 return;
3674         }
3675         var->base = vmx_read_guest_seg_base(vmx, seg);
3676         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3677         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3678         ar = vmx_read_guest_seg_ar(vmx, seg);
3679         var->unusable = (ar >> 16) & 1;
3680         var->type = ar & 15;
3681         var->s = (ar >> 4) & 1;
3682         var->dpl = (ar >> 5) & 3;
3683         /*
3684          * Some userspaces do not preserve unusable property. Since usable
3685          * segment has to be present according to VMX spec we can use present
3686          * property to amend userspace bug by making unusable segment always
3687          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3688          * segment as unusable.
3689          */
3690         var->present = !var->unusable;
3691         var->avl = (ar >> 12) & 1;
3692         var->l = (ar >> 13) & 1;
3693         var->db = (ar >> 14) & 1;
3694         var->g = (ar >> 15) & 1;
3695 }
3696
3697 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3698 {
3699         struct kvm_segment s;
3700
3701         if (to_vmx(vcpu)->rmode.vm86_active) {
3702                 vmx_get_segment(vcpu, &s, seg);
3703                 return s.base;
3704         }
3705         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3706 }
3707
3708 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_vmx *vmx = to_vmx(vcpu);
3711
3712         if (unlikely(vmx->rmode.vm86_active))
3713                 return 0;
3714         else {
3715                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3716                 return AR_DPL(ar);
3717         }
3718 }
3719
3720 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3721 {
3722         u32 ar;
3723
3724         if (var->unusable || !var->present)
3725                 ar = 1 << 16;
3726         else {
3727                 ar = var->type & 15;
3728                 ar |= (var->s & 1) << 4;
3729                 ar |= (var->dpl & 3) << 5;
3730                 ar |= (var->present & 1) << 7;
3731                 ar |= (var->avl & 1) << 12;
3732                 ar |= (var->l & 1) << 13;
3733                 ar |= (var->db & 1) << 14;
3734                 ar |= (var->g & 1) << 15;
3735         }
3736
3737         return ar;
3738 }
3739
3740 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3741                             struct kvm_segment *var, int seg)
3742 {
3743         struct vcpu_vmx *vmx = to_vmx(vcpu);
3744         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3745
3746         vmx_segment_cache_clear(vmx);
3747
3748         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3749                 vmx->rmode.segs[seg] = *var;
3750                 if (seg == VCPU_SREG_TR)
3751                         vmcs_write16(sf->selector, var->selector);
3752                 else if (var->s)
3753                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3754                 goto out;
3755         }
3756
3757         vmcs_writel(sf->base, var->base);
3758         vmcs_write32(sf->limit, var->limit);
3759         vmcs_write16(sf->selector, var->selector);
3760
3761         /*
3762          *   Fix the "Accessed" bit in AR field of segment registers for older
3763          * qemu binaries.
3764          *   IA32 arch specifies that at the time of processor reset the
3765          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3766          * is setting it to 0 in the userland code. This causes invalid guest
3767          * state vmexit when "unrestricted guest" mode is turned on.
3768          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3769          * tree. Newer qemu binaries with that qemu fix would not need this
3770          * kvm hack.
3771          */
3772         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3773                 var->type |= 0x1; /* Accessed */
3774
3775         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3776
3777 out:
3778         vmx->emulation_required = emulation_required(vcpu);
3779 }
3780
3781 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3782 {
3783         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3784
3785         *db = (ar >> 14) & 1;
3786         *l = (ar >> 13) & 1;
3787 }
3788
3789 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3790 {
3791         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3792         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3793 }
3794
3795 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3796 {
3797         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3798         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3799 }
3800
3801 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3802 {
3803         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3804         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3805 }
3806
3807 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3808 {
3809         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3810         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3811 }
3812
3813 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3814 {
3815         struct kvm_segment var;
3816         u32 ar;
3817
3818         vmx_get_segment(vcpu, &var, seg);
3819         var.dpl = 0x3;
3820         if (seg == VCPU_SREG_CS)
3821                 var.type = 0x3;
3822         ar = vmx_segment_access_rights(&var);
3823
3824         if (var.base != (var.selector << 4))
3825                 return false;
3826         if (var.limit != 0xffff)
3827                 return false;
3828         if (ar != 0xf3)
3829                 return false;
3830
3831         return true;
3832 }
3833
3834 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3835 {
3836         struct kvm_segment cs;
3837         unsigned int cs_rpl;
3838
3839         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3840         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3841
3842         if (cs.unusable)
3843                 return false;
3844         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3845                 return false;
3846         if (!cs.s)
3847                 return false;
3848         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3849                 if (cs.dpl > cs_rpl)
3850                         return false;
3851         } else {
3852                 if (cs.dpl != cs_rpl)
3853                         return false;
3854         }
3855         if (!cs.present)
3856                 return false;
3857
3858         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3859         return true;
3860 }
3861
3862 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3863 {
3864         struct kvm_segment ss;
3865         unsigned int ss_rpl;
3866
3867         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3868         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3869
3870         if (ss.unusable)
3871                 return true;
3872         if (ss.type != 3 && ss.type != 7)
3873                 return false;
3874         if (!ss.s)
3875                 return false;
3876         if (ss.dpl != ss_rpl) /* DPL != RPL */
3877                 return false;
3878         if (!ss.present)
3879                 return false;
3880
3881         return true;
3882 }
3883
3884 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3885 {
3886         struct kvm_segment var;
3887         unsigned int rpl;
3888
3889         vmx_get_segment(vcpu, &var, seg);
3890         rpl = var.selector & SEGMENT_RPL_MASK;
3891
3892         if (var.unusable)
3893                 return true;
3894         if (!var.s)
3895                 return false;
3896         if (!var.present)
3897                 return false;
3898         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3899                 if (var.dpl < rpl) /* DPL < RPL */
3900                         return false;
3901         }
3902
3903         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3904          * rights flags
3905          */
3906         return true;
3907 }
3908
3909 static bool tr_valid(struct kvm_vcpu *vcpu)
3910 {
3911         struct kvm_segment tr;
3912
3913         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3914
3915         if (tr.unusable)
3916                 return false;
3917         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3918                 return false;
3919         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3920                 return false;
3921         if (!tr.present)
3922                 return false;
3923
3924         return true;
3925 }
3926
3927 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3928 {
3929         struct kvm_segment ldtr;
3930
3931         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3932
3933         if (ldtr.unusable)
3934                 return true;
3935         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3936                 return false;
3937         if (ldtr.type != 2)
3938                 return false;
3939         if (!ldtr.present)
3940                 return false;
3941
3942         return true;
3943 }
3944
3945 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3946 {
3947         struct kvm_segment cs, ss;
3948
3949         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3950         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3951
3952         return ((cs.selector & SEGMENT_RPL_MASK) ==
3953                  (ss.selector & SEGMENT_RPL_MASK));
3954 }
3955
3956 /*
3957  * Check if guest state is valid. Returns true if valid, false if
3958  * not.
3959  * We assume that registers are always usable
3960  */
3961 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3962 {
3963         if (enable_unrestricted_guest)
3964                 return true;
3965
3966         /* real mode guest state checks */
3967         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3968                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3969                         return false;
3970                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3971                         return false;
3972                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3973                         return false;
3974                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3975                         return false;
3976                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3977                         return false;
3978                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3979                         return false;
3980         } else {
3981         /* protected mode guest state checks */
3982                 if (!cs_ss_rpl_check(vcpu))
3983                         return false;
3984                 if (!code_segment_valid(vcpu))
3985                         return false;
3986                 if (!stack_segment_valid(vcpu))
3987                         return false;
3988                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3989                         return false;
3990                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3991                         return false;
3992                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3993                         return false;
3994                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3995                         return false;
3996                 if (!tr_valid(vcpu))
3997                         return false;
3998                 if (!ldtr_valid(vcpu))
3999                         return false;
4000         }
4001         /* TODO:
4002          * - Add checks on RIP
4003          * - Add checks on RFLAGS
4004          */
4005
4006         return true;
4007 }
4008
4009 static int init_rmode_tss(struct kvm *kvm)
4010 {
4011         gfn_t fn;
4012         u16 data = 0;
4013         int idx, r;
4014
4015         idx = srcu_read_lock(&kvm->srcu);
4016         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4017         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4018         if (r < 0)
4019                 goto out;
4020         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4021         r = kvm_write_guest_page(kvm, fn++, &data,
4022                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4023         if (r < 0)
4024                 goto out;
4025         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4026         if (r < 0)
4027                 goto out;
4028         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4029         if (r < 0)
4030                 goto out;
4031         data = ~0;
4032         r = kvm_write_guest_page(kvm, fn, &data,
4033                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4034                                  sizeof(u8));
4035 out:
4036         srcu_read_unlock(&kvm->srcu, idx);
4037         return r;
4038 }
4039
4040 static int init_rmode_identity_map(struct kvm *kvm)
4041 {
4042         int i, idx, r = 0;
4043         pfn_t identity_map_pfn;
4044         u32 tmp;
4045
4046         if (!enable_ept)
4047                 return 0;
4048
4049         /* Protect kvm->arch.ept_identity_pagetable_done. */
4050         mutex_lock(&kvm->slots_lock);
4051
4052         if (likely(kvm->arch.ept_identity_pagetable_done))
4053                 goto out2;
4054
4055         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4056
4057         r = alloc_identity_pagetable(kvm);
4058         if (r < 0)
4059                 goto out2;
4060
4061         idx = srcu_read_lock(&kvm->srcu);
4062         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4063         if (r < 0)
4064                 goto out;
4065         /* Set up identity-mapping pagetable for EPT in real mode */
4066         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4067                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4068                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4069                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4070                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4071                 if (r < 0)
4072                         goto out;
4073         }
4074         kvm->arch.ept_identity_pagetable_done = true;
4075
4076 out:
4077         srcu_read_unlock(&kvm->srcu, idx);
4078
4079 out2:
4080         mutex_unlock(&kvm->slots_lock);
4081         return r;
4082 }
4083
4084 static void seg_setup(int seg)
4085 {
4086         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4087         unsigned int ar;
4088
4089         vmcs_write16(sf->selector, 0);
4090         vmcs_writel(sf->base, 0);
4091         vmcs_write32(sf->limit, 0xffff);
4092         ar = 0x93;
4093         if (seg == VCPU_SREG_CS)
4094                 ar |= 0x08; /* code segment */
4095
4096         vmcs_write32(sf->ar_bytes, ar);
4097 }
4098
4099 static int alloc_apic_access_page(struct kvm *kvm)
4100 {
4101         struct page *page;
4102         struct kvm_userspace_memory_region kvm_userspace_mem;
4103         int r = 0;
4104
4105         mutex_lock(&kvm->slots_lock);
4106         if (kvm->arch.apic_access_page_done)
4107                 goto out;
4108         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4109         kvm_userspace_mem.flags = 0;
4110         kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4111         kvm_userspace_mem.memory_size = PAGE_SIZE;
4112         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4113         if (r)
4114                 goto out;
4115
4116         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4117         if (is_error_page(page)) {
4118                 r = -EFAULT;
4119                 goto out;
4120         }
4121
4122         /*
4123          * Do not pin the page in memory, so that memory hot-unplug
4124          * is able to migrate it.
4125          */
4126         put_page(page);
4127         kvm->arch.apic_access_page_done = true;
4128 out:
4129         mutex_unlock(&kvm->slots_lock);
4130         return r;
4131 }
4132
4133 static int alloc_identity_pagetable(struct kvm *kvm)
4134 {
4135         /* Called with kvm->slots_lock held. */
4136
4137         struct kvm_userspace_memory_region kvm_userspace_mem;
4138         int r = 0;
4139
4140         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4141
4142         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4143         kvm_userspace_mem.flags = 0;
4144         kvm_userspace_mem.guest_phys_addr =
4145                 kvm->arch.ept_identity_map_addr;
4146         kvm_userspace_mem.memory_size = PAGE_SIZE;
4147         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4148
4149         return r;
4150 }
4151
4152 static void allocate_vpid(struct vcpu_vmx *vmx)
4153 {
4154         int vpid;
4155
4156         vmx->vpid = 0;
4157         if (!enable_vpid)
4158                 return;
4159         spin_lock(&vmx_vpid_lock);
4160         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4161         if (vpid < VMX_NR_VPIDS) {
4162                 vmx->vpid = vpid;
4163                 __set_bit(vpid, vmx_vpid_bitmap);
4164         }
4165         spin_unlock(&vmx_vpid_lock);
4166 }
4167
4168 static void free_vpid(struct vcpu_vmx *vmx)
4169 {
4170         if (!enable_vpid)
4171                 return;
4172         spin_lock(&vmx_vpid_lock);
4173         if (vmx->vpid != 0)
4174                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4175         spin_unlock(&vmx_vpid_lock);
4176 }
4177
4178 #define MSR_TYPE_R      1
4179 #define MSR_TYPE_W      2
4180 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4181                                                 u32 msr, int type)
4182 {
4183         int f = sizeof(unsigned long);
4184
4185         if (!cpu_has_vmx_msr_bitmap())
4186                 return;
4187
4188         /*
4189          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4190          * have the write-low and read-high bitmap offsets the wrong way round.
4191          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4192          */
4193         if (msr <= 0x1fff) {
4194                 if (type & MSR_TYPE_R)
4195                         /* read-low */
4196                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4197
4198                 if (type & MSR_TYPE_W)
4199                         /* write-low */
4200                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4201
4202         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4203                 msr &= 0x1fff;
4204                 if (type & MSR_TYPE_R)
4205                         /* read-high */
4206                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4207
4208                 if (type & MSR_TYPE_W)
4209                         /* write-high */
4210                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4211
4212         }
4213 }
4214
4215 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4216                                                 u32 msr, int type)
4217 {
4218         int f = sizeof(unsigned long);
4219
4220         if (!cpu_has_vmx_msr_bitmap())
4221                 return;
4222
4223         /*
4224          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4225          * have the write-low and read-high bitmap offsets the wrong way round.
4226          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4227          */
4228         if (msr <= 0x1fff) {
4229                 if (type & MSR_TYPE_R)
4230                         /* read-low */
4231                         __set_bit(msr, msr_bitmap + 0x000 / f);
4232
4233                 if (type & MSR_TYPE_W)
4234                         /* write-low */
4235                         __set_bit(msr, msr_bitmap + 0x800 / f);
4236
4237         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4238                 msr &= 0x1fff;
4239                 if (type & MSR_TYPE_R)
4240                         /* read-high */
4241                         __set_bit(msr, msr_bitmap + 0x400 / f);
4242
4243                 if (type & MSR_TYPE_W)
4244                         /* write-high */
4245                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4246
4247         }
4248 }
4249
4250 /*
4251  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4252  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4253  */
4254 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4255                                                unsigned long *msr_bitmap_nested,
4256                                                u32 msr, int type)
4257 {
4258         int f = sizeof(unsigned long);
4259
4260         if (!cpu_has_vmx_msr_bitmap()) {
4261                 WARN_ON(1);
4262                 return;
4263         }
4264
4265         /*
4266          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4267          * have the write-low and read-high bitmap offsets the wrong way round.
4268          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4269          */
4270         if (msr <= 0x1fff) {
4271                 if (type & MSR_TYPE_R &&
4272                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4273                         /* read-low */
4274                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4275
4276                 if (type & MSR_TYPE_W &&
4277                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4278                         /* write-low */
4279                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4280
4281         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4282                 msr &= 0x1fff;
4283                 if (type & MSR_TYPE_R &&
4284                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4285                         /* read-high */
4286                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4287
4288                 if (type & MSR_TYPE_W &&
4289                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4290                         /* write-high */
4291                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4292
4293         }
4294 }
4295
4296 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4297 {
4298         if (!longmode_only)
4299                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4300                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4301         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4302                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4303 }
4304
4305 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4306 {
4307         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4308                         msr, MSR_TYPE_R);
4309         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4310                         msr, MSR_TYPE_R);
4311 }
4312
4313 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4314 {
4315         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4316                         msr, MSR_TYPE_R);
4317         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4318                         msr, MSR_TYPE_R);
4319 }
4320
4321 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4322 {
4323         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4324                         msr, MSR_TYPE_W);
4325         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4326                         msr, MSR_TYPE_W);
4327 }
4328
4329 static int vmx_vm_has_apicv(struct kvm *kvm)
4330 {
4331         return enable_apicv && irqchip_in_kernel(kvm);
4332 }
4333
4334 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4335 {
4336         struct vcpu_vmx *vmx = to_vmx(vcpu);
4337         int max_irr;
4338         void *vapic_page;
4339         u16 status;
4340
4341         if (vmx->nested.pi_desc &&
4342             vmx->nested.pi_pending) {
4343                 vmx->nested.pi_pending = false;
4344                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4345                         return 0;
4346
4347                 max_irr = find_last_bit(
4348                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4349
4350                 if (max_irr == 256)
4351                         return 0;
4352
4353                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4354                 if (!vapic_page) {
4355                         WARN_ON(1);
4356                         return -ENOMEM;
4357                 }
4358                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4359                 kunmap(vmx->nested.virtual_apic_page);
4360
4361                 status = vmcs_read16(GUEST_INTR_STATUS);
4362                 if ((u8)max_irr > ((u8)status & 0xff)) {
4363                         status &= ~0xff;
4364                         status |= (u8)max_irr;
4365                         vmcs_write16(GUEST_INTR_STATUS, status);
4366                 }
4367         }
4368         return 0;
4369 }
4370
4371 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4372 {
4373 #ifdef CONFIG_SMP
4374         if (vcpu->mode == IN_GUEST_MODE) {
4375                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4376                                 POSTED_INTR_VECTOR);
4377                 return true;
4378         }
4379 #endif
4380         return false;
4381 }
4382
4383 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4384                                                 int vector)
4385 {
4386         struct vcpu_vmx *vmx = to_vmx(vcpu);
4387
4388         if (is_guest_mode(vcpu) &&
4389             vector == vmx->nested.posted_intr_nv) {
4390                 /* the PIR and ON have been set by L1. */
4391                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4392                 /*
4393                  * If a posted intr is not recognized by hardware,
4394                  * we will accomplish it in the next vmentry.
4395                  */
4396                 vmx->nested.pi_pending = true;
4397                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4398                 return 0;
4399         }
4400         return -1;
4401 }
4402 /*
4403  * Send interrupt to vcpu via posted interrupt way.
4404  * 1. If target vcpu is running(non-root mode), send posted interrupt
4405  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4406  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4407  * interrupt from PIR in next vmentry.
4408  */
4409 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4410 {
4411         struct vcpu_vmx *vmx = to_vmx(vcpu);
4412         int r;
4413
4414         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4415         if (!r)
4416                 return;
4417
4418         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4419                 return;
4420
4421         r = pi_test_and_set_on(&vmx->pi_desc);
4422         kvm_make_request(KVM_REQ_EVENT, vcpu);
4423         if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4424                 kvm_vcpu_kick(vcpu);
4425 }
4426
4427 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4428 {
4429         struct vcpu_vmx *vmx = to_vmx(vcpu);
4430
4431         if (!pi_test_and_clear_on(&vmx->pi_desc))
4432                 return;
4433
4434         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4435 }
4436
4437 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4438 {
4439         return;
4440 }
4441
4442 /*
4443  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4444  * will not change in the lifetime of the guest.
4445  * Note that host-state that does change is set elsewhere. E.g., host-state
4446  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4447  */
4448 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4449 {
4450         u32 low32, high32;
4451         unsigned long tmpl;
4452         struct desc_ptr dt;
4453         unsigned long cr4;
4454
4455         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4456         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4457
4458         /* Save the most likely value for this task's CR4 in the VMCS. */
4459         cr4 = cr4_read_shadow();
4460         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4461         vmx->host_state.vmcs_host_cr4 = cr4;
4462
4463         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4464 #ifdef CONFIG_X86_64
4465         /*
4466          * Load null selectors, so we can avoid reloading them in
4467          * __vmx_load_host_state(), in case userspace uses the null selectors
4468          * too (the expected case).
4469          */
4470         vmcs_write16(HOST_DS_SELECTOR, 0);
4471         vmcs_write16(HOST_ES_SELECTOR, 0);
4472 #else
4473         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4474         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4475 #endif
4476         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4477         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4478
4479         native_store_idt(&dt);
4480         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4481         vmx->host_idt_base = dt.address;
4482
4483         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4484
4485         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4486         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4487         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4488         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4489
4490         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4491                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4492                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4493         }
4494 }
4495
4496 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4497 {
4498         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4499         if (enable_ept)
4500                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4501         if (is_guest_mode(&vmx->vcpu))
4502                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4503                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4504         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4505 }
4506
4507 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4508 {
4509         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4510
4511         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4512                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4513         return pin_based_exec_ctrl;
4514 }
4515
4516 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4517 {
4518         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4519
4520         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4521                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4522
4523         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4524                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4525 #ifdef CONFIG_X86_64
4526                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4527                                 CPU_BASED_CR8_LOAD_EXITING;
4528 #endif
4529         }
4530         if (!enable_ept)
4531                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4532                                 CPU_BASED_CR3_LOAD_EXITING  |
4533                                 CPU_BASED_INVLPG_EXITING;
4534         return exec_control;
4535 }
4536
4537 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4538 {
4539         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4540         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4541                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4542         if (vmx->vpid == 0)
4543                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4544         if (!enable_ept) {
4545                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4546                 enable_unrestricted_guest = 0;
4547                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4548                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4549         }
4550         if (!enable_unrestricted_guest)
4551                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4552         if (!ple_gap)
4553                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4554         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4555                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4556                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4557         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4558         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4559            (handle_vmptrld).
4560            We can NOT enable shadow_vmcs here because we don't have yet
4561            a current VMCS12
4562         */
4563         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4564         /* PML is enabled/disabled in creating/destorying vcpu */
4565         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4566
4567         return exec_control;
4568 }
4569
4570 static void ept_set_mmio_spte_mask(void)
4571 {
4572         /*
4573          * EPT Misconfigurations can be generated if the value of bits 2:0
4574          * of an EPT paging-structure entry is 110b (write/execute).
4575          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4576          * spte.
4577          */
4578         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4579 }
4580
4581 #define VMX_XSS_EXIT_BITMAP 0
4582 /*
4583  * Sets up the vmcs for emulated real mode.
4584  */
4585 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4586 {
4587 #ifdef CONFIG_X86_64
4588         unsigned long a;
4589 #endif
4590         int i;
4591
4592         /* I/O */
4593         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4594         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4595
4596         if (enable_shadow_vmcs) {
4597                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4598                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4599         }
4600         if (cpu_has_vmx_msr_bitmap())
4601                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4602
4603         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4604
4605         /* Control */
4606         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4607
4608         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4609
4610         if (cpu_has_secondary_exec_ctrls()) {
4611                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4612                                 vmx_secondary_exec_control(vmx));
4613         }
4614
4615         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4616                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4617                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4618                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4619                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4620
4621                 vmcs_write16(GUEST_INTR_STATUS, 0);
4622
4623                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4624                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4625         }
4626
4627         if (ple_gap) {
4628                 vmcs_write32(PLE_GAP, ple_gap);
4629                 vmx->ple_window = ple_window;
4630                 vmx->ple_window_dirty = true;
4631         }
4632
4633         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4634         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4635         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4636
4637         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4638         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4639         vmx_set_constant_host_state(vmx);
4640 #ifdef CONFIG_X86_64
4641         rdmsrl(MSR_FS_BASE, a);
4642         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4643         rdmsrl(MSR_GS_BASE, a);
4644         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4645 #else
4646         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4647         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4648 #endif
4649
4650         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4651         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4652         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4653         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4654         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4655
4656         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4657                 u32 msr_low, msr_high;
4658                 u64 host_pat;
4659                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4660                 host_pat = msr_low | ((u64) msr_high << 32);
4661                 /* Write the default value follow host pat */
4662                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4663                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4664                 vmx->vcpu.arch.pat = host_pat;
4665         }
4666
4667         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4668                 u32 index = vmx_msr_index[i];
4669                 u32 data_low, data_high;
4670                 int j = vmx->nmsrs;
4671
4672                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4673                         continue;
4674                 if (wrmsr_safe(index, data_low, data_high) < 0)
4675                         continue;
4676                 vmx->guest_msrs[j].index = i;
4677                 vmx->guest_msrs[j].data = 0;
4678                 vmx->guest_msrs[j].mask = -1ull;
4679                 ++vmx->nmsrs;
4680         }
4681
4682
4683         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4684
4685         /* 22.2.1, 20.8.1 */
4686         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4687
4688         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4689         set_cr4_guest_host_mask(vmx);
4690
4691         if (vmx_xsaves_supported())
4692                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4693
4694         return 0;
4695 }
4696
4697 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4698 {
4699         struct vcpu_vmx *vmx = to_vmx(vcpu);
4700         struct msr_data apic_base_msr;
4701
4702         vmx->rmode.vm86_active = 0;
4703
4704         vmx->soft_vnmi_blocked = 0;
4705
4706         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4707         kvm_set_cr8(&vmx->vcpu, 0);
4708         apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4709         if (kvm_vcpu_is_reset_bsp(&vmx->vcpu))
4710                 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4711         apic_base_msr.host_initiated = true;
4712         kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4713
4714         vmx_segment_cache_clear(vmx);
4715
4716         seg_setup(VCPU_SREG_CS);
4717         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4718         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4719
4720         seg_setup(VCPU_SREG_DS);
4721         seg_setup(VCPU_SREG_ES);
4722         seg_setup(VCPU_SREG_FS);
4723         seg_setup(VCPU_SREG_GS);
4724         seg_setup(VCPU_SREG_SS);
4725
4726         vmcs_write16(GUEST_TR_SELECTOR, 0);
4727         vmcs_writel(GUEST_TR_BASE, 0);
4728         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4729         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4730
4731         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4732         vmcs_writel(GUEST_LDTR_BASE, 0);
4733         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4734         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4735
4736         vmcs_write32(GUEST_SYSENTER_CS, 0);
4737         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4738         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4739
4740         vmcs_writel(GUEST_RFLAGS, 0x02);
4741         kvm_rip_write(vcpu, 0xfff0);
4742
4743         vmcs_writel(GUEST_GDTR_BASE, 0);
4744         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4745
4746         vmcs_writel(GUEST_IDTR_BASE, 0);
4747         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4748
4749         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4750         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4751         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4752
4753         /* Special registers */
4754         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4755
4756         setup_msrs(vmx);
4757
4758         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4759
4760         if (cpu_has_vmx_tpr_shadow()) {
4761                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4762                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4763                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4764                                      __pa(vmx->vcpu.arch.apic->regs));
4765                 vmcs_write32(TPR_THRESHOLD, 0);
4766         }
4767
4768         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4769
4770         if (vmx_vm_has_apicv(vcpu->kvm))
4771                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4772
4773         if (vmx->vpid != 0)
4774                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4775
4776         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4777         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4778         vmx_set_cr4(&vmx->vcpu, 0);
4779         vmx_set_efer(&vmx->vcpu, 0);
4780         vmx_fpu_activate(&vmx->vcpu);
4781         update_exception_bitmap(&vmx->vcpu);
4782
4783         vpid_sync_context(vmx);
4784 }
4785
4786 /*
4787  * In nested virtualization, check if L1 asked to exit on external interrupts.
4788  * For most existing hypervisors, this will always return true.
4789  */
4790 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4791 {
4792         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4793                 PIN_BASED_EXT_INTR_MASK;
4794 }
4795
4796 /*
4797  * In nested virtualization, check if L1 has set
4798  * VM_EXIT_ACK_INTR_ON_EXIT
4799  */
4800 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4801 {
4802         return get_vmcs12(vcpu)->vm_exit_controls &
4803                 VM_EXIT_ACK_INTR_ON_EXIT;
4804 }
4805
4806 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4807 {
4808         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4809                 PIN_BASED_NMI_EXITING;
4810 }
4811
4812 static void enable_irq_window(struct kvm_vcpu *vcpu)
4813 {
4814         u32 cpu_based_vm_exec_control;
4815
4816         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4817         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4818         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4819 }
4820
4821 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4822 {
4823         u32 cpu_based_vm_exec_control;
4824
4825         if (!cpu_has_virtual_nmis() ||
4826             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4827                 enable_irq_window(vcpu);
4828                 return;
4829         }
4830
4831         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4832         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4833         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4834 }
4835
4836 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4837 {
4838         struct vcpu_vmx *vmx = to_vmx(vcpu);
4839         uint32_t intr;
4840         int irq = vcpu->arch.interrupt.nr;
4841
4842         trace_kvm_inj_virq(irq);
4843
4844         ++vcpu->stat.irq_injections;
4845         if (vmx->rmode.vm86_active) {
4846                 int inc_eip = 0;
4847                 if (vcpu->arch.interrupt.soft)
4848                         inc_eip = vcpu->arch.event_exit_inst_len;
4849                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4850                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4851                 return;
4852         }
4853         intr = irq | INTR_INFO_VALID_MASK;
4854         if (vcpu->arch.interrupt.soft) {
4855                 intr |= INTR_TYPE_SOFT_INTR;
4856                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4857                              vmx->vcpu.arch.event_exit_inst_len);
4858         } else
4859                 intr |= INTR_TYPE_EXT_INTR;
4860         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4861 }
4862
4863 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4864 {
4865         struct vcpu_vmx *vmx = to_vmx(vcpu);
4866
4867         if (is_guest_mode(vcpu))
4868                 return;
4869
4870         if (!cpu_has_virtual_nmis()) {
4871                 /*
4872                  * Tracking the NMI-blocked state in software is built upon
4873                  * finding the next open IRQ window. This, in turn, depends on
4874                  * well-behaving guests: They have to keep IRQs disabled at
4875                  * least as long as the NMI handler runs. Otherwise we may
4876                  * cause NMI nesting, maybe breaking the guest. But as this is
4877                  * highly unlikely, we can live with the residual risk.
4878                  */
4879                 vmx->soft_vnmi_blocked = 1;
4880                 vmx->vnmi_blocked_time = 0;
4881         }
4882
4883         ++vcpu->stat.nmi_injections;
4884         vmx->nmi_known_unmasked = false;
4885         if (vmx->rmode.vm86_active) {
4886                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4887                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4888                 return;
4889         }
4890         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4891                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4892 }
4893
4894 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4895 {
4896         if (!cpu_has_virtual_nmis())
4897                 return to_vmx(vcpu)->soft_vnmi_blocked;
4898         if (to_vmx(vcpu)->nmi_known_unmasked)
4899                 return false;
4900         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4901 }
4902
4903 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4904 {
4905         struct vcpu_vmx *vmx = to_vmx(vcpu);
4906
4907         if (!cpu_has_virtual_nmis()) {
4908                 if (vmx->soft_vnmi_blocked != masked) {
4909                         vmx->soft_vnmi_blocked = masked;
4910                         vmx->vnmi_blocked_time = 0;
4911                 }
4912         } else {
4913                 vmx->nmi_known_unmasked = !masked;
4914                 if (masked)
4915                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4916                                       GUEST_INTR_STATE_NMI);
4917                 else
4918                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4919                                         GUEST_INTR_STATE_NMI);
4920         }
4921 }
4922
4923 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4924 {
4925         if (to_vmx(vcpu)->nested.nested_run_pending)
4926                 return 0;
4927
4928         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4929                 return 0;
4930
4931         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4932                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4933                    | GUEST_INTR_STATE_NMI));
4934 }
4935
4936 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4937 {
4938         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4939                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4940                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4941                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4942 }
4943
4944 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4945 {
4946         int ret;
4947         struct kvm_userspace_memory_region tss_mem = {
4948                 .slot = TSS_PRIVATE_MEMSLOT,
4949                 .guest_phys_addr = addr,
4950                 .memory_size = PAGE_SIZE * 3,
4951                 .flags = 0,
4952         };
4953
4954         ret = kvm_set_memory_region(kvm, &tss_mem);
4955         if (ret)
4956                 return ret;
4957         kvm->arch.tss_addr = addr;
4958         return init_rmode_tss(kvm);
4959 }
4960
4961 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4962 {
4963         switch (vec) {
4964         case BP_VECTOR:
4965                 /*
4966                  * Update instruction length as we may reinject the exception
4967                  * from user space while in guest debugging mode.
4968                  */
4969                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4970                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4971                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4972                         return false;
4973                 /* fall through */
4974         case DB_VECTOR:
4975                 if (vcpu->guest_debug &
4976                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4977                         return false;
4978                 /* fall through */
4979         case DE_VECTOR:
4980         case OF_VECTOR:
4981         case BR_VECTOR:
4982         case UD_VECTOR:
4983         case DF_VECTOR:
4984         case SS_VECTOR:
4985         case GP_VECTOR:
4986         case MF_VECTOR:
4987                 return true;
4988         break;
4989         }
4990         return false;
4991 }
4992
4993 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4994                                   int vec, u32 err_code)
4995 {
4996         /*
4997          * Instruction with address size override prefix opcode 0x67
4998          * Cause the #SS fault with 0 error code in VM86 mode.
4999          */
5000         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5001                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5002                         if (vcpu->arch.halt_request) {
5003                                 vcpu->arch.halt_request = 0;
5004                                 return kvm_vcpu_halt(vcpu);
5005                         }
5006                         return 1;
5007                 }
5008                 return 0;
5009         }
5010
5011         /*
5012          * Forward all other exceptions that are valid in real mode.
5013          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5014          *        the required debugging infrastructure rework.
5015          */
5016         kvm_queue_exception(vcpu, vec);
5017         return 1;
5018 }
5019
5020 /*
5021  * Trigger machine check on the host. We assume all the MSRs are already set up
5022  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5023  * We pass a fake environment to the machine check handler because we want
5024  * the guest to be always treated like user space, no matter what context
5025  * it used internally.
5026  */
5027 static void kvm_machine_check(void)
5028 {
5029 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5030         struct pt_regs regs = {
5031                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5032                 .flags = X86_EFLAGS_IF,
5033         };
5034
5035         do_machine_check(&regs, 0);
5036 #endif
5037 }
5038
5039 static int handle_machine_check(struct kvm_vcpu *vcpu)
5040 {
5041         /* already handled by vcpu_run */
5042         return 1;
5043 }
5044
5045 static int handle_exception(struct kvm_vcpu *vcpu)
5046 {
5047         struct vcpu_vmx *vmx = to_vmx(vcpu);
5048         struct kvm_run *kvm_run = vcpu->run;
5049         u32 intr_info, ex_no, error_code;
5050         unsigned long cr2, rip, dr6;
5051         u32 vect_info;
5052         enum emulation_result er;
5053
5054         vect_info = vmx->idt_vectoring_info;
5055         intr_info = vmx->exit_intr_info;
5056
5057         if (is_machine_check(intr_info))
5058                 return handle_machine_check(vcpu);
5059
5060         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5061                 return 1;  /* already handled by vmx_vcpu_run() */
5062
5063         if (is_no_device(intr_info)) {
5064                 vmx_fpu_activate(vcpu);
5065                 return 1;
5066         }
5067
5068         if (is_invalid_opcode(intr_info)) {
5069                 if (is_guest_mode(vcpu)) {
5070                         kvm_queue_exception(vcpu, UD_VECTOR);
5071                         return 1;
5072                 }
5073                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5074                 if (er != EMULATE_DONE)
5075                         kvm_queue_exception(vcpu, UD_VECTOR);
5076                 return 1;
5077         }
5078
5079         error_code = 0;
5080         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5081                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5082
5083         /*
5084          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5085          * MMIO, it is better to report an internal error.
5086          * See the comments in vmx_handle_exit.
5087          */
5088         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5089             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5090                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5091                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5092                 vcpu->run->internal.ndata = 3;
5093                 vcpu->run->internal.data[0] = vect_info;
5094                 vcpu->run->internal.data[1] = intr_info;
5095                 vcpu->run->internal.data[2] = error_code;
5096                 return 0;
5097         }
5098
5099         if (is_page_fault(intr_info)) {
5100                 /* EPT won't cause page fault directly */
5101                 BUG_ON(enable_ept);
5102                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5103                 trace_kvm_page_fault(cr2, error_code);
5104
5105                 if (kvm_event_needs_reinjection(vcpu))
5106                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5107                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5108         }
5109
5110         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5111
5112         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5113                 return handle_rmode_exception(vcpu, ex_no, error_code);
5114
5115         switch (ex_no) {
5116         case DB_VECTOR:
5117                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5118                 if (!(vcpu->guest_debug &
5119                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5120                         vcpu->arch.dr6 &= ~15;
5121                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5122                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5123                                 skip_emulated_instruction(vcpu);
5124
5125                         kvm_queue_exception(vcpu, DB_VECTOR);
5126                         return 1;
5127                 }
5128                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5129                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5130                 /* fall through */
5131         case BP_VECTOR:
5132                 /*
5133                  * Update instruction length as we may reinject #BP from
5134                  * user space while in guest debugging mode. Reading it for
5135                  * #DB as well causes no harm, it is not used in that case.
5136                  */
5137                 vmx->vcpu.arch.event_exit_inst_len =
5138                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5139                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5140                 rip = kvm_rip_read(vcpu);
5141                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5142                 kvm_run->debug.arch.exception = ex_no;
5143                 break;
5144         default:
5145                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5146                 kvm_run->ex.exception = ex_no;
5147                 kvm_run->ex.error_code = error_code;
5148                 break;
5149         }
5150         return 0;
5151 }
5152
5153 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5154 {
5155         ++vcpu->stat.irq_exits;
5156         return 1;
5157 }
5158
5159 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5160 {
5161         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5162         return 0;
5163 }
5164
5165 static int handle_io(struct kvm_vcpu *vcpu)
5166 {
5167         unsigned long exit_qualification;
5168         int size, in, string;
5169         unsigned port;
5170
5171         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5172         string = (exit_qualification & 16) != 0;
5173         in = (exit_qualification & 8) != 0;
5174
5175         ++vcpu->stat.io_exits;
5176
5177         if (string || in)
5178                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5179
5180         port = exit_qualification >> 16;
5181         size = (exit_qualification & 7) + 1;
5182         skip_emulated_instruction(vcpu);
5183
5184         return kvm_fast_pio_out(vcpu, size, port);
5185 }
5186
5187 static void
5188 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5189 {
5190         /*
5191          * Patch in the VMCALL instruction:
5192          */
5193         hypercall[0] = 0x0f;
5194         hypercall[1] = 0x01;
5195         hypercall[2] = 0xc1;
5196 }
5197
5198 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5199 {
5200         unsigned long always_on = VMXON_CR0_ALWAYSON;
5201         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5202
5203         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5204                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5205             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5206                 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5207         return (val & always_on) == always_on;
5208 }
5209
5210 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5211 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5212 {
5213         if (is_guest_mode(vcpu)) {
5214                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5215                 unsigned long orig_val = val;
5216
5217                 /*
5218                  * We get here when L2 changed cr0 in a way that did not change
5219                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5220                  * but did change L0 shadowed bits. So we first calculate the
5221                  * effective cr0 value that L1 would like to write into the
5222                  * hardware. It consists of the L2-owned bits from the new
5223                  * value combined with the L1-owned bits from L1's guest_cr0.
5224                  */
5225                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5226                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5227
5228                 if (!nested_cr0_valid(vcpu, val))
5229                         return 1;
5230
5231                 if (kvm_set_cr0(vcpu, val))
5232                         return 1;
5233                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5234                 return 0;
5235         } else {
5236                 if (to_vmx(vcpu)->nested.vmxon &&
5237                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5238                         return 1;
5239                 return kvm_set_cr0(vcpu, val);
5240         }
5241 }
5242
5243 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5244 {
5245         if (is_guest_mode(vcpu)) {
5246                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5247                 unsigned long orig_val = val;
5248
5249                 /* analogously to handle_set_cr0 */
5250                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5251                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5252                 if (kvm_set_cr4(vcpu, val))
5253                         return 1;
5254                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5255                 return 0;
5256         } else
5257                 return kvm_set_cr4(vcpu, val);
5258 }
5259
5260 /* called to set cr0 as approriate for clts instruction exit. */
5261 static void handle_clts(struct kvm_vcpu *vcpu)
5262 {
5263         if (is_guest_mode(vcpu)) {
5264                 /*
5265                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5266                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5267                  * just pretend it's off (also in arch.cr0 for fpu_activate).
5268                  */
5269                 vmcs_writel(CR0_READ_SHADOW,
5270                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5271                 vcpu->arch.cr0 &= ~X86_CR0_TS;
5272         } else
5273                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5274 }
5275
5276 static int handle_cr(struct kvm_vcpu *vcpu)
5277 {
5278         unsigned long exit_qualification, val;
5279         int cr;
5280         int reg;
5281         int err;
5282
5283         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5284         cr = exit_qualification & 15;
5285         reg = (exit_qualification >> 8) & 15;
5286         switch ((exit_qualification >> 4) & 3) {
5287         case 0: /* mov to cr */
5288                 val = kvm_register_readl(vcpu, reg);
5289                 trace_kvm_cr_write(cr, val);
5290                 switch (cr) {
5291                 case 0:
5292                         err = handle_set_cr0(vcpu, val);
5293                         kvm_complete_insn_gp(vcpu, err);
5294                         return 1;
5295                 case 3:
5296                         err = kvm_set_cr3(vcpu, val);
5297                         kvm_complete_insn_gp(vcpu, err);
5298                         return 1;
5299                 case 4:
5300                         err = handle_set_cr4(vcpu, val);
5301                         kvm_complete_insn_gp(vcpu, err);
5302                         return 1;
5303                 case 8: {
5304                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5305                                 u8 cr8 = (u8)val;
5306                                 err = kvm_set_cr8(vcpu, cr8);
5307                                 kvm_complete_insn_gp(vcpu, err);
5308                                 if (irqchip_in_kernel(vcpu->kvm))
5309                                         return 1;
5310                                 if (cr8_prev <= cr8)
5311                                         return 1;
5312                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5313                                 return 0;
5314                         }
5315                 }
5316                 break;
5317         case 2: /* clts */
5318                 handle_clts(vcpu);
5319                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5320                 skip_emulated_instruction(vcpu);
5321                 vmx_fpu_activate(vcpu);
5322                 return 1;
5323         case 1: /*mov from cr*/
5324                 switch (cr) {
5325                 case 3:
5326                         val = kvm_read_cr3(vcpu);
5327                         kvm_register_write(vcpu, reg, val);
5328                         trace_kvm_cr_read(cr, val);
5329                         skip_emulated_instruction(vcpu);
5330                         return 1;
5331                 case 8:
5332                         val = kvm_get_cr8(vcpu);
5333                         kvm_register_write(vcpu, reg, val);
5334                         trace_kvm_cr_read(cr, val);
5335                         skip_emulated_instruction(vcpu);
5336                         return 1;
5337                 }
5338                 break;
5339         case 3: /* lmsw */
5340                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5341                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5342                 kvm_lmsw(vcpu, val);
5343
5344                 skip_emulated_instruction(vcpu);
5345                 return 1;
5346         default:
5347                 break;
5348         }
5349         vcpu->run->exit_reason = 0;
5350         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5351                (int)(exit_qualification >> 4) & 3, cr);
5352         return 0;
5353 }
5354
5355 static int handle_dr(struct kvm_vcpu *vcpu)
5356 {
5357         unsigned long exit_qualification;
5358         int dr, dr7, reg;
5359
5360         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5361         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5362
5363         /* First, if DR does not exist, trigger UD */
5364         if (!kvm_require_dr(vcpu, dr))
5365                 return 1;
5366
5367         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5368         if (!kvm_require_cpl(vcpu, 0))
5369                 return 1;
5370         dr7 = vmcs_readl(GUEST_DR7);
5371         if (dr7 & DR7_GD) {
5372                 /*
5373                  * As the vm-exit takes precedence over the debug trap, we
5374                  * need to emulate the latter, either for the host or the
5375                  * guest debugging itself.
5376                  */
5377                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5378                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5379                         vcpu->run->debug.arch.dr7 = dr7;
5380                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5381                         vcpu->run->debug.arch.exception = DB_VECTOR;
5382                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5383                         return 0;
5384                 } else {
5385                         vcpu->arch.dr6 &= ~15;
5386                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5387                         kvm_queue_exception(vcpu, DB_VECTOR);
5388                         return 1;
5389                 }
5390         }
5391
5392         if (vcpu->guest_debug == 0) {
5393                 u32 cpu_based_vm_exec_control;
5394
5395                 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5396                 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5397                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5398
5399                 /*
5400                  * No more DR vmexits; force a reload of the debug registers
5401                  * and reenter on this instruction.  The next vmexit will
5402                  * retrieve the full state of the debug registers.
5403                  */
5404                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5405                 return 1;
5406         }
5407
5408         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5409         if (exit_qualification & TYPE_MOV_FROM_DR) {
5410                 unsigned long val;
5411
5412                 if (kvm_get_dr(vcpu, dr, &val))
5413                         return 1;
5414                 kvm_register_write(vcpu, reg, val);
5415         } else
5416                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5417                         return 1;
5418
5419         skip_emulated_instruction(vcpu);
5420         return 1;
5421 }
5422
5423 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5424 {
5425         return vcpu->arch.dr6;
5426 }
5427
5428 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5429 {
5430 }
5431
5432 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5433 {
5434         u32 cpu_based_vm_exec_control;
5435
5436         get_debugreg(vcpu->arch.db[0], 0);
5437         get_debugreg(vcpu->arch.db[1], 1);
5438         get_debugreg(vcpu->arch.db[2], 2);
5439         get_debugreg(vcpu->arch.db[3], 3);
5440         get_debugreg(vcpu->arch.dr6, 6);
5441         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5442
5443         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5444
5445         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5446         cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5447         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5448 }
5449
5450 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5451 {
5452         vmcs_writel(GUEST_DR7, val);
5453 }
5454
5455 static int handle_cpuid(struct kvm_vcpu *vcpu)
5456 {
5457         kvm_emulate_cpuid(vcpu);
5458         return 1;
5459 }
5460
5461 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5462 {
5463         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5464         u64 data;
5465
5466         if (vmx_get_msr(vcpu, ecx, &data)) {
5467                 trace_kvm_msr_read_ex(ecx);
5468                 kvm_inject_gp(vcpu, 0);
5469                 return 1;
5470         }
5471
5472         trace_kvm_msr_read(ecx, data);
5473
5474         /* FIXME: handling of bits 32:63 of rax, rdx */
5475         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5476         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5477         skip_emulated_instruction(vcpu);
5478         return 1;
5479 }
5480
5481 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5482 {
5483         struct msr_data msr;
5484         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5485         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5486                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5487
5488         msr.data = data;
5489         msr.index = ecx;
5490         msr.host_initiated = false;
5491         if (kvm_set_msr(vcpu, &msr) != 0) {
5492                 trace_kvm_msr_write_ex(ecx, data);
5493                 kvm_inject_gp(vcpu, 0);
5494                 return 1;
5495         }
5496
5497         trace_kvm_msr_write(ecx, data);
5498         skip_emulated_instruction(vcpu);
5499         return 1;
5500 }
5501
5502 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5503 {
5504         kvm_make_request(KVM_REQ_EVENT, vcpu);
5505         return 1;
5506 }
5507
5508 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5509 {
5510         u32 cpu_based_vm_exec_control;
5511
5512         /* clear pending irq */
5513         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5514         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5515         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5516
5517         kvm_make_request(KVM_REQ_EVENT, vcpu);
5518
5519         ++vcpu->stat.irq_window_exits;
5520
5521         /*
5522          * If the user space waits to inject interrupts, exit as soon as
5523          * possible
5524          */
5525         if (!irqchip_in_kernel(vcpu->kvm) &&
5526             vcpu->run->request_interrupt_window &&
5527             !kvm_cpu_has_interrupt(vcpu)) {
5528                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5529                 return 0;
5530         }
5531         return 1;
5532 }
5533
5534 static int handle_halt(struct kvm_vcpu *vcpu)
5535 {
5536         return kvm_emulate_halt(vcpu);
5537 }
5538
5539 static int handle_vmcall(struct kvm_vcpu *vcpu)
5540 {
5541         kvm_emulate_hypercall(vcpu);
5542         return 1;
5543 }
5544
5545 static int handle_invd(struct kvm_vcpu *vcpu)
5546 {
5547         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5548 }
5549
5550 static int handle_invlpg(struct kvm_vcpu *vcpu)
5551 {
5552         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5553
5554         kvm_mmu_invlpg(vcpu, exit_qualification);
5555         skip_emulated_instruction(vcpu);
5556         return 1;
5557 }
5558
5559 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5560 {
5561         int err;
5562
5563         err = kvm_rdpmc(vcpu);
5564         kvm_complete_insn_gp(vcpu, err);
5565
5566         return 1;
5567 }
5568
5569 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5570 {
5571         kvm_emulate_wbinvd(vcpu);
5572         return 1;
5573 }
5574
5575 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5576 {
5577         u64 new_bv = kvm_read_edx_eax(vcpu);
5578         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5579
5580         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5581                 skip_emulated_instruction(vcpu);
5582         return 1;
5583 }
5584
5585 static int handle_xsaves(struct kvm_vcpu *vcpu)
5586 {
5587         skip_emulated_instruction(vcpu);
5588         WARN(1, "this should never happen\n");
5589         return 1;
5590 }
5591
5592 static int handle_xrstors(struct kvm_vcpu *vcpu)
5593 {
5594         skip_emulated_instruction(vcpu);
5595         WARN(1, "this should never happen\n");
5596         return 1;
5597 }
5598
5599 static int handle_apic_access(struct kvm_vcpu *vcpu)
5600 {
5601         if (likely(fasteoi)) {
5602                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5603                 int access_type, offset;
5604
5605                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5606                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5607                 /*
5608                  * Sane guest uses MOV to write EOI, with written value
5609                  * not cared. So make a short-circuit here by avoiding
5610                  * heavy instruction emulation.
5611                  */
5612                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5613                     (offset == APIC_EOI)) {
5614                         kvm_lapic_set_eoi(vcpu);
5615                         skip_emulated_instruction(vcpu);
5616                         return 1;
5617                 }
5618         }
5619         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5620 }
5621
5622 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5623 {
5624         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5625         int vector = exit_qualification & 0xff;
5626
5627         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5628         kvm_apic_set_eoi_accelerated(vcpu, vector);
5629         return 1;
5630 }
5631
5632 static int handle_apic_write(struct kvm_vcpu *vcpu)
5633 {
5634         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5635         u32 offset = exit_qualification & 0xfff;
5636
5637         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5638         kvm_apic_write_nodecode(vcpu, offset);
5639         return 1;
5640 }
5641
5642 static int handle_task_switch(struct kvm_vcpu *vcpu)
5643 {
5644         struct vcpu_vmx *vmx = to_vmx(vcpu);
5645         unsigned long exit_qualification;
5646         bool has_error_code = false;
5647         u32 error_code = 0;
5648         u16 tss_selector;
5649         int reason, type, idt_v, idt_index;
5650
5651         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5652         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5653         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5654
5655         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5656
5657         reason = (u32)exit_qualification >> 30;
5658         if (reason == TASK_SWITCH_GATE && idt_v) {
5659                 switch (type) {
5660                 case INTR_TYPE_NMI_INTR:
5661                         vcpu->arch.nmi_injected = false;
5662                         vmx_set_nmi_mask(vcpu, true);
5663                         break;
5664                 case INTR_TYPE_EXT_INTR:
5665                 case INTR_TYPE_SOFT_INTR:
5666                         kvm_clear_interrupt_queue(vcpu);
5667                         break;
5668                 case INTR_TYPE_HARD_EXCEPTION:
5669                         if (vmx->idt_vectoring_info &
5670                             VECTORING_INFO_DELIVER_CODE_MASK) {
5671                                 has_error_code = true;
5672                                 error_code =
5673                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5674                         }
5675                         /* fall through */
5676                 case INTR_TYPE_SOFT_EXCEPTION:
5677                         kvm_clear_exception_queue(vcpu);
5678                         break;
5679                 default:
5680                         break;
5681                 }
5682         }
5683         tss_selector = exit_qualification;
5684
5685         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5686                        type != INTR_TYPE_EXT_INTR &&
5687                        type != INTR_TYPE_NMI_INTR))
5688                 skip_emulated_instruction(vcpu);
5689
5690         if (kvm_task_switch(vcpu, tss_selector,
5691                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5692                             has_error_code, error_code) == EMULATE_FAIL) {
5693                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5694                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5695                 vcpu->run->internal.ndata = 0;
5696                 return 0;
5697         }
5698
5699         /* clear all local breakpoint enable flags */
5700         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x155);
5701
5702         /*
5703          * TODO: What about debug traps on tss switch?
5704          *       Are we supposed to inject them and update dr6?
5705          */
5706
5707         return 1;
5708 }
5709
5710 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5711 {
5712         unsigned long exit_qualification;
5713         gpa_t gpa;
5714         u32 error_code;
5715         int gla_validity;
5716
5717         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5718
5719         gla_validity = (exit_qualification >> 7) & 0x3;
5720         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5721                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5722                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5723                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5724                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5725                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5726                         (long unsigned int)exit_qualification);
5727                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5728                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5729                 return 0;
5730         }
5731
5732         /*
5733          * EPT violation happened while executing iret from NMI,
5734          * "blocked by NMI" bit has to be set before next VM entry.
5735          * There are errata that may cause this bit to not be set:
5736          * AAK134, BY25.
5737          */
5738         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5739                         cpu_has_virtual_nmis() &&
5740                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5741                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5742
5743         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5744         trace_kvm_page_fault(gpa, exit_qualification);
5745
5746         /* It is a write fault? */
5747         error_code = exit_qualification & PFERR_WRITE_MASK;
5748         /* It is a fetch fault? */
5749         error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5750         /* ept page table is present? */
5751         error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5752
5753         vcpu->arch.exit_qualification = exit_qualification;
5754
5755         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5756 }
5757
5758 static u64 ept_rsvd_mask(u64 spte, int level)
5759 {
5760         int i;
5761         u64 mask = 0;
5762
5763         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5764                 mask |= (1ULL << i);
5765
5766         if (level == 4)
5767                 /* bits 7:3 reserved */
5768                 mask |= 0xf8;
5769         else if (spte & (1ULL << 7))
5770                 /*
5771                  * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5772                  * level == 1 if the hypervisor is using the ignored bit 7.
5773                  */
5774                 mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5775         else if (level > 1)
5776                 /* bits 6:3 reserved */
5777                 mask |= 0x78;
5778
5779         return mask;
5780 }
5781
5782 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5783                                        int level)
5784 {
5785         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5786
5787         /* 010b (write-only) */
5788         WARN_ON((spte & 0x7) == 0x2);
5789
5790         /* 110b (write/execute) */
5791         WARN_ON((spte & 0x7) == 0x6);
5792
5793         /* 100b (execute-only) and value not supported by logical processor */
5794         if (!cpu_has_vmx_ept_execute_only())
5795                 WARN_ON((spte & 0x7) == 0x4);
5796
5797         /* not 000b */
5798         if ((spte & 0x7)) {
5799                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5800
5801                 if (rsvd_bits != 0) {
5802                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5803                                          __func__, rsvd_bits);
5804                         WARN_ON(1);
5805                 }
5806
5807                 /* bits 5:3 are _not_ reserved for large page or leaf page */
5808                 if ((rsvd_bits & 0x38) == 0) {
5809                         u64 ept_mem_type = (spte & 0x38) >> 3;
5810
5811                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5812                             ept_mem_type == 7) {
5813                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5814                                                 __func__, ept_mem_type);
5815                                 WARN_ON(1);
5816                         }
5817                 }
5818         }
5819 }
5820
5821 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5822 {
5823         u64 sptes[4];
5824         int nr_sptes, i, ret;
5825         gpa_t gpa;
5826
5827         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5828         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5829                 skip_emulated_instruction(vcpu);
5830                 return 1;
5831         }
5832
5833         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5834         if (likely(ret == RET_MMIO_PF_EMULATE))
5835                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5836                                               EMULATE_DONE;
5837
5838         if (unlikely(ret == RET_MMIO_PF_INVALID))
5839                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5840
5841         if (unlikely(ret == RET_MMIO_PF_RETRY))
5842                 return 1;
5843
5844         /* It is the real ept misconfig */
5845         printk(KERN_ERR "EPT: Misconfiguration.\n");
5846         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5847
5848         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5849
5850         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5851                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5852
5853         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5854         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5855
5856         return 0;
5857 }
5858
5859 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5860 {
5861         u32 cpu_based_vm_exec_control;
5862
5863         /* clear pending NMI */
5864         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5865         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5866         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5867         ++vcpu->stat.nmi_window_exits;
5868         kvm_make_request(KVM_REQ_EVENT, vcpu);
5869
5870         return 1;
5871 }
5872
5873 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5874 {
5875         struct vcpu_vmx *vmx = to_vmx(vcpu);
5876         enum emulation_result err = EMULATE_DONE;
5877         int ret = 1;
5878         u32 cpu_exec_ctrl;
5879         bool intr_window_requested;
5880         unsigned count = 130;
5881
5882         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5883         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5884
5885         while (vmx->emulation_required && count-- != 0) {
5886                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5887                         return handle_interrupt_window(&vmx->vcpu);
5888
5889                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5890                         return 1;
5891
5892                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5893
5894                 if (err == EMULATE_USER_EXIT) {
5895                         ++vcpu->stat.mmio_exits;
5896                         ret = 0;
5897                         goto out;
5898                 }
5899
5900                 if (err != EMULATE_DONE) {
5901                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5902                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5903                         vcpu->run->internal.ndata = 0;
5904                         return 0;
5905                 }
5906
5907                 if (vcpu->arch.halt_request) {
5908                         vcpu->arch.halt_request = 0;
5909                         ret = kvm_vcpu_halt(vcpu);
5910                         goto out;
5911                 }
5912
5913                 if (signal_pending(current))
5914                         goto out;
5915                 if (need_resched())
5916                         schedule();
5917         }
5918
5919 out:
5920         return ret;
5921 }
5922
5923 static int __grow_ple_window(int val)
5924 {
5925         if (ple_window_grow < 1)
5926                 return ple_window;
5927
5928         val = min(val, ple_window_actual_max);
5929
5930         if (ple_window_grow < ple_window)
5931                 val *= ple_window_grow;
5932         else
5933                 val += ple_window_grow;
5934
5935         return val;
5936 }
5937
5938 static int __shrink_ple_window(int val, int modifier, int minimum)
5939 {
5940         if (modifier < 1)
5941                 return ple_window;
5942
5943         if (modifier < ple_window)
5944                 val /= modifier;
5945         else
5946                 val -= modifier;
5947
5948         return max(val, minimum);
5949 }
5950
5951 static void grow_ple_window(struct kvm_vcpu *vcpu)
5952 {
5953         struct vcpu_vmx *vmx = to_vmx(vcpu);
5954         int old = vmx->ple_window;
5955
5956         vmx->ple_window = __grow_ple_window(old);
5957
5958         if (vmx->ple_window != old)
5959                 vmx->ple_window_dirty = true;
5960
5961         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5962 }
5963
5964 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5965 {
5966         struct vcpu_vmx *vmx = to_vmx(vcpu);
5967         int old = vmx->ple_window;
5968
5969         vmx->ple_window = __shrink_ple_window(old,
5970                                               ple_window_shrink, ple_window);
5971
5972         if (vmx->ple_window != old)
5973                 vmx->ple_window_dirty = true;
5974
5975         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5976 }
5977
5978 /*
5979  * ple_window_actual_max is computed to be one grow_ple_window() below
5980  * ple_window_max. (See __grow_ple_window for the reason.)
5981  * This prevents overflows, because ple_window_max is int.
5982  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5983  * this process.
5984  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5985  */
5986 static void update_ple_window_actual_max(void)
5987 {
5988         ple_window_actual_max =
5989                         __shrink_ple_window(max(ple_window_max, ple_window),
5990                                             ple_window_grow, INT_MIN);
5991 }
5992
5993 static __init int hardware_setup(void)
5994 {
5995         int r = -ENOMEM, i, msr;
5996
5997         rdmsrl_safe(MSR_EFER, &host_efer);
5998
5999         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6000                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6001
6002         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6003         if (!vmx_io_bitmap_a)
6004                 return r;
6005
6006         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6007         if (!vmx_io_bitmap_b)
6008                 goto out;
6009
6010         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6011         if (!vmx_msr_bitmap_legacy)
6012                 goto out1;
6013
6014         vmx_msr_bitmap_legacy_x2apic =
6015                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6016         if (!vmx_msr_bitmap_legacy_x2apic)
6017                 goto out2;
6018
6019         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6020         if (!vmx_msr_bitmap_longmode)
6021                 goto out3;
6022
6023         vmx_msr_bitmap_longmode_x2apic =
6024                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6025         if (!vmx_msr_bitmap_longmode_x2apic)
6026                 goto out4;
6027
6028         if (nested) {
6029                 vmx_msr_bitmap_nested =
6030                         (unsigned long *)__get_free_page(GFP_KERNEL);
6031                 if (!vmx_msr_bitmap_nested)
6032                         goto out5;
6033         }
6034
6035         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6036         if (!vmx_vmread_bitmap)
6037                 goto out6;
6038
6039         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6040         if (!vmx_vmwrite_bitmap)
6041                 goto out7;
6042
6043         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6044         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6045
6046         /*
6047          * Allow direct access to the PC debug port (it is often used for I/O
6048          * delays, but the vmexits simply slow things down).
6049          */
6050         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6051         clear_bit(0x80, vmx_io_bitmap_a);
6052
6053         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6054
6055         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6056         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6057         if (nested)
6058                 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
6059
6060         if (setup_vmcs_config(&vmcs_config) < 0) {
6061                 r = -EIO;
6062                 goto out8;
6063         }
6064
6065         if (boot_cpu_has(X86_FEATURE_NX))
6066                 kvm_enable_efer_bits(EFER_NX);
6067
6068         if (!cpu_has_vmx_vpid())
6069                 enable_vpid = 0;
6070         if (!cpu_has_vmx_shadow_vmcs())
6071                 enable_shadow_vmcs = 0;
6072         if (enable_shadow_vmcs)
6073                 init_vmcs_shadow_fields();
6074
6075         if (!cpu_has_vmx_ept() ||
6076             !cpu_has_vmx_ept_4levels()) {
6077                 enable_ept = 0;
6078                 enable_unrestricted_guest = 0;
6079                 enable_ept_ad_bits = 0;
6080         }
6081
6082         if (!cpu_has_vmx_ept_ad_bits())
6083                 enable_ept_ad_bits = 0;
6084
6085         if (!cpu_has_vmx_unrestricted_guest())
6086                 enable_unrestricted_guest = 0;
6087
6088         if (!cpu_has_vmx_flexpriority())
6089                 flexpriority_enabled = 0;
6090
6091         /*
6092          * set_apic_access_page_addr() is used to reload apic access
6093          * page upon invalidation.  No need to do anything if not
6094          * using the APIC_ACCESS_ADDR VMCS field.
6095          */
6096         if (!flexpriority_enabled)
6097                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6098
6099         if (!cpu_has_vmx_tpr_shadow())
6100                 kvm_x86_ops->update_cr8_intercept = NULL;
6101
6102         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6103                 kvm_disable_largepages();
6104
6105         if (!cpu_has_vmx_ple())
6106                 ple_gap = 0;
6107
6108         if (!cpu_has_vmx_apicv())
6109                 enable_apicv = 0;
6110
6111         if (enable_apicv)
6112                 kvm_x86_ops->update_cr8_intercept = NULL;
6113         else {
6114                 kvm_x86_ops->hwapic_irr_update = NULL;
6115                 kvm_x86_ops->hwapic_isr_update = NULL;
6116                 kvm_x86_ops->deliver_posted_interrupt = NULL;
6117                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6118         }
6119
6120         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6121         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6122         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6123         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6124         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6125         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6126         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6127
6128         memcpy(vmx_msr_bitmap_legacy_x2apic,
6129                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6130         memcpy(vmx_msr_bitmap_longmode_x2apic,
6131                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6132
6133         if (enable_apicv) {
6134                 for (msr = 0x800; msr <= 0x8ff; msr++)
6135                         vmx_disable_intercept_msr_read_x2apic(msr);
6136
6137                 /* According SDM, in x2apic mode, the whole id reg is used.
6138                  * But in KVM, it only use the highest eight bits. Need to
6139                  * intercept it */
6140                 vmx_enable_intercept_msr_read_x2apic(0x802);
6141                 /* TMCCT */
6142                 vmx_enable_intercept_msr_read_x2apic(0x839);
6143                 /* TPR */
6144                 vmx_disable_intercept_msr_write_x2apic(0x808);
6145                 /* EOI */
6146                 vmx_disable_intercept_msr_write_x2apic(0x80b);
6147                 /* SELF-IPI */
6148                 vmx_disable_intercept_msr_write_x2apic(0x83f);
6149         }
6150
6151         if (enable_ept) {
6152                 kvm_mmu_set_mask_ptes(0ull,
6153                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6154                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6155                         0ull, VMX_EPT_EXECUTABLE_MASK);
6156                 ept_set_mmio_spte_mask();
6157                 kvm_enable_tdp();
6158         } else
6159                 kvm_disable_tdp();
6160
6161         update_ple_window_actual_max();
6162
6163         /*
6164          * Only enable PML when hardware supports PML feature, and both EPT
6165          * and EPT A/D bit features are enabled -- PML depends on them to work.
6166          */
6167         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6168                 enable_pml = 0;
6169
6170         if (!enable_pml) {
6171                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6172                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6173                 kvm_x86_ops->flush_log_dirty = NULL;
6174                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6175         }
6176
6177         return alloc_kvm_area();
6178
6179 out8:
6180         free_page((unsigned long)vmx_vmwrite_bitmap);
6181 out7:
6182         free_page((unsigned long)vmx_vmread_bitmap);
6183 out6:
6184         if (nested)
6185                 free_page((unsigned long)vmx_msr_bitmap_nested);
6186 out5:
6187         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6188 out4:
6189         free_page((unsigned long)vmx_msr_bitmap_longmode);
6190 out3:
6191         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6192 out2:
6193         free_page((unsigned long)vmx_msr_bitmap_legacy);
6194 out1:
6195         free_page((unsigned long)vmx_io_bitmap_b);
6196 out:
6197         free_page((unsigned long)vmx_io_bitmap_a);
6198
6199     return r;
6200 }
6201
6202 static __exit void hardware_unsetup(void)
6203 {
6204         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6205         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6206         free_page((unsigned long)vmx_msr_bitmap_legacy);
6207         free_page((unsigned long)vmx_msr_bitmap_longmode);
6208         free_page((unsigned long)vmx_io_bitmap_b);
6209         free_page((unsigned long)vmx_io_bitmap_a);
6210         free_page((unsigned long)vmx_vmwrite_bitmap);
6211         free_page((unsigned long)vmx_vmread_bitmap);
6212         if (nested)
6213                 free_page((unsigned long)vmx_msr_bitmap_nested);
6214
6215         free_kvm_area();
6216 }
6217
6218 /*
6219  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6220  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6221  */
6222 static int handle_pause(struct kvm_vcpu *vcpu)
6223 {
6224         if (ple_gap)
6225                 grow_ple_window(vcpu);
6226
6227         skip_emulated_instruction(vcpu);
6228         kvm_vcpu_on_spin(vcpu);
6229
6230         return 1;
6231 }
6232
6233 static int handle_nop(struct kvm_vcpu *vcpu)
6234 {
6235         skip_emulated_instruction(vcpu);
6236         return 1;
6237 }
6238
6239 static int handle_mwait(struct kvm_vcpu *vcpu)
6240 {
6241         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6242         return handle_nop(vcpu);
6243 }
6244
6245 static int handle_monitor(struct kvm_vcpu *vcpu)
6246 {
6247         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6248         return handle_nop(vcpu);
6249 }
6250
6251 /*
6252  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6253  * We could reuse a single VMCS for all the L2 guests, but we also want the
6254  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6255  * allows keeping them loaded on the processor, and in the future will allow
6256  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6257  * every entry if they never change.
6258  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6259  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6260  *
6261  * The following functions allocate and free a vmcs02 in this pool.
6262  */
6263
6264 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6265 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6266 {
6267         struct vmcs02_list *item;
6268         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6269                 if (item->vmptr == vmx->nested.current_vmptr) {
6270                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6271                         return &item->vmcs02;
6272                 }
6273
6274         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6275                 /* Recycle the least recently used VMCS. */
6276                 item = list_entry(vmx->nested.vmcs02_pool.prev,
6277                         struct vmcs02_list, list);
6278                 item->vmptr = vmx->nested.current_vmptr;
6279                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6280                 return &item->vmcs02;
6281         }
6282
6283         /* Create a new VMCS */
6284         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6285         if (!item)
6286                 return NULL;
6287         item->vmcs02.vmcs = alloc_vmcs();
6288         if (!item->vmcs02.vmcs) {
6289                 kfree(item);
6290                 return NULL;
6291         }
6292         loaded_vmcs_init(&item->vmcs02);
6293         item->vmptr = vmx->nested.current_vmptr;
6294         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6295         vmx->nested.vmcs02_num++;
6296         return &item->vmcs02;
6297 }
6298
6299 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6300 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6301 {
6302         struct vmcs02_list *item;
6303         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6304                 if (item->vmptr == vmptr) {
6305                         free_loaded_vmcs(&item->vmcs02);
6306                         list_del(&item->list);
6307                         kfree(item);
6308                         vmx->nested.vmcs02_num--;
6309                         return;
6310                 }
6311 }
6312
6313 /*
6314  * Free all VMCSs saved for this vcpu, except the one pointed by
6315  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6316  * must be &vmx->vmcs01.
6317  */
6318 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6319 {
6320         struct vmcs02_list *item, *n;
6321
6322         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6323         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6324                 /*
6325                  * Something will leak if the above WARN triggers.  Better than
6326                  * a use-after-free.
6327                  */
6328                 if (vmx->loaded_vmcs == &item->vmcs02)
6329                         continue;
6330
6331                 free_loaded_vmcs(&item->vmcs02);
6332                 list_del(&item->list);
6333                 kfree(item);
6334                 vmx->nested.vmcs02_num--;
6335         }
6336 }
6337
6338 /*
6339  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6340  * set the success or error code of an emulated VMX instruction, as specified
6341  * by Vol 2B, VMX Instruction Reference, "Conventions".
6342  */
6343 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6344 {
6345         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6346                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6347                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6348 }
6349
6350 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6351 {
6352         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6353                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6354                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6355                         | X86_EFLAGS_CF);
6356 }
6357
6358 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6359                                         u32 vm_instruction_error)
6360 {
6361         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6362                 /*
6363                  * failValid writes the error number to the current VMCS, which
6364                  * can't be done there isn't a current VMCS.
6365                  */
6366                 nested_vmx_failInvalid(vcpu);
6367                 return;
6368         }
6369         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6370                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6371                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6372                         | X86_EFLAGS_ZF);
6373         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6374         /*
6375          * We don't need to force a shadow sync because
6376          * VM_INSTRUCTION_ERROR is not shadowed
6377          */
6378 }
6379
6380 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6381 {
6382         /* TODO: not to reset guest simply here. */
6383         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6384         pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6385 }
6386
6387 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6388 {
6389         struct vcpu_vmx *vmx =
6390                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6391
6392         vmx->nested.preemption_timer_expired = true;
6393         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6394         kvm_vcpu_kick(&vmx->vcpu);
6395
6396         return HRTIMER_NORESTART;
6397 }
6398
6399 /*
6400  * Decode the memory-address operand of a vmx instruction, as recorded on an
6401  * exit caused by such an instruction (run by a guest hypervisor).
6402  * On success, returns 0. When the operand is invalid, returns 1 and throws
6403  * #UD or #GP.
6404  */
6405 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6406                                  unsigned long exit_qualification,
6407                                  u32 vmx_instruction_info, gva_t *ret)
6408 {
6409         /*
6410          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6411          * Execution", on an exit, vmx_instruction_info holds most of the
6412          * addressing components of the operand. Only the displacement part
6413          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6414          * For how an actual address is calculated from all these components,
6415          * refer to Vol. 1, "Operand Addressing".
6416          */
6417         int  scaling = vmx_instruction_info & 3;
6418         int  addr_size = (vmx_instruction_info >> 7) & 7;
6419         bool is_reg = vmx_instruction_info & (1u << 10);
6420         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6421         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6422         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6423         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6424         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6425
6426         if (is_reg) {
6427                 kvm_queue_exception(vcpu, UD_VECTOR);
6428                 return 1;
6429         }
6430
6431         /* Addr = segment_base + offset */
6432         /* offset = base + [index * scale] + displacement */
6433         *ret = vmx_get_segment_base(vcpu, seg_reg);
6434         if (base_is_valid)
6435                 *ret += kvm_register_read(vcpu, base_reg);
6436         if (index_is_valid)
6437                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
6438         *ret += exit_qualification; /* holds the displacement */
6439
6440         if (addr_size == 1) /* 32 bit */
6441                 *ret &= 0xffffffff;
6442
6443         /*
6444          * TODO: throw #GP (and return 1) in various cases that the VM*
6445          * instructions require it - e.g., offset beyond segment limit,
6446          * unusable or unreadable/unwritable segment, non-canonical 64-bit
6447          * address, and so on. Currently these are not checked.
6448          */
6449         return 0;
6450 }
6451
6452 /*
6453  * This function performs the various checks including
6454  * - if it's 4KB aligned
6455  * - No bits beyond the physical address width are set
6456  * - Returns 0 on success or else 1
6457  * (Intel SDM Section 30.3)
6458  */
6459 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6460                                   gpa_t *vmpointer)
6461 {
6462         gva_t gva;
6463         gpa_t vmptr;
6464         struct x86_exception e;
6465         struct page *page;
6466         struct vcpu_vmx *vmx = to_vmx(vcpu);
6467         int maxphyaddr = cpuid_maxphyaddr(vcpu);
6468
6469         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6470                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6471                 return 1;
6472
6473         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6474                                 sizeof(vmptr), &e)) {
6475                 kvm_inject_page_fault(vcpu, &e);
6476                 return 1;
6477         }
6478
6479         switch (exit_reason) {
6480         case EXIT_REASON_VMON:
6481                 /*
6482                  * SDM 3: 24.11.5
6483                  * The first 4 bytes of VMXON region contain the supported
6484                  * VMCS revision identifier
6485                  *
6486                  * Note - IA32_VMX_BASIC[48] will never be 1
6487                  * for the nested case;
6488                  * which replaces physical address width with 32
6489                  *
6490                  */
6491                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6492                         nested_vmx_failInvalid(vcpu);
6493                         skip_emulated_instruction(vcpu);
6494                         return 1;
6495                 }
6496
6497                 page = nested_get_page(vcpu, vmptr);
6498                 if (page == NULL ||
6499                     *(u32 *)kmap(page) != VMCS12_REVISION) {
6500                         nested_vmx_failInvalid(vcpu);
6501                         kunmap(page);
6502                         skip_emulated_instruction(vcpu);
6503                         return 1;
6504                 }
6505                 kunmap(page);
6506                 vmx->nested.vmxon_ptr = vmptr;
6507                 break;
6508         case EXIT_REASON_VMCLEAR:
6509                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6510                         nested_vmx_failValid(vcpu,
6511                                              VMXERR_VMCLEAR_INVALID_ADDRESS);
6512                         skip_emulated_instruction(vcpu);
6513                         return 1;
6514                 }
6515
6516                 if (vmptr == vmx->nested.vmxon_ptr) {
6517                         nested_vmx_failValid(vcpu,
6518                                              VMXERR_VMCLEAR_VMXON_POINTER);
6519                         skip_emulated_instruction(vcpu);
6520                         return 1;
6521                 }
6522                 break;
6523         case EXIT_REASON_VMPTRLD:
6524                 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6525                         nested_vmx_failValid(vcpu,
6526                                              VMXERR_VMPTRLD_INVALID_ADDRESS);
6527                         skip_emulated_instruction(vcpu);
6528                         return 1;
6529                 }
6530
6531                 if (vmptr == vmx->nested.vmxon_ptr) {
6532                         nested_vmx_failValid(vcpu,
6533                                              VMXERR_VMCLEAR_VMXON_POINTER);
6534                         skip_emulated_instruction(vcpu);
6535                         return 1;
6536                 }
6537                 break;
6538         default:
6539                 return 1; /* shouldn't happen */
6540         }
6541
6542         if (vmpointer)
6543                 *vmpointer = vmptr;
6544         return 0;
6545 }
6546
6547 /*
6548  * Emulate the VMXON instruction.
6549  * Currently, we just remember that VMX is active, and do not save or even
6550  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6551  * do not currently need to store anything in that guest-allocated memory
6552  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6553  * argument is different from the VMXON pointer (which the spec says they do).
6554  */
6555 static int handle_vmon(struct kvm_vcpu *vcpu)
6556 {
6557         struct kvm_segment cs;
6558         struct vcpu_vmx *vmx = to_vmx(vcpu);
6559         struct vmcs *shadow_vmcs;
6560         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6561                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6562
6563         /* The Intel VMX Instruction Reference lists a bunch of bits that
6564          * are prerequisite to running VMXON, most notably cr4.VMXE must be
6565          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6566          * Otherwise, we should fail with #UD. We test these now:
6567          */
6568         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6569             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6570             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6571                 kvm_queue_exception(vcpu, UD_VECTOR);
6572                 return 1;
6573         }
6574
6575         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6576         if (is_long_mode(vcpu) && !cs.l) {
6577                 kvm_queue_exception(vcpu, UD_VECTOR);
6578                 return 1;
6579         }
6580
6581         if (vmx_get_cpl(vcpu)) {
6582                 kvm_inject_gp(vcpu, 0);
6583                 return 1;
6584         }
6585
6586         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6587                 return 1;
6588
6589         if (vmx->nested.vmxon) {
6590                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6591                 skip_emulated_instruction(vcpu);
6592                 return 1;
6593         }
6594
6595         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6596                         != VMXON_NEEDED_FEATURES) {
6597                 kvm_inject_gp(vcpu, 0);
6598                 return 1;
6599         }
6600
6601         if (enable_shadow_vmcs) {
6602                 shadow_vmcs = alloc_vmcs();
6603                 if (!shadow_vmcs)
6604                         return -ENOMEM;
6605                 /* mark vmcs as shadow */
6606                 shadow_vmcs->revision_id |= (1u << 31);
6607                 /* init shadow vmcs */
6608                 vmcs_clear(shadow_vmcs);
6609                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6610         }
6611
6612         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6613         vmx->nested.vmcs02_num = 0;
6614
6615         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6616                      HRTIMER_MODE_REL);
6617         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6618
6619         vmx->nested.vmxon = true;
6620
6621         skip_emulated_instruction(vcpu);
6622         nested_vmx_succeed(vcpu);
6623         return 1;
6624 }
6625
6626 /*
6627  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6628  * for running VMX instructions (except VMXON, whose prerequisites are
6629  * slightly different). It also specifies what exception to inject otherwise.
6630  */
6631 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6632 {
6633         struct kvm_segment cs;
6634         struct vcpu_vmx *vmx = to_vmx(vcpu);
6635
6636         if (!vmx->nested.vmxon) {
6637                 kvm_queue_exception(vcpu, UD_VECTOR);
6638                 return 0;
6639         }
6640
6641         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6642         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6643             (is_long_mode(vcpu) && !cs.l)) {
6644                 kvm_queue_exception(vcpu, UD_VECTOR);
6645                 return 0;
6646         }
6647
6648         if (vmx_get_cpl(vcpu)) {
6649                 kvm_inject_gp(vcpu, 0);
6650                 return 0;
6651         }
6652
6653         return 1;
6654 }
6655
6656 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6657 {
6658         u32 exec_control;
6659         if (vmx->nested.current_vmptr == -1ull)
6660                 return;
6661
6662         /* current_vmptr and current_vmcs12 are always set/reset together */
6663         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6664                 return;
6665
6666         if (enable_shadow_vmcs) {
6667                 /* copy to memory all shadowed fields in case
6668                    they were modified */
6669                 copy_shadow_to_vmcs12(vmx);
6670                 vmx->nested.sync_shadow_vmcs = false;
6671                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6672                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6673                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6674                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6675         }
6676         vmx->nested.posted_intr_nv = -1;
6677         kunmap(vmx->nested.current_vmcs12_page);
6678         nested_release_page(vmx->nested.current_vmcs12_page);
6679         vmx->nested.current_vmptr = -1ull;
6680         vmx->nested.current_vmcs12 = NULL;
6681 }
6682
6683 /*
6684  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6685  * just stops using VMX.
6686  */
6687 static void free_nested(struct vcpu_vmx *vmx)
6688 {
6689         if (!vmx->nested.vmxon)
6690                 return;
6691
6692         vmx->nested.vmxon = false;
6693         nested_release_vmcs12(vmx);
6694         if (enable_shadow_vmcs)
6695                 free_vmcs(vmx->nested.current_shadow_vmcs);
6696         /* Unpin physical memory we referred to in current vmcs02 */
6697         if (vmx->nested.apic_access_page) {
6698                 nested_release_page(vmx->nested.apic_access_page);
6699                 vmx->nested.apic_access_page = NULL;
6700         }
6701         if (vmx->nested.virtual_apic_page) {
6702                 nested_release_page(vmx->nested.virtual_apic_page);
6703                 vmx->nested.virtual_apic_page = NULL;
6704         }
6705         if (vmx->nested.pi_desc_page) {
6706                 kunmap(vmx->nested.pi_desc_page);
6707                 nested_release_page(vmx->nested.pi_desc_page);
6708                 vmx->nested.pi_desc_page = NULL;
6709                 vmx->nested.pi_desc = NULL;
6710         }
6711
6712         nested_free_all_saved_vmcss(vmx);
6713 }
6714
6715 /* Emulate the VMXOFF instruction */
6716 static int handle_vmoff(struct kvm_vcpu *vcpu)
6717 {
6718         if (!nested_vmx_check_permission(vcpu))
6719                 return 1;
6720         free_nested(to_vmx(vcpu));
6721         skip_emulated_instruction(vcpu);
6722         nested_vmx_succeed(vcpu);
6723         return 1;
6724 }
6725
6726 /* Emulate the VMCLEAR instruction */
6727 static int handle_vmclear(struct kvm_vcpu *vcpu)
6728 {
6729         struct vcpu_vmx *vmx = to_vmx(vcpu);
6730         gpa_t vmptr;
6731         struct vmcs12 *vmcs12;
6732         struct page *page;
6733
6734         if (!nested_vmx_check_permission(vcpu))
6735                 return 1;
6736
6737         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6738                 return 1;
6739
6740         if (vmptr == vmx->nested.current_vmptr)
6741                 nested_release_vmcs12(vmx);
6742
6743         page = nested_get_page(vcpu, vmptr);
6744         if (page == NULL) {
6745                 /*
6746                  * For accurate processor emulation, VMCLEAR beyond available
6747                  * physical memory should do nothing at all. However, it is
6748                  * possible that a nested vmx bug, not a guest hypervisor bug,
6749                  * resulted in this case, so let's shut down before doing any
6750                  * more damage:
6751                  */
6752                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6753                 return 1;
6754         }
6755         vmcs12 = kmap(page);
6756         vmcs12->launch_state = 0;
6757         kunmap(page);
6758         nested_release_page(page);
6759
6760         nested_free_vmcs02(vmx, vmptr);
6761
6762         skip_emulated_instruction(vcpu);
6763         nested_vmx_succeed(vcpu);
6764         return 1;
6765 }
6766
6767 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6768
6769 /* Emulate the VMLAUNCH instruction */
6770 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6771 {
6772         return nested_vmx_run(vcpu, true);
6773 }
6774
6775 /* Emulate the VMRESUME instruction */
6776 static int handle_vmresume(struct kvm_vcpu *vcpu)
6777 {
6778
6779         return nested_vmx_run(vcpu, false);
6780 }
6781
6782 enum vmcs_field_type {
6783         VMCS_FIELD_TYPE_U16 = 0,
6784         VMCS_FIELD_TYPE_U64 = 1,
6785         VMCS_FIELD_TYPE_U32 = 2,
6786         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6787 };
6788
6789 static inline int vmcs_field_type(unsigned long field)
6790 {
6791         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6792                 return VMCS_FIELD_TYPE_U32;
6793         return (field >> 13) & 0x3 ;
6794 }
6795
6796 static inline int vmcs_field_readonly(unsigned long field)
6797 {
6798         return (((field >> 10) & 0x3) == 1);
6799 }
6800
6801 /*
6802  * Read a vmcs12 field. Since these can have varying lengths and we return
6803  * one type, we chose the biggest type (u64) and zero-extend the return value
6804  * to that size. Note that the caller, handle_vmread, might need to use only
6805  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6806  * 64-bit fields are to be returned).
6807  */
6808 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6809                                   unsigned long field, u64 *ret)
6810 {
6811         short offset = vmcs_field_to_offset(field);
6812         char *p;
6813
6814         if (offset < 0)
6815                 return offset;
6816
6817         p = ((char *)(get_vmcs12(vcpu))) + offset;
6818
6819         switch (vmcs_field_type(field)) {
6820         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6821                 *ret = *((natural_width *)p);
6822                 return 0;
6823         case VMCS_FIELD_TYPE_U16:
6824                 *ret = *((u16 *)p);
6825                 return 0;
6826         case VMCS_FIELD_TYPE_U32:
6827                 *ret = *((u32 *)p);
6828                 return 0;
6829         case VMCS_FIELD_TYPE_U64:
6830                 *ret = *((u64 *)p);
6831                 return 0;
6832         default:
6833                 WARN_ON(1);
6834                 return -ENOENT;
6835         }
6836 }
6837
6838
6839 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6840                                    unsigned long field, u64 field_value){
6841         short offset = vmcs_field_to_offset(field);
6842         char *p = ((char *) get_vmcs12(vcpu)) + offset;
6843         if (offset < 0)
6844                 return offset;
6845
6846         switch (vmcs_field_type(field)) {
6847         case VMCS_FIELD_TYPE_U16:
6848                 *(u16 *)p = field_value;
6849                 return 0;
6850         case VMCS_FIELD_TYPE_U32:
6851                 *(u32 *)p = field_value;
6852                 return 0;
6853         case VMCS_FIELD_TYPE_U64:
6854                 *(u64 *)p = field_value;
6855                 return 0;
6856         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6857                 *(natural_width *)p = field_value;
6858                 return 0;
6859         default:
6860                 WARN_ON(1);
6861                 return -ENOENT;
6862         }
6863
6864 }
6865
6866 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6867 {
6868         int i;
6869         unsigned long field;
6870         u64 field_value;
6871         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6872         const unsigned long *fields = shadow_read_write_fields;
6873         const int num_fields = max_shadow_read_write_fields;
6874
6875         preempt_disable();
6876
6877         vmcs_load(shadow_vmcs);
6878
6879         for (i = 0; i < num_fields; i++) {
6880                 field = fields[i];
6881                 switch (vmcs_field_type(field)) {
6882                 case VMCS_FIELD_TYPE_U16:
6883                         field_value = vmcs_read16(field);
6884                         break;
6885                 case VMCS_FIELD_TYPE_U32:
6886                         field_value = vmcs_read32(field);
6887                         break;
6888                 case VMCS_FIELD_TYPE_U64:
6889                         field_value = vmcs_read64(field);
6890                         break;
6891                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6892                         field_value = vmcs_readl(field);
6893                         break;
6894                 default:
6895                         WARN_ON(1);
6896                         continue;
6897                 }
6898                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6899         }
6900
6901         vmcs_clear(shadow_vmcs);
6902         vmcs_load(vmx->loaded_vmcs->vmcs);
6903
6904         preempt_enable();
6905 }
6906
6907 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6908 {
6909         const unsigned long *fields[] = {
6910                 shadow_read_write_fields,
6911                 shadow_read_only_fields
6912         };
6913         const int max_fields[] = {
6914                 max_shadow_read_write_fields,
6915                 max_shadow_read_only_fields
6916         };
6917         int i, q;
6918         unsigned long field;
6919         u64 field_value = 0;
6920         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6921
6922         vmcs_load(shadow_vmcs);
6923
6924         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6925                 for (i = 0; i < max_fields[q]; i++) {
6926                         field = fields[q][i];
6927                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6928
6929                         switch (vmcs_field_type(field)) {
6930                         case VMCS_FIELD_TYPE_U16:
6931                                 vmcs_write16(field, (u16)field_value);
6932                                 break;
6933                         case VMCS_FIELD_TYPE_U32:
6934                                 vmcs_write32(field, (u32)field_value);
6935                                 break;
6936                         case VMCS_FIELD_TYPE_U64:
6937                                 vmcs_write64(field, (u64)field_value);
6938                                 break;
6939                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6940                                 vmcs_writel(field, (long)field_value);
6941                                 break;
6942                         default:
6943                                 WARN_ON(1);
6944                                 break;
6945                         }
6946                 }
6947         }
6948
6949         vmcs_clear(shadow_vmcs);
6950         vmcs_load(vmx->loaded_vmcs->vmcs);
6951 }
6952
6953 /*
6954  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6955  * used before) all generate the same failure when it is missing.
6956  */
6957 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6958 {
6959         struct vcpu_vmx *vmx = to_vmx(vcpu);
6960         if (vmx->nested.current_vmptr == -1ull) {
6961                 nested_vmx_failInvalid(vcpu);
6962                 skip_emulated_instruction(vcpu);
6963                 return 0;
6964         }
6965         return 1;
6966 }
6967
6968 static int handle_vmread(struct kvm_vcpu *vcpu)
6969 {
6970         unsigned long field;
6971         u64 field_value;
6972         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6973         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6974         gva_t gva = 0;
6975
6976         if (!nested_vmx_check_permission(vcpu) ||
6977             !nested_vmx_check_vmcs12(vcpu))
6978                 return 1;
6979
6980         /* Decode instruction info and find the field to read */
6981         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6982         /* Read the field, zero-extended to a u64 field_value */
6983         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6984                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6985                 skip_emulated_instruction(vcpu);
6986                 return 1;
6987         }
6988         /*
6989          * Now copy part of this value to register or memory, as requested.
6990          * Note that the number of bits actually copied is 32 or 64 depending
6991          * on the guest's mode (32 or 64 bit), not on the given field's length.
6992          */
6993         if (vmx_instruction_info & (1u << 10)) {
6994                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6995                         field_value);
6996         } else {
6997                 if (get_vmx_mem_address(vcpu, exit_qualification,
6998                                 vmx_instruction_info, &gva))
6999                         return 1;
7000                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7001                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7002                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7003         }
7004
7005         nested_vmx_succeed(vcpu);
7006         skip_emulated_instruction(vcpu);
7007         return 1;
7008 }
7009
7010
7011 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7012 {
7013         unsigned long field;
7014         gva_t gva;
7015         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7016         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7017         /* The value to write might be 32 or 64 bits, depending on L1's long
7018          * mode, and eventually we need to write that into a field of several
7019          * possible lengths. The code below first zero-extends the value to 64
7020          * bit (field_value), and then copies only the approriate number of
7021          * bits into the vmcs12 field.
7022          */
7023         u64 field_value = 0;
7024         struct x86_exception e;
7025
7026         if (!nested_vmx_check_permission(vcpu) ||
7027             !nested_vmx_check_vmcs12(vcpu))
7028                 return 1;
7029
7030         if (vmx_instruction_info & (1u << 10))
7031                 field_value = kvm_register_readl(vcpu,
7032                         (((vmx_instruction_info) >> 3) & 0xf));
7033         else {
7034                 if (get_vmx_mem_address(vcpu, exit_qualification,
7035                                 vmx_instruction_info, &gva))
7036                         return 1;
7037                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7038                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7039                         kvm_inject_page_fault(vcpu, &e);
7040                         return 1;
7041                 }
7042         }
7043
7044
7045         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7046         if (vmcs_field_readonly(field)) {
7047                 nested_vmx_failValid(vcpu,
7048                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7049                 skip_emulated_instruction(vcpu);
7050                 return 1;
7051         }
7052
7053         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7054                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7055                 skip_emulated_instruction(vcpu);
7056                 return 1;
7057         }
7058
7059         nested_vmx_succeed(vcpu);
7060         skip_emulated_instruction(vcpu);
7061         return 1;
7062 }
7063
7064 /* Emulate the VMPTRLD instruction */
7065 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7066 {
7067         struct vcpu_vmx *vmx = to_vmx(vcpu);
7068         gpa_t vmptr;
7069         u32 exec_control;
7070
7071         if (!nested_vmx_check_permission(vcpu))
7072                 return 1;
7073
7074         if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7075                 return 1;
7076
7077         if (vmx->nested.current_vmptr != vmptr) {
7078                 struct vmcs12 *new_vmcs12;
7079                 struct page *page;
7080                 page = nested_get_page(vcpu, vmptr);
7081                 if (page == NULL) {
7082                         nested_vmx_failInvalid(vcpu);
7083                         skip_emulated_instruction(vcpu);
7084                         return 1;
7085                 }
7086                 new_vmcs12 = kmap(page);
7087                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7088                         kunmap(page);
7089                         nested_release_page_clean(page);
7090                         nested_vmx_failValid(vcpu,
7091                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7092                         skip_emulated_instruction(vcpu);
7093                         return 1;
7094                 }
7095
7096                 nested_release_vmcs12(vmx);
7097                 vmx->nested.current_vmptr = vmptr;
7098                 vmx->nested.current_vmcs12 = new_vmcs12;
7099                 vmx->nested.current_vmcs12_page = page;
7100                 if (enable_shadow_vmcs) {
7101                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7102                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7103                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7104                         vmcs_write64(VMCS_LINK_POINTER,
7105                                      __pa(vmx->nested.current_shadow_vmcs));
7106                         vmx->nested.sync_shadow_vmcs = true;
7107                 }
7108         }
7109
7110         nested_vmx_succeed(vcpu);
7111         skip_emulated_instruction(vcpu);
7112         return 1;
7113 }
7114
7115 /* Emulate the VMPTRST instruction */
7116 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7117 {
7118         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7119         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7120         gva_t vmcs_gva;
7121         struct x86_exception e;
7122
7123         if (!nested_vmx_check_permission(vcpu))
7124                 return 1;
7125
7126         if (get_vmx_mem_address(vcpu, exit_qualification,
7127                         vmx_instruction_info, &vmcs_gva))
7128                 return 1;
7129         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7130         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7131                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7132                                  sizeof(u64), &e)) {
7133                 kvm_inject_page_fault(vcpu, &e);
7134                 return 1;
7135         }
7136         nested_vmx_succeed(vcpu);
7137         skip_emulated_instruction(vcpu);
7138         return 1;
7139 }
7140
7141 /* Emulate the INVEPT instruction */
7142 static int handle_invept(struct kvm_vcpu *vcpu)
7143 {
7144         struct vcpu_vmx *vmx = to_vmx(vcpu);
7145         u32 vmx_instruction_info, types;
7146         unsigned long type;
7147         gva_t gva;
7148         struct x86_exception e;
7149         struct {
7150                 u64 eptp, gpa;
7151         } operand;
7152
7153         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7154               SECONDARY_EXEC_ENABLE_EPT) ||
7155             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7156                 kvm_queue_exception(vcpu, UD_VECTOR);
7157                 return 1;
7158         }
7159
7160         if (!nested_vmx_check_permission(vcpu))
7161                 return 1;
7162
7163         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7164                 kvm_queue_exception(vcpu, UD_VECTOR);
7165                 return 1;
7166         }
7167
7168         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7169         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7170
7171         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7172
7173         if (!(types & (1UL << type))) {
7174                 nested_vmx_failValid(vcpu,
7175                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7176                 return 1;
7177         }
7178
7179         /* According to the Intel VMX instruction reference, the memory
7180          * operand is read even if it isn't needed (e.g., for type==global)
7181          */
7182         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7183                         vmx_instruction_info, &gva))
7184                 return 1;
7185         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7186                                 sizeof(operand), &e)) {
7187                 kvm_inject_page_fault(vcpu, &e);
7188                 return 1;
7189         }
7190
7191         switch (type) {
7192         case VMX_EPT_EXTENT_GLOBAL:
7193                 kvm_mmu_sync_roots(vcpu);
7194                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7195                 nested_vmx_succeed(vcpu);
7196                 break;
7197         default:
7198                 /* Trap single context invalidation invept calls */
7199                 BUG_ON(1);
7200                 break;
7201         }
7202
7203         skip_emulated_instruction(vcpu);
7204         return 1;
7205 }
7206
7207 static int handle_invvpid(struct kvm_vcpu *vcpu)
7208 {
7209         kvm_queue_exception(vcpu, UD_VECTOR);
7210         return 1;
7211 }
7212
7213 static int handle_pml_full(struct kvm_vcpu *vcpu)
7214 {
7215         unsigned long exit_qualification;
7216
7217         trace_kvm_pml_full(vcpu->vcpu_id);
7218
7219         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7220
7221         /*
7222          * PML buffer FULL happened while executing iret from NMI,
7223          * "blocked by NMI" bit has to be set before next VM entry.
7224          */
7225         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7226                         cpu_has_virtual_nmis() &&
7227                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7228                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7229                                 GUEST_INTR_STATE_NMI);
7230
7231         /*
7232          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7233          * here.., and there's no userspace involvement needed for PML.
7234          */
7235         return 1;
7236 }
7237
7238 /*
7239  * The exit handlers return 1 if the exit was handled fully and guest execution
7240  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7241  * to be done to userspace and return 0.
7242  */
7243 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7244         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7245         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7246         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7247         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7248         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7249         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7250         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7251         [EXIT_REASON_CPUID]                   = handle_cpuid,
7252         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7253         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7254         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7255         [EXIT_REASON_HLT]                     = handle_halt,
7256         [EXIT_REASON_INVD]                    = handle_invd,
7257         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7258         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7259         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7260         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7261         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7262         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7263         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7264         [EXIT_REASON_VMREAD]                  = handle_vmread,
7265         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7266         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7267         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7268         [EXIT_REASON_VMON]                    = handle_vmon,
7269         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7270         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7271         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7272         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7273         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7274         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7275         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7276         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7277         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7278         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7279         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7280         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7281         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7282         [EXIT_REASON_INVEPT]                  = handle_invept,
7283         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7284         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7285         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7286         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7287 };
7288
7289 static const int kvm_vmx_max_exit_handlers =
7290         ARRAY_SIZE(kvm_vmx_exit_handlers);
7291
7292 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7293                                        struct vmcs12 *vmcs12)
7294 {
7295         unsigned long exit_qualification;
7296         gpa_t bitmap, last_bitmap;
7297         unsigned int port;
7298         int size;
7299         u8 b;
7300
7301         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7302                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7303
7304         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7305
7306         port = exit_qualification >> 16;
7307         size = (exit_qualification & 7) + 1;
7308
7309         last_bitmap = (gpa_t)-1;
7310         b = -1;
7311
7312         while (size > 0) {
7313                 if (port < 0x8000)
7314                         bitmap = vmcs12->io_bitmap_a;
7315                 else if (port < 0x10000)
7316                         bitmap = vmcs12->io_bitmap_b;
7317                 else
7318                         return true;
7319                 bitmap += (port & 0x7fff) / 8;
7320
7321                 if (last_bitmap != bitmap)
7322                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
7323                                 return true;
7324                 if (b & (1 << (port & 7)))
7325                         return true;
7326
7327                 port++;
7328                 size--;
7329                 last_bitmap = bitmap;
7330         }
7331
7332         return false;
7333 }
7334
7335 /*
7336  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7337  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7338  * disinterest in the current event (read or write a specific MSR) by using an
7339  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7340  */
7341 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7342         struct vmcs12 *vmcs12, u32 exit_reason)
7343 {
7344         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7345         gpa_t bitmap;
7346
7347         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7348                 return true;
7349
7350         /*
7351          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7352          * for the four combinations of read/write and low/high MSR numbers.
7353          * First we need to figure out which of the four to use:
7354          */
7355         bitmap = vmcs12->msr_bitmap;
7356         if (exit_reason == EXIT_REASON_MSR_WRITE)
7357                 bitmap += 2048;
7358         if (msr_index >= 0xc0000000) {
7359                 msr_index -= 0xc0000000;
7360                 bitmap += 1024;
7361         }
7362
7363         /* Then read the msr_index'th bit from this bitmap: */
7364         if (msr_index < 1024*8) {
7365                 unsigned char b;
7366                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
7367                         return true;
7368                 return 1 & (b >> (msr_index & 7));
7369         } else
7370                 return true; /* let L1 handle the wrong parameter */
7371 }
7372
7373 /*
7374  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7375  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7376  * intercept (via guest_host_mask etc.) the current event.
7377  */
7378 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7379         struct vmcs12 *vmcs12)
7380 {
7381         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7382         int cr = exit_qualification & 15;
7383         int reg = (exit_qualification >> 8) & 15;
7384         unsigned long val = kvm_register_readl(vcpu, reg);
7385
7386         switch ((exit_qualification >> 4) & 3) {
7387         case 0: /* mov to cr */
7388                 switch (cr) {
7389                 case 0:
7390                         if (vmcs12->cr0_guest_host_mask &
7391                             (val ^ vmcs12->cr0_read_shadow))
7392                                 return true;
7393                         break;
7394                 case 3:
7395                         if ((vmcs12->cr3_target_count >= 1 &&
7396                                         vmcs12->cr3_target_value0 == val) ||
7397                                 (vmcs12->cr3_target_count >= 2 &&
7398                                         vmcs12->cr3_target_value1 == val) ||
7399                                 (vmcs12->cr3_target_count >= 3 &&
7400                                         vmcs12->cr3_target_value2 == val) ||
7401                                 (vmcs12->cr3_target_count >= 4 &&
7402                                         vmcs12->cr3_target_value3 == val))
7403                                 return false;
7404                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7405                                 return true;
7406                         break;
7407                 case 4:
7408                         if (vmcs12->cr4_guest_host_mask &
7409                             (vmcs12->cr4_read_shadow ^ val))
7410                                 return true;
7411                         break;
7412                 case 8:
7413                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7414                                 return true;
7415                         break;
7416                 }
7417                 break;
7418         case 2: /* clts */
7419                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7420                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7421                         return true;
7422                 break;
7423         case 1: /* mov from cr */
7424                 switch (cr) {
7425                 case 3:
7426                         if (vmcs12->cpu_based_vm_exec_control &
7427                             CPU_BASED_CR3_STORE_EXITING)
7428                                 return true;
7429                         break;
7430                 case 8:
7431                         if (vmcs12->cpu_based_vm_exec_control &
7432                             CPU_BASED_CR8_STORE_EXITING)
7433                                 return true;
7434                         break;
7435                 }
7436                 break;
7437         case 3: /* lmsw */
7438                 /*
7439                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7440                  * cr0. Other attempted changes are ignored, with no exit.
7441                  */
7442                 if (vmcs12->cr0_guest_host_mask & 0xe &
7443                     (val ^ vmcs12->cr0_read_shadow))
7444                         return true;
7445                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7446                     !(vmcs12->cr0_read_shadow & 0x1) &&
7447                     (val & 0x1))
7448                         return true;
7449                 break;
7450         }
7451         return false;
7452 }
7453
7454 /*
7455  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7456  * should handle it ourselves in L0 (and then continue L2). Only call this
7457  * when in is_guest_mode (L2).
7458  */
7459 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7460 {
7461         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7462         struct vcpu_vmx *vmx = to_vmx(vcpu);
7463         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7464         u32 exit_reason = vmx->exit_reason;
7465
7466         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7467                                 vmcs_readl(EXIT_QUALIFICATION),
7468                                 vmx->idt_vectoring_info,
7469                                 intr_info,
7470                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7471                                 KVM_ISA_VMX);
7472
7473         if (vmx->nested.nested_run_pending)
7474                 return false;
7475
7476         if (unlikely(vmx->fail)) {
7477                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7478                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7479                 return true;
7480         }
7481
7482         switch (exit_reason) {
7483         case EXIT_REASON_EXCEPTION_NMI:
7484                 if (!is_exception(intr_info))
7485                         return false;
7486                 else if (is_page_fault(intr_info))
7487                         return enable_ept;
7488                 else if (is_no_device(intr_info) &&
7489                          !(vmcs12->guest_cr0 & X86_CR0_TS))
7490                         return false;
7491                 return vmcs12->exception_bitmap &
7492                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7493         case EXIT_REASON_EXTERNAL_INTERRUPT:
7494                 return false;
7495         case EXIT_REASON_TRIPLE_FAULT:
7496                 return true;
7497         case EXIT_REASON_PENDING_INTERRUPT:
7498                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7499         case EXIT_REASON_NMI_WINDOW:
7500                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7501         case EXIT_REASON_TASK_SWITCH:
7502                 return true;
7503         case EXIT_REASON_CPUID:
7504                 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7505                         return false;
7506                 return true;
7507         case EXIT_REASON_HLT:
7508                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7509         case EXIT_REASON_INVD:
7510                 return true;
7511         case EXIT_REASON_INVLPG:
7512                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7513         case EXIT_REASON_RDPMC:
7514                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7515         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7516                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7517         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7518         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7519         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7520         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7521         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7522         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7523                 /*
7524                  * VMX instructions trap unconditionally. This allows L1 to
7525                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
7526                  */
7527                 return true;
7528         case EXIT_REASON_CR_ACCESS:
7529                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7530         case EXIT_REASON_DR_ACCESS:
7531                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7532         case EXIT_REASON_IO_INSTRUCTION:
7533                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7534         case EXIT_REASON_MSR_READ:
7535         case EXIT_REASON_MSR_WRITE:
7536                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7537         case EXIT_REASON_INVALID_STATE:
7538                 return true;
7539         case EXIT_REASON_MWAIT_INSTRUCTION:
7540                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7541         case EXIT_REASON_MONITOR_INSTRUCTION:
7542                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7543         case EXIT_REASON_PAUSE_INSTRUCTION:
7544                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7545                         nested_cpu_has2(vmcs12,
7546                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7547         case EXIT_REASON_MCE_DURING_VMENTRY:
7548                 return false;
7549         case EXIT_REASON_TPR_BELOW_THRESHOLD:
7550                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7551         case EXIT_REASON_APIC_ACCESS:
7552                 return nested_cpu_has2(vmcs12,
7553                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7554         case EXIT_REASON_APIC_WRITE:
7555         case EXIT_REASON_EOI_INDUCED:
7556                 /* apic_write and eoi_induced should exit unconditionally. */
7557                 return true;
7558         case EXIT_REASON_EPT_VIOLATION:
7559                 /*
7560                  * L0 always deals with the EPT violation. If nested EPT is
7561                  * used, and the nested mmu code discovers that the address is
7562                  * missing in the guest EPT table (EPT12), the EPT violation
7563                  * will be injected with nested_ept_inject_page_fault()
7564                  */
7565                 return false;
7566         case EXIT_REASON_EPT_MISCONFIG:
7567                 /*
7568                  * L2 never uses directly L1's EPT, but rather L0's own EPT
7569                  * table (shadow on EPT) or a merged EPT table that L0 built
7570                  * (EPT on EPT). So any problems with the structure of the
7571                  * table is L0's fault.
7572                  */
7573                 return false;
7574         case EXIT_REASON_WBINVD:
7575                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7576         case EXIT_REASON_XSETBV:
7577                 return true;
7578         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7579                 /*
7580                  * This should never happen, since it is not possible to
7581                  * set XSS to a non-zero value---neither in L1 nor in L2.
7582                  * If if it were, XSS would have to be checked against
7583                  * the XSS exit bitmap in vmcs12.
7584                  */
7585                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7586         default:
7587                 return true;
7588         }
7589 }
7590
7591 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7592 {
7593         *info1 = vmcs_readl(EXIT_QUALIFICATION);
7594         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7595 }
7596
7597 static int vmx_enable_pml(struct vcpu_vmx *vmx)
7598 {
7599         struct page *pml_pg;
7600         u32 exec_control;
7601
7602         pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7603         if (!pml_pg)
7604                 return -ENOMEM;
7605
7606         vmx->pml_pg = pml_pg;
7607
7608         vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7609         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7610
7611         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7612         exec_control |= SECONDARY_EXEC_ENABLE_PML;
7613         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7614
7615         return 0;
7616 }
7617
7618 static void vmx_disable_pml(struct vcpu_vmx *vmx)
7619 {
7620         u32 exec_control;
7621
7622         ASSERT(vmx->pml_pg);
7623         __free_page(vmx->pml_pg);
7624         vmx->pml_pg = NULL;
7625
7626         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7627         exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7628         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7629 }
7630
7631 static void vmx_flush_pml_buffer(struct vcpu_vmx *vmx)
7632 {
7633         struct kvm *kvm = vmx->vcpu.kvm;
7634         u64 *pml_buf;
7635         u16 pml_idx;
7636
7637         pml_idx = vmcs_read16(GUEST_PML_INDEX);
7638
7639         /* Do nothing if PML buffer is empty */
7640         if (pml_idx == (PML_ENTITY_NUM - 1))
7641                 return;
7642
7643         /* PML index always points to next available PML buffer entity */
7644         if (pml_idx >= PML_ENTITY_NUM)
7645                 pml_idx = 0;
7646         else
7647                 pml_idx++;
7648
7649         pml_buf = page_address(vmx->pml_pg);
7650         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7651                 u64 gpa;
7652
7653                 gpa = pml_buf[pml_idx];
7654                 WARN_ON(gpa & (PAGE_SIZE - 1));
7655                 mark_page_dirty(kvm, gpa >> PAGE_SHIFT);
7656         }
7657
7658         /* reset PML index */
7659         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7660 }
7661
7662 /*
7663  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7664  * Called before reporting dirty_bitmap to userspace.
7665  */
7666 static void kvm_flush_pml_buffers(struct kvm *kvm)
7667 {
7668         int i;
7669         struct kvm_vcpu *vcpu;
7670         /*
7671          * We only need to kick vcpu out of guest mode here, as PML buffer
7672          * is flushed at beginning of all VMEXITs, and it's obvious that only
7673          * vcpus running in guest are possible to have unflushed GPAs in PML
7674          * buffer.
7675          */
7676         kvm_for_each_vcpu(i, vcpu, kvm)
7677                 kvm_vcpu_kick(vcpu);
7678 }
7679
7680 /*
7681  * The guest has exited.  See if we can fix it or if we need userspace
7682  * assistance.
7683  */
7684 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7685 {
7686         struct vcpu_vmx *vmx = to_vmx(vcpu);
7687         u32 exit_reason = vmx->exit_reason;
7688         u32 vectoring_info = vmx->idt_vectoring_info;
7689
7690         /*
7691          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7692          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7693          * querying dirty_bitmap, we only need to kick all vcpus out of guest
7694          * mode as if vcpus is in root mode, the PML buffer must has been
7695          * flushed already.
7696          */
7697         if (enable_pml)
7698                 vmx_flush_pml_buffer(vmx);
7699
7700         /* If guest state is invalid, start emulating */
7701         if (vmx->emulation_required)
7702                 return handle_invalid_guest_state(vcpu);
7703
7704         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7705                 nested_vmx_vmexit(vcpu, exit_reason,
7706                                   vmcs_read32(VM_EXIT_INTR_INFO),
7707                                   vmcs_readl(EXIT_QUALIFICATION));
7708                 return 1;
7709         }
7710
7711         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7712                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7713                 vcpu->run->fail_entry.hardware_entry_failure_reason
7714                         = exit_reason;
7715                 return 0;
7716         }
7717
7718         if (unlikely(vmx->fail)) {
7719                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7720                 vcpu->run->fail_entry.hardware_entry_failure_reason
7721                         = vmcs_read32(VM_INSTRUCTION_ERROR);
7722                 return 0;
7723         }
7724
7725         /*
7726          * Note:
7727          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7728          * delivery event since it indicates guest is accessing MMIO.
7729          * The vm-exit can be triggered again after return to guest that
7730          * will cause infinite loop.
7731          */
7732         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7733                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7734                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
7735                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
7736                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7737                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7738                 vcpu->run->internal.ndata = 2;
7739                 vcpu->run->internal.data[0] = vectoring_info;
7740                 vcpu->run->internal.data[1] = exit_reason;
7741                 return 0;
7742         }
7743
7744         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7745             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7746                                         get_vmcs12(vcpu))))) {
7747                 if (vmx_interrupt_allowed(vcpu)) {
7748                         vmx->soft_vnmi_blocked = 0;
7749                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7750                            vcpu->arch.nmi_pending) {
7751                         /*
7752                          * This CPU don't support us in finding the end of an
7753                          * NMI-blocked window if the guest runs with IRQs
7754                          * disabled. So we pull the trigger after 1 s of
7755                          * futile waiting, but inform the user about this.
7756                          */
7757                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7758                                "state on VCPU %d after 1 s timeout\n",
7759                                __func__, vcpu->vcpu_id);
7760                         vmx->soft_vnmi_blocked = 0;
7761                 }
7762         }
7763
7764         if (exit_reason < kvm_vmx_max_exit_handlers
7765             && kvm_vmx_exit_handlers[exit_reason])
7766                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
7767         else {
7768                 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7769                 kvm_queue_exception(vcpu, UD_VECTOR);
7770                 return 1;
7771         }
7772 }
7773
7774 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7775 {
7776         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7777
7778         if (is_guest_mode(vcpu) &&
7779                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7780                 return;
7781
7782         if (irr == -1 || tpr < irr) {
7783                 vmcs_write32(TPR_THRESHOLD, 0);
7784                 return;
7785         }
7786
7787         vmcs_write32(TPR_THRESHOLD, irr);
7788 }
7789
7790 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7791 {
7792         u32 sec_exec_control;
7793
7794         /*
7795          * There is not point to enable virtualize x2apic without enable
7796          * apicv
7797          */
7798         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7799                                 !vmx_vm_has_apicv(vcpu->kvm))
7800                 return;
7801
7802         if (!vm_need_tpr_shadow(vcpu->kvm))
7803                 return;
7804
7805         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7806
7807         if (set) {
7808                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7809                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7810         } else {
7811                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7812                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7813         }
7814         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7815
7816         vmx_set_msr_bitmap(vcpu);
7817 }
7818
7819 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7820 {
7821         struct vcpu_vmx *vmx = to_vmx(vcpu);
7822
7823         /*
7824          * Currently we do not handle the nested case where L2 has an
7825          * APIC access page of its own; that page is still pinned.
7826          * Hence, we skip the case where the VCPU is in guest mode _and_
7827          * L1 prepared an APIC access page for L2.
7828          *
7829          * For the case where L1 and L2 share the same APIC access page
7830          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7831          * in the vmcs12), this function will only update either the vmcs01
7832          * or the vmcs02.  If the former, the vmcs02 will be updated by
7833          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7834          * the next L2->L1 exit.
7835          */
7836         if (!is_guest_mode(vcpu) ||
7837             !nested_cpu_has2(vmx->nested.current_vmcs12,
7838                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7839                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
7840 }
7841
7842 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7843 {
7844         u16 status;
7845         u8 old;
7846
7847         if (isr == -1)
7848                 isr = 0;
7849
7850         status = vmcs_read16(GUEST_INTR_STATUS);
7851         old = status >> 8;
7852         if (isr != old) {
7853                 status &= 0xff;
7854                 status |= isr << 8;
7855                 vmcs_write16(GUEST_INTR_STATUS, status);
7856         }
7857 }
7858
7859 static void vmx_set_rvi(int vector)
7860 {
7861         u16 status;
7862         u8 old;
7863
7864         if (vector == -1)
7865                 vector = 0;
7866
7867         status = vmcs_read16(GUEST_INTR_STATUS);
7868         old = (u8)status & 0xff;
7869         if ((u8)vector != old) {
7870                 status &= ~0xff;
7871                 status |= (u8)vector;
7872                 vmcs_write16(GUEST_INTR_STATUS, status);
7873         }
7874 }
7875
7876 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7877 {
7878         if (!is_guest_mode(vcpu)) {
7879                 vmx_set_rvi(max_irr);
7880                 return;
7881         }
7882
7883         if (max_irr == -1)
7884                 return;
7885
7886         /*
7887          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
7888          * handles it.
7889          */
7890         if (nested_exit_on_intr(vcpu))
7891                 return;
7892
7893         /*
7894          * Else, fall back to pre-APICv interrupt injection since L2
7895          * is run without virtual interrupt delivery.
7896          */
7897         if (!kvm_event_needs_reinjection(vcpu) &&
7898             vmx_interrupt_allowed(vcpu)) {
7899                 kvm_queue_interrupt(vcpu, max_irr, false);
7900                 vmx_inject_irq(vcpu);
7901         }
7902 }
7903
7904 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7905 {
7906         if (!vmx_vm_has_apicv(vcpu->kvm))
7907                 return;
7908
7909         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7910         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7911         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7912         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7913 }
7914
7915 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7916 {
7917         u32 exit_intr_info;
7918
7919         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7920               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7921                 return;
7922
7923         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7924         exit_intr_info = vmx->exit_intr_info;
7925
7926         /* Handle machine checks before interrupts are enabled */
7927         if (is_machine_check(exit_intr_info))
7928                 kvm_machine_check();
7929
7930         /* We need to handle NMIs before interrupts are enabled */
7931         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7932             (exit_intr_info & INTR_INFO_VALID_MASK)) {
7933                 kvm_before_handle_nmi(&vmx->vcpu);
7934                 asm("int $2");
7935                 kvm_after_handle_nmi(&vmx->vcpu);
7936         }
7937 }
7938
7939 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7940 {
7941         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7942
7943         /*
7944          * If external interrupt exists, IF bit is set in rflags/eflags on the
7945          * interrupt stack frame, and interrupt will be enabled on a return
7946          * from interrupt handler.
7947          */
7948         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7949                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7950                 unsigned int vector;
7951                 unsigned long entry;
7952                 gate_desc *desc;
7953                 struct vcpu_vmx *vmx = to_vmx(vcpu);
7954 #ifdef CONFIG_X86_64
7955                 unsigned long tmp;
7956 #endif
7957
7958                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7959                 desc = (gate_desc *)vmx->host_idt_base + vector;
7960                 entry = gate_offset(*desc);
7961                 asm volatile(
7962 #ifdef CONFIG_X86_64
7963                         "mov %%" _ASM_SP ", %[sp]\n\t"
7964                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7965                         "push $%c[ss]\n\t"
7966                         "push %[sp]\n\t"
7967 #endif
7968                         "pushf\n\t"
7969                         "orl $0x200, (%%" _ASM_SP ")\n\t"
7970                         __ASM_SIZE(push) " $%c[cs]\n\t"
7971                         "call *%[entry]\n\t"
7972                         :
7973 #ifdef CONFIG_X86_64
7974                         [sp]"=&r"(tmp)
7975 #endif
7976                         :
7977                         [entry]"r"(entry),
7978                         [ss]"i"(__KERNEL_DS),
7979                         [cs]"i"(__KERNEL_CS)
7980                         );
7981         } else
7982                 local_irq_enable();
7983 }
7984
7985 static bool vmx_mpx_supported(void)
7986 {
7987         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7988                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7989 }
7990
7991 static bool vmx_xsaves_supported(void)
7992 {
7993         return vmcs_config.cpu_based_2nd_exec_ctrl &
7994                 SECONDARY_EXEC_XSAVES;
7995 }
7996
7997 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7998 {
7999         u32 exit_intr_info;
8000         bool unblock_nmi;
8001         u8 vector;
8002         bool idtv_info_valid;
8003
8004         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8005
8006         if (cpu_has_virtual_nmis()) {
8007                 if (vmx->nmi_known_unmasked)
8008                         return;
8009                 /*
8010                  * Can't use vmx->exit_intr_info since we're not sure what
8011                  * the exit reason is.
8012                  */
8013                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8014                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8015                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8016                 /*
8017                  * SDM 3: 27.7.1.2 (September 2008)
8018                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
8019                  * a guest IRET fault.
8020                  * SDM 3: 23.2.2 (September 2008)
8021                  * Bit 12 is undefined in any of the following cases:
8022                  *  If the VM exit sets the valid bit in the IDT-vectoring
8023                  *   information field.
8024                  *  If the VM exit is due to a double fault.
8025                  */
8026                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8027                     vector != DF_VECTOR && !idtv_info_valid)
8028                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8029                                       GUEST_INTR_STATE_NMI);
8030                 else
8031                         vmx->nmi_known_unmasked =
8032                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8033                                   & GUEST_INTR_STATE_NMI);
8034         } else if (unlikely(vmx->soft_vnmi_blocked))
8035                 vmx->vnmi_blocked_time +=
8036                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8037 }
8038
8039 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8040                                       u32 idt_vectoring_info,
8041                                       int instr_len_field,
8042                                       int error_code_field)
8043 {
8044         u8 vector;
8045         int type;
8046         bool idtv_info_valid;
8047
8048         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8049
8050         vcpu->arch.nmi_injected = false;
8051         kvm_clear_exception_queue(vcpu);
8052         kvm_clear_interrupt_queue(vcpu);
8053
8054         if (!idtv_info_valid)
8055                 return;
8056
8057         kvm_make_request(KVM_REQ_EVENT, vcpu);
8058
8059         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8060         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8061
8062         switch (type) {
8063         case INTR_TYPE_NMI_INTR:
8064                 vcpu->arch.nmi_injected = true;
8065                 /*
8066                  * SDM 3: 27.7.1.2 (September 2008)
8067                  * Clear bit "block by NMI" before VM entry if a NMI
8068                  * delivery faulted.
8069                  */
8070                 vmx_set_nmi_mask(vcpu, false);
8071                 break;
8072         case INTR_TYPE_SOFT_EXCEPTION:
8073                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8074                 /* fall through */
8075         case INTR_TYPE_HARD_EXCEPTION:
8076                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8077                         u32 err = vmcs_read32(error_code_field);
8078                         kvm_requeue_exception_e(vcpu, vector, err);
8079                 } else
8080                         kvm_requeue_exception(vcpu, vector);
8081                 break;
8082         case INTR_TYPE_SOFT_INTR:
8083                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8084                 /* fall through */
8085         case INTR_TYPE_EXT_INTR:
8086                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8087                 break;
8088         default:
8089                 break;
8090         }
8091 }
8092
8093 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8094 {
8095         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8096                                   VM_EXIT_INSTRUCTION_LEN,
8097                                   IDT_VECTORING_ERROR_CODE);
8098 }
8099
8100 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8101 {
8102         __vmx_complete_interrupts(vcpu,
8103                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8104                                   VM_ENTRY_INSTRUCTION_LEN,
8105                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8106
8107         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8108 }
8109
8110 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8111 {
8112         int i, nr_msrs;
8113         struct perf_guest_switch_msr *msrs;
8114
8115         msrs = perf_guest_get_msrs(&nr_msrs);
8116
8117         if (!msrs)
8118                 return;
8119
8120         for (i = 0; i < nr_msrs; i++)
8121                 if (msrs[i].host == msrs[i].guest)
8122                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8123                 else
8124                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8125                                         msrs[i].host);
8126 }
8127
8128 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8129 {
8130         struct vcpu_vmx *vmx = to_vmx(vcpu);
8131         unsigned long debugctlmsr, cr4;
8132
8133         /* Record the guest's net vcpu time for enforced NMI injections. */
8134         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8135                 vmx->entry_time = ktime_get();
8136
8137         /* Don't enter VMX if guest state is invalid, let the exit handler
8138            start emulation until we arrive back to a valid state */
8139         if (vmx->emulation_required)
8140                 return;
8141
8142         if (vmx->ple_window_dirty) {
8143                 vmx->ple_window_dirty = false;
8144                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8145         }
8146
8147         if (vmx->nested.sync_shadow_vmcs) {
8148                 copy_vmcs12_to_shadow(vmx);
8149                 vmx->nested.sync_shadow_vmcs = false;
8150         }
8151
8152         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8153                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8154         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8155                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8156
8157         cr4 = cr4_read_shadow();
8158         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8159                 vmcs_writel(HOST_CR4, cr4);
8160                 vmx->host_state.vmcs_host_cr4 = cr4;
8161         }
8162
8163         /* When single-stepping over STI and MOV SS, we must clear the
8164          * corresponding interruptibility bits in the guest state. Otherwise
8165          * vmentry fails as it then expects bit 14 (BS) in pending debug
8166          * exceptions being set, but that's not correct for the guest debugging
8167          * case. */
8168         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8169                 vmx_set_interrupt_shadow(vcpu, 0);
8170
8171         atomic_switch_perf_msrs(vmx);
8172         debugctlmsr = get_debugctlmsr();
8173
8174         vmx->__launched = vmx->loaded_vmcs->launched;
8175         asm(
8176                 /* Store host registers */
8177                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8178                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8179                 "push %%" _ASM_CX " \n\t"
8180                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8181                 "je 1f \n\t"
8182                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8183                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8184                 "1: \n\t"
8185                 /* Reload cr2 if changed */
8186                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8187                 "mov %%cr2, %%" _ASM_DX " \n\t"
8188                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8189                 "je 2f \n\t"
8190                 "mov %%" _ASM_AX", %%cr2 \n\t"
8191                 "2: \n\t"
8192                 /* Check if vmlaunch of vmresume is needed */
8193                 "cmpl $0, %c[launched](%0) \n\t"
8194                 /* Load guest registers.  Don't clobber flags. */
8195                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8196                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8197                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8198                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8199                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8200                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8201 #ifdef CONFIG_X86_64
8202                 "mov %c[r8](%0),  %%r8  \n\t"
8203                 "mov %c[r9](%0),  %%r9  \n\t"
8204                 "mov %c[r10](%0), %%r10 \n\t"
8205                 "mov %c[r11](%0), %%r11 \n\t"
8206                 "mov %c[r12](%0), %%r12 \n\t"
8207                 "mov %c[r13](%0), %%r13 \n\t"
8208                 "mov %c[r14](%0), %%r14 \n\t"
8209                 "mov %c[r15](%0), %%r15 \n\t"
8210 #endif
8211                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8212
8213                 /* Enter guest mode */
8214                 "jne 1f \n\t"
8215                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8216                 "jmp 2f \n\t"
8217                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8218                 "2: "
8219                 /* Save guest registers, load host registers, keep flags */
8220                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8221                 "pop %0 \n\t"
8222                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8223                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8224                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8225                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8226                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8227                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8228                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8229 #ifdef CONFIG_X86_64
8230                 "mov %%r8,  %c[r8](%0) \n\t"
8231                 "mov %%r9,  %c[r9](%0) \n\t"
8232                 "mov %%r10, %c[r10](%0) \n\t"
8233                 "mov %%r11, %c[r11](%0) \n\t"
8234                 "mov %%r12, %c[r12](%0) \n\t"
8235                 "mov %%r13, %c[r13](%0) \n\t"
8236                 "mov %%r14, %c[r14](%0) \n\t"
8237                 "mov %%r15, %c[r15](%0) \n\t"
8238 #endif
8239                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8240                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8241
8242                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8243                 "setbe %c[fail](%0) \n\t"
8244                 ".pushsection .rodata \n\t"
8245                 ".global vmx_return \n\t"
8246                 "vmx_return: " _ASM_PTR " 2b \n\t"
8247                 ".popsection"
8248               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8249                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8250                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8251                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8252                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8253                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8254                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8255                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8256                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8257                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8258                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8259 #ifdef CONFIG_X86_64
8260                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8261                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8262                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8263                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8264                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8265                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8266                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8267                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8268 #endif
8269                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8270                 [wordsize]"i"(sizeof(ulong))
8271               : "cc", "memory"
8272 #ifdef CONFIG_X86_64
8273                 , "rax", "rbx", "rdi", "rsi"
8274                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8275 #else
8276                 , "eax", "ebx", "edi", "esi"
8277 #endif
8278               );
8279
8280         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8281         if (debugctlmsr)
8282                 update_debugctlmsr(debugctlmsr);
8283
8284 #ifndef CONFIG_X86_64
8285         /*
8286          * The sysexit path does not restore ds/es, so we must set them to
8287          * a reasonable value ourselves.
8288          *
8289          * We can't defer this to vmx_load_host_state() since that function
8290          * may be executed in interrupt context, which saves and restore segments
8291          * around it, nullifying its effect.
8292          */
8293         loadsegment(ds, __USER_DS);
8294         loadsegment(es, __USER_DS);
8295 #endif
8296
8297         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8298                                   | (1 << VCPU_EXREG_RFLAGS)
8299                                   | (1 << VCPU_EXREG_PDPTR)
8300                                   | (1 << VCPU_EXREG_SEGMENTS)
8301                                   | (1 << VCPU_EXREG_CR3));
8302         vcpu->arch.regs_dirty = 0;
8303
8304         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8305
8306         vmx->loaded_vmcs->launched = 1;
8307
8308         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8309         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8310
8311         /*
8312          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8313          * we did not inject a still-pending event to L1 now because of
8314          * nested_run_pending, we need to re-enable this bit.
8315          */
8316         if (vmx->nested.nested_run_pending)
8317                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8318
8319         vmx->nested.nested_run_pending = 0;
8320
8321         vmx_complete_atomic_exit(vmx);
8322         vmx_recover_nmi_blocking(vmx);
8323         vmx_complete_interrupts(vmx);
8324 }
8325
8326 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8327 {
8328         struct vcpu_vmx *vmx = to_vmx(vcpu);
8329         int cpu;
8330
8331         if (vmx->loaded_vmcs == &vmx->vmcs01)
8332                 return;
8333
8334         cpu = get_cpu();
8335         vmx->loaded_vmcs = &vmx->vmcs01;
8336         vmx_vcpu_put(vcpu);
8337         vmx_vcpu_load(vcpu, cpu);
8338         vcpu->cpu = cpu;
8339         put_cpu();
8340 }
8341
8342 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8343 {
8344         struct vcpu_vmx *vmx = to_vmx(vcpu);
8345
8346         if (enable_pml)
8347                 vmx_disable_pml(vmx);
8348         free_vpid(vmx);
8349         leave_guest_mode(vcpu);
8350         vmx_load_vmcs01(vcpu);
8351         free_nested(vmx);
8352         free_loaded_vmcs(vmx->loaded_vmcs);
8353         kfree(vmx->guest_msrs);
8354         kvm_vcpu_uninit(vcpu);
8355         kmem_cache_free(kvm_vcpu_cache, vmx);
8356 }
8357
8358 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8359 {
8360         int err;
8361         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8362         int cpu;
8363
8364         if (!vmx)
8365                 return ERR_PTR(-ENOMEM);
8366
8367         allocate_vpid(vmx);
8368
8369         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8370         if (err)
8371                 goto free_vcpu;
8372
8373         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8374         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8375                      > PAGE_SIZE);
8376
8377         err = -ENOMEM;
8378         if (!vmx->guest_msrs) {
8379                 goto uninit_vcpu;
8380         }
8381
8382         vmx->loaded_vmcs = &vmx->vmcs01;
8383         vmx->loaded_vmcs->vmcs = alloc_vmcs();
8384         if (!vmx->loaded_vmcs->vmcs)
8385                 goto free_msrs;
8386         if (!vmm_exclusive)
8387                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8388         loaded_vmcs_init(vmx->loaded_vmcs);
8389         if (!vmm_exclusive)
8390                 kvm_cpu_vmxoff();
8391
8392         cpu = get_cpu();
8393         vmx_vcpu_load(&vmx->vcpu, cpu);
8394         vmx->vcpu.cpu = cpu;
8395         err = vmx_vcpu_setup(vmx);
8396         vmx_vcpu_put(&vmx->vcpu);
8397         put_cpu();
8398         if (err)
8399                 goto free_vmcs;
8400         if (vm_need_virtualize_apic_accesses(kvm)) {
8401                 err = alloc_apic_access_page(kvm);
8402                 if (err)
8403                         goto free_vmcs;
8404         }
8405
8406         if (enable_ept) {
8407                 if (!kvm->arch.ept_identity_map_addr)
8408                         kvm->arch.ept_identity_map_addr =
8409                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8410                 err = init_rmode_identity_map(kvm);
8411                 if (err)
8412                         goto free_vmcs;
8413         }
8414
8415         if (nested)
8416                 nested_vmx_setup_ctls_msrs(vmx);
8417
8418         vmx->nested.posted_intr_nv = -1;
8419         vmx->nested.current_vmptr = -1ull;
8420         vmx->nested.current_vmcs12 = NULL;
8421
8422         /*
8423          * If PML is turned on, failure on enabling PML just results in failure
8424          * of creating the vcpu, therefore we can simplify PML logic (by
8425          * avoiding dealing with cases, such as enabling PML partially on vcpus
8426          * for the guest, etc.
8427          */
8428         if (enable_pml) {
8429                 err = vmx_enable_pml(vmx);
8430                 if (err)
8431                         goto free_vmcs;
8432         }
8433
8434         return &vmx->vcpu;
8435
8436 free_vmcs:
8437         free_loaded_vmcs(vmx->loaded_vmcs);
8438 free_msrs:
8439         kfree(vmx->guest_msrs);
8440 uninit_vcpu:
8441         kvm_vcpu_uninit(&vmx->vcpu);
8442 free_vcpu:
8443         free_vpid(vmx);
8444         kmem_cache_free(kvm_vcpu_cache, vmx);
8445         return ERR_PTR(err);
8446 }
8447
8448 static void __init vmx_check_processor_compat(void *rtn)
8449 {
8450         struct vmcs_config vmcs_conf;
8451
8452         *(int *)rtn = 0;
8453         if (setup_vmcs_config(&vmcs_conf) < 0)
8454                 *(int *)rtn = -EIO;
8455         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8456                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8457                                 smp_processor_id());
8458                 *(int *)rtn = -EIO;
8459         }
8460 }
8461
8462 static int get_ept_level(void)
8463 {
8464         return VMX_EPT_DEFAULT_GAW + 1;
8465 }
8466
8467 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8468 {
8469         u64 ret;
8470
8471         /* For VT-d and EPT combination
8472          * 1. MMIO: always map as UC
8473          * 2. EPT with VT-d:
8474          *   a. VT-d without snooping control feature: can't guarantee the
8475          *      result, try to trust guest.
8476          *   b. VT-d with snooping control feature: snooping control feature of
8477          *      VT-d engine can guarantee the cache correctness. Just set it
8478          *      to WB to keep consistent with host. So the same as item 3.
8479          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8480          *    consistent with host MTRR
8481          */
8482         if (is_mmio)
8483                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
8484         else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
8485                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
8486                       VMX_EPT_MT_EPTE_SHIFT;
8487         else
8488                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
8489                         | VMX_EPT_IPAT_BIT;
8490
8491         return ret;
8492 }
8493
8494 static int vmx_get_lpage_level(void)
8495 {
8496         if (enable_ept && !cpu_has_vmx_ept_1g_page())
8497                 return PT_DIRECTORY_LEVEL;
8498         else
8499                 /* For shadow and EPT supported 1GB page */
8500                 return PT_PDPE_LEVEL;
8501 }
8502
8503 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8504 {
8505         struct kvm_cpuid_entry2 *best;
8506         struct vcpu_vmx *vmx = to_vmx(vcpu);
8507         u32 exec_control;
8508
8509         vmx->rdtscp_enabled = false;
8510         if (vmx_rdtscp_supported()) {
8511                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8512                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
8513                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8514                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8515                                 vmx->rdtscp_enabled = true;
8516                         else {
8517                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
8518                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8519                                                 exec_control);
8520                         }
8521                 }
8522                 if (nested && !vmx->rdtscp_enabled)
8523                         vmx->nested.nested_vmx_secondary_ctls_high &=
8524                                 ~SECONDARY_EXEC_RDTSCP;
8525         }
8526
8527         /* Exposing INVPCID only when PCID is exposed */
8528         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8529         if (vmx_invpcid_supported() &&
8530             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8531             guest_cpuid_has_pcid(vcpu)) {
8532                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8533                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8534                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8535                              exec_control);
8536         } else {
8537                 if (cpu_has_secondary_exec_ctrls()) {
8538                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8539                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8540                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8541                                      exec_control);
8542                 }
8543                 if (best)
8544                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
8545         }
8546 }
8547
8548 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8549 {
8550         if (func == 1 && nested)
8551                 entry->ecx |= bit(X86_FEATURE_VMX);
8552 }
8553
8554 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8555                 struct x86_exception *fault)
8556 {
8557         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8558         u32 exit_reason;
8559
8560         if (fault->error_code & PFERR_RSVD_MASK)
8561                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
8562         else
8563                 exit_reason = EXIT_REASON_EPT_VIOLATION;
8564         nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8565         vmcs12->guest_physical_address = fault->address;
8566 }
8567
8568 /* Callbacks for nested_ept_init_mmu_context: */
8569
8570 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8571 {
8572         /* return the page table to be shadowed - in our case, EPT12 */
8573         return get_vmcs12(vcpu)->ept_pointer;
8574 }
8575
8576 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8577 {
8578         WARN_ON(mmu_is_nested(vcpu));
8579         kvm_init_shadow_ept_mmu(vcpu,
8580                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8581                         VMX_EPT_EXECUTE_ONLY_BIT);
8582         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8583         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8584         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8585
8586         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8587 }
8588
8589 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8590 {
8591         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8592 }
8593
8594 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8595                                             u16 error_code)
8596 {
8597         bool inequality, bit;
8598
8599         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8600         inequality =
8601                 (error_code & vmcs12->page_fault_error_code_mask) !=
8602                  vmcs12->page_fault_error_code_match;
8603         return inequality ^ bit;
8604 }
8605
8606 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8607                 struct x86_exception *fault)
8608 {
8609         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8610
8611         WARN_ON(!is_guest_mode(vcpu));
8612
8613         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8614                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8615                                   vmcs_read32(VM_EXIT_INTR_INFO),
8616                                   vmcs_readl(EXIT_QUALIFICATION));
8617         else
8618                 kvm_inject_page_fault(vcpu, fault);
8619 }
8620
8621 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8622                                         struct vmcs12 *vmcs12)
8623 {
8624         struct vcpu_vmx *vmx = to_vmx(vcpu);
8625         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8626
8627         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8628                 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8629                     vmcs12->apic_access_addr >> maxphyaddr)
8630                         return false;
8631
8632                 /*
8633                  * Translate L1 physical address to host physical
8634                  * address for vmcs02. Keep the page pinned, so this
8635                  * physical address remains valid. We keep a reference
8636                  * to it so we can release it later.
8637                  */
8638                 if (vmx->nested.apic_access_page) /* shouldn't happen */
8639                         nested_release_page(vmx->nested.apic_access_page);
8640                 vmx->nested.apic_access_page =
8641                         nested_get_page(vcpu, vmcs12->apic_access_addr);
8642         }
8643
8644         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8645                 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8646                     vmcs12->virtual_apic_page_addr >> maxphyaddr)
8647                         return false;
8648
8649                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8650                         nested_release_page(vmx->nested.virtual_apic_page);
8651                 vmx->nested.virtual_apic_page =
8652                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8653
8654                 /*
8655                  * Failing the vm entry is _not_ what the processor does
8656                  * but it's basically the only possibility we have.
8657                  * We could still enter the guest if CR8 load exits are
8658                  * enabled, CR8 store exits are enabled, and virtualize APIC
8659                  * access is disabled; in this case the processor would never
8660                  * use the TPR shadow and we could simply clear the bit from
8661                  * the execution control.  But such a configuration is useless,
8662                  * so let's keep the code simple.
8663                  */
8664                 if (!vmx->nested.virtual_apic_page)
8665                         return false;
8666         }
8667
8668         if (nested_cpu_has_posted_intr(vmcs12)) {
8669                 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8670                     vmcs12->posted_intr_desc_addr >> maxphyaddr)
8671                         return false;
8672
8673                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8674                         kunmap(vmx->nested.pi_desc_page);
8675                         nested_release_page(vmx->nested.pi_desc_page);
8676                 }
8677                 vmx->nested.pi_desc_page =
8678                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8679                 if (!vmx->nested.pi_desc_page)
8680                         return false;
8681
8682                 vmx->nested.pi_desc =
8683                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8684                 if (!vmx->nested.pi_desc) {
8685                         nested_release_page_clean(vmx->nested.pi_desc_page);
8686                         return false;
8687                 }
8688                 vmx->nested.pi_desc =
8689                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
8690                         (unsigned long)(vmcs12->posted_intr_desc_addr &
8691                         (PAGE_SIZE - 1)));
8692         }
8693
8694         return true;
8695 }
8696
8697 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8698 {
8699         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8700         struct vcpu_vmx *vmx = to_vmx(vcpu);
8701
8702         if (vcpu->arch.virtual_tsc_khz == 0)
8703                 return;
8704
8705         /* Make sure short timeouts reliably trigger an immediate vmexit.
8706          * hrtimer_start does not guarantee this. */
8707         if (preemption_timeout <= 1) {
8708                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8709                 return;
8710         }
8711
8712         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8713         preemption_timeout *= 1000000;
8714         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8715         hrtimer_start(&vmx->nested.preemption_timer,
8716                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8717 }
8718
8719 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8720                                                 struct vmcs12 *vmcs12)
8721 {
8722         int maxphyaddr;
8723         u64 addr;
8724
8725         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8726                 return 0;
8727
8728         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8729                 WARN_ON(1);
8730                 return -EINVAL;
8731         }
8732         maxphyaddr = cpuid_maxphyaddr(vcpu);
8733
8734         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8735            ((addr + PAGE_SIZE) >> maxphyaddr))
8736                 return -EINVAL;
8737
8738         return 0;
8739 }
8740
8741 /*
8742  * Merge L0's and L1's MSR bitmap, return false to indicate that
8743  * we do not use the hardware.
8744  */
8745 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8746                                                struct vmcs12 *vmcs12)
8747 {
8748         int msr;
8749         struct page *page;
8750         unsigned long *msr_bitmap;
8751
8752         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8753                 return false;
8754
8755         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8756         if (!page) {
8757                 WARN_ON(1);
8758                 return false;
8759         }
8760         msr_bitmap = (unsigned long *)kmap(page);
8761         if (!msr_bitmap) {
8762                 nested_release_page_clean(page);
8763                 WARN_ON(1);
8764                 return false;
8765         }
8766
8767         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8768                 if (nested_cpu_has_apic_reg_virt(vmcs12))
8769                         for (msr = 0x800; msr <= 0x8ff; msr++)
8770                                 nested_vmx_disable_intercept_for_msr(
8771                                         msr_bitmap,
8772                                         vmx_msr_bitmap_nested,
8773                                         msr, MSR_TYPE_R);
8774                 /* TPR is allowed */
8775                 nested_vmx_disable_intercept_for_msr(msr_bitmap,
8776                                 vmx_msr_bitmap_nested,
8777                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8778                                 MSR_TYPE_R | MSR_TYPE_W);
8779                 if (nested_cpu_has_vid(vmcs12)) {
8780                         /* EOI and self-IPI are allowed */
8781                         nested_vmx_disable_intercept_for_msr(
8782                                 msr_bitmap,
8783                                 vmx_msr_bitmap_nested,
8784                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8785                                 MSR_TYPE_W);
8786                         nested_vmx_disable_intercept_for_msr(
8787                                 msr_bitmap,
8788                                 vmx_msr_bitmap_nested,
8789                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8790                                 MSR_TYPE_W);
8791                 }
8792         } else {
8793                 /*
8794                  * Enable reading intercept of all the x2apic
8795                  * MSRs. We should not rely on vmcs12 to do any
8796                  * optimizations here, it may have been modified
8797                  * by L1.
8798                  */
8799                 for (msr = 0x800; msr <= 0x8ff; msr++)
8800                         __vmx_enable_intercept_for_msr(
8801                                 vmx_msr_bitmap_nested,
8802                                 msr,
8803                                 MSR_TYPE_R);
8804
8805                 __vmx_enable_intercept_for_msr(
8806                                 vmx_msr_bitmap_nested,
8807                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8808                                 MSR_TYPE_W);
8809                 __vmx_enable_intercept_for_msr(
8810                                 vmx_msr_bitmap_nested,
8811                                 APIC_BASE_MSR + (APIC_EOI >> 4),
8812                                 MSR_TYPE_W);
8813                 __vmx_enable_intercept_for_msr(
8814                                 vmx_msr_bitmap_nested,
8815                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8816                                 MSR_TYPE_W);
8817         }
8818         kunmap(page);
8819         nested_release_page_clean(page);
8820
8821         return true;
8822 }
8823
8824 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8825                                            struct vmcs12 *vmcs12)
8826 {
8827         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8828             !nested_cpu_has_apic_reg_virt(vmcs12) &&
8829             !nested_cpu_has_vid(vmcs12) &&
8830             !nested_cpu_has_posted_intr(vmcs12))
8831                 return 0;
8832
8833         /*
8834          * If virtualize x2apic mode is enabled,
8835          * virtualize apic access must be disabled.
8836          */
8837         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8838             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8839                 return -EINVAL;
8840
8841         /*
8842          * If virtual interrupt delivery is enabled,
8843          * we must exit on external interrupts.
8844          */
8845         if (nested_cpu_has_vid(vmcs12) &&
8846            !nested_exit_on_intr(vcpu))
8847                 return -EINVAL;
8848
8849         /*
8850          * bits 15:8 should be zero in posted_intr_nv,
8851          * the descriptor address has been already checked
8852          * in nested_get_vmcs12_pages.
8853          */
8854         if (nested_cpu_has_posted_intr(vmcs12) &&
8855            (!nested_cpu_has_vid(vmcs12) ||
8856             !nested_exit_intr_ack_set(vcpu) ||
8857             vmcs12->posted_intr_nv & 0xff00))
8858                 return -EINVAL;
8859
8860         /* tpr shadow is needed by all apicv features. */
8861         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8862                 return -EINVAL;
8863
8864         return 0;
8865 }
8866
8867 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
8868                                        unsigned long count_field,
8869                                        unsigned long addr_field)
8870 {
8871         int maxphyaddr;
8872         u64 count, addr;
8873
8874         if (vmcs12_read_any(vcpu, count_field, &count) ||
8875             vmcs12_read_any(vcpu, addr_field, &addr)) {
8876                 WARN_ON(1);
8877                 return -EINVAL;
8878         }
8879         if (count == 0)
8880                 return 0;
8881         maxphyaddr = cpuid_maxphyaddr(vcpu);
8882         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
8883             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
8884                 pr_warn_ratelimited(
8885                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
8886                         addr_field, maxphyaddr, count, addr);
8887                 return -EINVAL;
8888         }
8889         return 0;
8890 }
8891
8892 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
8893                                                 struct vmcs12 *vmcs12)
8894 {
8895         if (vmcs12->vm_exit_msr_load_count == 0 &&
8896             vmcs12->vm_exit_msr_store_count == 0 &&
8897             vmcs12->vm_entry_msr_load_count == 0)
8898                 return 0; /* Fast path */
8899         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
8900                                         VM_EXIT_MSR_LOAD_ADDR) ||
8901             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
8902                                         VM_EXIT_MSR_STORE_ADDR) ||
8903             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
8904                                         VM_ENTRY_MSR_LOAD_ADDR))
8905                 return -EINVAL;
8906         return 0;
8907 }
8908
8909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
8910                                        struct vmx_msr_entry *e)
8911 {
8912         /* x2APIC MSR accesses are not allowed */
8913         if (apic_x2apic_mode(vcpu->arch.apic) && e->index >> 8 == 0x8)
8914                 return -EINVAL;
8915         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
8916             e->index == MSR_IA32_UCODE_REV)
8917                 return -EINVAL;
8918         if (e->reserved != 0)
8919                 return -EINVAL;
8920         return 0;
8921 }
8922
8923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
8924                                      struct vmx_msr_entry *e)
8925 {
8926         if (e->index == MSR_FS_BASE ||
8927             e->index == MSR_GS_BASE ||
8928             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
8929             nested_vmx_msr_check_common(vcpu, e))
8930                 return -EINVAL;
8931         return 0;
8932 }
8933
8934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
8935                                       struct vmx_msr_entry *e)
8936 {
8937         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
8938             nested_vmx_msr_check_common(vcpu, e))
8939                 return -EINVAL;
8940         return 0;
8941 }
8942
8943 /*
8944  * Load guest's/host's msr at nested entry/exit.
8945  * return 0 for success, entry index for failure.
8946  */
8947 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8948 {
8949         u32 i;
8950         struct vmx_msr_entry e;
8951         struct msr_data msr;
8952
8953         msr.host_initiated = false;
8954         for (i = 0; i < count; i++) {
8955                 if (kvm_read_guest(vcpu->kvm, gpa + i * sizeof(e),
8956                                    &e, sizeof(e))) {
8957                         pr_warn_ratelimited(
8958                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8959                                 __func__, i, gpa + i * sizeof(e));
8960                         goto fail;
8961                 }
8962                 if (nested_vmx_load_msr_check(vcpu, &e)) {
8963                         pr_warn_ratelimited(
8964                                 "%s check failed (%u, 0x%x, 0x%x)\n",
8965                                 __func__, i, e.index, e.reserved);
8966                         goto fail;
8967                 }
8968                 msr.index = e.index;
8969                 msr.data = e.value;
8970                 if (kvm_set_msr(vcpu, &msr)) {
8971                         pr_warn_ratelimited(
8972                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
8973                                 __func__, i, e.index, e.value);
8974                         goto fail;
8975                 }
8976         }
8977         return 0;
8978 fail:
8979         return i + 1;
8980 }
8981
8982 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
8983 {
8984         u32 i;
8985         struct vmx_msr_entry e;
8986
8987         for (i = 0; i < count; i++) {
8988                 if (kvm_read_guest(vcpu->kvm,
8989                                    gpa + i * sizeof(e),
8990                                    &e, 2 * sizeof(u32))) {
8991                         pr_warn_ratelimited(
8992                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
8993                                 __func__, i, gpa + i * sizeof(e));
8994                         return -EINVAL;
8995                 }
8996                 if (nested_vmx_store_msr_check(vcpu, &e)) {
8997                         pr_warn_ratelimited(
8998                                 "%s check failed (%u, 0x%x, 0x%x)\n",
8999                                 __func__, i, e.index, e.reserved);
9000                         return -EINVAL;
9001                 }
9002                 if (kvm_get_msr(vcpu, e.index, &e.value)) {
9003                         pr_warn_ratelimited(
9004                                 "%s cannot read MSR (%u, 0x%x)\n",
9005                                 __func__, i, e.index);
9006                         return -EINVAL;
9007                 }
9008                 if (kvm_write_guest(vcpu->kvm,
9009                                     gpa + i * sizeof(e) +
9010                                         offsetof(struct vmx_msr_entry, value),
9011                                     &e.value, sizeof(e.value))) {
9012                         pr_warn_ratelimited(
9013                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9014                                 __func__, i, e.index, e.value);
9015                         return -EINVAL;
9016                 }
9017         }
9018         return 0;
9019 }
9020
9021 /*
9022  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9023  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9024  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9025  * guest in a way that will both be appropriate to L1's requests, and our
9026  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9027  * function also has additional necessary side-effects, like setting various
9028  * vcpu->arch fields.
9029  */
9030 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9031 {
9032         struct vcpu_vmx *vmx = to_vmx(vcpu);
9033         u32 exec_control;
9034
9035         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9036         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9037         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9038         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9039         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9040         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9041         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9042         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9043         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9044         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9045         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9046         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9047         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9048         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9049         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9050         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9051         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9052         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9053         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9054         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9055         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9056         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9057         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9058         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9059         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9060         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9061         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9062         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9063         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9064         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9065         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9066         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9067         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9068         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9069         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9070         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9071
9072         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9073                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9074                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9075         } else {
9076                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9077                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9078         }
9079         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9080                 vmcs12->vm_entry_intr_info_field);
9081         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9082                 vmcs12->vm_entry_exception_error_code);
9083         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9084                 vmcs12->vm_entry_instruction_len);
9085         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9086                 vmcs12->guest_interruptibility_info);
9087         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9088         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9089         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9090                 vmcs12->guest_pending_dbg_exceptions);
9091         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9092         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9093
9094         if (nested_cpu_has_xsaves(vmcs12))
9095                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9096         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9097
9098         exec_control = vmcs12->pin_based_vm_exec_control;
9099         exec_control |= vmcs_config.pin_based_exec_ctrl;
9100         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9101
9102         if (nested_cpu_has_posted_intr(vmcs12)) {
9103                 /*
9104                  * Note that we use L0's vector here and in
9105                  * vmx_deliver_nested_posted_interrupt.
9106                  */
9107                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9108                 vmx->nested.pi_pending = false;
9109                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9110                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9111                         page_to_phys(vmx->nested.pi_desc_page) +
9112                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9113                         (PAGE_SIZE - 1)));
9114         } else
9115                 exec_control &= ~PIN_BASED_POSTED_INTR;
9116
9117         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9118
9119         vmx->nested.preemption_timer_expired = false;
9120         if (nested_cpu_has_preemption_timer(vmcs12))
9121                 vmx_start_preemption_timer(vcpu);
9122
9123         /*
9124          * Whether page-faults are trapped is determined by a combination of
9125          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9126          * If enable_ept, L0 doesn't care about page faults and we should
9127          * set all of these to L1's desires. However, if !enable_ept, L0 does
9128          * care about (at least some) page faults, and because it is not easy
9129          * (if at all possible?) to merge L0 and L1's desires, we simply ask
9130          * to exit on each and every L2 page fault. This is done by setting
9131          * MASK=MATCH=0 and (see below) EB.PF=1.
9132          * Note that below we don't need special code to set EB.PF beyond the
9133          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9134          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9135          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9136          *
9137          * A problem with this approach (when !enable_ept) is that L1 may be
9138          * injected with more page faults than it asked for. This could have
9139          * caused problems, but in practice existing hypervisors don't care.
9140          * To fix this, we will need to emulate the PFEC checking (on the L1
9141          * page tables), using walk_addr(), when injecting PFs to L1.
9142          */
9143         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9144                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9145         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9146                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9147
9148         if (cpu_has_secondary_exec_ctrls()) {
9149                 exec_control = vmx_secondary_exec_control(vmx);
9150                 if (!vmx->rdtscp_enabled)
9151                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
9152                 /* Take the following fields only from vmcs12 */
9153                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9154                                   SECONDARY_EXEC_RDTSCP |
9155                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9156                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
9157                 if (nested_cpu_has(vmcs12,
9158                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9159                         exec_control |= vmcs12->secondary_vm_exec_control;
9160
9161                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9162                         /*
9163                          * If translation failed, no matter: This feature asks
9164                          * to exit when accessing the given address, and if it
9165                          * can never be accessed, this feature won't do
9166                          * anything anyway.
9167                          */
9168                         if (!vmx->nested.apic_access_page)
9169                                 exec_control &=
9170                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9171                         else
9172                                 vmcs_write64(APIC_ACCESS_ADDR,
9173                                   page_to_phys(vmx->nested.apic_access_page));
9174                 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9175                             (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9176                         exec_control |=
9177                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9178                         kvm_vcpu_reload_apic_access_page(vcpu);
9179                 }
9180
9181                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9182                         vmcs_write64(EOI_EXIT_BITMAP0,
9183                                 vmcs12->eoi_exit_bitmap0);
9184                         vmcs_write64(EOI_EXIT_BITMAP1,
9185                                 vmcs12->eoi_exit_bitmap1);
9186                         vmcs_write64(EOI_EXIT_BITMAP2,
9187                                 vmcs12->eoi_exit_bitmap2);
9188                         vmcs_write64(EOI_EXIT_BITMAP3,
9189                                 vmcs12->eoi_exit_bitmap3);
9190                         vmcs_write16(GUEST_INTR_STATUS,
9191                                 vmcs12->guest_intr_status);
9192                 }
9193
9194                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9195         }
9196
9197
9198         /*
9199          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9200          * Some constant fields are set here by vmx_set_constant_host_state().
9201          * Other fields are different per CPU, and will be set later when
9202          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9203          */
9204         vmx_set_constant_host_state(vmx);
9205
9206         /*
9207          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9208          * entry, but only if the current (host) sp changed from the value
9209          * we wrote last (vmx->host_rsp). This cache is no longer relevant
9210          * if we switch vmcs, and rather than hold a separate cache per vmcs,
9211          * here we just force the write to happen on entry.
9212          */
9213         vmx->host_rsp = 0;
9214
9215         exec_control = vmx_exec_control(vmx); /* L0's desires */
9216         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9217         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9218         exec_control &= ~CPU_BASED_TPR_SHADOW;
9219         exec_control |= vmcs12->cpu_based_vm_exec_control;
9220
9221         if (exec_control & CPU_BASED_TPR_SHADOW) {
9222                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9223                                 page_to_phys(vmx->nested.virtual_apic_page));
9224                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9225         }
9226
9227         if (cpu_has_vmx_msr_bitmap() &&
9228             exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9229             nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) {
9230                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_nested));
9231         } else
9232                 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9233
9234         /*
9235          * Merging of IO bitmap not currently supported.
9236          * Rather, exit every time.
9237          */
9238         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9239         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9240
9241         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9242
9243         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9244          * bitwise-or of what L1 wants to trap for L2, and what we want to
9245          * trap. Note that CR0.TS also needs updating - we do this later.
9246          */
9247         update_exception_bitmap(vcpu);
9248         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9249         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9250
9251         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9252          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9253          * bits are further modified by vmx_set_efer() below.
9254          */
9255         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9256
9257         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9258          * emulated by vmx_set_efer(), below.
9259          */
9260         vm_entry_controls_init(vmx, 
9261                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9262                         ~VM_ENTRY_IA32E_MODE) |
9263                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9264
9265         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9266                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9267                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9268         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9269                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9270
9271
9272         set_cr4_guest_host_mask(vmx);
9273
9274         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9275                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9276
9277         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9278                 vmcs_write64(TSC_OFFSET,
9279                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9280         else
9281                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9282
9283         if (enable_vpid) {
9284                 /*
9285                  * Trivially support vpid by letting L2s share their parent
9286                  * L1's vpid. TODO: move to a more elaborate solution, giving
9287                  * each L2 its own vpid and exposing the vpid feature to L1.
9288                  */
9289                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9290                 vmx_flush_tlb(vcpu);
9291         }
9292
9293         if (nested_cpu_has_ept(vmcs12)) {
9294                 kvm_mmu_unload(vcpu);
9295                 nested_ept_init_mmu_context(vcpu);
9296         }
9297
9298         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9299                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9300         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9301                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9302         else
9303                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9304         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9305         vmx_set_efer(vcpu, vcpu->arch.efer);
9306
9307         /*
9308          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9309          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9310          * The CR0_READ_SHADOW is what L2 should have expected to read given
9311          * the specifications by L1; It's not enough to take
9312          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9313          * have more bits than L1 expected.
9314          */
9315         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9316         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9317
9318         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9319         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9320
9321         /* shadow page tables on either EPT or shadow page tables */
9322         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9323         kvm_mmu_reset_context(vcpu);
9324
9325         if (!enable_ept)
9326                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9327
9328         /*
9329          * L1 may access the L2's PDPTR, so save them to construct vmcs12
9330          */
9331         if (enable_ept) {
9332                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9333                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9334                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9335                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9336         }
9337
9338         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9339         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9340 }
9341
9342 /*
9343  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9344  * for running an L2 nested guest.
9345  */
9346 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9347 {
9348         struct vmcs12 *vmcs12;
9349         struct vcpu_vmx *vmx = to_vmx(vcpu);
9350         int cpu;
9351         struct loaded_vmcs *vmcs02;
9352         bool ia32e;
9353         u32 msr_entry_idx;
9354
9355         if (!nested_vmx_check_permission(vcpu) ||
9356             !nested_vmx_check_vmcs12(vcpu))
9357                 return 1;
9358
9359         skip_emulated_instruction(vcpu);
9360         vmcs12 = get_vmcs12(vcpu);
9361
9362         if (enable_shadow_vmcs)
9363                 copy_shadow_to_vmcs12(vmx);
9364
9365         /*
9366          * The nested entry process starts with enforcing various prerequisites
9367          * on vmcs12 as required by the Intel SDM, and act appropriately when
9368          * they fail: As the SDM explains, some conditions should cause the
9369          * instruction to fail, while others will cause the instruction to seem
9370          * to succeed, but return an EXIT_REASON_INVALID_STATE.
9371          * To speed up the normal (success) code path, we should avoid checking
9372          * for misconfigurations which will anyway be caught by the processor
9373          * when using the merged vmcs02.
9374          */
9375         if (vmcs12->launch_state == launch) {
9376                 nested_vmx_failValid(vcpu,
9377                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9378                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9379                 return 1;
9380         }
9381
9382         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9383             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9384                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9385                 return 1;
9386         }
9387
9388         if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9389                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9390                 return 1;
9391         }
9392
9393         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9394                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9395                 return 1;
9396         }
9397
9398         if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9399                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9400                 return 1;
9401         }
9402
9403         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9404                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9405                 return 1;
9406         }
9407
9408         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9409                                 vmx->nested.nested_vmx_true_procbased_ctls_low,
9410                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
9411             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9412                                 vmx->nested.nested_vmx_secondary_ctls_low,
9413                                 vmx->nested.nested_vmx_secondary_ctls_high) ||
9414             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9415                                 vmx->nested.nested_vmx_pinbased_ctls_low,
9416                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
9417             !vmx_control_verify(vmcs12->vm_exit_controls,
9418                                 vmx->nested.nested_vmx_true_exit_ctls_low,
9419                                 vmx->nested.nested_vmx_exit_ctls_high) ||
9420             !vmx_control_verify(vmcs12->vm_entry_controls,
9421                                 vmx->nested.nested_vmx_true_entry_ctls_low,
9422                                 vmx->nested.nested_vmx_entry_ctls_high))
9423         {
9424                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9425                 return 1;
9426         }
9427
9428         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9429             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9430                 nested_vmx_failValid(vcpu,
9431                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9432                 return 1;
9433         }
9434
9435         if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9436             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9437                 nested_vmx_entry_failure(vcpu, vmcs12,
9438                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9439                 return 1;
9440         }
9441         if (vmcs12->vmcs_link_pointer != -1ull) {
9442                 nested_vmx_entry_failure(vcpu, vmcs12,
9443                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9444                 return 1;
9445         }
9446
9447         /*
9448          * If the load IA32_EFER VM-entry control is 1, the following checks
9449          * are performed on the field for the IA32_EFER MSR:
9450          * - Bits reserved in the IA32_EFER MSR must be 0.
9451          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9452          *   the IA-32e mode guest VM-exit control. It must also be identical
9453          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9454          *   CR0.PG) is 1.
9455          */
9456         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9457                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9458                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9459                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9460                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9461                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9462                         nested_vmx_entry_failure(vcpu, vmcs12,
9463                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9464                         return 1;
9465                 }
9466         }
9467
9468         /*
9469          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9470          * IA32_EFER MSR must be 0 in the field for that register. In addition,
9471          * the values of the LMA and LME bits in the field must each be that of
9472          * the host address-space size VM-exit control.
9473          */
9474         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9475                 ia32e = (vmcs12->vm_exit_controls &
9476                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9477                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9478                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9479                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9480                         nested_vmx_entry_failure(vcpu, vmcs12,
9481                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9482                         return 1;
9483                 }
9484         }
9485
9486         /*
9487          * We're finally done with prerequisite checking, and can start with
9488          * the nested entry.
9489          */
9490
9491         vmcs02 = nested_get_current_vmcs02(vmx);
9492         if (!vmcs02)
9493                 return -ENOMEM;
9494
9495         enter_guest_mode(vcpu);
9496
9497         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9498
9499         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9500                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9501
9502         cpu = get_cpu();
9503         vmx->loaded_vmcs = vmcs02;
9504         vmx_vcpu_put(vcpu);
9505         vmx_vcpu_load(vcpu, cpu);
9506         vcpu->cpu = cpu;
9507         put_cpu();
9508
9509         vmx_segment_cache_clear(vmx);
9510
9511         prepare_vmcs02(vcpu, vmcs12);
9512
9513         msr_entry_idx = nested_vmx_load_msr(vcpu,
9514                                             vmcs12->vm_entry_msr_load_addr,
9515                                             vmcs12->vm_entry_msr_load_count);
9516         if (msr_entry_idx) {
9517                 leave_guest_mode(vcpu);
9518                 vmx_load_vmcs01(vcpu);
9519                 nested_vmx_entry_failure(vcpu, vmcs12,
9520                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9521                 return 1;
9522         }
9523
9524         vmcs12->launch_state = 1;
9525
9526         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9527                 return kvm_vcpu_halt(vcpu);
9528
9529         vmx->nested.nested_run_pending = 1;
9530
9531         /*
9532          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9533          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9534          * returned as far as L1 is concerned. It will only return (and set
9535          * the success flag) when L2 exits (see nested_vmx_vmexit()).
9536          */
9537         return 1;
9538 }
9539
9540 /*
9541  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9542  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9543  * This function returns the new value we should put in vmcs12.guest_cr0.
9544  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9545  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9546  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9547  *     didn't trap the bit, because if L1 did, so would L0).
9548  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9549  *     been modified by L2, and L1 knows it. So just leave the old value of
9550  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9551  *     isn't relevant, because if L0 traps this bit it can set it to anything.
9552  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9553  *     changed these bits, and therefore they need to be updated, but L0
9554  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9555  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9556  */
9557 static inline unsigned long
9558 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9559 {
9560         return
9561         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9562         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9563         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9564                         vcpu->arch.cr0_guest_owned_bits));
9565 }
9566
9567 static inline unsigned long
9568 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9569 {
9570         return
9571         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9572         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9573         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9574                         vcpu->arch.cr4_guest_owned_bits));
9575 }
9576
9577 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9578                                        struct vmcs12 *vmcs12)
9579 {
9580         u32 idt_vectoring;
9581         unsigned int nr;
9582
9583         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9584                 nr = vcpu->arch.exception.nr;
9585                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9586
9587                 if (kvm_exception_is_soft(nr)) {
9588                         vmcs12->vm_exit_instruction_len =
9589                                 vcpu->arch.event_exit_inst_len;
9590                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9591                 } else
9592                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9593
9594                 if (vcpu->arch.exception.has_error_code) {
9595                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9596                         vmcs12->idt_vectoring_error_code =
9597                                 vcpu->arch.exception.error_code;
9598                 }
9599
9600                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9601         } else if (vcpu->arch.nmi_injected) {
9602                 vmcs12->idt_vectoring_info_field =
9603                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9604         } else if (vcpu->arch.interrupt.pending) {
9605                 nr = vcpu->arch.interrupt.nr;
9606                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9607
9608                 if (vcpu->arch.interrupt.soft) {
9609                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
9610                         vmcs12->vm_entry_instruction_len =
9611                                 vcpu->arch.event_exit_inst_len;
9612                 } else
9613                         idt_vectoring |= INTR_TYPE_EXT_INTR;
9614
9615                 vmcs12->idt_vectoring_info_field = idt_vectoring;
9616         }
9617 }
9618
9619 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9620 {
9621         struct vcpu_vmx *vmx = to_vmx(vcpu);
9622
9623         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9624             vmx->nested.preemption_timer_expired) {
9625                 if (vmx->nested.nested_run_pending)
9626                         return -EBUSY;
9627                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9628                 return 0;
9629         }
9630
9631         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9632                 if (vmx->nested.nested_run_pending ||
9633                     vcpu->arch.interrupt.pending)
9634                         return -EBUSY;
9635                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9636                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
9637                                   INTR_INFO_VALID_MASK, 0);
9638                 /*
9639                  * The NMI-triggered VM exit counts as injection:
9640                  * clear this one and block further NMIs.
9641                  */
9642                 vcpu->arch.nmi_pending = 0;
9643                 vmx_set_nmi_mask(vcpu, true);
9644                 return 0;
9645         }
9646
9647         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9648             nested_exit_on_intr(vcpu)) {
9649                 if (vmx->nested.nested_run_pending)
9650                         return -EBUSY;
9651                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9652                 return 0;
9653         }
9654
9655         return vmx_complete_nested_posted_interrupt(vcpu);
9656 }
9657
9658 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9659 {
9660         ktime_t remaining =
9661                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9662         u64 value;
9663
9664         if (ktime_to_ns(remaining) <= 0)
9665                 return 0;
9666
9667         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9668         do_div(value, 1000000);
9669         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9670 }
9671
9672 /*
9673  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9674  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9675  * and this function updates it to reflect the changes to the guest state while
9676  * L2 was running (and perhaps made some exits which were handled directly by L0
9677  * without going back to L1), and to reflect the exit reason.
9678  * Note that we do not have to copy here all VMCS fields, just those that
9679  * could have changed by the L2 guest or the exit - i.e., the guest-state and
9680  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9681  * which already writes to vmcs12 directly.
9682  */
9683 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9684                            u32 exit_reason, u32 exit_intr_info,
9685                            unsigned long exit_qualification)
9686 {
9687         /* update guest state fields: */
9688         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9689         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9690
9691         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9692         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9693         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9694
9695         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9696         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9697         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9698         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9699         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9700         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9701         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9702         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9703         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9704         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9705         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9706         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9707         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9708         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9709         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9710         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9711         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9712         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9713         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9714         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9715         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9716         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9717         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9718         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9719         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9720         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9721         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9722         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9723         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9724         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9725         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9726         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9727         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9728         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9729         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9730         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9731
9732         vmcs12->guest_interruptibility_info =
9733                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9734         vmcs12->guest_pending_dbg_exceptions =
9735                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9736         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9737                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9738         else
9739                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9740
9741         if (nested_cpu_has_preemption_timer(vmcs12)) {
9742                 if (vmcs12->vm_exit_controls &
9743                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9744                         vmcs12->vmx_preemption_timer_value =
9745                                 vmx_get_preemption_timer_value(vcpu);
9746                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9747         }
9748
9749         /*
9750          * In some cases (usually, nested EPT), L2 is allowed to change its
9751          * own CR3 without exiting. If it has changed it, we must keep it.
9752          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9753          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9754          *
9755          * Additionally, restore L2's PDPTR to vmcs12.
9756          */
9757         if (enable_ept) {
9758                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9759                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9760                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9761                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9762                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9763         }
9764
9765         if (nested_cpu_has_vid(vmcs12))
9766                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9767
9768         vmcs12->vm_entry_controls =
9769                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9770                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9771
9772         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9773                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9774                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9775         }
9776
9777         /* TODO: These cannot have changed unless we have MSR bitmaps and
9778          * the relevant bit asks not to trap the change */
9779         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9780                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9781         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9782                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
9783         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9784         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9785         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9786         if (vmx_mpx_supported())
9787                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9788         if (nested_cpu_has_xsaves(vmcs12))
9789                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9790
9791         /* update exit information fields: */
9792
9793         vmcs12->vm_exit_reason = exit_reason;
9794         vmcs12->exit_qualification = exit_qualification;
9795
9796         vmcs12->vm_exit_intr_info = exit_intr_info;
9797         if ((vmcs12->vm_exit_intr_info &
9798              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9799             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9800                 vmcs12->vm_exit_intr_error_code =
9801                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9802         vmcs12->idt_vectoring_info_field = 0;
9803         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9804         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9805
9806         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9807                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
9808                  * instead of reading the real value. */
9809                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9810
9811                 /*
9812                  * Transfer the event that L0 or L1 may wanted to inject into
9813                  * L2 to IDT_VECTORING_INFO_FIELD.
9814                  */
9815                 vmcs12_save_pending_event(vcpu, vmcs12);
9816         }
9817
9818         /*
9819          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9820          * preserved above and would only end up incorrectly in L1.
9821          */
9822         vcpu->arch.nmi_injected = false;
9823         kvm_clear_exception_queue(vcpu);
9824         kvm_clear_interrupt_queue(vcpu);
9825 }
9826
9827 /*
9828  * A part of what we need to when the nested L2 guest exits and we want to
9829  * run its L1 parent, is to reset L1's guest state to the host state specified
9830  * in vmcs12.
9831  * This function is to be called not only on normal nested exit, but also on
9832  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9833  * Failures During or After Loading Guest State").
9834  * This function should be called when the active VMCS is L1's (vmcs01).
9835  */
9836 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9837                                    struct vmcs12 *vmcs12)
9838 {
9839         struct kvm_segment seg;
9840
9841         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9842                 vcpu->arch.efer = vmcs12->host_ia32_efer;
9843         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9844                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9845         else
9846                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9847         vmx_set_efer(vcpu, vcpu->arch.efer);
9848
9849         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
9850         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
9851         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
9852         /*
9853          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
9854          * actually changed, because it depends on the current state of
9855          * fpu_active (which may have changed).
9856          * Note that vmx_set_cr0 refers to efer set above.
9857          */
9858         vmx_set_cr0(vcpu, vmcs12->host_cr0);
9859         /*
9860          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
9861          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
9862          * but we also need to update cr0_guest_host_mask and exception_bitmap.
9863          */
9864         update_exception_bitmap(vcpu);
9865         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
9866         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9867
9868         /*
9869          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
9870          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
9871          */
9872         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
9873         kvm_set_cr4(vcpu, vmcs12->host_cr4);
9874
9875         nested_ept_uninit_mmu_context(vcpu);
9876
9877         kvm_set_cr3(vcpu, vmcs12->host_cr3);
9878         kvm_mmu_reset_context(vcpu);
9879
9880         if (!enable_ept)
9881                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
9882
9883         if (enable_vpid) {
9884                 /*
9885                  * Trivially support vpid by letting L2s share their parent
9886                  * L1's vpid. TODO: move to a more elaborate solution, giving
9887                  * each L2 its own vpid and exposing the vpid feature to L1.
9888                  */
9889                 vmx_flush_tlb(vcpu);
9890         }
9891
9892
9893         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
9894         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
9895         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
9896         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
9897         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
9898
9899         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
9900         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
9901                 vmcs_write64(GUEST_BNDCFGS, 0);
9902
9903         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
9904                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
9905                 vcpu->arch.pat = vmcs12->host_ia32_pat;
9906         }
9907         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9908                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
9909                         vmcs12->host_ia32_perf_global_ctrl);
9910
9911         /* Set L1 segment info according to Intel SDM
9912             27.5.2 Loading Host Segment and Descriptor-Table Registers */
9913         seg = (struct kvm_segment) {
9914                 .base = 0,
9915                 .limit = 0xFFFFFFFF,
9916                 .selector = vmcs12->host_cs_selector,
9917                 .type = 11,
9918                 .present = 1,
9919                 .s = 1,
9920                 .g = 1
9921         };
9922         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9923                 seg.l = 1;
9924         else
9925                 seg.db = 1;
9926         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
9927         seg = (struct kvm_segment) {
9928                 .base = 0,
9929                 .limit = 0xFFFFFFFF,
9930                 .type = 3,
9931                 .present = 1,
9932                 .s = 1,
9933                 .db = 1,
9934                 .g = 1
9935         };
9936         seg.selector = vmcs12->host_ds_selector;
9937         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
9938         seg.selector = vmcs12->host_es_selector;
9939         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
9940         seg.selector = vmcs12->host_ss_selector;
9941         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
9942         seg.selector = vmcs12->host_fs_selector;
9943         seg.base = vmcs12->host_fs_base;
9944         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
9945         seg.selector = vmcs12->host_gs_selector;
9946         seg.base = vmcs12->host_gs_base;
9947         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
9948         seg = (struct kvm_segment) {
9949                 .base = vmcs12->host_tr_base,
9950                 .limit = 0x67,
9951                 .selector = vmcs12->host_tr_selector,
9952                 .type = 11,
9953                 .present = 1
9954         };
9955         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
9956
9957         kvm_set_dr(vcpu, 7, 0x400);
9958         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
9959
9960         if (cpu_has_vmx_msr_bitmap())
9961                 vmx_set_msr_bitmap(vcpu);
9962
9963         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
9964                                 vmcs12->vm_exit_msr_load_count))
9965                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
9966 }
9967
9968 /*
9969  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
9970  * and modify vmcs12 to make it see what it would expect to see there if
9971  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
9972  */
9973 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
9974                               u32 exit_intr_info,
9975                               unsigned long exit_qualification)
9976 {
9977         struct vcpu_vmx *vmx = to_vmx(vcpu);
9978         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9979
9980         /* trying to cancel vmlaunch/vmresume is a bug */
9981         WARN_ON_ONCE(vmx->nested.nested_run_pending);
9982
9983         leave_guest_mode(vcpu);
9984         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
9985                        exit_qualification);
9986
9987         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
9988                                  vmcs12->vm_exit_msr_store_count))
9989                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
9990
9991         vmx_load_vmcs01(vcpu);
9992
9993         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
9994             && nested_exit_intr_ack_set(vcpu)) {
9995                 int irq = kvm_cpu_get_interrupt(vcpu);
9996                 WARN_ON(irq < 0);
9997                 vmcs12->vm_exit_intr_info = irq |
9998                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
9999         }
10000
10001         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10002                                        vmcs12->exit_qualification,
10003                                        vmcs12->idt_vectoring_info_field,
10004                                        vmcs12->vm_exit_intr_info,
10005                                        vmcs12->vm_exit_intr_error_code,
10006                                        KVM_ISA_VMX);
10007
10008         vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10009         vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10010         vmx_segment_cache_clear(vmx);
10011
10012         /* if no vmcs02 cache requested, remove the one we used */
10013         if (VMCS02_POOL_SIZE == 0)
10014                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10015
10016         load_vmcs12_host_state(vcpu, vmcs12);
10017
10018         /* Update TSC_OFFSET if TSC was changed while L2 ran */
10019         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10020
10021         /* This is needed for same reason as it was needed in prepare_vmcs02 */
10022         vmx->host_rsp = 0;
10023
10024         /* Unpin physical memory we referred to in vmcs02 */
10025         if (vmx->nested.apic_access_page) {
10026                 nested_release_page(vmx->nested.apic_access_page);
10027                 vmx->nested.apic_access_page = NULL;
10028         }
10029         if (vmx->nested.virtual_apic_page) {
10030                 nested_release_page(vmx->nested.virtual_apic_page);
10031                 vmx->nested.virtual_apic_page = NULL;
10032         }
10033         if (vmx->nested.pi_desc_page) {
10034                 kunmap(vmx->nested.pi_desc_page);
10035                 nested_release_page(vmx->nested.pi_desc_page);
10036                 vmx->nested.pi_desc_page = NULL;
10037                 vmx->nested.pi_desc = NULL;
10038         }
10039
10040         /*
10041          * We are now running in L2, mmu_notifier will force to reload the
10042          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10043          */
10044         kvm_vcpu_reload_apic_access_page(vcpu);
10045
10046         /*
10047          * Exiting from L2 to L1, we're now back to L1 which thinks it just
10048          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10049          * success or failure flag accordingly.
10050          */
10051         if (unlikely(vmx->fail)) {
10052                 vmx->fail = 0;
10053                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10054         } else
10055                 nested_vmx_succeed(vcpu);
10056         if (enable_shadow_vmcs)
10057                 vmx->nested.sync_shadow_vmcs = true;
10058
10059         /* in case we halted in L2 */
10060         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10061 }
10062
10063 /*
10064  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10065  */
10066 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10067 {
10068         if (is_guest_mode(vcpu))
10069                 nested_vmx_vmexit(vcpu, -1, 0, 0);
10070         free_nested(to_vmx(vcpu));
10071 }
10072
10073 /*
10074  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10075  * 23.7 "VM-entry failures during or after loading guest state" (this also
10076  * lists the acceptable exit-reason and exit-qualification parameters).
10077  * It should only be called before L2 actually succeeded to run, and when
10078  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10079  */
10080 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10081                         struct vmcs12 *vmcs12,
10082                         u32 reason, unsigned long qualification)
10083 {
10084         load_vmcs12_host_state(vcpu, vmcs12);
10085         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10086         vmcs12->exit_qualification = qualification;
10087         nested_vmx_succeed(vcpu);
10088         if (enable_shadow_vmcs)
10089                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10090 }
10091
10092 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10093                                struct x86_instruction_info *info,
10094                                enum x86_intercept_stage stage)
10095 {
10096         return X86EMUL_CONTINUE;
10097 }
10098
10099 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10100 {
10101         if (ple_gap)
10102                 shrink_ple_window(vcpu);
10103 }
10104
10105 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10106                                      struct kvm_memory_slot *slot)
10107 {
10108         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10109         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10110 }
10111
10112 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10113                                        struct kvm_memory_slot *slot)
10114 {
10115         kvm_mmu_slot_set_dirty(kvm, slot);
10116 }
10117
10118 static void vmx_flush_log_dirty(struct kvm *kvm)
10119 {
10120         kvm_flush_pml_buffers(kvm);
10121 }
10122
10123 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10124                                            struct kvm_memory_slot *memslot,
10125                                            gfn_t offset, unsigned long mask)
10126 {
10127         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10128 }
10129
10130 static struct kvm_x86_ops vmx_x86_ops = {
10131         .cpu_has_kvm_support = cpu_has_kvm_support,
10132         .disabled_by_bios = vmx_disabled_by_bios,
10133         .hardware_setup = hardware_setup,
10134         .hardware_unsetup = hardware_unsetup,
10135         .check_processor_compatibility = vmx_check_processor_compat,
10136         .hardware_enable = hardware_enable,
10137         .hardware_disable = hardware_disable,
10138         .cpu_has_accelerated_tpr = report_flexpriority,
10139
10140         .vcpu_create = vmx_create_vcpu,
10141         .vcpu_free = vmx_free_vcpu,
10142         .vcpu_reset = vmx_vcpu_reset,
10143
10144         .prepare_guest_switch = vmx_save_host_state,
10145         .vcpu_load = vmx_vcpu_load,
10146         .vcpu_put = vmx_vcpu_put,
10147
10148         .update_db_bp_intercept = update_exception_bitmap,
10149         .get_msr = vmx_get_msr,
10150         .set_msr = vmx_set_msr,
10151         .get_segment_base = vmx_get_segment_base,
10152         .get_segment = vmx_get_segment,
10153         .set_segment = vmx_set_segment,
10154         .get_cpl = vmx_get_cpl,
10155         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10156         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10157         .decache_cr3 = vmx_decache_cr3,
10158         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10159         .set_cr0 = vmx_set_cr0,
10160         .set_cr3 = vmx_set_cr3,
10161         .set_cr4 = vmx_set_cr4,
10162         .set_efer = vmx_set_efer,
10163         .get_idt = vmx_get_idt,
10164         .set_idt = vmx_set_idt,
10165         .get_gdt = vmx_get_gdt,
10166         .set_gdt = vmx_set_gdt,
10167         .get_dr6 = vmx_get_dr6,
10168         .set_dr6 = vmx_set_dr6,
10169         .set_dr7 = vmx_set_dr7,
10170         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10171         .cache_reg = vmx_cache_reg,
10172         .get_rflags = vmx_get_rflags,
10173         .set_rflags = vmx_set_rflags,
10174         .fpu_deactivate = vmx_fpu_deactivate,
10175
10176         .tlb_flush = vmx_flush_tlb,
10177
10178         .run = vmx_vcpu_run,
10179         .handle_exit = vmx_handle_exit,
10180         .skip_emulated_instruction = skip_emulated_instruction,
10181         .set_interrupt_shadow = vmx_set_interrupt_shadow,
10182         .get_interrupt_shadow = vmx_get_interrupt_shadow,
10183         .patch_hypercall = vmx_patch_hypercall,
10184         .set_irq = vmx_inject_irq,
10185         .set_nmi = vmx_inject_nmi,
10186         .queue_exception = vmx_queue_exception,
10187         .cancel_injection = vmx_cancel_injection,
10188         .interrupt_allowed = vmx_interrupt_allowed,
10189         .nmi_allowed = vmx_nmi_allowed,
10190         .get_nmi_mask = vmx_get_nmi_mask,
10191         .set_nmi_mask = vmx_set_nmi_mask,
10192         .enable_nmi_window = enable_nmi_window,
10193         .enable_irq_window = enable_irq_window,
10194         .update_cr8_intercept = update_cr8_intercept,
10195         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10196         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10197         .vm_has_apicv = vmx_vm_has_apicv,
10198         .load_eoi_exitmap = vmx_load_eoi_exitmap,
10199         .hwapic_irr_update = vmx_hwapic_irr_update,
10200         .hwapic_isr_update = vmx_hwapic_isr_update,
10201         .sync_pir_to_irr = vmx_sync_pir_to_irr,
10202         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10203
10204         .set_tss_addr = vmx_set_tss_addr,
10205         .get_tdp_level = get_ept_level,
10206         .get_mt_mask = vmx_get_mt_mask,
10207
10208         .get_exit_info = vmx_get_exit_info,
10209
10210         .get_lpage_level = vmx_get_lpage_level,
10211
10212         .cpuid_update = vmx_cpuid_update,
10213
10214         .rdtscp_supported = vmx_rdtscp_supported,
10215         .invpcid_supported = vmx_invpcid_supported,
10216
10217         .set_supported_cpuid = vmx_set_supported_cpuid,
10218
10219         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10220
10221         .set_tsc_khz = vmx_set_tsc_khz,
10222         .read_tsc_offset = vmx_read_tsc_offset,
10223         .write_tsc_offset = vmx_write_tsc_offset,
10224         .adjust_tsc_offset = vmx_adjust_tsc_offset,
10225         .compute_tsc_offset = vmx_compute_tsc_offset,
10226         .read_l1_tsc = vmx_read_l1_tsc,
10227
10228         .set_tdp_cr3 = vmx_set_cr3,
10229
10230         .check_intercept = vmx_check_intercept,
10231         .handle_external_intr = vmx_handle_external_intr,
10232         .mpx_supported = vmx_mpx_supported,
10233         .xsaves_supported = vmx_xsaves_supported,
10234
10235         .check_nested_events = vmx_check_nested_events,
10236
10237         .sched_in = vmx_sched_in,
10238
10239         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10240         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10241         .flush_log_dirty = vmx_flush_log_dirty,
10242         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10243 };
10244
10245 static int __init vmx_init(void)
10246 {
10247         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10248                      __alignof__(struct vcpu_vmx), THIS_MODULE);
10249         if (r)
10250                 return r;
10251
10252 #ifdef CONFIG_KEXEC
10253         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10254                            crash_vmclear_local_loaded_vmcss);
10255 #endif
10256
10257         return 0;
10258 }
10259
10260 static void __exit vmx_exit(void)
10261 {
10262 #ifdef CONFIG_KEXEC
10263         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10264         synchronize_rcu();
10265 #endif
10266
10267         kvm_exit();
10268 }
10269
10270 module_init(vmx_init)
10271 module_exit(vmx_exit)