Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/kernel.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/kvm_para.h>
37
38 #include <asm/virtext.h>
39 #include "trace.h"
40
41 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
45
46 static const struct x86_cpu_id svm_cpu_id[] = {
47         X86_FEATURE_MATCH(X86_FEATURE_SVM),
48         {}
49 };
50 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
51
52 #define IOPM_ALLOC_ORDER 2
53 #define MSRPM_ALLOC_ORDER 1
54
55 #define SEG_TYPE_LDT 2
56 #define SEG_TYPE_BUSY_TSS16 3
57
58 #define SVM_FEATURE_NPT            (1 <<  0)
59 #define SVM_FEATURE_LBRV           (1 <<  1)
60 #define SVM_FEATURE_SVML           (1 <<  2)
61 #define SVM_FEATURE_NRIP           (1 <<  3)
62 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
63 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
64 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
65 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
66 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
67
68 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
69 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
70 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN           0x0000000000000001ULL
76 #define TSC_RATIO_MAX           0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 static const u32 host_save_user_msrs[] = {
81 #ifdef CONFIG_X86_64
82         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
83         MSR_FS_BASE,
84 #endif
85         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
86 };
87
88 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
89
90 struct kvm_vcpu;
91
92 struct nested_state {
93         struct vmcb *hsave;
94         u64 hsave_msr;
95         u64 vm_cr_msr;
96         u64 vmcb;
97
98         /* These are the merged vectors */
99         u32 *msrpm;
100
101         /* gpa pointers to the real vectors */
102         u64 vmcb_msrpm;
103         u64 vmcb_iopm;
104
105         /* A VMEXIT is required but not yet emulated */
106         bool exit_required;
107
108         /* cache for intercepts of the guest */
109         u32 intercept_cr;
110         u32 intercept_dr;
111         u32 intercept_exceptions;
112         u64 intercept;
113
114         /* Nested Paging related state */
115         u64 nested_cr3;
116 };
117
118 #define MSRPM_OFFSETS   16
119 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
120
121 /*
122  * Set osvw_len to higher value when updated Revision Guides
123  * are published and we know what the new status bits are
124  */
125 static uint64_t osvw_len = 4, osvw_status;
126
127 struct vcpu_svm {
128         struct kvm_vcpu vcpu;
129         struct vmcb *vmcb;
130         unsigned long vmcb_pa;
131         struct svm_cpu_data *svm_data;
132         uint64_t asid_generation;
133         uint64_t sysenter_esp;
134         uint64_t sysenter_eip;
135
136         u64 next_rip;
137
138         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
139         struct {
140                 u16 fs;
141                 u16 gs;
142                 u16 ldt;
143                 u64 gs_base;
144         } host;
145
146         u32 *msrpm;
147
148         ulong nmi_iret_rip;
149
150         struct nested_state nested;
151
152         bool nmi_singlestep;
153
154         unsigned int3_injected;
155         unsigned long int3_rip;
156         u32 apf_reason;
157
158         u64  tsc_ratio;
159 };
160
161 static DEFINE_PER_CPU(u64, current_tsc_ratio);
162 #define TSC_RATIO_DEFAULT       0x0100000000ULL
163
164 #define MSR_INVALID                     0xffffffffU
165
166 static struct svm_direct_access_msrs {
167         u32 index;   /* Index of the MSR */
168         bool always; /* True if intercept is always on */
169 } direct_access_msrs[] = {
170         { .index = MSR_STAR,                            .always = true  },
171         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
172 #ifdef CONFIG_X86_64
173         { .index = MSR_GS_BASE,                         .always = true  },
174         { .index = MSR_FS_BASE,                         .always = true  },
175         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
176         { .index = MSR_LSTAR,                           .always = true  },
177         { .index = MSR_CSTAR,                           .always = true  },
178         { .index = MSR_SYSCALL_MASK,                    .always = true  },
179 #endif
180         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
181         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
182         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
183         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
184         { .index = MSR_INVALID,                         .always = false },
185 };
186
187 /* enable NPT for AMD64 and X86 with PAE */
188 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
189 static bool npt_enabled = true;
190 #else
191 static bool npt_enabled;
192 #endif
193
194 /* allow nested paging (virtualized MMU) for all guests */
195 static int npt = true;
196 module_param(npt, int, S_IRUGO);
197
198 /* allow nested virtualization in KVM/SVM */
199 static int nested = true;
200 module_param(nested, int, S_IRUGO);
201
202 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
203 static void svm_complete_interrupts(struct vcpu_svm *svm);
204
205 static int nested_svm_exit_handled(struct vcpu_svm *svm);
206 static int nested_svm_intercept(struct vcpu_svm *svm);
207 static int nested_svm_vmexit(struct vcpu_svm *svm);
208 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
209                                       bool has_error_code, u32 error_code);
210 static u64 __scale_tsc(u64 ratio, u64 tsc);
211
212 enum {
213         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
214                             pause filter count */
215         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
216         VMCB_ASID,       /* ASID */
217         VMCB_INTR,       /* int_ctl, int_vector */
218         VMCB_NPT,        /* npt_en, nCR3, gPAT */
219         VMCB_CR,         /* CR0, CR3, CR4, EFER */
220         VMCB_DR,         /* DR6, DR7 */
221         VMCB_DT,         /* GDT, IDT */
222         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
223         VMCB_CR2,        /* CR2 only */
224         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
225         VMCB_DIRTY_MAX,
226 };
227
228 /* TPR and CR2 are always written before VMRUN */
229 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
230
231 static inline void mark_all_dirty(struct vmcb *vmcb)
232 {
233         vmcb->control.clean = 0;
234 }
235
236 static inline void mark_all_clean(struct vmcb *vmcb)
237 {
238         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
239                                & ~VMCB_ALWAYS_DIRTY_MASK;
240 }
241
242 static inline void mark_dirty(struct vmcb *vmcb, int bit)
243 {
244         vmcb->control.clean &= ~(1 << bit);
245 }
246
247 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
248 {
249         return container_of(vcpu, struct vcpu_svm, vcpu);
250 }
251
252 static void recalc_intercepts(struct vcpu_svm *svm)
253 {
254         struct vmcb_control_area *c, *h;
255         struct nested_state *g;
256
257         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
258
259         if (!is_guest_mode(&svm->vcpu))
260                 return;
261
262         c = &svm->vmcb->control;
263         h = &svm->nested.hsave->control;
264         g = &svm->nested;
265
266         c->intercept_cr = h->intercept_cr | g->intercept_cr;
267         c->intercept_dr = h->intercept_dr | g->intercept_dr;
268         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
269         c->intercept = h->intercept | g->intercept;
270 }
271
272 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
273 {
274         if (is_guest_mode(&svm->vcpu))
275                 return svm->nested.hsave;
276         else
277                 return svm->vmcb;
278 }
279
280 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
281 {
282         struct vmcb *vmcb = get_host_vmcb(svm);
283
284         vmcb->control.intercept_cr |= (1U << bit);
285
286         recalc_intercepts(svm);
287 }
288
289 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
290 {
291         struct vmcb *vmcb = get_host_vmcb(svm);
292
293         vmcb->control.intercept_cr &= ~(1U << bit);
294
295         recalc_intercepts(svm);
296 }
297
298 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
299 {
300         struct vmcb *vmcb = get_host_vmcb(svm);
301
302         return vmcb->control.intercept_cr & (1U << bit);
303 }
304
305 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
306 {
307         struct vmcb *vmcb = get_host_vmcb(svm);
308
309         vmcb->control.intercept_dr |= (1U << bit);
310
311         recalc_intercepts(svm);
312 }
313
314 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
315 {
316         struct vmcb *vmcb = get_host_vmcb(svm);
317
318         vmcb->control.intercept_dr &= ~(1U << bit);
319
320         recalc_intercepts(svm);
321 }
322
323 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
324 {
325         struct vmcb *vmcb = get_host_vmcb(svm);
326
327         vmcb->control.intercept_exceptions |= (1U << bit);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_exceptions &= ~(1U << bit);
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept |= (1ULL << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept &= ~(1ULL << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void enable_gif(struct vcpu_svm *svm)
360 {
361         svm->vcpu.arch.hflags |= HF_GIF_MASK;
362 }
363
364 static inline void disable_gif(struct vcpu_svm *svm)
365 {
366         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
367 }
368
369 static inline bool gif_set(struct vcpu_svm *svm)
370 {
371         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
372 }
373
374 static unsigned long iopm_base;
375
376 struct kvm_ldttss_desc {
377         u16 limit0;
378         u16 base0;
379         unsigned base1:8, type:5, dpl:2, p:1;
380         unsigned limit1:4, zero0:3, g:1, base2:8;
381         u32 base3;
382         u32 zero1;
383 } __attribute__((packed));
384
385 struct svm_cpu_data {
386         int cpu;
387
388         u64 asid_generation;
389         u32 max_asid;
390         u32 next_asid;
391         struct kvm_ldttss_desc *tss_desc;
392
393         struct page *save_area;
394 };
395
396 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
397
398 struct svm_init_data {
399         int cpu;
400         int r;
401 };
402
403 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
404
405 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
406 #define MSRS_RANGE_SIZE 2048
407 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
408
409 static u32 svm_msrpm_offset(u32 msr)
410 {
411         u32 offset;
412         int i;
413
414         for (i = 0; i < NUM_MSR_MAPS; i++) {
415                 if (msr < msrpm_ranges[i] ||
416                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
417                         continue;
418
419                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
420                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
421
422                 /* Now we have the u8 offset - but need the u32 offset */
423                 return offset / 4;
424         }
425
426         /* MSR not in any range */
427         return MSR_INVALID;
428 }
429
430 #define MAX_INST_SIZE 15
431
432 static inline void clgi(void)
433 {
434         asm volatile (__ex(SVM_CLGI));
435 }
436
437 static inline void stgi(void)
438 {
439         asm volatile (__ex(SVM_STGI));
440 }
441
442 static inline void invlpga(unsigned long addr, u32 asid)
443 {
444         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
445 }
446
447 static int get_npt_level(void)
448 {
449 #ifdef CONFIG_X86_64
450         return PT64_ROOT_LEVEL;
451 #else
452         return PT32E_ROOT_LEVEL;
453 #endif
454 }
455
456 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
457 {
458         vcpu->arch.efer = efer;
459         if (!npt_enabled && !(efer & EFER_LMA))
460                 efer &= ~EFER_LME;
461
462         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
463         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
464 }
465
466 static int is_external_interrupt(u32 info)
467 {
468         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
469         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
470 }
471
472 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
473 {
474         struct vcpu_svm *svm = to_svm(vcpu);
475         u32 ret = 0;
476
477         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
478                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
479         return ret & mask;
480 }
481
482 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
483 {
484         struct vcpu_svm *svm = to_svm(vcpu);
485
486         if (mask == 0)
487                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
488         else
489                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
490
491 }
492
493 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
494 {
495         struct vcpu_svm *svm = to_svm(vcpu);
496
497         if (svm->vmcb->control.next_rip != 0)
498                 svm->next_rip = svm->vmcb->control.next_rip;
499
500         if (!svm->next_rip) {
501                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
502                                 EMULATE_DONE)
503                         printk(KERN_DEBUG "%s: NOP\n", __func__);
504                 return;
505         }
506         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
507                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
508                        __func__, kvm_rip_read(vcpu), svm->next_rip);
509
510         kvm_rip_write(vcpu, svm->next_rip);
511         svm_set_interrupt_shadow(vcpu, 0);
512 }
513
514 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
515                                 bool has_error_code, u32 error_code,
516                                 bool reinject)
517 {
518         struct vcpu_svm *svm = to_svm(vcpu);
519
520         /*
521          * If we are within a nested VM we'd better #VMEXIT and let the guest
522          * handle the exception
523          */
524         if (!reinject &&
525             nested_svm_check_exception(svm, nr, has_error_code, error_code))
526                 return;
527
528         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
529                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
530
531                 /*
532                  * For guest debugging where we have to reinject #BP if some
533                  * INT3 is guest-owned:
534                  * Emulate nRIP by moving RIP forward. Will fail if injection
535                  * raises a fault that is not intercepted. Still better than
536                  * failing in all cases.
537                  */
538                 skip_emulated_instruction(&svm->vcpu);
539                 rip = kvm_rip_read(&svm->vcpu);
540                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
541                 svm->int3_injected = rip - old_rip;
542         }
543
544         svm->vmcb->control.event_inj = nr
545                 | SVM_EVTINJ_VALID
546                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
547                 | SVM_EVTINJ_TYPE_EXEPT;
548         svm->vmcb->control.event_inj_err = error_code;
549 }
550
551 static void svm_init_erratum_383(void)
552 {
553         u32 low, high;
554         int err;
555         u64 val;
556
557         if (!cpu_has_amd_erratum(amd_erratum_383))
558                 return;
559
560         /* Use _safe variants to not break nested virtualization */
561         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
562         if (err)
563                 return;
564
565         val |= (1ULL << 47);
566
567         low  = lower_32_bits(val);
568         high = upper_32_bits(val);
569
570         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
571
572         erratum_383_found = true;
573 }
574
575 static void svm_init_osvw(struct kvm_vcpu *vcpu)
576 {
577         /*
578          * Guests should see errata 400 and 415 as fixed (assuming that
579          * HLT and IO instructions are intercepted).
580          */
581         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
582         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
583
584         /*
585          * By increasing VCPU's osvw.length to 3 we are telling the guest that
586          * all osvw.status bits inside that length, including bit 0 (which is
587          * reserved for erratum 298), are valid. However, if host processor's
588          * osvw_len is 0 then osvw_status[0] carries no information. We need to
589          * be conservative here and therefore we tell the guest that erratum 298
590          * is present (because we really don't know).
591          */
592         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
593                 vcpu->arch.osvw.status |= 1;
594 }
595
596 static int has_svm(void)
597 {
598         const char *msg;
599
600         if (!cpu_has_svm(&msg)) {
601                 printk(KERN_INFO "has_svm: %s\n", msg);
602                 return 0;
603         }
604
605         return 1;
606 }
607
608 static void svm_hardware_disable(void *garbage)
609 {
610         /* Make sure we clean up behind us */
611         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
612                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
613
614         cpu_svm_disable();
615
616         amd_pmu_disable_virt();
617 }
618
619 static int svm_hardware_enable(void *garbage)
620 {
621
622         struct svm_cpu_data *sd;
623         uint64_t efer;
624         struct desc_ptr gdt_descr;
625         struct desc_struct *gdt;
626         int me = raw_smp_processor_id();
627
628         rdmsrl(MSR_EFER, efer);
629         if (efer & EFER_SVME)
630                 return -EBUSY;
631
632         if (!has_svm()) {
633                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
634                        me);
635                 return -EINVAL;
636         }
637         sd = per_cpu(svm_data, me);
638
639         if (!sd) {
640                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
641                        me);
642                 return -EINVAL;
643         }
644
645         sd->asid_generation = 1;
646         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
647         sd->next_asid = sd->max_asid + 1;
648
649         native_store_gdt(&gdt_descr);
650         gdt = (struct desc_struct *)gdt_descr.address;
651         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
652
653         wrmsrl(MSR_EFER, efer | EFER_SVME);
654
655         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
656
657         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
658                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
659                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
660         }
661
662
663         /*
664          * Get OSVW bits.
665          *
666          * Note that it is possible to have a system with mixed processor
667          * revisions and therefore different OSVW bits. If bits are not the same
668          * on different processors then choose the worst case (i.e. if erratum
669          * is present on one processor and not on another then assume that the
670          * erratum is present everywhere).
671          */
672         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
673                 uint64_t len, status = 0;
674                 int err;
675
676                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
677                 if (!err)
678                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
679                                                       &err);
680
681                 if (err)
682                         osvw_status = osvw_len = 0;
683                 else {
684                         if (len < osvw_len)
685                                 osvw_len = len;
686                         osvw_status |= status;
687                         osvw_status &= (1ULL << osvw_len) - 1;
688                 }
689         } else
690                 osvw_status = osvw_len = 0;
691
692         svm_init_erratum_383();
693
694         amd_pmu_enable_virt();
695
696         return 0;
697 }
698
699 static void svm_cpu_uninit(int cpu)
700 {
701         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
702
703         if (!sd)
704                 return;
705
706         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
707         __free_page(sd->save_area);
708         kfree(sd);
709 }
710
711 static int svm_cpu_init(int cpu)
712 {
713         struct svm_cpu_data *sd;
714         int r;
715
716         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
717         if (!sd)
718                 return -ENOMEM;
719         sd->cpu = cpu;
720         sd->save_area = alloc_page(GFP_KERNEL);
721         r = -ENOMEM;
722         if (!sd->save_area)
723                 goto err_1;
724
725         per_cpu(svm_data, cpu) = sd;
726
727         return 0;
728
729 err_1:
730         kfree(sd);
731         return r;
732
733 }
734
735 static bool valid_msr_intercept(u32 index)
736 {
737         int i;
738
739         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
740                 if (direct_access_msrs[i].index == index)
741                         return true;
742
743         return false;
744 }
745
746 static void set_msr_interception(u32 *msrpm, unsigned msr,
747                                  int read, int write)
748 {
749         u8 bit_read, bit_write;
750         unsigned long tmp;
751         u32 offset;
752
753         /*
754          * If this warning triggers extend the direct_access_msrs list at the
755          * beginning of the file
756          */
757         WARN_ON(!valid_msr_intercept(msr));
758
759         offset    = svm_msrpm_offset(msr);
760         bit_read  = 2 * (msr & 0x0f);
761         bit_write = 2 * (msr & 0x0f) + 1;
762         tmp       = msrpm[offset];
763
764         BUG_ON(offset == MSR_INVALID);
765
766         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
767         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
768
769         msrpm[offset] = tmp;
770 }
771
772 static void svm_vcpu_init_msrpm(u32 *msrpm)
773 {
774         int i;
775
776         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
777
778         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
779                 if (!direct_access_msrs[i].always)
780                         continue;
781
782                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
783         }
784 }
785
786 static void add_msr_offset(u32 offset)
787 {
788         int i;
789
790         for (i = 0; i < MSRPM_OFFSETS; ++i) {
791
792                 /* Offset already in list? */
793                 if (msrpm_offsets[i] == offset)
794                         return;
795
796                 /* Slot used by another offset? */
797                 if (msrpm_offsets[i] != MSR_INVALID)
798                         continue;
799
800                 /* Add offset to list */
801                 msrpm_offsets[i] = offset;
802
803                 return;
804         }
805
806         /*
807          * If this BUG triggers the msrpm_offsets table has an overflow. Just
808          * increase MSRPM_OFFSETS in this case.
809          */
810         BUG();
811 }
812
813 static void init_msrpm_offsets(void)
814 {
815         int i;
816
817         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
818
819         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
820                 u32 offset;
821
822                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
823                 BUG_ON(offset == MSR_INVALID);
824
825                 add_msr_offset(offset);
826         }
827 }
828
829 static void svm_enable_lbrv(struct vcpu_svm *svm)
830 {
831         u32 *msrpm = svm->msrpm;
832
833         svm->vmcb->control.lbr_ctl = 1;
834         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
835         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
836         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
837         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
838 }
839
840 static void svm_disable_lbrv(struct vcpu_svm *svm)
841 {
842         u32 *msrpm = svm->msrpm;
843
844         svm->vmcb->control.lbr_ctl = 0;
845         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
846         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
847         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
848         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
849 }
850
851 static __init int svm_hardware_setup(void)
852 {
853         int cpu;
854         struct page *iopm_pages;
855         void *iopm_va;
856         int r;
857
858         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
859
860         if (!iopm_pages)
861                 return -ENOMEM;
862
863         iopm_va = page_address(iopm_pages);
864         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
865         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
866
867         init_msrpm_offsets();
868
869         if (boot_cpu_has(X86_FEATURE_NX))
870                 kvm_enable_efer_bits(EFER_NX);
871
872         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
873                 kvm_enable_efer_bits(EFER_FFXSR);
874
875         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
876                 u64 max;
877
878                 kvm_has_tsc_control = true;
879
880                 /*
881                  * Make sure the user can only configure tsc_khz values that
882                  * fit into a signed integer.
883                  * A min value is not calculated needed because it will always
884                  * be 1 on all machines and a value of 0 is used to disable
885                  * tsc-scaling for the vcpu.
886                  */
887                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
888
889                 kvm_max_guest_tsc_khz = max;
890         }
891
892         if (nested) {
893                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
894                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
895         }
896
897         for_each_possible_cpu(cpu) {
898                 r = svm_cpu_init(cpu);
899                 if (r)
900                         goto err;
901         }
902
903         if (!boot_cpu_has(X86_FEATURE_NPT))
904                 npt_enabled = false;
905
906         if (npt_enabled && !npt) {
907                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
908                 npt_enabled = false;
909         }
910
911         if (npt_enabled) {
912                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
913                 kvm_enable_tdp();
914         } else
915                 kvm_disable_tdp();
916
917         return 0;
918
919 err:
920         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
921         iopm_base = 0;
922         return r;
923 }
924
925 static __exit void svm_hardware_unsetup(void)
926 {
927         int cpu;
928
929         for_each_possible_cpu(cpu)
930                 svm_cpu_uninit(cpu);
931
932         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
933         iopm_base = 0;
934 }
935
936 static void init_seg(struct vmcb_seg *seg)
937 {
938         seg->selector = 0;
939         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
940                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
941         seg->limit = 0xffff;
942         seg->base = 0;
943 }
944
945 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
946 {
947         seg->selector = 0;
948         seg->attrib = SVM_SELECTOR_P_MASK | type;
949         seg->limit = 0xffff;
950         seg->base = 0;
951 }
952
953 static u64 __scale_tsc(u64 ratio, u64 tsc)
954 {
955         u64 mult, frac, _tsc;
956
957         mult  = ratio >> 32;
958         frac  = ratio & ((1ULL << 32) - 1);
959
960         _tsc  = tsc;
961         _tsc *= mult;
962         _tsc += (tsc >> 32) * frac;
963         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
964
965         return _tsc;
966 }
967
968 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
969 {
970         struct vcpu_svm *svm = to_svm(vcpu);
971         u64 _tsc = tsc;
972
973         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
974                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
975
976         return _tsc;
977 }
978
979 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
980 {
981         struct vcpu_svm *svm = to_svm(vcpu);
982         u64 ratio;
983         u64 khz;
984
985         /* Guest TSC same frequency as host TSC? */
986         if (!scale) {
987                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
988                 return;
989         }
990
991         /* TSC scaling supported? */
992         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
993                 if (user_tsc_khz > tsc_khz) {
994                         vcpu->arch.tsc_catchup = 1;
995                         vcpu->arch.tsc_always_catchup = 1;
996                 } else
997                         WARN(1, "user requested TSC rate below hardware speed\n");
998                 return;
999         }
1000
1001         khz = user_tsc_khz;
1002
1003         /* TSC scaling required  - calculate ratio */
1004         ratio = khz << 32;
1005         do_div(ratio, tsc_khz);
1006
1007         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1008                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1009                                 user_tsc_khz);
1010                 return;
1011         }
1012         svm->tsc_ratio             = ratio;
1013 }
1014
1015 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1016 {
1017         struct vcpu_svm *svm = to_svm(vcpu);
1018         u64 g_tsc_offset = 0;
1019
1020         if (is_guest_mode(vcpu)) {
1021                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1022                                svm->nested.hsave->control.tsc_offset;
1023                 svm->nested.hsave->control.tsc_offset = offset;
1024         }
1025
1026         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1027
1028         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1029 }
1030
1031 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1032 {
1033         struct vcpu_svm *svm = to_svm(vcpu);
1034
1035         WARN_ON(adjustment < 0);
1036         if (host)
1037                 adjustment = svm_scale_tsc(vcpu, adjustment);
1038
1039         svm->vmcb->control.tsc_offset += adjustment;
1040         if (is_guest_mode(vcpu))
1041                 svm->nested.hsave->control.tsc_offset += adjustment;
1042         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1043 }
1044
1045 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1046 {
1047         u64 tsc;
1048
1049         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1050
1051         return target_tsc - tsc;
1052 }
1053
1054 static void init_vmcb(struct vcpu_svm *svm)
1055 {
1056         struct vmcb_control_area *control = &svm->vmcb->control;
1057         struct vmcb_save_area *save = &svm->vmcb->save;
1058
1059         svm->vcpu.fpu_active = 1;
1060         svm->vcpu.arch.hflags = 0;
1061
1062         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1063         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1064         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1065         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1066         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1067         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1068         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1069
1070         set_dr_intercept(svm, INTERCEPT_DR0_READ);
1071         set_dr_intercept(svm, INTERCEPT_DR1_READ);
1072         set_dr_intercept(svm, INTERCEPT_DR2_READ);
1073         set_dr_intercept(svm, INTERCEPT_DR3_READ);
1074         set_dr_intercept(svm, INTERCEPT_DR4_READ);
1075         set_dr_intercept(svm, INTERCEPT_DR5_READ);
1076         set_dr_intercept(svm, INTERCEPT_DR6_READ);
1077         set_dr_intercept(svm, INTERCEPT_DR7_READ);
1078
1079         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1080         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1081         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1082         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1083         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1084         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1085         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1086         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1087
1088         set_exception_intercept(svm, PF_VECTOR);
1089         set_exception_intercept(svm, UD_VECTOR);
1090         set_exception_intercept(svm, MC_VECTOR);
1091
1092         set_intercept(svm, INTERCEPT_INTR);
1093         set_intercept(svm, INTERCEPT_NMI);
1094         set_intercept(svm, INTERCEPT_SMI);
1095         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1096         set_intercept(svm, INTERCEPT_RDPMC);
1097         set_intercept(svm, INTERCEPT_CPUID);
1098         set_intercept(svm, INTERCEPT_INVD);
1099         set_intercept(svm, INTERCEPT_HLT);
1100         set_intercept(svm, INTERCEPT_INVLPG);
1101         set_intercept(svm, INTERCEPT_INVLPGA);
1102         set_intercept(svm, INTERCEPT_IOIO_PROT);
1103         set_intercept(svm, INTERCEPT_MSR_PROT);
1104         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1105         set_intercept(svm, INTERCEPT_SHUTDOWN);
1106         set_intercept(svm, INTERCEPT_VMRUN);
1107         set_intercept(svm, INTERCEPT_VMMCALL);
1108         set_intercept(svm, INTERCEPT_VMLOAD);
1109         set_intercept(svm, INTERCEPT_VMSAVE);
1110         set_intercept(svm, INTERCEPT_STGI);
1111         set_intercept(svm, INTERCEPT_CLGI);
1112         set_intercept(svm, INTERCEPT_SKINIT);
1113         set_intercept(svm, INTERCEPT_WBINVD);
1114         set_intercept(svm, INTERCEPT_MONITOR);
1115         set_intercept(svm, INTERCEPT_MWAIT);
1116         set_intercept(svm, INTERCEPT_XSETBV);
1117
1118         control->iopm_base_pa = iopm_base;
1119         control->msrpm_base_pa = __pa(svm->msrpm);
1120         control->int_ctl = V_INTR_MASKING_MASK;
1121
1122         init_seg(&save->es);
1123         init_seg(&save->ss);
1124         init_seg(&save->ds);
1125         init_seg(&save->fs);
1126         init_seg(&save->gs);
1127
1128         save->cs.selector = 0xf000;
1129         /* Executable/Readable Code Segment */
1130         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1131                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1132         save->cs.limit = 0xffff;
1133         /*
1134          * cs.base should really be 0xffff0000, but vmx can't handle that, so
1135          * be consistent with it.
1136          *
1137          * Replace when we have real mode working for vmx.
1138          */
1139         save->cs.base = 0xf0000;
1140
1141         save->gdtr.limit = 0xffff;
1142         save->idtr.limit = 0xffff;
1143
1144         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1145         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1146
1147         svm_set_efer(&svm->vcpu, 0);
1148         save->dr6 = 0xffff0ff0;
1149         save->dr7 = 0x400;
1150         kvm_set_rflags(&svm->vcpu, 2);
1151         save->rip = 0x0000fff0;
1152         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1153
1154         /*
1155          * This is the guest-visible cr0 value.
1156          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1157          */
1158         svm->vcpu.arch.cr0 = 0;
1159         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1160
1161         save->cr4 = X86_CR4_PAE;
1162         /* rdx = ?? */
1163
1164         if (npt_enabled) {
1165                 /* Setup VMCB for Nested Paging */
1166                 control->nested_ctl = 1;
1167                 clr_intercept(svm, INTERCEPT_INVLPG);
1168                 clr_exception_intercept(svm, PF_VECTOR);
1169                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1170                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1171                 save->g_pat = 0x0007040600070406ULL;
1172                 save->cr3 = 0;
1173                 save->cr4 = 0;
1174         }
1175         svm->asid_generation = 0;
1176
1177         svm->nested.vmcb = 0;
1178         svm->vcpu.arch.hflags = 0;
1179
1180         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1181                 control->pause_filter_count = 3000;
1182                 set_intercept(svm, INTERCEPT_PAUSE);
1183         }
1184
1185         mark_all_dirty(svm->vmcb);
1186
1187         enable_gif(svm);
1188 }
1189
1190 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1191 {
1192         struct vcpu_svm *svm = to_svm(vcpu);
1193
1194         init_vmcb(svm);
1195
1196         if (!kvm_vcpu_is_bsp(vcpu)) {
1197                 kvm_rip_write(vcpu, 0);
1198                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1199                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1200         }
1201         vcpu->arch.regs_avail = ~0;
1202         vcpu->arch.regs_dirty = ~0;
1203
1204         return 0;
1205 }
1206
1207 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1208 {
1209         struct vcpu_svm *svm;
1210         struct page *page;
1211         struct page *msrpm_pages;
1212         struct page *hsave_page;
1213         struct page *nested_msrpm_pages;
1214         int err;
1215
1216         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1217         if (!svm) {
1218                 err = -ENOMEM;
1219                 goto out;
1220         }
1221
1222         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1223
1224         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1225         if (err)
1226                 goto free_svm;
1227
1228         err = -ENOMEM;
1229         page = alloc_page(GFP_KERNEL);
1230         if (!page)
1231                 goto uninit;
1232
1233         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1234         if (!msrpm_pages)
1235                 goto free_page1;
1236
1237         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1238         if (!nested_msrpm_pages)
1239                 goto free_page2;
1240
1241         hsave_page = alloc_page(GFP_KERNEL);
1242         if (!hsave_page)
1243                 goto free_page3;
1244
1245         svm->nested.hsave = page_address(hsave_page);
1246
1247         svm->msrpm = page_address(msrpm_pages);
1248         svm_vcpu_init_msrpm(svm->msrpm);
1249
1250         svm->nested.msrpm = page_address(nested_msrpm_pages);
1251         svm_vcpu_init_msrpm(svm->nested.msrpm);
1252
1253         svm->vmcb = page_address(page);
1254         clear_page(svm->vmcb);
1255         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1256         svm->asid_generation = 0;
1257         init_vmcb(svm);
1258         kvm_write_tsc(&svm->vcpu, 0);
1259
1260         err = fx_init(&svm->vcpu);
1261         if (err)
1262                 goto free_page4;
1263
1264         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1265         if (kvm_vcpu_is_bsp(&svm->vcpu))
1266                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1267
1268         svm_init_osvw(&svm->vcpu);
1269
1270         return &svm->vcpu;
1271
1272 free_page4:
1273         __free_page(hsave_page);
1274 free_page3:
1275         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1276 free_page2:
1277         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1278 free_page1:
1279         __free_page(page);
1280 uninit:
1281         kvm_vcpu_uninit(&svm->vcpu);
1282 free_svm:
1283         kmem_cache_free(kvm_vcpu_cache, svm);
1284 out:
1285         return ERR_PTR(err);
1286 }
1287
1288 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1289 {
1290         struct vcpu_svm *svm = to_svm(vcpu);
1291
1292         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1293         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1294         __free_page(virt_to_page(svm->nested.hsave));
1295         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1296         kvm_vcpu_uninit(vcpu);
1297         kmem_cache_free(kvm_vcpu_cache, svm);
1298 }
1299
1300 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1301 {
1302         struct vcpu_svm *svm = to_svm(vcpu);
1303         int i;
1304
1305         if (unlikely(cpu != vcpu->cpu)) {
1306                 svm->asid_generation = 0;
1307                 mark_all_dirty(svm->vmcb);
1308         }
1309
1310 #ifdef CONFIG_X86_64
1311         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1312 #endif
1313         savesegment(fs, svm->host.fs);
1314         savesegment(gs, svm->host.gs);
1315         svm->host.ldt = kvm_read_ldt();
1316
1317         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1318                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1319
1320         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1321             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1322                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1323                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1324         }
1325 }
1326
1327 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1328 {
1329         struct vcpu_svm *svm = to_svm(vcpu);
1330         int i;
1331
1332         ++vcpu->stat.host_state_reload;
1333         kvm_load_ldt(svm->host.ldt);
1334 #ifdef CONFIG_X86_64
1335         loadsegment(fs, svm->host.fs);
1336         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1337         load_gs_index(svm->host.gs);
1338 #else
1339 #ifdef CONFIG_X86_32_LAZY_GS
1340         loadsegment(gs, svm->host.gs);
1341 #endif
1342 #endif
1343         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1344                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1345 }
1346
1347 static void svm_update_cpl(struct kvm_vcpu *vcpu)
1348 {
1349         struct vcpu_svm *svm = to_svm(vcpu);
1350         int cpl;
1351
1352         if (!is_protmode(vcpu))
1353                 cpl = 0;
1354         else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1355                 cpl = 3;
1356         else
1357                 cpl = svm->vmcb->save.cs.selector & 0x3;
1358
1359         svm->vmcb->save.cpl = cpl;
1360 }
1361
1362 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1363 {
1364         return to_svm(vcpu)->vmcb->save.rflags;
1365 }
1366
1367 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1368 {
1369         unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1370
1371         to_svm(vcpu)->vmcb->save.rflags = rflags;
1372         if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1373                 svm_update_cpl(vcpu);
1374 }
1375
1376 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1377 {
1378         switch (reg) {
1379         case VCPU_EXREG_PDPTR:
1380                 BUG_ON(!npt_enabled);
1381                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1382                 break;
1383         default:
1384                 BUG();
1385         }
1386 }
1387
1388 static void svm_set_vintr(struct vcpu_svm *svm)
1389 {
1390         set_intercept(svm, INTERCEPT_VINTR);
1391 }
1392
1393 static void svm_clear_vintr(struct vcpu_svm *svm)
1394 {
1395         clr_intercept(svm, INTERCEPT_VINTR);
1396 }
1397
1398 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1399 {
1400         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1401
1402         switch (seg) {
1403         case VCPU_SREG_CS: return &save->cs;
1404         case VCPU_SREG_DS: return &save->ds;
1405         case VCPU_SREG_ES: return &save->es;
1406         case VCPU_SREG_FS: return &save->fs;
1407         case VCPU_SREG_GS: return &save->gs;
1408         case VCPU_SREG_SS: return &save->ss;
1409         case VCPU_SREG_TR: return &save->tr;
1410         case VCPU_SREG_LDTR: return &save->ldtr;
1411         }
1412         BUG();
1413         return NULL;
1414 }
1415
1416 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1417 {
1418         struct vmcb_seg *s = svm_seg(vcpu, seg);
1419
1420         return s->base;
1421 }
1422
1423 static void svm_get_segment(struct kvm_vcpu *vcpu,
1424                             struct kvm_segment *var, int seg)
1425 {
1426         struct vmcb_seg *s = svm_seg(vcpu, seg);
1427
1428         var->base = s->base;
1429         var->limit = s->limit;
1430         var->selector = s->selector;
1431         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1432         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1433         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1434         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1435         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1436         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1437         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1438         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1439
1440         /*
1441          * AMD's VMCB does not have an explicit unusable field, so emulate it
1442          * for cross vendor migration purposes by "not present"
1443          */
1444         var->unusable = !var->present || (var->type == 0);
1445
1446         switch (seg) {
1447         case VCPU_SREG_CS:
1448                 /*
1449                  * SVM always stores 0 for the 'G' bit in the CS selector in
1450                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1451                  * Intel's VMENTRY has a check on the 'G' bit.
1452                  */
1453                 var->g = s->limit > 0xfffff;
1454                 break;
1455         case VCPU_SREG_TR:
1456                 /*
1457                  * Work around a bug where the busy flag in the tr selector
1458                  * isn't exposed
1459                  */
1460                 var->type |= 0x2;
1461                 break;
1462         case VCPU_SREG_DS:
1463         case VCPU_SREG_ES:
1464         case VCPU_SREG_FS:
1465         case VCPU_SREG_GS:
1466                 /*
1467                  * The accessed bit must always be set in the segment
1468                  * descriptor cache, although it can be cleared in the
1469                  * descriptor, the cached bit always remains at 1. Since
1470                  * Intel has a check on this, set it here to support
1471                  * cross-vendor migration.
1472                  */
1473                 if (!var->unusable)
1474                         var->type |= 0x1;
1475                 break;
1476         case VCPU_SREG_SS:
1477                 /*
1478                  * On AMD CPUs sometimes the DB bit in the segment
1479                  * descriptor is left as 1, although the whole segment has
1480                  * been made unusable. Clear it here to pass an Intel VMX
1481                  * entry check when cross vendor migrating.
1482                  */
1483                 if (var->unusable)
1484                         var->db = 0;
1485                 break;
1486         }
1487 }
1488
1489 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1490 {
1491         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1492
1493         return save->cpl;
1494 }
1495
1496 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1497 {
1498         struct vcpu_svm *svm = to_svm(vcpu);
1499
1500         dt->size = svm->vmcb->save.idtr.limit;
1501         dt->address = svm->vmcb->save.idtr.base;
1502 }
1503
1504 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1505 {
1506         struct vcpu_svm *svm = to_svm(vcpu);
1507
1508         svm->vmcb->save.idtr.limit = dt->size;
1509         svm->vmcb->save.idtr.base = dt->address ;
1510         mark_dirty(svm->vmcb, VMCB_DT);
1511 }
1512
1513 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1514 {
1515         struct vcpu_svm *svm = to_svm(vcpu);
1516
1517         dt->size = svm->vmcb->save.gdtr.limit;
1518         dt->address = svm->vmcb->save.gdtr.base;
1519 }
1520
1521 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1522 {
1523         struct vcpu_svm *svm = to_svm(vcpu);
1524
1525         svm->vmcb->save.gdtr.limit = dt->size;
1526         svm->vmcb->save.gdtr.base = dt->address ;
1527         mark_dirty(svm->vmcb, VMCB_DT);
1528 }
1529
1530 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1531 {
1532 }
1533
1534 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1535 {
1536 }
1537
1538 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1539 {
1540 }
1541
1542 static void update_cr0_intercept(struct vcpu_svm *svm)
1543 {
1544         ulong gcr0 = svm->vcpu.arch.cr0;
1545         u64 *hcr0 = &svm->vmcb->save.cr0;
1546
1547         if (!svm->vcpu.fpu_active)
1548                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1549         else
1550                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1551                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1552
1553         mark_dirty(svm->vmcb, VMCB_CR);
1554
1555         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1556                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1557                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1558         } else {
1559                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1560                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1561         }
1562 }
1563
1564 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1565 {
1566         struct vcpu_svm *svm = to_svm(vcpu);
1567
1568 #ifdef CONFIG_X86_64
1569         if (vcpu->arch.efer & EFER_LME) {
1570                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1571                         vcpu->arch.efer |= EFER_LMA;
1572                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1573                 }
1574
1575                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1576                         vcpu->arch.efer &= ~EFER_LMA;
1577                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1578                 }
1579         }
1580 #endif
1581         vcpu->arch.cr0 = cr0;
1582
1583         if (!npt_enabled)
1584                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1585
1586         if (!vcpu->fpu_active)
1587                 cr0 |= X86_CR0_TS;
1588         /*
1589          * re-enable caching here because the QEMU bios
1590          * does not do it - this results in some delay at
1591          * reboot
1592          */
1593         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1594         svm->vmcb->save.cr0 = cr0;
1595         mark_dirty(svm->vmcb, VMCB_CR);
1596         update_cr0_intercept(svm);
1597 }
1598
1599 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1600 {
1601         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1602         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1603
1604         if (cr4 & X86_CR4_VMXE)
1605                 return 1;
1606
1607         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1608                 svm_flush_tlb(vcpu);
1609
1610         vcpu->arch.cr4 = cr4;
1611         if (!npt_enabled)
1612                 cr4 |= X86_CR4_PAE;
1613         cr4 |= host_cr4_mce;
1614         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1615         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1616         return 0;
1617 }
1618
1619 static void svm_set_segment(struct kvm_vcpu *vcpu,
1620                             struct kvm_segment *var, int seg)
1621 {
1622         struct vcpu_svm *svm = to_svm(vcpu);
1623         struct vmcb_seg *s = svm_seg(vcpu, seg);
1624
1625         s->base = var->base;
1626         s->limit = var->limit;
1627         s->selector = var->selector;
1628         if (var->unusable)
1629                 s->attrib = 0;
1630         else {
1631                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1632                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1633                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1634                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1635                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1636                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1637                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1638                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1639         }
1640         if (seg == VCPU_SREG_CS)
1641                 svm_update_cpl(vcpu);
1642
1643         mark_dirty(svm->vmcb, VMCB_SEG);
1644 }
1645
1646 static void update_db_intercept(struct kvm_vcpu *vcpu)
1647 {
1648         struct vcpu_svm *svm = to_svm(vcpu);
1649
1650         clr_exception_intercept(svm, DB_VECTOR);
1651         clr_exception_intercept(svm, BP_VECTOR);
1652
1653         if (svm->nmi_singlestep)
1654                 set_exception_intercept(svm, DB_VECTOR);
1655
1656         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1657                 if (vcpu->guest_debug &
1658                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1659                         set_exception_intercept(svm, DB_VECTOR);
1660                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1661                         set_exception_intercept(svm, BP_VECTOR);
1662         } else
1663                 vcpu->guest_debug = 0;
1664 }
1665
1666 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1667 {
1668         struct vcpu_svm *svm = to_svm(vcpu);
1669
1670         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1671                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1672         else
1673                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1674
1675         mark_dirty(svm->vmcb, VMCB_DR);
1676
1677         update_db_intercept(vcpu);
1678 }
1679
1680 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1681 {
1682         if (sd->next_asid > sd->max_asid) {
1683                 ++sd->asid_generation;
1684                 sd->next_asid = 1;
1685                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1686         }
1687
1688         svm->asid_generation = sd->asid_generation;
1689         svm->vmcb->control.asid = sd->next_asid++;
1690
1691         mark_dirty(svm->vmcb, VMCB_ASID);
1692 }
1693
1694 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1695 {
1696         struct vcpu_svm *svm = to_svm(vcpu);
1697
1698         svm->vmcb->save.dr7 = value;
1699         mark_dirty(svm->vmcb, VMCB_DR);
1700 }
1701
1702 static int pf_interception(struct vcpu_svm *svm)
1703 {
1704         u64 fault_address = svm->vmcb->control.exit_info_2;
1705         u32 error_code;
1706         int r = 1;
1707
1708         switch (svm->apf_reason) {
1709         default:
1710                 error_code = svm->vmcb->control.exit_info_1;
1711
1712                 trace_kvm_page_fault(fault_address, error_code);
1713                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1714                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1715                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1716                         svm->vmcb->control.insn_bytes,
1717                         svm->vmcb->control.insn_len);
1718                 break;
1719         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1720                 svm->apf_reason = 0;
1721                 local_irq_disable();
1722                 kvm_async_pf_task_wait(fault_address);
1723                 local_irq_enable();
1724                 break;
1725         case KVM_PV_REASON_PAGE_READY:
1726                 svm->apf_reason = 0;
1727                 local_irq_disable();
1728                 kvm_async_pf_task_wake(fault_address);
1729                 local_irq_enable();
1730                 break;
1731         }
1732         return r;
1733 }
1734
1735 static int db_interception(struct vcpu_svm *svm)
1736 {
1737         struct kvm_run *kvm_run = svm->vcpu.run;
1738
1739         if (!(svm->vcpu.guest_debug &
1740               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1741                 !svm->nmi_singlestep) {
1742                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1743                 return 1;
1744         }
1745
1746         if (svm->nmi_singlestep) {
1747                 svm->nmi_singlestep = false;
1748                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1749                         svm->vmcb->save.rflags &=
1750                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1751                 update_db_intercept(&svm->vcpu);
1752         }
1753
1754         if (svm->vcpu.guest_debug &
1755             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1756                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1757                 kvm_run->debug.arch.pc =
1758                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1759                 kvm_run->debug.arch.exception = DB_VECTOR;
1760                 return 0;
1761         }
1762
1763         return 1;
1764 }
1765
1766 static int bp_interception(struct vcpu_svm *svm)
1767 {
1768         struct kvm_run *kvm_run = svm->vcpu.run;
1769
1770         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1771         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1772         kvm_run->debug.arch.exception = BP_VECTOR;
1773         return 0;
1774 }
1775
1776 static int ud_interception(struct vcpu_svm *svm)
1777 {
1778         int er;
1779
1780         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1781         if (er != EMULATE_DONE)
1782                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1783         return 1;
1784 }
1785
1786 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1787 {
1788         struct vcpu_svm *svm = to_svm(vcpu);
1789
1790         clr_exception_intercept(svm, NM_VECTOR);
1791
1792         svm->vcpu.fpu_active = 1;
1793         update_cr0_intercept(svm);
1794 }
1795
1796 static int nm_interception(struct vcpu_svm *svm)
1797 {
1798         svm_fpu_activate(&svm->vcpu);
1799         return 1;
1800 }
1801
1802 static bool is_erratum_383(void)
1803 {
1804         int err, i;
1805         u64 value;
1806
1807         if (!erratum_383_found)
1808                 return false;
1809
1810         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1811         if (err)
1812                 return false;
1813
1814         /* Bit 62 may or may not be set for this mce */
1815         value &= ~(1ULL << 62);
1816
1817         if (value != 0xb600000000010015ULL)
1818                 return false;
1819
1820         /* Clear MCi_STATUS registers */
1821         for (i = 0; i < 6; ++i)
1822                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1823
1824         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1825         if (!err) {
1826                 u32 low, high;
1827
1828                 value &= ~(1ULL << 2);
1829                 low    = lower_32_bits(value);
1830                 high   = upper_32_bits(value);
1831
1832                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1833         }
1834
1835         /* Flush tlb to evict multi-match entries */
1836         __flush_tlb_all();
1837
1838         return true;
1839 }
1840
1841 static void svm_handle_mce(struct vcpu_svm *svm)
1842 {
1843         if (is_erratum_383()) {
1844                 /*
1845                  * Erratum 383 triggered. Guest state is corrupt so kill the
1846                  * guest.
1847                  */
1848                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1849
1850                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1851
1852                 return;
1853         }
1854
1855         /*
1856          * On an #MC intercept the MCE handler is not called automatically in
1857          * the host. So do it by hand here.
1858          */
1859         asm volatile (
1860                 "int $0x12\n");
1861         /* not sure if we ever come back to this point */
1862
1863         return;
1864 }
1865
1866 static int mc_interception(struct vcpu_svm *svm)
1867 {
1868         return 1;
1869 }
1870
1871 static int shutdown_interception(struct vcpu_svm *svm)
1872 {
1873         struct kvm_run *kvm_run = svm->vcpu.run;
1874
1875         /*
1876          * VMCB is undefined after a SHUTDOWN intercept
1877          * so reinitialize it.
1878          */
1879         clear_page(svm->vmcb);
1880         init_vmcb(svm);
1881
1882         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1883         return 0;
1884 }
1885
1886 static int io_interception(struct vcpu_svm *svm)
1887 {
1888         struct kvm_vcpu *vcpu = &svm->vcpu;
1889         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1890         int size, in, string;
1891         unsigned port;
1892
1893         ++svm->vcpu.stat.io_exits;
1894         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1895         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1896         if (string || in)
1897                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1898
1899         port = io_info >> 16;
1900         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1901         svm->next_rip = svm->vmcb->control.exit_info_2;
1902         skip_emulated_instruction(&svm->vcpu);
1903
1904         return kvm_fast_pio_out(vcpu, size, port);
1905 }
1906
1907 static int nmi_interception(struct vcpu_svm *svm)
1908 {
1909         return 1;
1910 }
1911
1912 static int intr_interception(struct vcpu_svm *svm)
1913 {
1914         ++svm->vcpu.stat.irq_exits;
1915         return 1;
1916 }
1917
1918 static int nop_on_interception(struct vcpu_svm *svm)
1919 {
1920         return 1;
1921 }
1922
1923 static int halt_interception(struct vcpu_svm *svm)
1924 {
1925         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1926         skip_emulated_instruction(&svm->vcpu);
1927         return kvm_emulate_halt(&svm->vcpu);
1928 }
1929
1930 static int vmmcall_interception(struct vcpu_svm *svm)
1931 {
1932         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1933         skip_emulated_instruction(&svm->vcpu);
1934         kvm_emulate_hypercall(&svm->vcpu);
1935         return 1;
1936 }
1937
1938 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1939 {
1940         struct vcpu_svm *svm = to_svm(vcpu);
1941
1942         return svm->nested.nested_cr3;
1943 }
1944
1945 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1946 {
1947         struct vcpu_svm *svm = to_svm(vcpu);
1948         u64 cr3 = svm->nested.nested_cr3;
1949         u64 pdpte;
1950         int ret;
1951
1952         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1953                                   offset_in_page(cr3) + index * 8, 8);
1954         if (ret)
1955                 return 0;
1956         return pdpte;
1957 }
1958
1959 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1960                                    unsigned long root)
1961 {
1962         struct vcpu_svm *svm = to_svm(vcpu);
1963
1964         svm->vmcb->control.nested_cr3 = root;
1965         mark_dirty(svm->vmcb, VMCB_NPT);
1966         svm_flush_tlb(vcpu);
1967 }
1968
1969 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1970                                        struct x86_exception *fault)
1971 {
1972         struct vcpu_svm *svm = to_svm(vcpu);
1973
1974         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1975         svm->vmcb->control.exit_code_hi = 0;
1976         svm->vmcb->control.exit_info_1 = fault->error_code;
1977         svm->vmcb->control.exit_info_2 = fault->address;
1978
1979         nested_svm_vmexit(svm);
1980 }
1981
1982 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1983 {
1984         int r;
1985
1986         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1987
1988         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1989         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1990         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1991         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1992         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1993         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1994
1995         return r;
1996 }
1997
1998 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1999 {
2000         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2001 }
2002
2003 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2004 {
2005         if (!(svm->vcpu.arch.efer & EFER_SVME)
2006             || !is_paging(&svm->vcpu)) {
2007                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2008                 return 1;
2009         }
2010
2011         if (svm->vmcb->save.cpl) {
2012                 kvm_inject_gp(&svm->vcpu, 0);
2013                 return 1;
2014         }
2015
2016        return 0;
2017 }
2018
2019 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2020                                       bool has_error_code, u32 error_code)
2021 {
2022         int vmexit;
2023
2024         if (!is_guest_mode(&svm->vcpu))
2025                 return 0;
2026
2027         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2028         svm->vmcb->control.exit_code_hi = 0;
2029         svm->vmcb->control.exit_info_1 = error_code;
2030         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2031
2032         vmexit = nested_svm_intercept(svm);
2033         if (vmexit == NESTED_EXIT_DONE)
2034                 svm->nested.exit_required = true;
2035
2036         return vmexit;
2037 }
2038
2039 /* This function returns true if it is save to enable the irq window */
2040 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2041 {
2042         if (!is_guest_mode(&svm->vcpu))
2043                 return true;
2044
2045         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2046                 return true;
2047
2048         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2049                 return false;
2050
2051         /*
2052          * if vmexit was already requested (by intercepted exception
2053          * for instance) do not overwrite it with "external interrupt"
2054          * vmexit.
2055          */
2056         if (svm->nested.exit_required)
2057                 return false;
2058
2059         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2060         svm->vmcb->control.exit_info_1 = 0;
2061         svm->vmcb->control.exit_info_2 = 0;
2062
2063         if (svm->nested.intercept & 1ULL) {
2064                 /*
2065                  * The #vmexit can't be emulated here directly because this
2066                  * code path runs with irqs and preemtion disabled. A
2067                  * #vmexit emulation might sleep. Only signal request for
2068                  * the #vmexit here.
2069                  */
2070                 svm->nested.exit_required = true;
2071                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2072                 return false;
2073         }
2074
2075         return true;
2076 }
2077
2078 /* This function returns true if it is save to enable the nmi window */
2079 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2080 {
2081         if (!is_guest_mode(&svm->vcpu))
2082                 return true;
2083
2084         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2085                 return true;
2086
2087         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2088         svm->nested.exit_required = true;
2089
2090         return false;
2091 }
2092
2093 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2094 {
2095         struct page *page;
2096
2097         might_sleep();
2098
2099         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2100         if (is_error_page(page))
2101                 goto error;
2102
2103         *_page = page;
2104
2105         return kmap(page);
2106
2107 error:
2108         kvm_release_page_clean(page);
2109         kvm_inject_gp(&svm->vcpu, 0);
2110
2111         return NULL;
2112 }
2113
2114 static void nested_svm_unmap(struct page *page)
2115 {
2116         kunmap(page);
2117         kvm_release_page_dirty(page);
2118 }
2119
2120 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2121 {
2122         unsigned port;
2123         u8 val, bit;
2124         u64 gpa;
2125
2126         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2127                 return NESTED_EXIT_HOST;
2128
2129         port = svm->vmcb->control.exit_info_1 >> 16;
2130         gpa  = svm->nested.vmcb_iopm + (port / 8);
2131         bit  = port % 8;
2132         val  = 0;
2133
2134         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2135                 val &= (1 << bit);
2136
2137         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2138 }
2139
2140 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2141 {
2142         u32 offset, msr, value;
2143         int write, mask;
2144
2145         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2146                 return NESTED_EXIT_HOST;
2147
2148         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2149         offset = svm_msrpm_offset(msr);
2150         write  = svm->vmcb->control.exit_info_1 & 1;
2151         mask   = 1 << ((2 * (msr & 0xf)) + write);
2152
2153         if (offset == MSR_INVALID)
2154                 return NESTED_EXIT_DONE;
2155
2156         /* Offset is in 32 bit units but need in 8 bit units */
2157         offset *= 4;
2158
2159         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2160                 return NESTED_EXIT_DONE;
2161
2162         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2163 }
2164
2165 static int nested_svm_exit_special(struct vcpu_svm *svm)
2166 {
2167         u32 exit_code = svm->vmcb->control.exit_code;
2168
2169         switch (exit_code) {
2170         case SVM_EXIT_INTR:
2171         case SVM_EXIT_NMI:
2172         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2173                 return NESTED_EXIT_HOST;
2174         case SVM_EXIT_NPF:
2175                 /* For now we are always handling NPFs when using them */
2176                 if (npt_enabled)
2177                         return NESTED_EXIT_HOST;
2178                 break;
2179         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2180                 /* When we're shadowing, trap PFs, but not async PF */
2181                 if (!npt_enabled && svm->apf_reason == 0)
2182                         return NESTED_EXIT_HOST;
2183                 break;
2184         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2185                 nm_interception(svm);
2186                 break;
2187         default:
2188                 break;
2189         }
2190
2191         return NESTED_EXIT_CONTINUE;
2192 }
2193
2194 /*
2195  * If this function returns true, this #vmexit was already handled
2196  */
2197 static int nested_svm_intercept(struct vcpu_svm *svm)
2198 {
2199         u32 exit_code = svm->vmcb->control.exit_code;
2200         int vmexit = NESTED_EXIT_HOST;
2201
2202         switch (exit_code) {
2203         case SVM_EXIT_MSR:
2204                 vmexit = nested_svm_exit_handled_msr(svm);
2205                 break;
2206         case SVM_EXIT_IOIO:
2207                 vmexit = nested_svm_intercept_ioio(svm);
2208                 break;
2209         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2210                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2211                 if (svm->nested.intercept_cr & bit)
2212                         vmexit = NESTED_EXIT_DONE;
2213                 break;
2214         }
2215         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2216                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2217                 if (svm->nested.intercept_dr & bit)
2218                         vmexit = NESTED_EXIT_DONE;
2219                 break;
2220         }
2221         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2222                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2223                 if (svm->nested.intercept_exceptions & excp_bits)
2224                         vmexit = NESTED_EXIT_DONE;
2225                 /* async page fault always cause vmexit */
2226                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2227                          svm->apf_reason != 0)
2228                         vmexit = NESTED_EXIT_DONE;
2229                 break;
2230         }
2231         case SVM_EXIT_ERR: {
2232                 vmexit = NESTED_EXIT_DONE;
2233                 break;
2234         }
2235         default: {
2236                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2237                 if (svm->nested.intercept & exit_bits)
2238                         vmexit = NESTED_EXIT_DONE;
2239         }
2240         }
2241
2242         return vmexit;
2243 }
2244
2245 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2246 {
2247         int vmexit;
2248
2249         vmexit = nested_svm_intercept(svm);
2250
2251         if (vmexit == NESTED_EXIT_DONE)
2252                 nested_svm_vmexit(svm);
2253
2254         return vmexit;
2255 }
2256
2257 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2258 {
2259         struct vmcb_control_area *dst  = &dst_vmcb->control;
2260         struct vmcb_control_area *from = &from_vmcb->control;
2261
2262         dst->intercept_cr         = from->intercept_cr;
2263         dst->intercept_dr         = from->intercept_dr;
2264         dst->intercept_exceptions = from->intercept_exceptions;
2265         dst->intercept            = from->intercept;
2266         dst->iopm_base_pa         = from->iopm_base_pa;
2267         dst->msrpm_base_pa        = from->msrpm_base_pa;
2268         dst->tsc_offset           = from->tsc_offset;
2269         dst->asid                 = from->asid;
2270         dst->tlb_ctl              = from->tlb_ctl;
2271         dst->int_ctl              = from->int_ctl;
2272         dst->int_vector           = from->int_vector;
2273         dst->int_state            = from->int_state;
2274         dst->exit_code            = from->exit_code;
2275         dst->exit_code_hi         = from->exit_code_hi;
2276         dst->exit_info_1          = from->exit_info_1;
2277         dst->exit_info_2          = from->exit_info_2;
2278         dst->exit_int_info        = from->exit_int_info;
2279         dst->exit_int_info_err    = from->exit_int_info_err;
2280         dst->nested_ctl           = from->nested_ctl;
2281         dst->event_inj            = from->event_inj;
2282         dst->event_inj_err        = from->event_inj_err;
2283         dst->nested_cr3           = from->nested_cr3;
2284         dst->lbr_ctl              = from->lbr_ctl;
2285 }
2286
2287 static int nested_svm_vmexit(struct vcpu_svm *svm)
2288 {
2289         struct vmcb *nested_vmcb;
2290         struct vmcb *hsave = svm->nested.hsave;
2291         struct vmcb *vmcb = svm->vmcb;
2292         struct page *page;
2293
2294         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2295                                        vmcb->control.exit_info_1,
2296                                        vmcb->control.exit_info_2,
2297                                        vmcb->control.exit_int_info,
2298                                        vmcb->control.exit_int_info_err,
2299                                        KVM_ISA_SVM);
2300
2301         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2302         if (!nested_vmcb)
2303                 return 1;
2304
2305         /* Exit Guest-Mode */
2306         leave_guest_mode(&svm->vcpu);
2307         svm->nested.vmcb = 0;
2308
2309         /* Give the current vmcb to the guest */
2310         disable_gif(svm);
2311
2312         nested_vmcb->save.es     = vmcb->save.es;
2313         nested_vmcb->save.cs     = vmcb->save.cs;
2314         nested_vmcb->save.ss     = vmcb->save.ss;
2315         nested_vmcb->save.ds     = vmcb->save.ds;
2316         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2317         nested_vmcb->save.idtr   = vmcb->save.idtr;
2318         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2319         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2320         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2321         nested_vmcb->save.cr2    = vmcb->save.cr2;
2322         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2323         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2324         nested_vmcb->save.rip    = vmcb->save.rip;
2325         nested_vmcb->save.rsp    = vmcb->save.rsp;
2326         nested_vmcb->save.rax    = vmcb->save.rax;
2327         nested_vmcb->save.dr7    = vmcb->save.dr7;
2328         nested_vmcb->save.dr6    = vmcb->save.dr6;
2329         nested_vmcb->save.cpl    = vmcb->save.cpl;
2330
2331         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2332         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2333         nested_vmcb->control.int_state         = vmcb->control.int_state;
2334         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2335         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2336         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2337         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2338         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2339         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2340         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2341
2342         /*
2343          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2344          * to make sure that we do not lose injected events. So check event_inj
2345          * here and copy it to exit_int_info if it is valid.
2346          * Exit_int_info and event_inj can't be both valid because the case
2347          * below only happens on a VMRUN instruction intercept which has
2348          * no valid exit_int_info set.
2349          */
2350         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2351                 struct vmcb_control_area *nc = &nested_vmcb->control;
2352
2353                 nc->exit_int_info     = vmcb->control.event_inj;
2354                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2355         }
2356
2357         nested_vmcb->control.tlb_ctl           = 0;
2358         nested_vmcb->control.event_inj         = 0;
2359         nested_vmcb->control.event_inj_err     = 0;
2360
2361         /* We always set V_INTR_MASKING and remember the old value in hflags */
2362         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2363                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2364
2365         /* Restore the original control entries */
2366         copy_vmcb_control_area(vmcb, hsave);
2367
2368         kvm_clear_exception_queue(&svm->vcpu);
2369         kvm_clear_interrupt_queue(&svm->vcpu);
2370
2371         svm->nested.nested_cr3 = 0;
2372
2373         /* Restore selected save entries */
2374         svm->vmcb->save.es = hsave->save.es;
2375         svm->vmcb->save.cs = hsave->save.cs;
2376         svm->vmcb->save.ss = hsave->save.ss;
2377         svm->vmcb->save.ds = hsave->save.ds;
2378         svm->vmcb->save.gdtr = hsave->save.gdtr;
2379         svm->vmcb->save.idtr = hsave->save.idtr;
2380         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2381         svm_set_efer(&svm->vcpu, hsave->save.efer);
2382         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2383         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2384         if (npt_enabled) {
2385                 svm->vmcb->save.cr3 = hsave->save.cr3;
2386                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2387         } else {
2388                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2389         }
2390         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2391         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2392         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2393         svm->vmcb->save.dr7 = 0;
2394         svm->vmcb->save.cpl = 0;
2395         svm->vmcb->control.exit_int_info = 0;
2396
2397         mark_all_dirty(svm->vmcb);
2398
2399         nested_svm_unmap(page);
2400
2401         nested_svm_uninit_mmu_context(&svm->vcpu);
2402         kvm_mmu_reset_context(&svm->vcpu);
2403         kvm_mmu_load(&svm->vcpu);
2404
2405         return 0;
2406 }
2407
2408 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2409 {
2410         /*
2411          * This function merges the msr permission bitmaps of kvm and the
2412          * nested vmcb. It is omptimized in that it only merges the parts where
2413          * the kvm msr permission bitmap may contain zero bits
2414          */
2415         int i;
2416
2417         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2418                 return true;
2419
2420         for (i = 0; i < MSRPM_OFFSETS; i++) {
2421                 u32 value, p;
2422                 u64 offset;
2423
2424                 if (msrpm_offsets[i] == 0xffffffff)
2425                         break;
2426
2427                 p      = msrpm_offsets[i];
2428                 offset = svm->nested.vmcb_msrpm + (p * 4);
2429
2430                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2431                         return false;
2432
2433                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2434         }
2435
2436         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2437
2438         return true;
2439 }
2440
2441 static bool nested_vmcb_checks(struct vmcb *vmcb)
2442 {
2443         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2444                 return false;
2445
2446         if (vmcb->control.asid == 0)
2447                 return false;
2448
2449         if (vmcb->control.nested_ctl && !npt_enabled)
2450                 return false;
2451
2452         return true;
2453 }
2454
2455 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2456 {
2457         struct vmcb *nested_vmcb;
2458         struct vmcb *hsave = svm->nested.hsave;
2459         struct vmcb *vmcb = svm->vmcb;
2460         struct page *page;
2461         u64 vmcb_gpa;
2462
2463         vmcb_gpa = svm->vmcb->save.rax;
2464
2465         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2466         if (!nested_vmcb)
2467                 return false;
2468
2469         if (!nested_vmcb_checks(nested_vmcb)) {
2470                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2471                 nested_vmcb->control.exit_code_hi = 0;
2472                 nested_vmcb->control.exit_info_1  = 0;
2473                 nested_vmcb->control.exit_info_2  = 0;
2474
2475                 nested_svm_unmap(page);
2476
2477                 return false;
2478         }
2479
2480         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2481                                nested_vmcb->save.rip,
2482                                nested_vmcb->control.int_ctl,
2483                                nested_vmcb->control.event_inj,
2484                                nested_vmcb->control.nested_ctl);
2485
2486         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2487                                     nested_vmcb->control.intercept_cr >> 16,
2488                                     nested_vmcb->control.intercept_exceptions,
2489                                     nested_vmcb->control.intercept);
2490
2491         /* Clear internal status */
2492         kvm_clear_exception_queue(&svm->vcpu);
2493         kvm_clear_interrupt_queue(&svm->vcpu);
2494
2495         /*
2496          * Save the old vmcb, so we don't need to pick what we save, but can
2497          * restore everything when a VMEXIT occurs
2498          */
2499         hsave->save.es     = vmcb->save.es;
2500         hsave->save.cs     = vmcb->save.cs;
2501         hsave->save.ss     = vmcb->save.ss;
2502         hsave->save.ds     = vmcb->save.ds;
2503         hsave->save.gdtr   = vmcb->save.gdtr;
2504         hsave->save.idtr   = vmcb->save.idtr;
2505         hsave->save.efer   = svm->vcpu.arch.efer;
2506         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2507         hsave->save.cr4    = svm->vcpu.arch.cr4;
2508         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2509         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2510         hsave->save.rsp    = vmcb->save.rsp;
2511         hsave->save.rax    = vmcb->save.rax;
2512         if (npt_enabled)
2513                 hsave->save.cr3    = vmcb->save.cr3;
2514         else
2515                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2516
2517         copy_vmcb_control_area(hsave, vmcb);
2518
2519         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2520                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2521         else
2522                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2523
2524         if (nested_vmcb->control.nested_ctl) {
2525                 kvm_mmu_unload(&svm->vcpu);
2526                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2527                 nested_svm_init_mmu_context(&svm->vcpu);
2528         }
2529
2530         /* Load the nested guest state */
2531         svm->vmcb->save.es = nested_vmcb->save.es;
2532         svm->vmcb->save.cs = nested_vmcb->save.cs;
2533         svm->vmcb->save.ss = nested_vmcb->save.ss;
2534         svm->vmcb->save.ds = nested_vmcb->save.ds;
2535         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2536         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2537         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2538         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2539         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2540         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2541         if (npt_enabled) {
2542                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2543                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2544         } else
2545                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2546
2547         /* Guest paging mode is active - reset mmu */
2548         kvm_mmu_reset_context(&svm->vcpu);
2549
2550         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2551         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2552         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2553         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2554
2555         /* In case we don't even reach vcpu_run, the fields are not updated */
2556         svm->vmcb->save.rax = nested_vmcb->save.rax;
2557         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2558         svm->vmcb->save.rip = nested_vmcb->save.rip;
2559         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2560         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2561         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2562
2563         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2564         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2565
2566         /* cache intercepts */
2567         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2568         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2569         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2570         svm->nested.intercept            = nested_vmcb->control.intercept;
2571
2572         svm_flush_tlb(&svm->vcpu);
2573         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2574         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2575                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2576         else
2577                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2578
2579         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2580                 /* We only want the cr8 intercept bits of the guest */
2581                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2582                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2583         }
2584
2585         /* We don't want to see VMMCALLs from a nested guest */
2586         clr_intercept(svm, INTERCEPT_VMMCALL);
2587
2588         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2589         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2590         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2591         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2592         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2593         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2594
2595         nested_svm_unmap(page);
2596
2597         /* Enter Guest-Mode */
2598         enter_guest_mode(&svm->vcpu);
2599
2600         /*
2601          * Merge guest and host intercepts - must be called  with vcpu in
2602          * guest-mode to take affect here
2603          */
2604         recalc_intercepts(svm);
2605
2606         svm->nested.vmcb = vmcb_gpa;
2607
2608         enable_gif(svm);
2609
2610         mark_all_dirty(svm->vmcb);
2611
2612         return true;
2613 }
2614
2615 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2616 {
2617         to_vmcb->save.fs = from_vmcb->save.fs;
2618         to_vmcb->save.gs = from_vmcb->save.gs;
2619         to_vmcb->save.tr = from_vmcb->save.tr;
2620         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2621         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2622         to_vmcb->save.star = from_vmcb->save.star;
2623         to_vmcb->save.lstar = from_vmcb->save.lstar;
2624         to_vmcb->save.cstar = from_vmcb->save.cstar;
2625         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2626         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2627         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2628         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2629 }
2630
2631 static int vmload_interception(struct vcpu_svm *svm)
2632 {
2633         struct vmcb *nested_vmcb;
2634         struct page *page;
2635
2636         if (nested_svm_check_permissions(svm))
2637                 return 1;
2638
2639         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2640         if (!nested_vmcb)
2641                 return 1;
2642
2643         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2644         skip_emulated_instruction(&svm->vcpu);
2645
2646         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2647         nested_svm_unmap(page);
2648
2649         return 1;
2650 }
2651
2652 static int vmsave_interception(struct vcpu_svm *svm)
2653 {
2654         struct vmcb *nested_vmcb;
2655         struct page *page;
2656
2657         if (nested_svm_check_permissions(svm))
2658                 return 1;
2659
2660         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2661         if (!nested_vmcb)
2662                 return 1;
2663
2664         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2665         skip_emulated_instruction(&svm->vcpu);
2666
2667         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2668         nested_svm_unmap(page);
2669
2670         return 1;
2671 }
2672
2673 static int vmrun_interception(struct vcpu_svm *svm)
2674 {
2675         if (nested_svm_check_permissions(svm))
2676                 return 1;
2677
2678         /* Save rip after vmrun instruction */
2679         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2680
2681         if (!nested_svm_vmrun(svm))
2682                 return 1;
2683
2684         if (!nested_svm_vmrun_msrpm(svm))
2685                 goto failed;
2686
2687         return 1;
2688
2689 failed:
2690
2691         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2692         svm->vmcb->control.exit_code_hi = 0;
2693         svm->vmcb->control.exit_info_1  = 0;
2694         svm->vmcb->control.exit_info_2  = 0;
2695
2696         nested_svm_vmexit(svm);
2697
2698         return 1;
2699 }
2700
2701 static int stgi_interception(struct vcpu_svm *svm)
2702 {
2703         if (nested_svm_check_permissions(svm))
2704                 return 1;
2705
2706         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2707         skip_emulated_instruction(&svm->vcpu);
2708         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2709
2710         enable_gif(svm);
2711
2712         return 1;
2713 }
2714
2715 static int clgi_interception(struct vcpu_svm *svm)
2716 {
2717         if (nested_svm_check_permissions(svm))
2718                 return 1;
2719
2720         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2721         skip_emulated_instruction(&svm->vcpu);
2722
2723         disable_gif(svm);
2724
2725         /* After a CLGI no interrupts should come */
2726         svm_clear_vintr(svm);
2727         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2728
2729         mark_dirty(svm->vmcb, VMCB_INTR);
2730
2731         return 1;
2732 }
2733
2734 static int invlpga_interception(struct vcpu_svm *svm)
2735 {
2736         struct kvm_vcpu *vcpu = &svm->vcpu;
2737
2738         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2739                           vcpu->arch.regs[VCPU_REGS_RAX]);
2740
2741         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2742         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2743
2744         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2745         skip_emulated_instruction(&svm->vcpu);
2746         return 1;
2747 }
2748
2749 static int skinit_interception(struct vcpu_svm *svm)
2750 {
2751         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2752
2753         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2754         return 1;
2755 }
2756
2757 static int xsetbv_interception(struct vcpu_svm *svm)
2758 {
2759         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2760         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2761
2762         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2763                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2764                 skip_emulated_instruction(&svm->vcpu);
2765         }
2766
2767         return 1;
2768 }
2769
2770 static int invalid_op_interception(struct vcpu_svm *svm)
2771 {
2772         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2773         return 1;
2774 }
2775
2776 static int task_switch_interception(struct vcpu_svm *svm)
2777 {
2778         u16 tss_selector;
2779         int reason;
2780         int int_type = svm->vmcb->control.exit_int_info &
2781                 SVM_EXITINTINFO_TYPE_MASK;
2782         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2783         uint32_t type =
2784                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2785         uint32_t idt_v =
2786                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2787         bool has_error_code = false;
2788         u32 error_code = 0;
2789
2790         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2791
2792         if (svm->vmcb->control.exit_info_2 &
2793             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2794                 reason = TASK_SWITCH_IRET;
2795         else if (svm->vmcb->control.exit_info_2 &
2796                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2797                 reason = TASK_SWITCH_JMP;
2798         else if (idt_v)
2799                 reason = TASK_SWITCH_GATE;
2800         else
2801                 reason = TASK_SWITCH_CALL;
2802
2803         if (reason == TASK_SWITCH_GATE) {
2804                 switch (type) {
2805                 case SVM_EXITINTINFO_TYPE_NMI:
2806                         svm->vcpu.arch.nmi_injected = false;
2807                         break;
2808                 case SVM_EXITINTINFO_TYPE_EXEPT:
2809                         if (svm->vmcb->control.exit_info_2 &
2810                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2811                                 has_error_code = true;
2812                                 error_code =
2813                                         (u32)svm->vmcb->control.exit_info_2;
2814                         }
2815                         kvm_clear_exception_queue(&svm->vcpu);
2816                         break;
2817                 case SVM_EXITINTINFO_TYPE_INTR:
2818                         kvm_clear_interrupt_queue(&svm->vcpu);
2819                         break;
2820                 default:
2821                         break;
2822                 }
2823         }
2824
2825         if (reason != TASK_SWITCH_GATE ||
2826             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2827             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2828              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2829                 skip_emulated_instruction(&svm->vcpu);
2830
2831         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2832                 int_vec = -1;
2833
2834         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2835                                 has_error_code, error_code) == EMULATE_FAIL) {
2836                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2837                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2838                 svm->vcpu.run->internal.ndata = 0;
2839                 return 0;
2840         }
2841         return 1;
2842 }
2843
2844 static int cpuid_interception(struct vcpu_svm *svm)
2845 {
2846         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2847         kvm_emulate_cpuid(&svm->vcpu);
2848         return 1;
2849 }
2850
2851 static int iret_interception(struct vcpu_svm *svm)
2852 {
2853         ++svm->vcpu.stat.nmi_window_exits;
2854         clr_intercept(svm, INTERCEPT_IRET);
2855         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2856         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2857         return 1;
2858 }
2859
2860 static int invlpg_interception(struct vcpu_svm *svm)
2861 {
2862         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2864
2865         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2866         skip_emulated_instruction(&svm->vcpu);
2867         return 1;
2868 }
2869
2870 static int emulate_on_interception(struct vcpu_svm *svm)
2871 {
2872         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2873 }
2874
2875 static int rdpmc_interception(struct vcpu_svm *svm)
2876 {
2877         int err;
2878
2879         if (!static_cpu_has(X86_FEATURE_NRIPS))
2880                 return emulate_on_interception(svm);
2881
2882         err = kvm_rdpmc(&svm->vcpu);
2883         kvm_complete_insn_gp(&svm->vcpu, err);
2884
2885         return 1;
2886 }
2887
2888 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2889 {
2890         unsigned long cr0 = svm->vcpu.arch.cr0;
2891         bool ret = false;
2892         u64 intercept;
2893
2894         intercept = svm->nested.intercept;
2895
2896         if (!is_guest_mode(&svm->vcpu) ||
2897             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2898                 return false;
2899
2900         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2901         val &= ~SVM_CR0_SELECTIVE_MASK;
2902
2903         if (cr0 ^ val) {
2904                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2905                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2906         }
2907
2908         return ret;
2909 }
2910
2911 #define CR_VALID (1ULL << 63)
2912
2913 static int cr_interception(struct vcpu_svm *svm)
2914 {
2915         int reg, cr;
2916         unsigned long val;
2917         int err;
2918
2919         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2920                 return emulate_on_interception(svm);
2921
2922         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2923                 return emulate_on_interception(svm);
2924
2925         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2926         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2927
2928         err = 0;
2929         if (cr >= 16) { /* mov to cr */
2930                 cr -= 16;
2931                 val = kvm_register_read(&svm->vcpu, reg);
2932                 switch (cr) {
2933                 case 0:
2934                         if (!check_selective_cr0_intercepted(svm, val))
2935                                 err = kvm_set_cr0(&svm->vcpu, val);
2936                         else
2937                                 return 1;
2938
2939                         break;
2940                 case 3:
2941                         err = kvm_set_cr3(&svm->vcpu, val);
2942                         break;
2943                 case 4:
2944                         err = kvm_set_cr4(&svm->vcpu, val);
2945                         break;
2946                 case 8:
2947                         err = kvm_set_cr8(&svm->vcpu, val);
2948                         break;
2949                 default:
2950                         WARN(1, "unhandled write to CR%d", cr);
2951                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2952                         return 1;
2953                 }
2954         } else { /* mov from cr */
2955                 switch (cr) {
2956                 case 0:
2957                         val = kvm_read_cr0(&svm->vcpu);
2958                         break;
2959                 case 2:
2960                         val = svm->vcpu.arch.cr2;
2961                         break;
2962                 case 3:
2963                         val = kvm_read_cr3(&svm->vcpu);
2964                         break;
2965                 case 4:
2966                         val = kvm_read_cr4(&svm->vcpu);
2967                         break;
2968                 case 8:
2969                         val = kvm_get_cr8(&svm->vcpu);
2970                         break;
2971                 default:
2972                         WARN(1, "unhandled read from CR%d", cr);
2973                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2974                         return 1;
2975                 }
2976                 kvm_register_write(&svm->vcpu, reg, val);
2977         }
2978         kvm_complete_insn_gp(&svm->vcpu, err);
2979
2980         return 1;
2981 }
2982
2983 static int dr_interception(struct vcpu_svm *svm)
2984 {
2985         int reg, dr;
2986         unsigned long val;
2987         int err;
2988
2989         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2990                 return emulate_on_interception(svm);
2991
2992         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2993         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2994
2995         if (dr >= 16) { /* mov to DRn */
2996                 val = kvm_register_read(&svm->vcpu, reg);
2997                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2998         } else {
2999                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3000                 if (!err)
3001                         kvm_register_write(&svm->vcpu, reg, val);
3002         }
3003
3004         skip_emulated_instruction(&svm->vcpu);
3005
3006         return 1;
3007 }
3008
3009 static int cr8_write_interception(struct vcpu_svm *svm)
3010 {
3011         struct kvm_run *kvm_run = svm->vcpu.run;
3012         int r;
3013
3014         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3015         /* instruction emulation calls kvm_set_cr8() */
3016         r = cr_interception(svm);
3017         if (irqchip_in_kernel(svm->vcpu.kvm)) {
3018                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3019                 return r;
3020         }
3021         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3022                 return r;
3023         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3024         return 0;
3025 }
3026
3027 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu)
3028 {
3029         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3030         return vmcb->control.tsc_offset +
3031                 svm_scale_tsc(vcpu, native_read_tsc());
3032 }
3033
3034 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3035 {
3036         struct vcpu_svm *svm = to_svm(vcpu);
3037
3038         switch (ecx) {
3039         case MSR_IA32_TSC: {
3040                 *data = svm->vmcb->control.tsc_offset +
3041                         svm_scale_tsc(vcpu, native_read_tsc());
3042
3043                 break;
3044         }
3045         case MSR_STAR:
3046                 *data = svm->vmcb->save.star;
3047                 break;
3048 #ifdef CONFIG_X86_64
3049         case MSR_LSTAR:
3050                 *data = svm->vmcb->save.lstar;
3051                 break;
3052         case MSR_CSTAR:
3053                 *data = svm->vmcb->save.cstar;
3054                 break;
3055         case MSR_KERNEL_GS_BASE:
3056                 *data = svm->vmcb->save.kernel_gs_base;
3057                 break;
3058         case MSR_SYSCALL_MASK:
3059                 *data = svm->vmcb->save.sfmask;
3060                 break;
3061 #endif
3062         case MSR_IA32_SYSENTER_CS:
3063                 *data = svm->vmcb->save.sysenter_cs;
3064                 break;
3065         case MSR_IA32_SYSENTER_EIP:
3066                 *data = svm->sysenter_eip;
3067                 break;
3068         case MSR_IA32_SYSENTER_ESP:
3069                 *data = svm->sysenter_esp;
3070                 break;
3071         /*
3072          * Nobody will change the following 5 values in the VMCB so we can
3073          * safely return them on rdmsr. They will always be 0 until LBRV is
3074          * implemented.
3075          */
3076         case MSR_IA32_DEBUGCTLMSR:
3077                 *data = svm->vmcb->save.dbgctl;
3078                 break;
3079         case MSR_IA32_LASTBRANCHFROMIP:
3080                 *data = svm->vmcb->save.br_from;
3081                 break;
3082         case MSR_IA32_LASTBRANCHTOIP:
3083                 *data = svm->vmcb->save.br_to;
3084                 break;
3085         case MSR_IA32_LASTINTFROMIP:
3086                 *data = svm->vmcb->save.last_excp_from;
3087                 break;
3088         case MSR_IA32_LASTINTTOIP:
3089                 *data = svm->vmcb->save.last_excp_to;
3090                 break;
3091         case MSR_VM_HSAVE_PA:
3092                 *data = svm->nested.hsave_msr;
3093                 break;
3094         case MSR_VM_CR:
3095                 *data = svm->nested.vm_cr_msr;
3096                 break;
3097         case MSR_IA32_UCODE_REV:
3098                 *data = 0x01000065;
3099                 break;
3100         default:
3101                 return kvm_get_msr_common(vcpu, ecx, data);
3102         }
3103         return 0;
3104 }
3105
3106 static int rdmsr_interception(struct vcpu_svm *svm)
3107 {
3108         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3109         u64 data;
3110
3111         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3112                 trace_kvm_msr_read_ex(ecx);
3113                 kvm_inject_gp(&svm->vcpu, 0);
3114         } else {
3115                 trace_kvm_msr_read(ecx, data);
3116
3117                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3118                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3119                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3120                 skip_emulated_instruction(&svm->vcpu);
3121         }
3122         return 1;
3123 }
3124
3125 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3126 {
3127         struct vcpu_svm *svm = to_svm(vcpu);
3128         int svm_dis, chg_mask;
3129
3130         if (data & ~SVM_VM_CR_VALID_MASK)
3131                 return 1;
3132
3133         chg_mask = SVM_VM_CR_VALID_MASK;
3134
3135         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3136                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3137
3138         svm->nested.vm_cr_msr &= ~chg_mask;
3139         svm->nested.vm_cr_msr |= (data & chg_mask);
3140
3141         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3142
3143         /* check for svm_disable while efer.svme is set */
3144         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3145                 return 1;
3146
3147         return 0;
3148 }
3149
3150 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
3151 {
3152         struct vcpu_svm *svm = to_svm(vcpu);
3153
3154         switch (ecx) {
3155         case MSR_IA32_TSC:
3156                 kvm_write_tsc(vcpu, data);
3157                 break;
3158         case MSR_STAR:
3159                 svm->vmcb->save.star = data;
3160                 break;
3161 #ifdef CONFIG_X86_64
3162         case MSR_LSTAR:
3163                 svm->vmcb->save.lstar = data;
3164                 break;
3165         case MSR_CSTAR:
3166                 svm->vmcb->save.cstar = data;
3167                 break;
3168         case MSR_KERNEL_GS_BASE:
3169                 svm->vmcb->save.kernel_gs_base = data;
3170                 break;
3171         case MSR_SYSCALL_MASK:
3172                 svm->vmcb->save.sfmask = data;
3173                 break;
3174 #endif
3175         case MSR_IA32_SYSENTER_CS:
3176                 svm->vmcb->save.sysenter_cs = data;
3177                 break;
3178         case MSR_IA32_SYSENTER_EIP:
3179                 svm->sysenter_eip = data;
3180                 svm->vmcb->save.sysenter_eip = data;
3181                 break;
3182         case MSR_IA32_SYSENTER_ESP:
3183                 svm->sysenter_esp = data;
3184                 svm->vmcb->save.sysenter_esp = data;
3185                 break;
3186         case MSR_IA32_DEBUGCTLMSR:
3187                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3188                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3189                                         __func__, data);
3190                         break;
3191                 }
3192                 if (data & DEBUGCTL_RESERVED_BITS)
3193                         return 1;
3194
3195                 svm->vmcb->save.dbgctl = data;
3196                 mark_dirty(svm->vmcb, VMCB_LBR);
3197                 if (data & (1ULL<<0))
3198                         svm_enable_lbrv(svm);
3199                 else
3200                         svm_disable_lbrv(svm);
3201                 break;
3202         case MSR_VM_HSAVE_PA:
3203                 svm->nested.hsave_msr = data;
3204                 break;
3205         case MSR_VM_CR:
3206                 return svm_set_vm_cr(vcpu, data);
3207         case MSR_VM_IGNNE:
3208                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3209                 break;
3210         default:
3211                 return kvm_set_msr_common(vcpu, ecx, data);
3212         }
3213         return 0;
3214 }
3215
3216 static int wrmsr_interception(struct vcpu_svm *svm)
3217 {
3218         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3219         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3220                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3221
3222
3223         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3224         if (svm_set_msr(&svm->vcpu, ecx, data)) {
3225                 trace_kvm_msr_write_ex(ecx, data);
3226                 kvm_inject_gp(&svm->vcpu, 0);
3227         } else {
3228                 trace_kvm_msr_write(ecx, data);
3229                 skip_emulated_instruction(&svm->vcpu);
3230         }
3231         return 1;
3232 }
3233
3234 static int msr_interception(struct vcpu_svm *svm)
3235 {
3236         if (svm->vmcb->control.exit_info_1)
3237                 return wrmsr_interception(svm);
3238         else
3239                 return rdmsr_interception(svm);
3240 }
3241
3242 static int interrupt_window_interception(struct vcpu_svm *svm)
3243 {
3244         struct kvm_run *kvm_run = svm->vcpu.run;
3245
3246         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3247         svm_clear_vintr(svm);
3248         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3249         mark_dirty(svm->vmcb, VMCB_INTR);
3250         ++svm->vcpu.stat.irq_window_exits;
3251         /*
3252          * If the user space waits to inject interrupts, exit as soon as
3253          * possible
3254          */
3255         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3256             kvm_run->request_interrupt_window &&
3257             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3258                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3259                 return 0;
3260         }
3261
3262         return 1;
3263 }
3264
3265 static int pause_interception(struct vcpu_svm *svm)
3266 {
3267         kvm_vcpu_on_spin(&(svm->vcpu));
3268         return 1;
3269 }
3270
3271 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
3272         [SVM_EXIT_READ_CR0]                     = cr_interception,
3273         [SVM_EXIT_READ_CR3]                     = cr_interception,
3274         [SVM_EXIT_READ_CR4]                     = cr_interception,
3275         [SVM_EXIT_READ_CR8]                     = cr_interception,
3276         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3277         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3278         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3279         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3280         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3281         [SVM_EXIT_READ_DR0]                     = dr_interception,
3282         [SVM_EXIT_READ_DR1]                     = dr_interception,
3283         [SVM_EXIT_READ_DR2]                     = dr_interception,
3284         [SVM_EXIT_READ_DR3]                     = dr_interception,
3285         [SVM_EXIT_READ_DR4]                     = dr_interception,
3286         [SVM_EXIT_READ_DR5]                     = dr_interception,
3287         [SVM_EXIT_READ_DR6]                     = dr_interception,
3288         [SVM_EXIT_READ_DR7]                     = dr_interception,
3289         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3290         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3291         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3292         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3293         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3294         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3295         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3296         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3297         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3298         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3299         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3300         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3301         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3302         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3303         [SVM_EXIT_INTR]                         = intr_interception,
3304         [SVM_EXIT_NMI]                          = nmi_interception,
3305         [SVM_EXIT_SMI]                          = nop_on_interception,
3306         [SVM_EXIT_INIT]                         = nop_on_interception,
3307         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3308         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3309         [SVM_EXIT_CPUID]                        = cpuid_interception,
3310         [SVM_EXIT_IRET]                         = iret_interception,
3311         [SVM_EXIT_INVD]                         = emulate_on_interception,
3312         [SVM_EXIT_PAUSE]                        = pause_interception,
3313         [SVM_EXIT_HLT]                          = halt_interception,
3314         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3315         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3316         [SVM_EXIT_IOIO]                         = io_interception,
3317         [SVM_EXIT_MSR]                          = msr_interception,
3318         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3319         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3320         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3321         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3322         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3323         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3324         [SVM_EXIT_STGI]                         = stgi_interception,
3325         [SVM_EXIT_CLGI]                         = clgi_interception,
3326         [SVM_EXIT_SKINIT]                       = skinit_interception,
3327         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3328         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3329         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3330         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3331         [SVM_EXIT_NPF]                          = pf_interception,
3332 };
3333
3334 static void dump_vmcb(struct kvm_vcpu *vcpu)
3335 {
3336         struct vcpu_svm *svm = to_svm(vcpu);
3337         struct vmcb_control_area *control = &svm->vmcb->control;
3338         struct vmcb_save_area *save = &svm->vmcb->save;
3339
3340         pr_err("VMCB Control Area:\n");
3341         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3342         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3343         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3344         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3345         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3346         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3347         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3348         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3349         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3350         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3351         pr_err("%-20s%d\n", "asid:", control->asid);
3352         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3353         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3354         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3355         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3356         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3357         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3358         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3359         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3360         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3361         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3362         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3363         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3364         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3365         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3366         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3367         pr_err("VMCB State Save Area:\n");
3368         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369                "es:",
3370                save->es.selector, save->es.attrib,
3371                save->es.limit, save->es.base);
3372         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373                "cs:",
3374                save->cs.selector, save->cs.attrib,
3375                save->cs.limit, save->cs.base);
3376         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377                "ss:",
3378                save->ss.selector, save->ss.attrib,
3379                save->ss.limit, save->ss.base);
3380         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3381                "ds:",
3382                save->ds.selector, save->ds.attrib,
3383                save->ds.limit, save->ds.base);
3384         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3385                "fs:",
3386                save->fs.selector, save->fs.attrib,
3387                save->fs.limit, save->fs.base);
3388         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3389                "gs:",
3390                save->gs.selector, save->gs.attrib,
3391                save->gs.limit, save->gs.base);
3392         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393                "gdtr:",
3394                save->gdtr.selector, save->gdtr.attrib,
3395                save->gdtr.limit, save->gdtr.base);
3396         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397                "ldtr:",
3398                save->ldtr.selector, save->ldtr.attrib,
3399                save->ldtr.limit, save->ldtr.base);
3400         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401                "idtr:",
3402                save->idtr.selector, save->idtr.attrib,
3403                save->idtr.limit, save->idtr.base);
3404         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3405                "tr:",
3406                save->tr.selector, save->tr.attrib,
3407                save->tr.limit, save->tr.base);
3408         pr_err("cpl:            %d                efer:         %016llx\n",
3409                 save->cpl, save->efer);
3410         pr_err("%-15s %016llx %-13s %016llx\n",
3411                "cr0:", save->cr0, "cr2:", save->cr2);
3412         pr_err("%-15s %016llx %-13s %016llx\n",
3413                "cr3:", save->cr3, "cr4:", save->cr4);
3414         pr_err("%-15s %016llx %-13s %016llx\n",
3415                "dr6:", save->dr6, "dr7:", save->dr7);
3416         pr_err("%-15s %016llx %-13s %016llx\n",
3417                "rip:", save->rip, "rflags:", save->rflags);
3418         pr_err("%-15s %016llx %-13s %016llx\n",
3419                "rsp:", save->rsp, "rax:", save->rax);
3420         pr_err("%-15s %016llx %-13s %016llx\n",
3421                "star:", save->star, "lstar:", save->lstar);
3422         pr_err("%-15s %016llx %-13s %016llx\n",
3423                "cstar:", save->cstar, "sfmask:", save->sfmask);
3424         pr_err("%-15s %016llx %-13s %016llx\n",
3425                "kernel_gs_base:", save->kernel_gs_base,
3426                "sysenter_cs:", save->sysenter_cs);
3427         pr_err("%-15s %016llx %-13s %016llx\n",
3428                "sysenter_esp:", save->sysenter_esp,
3429                "sysenter_eip:", save->sysenter_eip);
3430         pr_err("%-15s %016llx %-13s %016llx\n",
3431                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3432         pr_err("%-15s %016llx %-13s %016llx\n",
3433                "br_from:", save->br_from, "br_to:", save->br_to);
3434         pr_err("%-15s %016llx %-13s %016llx\n",
3435                "excp_from:", save->last_excp_from,
3436                "excp_to:", save->last_excp_to);
3437 }
3438
3439 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3440 {
3441         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3442
3443         *info1 = control->exit_info_1;
3444         *info2 = control->exit_info_2;
3445 }
3446
3447 static int handle_exit(struct kvm_vcpu *vcpu)
3448 {
3449         struct vcpu_svm *svm = to_svm(vcpu);
3450         struct kvm_run *kvm_run = vcpu->run;
3451         u32 exit_code = svm->vmcb->control.exit_code;
3452
3453         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3454                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3455         if (npt_enabled)
3456                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3457
3458         if (unlikely(svm->nested.exit_required)) {
3459                 nested_svm_vmexit(svm);
3460                 svm->nested.exit_required = false;
3461
3462                 return 1;
3463         }
3464
3465         if (is_guest_mode(vcpu)) {
3466                 int vmexit;
3467
3468                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3469                                         svm->vmcb->control.exit_info_1,
3470                                         svm->vmcb->control.exit_info_2,
3471                                         svm->vmcb->control.exit_int_info,
3472                                         svm->vmcb->control.exit_int_info_err,
3473                                         KVM_ISA_SVM);
3474
3475                 vmexit = nested_svm_exit_special(svm);
3476
3477                 if (vmexit == NESTED_EXIT_CONTINUE)
3478                         vmexit = nested_svm_exit_handled(svm);
3479
3480                 if (vmexit == NESTED_EXIT_DONE)
3481                         return 1;
3482         }
3483
3484         svm_complete_interrupts(svm);
3485
3486         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3487                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3488                 kvm_run->fail_entry.hardware_entry_failure_reason
3489                         = svm->vmcb->control.exit_code;
3490                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3491                 dump_vmcb(vcpu);
3492                 return 0;
3493         }
3494
3495         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3496             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3497             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3498             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3499                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3500                        "exit_code 0x%x\n",
3501                        __func__, svm->vmcb->control.exit_int_info,
3502                        exit_code);
3503
3504         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3505             || !svm_exit_handlers[exit_code]) {
3506                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3507                 kvm_run->hw.hardware_exit_reason = exit_code;
3508                 return 0;
3509         }
3510
3511         return svm_exit_handlers[exit_code](svm);
3512 }
3513
3514 static void reload_tss(struct kvm_vcpu *vcpu)
3515 {
3516         int cpu = raw_smp_processor_id();
3517
3518         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3519         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3520         load_TR_desc();
3521 }
3522
3523 static void pre_svm_run(struct vcpu_svm *svm)
3524 {
3525         int cpu = raw_smp_processor_id();
3526
3527         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3528
3529         /* FIXME: handle wraparound of asid_generation */
3530         if (svm->asid_generation != sd->asid_generation)
3531                 new_asid(svm, sd);
3532 }
3533
3534 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3535 {
3536         struct vcpu_svm *svm = to_svm(vcpu);
3537
3538         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3539         vcpu->arch.hflags |= HF_NMI_MASK;
3540         set_intercept(svm, INTERCEPT_IRET);
3541         ++vcpu->stat.nmi_injections;
3542 }
3543
3544 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3545 {
3546         struct vmcb_control_area *control;
3547
3548         control = &svm->vmcb->control;
3549         control->int_vector = irq;
3550         control->int_ctl &= ~V_INTR_PRIO_MASK;
3551         control->int_ctl |= V_IRQ_MASK |
3552                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3553         mark_dirty(svm->vmcb, VMCB_INTR);
3554 }
3555
3556 static void svm_set_irq(struct kvm_vcpu *vcpu)
3557 {
3558         struct vcpu_svm *svm = to_svm(vcpu);
3559
3560         BUG_ON(!(gif_set(svm)));
3561
3562         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3563         ++vcpu->stat.irq_injections;
3564
3565         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3566                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3567 }
3568
3569 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3570 {
3571         struct vcpu_svm *svm = to_svm(vcpu);
3572
3573         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3574                 return;
3575
3576         if (irr == -1)
3577                 return;
3578
3579         if (tpr >= irr)
3580                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3581 }
3582
3583 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3584 {
3585         struct vcpu_svm *svm = to_svm(vcpu);
3586         struct vmcb *vmcb = svm->vmcb;
3587         int ret;
3588         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3589               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3590         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3591
3592         return ret;
3593 }
3594
3595 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3596 {
3597         struct vcpu_svm *svm = to_svm(vcpu);
3598
3599         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3600 }
3601
3602 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3603 {
3604         struct vcpu_svm *svm = to_svm(vcpu);
3605
3606         if (masked) {
3607                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3608                 set_intercept(svm, INTERCEPT_IRET);
3609         } else {
3610                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3611                 clr_intercept(svm, INTERCEPT_IRET);
3612         }
3613 }
3614
3615 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3616 {
3617         struct vcpu_svm *svm = to_svm(vcpu);
3618         struct vmcb *vmcb = svm->vmcb;
3619         int ret;
3620
3621         if (!gif_set(svm) ||
3622              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3623                 return 0;
3624
3625         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3626
3627         if (is_guest_mode(vcpu))
3628                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3629
3630         return ret;
3631 }
3632
3633 static void enable_irq_window(struct kvm_vcpu *vcpu)
3634 {
3635         struct vcpu_svm *svm = to_svm(vcpu);
3636
3637         /*
3638          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3639          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3640          * get that intercept, this function will be called again though and
3641          * we'll get the vintr intercept.
3642          */
3643         if (gif_set(svm) && nested_svm_intr(svm)) {
3644                 svm_set_vintr(svm);
3645                 svm_inject_irq(svm, 0x0);
3646         }
3647 }
3648
3649 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3650 {
3651         struct vcpu_svm *svm = to_svm(vcpu);
3652
3653         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3654             == HF_NMI_MASK)
3655                 return; /* IRET will cause a vm exit */
3656
3657         /*
3658          * Something prevents NMI from been injected. Single step over possible
3659          * problem (IRET or exception injection or interrupt shadow)
3660          */
3661         svm->nmi_singlestep = true;
3662         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3663         update_db_intercept(vcpu);
3664 }
3665
3666 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3667 {
3668         return 0;
3669 }
3670
3671 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3672 {
3673         struct vcpu_svm *svm = to_svm(vcpu);
3674
3675         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3676                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3677         else
3678                 svm->asid_generation--;
3679 }
3680
3681 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3682 {
3683 }
3684
3685 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3686 {
3687         struct vcpu_svm *svm = to_svm(vcpu);
3688
3689         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3690                 return;
3691
3692         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3693                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3694                 kvm_set_cr8(vcpu, cr8);
3695         }
3696 }
3697
3698 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3699 {
3700         struct vcpu_svm *svm = to_svm(vcpu);
3701         u64 cr8;
3702
3703         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3704                 return;
3705
3706         cr8 = kvm_get_cr8(vcpu);
3707         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3708         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3709 }
3710
3711 static void svm_complete_interrupts(struct vcpu_svm *svm)
3712 {
3713         u8 vector;
3714         int type;
3715         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3716         unsigned int3_injected = svm->int3_injected;
3717
3718         svm->int3_injected = 0;
3719
3720         /*
3721          * If we've made progress since setting HF_IRET_MASK, we've
3722          * executed an IRET and can allow NMI injection.
3723          */
3724         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3725             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3726                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3727                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3728         }
3729
3730         svm->vcpu.arch.nmi_injected = false;
3731         kvm_clear_exception_queue(&svm->vcpu);
3732         kvm_clear_interrupt_queue(&svm->vcpu);
3733
3734         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3735                 return;
3736
3737         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3738
3739         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3740         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3741
3742         switch (type) {
3743         case SVM_EXITINTINFO_TYPE_NMI:
3744                 svm->vcpu.arch.nmi_injected = true;
3745                 break;
3746         case SVM_EXITINTINFO_TYPE_EXEPT:
3747                 /*
3748                  * In case of software exceptions, do not reinject the vector,
3749                  * but re-execute the instruction instead. Rewind RIP first
3750                  * if we emulated INT3 before.
3751                  */
3752                 if (kvm_exception_is_soft(vector)) {
3753                         if (vector == BP_VECTOR && int3_injected &&
3754                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3755                                 kvm_rip_write(&svm->vcpu,
3756                                               kvm_rip_read(&svm->vcpu) -
3757                                               int3_injected);
3758                         break;
3759                 }
3760                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3761                         u32 err = svm->vmcb->control.exit_int_info_err;
3762                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3763
3764                 } else
3765                         kvm_requeue_exception(&svm->vcpu, vector);
3766                 break;
3767         case SVM_EXITINTINFO_TYPE_INTR:
3768                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3769                 break;
3770         default:
3771                 break;
3772         }
3773 }
3774
3775 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3776 {
3777         struct vcpu_svm *svm = to_svm(vcpu);
3778         struct vmcb_control_area *control = &svm->vmcb->control;
3779
3780         control->exit_int_info = control->event_inj;
3781         control->exit_int_info_err = control->event_inj_err;
3782         control->event_inj = 0;
3783         svm_complete_interrupts(svm);
3784 }
3785
3786 #ifdef CONFIG_X86_64
3787 #define R "r"
3788 #else
3789 #define R "e"
3790 #endif
3791
3792 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3793 {
3794         struct vcpu_svm *svm = to_svm(vcpu);
3795
3796         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3797         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3798         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3799
3800         /*
3801          * A vmexit emulation is required before the vcpu can be executed
3802          * again.
3803          */
3804         if (unlikely(svm->nested.exit_required))
3805                 return;
3806
3807         pre_svm_run(svm);
3808
3809         sync_lapic_to_cr8(vcpu);
3810
3811         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3812
3813         clgi();
3814
3815         local_irq_enable();
3816
3817         asm volatile (
3818                 "push %%"R"bp; \n\t"
3819                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3820                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3821                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3822                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3823                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3824                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3825 #ifdef CONFIG_X86_64
3826                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3827                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3828                 "mov %c[r10](%[svm]), %%r10 \n\t"
3829                 "mov %c[r11](%[svm]), %%r11 \n\t"
3830                 "mov %c[r12](%[svm]), %%r12 \n\t"
3831                 "mov %c[r13](%[svm]), %%r13 \n\t"
3832                 "mov %c[r14](%[svm]), %%r14 \n\t"
3833                 "mov %c[r15](%[svm]), %%r15 \n\t"
3834 #endif
3835
3836                 /* Enter guest mode */
3837                 "push %%"R"ax \n\t"
3838                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3839                 __ex(SVM_VMLOAD) "\n\t"
3840                 __ex(SVM_VMRUN) "\n\t"
3841                 __ex(SVM_VMSAVE) "\n\t"
3842                 "pop %%"R"ax \n\t"
3843
3844                 /* Save guest registers, load host registers */
3845                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3846                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3847                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3848                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3849                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3850                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3851 #ifdef CONFIG_X86_64
3852                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3853                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3854                 "mov %%r10, %c[r10](%[svm]) \n\t"
3855                 "mov %%r11, %c[r11](%[svm]) \n\t"
3856                 "mov %%r12, %c[r12](%[svm]) \n\t"
3857                 "mov %%r13, %c[r13](%[svm]) \n\t"
3858                 "mov %%r14, %c[r14](%[svm]) \n\t"
3859                 "mov %%r15, %c[r15](%[svm]) \n\t"
3860 #endif
3861                 "pop %%"R"bp"
3862                 :
3863                 : [svm]"a"(svm),
3864                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3865                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3866                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3867                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3868                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3869                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3870                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3871 #ifdef CONFIG_X86_64
3872                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3873                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3874                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3875                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3876                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3877                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3878                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3879                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3880 #endif
3881                 : "cc", "memory"
3882                 , R"bx", R"cx", R"dx", R"si", R"di"
3883 #ifdef CONFIG_X86_64
3884                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3885 #endif
3886                 );
3887
3888 #ifdef CONFIG_X86_64
3889         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3890 #else
3891         loadsegment(fs, svm->host.fs);
3892 #ifndef CONFIG_X86_32_LAZY_GS
3893         loadsegment(gs, svm->host.gs);
3894 #endif
3895 #endif
3896
3897         reload_tss(vcpu);
3898
3899         local_irq_disable();
3900
3901         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3902         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3903         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3904         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3905
3906         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3907
3908         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3909                 kvm_before_handle_nmi(&svm->vcpu);
3910
3911         stgi();
3912
3913         /* Any pending NMI will happen here */
3914
3915         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3916                 kvm_after_handle_nmi(&svm->vcpu);
3917
3918         sync_cr8_to_lapic(vcpu);
3919
3920         svm->next_rip = 0;
3921
3922         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3923
3924         /* if exit due to PF check for async PF */
3925         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3926                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3927
3928         if (npt_enabled) {
3929                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3930                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3931         }
3932
3933         /*
3934          * We need to handle MC intercepts here before the vcpu has a chance to
3935          * change the physical cpu
3936          */
3937         if (unlikely(svm->vmcb->control.exit_code ==
3938                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3939                 svm_handle_mce(svm);
3940
3941         mark_all_clean(svm->vmcb);
3942 }
3943
3944 #undef R
3945
3946 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3947 {
3948         struct vcpu_svm *svm = to_svm(vcpu);
3949
3950         svm->vmcb->save.cr3 = root;
3951         mark_dirty(svm->vmcb, VMCB_CR);
3952         svm_flush_tlb(vcpu);
3953 }
3954
3955 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3956 {
3957         struct vcpu_svm *svm = to_svm(vcpu);
3958
3959         svm->vmcb->control.nested_cr3 = root;
3960         mark_dirty(svm->vmcb, VMCB_NPT);
3961
3962         /* Also sync guest cr3 here in case we live migrate */
3963         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3964         mark_dirty(svm->vmcb, VMCB_CR);
3965
3966         svm_flush_tlb(vcpu);
3967 }
3968
3969 static int is_disabled(void)
3970 {
3971         u64 vm_cr;
3972
3973         rdmsrl(MSR_VM_CR, vm_cr);
3974         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3975                 return 1;
3976
3977         return 0;
3978 }
3979
3980 static void
3981 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3982 {
3983         /*
3984          * Patch in the VMMCALL instruction:
3985          */
3986         hypercall[0] = 0x0f;
3987         hypercall[1] = 0x01;
3988         hypercall[2] = 0xd9;
3989 }
3990
3991 static void svm_check_processor_compat(void *rtn)
3992 {
3993         *(int *)rtn = 0;
3994 }
3995
3996 static bool svm_cpu_has_accelerated_tpr(void)
3997 {
3998         return false;
3999 }
4000
4001 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4002 {
4003         return 0;
4004 }
4005
4006 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4007 {
4008 }
4009
4010 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4011 {
4012         switch (func) {
4013         case 0x80000001:
4014                 if (nested)
4015                         entry->ecx |= (1 << 2); /* Set SVM bit */
4016                 break;
4017         case 0x8000000A:
4018                 entry->eax = 1; /* SVM revision 1 */
4019                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4020                                    ASID emulation to nested SVM */
4021                 entry->ecx = 0; /* Reserved */
4022                 entry->edx = 0; /* Per default do not support any
4023                                    additional features */
4024
4025                 /* Support next_rip if host supports it */
4026                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4027                         entry->edx |= SVM_FEATURE_NRIP;
4028
4029                 /* Support NPT for the guest if enabled */
4030                 if (npt_enabled)
4031                         entry->edx |= SVM_FEATURE_NPT;
4032
4033                 break;
4034         }
4035 }
4036
4037 static int svm_get_lpage_level(void)
4038 {
4039         return PT_PDPE_LEVEL;
4040 }
4041
4042 static bool svm_rdtscp_supported(void)
4043 {
4044         return false;
4045 }
4046
4047 static bool svm_has_wbinvd_exit(void)
4048 {
4049         return true;
4050 }
4051
4052 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4053 {
4054         struct vcpu_svm *svm = to_svm(vcpu);
4055
4056         set_exception_intercept(svm, NM_VECTOR);
4057         update_cr0_intercept(svm);
4058 }
4059
4060 #define PRE_EX(exit)  { .exit_code = (exit), \
4061                         .stage = X86_ICPT_PRE_EXCEPT, }
4062 #define POST_EX(exit) { .exit_code = (exit), \
4063                         .stage = X86_ICPT_POST_EXCEPT, }
4064 #define POST_MEM(exit) { .exit_code = (exit), \
4065                         .stage = X86_ICPT_POST_MEMACCESS, }
4066
4067 static struct __x86_intercept {
4068         u32 exit_code;
4069         enum x86_intercept_stage stage;
4070 } x86_intercept_map[] = {
4071         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4072         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4073         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4074         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4075         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4076         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4077         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4078         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4079         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4080         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4081         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4082         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4083         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4084         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4085         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4086         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4087         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4088         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4089         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4090         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4091         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4092         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4093         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4094         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4095         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4096         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4097         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4098         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4099         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4100         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4101         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4102         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4103         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4104         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4105         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4106         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4107         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4108         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4109         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4110         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4111         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4112         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4113         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4114         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4115         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4116         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4117 };
4118
4119 #undef PRE_EX
4120 #undef POST_EX
4121 #undef POST_MEM
4122
4123 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4124                                struct x86_instruction_info *info,
4125                                enum x86_intercept_stage stage)
4126 {
4127         struct vcpu_svm *svm = to_svm(vcpu);
4128         int vmexit, ret = X86EMUL_CONTINUE;
4129         struct __x86_intercept icpt_info;
4130         struct vmcb *vmcb = svm->vmcb;
4131
4132         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4133                 goto out;
4134
4135         icpt_info = x86_intercept_map[info->intercept];
4136
4137         if (stage != icpt_info.stage)
4138                 goto out;
4139
4140         switch (icpt_info.exit_code) {
4141         case SVM_EXIT_READ_CR0:
4142                 if (info->intercept == x86_intercept_cr_read)
4143                         icpt_info.exit_code += info->modrm_reg;
4144                 break;
4145         case SVM_EXIT_WRITE_CR0: {
4146                 unsigned long cr0, val;
4147                 u64 intercept;
4148
4149                 if (info->intercept == x86_intercept_cr_write)
4150                         icpt_info.exit_code += info->modrm_reg;
4151
4152                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4153                         break;
4154
4155                 intercept = svm->nested.intercept;
4156
4157                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4158                         break;
4159
4160                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4161                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4162
4163                 if (info->intercept == x86_intercept_lmsw) {
4164                         cr0 &= 0xfUL;
4165                         val &= 0xfUL;
4166                         /* lmsw can't clear PE - catch this here */
4167                         if (cr0 & X86_CR0_PE)
4168                                 val |= X86_CR0_PE;
4169                 }
4170
4171                 if (cr0 ^ val)
4172                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4173
4174                 break;
4175         }
4176         case SVM_EXIT_READ_DR0:
4177         case SVM_EXIT_WRITE_DR0:
4178                 icpt_info.exit_code += info->modrm_reg;
4179                 break;
4180         case SVM_EXIT_MSR:
4181                 if (info->intercept == x86_intercept_wrmsr)
4182                         vmcb->control.exit_info_1 = 1;
4183                 else
4184                         vmcb->control.exit_info_1 = 0;
4185                 break;
4186         case SVM_EXIT_PAUSE:
4187                 /*
4188                  * We get this for NOP only, but pause
4189                  * is rep not, check this here
4190                  */
4191                 if (info->rep_prefix != REPE_PREFIX)
4192                         goto out;
4193         case SVM_EXIT_IOIO: {
4194                 u64 exit_info;
4195                 u32 bytes;
4196
4197                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4198
4199                 if (info->intercept == x86_intercept_in ||
4200                     info->intercept == x86_intercept_ins) {
4201                         exit_info |= SVM_IOIO_TYPE_MASK;
4202                         bytes = info->src_bytes;
4203                 } else {
4204                         bytes = info->dst_bytes;
4205                 }
4206
4207                 if (info->intercept == x86_intercept_outs ||
4208                     info->intercept == x86_intercept_ins)
4209                         exit_info |= SVM_IOIO_STR_MASK;
4210
4211                 if (info->rep_prefix)
4212                         exit_info |= SVM_IOIO_REP_MASK;
4213
4214                 bytes = min(bytes, 4u);
4215
4216                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4217
4218                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4219
4220                 vmcb->control.exit_info_1 = exit_info;
4221                 vmcb->control.exit_info_2 = info->next_rip;
4222
4223                 break;
4224         }
4225         default:
4226                 break;
4227         }
4228
4229         vmcb->control.next_rip  = info->next_rip;
4230         vmcb->control.exit_code = icpt_info.exit_code;
4231         vmexit = nested_svm_exit_handled(svm);
4232
4233         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4234                                            : X86EMUL_CONTINUE;
4235
4236 out:
4237         return ret;
4238 }
4239
4240 static struct kvm_x86_ops svm_x86_ops = {
4241         .cpu_has_kvm_support = has_svm,
4242         .disabled_by_bios = is_disabled,
4243         .hardware_setup = svm_hardware_setup,
4244         .hardware_unsetup = svm_hardware_unsetup,
4245         .check_processor_compatibility = svm_check_processor_compat,
4246         .hardware_enable = svm_hardware_enable,
4247         .hardware_disable = svm_hardware_disable,
4248         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4249
4250         .vcpu_create = svm_create_vcpu,
4251         .vcpu_free = svm_free_vcpu,
4252         .vcpu_reset = svm_vcpu_reset,
4253
4254         .prepare_guest_switch = svm_prepare_guest_switch,
4255         .vcpu_load = svm_vcpu_load,
4256         .vcpu_put = svm_vcpu_put,
4257
4258         .set_guest_debug = svm_guest_debug,
4259         .get_msr = svm_get_msr,
4260         .set_msr = svm_set_msr,
4261         .get_segment_base = svm_get_segment_base,
4262         .get_segment = svm_get_segment,
4263         .set_segment = svm_set_segment,
4264         .get_cpl = svm_get_cpl,
4265         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4266         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4267         .decache_cr3 = svm_decache_cr3,
4268         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4269         .set_cr0 = svm_set_cr0,
4270         .set_cr3 = svm_set_cr3,
4271         .set_cr4 = svm_set_cr4,
4272         .set_efer = svm_set_efer,
4273         .get_idt = svm_get_idt,
4274         .set_idt = svm_set_idt,
4275         .get_gdt = svm_get_gdt,
4276         .set_gdt = svm_set_gdt,
4277         .set_dr7 = svm_set_dr7,
4278         .cache_reg = svm_cache_reg,
4279         .get_rflags = svm_get_rflags,
4280         .set_rflags = svm_set_rflags,
4281         .fpu_activate = svm_fpu_activate,
4282         .fpu_deactivate = svm_fpu_deactivate,
4283
4284         .tlb_flush = svm_flush_tlb,
4285
4286         .run = svm_vcpu_run,
4287         .handle_exit = handle_exit,
4288         .skip_emulated_instruction = skip_emulated_instruction,
4289         .set_interrupt_shadow = svm_set_interrupt_shadow,
4290         .get_interrupt_shadow = svm_get_interrupt_shadow,
4291         .patch_hypercall = svm_patch_hypercall,
4292         .set_irq = svm_set_irq,
4293         .set_nmi = svm_inject_nmi,
4294         .queue_exception = svm_queue_exception,
4295         .cancel_injection = svm_cancel_injection,
4296         .interrupt_allowed = svm_interrupt_allowed,
4297         .nmi_allowed = svm_nmi_allowed,
4298         .get_nmi_mask = svm_get_nmi_mask,
4299         .set_nmi_mask = svm_set_nmi_mask,
4300         .enable_nmi_window = enable_nmi_window,
4301         .enable_irq_window = enable_irq_window,
4302         .update_cr8_intercept = update_cr8_intercept,
4303
4304         .set_tss_addr = svm_set_tss_addr,
4305         .get_tdp_level = get_npt_level,
4306         .get_mt_mask = svm_get_mt_mask,
4307
4308         .get_exit_info = svm_get_exit_info,
4309
4310         .get_lpage_level = svm_get_lpage_level,
4311
4312         .cpuid_update = svm_cpuid_update,
4313
4314         .rdtscp_supported = svm_rdtscp_supported,
4315
4316         .set_supported_cpuid = svm_set_supported_cpuid,
4317
4318         .has_wbinvd_exit = svm_has_wbinvd_exit,
4319
4320         .set_tsc_khz = svm_set_tsc_khz,
4321         .write_tsc_offset = svm_write_tsc_offset,
4322         .adjust_tsc_offset = svm_adjust_tsc_offset,
4323         .compute_tsc_offset = svm_compute_tsc_offset,
4324         .read_l1_tsc = svm_read_l1_tsc,
4325
4326         .set_tdp_cr3 = set_tdp_cr3,
4327
4328         .check_intercept = svm_check_intercept,
4329 };
4330
4331 static int __init svm_init(void)
4332 {
4333         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4334                         __alignof__(struct vcpu_svm), THIS_MODULE);
4335 }
4336
4337 static void __exit svm_exit(void)
4338 {
4339         kvm_exit();
4340 }
4341
4342 module_init(svm_init)
4343 module_exit(svm_exit)