regulator: ltc3589: Staticize ltc3589_reg_defaults
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
36 #include <asm/desc.h>
37 #include <asm/debugreg.h>
38 #include <asm/kvm_para.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44
45 MODULE_AUTHOR("Qumranet");
46 MODULE_LICENSE("GPL");
47
48 static const struct x86_cpu_id svm_cpu_id[] = {
49         X86_FEATURE_MATCH(X86_FEATURE_SVM),
50         {}
51 };
52 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
53
54 #define IOPM_ALLOC_ORDER 2
55 #define MSRPM_ALLOC_ORDER 1
56
57 #define SEG_TYPE_LDT 2
58 #define SEG_TYPE_BUSY_TSS16 3
59
60 #define SVM_FEATURE_NPT            (1 <<  0)
61 #define SVM_FEATURE_LBRV           (1 <<  1)
62 #define SVM_FEATURE_SVML           (1 <<  2)
63 #define SVM_FEATURE_NRIP           (1 <<  3)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
71 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
72 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
73
74 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75
76 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
77 #define TSC_RATIO_MIN           0x0000000000000001ULL
78 #define TSC_RATIO_MAX           0x000000ffffffffffULL
79
80 static bool erratum_383_found __read_mostly;
81
82 static const u32 host_save_user_msrs[] = {
83 #ifdef CONFIG_X86_64
84         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
85         MSR_FS_BASE,
86 #endif
87         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
88 };
89
90 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91
92 struct kvm_vcpu;
93
94 struct nested_state {
95         struct vmcb *hsave;
96         u64 hsave_msr;
97         u64 vm_cr_msr;
98         u64 vmcb;
99
100         /* These are the merged vectors */
101         u32 *msrpm;
102
103         /* gpa pointers to the real vectors */
104         u64 vmcb_msrpm;
105         u64 vmcb_iopm;
106
107         /* A VMEXIT is required but not yet emulated */
108         bool exit_required;
109
110         /* cache for intercepts of the guest */
111         u32 intercept_cr;
112         u32 intercept_dr;
113         u32 intercept_exceptions;
114         u64 intercept;
115
116         /* Nested Paging related state */
117         u64 nested_cr3;
118 };
119
120 #define MSRPM_OFFSETS   16
121 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
122
123 /*
124  * Set osvw_len to higher value when updated Revision Guides
125  * are published and we know what the new status bits are
126  */
127 static uint64_t osvw_len = 4, osvw_status;
128
129 struct vcpu_svm {
130         struct kvm_vcpu vcpu;
131         struct vmcb *vmcb;
132         unsigned long vmcb_pa;
133         struct svm_cpu_data *svm_data;
134         uint64_t asid_generation;
135         uint64_t sysenter_esp;
136         uint64_t sysenter_eip;
137
138         u64 next_rip;
139
140         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
141         struct {
142                 u16 fs;
143                 u16 gs;
144                 u16 ldt;
145                 u64 gs_base;
146         } host;
147
148         u32 *msrpm;
149
150         ulong nmi_iret_rip;
151
152         struct nested_state nested;
153
154         bool nmi_singlestep;
155
156         unsigned int3_injected;
157         unsigned long int3_rip;
158         u32 apf_reason;
159
160         u64  tsc_ratio;
161 };
162
163 static DEFINE_PER_CPU(u64, current_tsc_ratio);
164 #define TSC_RATIO_DEFAULT       0x0100000000ULL
165
166 #define MSR_INVALID                     0xffffffffU
167
168 static const struct svm_direct_access_msrs {
169         u32 index;   /* Index of the MSR */
170         bool always; /* True if intercept is always on */
171 } direct_access_msrs[] = {
172         { .index = MSR_STAR,                            .always = true  },
173         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
174 #ifdef CONFIG_X86_64
175         { .index = MSR_GS_BASE,                         .always = true  },
176         { .index = MSR_FS_BASE,                         .always = true  },
177         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
178         { .index = MSR_LSTAR,                           .always = true  },
179         { .index = MSR_CSTAR,                           .always = true  },
180         { .index = MSR_SYSCALL_MASK,                    .always = true  },
181 #endif
182         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
183         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
184         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
185         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
186         { .index = MSR_INVALID,                         .always = false },
187 };
188
189 /* enable NPT for AMD64 and X86 with PAE */
190 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
191 static bool npt_enabled = true;
192 #else
193 static bool npt_enabled;
194 #endif
195
196 /* allow nested paging (virtualized MMU) for all guests */
197 static int npt = true;
198 module_param(npt, int, S_IRUGO);
199
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203
204 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206
207 static int nested_svm_exit_handled(struct vcpu_svm *svm);
208 static int nested_svm_intercept(struct vcpu_svm *svm);
209 static int nested_svm_vmexit(struct vcpu_svm *svm);
210 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
211                                       bool has_error_code, u32 error_code);
212 static u64 __scale_tsc(u64 ratio, u64 tsc);
213
214 enum {
215         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
216                             pause filter count */
217         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
218         VMCB_ASID,       /* ASID */
219         VMCB_INTR,       /* int_ctl, int_vector */
220         VMCB_NPT,        /* npt_en, nCR3, gPAT */
221         VMCB_CR,         /* CR0, CR3, CR4, EFER */
222         VMCB_DR,         /* DR6, DR7 */
223         VMCB_DT,         /* GDT, IDT */
224         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
225         VMCB_CR2,        /* CR2 only */
226         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
227         VMCB_DIRTY_MAX,
228 };
229
230 /* TPR and CR2 are always written before VMRUN */
231 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232
233 static inline void mark_all_dirty(struct vmcb *vmcb)
234 {
235         vmcb->control.clean = 0;
236 }
237
238 static inline void mark_all_clean(struct vmcb *vmcb)
239 {
240         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
241                                & ~VMCB_ALWAYS_DIRTY_MASK;
242 }
243
244 static inline void mark_dirty(struct vmcb *vmcb, int bit)
245 {
246         vmcb->control.clean &= ~(1 << bit);
247 }
248
249 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
250 {
251         return container_of(vcpu, struct vcpu_svm, vcpu);
252 }
253
254 static void recalc_intercepts(struct vcpu_svm *svm)
255 {
256         struct vmcb_control_area *c, *h;
257         struct nested_state *g;
258
259         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
260
261         if (!is_guest_mode(&svm->vcpu))
262                 return;
263
264         c = &svm->vmcb->control;
265         h = &svm->nested.hsave->control;
266         g = &svm->nested;
267
268         c->intercept_cr = h->intercept_cr | g->intercept_cr;
269         c->intercept_dr = h->intercept_dr | g->intercept_dr;
270         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
271         c->intercept = h->intercept | g->intercept;
272 }
273
274 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
275 {
276         if (is_guest_mode(&svm->vcpu))
277                 return svm->nested.hsave;
278         else
279                 return svm->vmcb;
280 }
281
282 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
283 {
284         struct vmcb *vmcb = get_host_vmcb(svm);
285
286         vmcb->control.intercept_cr |= (1U << bit);
287
288         recalc_intercepts(svm);
289 }
290
291 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
292 {
293         struct vmcb *vmcb = get_host_vmcb(svm);
294
295         vmcb->control.intercept_cr &= ~(1U << bit);
296
297         recalc_intercepts(svm);
298 }
299
300 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
301 {
302         struct vmcb *vmcb = get_host_vmcb(svm);
303
304         return vmcb->control.intercept_cr & (1U << bit);
305 }
306
307 static inline void set_dr_intercepts(struct vcpu_svm *svm)
308 {
309         struct vmcb *vmcb = get_host_vmcb(svm);
310
311         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
312                 | (1 << INTERCEPT_DR1_READ)
313                 | (1 << INTERCEPT_DR2_READ)
314                 | (1 << INTERCEPT_DR3_READ)
315                 | (1 << INTERCEPT_DR4_READ)
316                 | (1 << INTERCEPT_DR5_READ)
317                 | (1 << INTERCEPT_DR6_READ)
318                 | (1 << INTERCEPT_DR7_READ)
319                 | (1 << INTERCEPT_DR0_WRITE)
320                 | (1 << INTERCEPT_DR1_WRITE)
321                 | (1 << INTERCEPT_DR2_WRITE)
322                 | (1 << INTERCEPT_DR3_WRITE)
323                 | (1 << INTERCEPT_DR4_WRITE)
324                 | (1 << INTERCEPT_DR5_WRITE)
325                 | (1 << INTERCEPT_DR6_WRITE)
326                 | (1 << INTERCEPT_DR7_WRITE);
327
328         recalc_intercepts(svm);
329 }
330
331 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
332 {
333         struct vmcb *vmcb = get_host_vmcb(svm);
334
335         vmcb->control.intercept_dr = 0;
336
337         recalc_intercepts(svm);
338 }
339
340 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
341 {
342         struct vmcb *vmcb = get_host_vmcb(svm);
343
344         vmcb->control.intercept_exceptions |= (1U << bit);
345
346         recalc_intercepts(svm);
347 }
348
349 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
350 {
351         struct vmcb *vmcb = get_host_vmcb(svm);
352
353         vmcb->control.intercept_exceptions &= ~(1U << bit);
354
355         recalc_intercepts(svm);
356 }
357
358 static inline void set_intercept(struct vcpu_svm *svm, int bit)
359 {
360         struct vmcb *vmcb = get_host_vmcb(svm);
361
362         vmcb->control.intercept |= (1ULL << bit);
363
364         recalc_intercepts(svm);
365 }
366
367 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
368 {
369         struct vmcb *vmcb = get_host_vmcb(svm);
370
371         vmcb->control.intercept &= ~(1ULL << bit);
372
373         recalc_intercepts(svm);
374 }
375
376 static inline void enable_gif(struct vcpu_svm *svm)
377 {
378         svm->vcpu.arch.hflags |= HF_GIF_MASK;
379 }
380
381 static inline void disable_gif(struct vcpu_svm *svm)
382 {
383         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
384 }
385
386 static inline bool gif_set(struct vcpu_svm *svm)
387 {
388         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
389 }
390
391 static unsigned long iopm_base;
392
393 struct kvm_ldttss_desc {
394         u16 limit0;
395         u16 base0;
396         unsigned base1:8, type:5, dpl:2, p:1;
397         unsigned limit1:4, zero0:3, g:1, base2:8;
398         u32 base3;
399         u32 zero1;
400 } __attribute__((packed));
401
402 struct svm_cpu_data {
403         int cpu;
404
405         u64 asid_generation;
406         u32 max_asid;
407         u32 next_asid;
408         struct kvm_ldttss_desc *tss_desc;
409
410         struct page *save_area;
411 };
412
413 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
414
415 struct svm_init_data {
416         int cpu;
417         int r;
418 };
419
420 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
421
422 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
423 #define MSRS_RANGE_SIZE 2048
424 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
425
426 static u32 svm_msrpm_offset(u32 msr)
427 {
428         u32 offset;
429         int i;
430
431         for (i = 0; i < NUM_MSR_MAPS; i++) {
432                 if (msr < msrpm_ranges[i] ||
433                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
434                         continue;
435
436                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
437                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
438
439                 /* Now we have the u8 offset - but need the u32 offset */
440                 return offset / 4;
441         }
442
443         /* MSR not in any range */
444         return MSR_INVALID;
445 }
446
447 #define MAX_INST_SIZE 15
448
449 static inline void clgi(void)
450 {
451         asm volatile (__ex(SVM_CLGI));
452 }
453
454 static inline void stgi(void)
455 {
456         asm volatile (__ex(SVM_STGI));
457 }
458
459 static inline void invlpga(unsigned long addr, u32 asid)
460 {
461         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
462 }
463
464 static int get_npt_level(void)
465 {
466 #ifdef CONFIG_X86_64
467         return PT64_ROOT_LEVEL;
468 #else
469         return PT32E_ROOT_LEVEL;
470 #endif
471 }
472
473 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
474 {
475         vcpu->arch.efer = efer;
476         if (!npt_enabled && !(efer & EFER_LMA))
477                 efer &= ~EFER_LME;
478
479         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
480         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
481 }
482
483 static int is_external_interrupt(u32 info)
484 {
485         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
486         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
487 }
488
489 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
490 {
491         struct vcpu_svm *svm = to_svm(vcpu);
492         u32 ret = 0;
493
494         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
495                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
496         return ret & mask;
497 }
498
499 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
500 {
501         struct vcpu_svm *svm = to_svm(vcpu);
502
503         if (mask == 0)
504                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
505         else
506                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
507
508 }
509
510 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
511 {
512         struct vcpu_svm *svm = to_svm(vcpu);
513
514         if (svm->vmcb->control.next_rip != 0)
515                 svm->next_rip = svm->vmcb->control.next_rip;
516
517         if (!svm->next_rip) {
518                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
519                                 EMULATE_DONE)
520                         printk(KERN_DEBUG "%s: NOP\n", __func__);
521                 return;
522         }
523         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
524                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
525                        __func__, kvm_rip_read(vcpu), svm->next_rip);
526
527         kvm_rip_write(vcpu, svm->next_rip);
528         svm_set_interrupt_shadow(vcpu, 0);
529 }
530
531 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
532                                 bool has_error_code, u32 error_code,
533                                 bool reinject)
534 {
535         struct vcpu_svm *svm = to_svm(vcpu);
536
537         /*
538          * If we are within a nested VM we'd better #VMEXIT and let the guest
539          * handle the exception
540          */
541         if (!reinject &&
542             nested_svm_check_exception(svm, nr, has_error_code, error_code))
543                 return;
544
545         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
546                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
547
548                 /*
549                  * For guest debugging where we have to reinject #BP if some
550                  * INT3 is guest-owned:
551                  * Emulate nRIP by moving RIP forward. Will fail if injection
552                  * raises a fault that is not intercepted. Still better than
553                  * failing in all cases.
554                  */
555                 skip_emulated_instruction(&svm->vcpu);
556                 rip = kvm_rip_read(&svm->vcpu);
557                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
558                 svm->int3_injected = rip - old_rip;
559         }
560
561         svm->vmcb->control.event_inj = nr
562                 | SVM_EVTINJ_VALID
563                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
564                 | SVM_EVTINJ_TYPE_EXEPT;
565         svm->vmcb->control.event_inj_err = error_code;
566 }
567
568 static void svm_init_erratum_383(void)
569 {
570         u32 low, high;
571         int err;
572         u64 val;
573
574         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
575                 return;
576
577         /* Use _safe variants to not break nested virtualization */
578         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
579         if (err)
580                 return;
581
582         val |= (1ULL << 47);
583
584         low  = lower_32_bits(val);
585         high = upper_32_bits(val);
586
587         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
588
589         erratum_383_found = true;
590 }
591
592 static void svm_init_osvw(struct kvm_vcpu *vcpu)
593 {
594         /*
595          * Guests should see errata 400 and 415 as fixed (assuming that
596          * HLT and IO instructions are intercepted).
597          */
598         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
599         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
600
601         /*
602          * By increasing VCPU's osvw.length to 3 we are telling the guest that
603          * all osvw.status bits inside that length, including bit 0 (which is
604          * reserved for erratum 298), are valid. However, if host processor's
605          * osvw_len is 0 then osvw_status[0] carries no information. We need to
606          * be conservative here and therefore we tell the guest that erratum 298
607          * is present (because we really don't know).
608          */
609         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
610                 vcpu->arch.osvw.status |= 1;
611 }
612
613 static int has_svm(void)
614 {
615         const char *msg;
616
617         if (!cpu_has_svm(&msg)) {
618                 printk(KERN_INFO "has_svm: %s\n", msg);
619                 return 0;
620         }
621
622         return 1;
623 }
624
625 static void svm_hardware_disable(void *garbage)
626 {
627         /* Make sure we clean up behind us */
628         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
629                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
630
631         cpu_svm_disable();
632
633         amd_pmu_disable_virt();
634 }
635
636 static int svm_hardware_enable(void *garbage)
637 {
638
639         struct svm_cpu_data *sd;
640         uint64_t efer;
641         struct desc_ptr gdt_descr;
642         struct desc_struct *gdt;
643         int me = raw_smp_processor_id();
644
645         rdmsrl(MSR_EFER, efer);
646         if (efer & EFER_SVME)
647                 return -EBUSY;
648
649         if (!has_svm()) {
650                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
651                 return -EINVAL;
652         }
653         sd = per_cpu(svm_data, me);
654         if (!sd) {
655                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
656                 return -EINVAL;
657         }
658
659         sd->asid_generation = 1;
660         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
661         sd->next_asid = sd->max_asid + 1;
662
663         native_store_gdt(&gdt_descr);
664         gdt = (struct desc_struct *)gdt_descr.address;
665         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
666
667         wrmsrl(MSR_EFER, efer | EFER_SVME);
668
669         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
670
671         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
672                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
673                 __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
674         }
675
676
677         /*
678          * Get OSVW bits.
679          *
680          * Note that it is possible to have a system with mixed processor
681          * revisions and therefore different OSVW bits. If bits are not the same
682          * on different processors then choose the worst case (i.e. if erratum
683          * is present on one processor and not on another then assume that the
684          * erratum is present everywhere).
685          */
686         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
687                 uint64_t len, status = 0;
688                 int err;
689
690                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
691                 if (!err)
692                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
693                                                       &err);
694
695                 if (err)
696                         osvw_status = osvw_len = 0;
697                 else {
698                         if (len < osvw_len)
699                                 osvw_len = len;
700                         osvw_status |= status;
701                         osvw_status &= (1ULL << osvw_len) - 1;
702                 }
703         } else
704                 osvw_status = osvw_len = 0;
705
706         svm_init_erratum_383();
707
708         amd_pmu_enable_virt();
709
710         return 0;
711 }
712
713 static void svm_cpu_uninit(int cpu)
714 {
715         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
716
717         if (!sd)
718                 return;
719
720         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
721         __free_page(sd->save_area);
722         kfree(sd);
723 }
724
725 static int svm_cpu_init(int cpu)
726 {
727         struct svm_cpu_data *sd;
728         int r;
729
730         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
731         if (!sd)
732                 return -ENOMEM;
733         sd->cpu = cpu;
734         sd->save_area = alloc_page(GFP_KERNEL);
735         r = -ENOMEM;
736         if (!sd->save_area)
737                 goto err_1;
738
739         per_cpu(svm_data, cpu) = sd;
740
741         return 0;
742
743 err_1:
744         kfree(sd);
745         return r;
746
747 }
748
749 static bool valid_msr_intercept(u32 index)
750 {
751         int i;
752
753         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
754                 if (direct_access_msrs[i].index == index)
755                         return true;
756
757         return false;
758 }
759
760 static void set_msr_interception(u32 *msrpm, unsigned msr,
761                                  int read, int write)
762 {
763         u8 bit_read, bit_write;
764         unsigned long tmp;
765         u32 offset;
766
767         /*
768          * If this warning triggers extend the direct_access_msrs list at the
769          * beginning of the file
770          */
771         WARN_ON(!valid_msr_intercept(msr));
772
773         offset    = svm_msrpm_offset(msr);
774         bit_read  = 2 * (msr & 0x0f);
775         bit_write = 2 * (msr & 0x0f) + 1;
776         tmp       = msrpm[offset];
777
778         BUG_ON(offset == MSR_INVALID);
779
780         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
781         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
782
783         msrpm[offset] = tmp;
784 }
785
786 static void svm_vcpu_init_msrpm(u32 *msrpm)
787 {
788         int i;
789
790         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
791
792         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
793                 if (!direct_access_msrs[i].always)
794                         continue;
795
796                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
797         }
798 }
799
800 static void add_msr_offset(u32 offset)
801 {
802         int i;
803
804         for (i = 0; i < MSRPM_OFFSETS; ++i) {
805
806                 /* Offset already in list? */
807                 if (msrpm_offsets[i] == offset)
808                         return;
809
810                 /* Slot used by another offset? */
811                 if (msrpm_offsets[i] != MSR_INVALID)
812                         continue;
813
814                 /* Add offset to list */
815                 msrpm_offsets[i] = offset;
816
817                 return;
818         }
819
820         /*
821          * If this BUG triggers the msrpm_offsets table has an overflow. Just
822          * increase MSRPM_OFFSETS in this case.
823          */
824         BUG();
825 }
826
827 static void init_msrpm_offsets(void)
828 {
829         int i;
830
831         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
832
833         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
834                 u32 offset;
835
836                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
837                 BUG_ON(offset == MSR_INVALID);
838
839                 add_msr_offset(offset);
840         }
841 }
842
843 static void svm_enable_lbrv(struct vcpu_svm *svm)
844 {
845         u32 *msrpm = svm->msrpm;
846
847         svm->vmcb->control.lbr_ctl = 1;
848         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
849         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
850         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
851         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
852 }
853
854 static void svm_disable_lbrv(struct vcpu_svm *svm)
855 {
856         u32 *msrpm = svm->msrpm;
857
858         svm->vmcb->control.lbr_ctl = 0;
859         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
860         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
861         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
862         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
863 }
864
865 static __init int svm_hardware_setup(void)
866 {
867         int cpu;
868         struct page *iopm_pages;
869         void *iopm_va;
870         int r;
871
872         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
873
874         if (!iopm_pages)
875                 return -ENOMEM;
876
877         iopm_va = page_address(iopm_pages);
878         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
879         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
880
881         init_msrpm_offsets();
882
883         if (boot_cpu_has(X86_FEATURE_NX))
884                 kvm_enable_efer_bits(EFER_NX);
885
886         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
887                 kvm_enable_efer_bits(EFER_FFXSR);
888
889         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
890                 u64 max;
891
892                 kvm_has_tsc_control = true;
893
894                 /*
895                  * Make sure the user can only configure tsc_khz values that
896                  * fit into a signed integer.
897                  * A min value is not calculated needed because it will always
898                  * be 1 on all machines and a value of 0 is used to disable
899                  * tsc-scaling for the vcpu.
900                  */
901                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
902
903                 kvm_max_guest_tsc_khz = max;
904         }
905
906         if (nested) {
907                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
908                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
909         }
910
911         for_each_possible_cpu(cpu) {
912                 r = svm_cpu_init(cpu);
913                 if (r)
914                         goto err;
915         }
916
917         if (!boot_cpu_has(X86_FEATURE_NPT))
918                 npt_enabled = false;
919
920         if (npt_enabled && !npt) {
921                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
922                 npt_enabled = false;
923         }
924
925         if (npt_enabled) {
926                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
927                 kvm_enable_tdp();
928         } else
929                 kvm_disable_tdp();
930
931         return 0;
932
933 err:
934         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
935         iopm_base = 0;
936         return r;
937 }
938
939 static __exit void svm_hardware_unsetup(void)
940 {
941         int cpu;
942
943         for_each_possible_cpu(cpu)
944                 svm_cpu_uninit(cpu);
945
946         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
947         iopm_base = 0;
948 }
949
950 static void init_seg(struct vmcb_seg *seg)
951 {
952         seg->selector = 0;
953         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
954                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
955         seg->limit = 0xffff;
956         seg->base = 0;
957 }
958
959 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
960 {
961         seg->selector = 0;
962         seg->attrib = SVM_SELECTOR_P_MASK | type;
963         seg->limit = 0xffff;
964         seg->base = 0;
965 }
966
967 static u64 __scale_tsc(u64 ratio, u64 tsc)
968 {
969         u64 mult, frac, _tsc;
970
971         mult  = ratio >> 32;
972         frac  = ratio & ((1ULL << 32) - 1);
973
974         _tsc  = tsc;
975         _tsc *= mult;
976         _tsc += (tsc >> 32) * frac;
977         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
978
979         return _tsc;
980 }
981
982 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
983 {
984         struct vcpu_svm *svm = to_svm(vcpu);
985         u64 _tsc = tsc;
986
987         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
988                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
989
990         return _tsc;
991 }
992
993 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
994 {
995         struct vcpu_svm *svm = to_svm(vcpu);
996         u64 ratio;
997         u64 khz;
998
999         /* Guest TSC same frequency as host TSC? */
1000         if (!scale) {
1001                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1002                 return;
1003         }
1004
1005         /* TSC scaling supported? */
1006         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1007                 if (user_tsc_khz > tsc_khz) {
1008                         vcpu->arch.tsc_catchup = 1;
1009                         vcpu->arch.tsc_always_catchup = 1;
1010                 } else
1011                         WARN(1, "user requested TSC rate below hardware speed\n");
1012                 return;
1013         }
1014
1015         khz = user_tsc_khz;
1016
1017         /* TSC scaling required  - calculate ratio */
1018         ratio = khz << 32;
1019         do_div(ratio, tsc_khz);
1020
1021         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1022                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1023                                 user_tsc_khz);
1024                 return;
1025         }
1026         svm->tsc_ratio             = ratio;
1027 }
1028
1029 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1030 {
1031         struct vcpu_svm *svm = to_svm(vcpu);
1032
1033         return svm->vmcb->control.tsc_offset;
1034 }
1035
1036 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1037 {
1038         struct vcpu_svm *svm = to_svm(vcpu);
1039         u64 g_tsc_offset = 0;
1040
1041         if (is_guest_mode(vcpu)) {
1042                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1043                                svm->nested.hsave->control.tsc_offset;
1044                 svm->nested.hsave->control.tsc_offset = offset;
1045         } else
1046                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1047                                            svm->vmcb->control.tsc_offset,
1048                                            offset);
1049
1050         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1051
1052         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1053 }
1054
1055 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1056 {
1057         struct vcpu_svm *svm = to_svm(vcpu);
1058
1059         WARN_ON(adjustment < 0);
1060         if (host)
1061                 adjustment = svm_scale_tsc(vcpu, adjustment);
1062
1063         svm->vmcb->control.tsc_offset += adjustment;
1064         if (is_guest_mode(vcpu))
1065                 svm->nested.hsave->control.tsc_offset += adjustment;
1066         else
1067                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1068                                      svm->vmcb->control.tsc_offset - adjustment,
1069                                      svm->vmcb->control.tsc_offset);
1070
1071         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1072 }
1073
1074 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1075 {
1076         u64 tsc;
1077
1078         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1079
1080         return target_tsc - tsc;
1081 }
1082
1083 static void init_vmcb(struct vcpu_svm *svm)
1084 {
1085         struct vmcb_control_area *control = &svm->vmcb->control;
1086         struct vmcb_save_area *save = &svm->vmcb->save;
1087
1088         svm->vcpu.fpu_active = 1;
1089         svm->vcpu.arch.hflags = 0;
1090
1091         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1092         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1093         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1094         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1095         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1096         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1097         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1098
1099         set_dr_intercepts(svm);
1100
1101         set_exception_intercept(svm, PF_VECTOR);
1102         set_exception_intercept(svm, UD_VECTOR);
1103         set_exception_intercept(svm, MC_VECTOR);
1104
1105         set_intercept(svm, INTERCEPT_INTR);
1106         set_intercept(svm, INTERCEPT_NMI);
1107         set_intercept(svm, INTERCEPT_SMI);
1108         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1109         set_intercept(svm, INTERCEPT_RDPMC);
1110         set_intercept(svm, INTERCEPT_CPUID);
1111         set_intercept(svm, INTERCEPT_INVD);
1112         set_intercept(svm, INTERCEPT_HLT);
1113         set_intercept(svm, INTERCEPT_INVLPG);
1114         set_intercept(svm, INTERCEPT_INVLPGA);
1115         set_intercept(svm, INTERCEPT_IOIO_PROT);
1116         set_intercept(svm, INTERCEPT_MSR_PROT);
1117         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1118         set_intercept(svm, INTERCEPT_SHUTDOWN);
1119         set_intercept(svm, INTERCEPT_VMRUN);
1120         set_intercept(svm, INTERCEPT_VMMCALL);
1121         set_intercept(svm, INTERCEPT_VMLOAD);
1122         set_intercept(svm, INTERCEPT_VMSAVE);
1123         set_intercept(svm, INTERCEPT_STGI);
1124         set_intercept(svm, INTERCEPT_CLGI);
1125         set_intercept(svm, INTERCEPT_SKINIT);
1126         set_intercept(svm, INTERCEPT_WBINVD);
1127         set_intercept(svm, INTERCEPT_MONITOR);
1128         set_intercept(svm, INTERCEPT_MWAIT);
1129         set_intercept(svm, INTERCEPT_XSETBV);
1130
1131         control->iopm_base_pa = iopm_base;
1132         control->msrpm_base_pa = __pa(svm->msrpm);
1133         control->int_ctl = V_INTR_MASKING_MASK;
1134
1135         init_seg(&save->es);
1136         init_seg(&save->ss);
1137         init_seg(&save->ds);
1138         init_seg(&save->fs);
1139         init_seg(&save->gs);
1140
1141         save->cs.selector = 0xf000;
1142         save->cs.base = 0xffff0000;
1143         /* Executable/Readable Code Segment */
1144         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1145                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1146         save->cs.limit = 0xffff;
1147
1148         save->gdtr.limit = 0xffff;
1149         save->idtr.limit = 0xffff;
1150
1151         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1152         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1153
1154         svm_set_efer(&svm->vcpu, 0);
1155         save->dr6 = 0xffff0ff0;
1156         kvm_set_rflags(&svm->vcpu, 2);
1157         save->rip = 0x0000fff0;
1158         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1159
1160         /*
1161          * This is the guest-visible cr0 value.
1162          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1163          */
1164         svm->vcpu.arch.cr0 = 0;
1165         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1166
1167         save->cr4 = X86_CR4_PAE;
1168         /* rdx = ?? */
1169
1170         if (npt_enabled) {
1171                 /* Setup VMCB for Nested Paging */
1172                 control->nested_ctl = 1;
1173                 clr_intercept(svm, INTERCEPT_INVLPG);
1174                 clr_exception_intercept(svm, PF_VECTOR);
1175                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1176                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1177                 save->g_pat = 0x0007040600070406ULL;
1178                 save->cr3 = 0;
1179                 save->cr4 = 0;
1180         }
1181         svm->asid_generation = 0;
1182
1183         svm->nested.vmcb = 0;
1184         svm->vcpu.arch.hflags = 0;
1185
1186         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1187                 control->pause_filter_count = 3000;
1188                 set_intercept(svm, INTERCEPT_PAUSE);
1189         }
1190
1191         mark_all_dirty(svm->vmcb);
1192
1193         enable_gif(svm);
1194 }
1195
1196 static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1197 {
1198         struct vcpu_svm *svm = to_svm(vcpu);
1199         u32 dummy;
1200         u32 eax = 1;
1201
1202         init_vmcb(svm);
1203
1204         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1205         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1206 }
1207
1208 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1209 {
1210         struct vcpu_svm *svm;
1211         struct page *page;
1212         struct page *msrpm_pages;
1213         struct page *hsave_page;
1214         struct page *nested_msrpm_pages;
1215         int err;
1216
1217         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1218         if (!svm) {
1219                 err = -ENOMEM;
1220                 goto out;
1221         }
1222
1223         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1224
1225         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1226         if (err)
1227                 goto free_svm;
1228
1229         err = -ENOMEM;
1230         page = alloc_page(GFP_KERNEL);
1231         if (!page)
1232                 goto uninit;
1233
1234         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1235         if (!msrpm_pages)
1236                 goto free_page1;
1237
1238         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1239         if (!nested_msrpm_pages)
1240                 goto free_page2;
1241
1242         hsave_page = alloc_page(GFP_KERNEL);
1243         if (!hsave_page)
1244                 goto free_page3;
1245
1246         svm->nested.hsave = page_address(hsave_page);
1247
1248         svm->msrpm = page_address(msrpm_pages);
1249         svm_vcpu_init_msrpm(svm->msrpm);
1250
1251         svm->nested.msrpm = page_address(nested_msrpm_pages);
1252         svm_vcpu_init_msrpm(svm->nested.msrpm);
1253
1254         svm->vmcb = page_address(page);
1255         clear_page(svm->vmcb);
1256         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1257         svm->asid_generation = 0;
1258         init_vmcb(svm);
1259
1260         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1261         if (kvm_vcpu_is_bsp(&svm->vcpu))
1262                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1263
1264         svm_init_osvw(&svm->vcpu);
1265
1266         return &svm->vcpu;
1267
1268 free_page3:
1269         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1270 free_page2:
1271         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1272 free_page1:
1273         __free_page(page);
1274 uninit:
1275         kvm_vcpu_uninit(&svm->vcpu);
1276 free_svm:
1277         kmem_cache_free(kvm_vcpu_cache, svm);
1278 out:
1279         return ERR_PTR(err);
1280 }
1281
1282 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1283 {
1284         struct vcpu_svm *svm = to_svm(vcpu);
1285
1286         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1287         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1288         __free_page(virt_to_page(svm->nested.hsave));
1289         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1290         kvm_vcpu_uninit(vcpu);
1291         kmem_cache_free(kvm_vcpu_cache, svm);
1292 }
1293
1294 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1295 {
1296         struct vcpu_svm *svm = to_svm(vcpu);
1297         int i;
1298
1299         if (unlikely(cpu != vcpu->cpu)) {
1300                 svm->asid_generation = 0;
1301                 mark_all_dirty(svm->vmcb);
1302         }
1303
1304 #ifdef CONFIG_X86_64
1305         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1306 #endif
1307         savesegment(fs, svm->host.fs);
1308         savesegment(gs, svm->host.gs);
1309         svm->host.ldt = kvm_read_ldt();
1310
1311         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1312                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1313
1314         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1315             svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1316                 __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1317                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1318         }
1319 }
1320
1321 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1322 {
1323         struct vcpu_svm *svm = to_svm(vcpu);
1324         int i;
1325
1326         ++vcpu->stat.host_state_reload;
1327         kvm_load_ldt(svm->host.ldt);
1328 #ifdef CONFIG_X86_64
1329         loadsegment(fs, svm->host.fs);
1330         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1331         load_gs_index(svm->host.gs);
1332 #else
1333 #ifdef CONFIG_X86_32_LAZY_GS
1334         loadsegment(gs, svm->host.gs);
1335 #endif
1336 #endif
1337         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1338                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1339 }
1340
1341 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1342 {
1343         return to_svm(vcpu)->vmcb->save.rflags;
1344 }
1345
1346 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1347 {
1348        /*
1349         * Any change of EFLAGS.VM is accompained by a reload of SS
1350         * (caused by either a task switch or an inter-privilege IRET),
1351         * so we do not need to update the CPL here.
1352         */
1353         to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358         switch (reg) {
1359         case VCPU_EXREG_PDPTR:
1360                 BUG_ON(!npt_enabled);
1361                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362                 break;
1363         default:
1364                 BUG();
1365         }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370         set_intercept(svm, INTERCEPT_VINTR);
1371 }
1372
1373 static void svm_clear_vintr(struct vcpu_svm *svm)
1374 {
1375         clr_intercept(svm, INTERCEPT_VINTR);
1376 }
1377
1378 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1379 {
1380         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1381
1382         switch (seg) {
1383         case VCPU_SREG_CS: return &save->cs;
1384         case VCPU_SREG_DS: return &save->ds;
1385         case VCPU_SREG_ES: return &save->es;
1386         case VCPU_SREG_FS: return &save->fs;
1387         case VCPU_SREG_GS: return &save->gs;
1388         case VCPU_SREG_SS: return &save->ss;
1389         case VCPU_SREG_TR: return &save->tr;
1390         case VCPU_SREG_LDTR: return &save->ldtr;
1391         }
1392         BUG();
1393         return NULL;
1394 }
1395
1396 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1397 {
1398         struct vmcb_seg *s = svm_seg(vcpu, seg);
1399
1400         return s->base;
1401 }
1402
1403 static void svm_get_segment(struct kvm_vcpu *vcpu,
1404                             struct kvm_segment *var, int seg)
1405 {
1406         struct vmcb_seg *s = svm_seg(vcpu, seg);
1407
1408         var->base = s->base;
1409         var->limit = s->limit;
1410         var->selector = s->selector;
1411         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1412         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1413         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1414         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1415         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1416         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1417         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1418         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1419
1420         /*
1421          * AMD's VMCB does not have an explicit unusable field, so emulate it
1422          * for cross vendor migration purposes by "not present"
1423          */
1424         var->unusable = !var->present || (var->type == 0);
1425
1426         switch (seg) {
1427         case VCPU_SREG_CS:
1428                 /*
1429                  * SVM always stores 0 for the 'G' bit in the CS selector in
1430                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1431                  * Intel's VMENTRY has a check on the 'G' bit.
1432                  */
1433                 var->g = s->limit > 0xfffff;
1434                 break;
1435         case VCPU_SREG_TR:
1436                 /*
1437                  * Work around a bug where the busy flag in the tr selector
1438                  * isn't exposed
1439                  */
1440                 var->type |= 0x2;
1441                 break;
1442         case VCPU_SREG_DS:
1443         case VCPU_SREG_ES:
1444         case VCPU_SREG_FS:
1445         case VCPU_SREG_GS:
1446                 /*
1447                  * The accessed bit must always be set in the segment
1448                  * descriptor cache, although it can be cleared in the
1449                  * descriptor, the cached bit always remains at 1. Since
1450                  * Intel has a check on this, set it here to support
1451                  * cross-vendor migration.
1452                  */
1453                 if (!var->unusable)
1454                         var->type |= 0x1;
1455                 break;
1456         case VCPU_SREG_SS:
1457                 /*
1458                  * On AMD CPUs sometimes the DB bit in the segment
1459                  * descriptor is left as 1, although the whole segment has
1460                  * been made unusable. Clear it here to pass an Intel VMX
1461                  * entry check when cross vendor migrating.
1462                  */
1463                 if (var->unusable)
1464                         var->db = 0;
1465                 break;
1466         }
1467 }
1468
1469 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1470 {
1471         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1472
1473         return save->cpl;
1474 }
1475
1476 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1477 {
1478         struct vcpu_svm *svm = to_svm(vcpu);
1479
1480         dt->size = svm->vmcb->save.idtr.limit;
1481         dt->address = svm->vmcb->save.idtr.base;
1482 }
1483
1484 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1485 {
1486         struct vcpu_svm *svm = to_svm(vcpu);
1487
1488         svm->vmcb->save.idtr.limit = dt->size;
1489         svm->vmcb->save.idtr.base = dt->address ;
1490         mark_dirty(svm->vmcb, VMCB_DT);
1491 }
1492
1493 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1494 {
1495         struct vcpu_svm *svm = to_svm(vcpu);
1496
1497         dt->size = svm->vmcb->save.gdtr.limit;
1498         dt->address = svm->vmcb->save.gdtr.base;
1499 }
1500
1501 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1502 {
1503         struct vcpu_svm *svm = to_svm(vcpu);
1504
1505         svm->vmcb->save.gdtr.limit = dt->size;
1506         svm->vmcb->save.gdtr.base = dt->address ;
1507         mark_dirty(svm->vmcb, VMCB_DT);
1508 }
1509
1510 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1511 {
1512 }
1513
1514 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1515 {
1516 }
1517
1518 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1519 {
1520 }
1521
1522 static void update_cr0_intercept(struct vcpu_svm *svm)
1523 {
1524         ulong gcr0 = svm->vcpu.arch.cr0;
1525         u64 *hcr0 = &svm->vmcb->save.cr0;
1526
1527         if (!svm->vcpu.fpu_active)
1528                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1529         else
1530                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1531                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1532
1533         mark_dirty(svm->vmcb, VMCB_CR);
1534
1535         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1536                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1537                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1538         } else {
1539                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1540                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1541         }
1542 }
1543
1544 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1545 {
1546         struct vcpu_svm *svm = to_svm(vcpu);
1547
1548 #ifdef CONFIG_X86_64
1549         if (vcpu->arch.efer & EFER_LME) {
1550                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1551                         vcpu->arch.efer |= EFER_LMA;
1552                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1553                 }
1554
1555                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1556                         vcpu->arch.efer &= ~EFER_LMA;
1557                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1558                 }
1559         }
1560 #endif
1561         vcpu->arch.cr0 = cr0;
1562
1563         if (!npt_enabled)
1564                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1565
1566         if (!vcpu->fpu_active)
1567                 cr0 |= X86_CR0_TS;
1568         /*
1569          * re-enable caching here because the QEMU bios
1570          * does not do it - this results in some delay at
1571          * reboot
1572          */
1573         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1574         svm->vmcb->save.cr0 = cr0;
1575         mark_dirty(svm->vmcb, VMCB_CR);
1576         update_cr0_intercept(svm);
1577 }
1578
1579 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1580 {
1581         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1582         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1583
1584         if (cr4 & X86_CR4_VMXE)
1585                 return 1;
1586
1587         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1588                 svm_flush_tlb(vcpu);
1589
1590         vcpu->arch.cr4 = cr4;
1591         if (!npt_enabled)
1592                 cr4 |= X86_CR4_PAE;
1593         cr4 |= host_cr4_mce;
1594         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1595         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1596         return 0;
1597 }
1598
1599 static void svm_set_segment(struct kvm_vcpu *vcpu,
1600                             struct kvm_segment *var, int seg)
1601 {
1602         struct vcpu_svm *svm = to_svm(vcpu);
1603         struct vmcb_seg *s = svm_seg(vcpu, seg);
1604
1605         s->base = var->base;
1606         s->limit = var->limit;
1607         s->selector = var->selector;
1608         if (var->unusable)
1609                 s->attrib = 0;
1610         else {
1611                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1612                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1613                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1614                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1615                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1616                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1617                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1618                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1619         }
1620
1621         /*
1622          * This is always accurate, except if SYSRET returned to a segment
1623          * with SS.DPL != 3.  Intel does not have this quirk, and always
1624          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1625          * would entail passing the CPL to userspace and back.
1626          */
1627         if (seg == VCPU_SREG_SS)
1628                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1629
1630         mark_dirty(svm->vmcb, VMCB_SEG);
1631 }
1632
1633 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1634 {
1635         struct vcpu_svm *svm = to_svm(vcpu);
1636
1637         clr_exception_intercept(svm, DB_VECTOR);
1638         clr_exception_intercept(svm, BP_VECTOR);
1639
1640         if (svm->nmi_singlestep)
1641                 set_exception_intercept(svm, DB_VECTOR);
1642
1643         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1644                 if (vcpu->guest_debug &
1645                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1646                         set_exception_intercept(svm, DB_VECTOR);
1647                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1648                         set_exception_intercept(svm, BP_VECTOR);
1649         } else
1650                 vcpu->guest_debug = 0;
1651 }
1652
1653 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1654 {
1655         if (sd->next_asid > sd->max_asid) {
1656                 ++sd->asid_generation;
1657                 sd->next_asid = 1;
1658                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1659         }
1660
1661         svm->asid_generation = sd->asid_generation;
1662         svm->vmcb->control.asid = sd->next_asid++;
1663
1664         mark_dirty(svm->vmcb, VMCB_ASID);
1665 }
1666
1667 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1668 {
1669         return to_svm(vcpu)->vmcb->save.dr6;
1670 }
1671
1672 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1673 {
1674         struct vcpu_svm *svm = to_svm(vcpu);
1675
1676         svm->vmcb->save.dr6 = value;
1677         mark_dirty(svm->vmcb, VMCB_DR);
1678 }
1679
1680 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1681 {
1682         struct vcpu_svm *svm = to_svm(vcpu);
1683
1684         get_debugreg(vcpu->arch.db[0], 0);
1685         get_debugreg(vcpu->arch.db[1], 1);
1686         get_debugreg(vcpu->arch.db[2], 2);
1687         get_debugreg(vcpu->arch.db[3], 3);
1688         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1689         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1690
1691         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1692         set_dr_intercepts(svm);
1693 }
1694
1695 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1696 {
1697         struct vcpu_svm *svm = to_svm(vcpu);
1698
1699         svm->vmcb->save.dr7 = value;
1700         mark_dirty(svm->vmcb, VMCB_DR);
1701 }
1702
1703 static int pf_interception(struct vcpu_svm *svm)
1704 {
1705         u64 fault_address = svm->vmcb->control.exit_info_2;
1706         u32 error_code;
1707         int r = 1;
1708
1709         switch (svm->apf_reason) {
1710         default:
1711                 error_code = svm->vmcb->control.exit_info_1;
1712
1713                 trace_kvm_page_fault(fault_address, error_code);
1714                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1715                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1716                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1717                         svm->vmcb->control.insn_bytes,
1718                         svm->vmcb->control.insn_len);
1719                 break;
1720         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1721                 svm->apf_reason = 0;
1722                 local_irq_disable();
1723                 kvm_async_pf_task_wait(fault_address);
1724                 local_irq_enable();
1725                 break;
1726         case KVM_PV_REASON_PAGE_READY:
1727                 svm->apf_reason = 0;
1728                 local_irq_disable();
1729                 kvm_async_pf_task_wake(fault_address);
1730                 local_irq_enable();
1731                 break;
1732         }
1733         return r;
1734 }
1735
1736 static int db_interception(struct vcpu_svm *svm)
1737 {
1738         struct kvm_run *kvm_run = svm->vcpu.run;
1739
1740         if (!(svm->vcpu.guest_debug &
1741               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1742                 !svm->nmi_singlestep) {
1743                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1744                 return 1;
1745         }
1746
1747         if (svm->nmi_singlestep) {
1748                 svm->nmi_singlestep = false;
1749                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1750                         svm->vmcb->save.rflags &=
1751                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1752                 update_db_bp_intercept(&svm->vcpu);
1753         }
1754
1755         if (svm->vcpu.guest_debug &
1756             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1757                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1758                 kvm_run->debug.arch.pc =
1759                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1760                 kvm_run->debug.arch.exception = DB_VECTOR;
1761                 return 0;
1762         }
1763
1764         return 1;
1765 }
1766
1767 static int bp_interception(struct vcpu_svm *svm)
1768 {
1769         struct kvm_run *kvm_run = svm->vcpu.run;
1770
1771         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1772         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1773         kvm_run->debug.arch.exception = BP_VECTOR;
1774         return 0;
1775 }
1776
1777 static int ud_interception(struct vcpu_svm *svm)
1778 {
1779         int er;
1780
1781         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1782         if (er != EMULATE_DONE)
1783                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1784         return 1;
1785 }
1786
1787 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1788 {
1789         struct vcpu_svm *svm = to_svm(vcpu);
1790
1791         clr_exception_intercept(svm, NM_VECTOR);
1792
1793         svm->vcpu.fpu_active = 1;
1794         update_cr0_intercept(svm);
1795 }
1796
1797 static int nm_interception(struct vcpu_svm *svm)
1798 {
1799         svm_fpu_activate(&svm->vcpu);
1800         return 1;
1801 }
1802
1803 static bool is_erratum_383(void)
1804 {
1805         int err, i;
1806         u64 value;
1807
1808         if (!erratum_383_found)
1809                 return false;
1810
1811         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1812         if (err)
1813                 return false;
1814
1815         /* Bit 62 may or may not be set for this mce */
1816         value &= ~(1ULL << 62);
1817
1818         if (value != 0xb600000000010015ULL)
1819                 return false;
1820
1821         /* Clear MCi_STATUS registers */
1822         for (i = 0; i < 6; ++i)
1823                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1824
1825         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1826         if (!err) {
1827                 u32 low, high;
1828
1829                 value &= ~(1ULL << 2);
1830                 low    = lower_32_bits(value);
1831                 high   = upper_32_bits(value);
1832
1833                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1834         }
1835
1836         /* Flush tlb to evict multi-match entries */
1837         __flush_tlb_all();
1838
1839         return true;
1840 }
1841
1842 static void svm_handle_mce(struct vcpu_svm *svm)
1843 {
1844         if (is_erratum_383()) {
1845                 /*
1846                  * Erratum 383 triggered. Guest state is corrupt so kill the
1847                  * guest.
1848                  */
1849                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1850
1851                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1852
1853                 return;
1854         }
1855
1856         /*
1857          * On an #MC intercept the MCE handler is not called automatically in
1858          * the host. So do it by hand here.
1859          */
1860         asm volatile (
1861                 "int $0x12\n");
1862         /* not sure if we ever come back to this point */
1863
1864         return;
1865 }
1866
1867 static int mc_interception(struct vcpu_svm *svm)
1868 {
1869         return 1;
1870 }
1871
1872 static int shutdown_interception(struct vcpu_svm *svm)
1873 {
1874         struct kvm_run *kvm_run = svm->vcpu.run;
1875
1876         /*
1877          * VMCB is undefined after a SHUTDOWN intercept
1878          * so reinitialize it.
1879          */
1880         clear_page(svm->vmcb);
1881         init_vmcb(svm);
1882
1883         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1884         return 0;
1885 }
1886
1887 static int io_interception(struct vcpu_svm *svm)
1888 {
1889         struct kvm_vcpu *vcpu = &svm->vcpu;
1890         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1891         int size, in, string;
1892         unsigned port;
1893
1894         ++svm->vcpu.stat.io_exits;
1895         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1896         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1897         if (string || in)
1898                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1899
1900         port = io_info >> 16;
1901         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1902         svm->next_rip = svm->vmcb->control.exit_info_2;
1903         skip_emulated_instruction(&svm->vcpu);
1904
1905         return kvm_fast_pio_out(vcpu, size, port);
1906 }
1907
1908 static int nmi_interception(struct vcpu_svm *svm)
1909 {
1910         return 1;
1911 }
1912
1913 static int intr_interception(struct vcpu_svm *svm)
1914 {
1915         ++svm->vcpu.stat.irq_exits;
1916         return 1;
1917 }
1918
1919 static int nop_on_interception(struct vcpu_svm *svm)
1920 {
1921         return 1;
1922 }
1923
1924 static int halt_interception(struct vcpu_svm *svm)
1925 {
1926         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1927         skip_emulated_instruction(&svm->vcpu);
1928         return kvm_emulate_halt(&svm->vcpu);
1929 }
1930
1931 static int vmmcall_interception(struct vcpu_svm *svm)
1932 {
1933         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1934         skip_emulated_instruction(&svm->vcpu);
1935         kvm_emulate_hypercall(&svm->vcpu);
1936         return 1;
1937 }
1938
1939 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1940 {
1941         struct vcpu_svm *svm = to_svm(vcpu);
1942
1943         return svm->nested.nested_cr3;
1944 }
1945
1946 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1947 {
1948         struct vcpu_svm *svm = to_svm(vcpu);
1949         u64 cr3 = svm->nested.nested_cr3;
1950         u64 pdpte;
1951         int ret;
1952
1953         ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1954                                   offset_in_page(cr3) + index * 8, 8);
1955         if (ret)
1956                 return 0;
1957         return pdpte;
1958 }
1959
1960 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1961                                    unsigned long root)
1962 {
1963         struct vcpu_svm *svm = to_svm(vcpu);
1964
1965         svm->vmcb->control.nested_cr3 = root;
1966         mark_dirty(svm->vmcb, VMCB_NPT);
1967         svm_flush_tlb(vcpu);
1968 }
1969
1970 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1971                                        struct x86_exception *fault)
1972 {
1973         struct vcpu_svm *svm = to_svm(vcpu);
1974
1975         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1976         svm->vmcb->control.exit_code_hi = 0;
1977         svm->vmcb->control.exit_info_1 = fault->error_code;
1978         svm->vmcb->control.exit_info_2 = fault->address;
1979
1980         nested_svm_vmexit(svm);
1981 }
1982
1983 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1984 {
1985         kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1986
1987         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1988         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1989         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1990         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1991         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1992         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1993 }
1994
1995 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1996 {
1997         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1998 }
1999
2000 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2001 {
2002         if (!(svm->vcpu.arch.efer & EFER_SVME)
2003             || !is_paging(&svm->vcpu)) {
2004                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2005                 return 1;
2006         }
2007
2008         if (svm->vmcb->save.cpl) {
2009                 kvm_inject_gp(&svm->vcpu, 0);
2010                 return 1;
2011         }
2012
2013        return 0;
2014 }
2015
2016 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2017                                       bool has_error_code, u32 error_code)
2018 {
2019         int vmexit;
2020
2021         if (!is_guest_mode(&svm->vcpu))
2022                 return 0;
2023
2024         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2025         svm->vmcb->control.exit_code_hi = 0;
2026         svm->vmcb->control.exit_info_1 = error_code;
2027         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2028
2029         vmexit = nested_svm_intercept(svm);
2030         if (vmexit == NESTED_EXIT_DONE)
2031                 svm->nested.exit_required = true;
2032
2033         return vmexit;
2034 }
2035
2036 /* This function returns true if it is save to enable the irq window */
2037 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2038 {
2039         if (!is_guest_mode(&svm->vcpu))
2040                 return true;
2041
2042         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2043                 return true;
2044
2045         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2046                 return false;
2047
2048         /*
2049          * if vmexit was already requested (by intercepted exception
2050          * for instance) do not overwrite it with "external interrupt"
2051          * vmexit.
2052          */
2053         if (svm->nested.exit_required)
2054                 return false;
2055
2056         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2057         svm->vmcb->control.exit_info_1 = 0;
2058         svm->vmcb->control.exit_info_2 = 0;
2059
2060         if (svm->nested.intercept & 1ULL) {
2061                 /*
2062                  * The #vmexit can't be emulated here directly because this
2063                  * code path runs with irqs and preemption disabled. A
2064                  * #vmexit emulation might sleep. Only signal request for
2065                  * the #vmexit here.
2066                  */
2067                 svm->nested.exit_required = true;
2068                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2069                 return false;
2070         }
2071
2072         return true;
2073 }
2074
2075 /* This function returns true if it is save to enable the nmi window */
2076 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2077 {
2078         if (!is_guest_mode(&svm->vcpu))
2079                 return true;
2080
2081         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2082                 return true;
2083
2084         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2085         svm->nested.exit_required = true;
2086
2087         return false;
2088 }
2089
2090 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2091 {
2092         struct page *page;
2093
2094         might_sleep();
2095
2096         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2097         if (is_error_page(page))
2098                 goto error;
2099
2100         *_page = page;
2101
2102         return kmap(page);
2103
2104 error:
2105         kvm_inject_gp(&svm->vcpu, 0);
2106
2107         return NULL;
2108 }
2109
2110 static void nested_svm_unmap(struct page *page)
2111 {
2112         kunmap(page);
2113         kvm_release_page_dirty(page);
2114 }
2115
2116 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2117 {
2118         unsigned port;
2119         u8 val, bit;
2120         u64 gpa;
2121
2122         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2123                 return NESTED_EXIT_HOST;
2124
2125         port = svm->vmcb->control.exit_info_1 >> 16;
2126         gpa  = svm->nested.vmcb_iopm + (port / 8);
2127         bit  = port % 8;
2128         val  = 0;
2129
2130         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2131                 val &= (1 << bit);
2132
2133         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2134 }
2135
2136 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2137 {
2138         u32 offset, msr, value;
2139         int write, mask;
2140
2141         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2142                 return NESTED_EXIT_HOST;
2143
2144         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2145         offset = svm_msrpm_offset(msr);
2146         write  = svm->vmcb->control.exit_info_1 & 1;
2147         mask   = 1 << ((2 * (msr & 0xf)) + write);
2148
2149         if (offset == MSR_INVALID)
2150                 return NESTED_EXIT_DONE;
2151
2152         /* Offset is in 32 bit units but need in 8 bit units */
2153         offset *= 4;
2154
2155         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2156                 return NESTED_EXIT_DONE;
2157
2158         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2159 }
2160
2161 static int nested_svm_exit_special(struct vcpu_svm *svm)
2162 {
2163         u32 exit_code = svm->vmcb->control.exit_code;
2164
2165         switch (exit_code) {
2166         case SVM_EXIT_INTR:
2167         case SVM_EXIT_NMI:
2168         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2169                 return NESTED_EXIT_HOST;
2170         case SVM_EXIT_NPF:
2171                 /* For now we are always handling NPFs when using them */
2172                 if (npt_enabled)
2173                         return NESTED_EXIT_HOST;
2174                 break;
2175         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2176                 /* When we're shadowing, trap PFs, but not async PF */
2177                 if (!npt_enabled && svm->apf_reason == 0)
2178                         return NESTED_EXIT_HOST;
2179                 break;
2180         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2181                 nm_interception(svm);
2182                 break;
2183         default:
2184                 break;
2185         }
2186
2187         return NESTED_EXIT_CONTINUE;
2188 }
2189
2190 /*
2191  * If this function returns true, this #vmexit was already handled
2192  */
2193 static int nested_svm_intercept(struct vcpu_svm *svm)
2194 {
2195         u32 exit_code = svm->vmcb->control.exit_code;
2196         int vmexit = NESTED_EXIT_HOST;
2197
2198         switch (exit_code) {
2199         case SVM_EXIT_MSR:
2200                 vmexit = nested_svm_exit_handled_msr(svm);
2201                 break;
2202         case SVM_EXIT_IOIO:
2203                 vmexit = nested_svm_intercept_ioio(svm);
2204                 break;
2205         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2206                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2207                 if (svm->nested.intercept_cr & bit)
2208                         vmexit = NESTED_EXIT_DONE;
2209                 break;
2210         }
2211         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2212                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2213                 if (svm->nested.intercept_dr & bit)
2214                         vmexit = NESTED_EXIT_DONE;
2215                 break;
2216         }
2217         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2218                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2219                 if (svm->nested.intercept_exceptions & excp_bits)
2220                         vmexit = NESTED_EXIT_DONE;
2221                 /* async page fault always cause vmexit */
2222                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2223                          svm->apf_reason != 0)
2224                         vmexit = NESTED_EXIT_DONE;
2225                 break;
2226         }
2227         case SVM_EXIT_ERR: {
2228                 vmexit = NESTED_EXIT_DONE;
2229                 break;
2230         }
2231         default: {
2232                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2233                 if (svm->nested.intercept & exit_bits)
2234                         vmexit = NESTED_EXIT_DONE;
2235         }
2236         }
2237
2238         return vmexit;
2239 }
2240
2241 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2242 {
2243         int vmexit;
2244
2245         vmexit = nested_svm_intercept(svm);
2246
2247         if (vmexit == NESTED_EXIT_DONE)
2248                 nested_svm_vmexit(svm);
2249
2250         return vmexit;
2251 }
2252
2253 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2254 {
2255         struct vmcb_control_area *dst  = &dst_vmcb->control;
2256         struct vmcb_control_area *from = &from_vmcb->control;
2257
2258         dst->intercept_cr         = from->intercept_cr;
2259         dst->intercept_dr         = from->intercept_dr;
2260         dst->intercept_exceptions = from->intercept_exceptions;
2261         dst->intercept            = from->intercept;
2262         dst->iopm_base_pa         = from->iopm_base_pa;
2263         dst->msrpm_base_pa        = from->msrpm_base_pa;
2264         dst->tsc_offset           = from->tsc_offset;
2265         dst->asid                 = from->asid;
2266         dst->tlb_ctl              = from->tlb_ctl;
2267         dst->int_ctl              = from->int_ctl;
2268         dst->int_vector           = from->int_vector;
2269         dst->int_state            = from->int_state;
2270         dst->exit_code            = from->exit_code;
2271         dst->exit_code_hi         = from->exit_code_hi;
2272         dst->exit_info_1          = from->exit_info_1;
2273         dst->exit_info_2          = from->exit_info_2;
2274         dst->exit_int_info        = from->exit_int_info;
2275         dst->exit_int_info_err    = from->exit_int_info_err;
2276         dst->nested_ctl           = from->nested_ctl;
2277         dst->event_inj            = from->event_inj;
2278         dst->event_inj_err        = from->event_inj_err;
2279         dst->nested_cr3           = from->nested_cr3;
2280         dst->lbr_ctl              = from->lbr_ctl;
2281 }
2282
2283 static int nested_svm_vmexit(struct vcpu_svm *svm)
2284 {
2285         struct vmcb *nested_vmcb;
2286         struct vmcb *hsave = svm->nested.hsave;
2287         struct vmcb *vmcb = svm->vmcb;
2288         struct page *page;
2289
2290         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2291                                        vmcb->control.exit_info_1,
2292                                        vmcb->control.exit_info_2,
2293                                        vmcb->control.exit_int_info,
2294                                        vmcb->control.exit_int_info_err,
2295                                        KVM_ISA_SVM);
2296
2297         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2298         if (!nested_vmcb)
2299                 return 1;
2300
2301         /* Exit Guest-Mode */
2302         leave_guest_mode(&svm->vcpu);
2303         svm->nested.vmcb = 0;
2304
2305         /* Give the current vmcb to the guest */
2306         disable_gif(svm);
2307
2308         nested_vmcb->save.es     = vmcb->save.es;
2309         nested_vmcb->save.cs     = vmcb->save.cs;
2310         nested_vmcb->save.ss     = vmcb->save.ss;
2311         nested_vmcb->save.ds     = vmcb->save.ds;
2312         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2313         nested_vmcb->save.idtr   = vmcb->save.idtr;
2314         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2315         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2316         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2317         nested_vmcb->save.cr2    = vmcb->save.cr2;
2318         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2319         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2320         nested_vmcb->save.rip    = vmcb->save.rip;
2321         nested_vmcb->save.rsp    = vmcb->save.rsp;
2322         nested_vmcb->save.rax    = vmcb->save.rax;
2323         nested_vmcb->save.dr7    = vmcb->save.dr7;
2324         nested_vmcb->save.dr6    = vmcb->save.dr6;
2325         nested_vmcb->save.cpl    = vmcb->save.cpl;
2326
2327         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2328         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2329         nested_vmcb->control.int_state         = vmcb->control.int_state;
2330         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2331         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2332         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2333         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2334         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2335         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2336         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2337
2338         /*
2339          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2340          * to make sure that we do not lose injected events. So check event_inj
2341          * here and copy it to exit_int_info if it is valid.
2342          * Exit_int_info and event_inj can't be both valid because the case
2343          * below only happens on a VMRUN instruction intercept which has
2344          * no valid exit_int_info set.
2345          */
2346         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2347                 struct vmcb_control_area *nc = &nested_vmcb->control;
2348
2349                 nc->exit_int_info     = vmcb->control.event_inj;
2350                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2351         }
2352
2353         nested_vmcb->control.tlb_ctl           = 0;
2354         nested_vmcb->control.event_inj         = 0;
2355         nested_vmcb->control.event_inj_err     = 0;
2356
2357         /* We always set V_INTR_MASKING and remember the old value in hflags */
2358         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2359                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2360
2361         /* Restore the original control entries */
2362         copy_vmcb_control_area(vmcb, hsave);
2363
2364         kvm_clear_exception_queue(&svm->vcpu);
2365         kvm_clear_interrupt_queue(&svm->vcpu);
2366
2367         svm->nested.nested_cr3 = 0;
2368
2369         /* Restore selected save entries */
2370         svm->vmcb->save.es = hsave->save.es;
2371         svm->vmcb->save.cs = hsave->save.cs;
2372         svm->vmcb->save.ss = hsave->save.ss;
2373         svm->vmcb->save.ds = hsave->save.ds;
2374         svm->vmcb->save.gdtr = hsave->save.gdtr;
2375         svm->vmcb->save.idtr = hsave->save.idtr;
2376         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2377         svm_set_efer(&svm->vcpu, hsave->save.efer);
2378         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2379         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2380         if (npt_enabled) {
2381                 svm->vmcb->save.cr3 = hsave->save.cr3;
2382                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2383         } else {
2384                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2385         }
2386         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2387         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2388         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2389         svm->vmcb->save.dr7 = 0;
2390         svm->vmcb->save.cpl = 0;
2391         svm->vmcb->control.exit_int_info = 0;
2392
2393         mark_all_dirty(svm->vmcb);
2394
2395         nested_svm_unmap(page);
2396
2397         nested_svm_uninit_mmu_context(&svm->vcpu);
2398         kvm_mmu_reset_context(&svm->vcpu);
2399         kvm_mmu_load(&svm->vcpu);
2400
2401         return 0;
2402 }
2403
2404 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2405 {
2406         /*
2407          * This function merges the msr permission bitmaps of kvm and the
2408          * nested vmcb. It is optimized in that it only merges the parts where
2409          * the kvm msr permission bitmap may contain zero bits
2410          */
2411         int i;
2412
2413         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2414                 return true;
2415
2416         for (i = 0; i < MSRPM_OFFSETS; i++) {
2417                 u32 value, p;
2418                 u64 offset;
2419
2420                 if (msrpm_offsets[i] == 0xffffffff)
2421                         break;
2422
2423                 p      = msrpm_offsets[i];
2424                 offset = svm->nested.vmcb_msrpm + (p * 4);
2425
2426                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2427                         return false;
2428
2429                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2430         }
2431
2432         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2433
2434         return true;
2435 }
2436
2437 static bool nested_vmcb_checks(struct vmcb *vmcb)
2438 {
2439         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2440                 return false;
2441
2442         if (vmcb->control.asid == 0)
2443                 return false;
2444
2445         if (vmcb->control.nested_ctl && !npt_enabled)
2446                 return false;
2447
2448         return true;
2449 }
2450
2451 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2452 {
2453         struct vmcb *nested_vmcb;
2454         struct vmcb *hsave = svm->nested.hsave;
2455         struct vmcb *vmcb = svm->vmcb;
2456         struct page *page;
2457         u64 vmcb_gpa;
2458
2459         vmcb_gpa = svm->vmcb->save.rax;
2460
2461         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2462         if (!nested_vmcb)
2463                 return false;
2464
2465         if (!nested_vmcb_checks(nested_vmcb)) {
2466                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2467                 nested_vmcb->control.exit_code_hi = 0;
2468                 nested_vmcb->control.exit_info_1  = 0;
2469                 nested_vmcb->control.exit_info_2  = 0;
2470
2471                 nested_svm_unmap(page);
2472
2473                 return false;
2474         }
2475
2476         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2477                                nested_vmcb->save.rip,
2478                                nested_vmcb->control.int_ctl,
2479                                nested_vmcb->control.event_inj,
2480                                nested_vmcb->control.nested_ctl);
2481
2482         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2483                                     nested_vmcb->control.intercept_cr >> 16,
2484                                     nested_vmcb->control.intercept_exceptions,
2485                                     nested_vmcb->control.intercept);
2486
2487         /* Clear internal status */
2488         kvm_clear_exception_queue(&svm->vcpu);
2489         kvm_clear_interrupt_queue(&svm->vcpu);
2490
2491         /*
2492          * Save the old vmcb, so we don't need to pick what we save, but can
2493          * restore everything when a VMEXIT occurs
2494          */
2495         hsave->save.es     = vmcb->save.es;
2496         hsave->save.cs     = vmcb->save.cs;
2497         hsave->save.ss     = vmcb->save.ss;
2498         hsave->save.ds     = vmcb->save.ds;
2499         hsave->save.gdtr   = vmcb->save.gdtr;
2500         hsave->save.idtr   = vmcb->save.idtr;
2501         hsave->save.efer   = svm->vcpu.arch.efer;
2502         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2503         hsave->save.cr4    = svm->vcpu.arch.cr4;
2504         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2505         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2506         hsave->save.rsp    = vmcb->save.rsp;
2507         hsave->save.rax    = vmcb->save.rax;
2508         if (npt_enabled)
2509                 hsave->save.cr3    = vmcb->save.cr3;
2510         else
2511                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2512
2513         copy_vmcb_control_area(hsave, vmcb);
2514
2515         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2516                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2517         else
2518                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2519
2520         if (nested_vmcb->control.nested_ctl) {
2521                 kvm_mmu_unload(&svm->vcpu);
2522                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2523                 nested_svm_init_mmu_context(&svm->vcpu);
2524         }
2525
2526         /* Load the nested guest state */
2527         svm->vmcb->save.es = nested_vmcb->save.es;
2528         svm->vmcb->save.cs = nested_vmcb->save.cs;
2529         svm->vmcb->save.ss = nested_vmcb->save.ss;
2530         svm->vmcb->save.ds = nested_vmcb->save.ds;
2531         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2532         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2533         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2534         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2535         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2536         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2537         if (npt_enabled) {
2538                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2539                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2540         } else
2541                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2542
2543         /* Guest paging mode is active - reset mmu */
2544         kvm_mmu_reset_context(&svm->vcpu);
2545
2546         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2547         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2548         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2549         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2550
2551         /* In case we don't even reach vcpu_run, the fields are not updated */
2552         svm->vmcb->save.rax = nested_vmcb->save.rax;
2553         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2554         svm->vmcb->save.rip = nested_vmcb->save.rip;
2555         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2556         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2557         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2558
2559         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2560         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2561
2562         /* cache intercepts */
2563         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2564         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2565         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2566         svm->nested.intercept            = nested_vmcb->control.intercept;
2567
2568         svm_flush_tlb(&svm->vcpu);
2569         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2570         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2571                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2572         else
2573                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2574
2575         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2576                 /* We only want the cr8 intercept bits of the guest */
2577                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2578                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2579         }
2580
2581         /* We don't want to see VMMCALLs from a nested guest */
2582         clr_intercept(svm, INTERCEPT_VMMCALL);
2583
2584         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2585         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2586         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2587         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2588         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2589         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2590
2591         nested_svm_unmap(page);
2592
2593         /* Enter Guest-Mode */
2594         enter_guest_mode(&svm->vcpu);
2595
2596         /*
2597          * Merge guest and host intercepts - must be called  with vcpu in
2598          * guest-mode to take affect here
2599          */
2600         recalc_intercepts(svm);
2601
2602         svm->nested.vmcb = vmcb_gpa;
2603
2604         enable_gif(svm);
2605
2606         mark_all_dirty(svm->vmcb);
2607
2608         return true;
2609 }
2610
2611 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2612 {
2613         to_vmcb->save.fs = from_vmcb->save.fs;
2614         to_vmcb->save.gs = from_vmcb->save.gs;
2615         to_vmcb->save.tr = from_vmcb->save.tr;
2616         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2617         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2618         to_vmcb->save.star = from_vmcb->save.star;
2619         to_vmcb->save.lstar = from_vmcb->save.lstar;
2620         to_vmcb->save.cstar = from_vmcb->save.cstar;
2621         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2622         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2623         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2624         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2625 }
2626
2627 static int vmload_interception(struct vcpu_svm *svm)
2628 {
2629         struct vmcb *nested_vmcb;
2630         struct page *page;
2631
2632         if (nested_svm_check_permissions(svm))
2633                 return 1;
2634
2635         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2636         if (!nested_vmcb)
2637                 return 1;
2638
2639         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2640         skip_emulated_instruction(&svm->vcpu);
2641
2642         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2643         nested_svm_unmap(page);
2644
2645         return 1;
2646 }
2647
2648 static int vmsave_interception(struct vcpu_svm *svm)
2649 {
2650         struct vmcb *nested_vmcb;
2651         struct page *page;
2652
2653         if (nested_svm_check_permissions(svm))
2654                 return 1;
2655
2656         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2657         if (!nested_vmcb)
2658                 return 1;
2659
2660         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2661         skip_emulated_instruction(&svm->vcpu);
2662
2663         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2664         nested_svm_unmap(page);
2665
2666         return 1;
2667 }
2668
2669 static int vmrun_interception(struct vcpu_svm *svm)
2670 {
2671         if (nested_svm_check_permissions(svm))
2672                 return 1;
2673
2674         /* Save rip after vmrun instruction */
2675         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2676
2677         if (!nested_svm_vmrun(svm))
2678                 return 1;
2679
2680         if (!nested_svm_vmrun_msrpm(svm))
2681                 goto failed;
2682
2683         return 1;
2684
2685 failed:
2686
2687         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2688         svm->vmcb->control.exit_code_hi = 0;
2689         svm->vmcb->control.exit_info_1  = 0;
2690         svm->vmcb->control.exit_info_2  = 0;
2691
2692         nested_svm_vmexit(svm);
2693
2694         return 1;
2695 }
2696
2697 static int stgi_interception(struct vcpu_svm *svm)
2698 {
2699         if (nested_svm_check_permissions(svm))
2700                 return 1;
2701
2702         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2703         skip_emulated_instruction(&svm->vcpu);
2704         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2705
2706         enable_gif(svm);
2707
2708         return 1;
2709 }
2710
2711 static int clgi_interception(struct vcpu_svm *svm)
2712 {
2713         if (nested_svm_check_permissions(svm))
2714                 return 1;
2715
2716         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2717         skip_emulated_instruction(&svm->vcpu);
2718
2719         disable_gif(svm);
2720
2721         /* After a CLGI no interrupts should come */
2722         svm_clear_vintr(svm);
2723         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2724
2725         mark_dirty(svm->vmcb, VMCB_INTR);
2726
2727         return 1;
2728 }
2729
2730 static int invlpga_interception(struct vcpu_svm *svm)
2731 {
2732         struct kvm_vcpu *vcpu = &svm->vcpu;
2733
2734         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2735                           vcpu->arch.regs[VCPU_REGS_RAX]);
2736
2737         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2738         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2739
2740         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2741         skip_emulated_instruction(&svm->vcpu);
2742         return 1;
2743 }
2744
2745 static int skinit_interception(struct vcpu_svm *svm)
2746 {
2747         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2748
2749         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2750         return 1;
2751 }
2752
2753 static int xsetbv_interception(struct vcpu_svm *svm)
2754 {
2755         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2756         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2757
2758         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2759                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2760                 skip_emulated_instruction(&svm->vcpu);
2761         }
2762
2763         return 1;
2764 }
2765
2766 static int task_switch_interception(struct vcpu_svm *svm)
2767 {
2768         u16 tss_selector;
2769         int reason;
2770         int int_type = svm->vmcb->control.exit_int_info &
2771                 SVM_EXITINTINFO_TYPE_MASK;
2772         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2773         uint32_t type =
2774                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2775         uint32_t idt_v =
2776                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2777         bool has_error_code = false;
2778         u32 error_code = 0;
2779
2780         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2781
2782         if (svm->vmcb->control.exit_info_2 &
2783             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2784                 reason = TASK_SWITCH_IRET;
2785         else if (svm->vmcb->control.exit_info_2 &
2786                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2787                 reason = TASK_SWITCH_JMP;
2788         else if (idt_v)
2789                 reason = TASK_SWITCH_GATE;
2790         else
2791                 reason = TASK_SWITCH_CALL;
2792
2793         if (reason == TASK_SWITCH_GATE) {
2794                 switch (type) {
2795                 case SVM_EXITINTINFO_TYPE_NMI:
2796                         svm->vcpu.arch.nmi_injected = false;
2797                         break;
2798                 case SVM_EXITINTINFO_TYPE_EXEPT:
2799                         if (svm->vmcb->control.exit_info_2 &
2800                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2801                                 has_error_code = true;
2802                                 error_code =
2803                                         (u32)svm->vmcb->control.exit_info_2;
2804                         }
2805                         kvm_clear_exception_queue(&svm->vcpu);
2806                         break;
2807                 case SVM_EXITINTINFO_TYPE_INTR:
2808                         kvm_clear_interrupt_queue(&svm->vcpu);
2809                         break;
2810                 default:
2811                         break;
2812                 }
2813         }
2814
2815         if (reason != TASK_SWITCH_GATE ||
2816             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2817             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2818              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2819                 skip_emulated_instruction(&svm->vcpu);
2820
2821         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2822                 int_vec = -1;
2823
2824         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2825                                 has_error_code, error_code) == EMULATE_FAIL) {
2826                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2827                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2828                 svm->vcpu.run->internal.ndata = 0;
2829                 return 0;
2830         }
2831         return 1;
2832 }
2833
2834 static int cpuid_interception(struct vcpu_svm *svm)
2835 {
2836         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2837         kvm_emulate_cpuid(&svm->vcpu);
2838         return 1;
2839 }
2840
2841 static int iret_interception(struct vcpu_svm *svm)
2842 {
2843         ++svm->vcpu.stat.nmi_window_exits;
2844         clr_intercept(svm, INTERCEPT_IRET);
2845         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2846         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2847         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2848         return 1;
2849 }
2850
2851 static int invlpg_interception(struct vcpu_svm *svm)
2852 {
2853         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2854                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2855
2856         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2857         skip_emulated_instruction(&svm->vcpu);
2858         return 1;
2859 }
2860
2861 static int emulate_on_interception(struct vcpu_svm *svm)
2862 {
2863         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2864 }
2865
2866 static int rdpmc_interception(struct vcpu_svm *svm)
2867 {
2868         int err;
2869
2870         if (!static_cpu_has(X86_FEATURE_NRIPS))
2871                 return emulate_on_interception(svm);
2872
2873         err = kvm_rdpmc(&svm->vcpu);
2874         kvm_complete_insn_gp(&svm->vcpu, err);
2875
2876         return 1;
2877 }
2878
2879 bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2880 {
2881         unsigned long cr0 = svm->vcpu.arch.cr0;
2882         bool ret = false;
2883         u64 intercept;
2884
2885         intercept = svm->nested.intercept;
2886
2887         if (!is_guest_mode(&svm->vcpu) ||
2888             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2889                 return false;
2890
2891         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2892         val &= ~SVM_CR0_SELECTIVE_MASK;
2893
2894         if (cr0 ^ val) {
2895                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2896                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2897         }
2898
2899         return ret;
2900 }
2901
2902 #define CR_VALID (1ULL << 63)
2903
2904 static int cr_interception(struct vcpu_svm *svm)
2905 {
2906         int reg, cr;
2907         unsigned long val;
2908         int err;
2909
2910         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2911                 return emulate_on_interception(svm);
2912
2913         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2914                 return emulate_on_interception(svm);
2915
2916         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2917         cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2918
2919         err = 0;
2920         if (cr >= 16) { /* mov to cr */
2921                 cr -= 16;
2922                 val = kvm_register_read(&svm->vcpu, reg);
2923                 switch (cr) {
2924                 case 0:
2925                         if (!check_selective_cr0_intercepted(svm, val))
2926                                 err = kvm_set_cr0(&svm->vcpu, val);
2927                         else
2928                                 return 1;
2929
2930                         break;
2931                 case 3:
2932                         err = kvm_set_cr3(&svm->vcpu, val);
2933                         break;
2934                 case 4:
2935                         err = kvm_set_cr4(&svm->vcpu, val);
2936                         break;
2937                 case 8:
2938                         err = kvm_set_cr8(&svm->vcpu, val);
2939                         break;
2940                 default:
2941                         WARN(1, "unhandled write to CR%d", cr);
2942                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2943                         return 1;
2944                 }
2945         } else { /* mov from cr */
2946                 switch (cr) {
2947                 case 0:
2948                         val = kvm_read_cr0(&svm->vcpu);
2949                         break;
2950                 case 2:
2951                         val = svm->vcpu.arch.cr2;
2952                         break;
2953                 case 3:
2954                         val = kvm_read_cr3(&svm->vcpu);
2955                         break;
2956                 case 4:
2957                         val = kvm_read_cr4(&svm->vcpu);
2958                         break;
2959                 case 8:
2960                         val = kvm_get_cr8(&svm->vcpu);
2961                         break;
2962                 default:
2963                         WARN(1, "unhandled read from CR%d", cr);
2964                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2965                         return 1;
2966                 }
2967                 kvm_register_write(&svm->vcpu, reg, val);
2968         }
2969         kvm_complete_insn_gp(&svm->vcpu, err);
2970
2971         return 1;
2972 }
2973
2974 static int dr_interception(struct vcpu_svm *svm)
2975 {
2976         int reg, dr;
2977         unsigned long val;
2978         int err;
2979
2980         if (svm->vcpu.guest_debug == 0) {
2981                 /*
2982                  * No more DR vmexits; force a reload of the debug registers
2983                  * and reenter on this instruction.  The next vmexit will
2984                  * retrieve the full state of the debug registers.
2985                  */
2986                 clr_dr_intercepts(svm);
2987                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2988                 return 1;
2989         }
2990
2991         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2992                 return emulate_on_interception(svm);
2993
2994         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2995         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2996
2997         if (dr >= 16) { /* mov to DRn */
2998                 val = kvm_register_read(&svm->vcpu, reg);
2999                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3000         } else {
3001                 err = kvm_get_dr(&svm->vcpu, dr, &val);
3002                 if (!err)
3003                         kvm_register_write(&svm->vcpu, reg, val);
3004         }
3005
3006         skip_emulated_instruction(&svm->vcpu);
3007
3008         return 1;
3009 }
3010
3011 static int cr8_write_interception(struct vcpu_svm *svm)
3012 {
3013         struct kvm_run *kvm_run = svm->vcpu.run;
3014         int r;
3015
3016         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3017         /* instruction emulation calls kvm_set_cr8() */
3018         r = cr_interception(svm);
3019         if (irqchip_in_kernel(svm->vcpu.kvm))
3020                 return r;
3021         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3022                 return r;
3023         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3024         return 0;
3025 }
3026
3027 u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3028 {
3029         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3030         return vmcb->control.tsc_offset +
3031                 svm_scale_tsc(vcpu, host_tsc);
3032 }
3033
3034 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3035 {
3036         struct vcpu_svm *svm = to_svm(vcpu);
3037
3038         switch (ecx) {
3039         case MSR_IA32_TSC: {
3040                 *data = svm->vmcb->control.tsc_offset +
3041                         svm_scale_tsc(vcpu, native_read_tsc());
3042
3043                 break;
3044         }
3045         case MSR_STAR:
3046                 *data = svm->vmcb->save.star;
3047                 break;
3048 #ifdef CONFIG_X86_64
3049         case MSR_LSTAR:
3050                 *data = svm->vmcb->save.lstar;
3051                 break;
3052         case MSR_CSTAR:
3053                 *data = svm->vmcb->save.cstar;
3054                 break;
3055         case MSR_KERNEL_GS_BASE:
3056                 *data = svm->vmcb->save.kernel_gs_base;
3057                 break;
3058         case MSR_SYSCALL_MASK:
3059                 *data = svm->vmcb->save.sfmask;
3060                 break;
3061 #endif
3062         case MSR_IA32_SYSENTER_CS:
3063                 *data = svm->vmcb->save.sysenter_cs;
3064                 break;
3065         case MSR_IA32_SYSENTER_EIP:
3066                 *data = svm->sysenter_eip;
3067                 break;
3068         case MSR_IA32_SYSENTER_ESP:
3069                 *data = svm->sysenter_esp;
3070                 break;
3071         /*
3072          * Nobody will change the following 5 values in the VMCB so we can
3073          * safely return them on rdmsr. They will always be 0 until LBRV is
3074          * implemented.
3075          */
3076         case MSR_IA32_DEBUGCTLMSR:
3077                 *data = svm->vmcb->save.dbgctl;
3078                 break;
3079         case MSR_IA32_LASTBRANCHFROMIP:
3080                 *data = svm->vmcb->save.br_from;
3081                 break;
3082         case MSR_IA32_LASTBRANCHTOIP:
3083                 *data = svm->vmcb->save.br_to;
3084                 break;
3085         case MSR_IA32_LASTINTFROMIP:
3086                 *data = svm->vmcb->save.last_excp_from;
3087                 break;
3088         case MSR_IA32_LASTINTTOIP:
3089                 *data = svm->vmcb->save.last_excp_to;
3090                 break;
3091         case MSR_VM_HSAVE_PA:
3092                 *data = svm->nested.hsave_msr;
3093                 break;
3094         case MSR_VM_CR:
3095                 *data = svm->nested.vm_cr_msr;
3096                 break;
3097         case MSR_IA32_UCODE_REV:
3098                 *data = 0x01000065;
3099                 break;
3100         default:
3101                 return kvm_get_msr_common(vcpu, ecx, data);
3102         }
3103         return 0;
3104 }
3105
3106 static int rdmsr_interception(struct vcpu_svm *svm)
3107 {
3108         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3109         u64 data;
3110
3111         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3112                 trace_kvm_msr_read_ex(ecx);
3113                 kvm_inject_gp(&svm->vcpu, 0);
3114         } else {
3115                 trace_kvm_msr_read(ecx, data);
3116
3117                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3118                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3119                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3120                 skip_emulated_instruction(&svm->vcpu);
3121         }
3122         return 1;
3123 }
3124
3125 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3126 {
3127         struct vcpu_svm *svm = to_svm(vcpu);
3128         int svm_dis, chg_mask;
3129
3130         if (data & ~SVM_VM_CR_VALID_MASK)
3131                 return 1;
3132
3133         chg_mask = SVM_VM_CR_VALID_MASK;
3134
3135         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3136                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3137
3138         svm->nested.vm_cr_msr &= ~chg_mask;
3139         svm->nested.vm_cr_msr |= (data & chg_mask);
3140
3141         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3142
3143         /* check for svm_disable while efer.svme is set */
3144         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3145                 return 1;
3146
3147         return 0;
3148 }
3149
3150 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3151 {
3152         struct vcpu_svm *svm = to_svm(vcpu);
3153
3154         u32 ecx = msr->index;
3155         u64 data = msr->data;
3156         switch (ecx) {
3157         case MSR_IA32_TSC:
3158                 kvm_write_tsc(vcpu, msr);
3159                 break;
3160         case MSR_STAR:
3161                 svm->vmcb->save.star = data;
3162                 break;
3163 #ifdef CONFIG_X86_64
3164         case MSR_LSTAR:
3165                 svm->vmcb->save.lstar = data;
3166                 break;
3167         case MSR_CSTAR:
3168                 svm->vmcb->save.cstar = data;
3169                 break;
3170         case MSR_KERNEL_GS_BASE:
3171                 svm->vmcb->save.kernel_gs_base = data;
3172                 break;
3173         case MSR_SYSCALL_MASK:
3174                 svm->vmcb->save.sfmask = data;
3175                 break;
3176 #endif
3177         case MSR_IA32_SYSENTER_CS:
3178                 svm->vmcb->save.sysenter_cs = data;
3179                 break;
3180         case MSR_IA32_SYSENTER_EIP:
3181                 svm->sysenter_eip = data;
3182                 svm->vmcb->save.sysenter_eip = data;
3183                 break;
3184         case MSR_IA32_SYSENTER_ESP:
3185                 svm->sysenter_esp = data;
3186                 svm->vmcb->save.sysenter_esp = data;
3187                 break;
3188         case MSR_IA32_DEBUGCTLMSR:
3189                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3190                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3191                                     __func__, data);
3192                         break;
3193                 }
3194                 if (data & DEBUGCTL_RESERVED_BITS)
3195                         return 1;
3196
3197                 svm->vmcb->save.dbgctl = data;
3198                 mark_dirty(svm->vmcb, VMCB_LBR);
3199                 if (data & (1ULL<<0))
3200                         svm_enable_lbrv(svm);
3201                 else
3202                         svm_disable_lbrv(svm);
3203                 break;
3204         case MSR_VM_HSAVE_PA:
3205                 svm->nested.hsave_msr = data;
3206                 break;
3207         case MSR_VM_CR:
3208                 return svm_set_vm_cr(vcpu, data);
3209         case MSR_VM_IGNNE:
3210                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3211                 break;
3212         default:
3213                 return kvm_set_msr_common(vcpu, msr);
3214         }
3215         return 0;
3216 }
3217
3218 static int wrmsr_interception(struct vcpu_svm *svm)
3219 {
3220         struct msr_data msr;
3221         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3222         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3223                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3224
3225         msr.data = data;
3226         msr.index = ecx;
3227         msr.host_initiated = false;
3228
3229         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3230         if (svm_set_msr(&svm->vcpu, &msr)) {
3231                 trace_kvm_msr_write_ex(ecx, data);
3232                 kvm_inject_gp(&svm->vcpu, 0);
3233         } else {
3234                 trace_kvm_msr_write(ecx, data);
3235                 skip_emulated_instruction(&svm->vcpu);
3236         }
3237         return 1;
3238 }
3239
3240 static int msr_interception(struct vcpu_svm *svm)
3241 {
3242         if (svm->vmcb->control.exit_info_1)
3243                 return wrmsr_interception(svm);
3244         else
3245                 return rdmsr_interception(svm);
3246 }
3247
3248 static int interrupt_window_interception(struct vcpu_svm *svm)
3249 {
3250         struct kvm_run *kvm_run = svm->vcpu.run;
3251
3252         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3253         svm_clear_vintr(svm);
3254         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3255         mark_dirty(svm->vmcb, VMCB_INTR);
3256         ++svm->vcpu.stat.irq_window_exits;
3257         /*
3258          * If the user space waits to inject interrupts, exit as soon as
3259          * possible
3260          */
3261         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3262             kvm_run->request_interrupt_window &&
3263             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3264                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3265                 return 0;
3266         }
3267
3268         return 1;
3269 }
3270
3271 static int pause_interception(struct vcpu_svm *svm)
3272 {
3273         kvm_vcpu_on_spin(&(svm->vcpu));
3274         return 1;
3275 }
3276
3277 static int nop_interception(struct vcpu_svm *svm)
3278 {
3279         skip_emulated_instruction(&(svm->vcpu));
3280         return 1;
3281 }
3282
3283 static int monitor_interception(struct vcpu_svm *svm)
3284 {
3285         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3286         return nop_interception(svm);
3287 }
3288
3289 static int mwait_interception(struct vcpu_svm *svm)
3290 {
3291         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3292         return nop_interception(svm);
3293 }
3294
3295 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3296         [SVM_EXIT_READ_CR0]                     = cr_interception,
3297         [SVM_EXIT_READ_CR3]                     = cr_interception,
3298         [SVM_EXIT_READ_CR4]                     = cr_interception,
3299         [SVM_EXIT_READ_CR8]                     = cr_interception,
3300         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3301         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3302         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3303         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3304         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3305         [SVM_EXIT_READ_DR0]                     = dr_interception,
3306         [SVM_EXIT_READ_DR1]                     = dr_interception,
3307         [SVM_EXIT_READ_DR2]                     = dr_interception,
3308         [SVM_EXIT_READ_DR3]                     = dr_interception,
3309         [SVM_EXIT_READ_DR4]                     = dr_interception,
3310         [SVM_EXIT_READ_DR5]                     = dr_interception,
3311         [SVM_EXIT_READ_DR6]                     = dr_interception,
3312         [SVM_EXIT_READ_DR7]                     = dr_interception,
3313         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3314         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3315         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3316         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3317         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3318         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3319         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3320         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3321         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3322         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3323         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3324         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3325         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3326         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3327         [SVM_EXIT_INTR]                         = intr_interception,
3328         [SVM_EXIT_NMI]                          = nmi_interception,
3329         [SVM_EXIT_SMI]                          = nop_on_interception,
3330         [SVM_EXIT_INIT]                         = nop_on_interception,
3331         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3332         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3333         [SVM_EXIT_CPUID]                        = cpuid_interception,
3334         [SVM_EXIT_IRET]                         = iret_interception,
3335         [SVM_EXIT_INVD]                         = emulate_on_interception,
3336         [SVM_EXIT_PAUSE]                        = pause_interception,
3337         [SVM_EXIT_HLT]                          = halt_interception,
3338         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3339         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3340         [SVM_EXIT_IOIO]                         = io_interception,
3341         [SVM_EXIT_MSR]                          = msr_interception,
3342         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3343         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3344         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3345         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3346         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3347         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3348         [SVM_EXIT_STGI]                         = stgi_interception,
3349         [SVM_EXIT_CLGI]                         = clgi_interception,
3350         [SVM_EXIT_SKINIT]                       = skinit_interception,
3351         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3352         [SVM_EXIT_MONITOR]                      = monitor_interception,
3353         [SVM_EXIT_MWAIT]                        = mwait_interception,
3354         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3355         [SVM_EXIT_NPF]                          = pf_interception,
3356 };
3357
3358 static void dump_vmcb(struct kvm_vcpu *vcpu)
3359 {
3360         struct vcpu_svm *svm = to_svm(vcpu);
3361         struct vmcb_control_area *control = &svm->vmcb->control;
3362         struct vmcb_save_area *save = &svm->vmcb->save;
3363
3364         pr_err("VMCB Control Area:\n");
3365         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3366         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3367         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3368         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3369         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3370         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3371         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3372         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3373         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3374         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3375         pr_err("%-20s%d\n", "asid:", control->asid);
3376         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3377         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3378         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3379         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3380         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3381         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3382         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3383         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3384         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3385         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3386         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3387         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3388         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3389         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3390         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3391         pr_err("VMCB State Save Area:\n");
3392         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3393                "es:",
3394                save->es.selector, save->es.attrib,
3395                save->es.limit, save->es.base);
3396         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3397                "cs:",
3398                save->cs.selector, save->cs.attrib,
3399                save->cs.limit, save->cs.base);
3400         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3401                "ss:",
3402                save->ss.selector, save->ss.attrib,
3403                save->ss.limit, save->ss.base);
3404         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3405                "ds:",
3406                save->ds.selector, save->ds.attrib,
3407                save->ds.limit, save->ds.base);
3408         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3409                "fs:",
3410                save->fs.selector, save->fs.attrib,
3411                save->fs.limit, save->fs.base);
3412         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3413                "gs:",
3414                save->gs.selector, save->gs.attrib,
3415                save->gs.limit, save->gs.base);
3416         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3417                "gdtr:",
3418                save->gdtr.selector, save->gdtr.attrib,
3419                save->gdtr.limit, save->gdtr.base);
3420         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3421                "ldtr:",
3422                save->ldtr.selector, save->ldtr.attrib,
3423                save->ldtr.limit, save->ldtr.base);
3424         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3425                "idtr:",
3426                save->idtr.selector, save->idtr.attrib,
3427                save->idtr.limit, save->idtr.base);
3428         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3429                "tr:",
3430                save->tr.selector, save->tr.attrib,
3431                save->tr.limit, save->tr.base);
3432         pr_err("cpl:            %d                efer:         %016llx\n",
3433                 save->cpl, save->efer);
3434         pr_err("%-15s %016llx %-13s %016llx\n",
3435                "cr0:", save->cr0, "cr2:", save->cr2);
3436         pr_err("%-15s %016llx %-13s %016llx\n",
3437                "cr3:", save->cr3, "cr4:", save->cr4);
3438         pr_err("%-15s %016llx %-13s %016llx\n",
3439                "dr6:", save->dr6, "dr7:", save->dr7);
3440         pr_err("%-15s %016llx %-13s %016llx\n",
3441                "rip:", save->rip, "rflags:", save->rflags);
3442         pr_err("%-15s %016llx %-13s %016llx\n",
3443                "rsp:", save->rsp, "rax:", save->rax);
3444         pr_err("%-15s %016llx %-13s %016llx\n",
3445                "star:", save->star, "lstar:", save->lstar);
3446         pr_err("%-15s %016llx %-13s %016llx\n",
3447                "cstar:", save->cstar, "sfmask:", save->sfmask);
3448         pr_err("%-15s %016llx %-13s %016llx\n",
3449                "kernel_gs_base:", save->kernel_gs_base,
3450                "sysenter_cs:", save->sysenter_cs);
3451         pr_err("%-15s %016llx %-13s %016llx\n",
3452                "sysenter_esp:", save->sysenter_esp,
3453                "sysenter_eip:", save->sysenter_eip);
3454         pr_err("%-15s %016llx %-13s %016llx\n",
3455                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3456         pr_err("%-15s %016llx %-13s %016llx\n",
3457                "br_from:", save->br_from, "br_to:", save->br_to);
3458         pr_err("%-15s %016llx %-13s %016llx\n",
3459                "excp_from:", save->last_excp_from,
3460                "excp_to:", save->last_excp_to);
3461 }
3462
3463 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3464 {
3465         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3466
3467         *info1 = control->exit_info_1;
3468         *info2 = control->exit_info_2;
3469 }
3470
3471 static int handle_exit(struct kvm_vcpu *vcpu)
3472 {
3473         struct vcpu_svm *svm = to_svm(vcpu);
3474         struct kvm_run *kvm_run = vcpu->run;
3475         u32 exit_code = svm->vmcb->control.exit_code;
3476
3477         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3478                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3479         if (npt_enabled)
3480                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3481
3482         if (unlikely(svm->nested.exit_required)) {
3483                 nested_svm_vmexit(svm);
3484                 svm->nested.exit_required = false;
3485
3486                 return 1;
3487         }
3488
3489         if (is_guest_mode(vcpu)) {
3490                 int vmexit;
3491
3492                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3493                                         svm->vmcb->control.exit_info_1,
3494                                         svm->vmcb->control.exit_info_2,
3495                                         svm->vmcb->control.exit_int_info,
3496                                         svm->vmcb->control.exit_int_info_err,
3497                                         KVM_ISA_SVM);
3498
3499                 vmexit = nested_svm_exit_special(svm);
3500
3501                 if (vmexit == NESTED_EXIT_CONTINUE)
3502                         vmexit = nested_svm_exit_handled(svm);
3503
3504                 if (vmexit == NESTED_EXIT_DONE)
3505                         return 1;
3506         }
3507
3508         svm_complete_interrupts(svm);
3509
3510         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3511                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3512                 kvm_run->fail_entry.hardware_entry_failure_reason
3513                         = svm->vmcb->control.exit_code;
3514                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3515                 dump_vmcb(vcpu);
3516                 return 0;
3517         }
3518
3519         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3520             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3521             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3522             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3523                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3524                        "exit_code 0x%x\n",
3525                        __func__, svm->vmcb->control.exit_int_info,
3526                        exit_code);
3527
3528         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3529             || !svm_exit_handlers[exit_code]) {
3530                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3531                 kvm_run->hw.hardware_exit_reason = exit_code;
3532                 return 0;
3533         }
3534
3535         return svm_exit_handlers[exit_code](svm);
3536 }
3537
3538 static void reload_tss(struct kvm_vcpu *vcpu)
3539 {
3540         int cpu = raw_smp_processor_id();
3541
3542         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3543         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3544         load_TR_desc();
3545 }
3546
3547 static void pre_svm_run(struct vcpu_svm *svm)
3548 {
3549         int cpu = raw_smp_processor_id();
3550
3551         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3552
3553         /* FIXME: handle wraparound of asid_generation */
3554         if (svm->asid_generation != sd->asid_generation)
3555                 new_asid(svm, sd);
3556 }
3557
3558 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3559 {
3560         struct vcpu_svm *svm = to_svm(vcpu);
3561
3562         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3563         vcpu->arch.hflags |= HF_NMI_MASK;
3564         set_intercept(svm, INTERCEPT_IRET);
3565         ++vcpu->stat.nmi_injections;
3566 }
3567
3568 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3569 {
3570         struct vmcb_control_area *control;
3571
3572         control = &svm->vmcb->control;
3573         control->int_vector = irq;
3574         control->int_ctl &= ~V_INTR_PRIO_MASK;
3575         control->int_ctl |= V_IRQ_MASK |
3576                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3577         mark_dirty(svm->vmcb, VMCB_INTR);
3578 }
3579
3580 static void svm_set_irq(struct kvm_vcpu *vcpu)
3581 {
3582         struct vcpu_svm *svm = to_svm(vcpu);
3583
3584         BUG_ON(!(gif_set(svm)));
3585
3586         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3587         ++vcpu->stat.irq_injections;
3588
3589         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3590                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3591 }
3592
3593 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3594 {
3595         struct vcpu_svm *svm = to_svm(vcpu);
3596
3597         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3598                 return;
3599
3600         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3601
3602         if (irr == -1)
3603                 return;
3604
3605         if (tpr >= irr)
3606                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3607 }
3608
3609 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3610 {
3611         return;
3612 }
3613
3614 static int svm_vm_has_apicv(struct kvm *kvm)
3615 {
3616         return 0;
3617 }
3618
3619 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3620 {
3621         return;
3622 }
3623
3624 static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3625 {
3626         return;
3627 }
3628
3629 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3630 {
3631         return;
3632 }
3633
3634 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3635 {
3636         struct vcpu_svm *svm = to_svm(vcpu);
3637         struct vmcb *vmcb = svm->vmcb;
3638         int ret;
3639         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3640               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3641         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3642
3643         return ret;
3644 }
3645
3646 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3647 {
3648         struct vcpu_svm *svm = to_svm(vcpu);
3649
3650         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3651 }
3652
3653 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3654 {
3655         struct vcpu_svm *svm = to_svm(vcpu);
3656
3657         if (masked) {
3658                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3659                 set_intercept(svm, INTERCEPT_IRET);
3660         } else {
3661                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3662                 clr_intercept(svm, INTERCEPT_IRET);
3663         }
3664 }
3665
3666 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3667 {
3668         struct vcpu_svm *svm = to_svm(vcpu);
3669         struct vmcb *vmcb = svm->vmcb;
3670         int ret;
3671
3672         if (!gif_set(svm) ||
3673              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3674                 return 0;
3675
3676         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3677
3678         if (is_guest_mode(vcpu))
3679                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3680
3681         return ret;
3682 }
3683
3684 static void enable_irq_window(struct kvm_vcpu *vcpu)
3685 {
3686         struct vcpu_svm *svm = to_svm(vcpu);
3687
3688         /*
3689          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3690          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3691          * get that intercept, this function will be called again though and
3692          * we'll get the vintr intercept.
3693          */
3694         if (gif_set(svm) && nested_svm_intr(svm)) {
3695                 svm_set_vintr(svm);
3696                 svm_inject_irq(svm, 0x0);
3697         }
3698 }
3699
3700 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3701 {
3702         struct vcpu_svm *svm = to_svm(vcpu);
3703
3704         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3705             == HF_NMI_MASK)
3706                 return; /* IRET will cause a vm exit */
3707
3708         /*
3709          * Something prevents NMI from been injected. Single step over possible
3710          * problem (IRET or exception injection or interrupt shadow)
3711          */
3712         svm->nmi_singlestep = true;
3713         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3714         update_db_bp_intercept(vcpu);
3715 }
3716
3717 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3718 {
3719         return 0;
3720 }
3721
3722 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3723 {
3724         struct vcpu_svm *svm = to_svm(vcpu);
3725
3726         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3727                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3728         else
3729                 svm->asid_generation--;
3730 }
3731
3732 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3733 {
3734 }
3735
3736 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3737 {
3738         struct vcpu_svm *svm = to_svm(vcpu);
3739
3740         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3741                 return;
3742
3743         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3744                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3745                 kvm_set_cr8(vcpu, cr8);
3746         }
3747 }
3748
3749 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3750 {
3751         struct vcpu_svm *svm = to_svm(vcpu);
3752         u64 cr8;
3753
3754         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3755                 return;
3756
3757         cr8 = kvm_get_cr8(vcpu);
3758         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3759         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3760 }
3761
3762 static void svm_complete_interrupts(struct vcpu_svm *svm)
3763 {
3764         u8 vector;
3765         int type;
3766         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3767         unsigned int3_injected = svm->int3_injected;
3768
3769         svm->int3_injected = 0;
3770
3771         /*
3772          * If we've made progress since setting HF_IRET_MASK, we've
3773          * executed an IRET and can allow NMI injection.
3774          */
3775         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3776             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3777                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3778                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3779         }
3780
3781         svm->vcpu.arch.nmi_injected = false;
3782         kvm_clear_exception_queue(&svm->vcpu);
3783         kvm_clear_interrupt_queue(&svm->vcpu);
3784
3785         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3786                 return;
3787
3788         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3789
3790         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3791         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3792
3793         switch (type) {
3794         case SVM_EXITINTINFO_TYPE_NMI:
3795                 svm->vcpu.arch.nmi_injected = true;
3796                 break;
3797         case SVM_EXITINTINFO_TYPE_EXEPT:
3798                 /*
3799                  * In case of software exceptions, do not reinject the vector,
3800                  * but re-execute the instruction instead. Rewind RIP first
3801                  * if we emulated INT3 before.
3802                  */
3803                 if (kvm_exception_is_soft(vector)) {
3804                         if (vector == BP_VECTOR && int3_injected &&
3805                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3806                                 kvm_rip_write(&svm->vcpu,
3807                                               kvm_rip_read(&svm->vcpu) -
3808                                               int3_injected);
3809                         break;
3810                 }
3811                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3812                         u32 err = svm->vmcb->control.exit_int_info_err;
3813                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3814
3815                 } else
3816                         kvm_requeue_exception(&svm->vcpu, vector);
3817                 break;
3818         case SVM_EXITINTINFO_TYPE_INTR:
3819                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3820                 break;
3821         default:
3822                 break;
3823         }
3824 }
3825
3826 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3827 {
3828         struct vcpu_svm *svm = to_svm(vcpu);
3829         struct vmcb_control_area *control = &svm->vmcb->control;
3830
3831         control->exit_int_info = control->event_inj;
3832         control->exit_int_info_err = control->event_inj_err;
3833         control->event_inj = 0;
3834         svm_complete_interrupts(svm);
3835 }
3836
3837 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3838 {
3839         struct vcpu_svm *svm = to_svm(vcpu);
3840
3841         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3842         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3843         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3844
3845         /*
3846          * A vmexit emulation is required before the vcpu can be executed
3847          * again.
3848          */
3849         if (unlikely(svm->nested.exit_required))
3850                 return;
3851
3852         pre_svm_run(svm);
3853
3854         sync_lapic_to_cr8(vcpu);
3855
3856         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3857
3858         clgi();
3859
3860         local_irq_enable();
3861
3862         asm volatile (
3863                 "push %%" _ASM_BP "; \n\t"
3864                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3865                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3866                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3867                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3868                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3869                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3870 #ifdef CONFIG_X86_64
3871                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3872                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3873                 "mov %c[r10](%[svm]), %%r10 \n\t"
3874                 "mov %c[r11](%[svm]), %%r11 \n\t"
3875                 "mov %c[r12](%[svm]), %%r12 \n\t"
3876                 "mov %c[r13](%[svm]), %%r13 \n\t"
3877                 "mov %c[r14](%[svm]), %%r14 \n\t"
3878                 "mov %c[r15](%[svm]), %%r15 \n\t"
3879 #endif
3880
3881                 /* Enter guest mode */
3882                 "push %%" _ASM_AX " \n\t"
3883                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3884                 __ex(SVM_VMLOAD) "\n\t"
3885                 __ex(SVM_VMRUN) "\n\t"
3886                 __ex(SVM_VMSAVE) "\n\t"
3887                 "pop %%" _ASM_AX " \n\t"
3888
3889                 /* Save guest registers, load host registers */
3890                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3891                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3892                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3893                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3894                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3895                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3896 #ifdef CONFIG_X86_64
3897                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3898                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3899                 "mov %%r10, %c[r10](%[svm]) \n\t"
3900                 "mov %%r11, %c[r11](%[svm]) \n\t"
3901                 "mov %%r12, %c[r12](%[svm]) \n\t"
3902                 "mov %%r13, %c[r13](%[svm]) \n\t"
3903                 "mov %%r14, %c[r14](%[svm]) \n\t"
3904                 "mov %%r15, %c[r15](%[svm]) \n\t"
3905 #endif
3906                 "pop %%" _ASM_BP
3907                 :
3908                 : [svm]"a"(svm),
3909                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3910                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3911                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3912                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3913                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3914                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3915                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3916 #ifdef CONFIG_X86_64
3917                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3918                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3919                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3920                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3921                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3922                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3923                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3924                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3925 #endif
3926                 : "cc", "memory"
3927 #ifdef CONFIG_X86_64
3928                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3929                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3930 #else
3931                 , "ebx", "ecx", "edx", "esi", "edi"
3932 #endif
3933                 );
3934
3935 #ifdef CONFIG_X86_64
3936         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3937 #else
3938         loadsegment(fs, svm->host.fs);
3939 #ifndef CONFIG_X86_32_LAZY_GS
3940         loadsegment(gs, svm->host.gs);
3941 #endif
3942 #endif
3943
3944         reload_tss(vcpu);
3945
3946         local_irq_disable();
3947
3948         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3949         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3950         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3951         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3952
3953         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3954
3955         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3956                 kvm_before_handle_nmi(&svm->vcpu);
3957
3958         stgi();
3959
3960         /* Any pending NMI will happen here */
3961
3962         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3963                 kvm_after_handle_nmi(&svm->vcpu);
3964
3965         sync_cr8_to_lapic(vcpu);
3966
3967         svm->next_rip = 0;
3968
3969         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3970
3971         /* if exit due to PF check for async PF */
3972         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3973                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3974
3975         if (npt_enabled) {
3976                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3977                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3978         }
3979
3980         /*
3981          * We need to handle MC intercepts here before the vcpu has a chance to
3982          * change the physical cpu
3983          */
3984         if (unlikely(svm->vmcb->control.exit_code ==
3985                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3986                 svm_handle_mce(svm);
3987
3988         mark_all_clean(svm->vmcb);
3989 }
3990
3991 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3992 {
3993         struct vcpu_svm *svm = to_svm(vcpu);
3994
3995         svm->vmcb->save.cr3 = root;
3996         mark_dirty(svm->vmcb, VMCB_CR);
3997         svm_flush_tlb(vcpu);
3998 }
3999
4000 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4001 {
4002         struct vcpu_svm *svm = to_svm(vcpu);
4003
4004         svm->vmcb->control.nested_cr3 = root;
4005         mark_dirty(svm->vmcb, VMCB_NPT);
4006
4007         /* Also sync guest cr3 here in case we live migrate */
4008         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4009         mark_dirty(svm->vmcb, VMCB_CR);
4010
4011         svm_flush_tlb(vcpu);
4012 }
4013
4014 static int is_disabled(void)
4015 {
4016         u64 vm_cr;
4017
4018         rdmsrl(MSR_VM_CR, vm_cr);
4019         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4020                 return 1;
4021
4022         return 0;
4023 }
4024
4025 static void
4026 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4027 {
4028         /*
4029          * Patch in the VMMCALL instruction:
4030          */
4031         hypercall[0] = 0x0f;
4032         hypercall[1] = 0x01;
4033         hypercall[2] = 0xd9;
4034 }
4035
4036 static void svm_check_processor_compat(void *rtn)
4037 {
4038         *(int *)rtn = 0;
4039 }
4040
4041 static bool svm_cpu_has_accelerated_tpr(void)
4042 {
4043         return false;
4044 }
4045
4046 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4047 {
4048         return 0;
4049 }
4050
4051 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4052 {
4053 }
4054
4055 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4056 {
4057         switch (func) {
4058         case 0x80000001:
4059                 if (nested)
4060                         entry->ecx |= (1 << 2); /* Set SVM bit */
4061                 break;
4062         case 0x8000000A:
4063                 entry->eax = 1; /* SVM revision 1 */
4064                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4065                                    ASID emulation to nested SVM */
4066                 entry->ecx = 0; /* Reserved */
4067                 entry->edx = 0; /* Per default do not support any
4068                                    additional features */
4069
4070                 /* Support next_rip if host supports it */
4071                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4072                         entry->edx |= SVM_FEATURE_NRIP;
4073
4074                 /* Support NPT for the guest if enabled */
4075                 if (npt_enabled)
4076                         entry->edx |= SVM_FEATURE_NPT;
4077
4078                 break;
4079         }
4080 }
4081
4082 static int svm_get_lpage_level(void)
4083 {
4084         return PT_PDPE_LEVEL;
4085 }
4086
4087 static bool svm_rdtscp_supported(void)
4088 {
4089         return false;
4090 }
4091
4092 static bool svm_invpcid_supported(void)
4093 {
4094         return false;
4095 }
4096
4097 static bool svm_mpx_supported(void)
4098 {
4099         return false;
4100 }
4101
4102 static bool svm_has_wbinvd_exit(void)
4103 {
4104         return true;
4105 }
4106
4107 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4108 {
4109         struct vcpu_svm *svm = to_svm(vcpu);
4110
4111         set_exception_intercept(svm, NM_VECTOR);
4112         update_cr0_intercept(svm);
4113 }
4114
4115 #define PRE_EX(exit)  { .exit_code = (exit), \
4116                         .stage = X86_ICPT_PRE_EXCEPT, }
4117 #define POST_EX(exit) { .exit_code = (exit), \
4118                         .stage = X86_ICPT_POST_EXCEPT, }
4119 #define POST_MEM(exit) { .exit_code = (exit), \
4120                         .stage = X86_ICPT_POST_MEMACCESS, }
4121
4122 static const struct __x86_intercept {
4123         u32 exit_code;
4124         enum x86_intercept_stage stage;
4125 } x86_intercept_map[] = {
4126         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4127         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4128         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4129         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4130         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4131         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4132         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4133         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4134         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4135         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4136         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4137         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4138         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4139         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4140         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4141         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4142         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4143         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4144         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4145         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4146         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4147         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4148         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4149         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4150         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4151         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4152         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4153         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4154         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4155         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4156         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4157         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4158         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4159         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4160         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4161         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4162         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4163         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4164         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4165         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4166         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4167         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4168         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4169         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4170         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4171         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4172 };
4173
4174 #undef PRE_EX
4175 #undef POST_EX
4176 #undef POST_MEM
4177
4178 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4179                                struct x86_instruction_info *info,
4180                                enum x86_intercept_stage stage)
4181 {
4182         struct vcpu_svm *svm = to_svm(vcpu);
4183         int vmexit, ret = X86EMUL_CONTINUE;
4184         struct __x86_intercept icpt_info;
4185         struct vmcb *vmcb = svm->vmcb;
4186
4187         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4188                 goto out;
4189
4190         icpt_info = x86_intercept_map[info->intercept];
4191
4192         if (stage != icpt_info.stage)
4193                 goto out;
4194
4195         switch (icpt_info.exit_code) {
4196         case SVM_EXIT_READ_CR0:
4197                 if (info->intercept == x86_intercept_cr_read)
4198                         icpt_info.exit_code += info->modrm_reg;
4199                 break;
4200         case SVM_EXIT_WRITE_CR0: {
4201                 unsigned long cr0, val;
4202                 u64 intercept;
4203
4204                 if (info->intercept == x86_intercept_cr_write)
4205                         icpt_info.exit_code += info->modrm_reg;
4206
4207                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4208                         break;
4209
4210                 intercept = svm->nested.intercept;
4211
4212                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4213                         break;
4214
4215                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4216                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4217
4218                 if (info->intercept == x86_intercept_lmsw) {
4219                         cr0 &= 0xfUL;
4220                         val &= 0xfUL;
4221                         /* lmsw can't clear PE - catch this here */
4222                         if (cr0 & X86_CR0_PE)
4223                                 val |= X86_CR0_PE;
4224                 }
4225
4226                 if (cr0 ^ val)
4227                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4228
4229                 break;
4230         }
4231         case SVM_EXIT_READ_DR0:
4232         case SVM_EXIT_WRITE_DR0:
4233                 icpt_info.exit_code += info->modrm_reg;
4234                 break;
4235         case SVM_EXIT_MSR:
4236                 if (info->intercept == x86_intercept_wrmsr)
4237                         vmcb->control.exit_info_1 = 1;
4238                 else
4239                         vmcb->control.exit_info_1 = 0;
4240                 break;
4241         case SVM_EXIT_PAUSE:
4242                 /*
4243                  * We get this for NOP only, but pause
4244                  * is rep not, check this here
4245                  */
4246                 if (info->rep_prefix != REPE_PREFIX)
4247                         goto out;
4248         case SVM_EXIT_IOIO: {
4249                 u64 exit_info;
4250                 u32 bytes;
4251
4252                 exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4253
4254                 if (info->intercept == x86_intercept_in ||
4255                     info->intercept == x86_intercept_ins) {
4256                         exit_info |= SVM_IOIO_TYPE_MASK;
4257                         bytes = info->src_bytes;
4258                 } else {
4259                         bytes = info->dst_bytes;
4260                 }
4261
4262                 if (info->intercept == x86_intercept_outs ||
4263                     info->intercept == x86_intercept_ins)
4264                         exit_info |= SVM_IOIO_STR_MASK;
4265
4266                 if (info->rep_prefix)
4267                         exit_info |= SVM_IOIO_REP_MASK;
4268
4269                 bytes = min(bytes, 4u);
4270
4271                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4272
4273                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4274
4275                 vmcb->control.exit_info_1 = exit_info;
4276                 vmcb->control.exit_info_2 = info->next_rip;
4277
4278                 break;
4279         }
4280         default:
4281                 break;
4282         }
4283
4284         vmcb->control.next_rip  = info->next_rip;
4285         vmcb->control.exit_code = icpt_info.exit_code;
4286         vmexit = nested_svm_exit_handled(svm);
4287
4288         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4289                                            : X86EMUL_CONTINUE;
4290
4291 out:
4292         return ret;
4293 }
4294
4295 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4296 {
4297         local_irq_enable();
4298 }
4299
4300 static struct kvm_x86_ops svm_x86_ops = {
4301         .cpu_has_kvm_support = has_svm,
4302         .disabled_by_bios = is_disabled,
4303         .hardware_setup = svm_hardware_setup,
4304         .hardware_unsetup = svm_hardware_unsetup,
4305         .check_processor_compatibility = svm_check_processor_compat,
4306         .hardware_enable = svm_hardware_enable,
4307         .hardware_disable = svm_hardware_disable,
4308         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4309
4310         .vcpu_create = svm_create_vcpu,
4311         .vcpu_free = svm_free_vcpu,
4312         .vcpu_reset = svm_vcpu_reset,
4313
4314         .prepare_guest_switch = svm_prepare_guest_switch,
4315         .vcpu_load = svm_vcpu_load,
4316         .vcpu_put = svm_vcpu_put,
4317
4318         .update_db_bp_intercept = update_db_bp_intercept,
4319         .get_msr = svm_get_msr,
4320         .set_msr = svm_set_msr,
4321         .get_segment_base = svm_get_segment_base,
4322         .get_segment = svm_get_segment,
4323         .set_segment = svm_set_segment,
4324         .get_cpl = svm_get_cpl,
4325         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4326         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4327         .decache_cr3 = svm_decache_cr3,
4328         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4329         .set_cr0 = svm_set_cr0,
4330         .set_cr3 = svm_set_cr3,
4331         .set_cr4 = svm_set_cr4,
4332         .set_efer = svm_set_efer,
4333         .get_idt = svm_get_idt,
4334         .set_idt = svm_set_idt,
4335         .get_gdt = svm_get_gdt,
4336         .set_gdt = svm_set_gdt,
4337         .get_dr6 = svm_get_dr6,
4338         .set_dr6 = svm_set_dr6,
4339         .set_dr7 = svm_set_dr7,
4340         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4341         .cache_reg = svm_cache_reg,
4342         .get_rflags = svm_get_rflags,
4343         .set_rflags = svm_set_rflags,
4344         .fpu_activate = svm_fpu_activate,
4345         .fpu_deactivate = svm_fpu_deactivate,
4346
4347         .tlb_flush = svm_flush_tlb,
4348
4349         .run = svm_vcpu_run,
4350         .handle_exit = handle_exit,
4351         .skip_emulated_instruction = skip_emulated_instruction,
4352         .set_interrupt_shadow = svm_set_interrupt_shadow,
4353         .get_interrupt_shadow = svm_get_interrupt_shadow,
4354         .patch_hypercall = svm_patch_hypercall,
4355         .set_irq = svm_set_irq,
4356         .set_nmi = svm_inject_nmi,
4357         .queue_exception = svm_queue_exception,
4358         .cancel_injection = svm_cancel_injection,
4359         .interrupt_allowed = svm_interrupt_allowed,
4360         .nmi_allowed = svm_nmi_allowed,
4361         .get_nmi_mask = svm_get_nmi_mask,
4362         .set_nmi_mask = svm_set_nmi_mask,
4363         .enable_nmi_window = enable_nmi_window,
4364         .enable_irq_window = enable_irq_window,
4365         .update_cr8_intercept = update_cr8_intercept,
4366         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4367         .vm_has_apicv = svm_vm_has_apicv,
4368         .load_eoi_exitmap = svm_load_eoi_exitmap,
4369         .hwapic_isr_update = svm_hwapic_isr_update,
4370         .sync_pir_to_irr = svm_sync_pir_to_irr,
4371
4372         .set_tss_addr = svm_set_tss_addr,
4373         .get_tdp_level = get_npt_level,
4374         .get_mt_mask = svm_get_mt_mask,
4375
4376         .get_exit_info = svm_get_exit_info,
4377
4378         .get_lpage_level = svm_get_lpage_level,
4379
4380         .cpuid_update = svm_cpuid_update,
4381
4382         .rdtscp_supported = svm_rdtscp_supported,
4383         .invpcid_supported = svm_invpcid_supported,
4384         .mpx_supported = svm_mpx_supported,
4385
4386         .set_supported_cpuid = svm_set_supported_cpuid,
4387
4388         .has_wbinvd_exit = svm_has_wbinvd_exit,
4389
4390         .set_tsc_khz = svm_set_tsc_khz,
4391         .read_tsc_offset = svm_read_tsc_offset,
4392         .write_tsc_offset = svm_write_tsc_offset,
4393         .adjust_tsc_offset = svm_adjust_tsc_offset,
4394         .compute_tsc_offset = svm_compute_tsc_offset,
4395         .read_l1_tsc = svm_read_l1_tsc,
4396
4397         .set_tdp_cr3 = set_tdp_cr3,
4398
4399         .check_intercept = svm_check_intercept,
4400         .handle_external_intr = svm_handle_external_intr,
4401 };
4402
4403 static int __init svm_init(void)
4404 {
4405         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4406                         __alignof__(struct vcpu_svm), THIS_MODULE);
4407 }
4408
4409 static void __exit svm_exit(void)
4410 {
4411         kvm_exit();
4412 }
4413
4414 module_init(svm_init)
4415 module_exit(svm_exit)