748569ef8505a8c3d6e48f87cd2afd083e3679de
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u32 intercept_cr;
102         u32 intercept_dr;
103         u32 intercept_exceptions;
104         u64 intercept;
105
106         /* Nested Paging related state */
107         u64 nested_cr3;
108 };
109
110 #define MSRPM_OFFSETS   16
111 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
112
113 struct vcpu_svm {
114         struct kvm_vcpu vcpu;
115         struct vmcb *vmcb;
116         unsigned long vmcb_pa;
117         struct svm_cpu_data *svm_data;
118         uint64_t asid_generation;
119         uint64_t sysenter_esp;
120         uint64_t sysenter_eip;
121
122         u64 next_rip;
123
124         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
125         struct {
126                 u16 fs;
127                 u16 gs;
128                 u16 ldt;
129                 u64 gs_base;
130         } host;
131
132         u32 *msrpm;
133
134         struct nested_state nested;
135
136         bool nmi_singlestep;
137
138         unsigned int3_injected;
139         unsigned long int3_rip;
140         u32 apf_reason;
141 };
142
143 #define MSR_INVALID                     0xffffffffU
144
145 static struct svm_direct_access_msrs {
146         u32 index;   /* Index of the MSR */
147         bool always; /* True if intercept is always on */
148 } direct_access_msrs[] = {
149         { .index = MSR_STAR,                            .always = true  },
150         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
151 #ifdef CONFIG_X86_64
152         { .index = MSR_GS_BASE,                         .always = true  },
153         { .index = MSR_FS_BASE,                         .always = true  },
154         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
155         { .index = MSR_LSTAR,                           .always = true  },
156         { .index = MSR_CSTAR,                           .always = true  },
157         { .index = MSR_SYSCALL_MASK,                    .always = true  },
158 #endif
159         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
160         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
161         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
162         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
163         { .index = MSR_INVALID,                         .always = false },
164 };
165
166 /* enable NPT for AMD64 and X86 with PAE */
167 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
168 static bool npt_enabled = true;
169 #else
170 static bool npt_enabled;
171 #endif
172 static int npt = 1;
173
174 module_param(npt, int, S_IRUGO);
175
176 static int nested = 1;
177 module_param(nested, int, S_IRUGO);
178
179 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
180 static void svm_complete_interrupts(struct vcpu_svm *svm);
181
182 static int nested_svm_exit_handled(struct vcpu_svm *svm);
183 static int nested_svm_intercept(struct vcpu_svm *svm);
184 static int nested_svm_vmexit(struct vcpu_svm *svm);
185 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
186                                       bool has_error_code, u32 error_code);
187
188 enum {
189         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
190                             pause filter count */
191         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
192         VMCB_ASID,       /* ASID */
193         VMCB_INTR,       /* int_ctl, int_vector */
194         VMCB_DIRTY_MAX,
195 };
196
197 /* TPR is always written before VMRUN */
198 #define VMCB_ALWAYS_DIRTY_MASK  (1U << VMCB_INTR)
199
200 static inline void mark_all_dirty(struct vmcb *vmcb)
201 {
202         vmcb->control.clean = 0;
203 }
204
205 static inline void mark_all_clean(struct vmcb *vmcb)
206 {
207         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
208                                & ~VMCB_ALWAYS_DIRTY_MASK;
209 }
210
211 static inline void mark_dirty(struct vmcb *vmcb, int bit)
212 {
213         vmcb->control.clean &= ~(1 << bit);
214 }
215
216 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
217 {
218         return container_of(vcpu, struct vcpu_svm, vcpu);
219 }
220
221 static void recalc_intercepts(struct vcpu_svm *svm)
222 {
223         struct vmcb_control_area *c, *h;
224         struct nested_state *g;
225
226         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
227
228         if (!is_guest_mode(&svm->vcpu))
229                 return;
230
231         c = &svm->vmcb->control;
232         h = &svm->nested.hsave->control;
233         g = &svm->nested;
234
235         c->intercept_cr = h->intercept_cr | g->intercept_cr;
236         c->intercept_dr = h->intercept_dr | g->intercept_dr;
237         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
238         c->intercept = h->intercept | g->intercept;
239 }
240
241 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
242 {
243         if (is_guest_mode(&svm->vcpu))
244                 return svm->nested.hsave;
245         else
246                 return svm->vmcb;
247 }
248
249 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
250 {
251         struct vmcb *vmcb = get_host_vmcb(svm);
252
253         vmcb->control.intercept_cr |= (1U << bit);
254
255         recalc_intercepts(svm);
256 }
257
258 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
259 {
260         struct vmcb *vmcb = get_host_vmcb(svm);
261
262         vmcb->control.intercept_cr &= ~(1U << bit);
263
264         recalc_intercepts(svm);
265 }
266
267 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
268 {
269         struct vmcb *vmcb = get_host_vmcb(svm);
270
271         return vmcb->control.intercept_cr & (1U << bit);
272 }
273
274 static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
275 {
276         struct vmcb *vmcb = get_host_vmcb(svm);
277
278         vmcb->control.intercept_dr |= (1U << bit);
279
280         recalc_intercepts(svm);
281 }
282
283 static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         vmcb->control.intercept_dr &= ~(1U << bit);
288
289         recalc_intercepts(svm);
290 }
291
292 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
293 {
294         struct vmcb *vmcb = get_host_vmcb(svm);
295
296         vmcb->control.intercept_exceptions |= (1U << bit);
297
298         recalc_intercepts(svm);
299 }
300
301 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
302 {
303         struct vmcb *vmcb = get_host_vmcb(svm);
304
305         vmcb->control.intercept_exceptions &= ~(1U << bit);
306
307         recalc_intercepts(svm);
308 }
309
310 static inline void set_intercept(struct vcpu_svm *svm, int bit)
311 {
312         struct vmcb *vmcb = get_host_vmcb(svm);
313
314         vmcb->control.intercept |= (1ULL << bit);
315
316         recalc_intercepts(svm);
317 }
318
319 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
320 {
321         struct vmcb *vmcb = get_host_vmcb(svm);
322
323         vmcb->control.intercept &= ~(1ULL << bit);
324
325         recalc_intercepts(svm);
326 }
327
328 static inline void enable_gif(struct vcpu_svm *svm)
329 {
330         svm->vcpu.arch.hflags |= HF_GIF_MASK;
331 }
332
333 static inline void disable_gif(struct vcpu_svm *svm)
334 {
335         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
336 }
337
338 static inline bool gif_set(struct vcpu_svm *svm)
339 {
340         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
341 }
342
343 static unsigned long iopm_base;
344
345 struct kvm_ldttss_desc {
346         u16 limit0;
347         u16 base0;
348         unsigned base1:8, type:5, dpl:2, p:1;
349         unsigned limit1:4, zero0:3, g:1, base2:8;
350         u32 base3;
351         u32 zero1;
352 } __attribute__((packed));
353
354 struct svm_cpu_data {
355         int cpu;
356
357         u64 asid_generation;
358         u32 max_asid;
359         u32 next_asid;
360         struct kvm_ldttss_desc *tss_desc;
361
362         struct page *save_area;
363 };
364
365 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
366 static uint32_t svm_features;
367
368 struct svm_init_data {
369         int cpu;
370         int r;
371 };
372
373 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
374
375 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
376 #define MSRS_RANGE_SIZE 2048
377 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
378
379 static u32 svm_msrpm_offset(u32 msr)
380 {
381         u32 offset;
382         int i;
383
384         for (i = 0; i < NUM_MSR_MAPS; i++) {
385                 if (msr < msrpm_ranges[i] ||
386                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
387                         continue;
388
389                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
390                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
391
392                 /* Now we have the u8 offset - but need the u32 offset */
393                 return offset / 4;
394         }
395
396         /* MSR not in any range */
397         return MSR_INVALID;
398 }
399
400 #define MAX_INST_SIZE 15
401
402 static inline void clgi(void)
403 {
404         asm volatile (__ex(SVM_CLGI));
405 }
406
407 static inline void stgi(void)
408 {
409         asm volatile (__ex(SVM_STGI));
410 }
411
412 static inline void invlpga(unsigned long addr, u32 asid)
413 {
414         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
415 }
416
417 static inline void force_new_asid(struct kvm_vcpu *vcpu)
418 {
419         to_svm(vcpu)->asid_generation--;
420 }
421
422 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
423 {
424         force_new_asid(vcpu);
425 }
426
427 static int get_npt_level(void)
428 {
429 #ifdef CONFIG_X86_64
430         return PT64_ROOT_LEVEL;
431 #else
432         return PT32E_ROOT_LEVEL;
433 #endif
434 }
435
436 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
437 {
438         vcpu->arch.efer = efer;
439         if (!npt_enabled && !(efer & EFER_LMA))
440                 efer &= ~EFER_LME;
441
442         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
443 }
444
445 static int is_external_interrupt(u32 info)
446 {
447         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
448         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
449 }
450
451 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
452 {
453         struct vcpu_svm *svm = to_svm(vcpu);
454         u32 ret = 0;
455
456         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
457                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
458         return ret & mask;
459 }
460
461 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
462 {
463         struct vcpu_svm *svm = to_svm(vcpu);
464
465         if (mask == 0)
466                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
467         else
468                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
469
470 }
471
472 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
473 {
474         struct vcpu_svm *svm = to_svm(vcpu);
475
476         if (svm->vmcb->control.next_rip != 0)
477                 svm->next_rip = svm->vmcb->control.next_rip;
478
479         if (!svm->next_rip) {
480                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
481                                 EMULATE_DONE)
482                         printk(KERN_DEBUG "%s: NOP\n", __func__);
483                 return;
484         }
485         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
486                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
487                        __func__, kvm_rip_read(vcpu), svm->next_rip);
488
489         kvm_rip_write(vcpu, svm->next_rip);
490         svm_set_interrupt_shadow(vcpu, 0);
491 }
492
493 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
494                                 bool has_error_code, u32 error_code,
495                                 bool reinject)
496 {
497         struct vcpu_svm *svm = to_svm(vcpu);
498
499         /*
500          * If we are within a nested VM we'd better #VMEXIT and let the guest
501          * handle the exception
502          */
503         if (!reinject &&
504             nested_svm_check_exception(svm, nr, has_error_code, error_code))
505                 return;
506
507         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
508                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
509
510                 /*
511                  * For guest debugging where we have to reinject #BP if some
512                  * INT3 is guest-owned:
513                  * Emulate nRIP by moving RIP forward. Will fail if injection
514                  * raises a fault that is not intercepted. Still better than
515                  * failing in all cases.
516                  */
517                 skip_emulated_instruction(&svm->vcpu);
518                 rip = kvm_rip_read(&svm->vcpu);
519                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
520                 svm->int3_injected = rip - old_rip;
521         }
522
523         svm->vmcb->control.event_inj = nr
524                 | SVM_EVTINJ_VALID
525                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
526                 | SVM_EVTINJ_TYPE_EXEPT;
527         svm->vmcb->control.event_inj_err = error_code;
528 }
529
530 static void svm_init_erratum_383(void)
531 {
532         u32 low, high;
533         int err;
534         u64 val;
535
536         if (!cpu_has_amd_erratum(amd_erratum_383))
537                 return;
538
539         /* Use _safe variants to not break nested virtualization */
540         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
541         if (err)
542                 return;
543
544         val |= (1ULL << 47);
545
546         low  = lower_32_bits(val);
547         high = upper_32_bits(val);
548
549         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
550
551         erratum_383_found = true;
552 }
553
554 static int has_svm(void)
555 {
556         const char *msg;
557
558         if (!cpu_has_svm(&msg)) {
559                 printk(KERN_INFO "has_svm: %s\n", msg);
560                 return 0;
561         }
562
563         return 1;
564 }
565
566 static void svm_hardware_disable(void *garbage)
567 {
568         cpu_svm_disable();
569 }
570
571 static int svm_hardware_enable(void *garbage)
572 {
573
574         struct svm_cpu_data *sd;
575         uint64_t efer;
576         struct desc_ptr gdt_descr;
577         struct desc_struct *gdt;
578         int me = raw_smp_processor_id();
579
580         rdmsrl(MSR_EFER, efer);
581         if (efer & EFER_SVME)
582                 return -EBUSY;
583
584         if (!has_svm()) {
585                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
586                        me);
587                 return -EINVAL;
588         }
589         sd = per_cpu(svm_data, me);
590
591         if (!sd) {
592                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
593                        me);
594                 return -EINVAL;
595         }
596
597         sd->asid_generation = 1;
598         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
599         sd->next_asid = sd->max_asid + 1;
600
601         native_store_gdt(&gdt_descr);
602         gdt = (struct desc_struct *)gdt_descr.address;
603         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
604
605         wrmsrl(MSR_EFER, efer | EFER_SVME);
606
607         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
608
609         svm_init_erratum_383();
610
611         return 0;
612 }
613
614 static void svm_cpu_uninit(int cpu)
615 {
616         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
617
618         if (!sd)
619                 return;
620
621         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
622         __free_page(sd->save_area);
623         kfree(sd);
624 }
625
626 static int svm_cpu_init(int cpu)
627 {
628         struct svm_cpu_data *sd;
629         int r;
630
631         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
632         if (!sd)
633                 return -ENOMEM;
634         sd->cpu = cpu;
635         sd->save_area = alloc_page(GFP_KERNEL);
636         r = -ENOMEM;
637         if (!sd->save_area)
638                 goto err_1;
639
640         per_cpu(svm_data, cpu) = sd;
641
642         return 0;
643
644 err_1:
645         kfree(sd);
646         return r;
647
648 }
649
650 static bool valid_msr_intercept(u32 index)
651 {
652         int i;
653
654         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
655                 if (direct_access_msrs[i].index == index)
656                         return true;
657
658         return false;
659 }
660
661 static void set_msr_interception(u32 *msrpm, unsigned msr,
662                                  int read, int write)
663 {
664         u8 bit_read, bit_write;
665         unsigned long tmp;
666         u32 offset;
667
668         /*
669          * If this warning triggers extend the direct_access_msrs list at the
670          * beginning of the file
671          */
672         WARN_ON(!valid_msr_intercept(msr));
673
674         offset    = svm_msrpm_offset(msr);
675         bit_read  = 2 * (msr & 0x0f);
676         bit_write = 2 * (msr & 0x0f) + 1;
677         tmp       = msrpm[offset];
678
679         BUG_ON(offset == MSR_INVALID);
680
681         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
682         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
683
684         msrpm[offset] = tmp;
685 }
686
687 static void svm_vcpu_init_msrpm(u32 *msrpm)
688 {
689         int i;
690
691         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
692
693         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
694                 if (!direct_access_msrs[i].always)
695                         continue;
696
697                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
698         }
699 }
700
701 static void add_msr_offset(u32 offset)
702 {
703         int i;
704
705         for (i = 0; i < MSRPM_OFFSETS; ++i) {
706
707                 /* Offset already in list? */
708                 if (msrpm_offsets[i] == offset)
709                         return;
710
711                 /* Slot used by another offset? */
712                 if (msrpm_offsets[i] != MSR_INVALID)
713                         continue;
714
715                 /* Add offset to list */
716                 msrpm_offsets[i] = offset;
717
718                 return;
719         }
720
721         /*
722          * If this BUG triggers the msrpm_offsets table has an overflow. Just
723          * increase MSRPM_OFFSETS in this case.
724          */
725         BUG();
726 }
727
728 static void init_msrpm_offsets(void)
729 {
730         int i;
731
732         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
733
734         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
735                 u32 offset;
736
737                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
738                 BUG_ON(offset == MSR_INVALID);
739
740                 add_msr_offset(offset);
741         }
742 }
743
744 static void svm_enable_lbrv(struct vcpu_svm *svm)
745 {
746         u32 *msrpm = svm->msrpm;
747
748         svm->vmcb->control.lbr_ctl = 1;
749         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
750         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
751         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
752         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
753 }
754
755 static void svm_disable_lbrv(struct vcpu_svm *svm)
756 {
757         u32 *msrpm = svm->msrpm;
758
759         svm->vmcb->control.lbr_ctl = 0;
760         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
761         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
762         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
763         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
764 }
765
766 static __init int svm_hardware_setup(void)
767 {
768         int cpu;
769         struct page *iopm_pages;
770         void *iopm_va;
771         int r;
772
773         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
774
775         if (!iopm_pages)
776                 return -ENOMEM;
777
778         iopm_va = page_address(iopm_pages);
779         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
780         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
781
782         init_msrpm_offsets();
783
784         if (boot_cpu_has(X86_FEATURE_NX))
785                 kvm_enable_efer_bits(EFER_NX);
786
787         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
788                 kvm_enable_efer_bits(EFER_FFXSR);
789
790         if (nested) {
791                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
792                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
793         }
794
795         for_each_possible_cpu(cpu) {
796                 r = svm_cpu_init(cpu);
797                 if (r)
798                         goto err;
799         }
800
801         svm_features = cpuid_edx(SVM_CPUID_FUNC);
802
803         if (!boot_cpu_has(X86_FEATURE_NPT))
804                 npt_enabled = false;
805
806         if (npt_enabled && !npt) {
807                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
808                 npt_enabled = false;
809         }
810
811         if (npt_enabled) {
812                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
813                 kvm_enable_tdp();
814         } else
815                 kvm_disable_tdp();
816
817         return 0;
818
819 err:
820         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
821         iopm_base = 0;
822         return r;
823 }
824
825 static __exit void svm_hardware_unsetup(void)
826 {
827         int cpu;
828
829         for_each_possible_cpu(cpu)
830                 svm_cpu_uninit(cpu);
831
832         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
833         iopm_base = 0;
834 }
835
836 static void init_seg(struct vmcb_seg *seg)
837 {
838         seg->selector = 0;
839         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
840                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
841         seg->limit = 0xffff;
842         seg->base = 0;
843 }
844
845 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
846 {
847         seg->selector = 0;
848         seg->attrib = SVM_SELECTOR_P_MASK | type;
849         seg->limit = 0xffff;
850         seg->base = 0;
851 }
852
853 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
854 {
855         struct vcpu_svm *svm = to_svm(vcpu);
856         u64 g_tsc_offset = 0;
857
858         if (is_guest_mode(vcpu)) {
859                 g_tsc_offset = svm->vmcb->control.tsc_offset -
860                                svm->nested.hsave->control.tsc_offset;
861                 svm->nested.hsave->control.tsc_offset = offset;
862         }
863
864         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
865
866         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
867 }
868
869 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
870 {
871         struct vcpu_svm *svm = to_svm(vcpu);
872
873         svm->vmcb->control.tsc_offset += adjustment;
874         if (is_guest_mode(vcpu))
875                 svm->nested.hsave->control.tsc_offset += adjustment;
876         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
877 }
878
879 static void init_vmcb(struct vcpu_svm *svm)
880 {
881         struct vmcb_control_area *control = &svm->vmcb->control;
882         struct vmcb_save_area *save = &svm->vmcb->save;
883
884         svm->vcpu.fpu_active = 1;
885         svm->vcpu.arch.hflags = 0;
886
887         set_cr_intercept(svm, INTERCEPT_CR0_READ);
888         set_cr_intercept(svm, INTERCEPT_CR3_READ);
889         set_cr_intercept(svm, INTERCEPT_CR4_READ);
890         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
891         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
892         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
893         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
894
895         set_dr_intercept(svm, INTERCEPT_DR0_READ);
896         set_dr_intercept(svm, INTERCEPT_DR1_READ);
897         set_dr_intercept(svm, INTERCEPT_DR2_READ);
898         set_dr_intercept(svm, INTERCEPT_DR3_READ);
899         set_dr_intercept(svm, INTERCEPT_DR4_READ);
900         set_dr_intercept(svm, INTERCEPT_DR5_READ);
901         set_dr_intercept(svm, INTERCEPT_DR6_READ);
902         set_dr_intercept(svm, INTERCEPT_DR7_READ);
903
904         set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
905         set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
906         set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
907         set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
908         set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
909         set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
910         set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
911         set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
912
913         set_exception_intercept(svm, PF_VECTOR);
914         set_exception_intercept(svm, UD_VECTOR);
915         set_exception_intercept(svm, MC_VECTOR);
916
917         set_intercept(svm, INTERCEPT_INTR);
918         set_intercept(svm, INTERCEPT_NMI);
919         set_intercept(svm, INTERCEPT_SMI);
920         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
921         set_intercept(svm, INTERCEPT_CPUID);
922         set_intercept(svm, INTERCEPT_INVD);
923         set_intercept(svm, INTERCEPT_HLT);
924         set_intercept(svm, INTERCEPT_INVLPG);
925         set_intercept(svm, INTERCEPT_INVLPGA);
926         set_intercept(svm, INTERCEPT_IOIO_PROT);
927         set_intercept(svm, INTERCEPT_MSR_PROT);
928         set_intercept(svm, INTERCEPT_TASK_SWITCH);
929         set_intercept(svm, INTERCEPT_SHUTDOWN);
930         set_intercept(svm, INTERCEPT_VMRUN);
931         set_intercept(svm, INTERCEPT_VMMCALL);
932         set_intercept(svm, INTERCEPT_VMLOAD);
933         set_intercept(svm, INTERCEPT_VMSAVE);
934         set_intercept(svm, INTERCEPT_STGI);
935         set_intercept(svm, INTERCEPT_CLGI);
936         set_intercept(svm, INTERCEPT_SKINIT);
937         set_intercept(svm, INTERCEPT_WBINVD);
938         set_intercept(svm, INTERCEPT_MONITOR);
939         set_intercept(svm, INTERCEPT_MWAIT);
940
941         control->iopm_base_pa = iopm_base;
942         control->msrpm_base_pa = __pa(svm->msrpm);
943         control->int_ctl = V_INTR_MASKING_MASK;
944
945         init_seg(&save->es);
946         init_seg(&save->ss);
947         init_seg(&save->ds);
948         init_seg(&save->fs);
949         init_seg(&save->gs);
950
951         save->cs.selector = 0xf000;
952         /* Executable/Readable Code Segment */
953         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
954                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
955         save->cs.limit = 0xffff;
956         /*
957          * cs.base should really be 0xffff0000, but vmx can't handle that, so
958          * be consistent with it.
959          *
960          * Replace when we have real mode working for vmx.
961          */
962         save->cs.base = 0xf0000;
963
964         save->gdtr.limit = 0xffff;
965         save->idtr.limit = 0xffff;
966
967         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
968         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
969
970         svm_set_efer(&svm->vcpu, 0);
971         save->dr6 = 0xffff0ff0;
972         save->dr7 = 0x400;
973         save->rflags = 2;
974         save->rip = 0x0000fff0;
975         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
976
977         /*
978          * This is the guest-visible cr0 value.
979          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
980          */
981         svm->vcpu.arch.cr0 = 0;
982         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
983
984         save->cr4 = X86_CR4_PAE;
985         /* rdx = ?? */
986
987         if (npt_enabled) {
988                 /* Setup VMCB for Nested Paging */
989                 control->nested_ctl = 1;
990                 clr_intercept(svm, INTERCEPT_TASK_SWITCH);
991                 clr_intercept(svm, INTERCEPT_INVLPG);
992                 clr_exception_intercept(svm, PF_VECTOR);
993                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
994                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
995                 save->g_pat = 0x0007040600070406ULL;
996                 save->cr3 = 0;
997                 save->cr4 = 0;
998         }
999         force_new_asid(&svm->vcpu);
1000
1001         svm->nested.vmcb = 0;
1002         svm->vcpu.arch.hflags = 0;
1003
1004         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1005                 control->pause_filter_count = 3000;
1006                 set_intercept(svm, INTERCEPT_PAUSE);
1007         }
1008
1009         mark_all_dirty(svm->vmcb);
1010
1011         enable_gif(svm);
1012 }
1013
1014 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
1015 {
1016         struct vcpu_svm *svm = to_svm(vcpu);
1017
1018         init_vmcb(svm);
1019
1020         if (!kvm_vcpu_is_bsp(vcpu)) {
1021                 kvm_rip_write(vcpu, 0);
1022                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
1023                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
1024         }
1025         vcpu->arch.regs_avail = ~0;
1026         vcpu->arch.regs_dirty = ~0;
1027
1028         return 0;
1029 }
1030
1031 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1032 {
1033         struct vcpu_svm *svm;
1034         struct page *page;
1035         struct page *msrpm_pages;
1036         struct page *hsave_page;
1037         struct page *nested_msrpm_pages;
1038         int err;
1039
1040         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1041         if (!svm) {
1042                 err = -ENOMEM;
1043                 goto out;
1044         }
1045
1046         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1047         if (err)
1048                 goto free_svm;
1049
1050         err = -ENOMEM;
1051         page = alloc_page(GFP_KERNEL);
1052         if (!page)
1053                 goto uninit;
1054
1055         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1056         if (!msrpm_pages)
1057                 goto free_page1;
1058
1059         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1060         if (!nested_msrpm_pages)
1061                 goto free_page2;
1062
1063         hsave_page = alloc_page(GFP_KERNEL);
1064         if (!hsave_page)
1065                 goto free_page3;
1066
1067         svm->nested.hsave = page_address(hsave_page);
1068
1069         svm->msrpm = page_address(msrpm_pages);
1070         svm_vcpu_init_msrpm(svm->msrpm);
1071
1072         svm->nested.msrpm = page_address(nested_msrpm_pages);
1073         svm_vcpu_init_msrpm(svm->nested.msrpm);
1074
1075         svm->vmcb = page_address(page);
1076         clear_page(svm->vmcb);
1077         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1078         svm->asid_generation = 0;
1079         init_vmcb(svm);
1080         kvm_write_tsc(&svm->vcpu, 0);
1081
1082         err = fx_init(&svm->vcpu);
1083         if (err)
1084                 goto free_page4;
1085
1086         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1087         if (kvm_vcpu_is_bsp(&svm->vcpu))
1088                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1089
1090         return &svm->vcpu;
1091
1092 free_page4:
1093         __free_page(hsave_page);
1094 free_page3:
1095         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1096 free_page2:
1097         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1098 free_page1:
1099         __free_page(page);
1100 uninit:
1101         kvm_vcpu_uninit(&svm->vcpu);
1102 free_svm:
1103         kmem_cache_free(kvm_vcpu_cache, svm);
1104 out:
1105         return ERR_PTR(err);
1106 }
1107
1108 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1109 {
1110         struct vcpu_svm *svm = to_svm(vcpu);
1111
1112         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1113         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1114         __free_page(virt_to_page(svm->nested.hsave));
1115         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1116         kvm_vcpu_uninit(vcpu);
1117         kmem_cache_free(kvm_vcpu_cache, svm);
1118 }
1119
1120 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1121 {
1122         struct vcpu_svm *svm = to_svm(vcpu);
1123         int i;
1124
1125         if (unlikely(cpu != vcpu->cpu)) {
1126                 svm->asid_generation = 0;
1127                 mark_all_dirty(svm->vmcb);
1128         }
1129
1130 #ifdef CONFIG_X86_64
1131         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1132 #endif
1133         savesegment(fs, svm->host.fs);
1134         savesegment(gs, svm->host.gs);
1135         svm->host.ldt = kvm_read_ldt();
1136
1137         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1138                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1139 }
1140
1141 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1142 {
1143         struct vcpu_svm *svm = to_svm(vcpu);
1144         int i;
1145
1146         ++vcpu->stat.host_state_reload;
1147         kvm_load_ldt(svm->host.ldt);
1148 #ifdef CONFIG_X86_64
1149         loadsegment(fs, svm->host.fs);
1150         load_gs_index(svm->host.gs);
1151         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1152 #else
1153         loadsegment(gs, svm->host.gs);
1154 #endif
1155         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1156                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1157 }
1158
1159 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1160 {
1161         return to_svm(vcpu)->vmcb->save.rflags;
1162 }
1163
1164 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1165 {
1166         to_svm(vcpu)->vmcb->save.rflags = rflags;
1167 }
1168
1169 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1170 {
1171         switch (reg) {
1172         case VCPU_EXREG_PDPTR:
1173                 BUG_ON(!npt_enabled);
1174                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1175                 break;
1176         default:
1177                 BUG();
1178         }
1179 }
1180
1181 static void svm_set_vintr(struct vcpu_svm *svm)
1182 {
1183         set_intercept(svm, INTERCEPT_VINTR);
1184 }
1185
1186 static void svm_clear_vintr(struct vcpu_svm *svm)
1187 {
1188         clr_intercept(svm, INTERCEPT_VINTR);
1189 }
1190
1191 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1192 {
1193         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1194
1195         switch (seg) {
1196         case VCPU_SREG_CS: return &save->cs;
1197         case VCPU_SREG_DS: return &save->ds;
1198         case VCPU_SREG_ES: return &save->es;
1199         case VCPU_SREG_FS: return &save->fs;
1200         case VCPU_SREG_GS: return &save->gs;
1201         case VCPU_SREG_SS: return &save->ss;
1202         case VCPU_SREG_TR: return &save->tr;
1203         case VCPU_SREG_LDTR: return &save->ldtr;
1204         }
1205         BUG();
1206         return NULL;
1207 }
1208
1209 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1210 {
1211         struct vmcb_seg *s = svm_seg(vcpu, seg);
1212
1213         return s->base;
1214 }
1215
1216 static void svm_get_segment(struct kvm_vcpu *vcpu,
1217                             struct kvm_segment *var, int seg)
1218 {
1219         struct vmcb_seg *s = svm_seg(vcpu, seg);
1220
1221         var->base = s->base;
1222         var->limit = s->limit;
1223         var->selector = s->selector;
1224         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1225         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1226         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1227         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1228         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1229         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1230         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1231         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1232
1233         /*
1234          * AMD's VMCB does not have an explicit unusable field, so emulate it
1235          * for cross vendor migration purposes by "not present"
1236          */
1237         var->unusable = !var->present || (var->type == 0);
1238
1239         switch (seg) {
1240         case VCPU_SREG_CS:
1241                 /*
1242                  * SVM always stores 0 for the 'G' bit in the CS selector in
1243                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1244                  * Intel's VMENTRY has a check on the 'G' bit.
1245                  */
1246                 var->g = s->limit > 0xfffff;
1247                 break;
1248         case VCPU_SREG_TR:
1249                 /*
1250                  * Work around a bug where the busy flag in the tr selector
1251                  * isn't exposed
1252                  */
1253                 var->type |= 0x2;
1254                 break;
1255         case VCPU_SREG_DS:
1256         case VCPU_SREG_ES:
1257         case VCPU_SREG_FS:
1258         case VCPU_SREG_GS:
1259                 /*
1260                  * The accessed bit must always be set in the segment
1261                  * descriptor cache, although it can be cleared in the
1262                  * descriptor, the cached bit always remains at 1. Since
1263                  * Intel has a check on this, set it here to support
1264                  * cross-vendor migration.
1265                  */
1266                 if (!var->unusable)
1267                         var->type |= 0x1;
1268                 break;
1269         case VCPU_SREG_SS:
1270                 /*
1271                  * On AMD CPUs sometimes the DB bit in the segment
1272                  * descriptor is left as 1, although the whole segment has
1273                  * been made unusable. Clear it here to pass an Intel VMX
1274                  * entry check when cross vendor migrating.
1275                  */
1276                 if (var->unusable)
1277                         var->db = 0;
1278                 break;
1279         }
1280 }
1281
1282 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1283 {
1284         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1285
1286         return save->cpl;
1287 }
1288
1289 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1290 {
1291         struct vcpu_svm *svm = to_svm(vcpu);
1292
1293         dt->size = svm->vmcb->save.idtr.limit;
1294         dt->address = svm->vmcb->save.idtr.base;
1295 }
1296
1297 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1298 {
1299         struct vcpu_svm *svm = to_svm(vcpu);
1300
1301         svm->vmcb->save.idtr.limit = dt->size;
1302         svm->vmcb->save.idtr.base = dt->address ;
1303 }
1304
1305 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1306 {
1307         struct vcpu_svm *svm = to_svm(vcpu);
1308
1309         dt->size = svm->vmcb->save.gdtr.limit;
1310         dt->address = svm->vmcb->save.gdtr.base;
1311 }
1312
1313 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1314 {
1315         struct vcpu_svm *svm = to_svm(vcpu);
1316
1317         svm->vmcb->save.gdtr.limit = dt->size;
1318         svm->vmcb->save.gdtr.base = dt->address ;
1319 }
1320
1321 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1322 {
1323 }
1324
1325 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1326 {
1327 }
1328
1329 static void update_cr0_intercept(struct vcpu_svm *svm)
1330 {
1331         ulong gcr0 = svm->vcpu.arch.cr0;
1332         u64 *hcr0 = &svm->vmcb->save.cr0;
1333
1334         if (!svm->vcpu.fpu_active)
1335                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1336         else
1337                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1338                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1339
1340
1341         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1342                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1343                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1344         } else {
1345                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1346                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1347         }
1348 }
1349
1350 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1351 {
1352         struct vcpu_svm *svm = to_svm(vcpu);
1353
1354         if (is_guest_mode(vcpu)) {
1355                 /*
1356                  * We are here because we run in nested mode, the host kvm
1357                  * intercepts cr0 writes but the l1 hypervisor does not.
1358                  * But the L1 hypervisor may intercept selective cr0 writes.
1359                  * This needs to be checked here.
1360                  */
1361                 unsigned long old, new;
1362
1363                 /* Remove bits that would trigger a real cr0 write intercept */
1364                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1365                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1366
1367                 if (old == new) {
1368                         /* cr0 write with ts and mp unchanged */
1369                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1370                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1371                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1372                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1373                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1374                                 return;
1375                         }
1376                 }
1377         }
1378
1379 #ifdef CONFIG_X86_64
1380         if (vcpu->arch.efer & EFER_LME) {
1381                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1382                         vcpu->arch.efer |= EFER_LMA;
1383                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1384                 }
1385
1386                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1387                         vcpu->arch.efer &= ~EFER_LMA;
1388                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1389                 }
1390         }
1391 #endif
1392         vcpu->arch.cr0 = cr0;
1393
1394         if (!npt_enabled)
1395                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1396
1397         if (!vcpu->fpu_active)
1398                 cr0 |= X86_CR0_TS;
1399         /*
1400          * re-enable caching here because the QEMU bios
1401          * does not do it - this results in some delay at
1402          * reboot
1403          */
1404         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1405         svm->vmcb->save.cr0 = cr0;
1406         update_cr0_intercept(svm);
1407 }
1408
1409 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1410 {
1411         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1412         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1413
1414         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1415                 force_new_asid(vcpu);
1416
1417         vcpu->arch.cr4 = cr4;
1418         if (!npt_enabled)
1419                 cr4 |= X86_CR4_PAE;
1420         cr4 |= host_cr4_mce;
1421         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1422 }
1423
1424 static void svm_set_segment(struct kvm_vcpu *vcpu,
1425                             struct kvm_segment *var, int seg)
1426 {
1427         struct vcpu_svm *svm = to_svm(vcpu);
1428         struct vmcb_seg *s = svm_seg(vcpu, seg);
1429
1430         s->base = var->base;
1431         s->limit = var->limit;
1432         s->selector = var->selector;
1433         if (var->unusable)
1434                 s->attrib = 0;
1435         else {
1436                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1437                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1438                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1439                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1440                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1441                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1442                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1443                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1444         }
1445         if (seg == VCPU_SREG_CS)
1446                 svm->vmcb->save.cpl
1447                         = (svm->vmcb->save.cs.attrib
1448                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1449
1450 }
1451
1452 static void update_db_intercept(struct kvm_vcpu *vcpu)
1453 {
1454         struct vcpu_svm *svm = to_svm(vcpu);
1455
1456         clr_exception_intercept(svm, DB_VECTOR);
1457         clr_exception_intercept(svm, BP_VECTOR);
1458
1459         if (svm->nmi_singlestep)
1460                 set_exception_intercept(svm, DB_VECTOR);
1461
1462         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1463                 if (vcpu->guest_debug &
1464                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1465                         set_exception_intercept(svm, DB_VECTOR);
1466                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1467                         set_exception_intercept(svm, BP_VECTOR);
1468         } else
1469                 vcpu->guest_debug = 0;
1470 }
1471
1472 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1473 {
1474         struct vcpu_svm *svm = to_svm(vcpu);
1475
1476         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1477                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1478         else
1479                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1480
1481         update_db_intercept(vcpu);
1482 }
1483
1484 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1485 {
1486         if (sd->next_asid > sd->max_asid) {
1487                 ++sd->asid_generation;
1488                 sd->next_asid = 1;
1489                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1490         }
1491
1492         svm->asid_generation = sd->asid_generation;
1493         svm->vmcb->control.asid = sd->next_asid++;
1494
1495         mark_dirty(svm->vmcb, VMCB_ASID);
1496 }
1497
1498 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1499 {
1500         struct vcpu_svm *svm = to_svm(vcpu);
1501
1502         svm->vmcb->save.dr7 = value;
1503 }
1504
1505 static int pf_interception(struct vcpu_svm *svm)
1506 {
1507         u64 fault_address = svm->vmcb->control.exit_info_2;
1508         u32 error_code;
1509         int r = 1;
1510
1511         switch (svm->apf_reason) {
1512         default:
1513                 error_code = svm->vmcb->control.exit_info_1;
1514
1515                 trace_kvm_page_fault(fault_address, error_code);
1516                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1517                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1518                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1519                 break;
1520         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1521                 svm->apf_reason = 0;
1522                 local_irq_disable();
1523                 kvm_async_pf_task_wait(fault_address);
1524                 local_irq_enable();
1525                 break;
1526         case KVM_PV_REASON_PAGE_READY:
1527                 svm->apf_reason = 0;
1528                 local_irq_disable();
1529                 kvm_async_pf_task_wake(fault_address);
1530                 local_irq_enable();
1531                 break;
1532         }
1533         return r;
1534 }
1535
1536 static int db_interception(struct vcpu_svm *svm)
1537 {
1538         struct kvm_run *kvm_run = svm->vcpu.run;
1539
1540         if (!(svm->vcpu.guest_debug &
1541               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1542                 !svm->nmi_singlestep) {
1543                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1544                 return 1;
1545         }
1546
1547         if (svm->nmi_singlestep) {
1548                 svm->nmi_singlestep = false;
1549                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1550                         svm->vmcb->save.rflags &=
1551                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1552                 update_db_intercept(&svm->vcpu);
1553         }
1554
1555         if (svm->vcpu.guest_debug &
1556             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1557                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1558                 kvm_run->debug.arch.pc =
1559                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1560                 kvm_run->debug.arch.exception = DB_VECTOR;
1561                 return 0;
1562         }
1563
1564         return 1;
1565 }
1566
1567 static int bp_interception(struct vcpu_svm *svm)
1568 {
1569         struct kvm_run *kvm_run = svm->vcpu.run;
1570
1571         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1572         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1573         kvm_run->debug.arch.exception = BP_VECTOR;
1574         return 0;
1575 }
1576
1577 static int ud_interception(struct vcpu_svm *svm)
1578 {
1579         int er;
1580
1581         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1582         if (er != EMULATE_DONE)
1583                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1584         return 1;
1585 }
1586
1587 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1588 {
1589         struct vcpu_svm *svm = to_svm(vcpu);
1590
1591         clr_exception_intercept(svm, NM_VECTOR);
1592
1593         svm->vcpu.fpu_active = 1;
1594         update_cr0_intercept(svm);
1595 }
1596
1597 static int nm_interception(struct vcpu_svm *svm)
1598 {
1599         svm_fpu_activate(&svm->vcpu);
1600         return 1;
1601 }
1602
1603 static bool is_erratum_383(void)
1604 {
1605         int err, i;
1606         u64 value;
1607
1608         if (!erratum_383_found)
1609                 return false;
1610
1611         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1612         if (err)
1613                 return false;
1614
1615         /* Bit 62 may or may not be set for this mce */
1616         value &= ~(1ULL << 62);
1617
1618         if (value != 0xb600000000010015ULL)
1619                 return false;
1620
1621         /* Clear MCi_STATUS registers */
1622         for (i = 0; i < 6; ++i)
1623                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1624
1625         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1626         if (!err) {
1627                 u32 low, high;
1628
1629                 value &= ~(1ULL << 2);
1630                 low    = lower_32_bits(value);
1631                 high   = upper_32_bits(value);
1632
1633                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1634         }
1635
1636         /* Flush tlb to evict multi-match entries */
1637         __flush_tlb_all();
1638
1639         return true;
1640 }
1641
1642 static void svm_handle_mce(struct vcpu_svm *svm)
1643 {
1644         if (is_erratum_383()) {
1645                 /*
1646                  * Erratum 383 triggered. Guest state is corrupt so kill the
1647                  * guest.
1648                  */
1649                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1650
1651                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1652
1653                 return;
1654         }
1655
1656         /*
1657          * On an #MC intercept the MCE handler is not called automatically in
1658          * the host. So do it by hand here.
1659          */
1660         asm volatile (
1661                 "int $0x12\n");
1662         /* not sure if we ever come back to this point */
1663
1664         return;
1665 }
1666
1667 static int mc_interception(struct vcpu_svm *svm)
1668 {
1669         return 1;
1670 }
1671
1672 static int shutdown_interception(struct vcpu_svm *svm)
1673 {
1674         struct kvm_run *kvm_run = svm->vcpu.run;
1675
1676         /*
1677          * VMCB is undefined after a SHUTDOWN intercept
1678          * so reinitialize it.
1679          */
1680         clear_page(svm->vmcb);
1681         init_vmcb(svm);
1682
1683         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1684         return 0;
1685 }
1686
1687 static int io_interception(struct vcpu_svm *svm)
1688 {
1689         struct kvm_vcpu *vcpu = &svm->vcpu;
1690         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1691         int size, in, string;
1692         unsigned port;
1693
1694         ++svm->vcpu.stat.io_exits;
1695         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1696         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1697         if (string || in)
1698                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1699
1700         port = io_info >> 16;
1701         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1702         svm->next_rip = svm->vmcb->control.exit_info_2;
1703         skip_emulated_instruction(&svm->vcpu);
1704
1705         return kvm_fast_pio_out(vcpu, size, port);
1706 }
1707
1708 static int nmi_interception(struct vcpu_svm *svm)
1709 {
1710         return 1;
1711 }
1712
1713 static int intr_interception(struct vcpu_svm *svm)
1714 {
1715         ++svm->vcpu.stat.irq_exits;
1716         return 1;
1717 }
1718
1719 static int nop_on_interception(struct vcpu_svm *svm)
1720 {
1721         return 1;
1722 }
1723
1724 static int halt_interception(struct vcpu_svm *svm)
1725 {
1726         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1727         skip_emulated_instruction(&svm->vcpu);
1728         return kvm_emulate_halt(&svm->vcpu);
1729 }
1730
1731 static int vmmcall_interception(struct vcpu_svm *svm)
1732 {
1733         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1734         skip_emulated_instruction(&svm->vcpu);
1735         kvm_emulate_hypercall(&svm->vcpu);
1736         return 1;
1737 }
1738
1739 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1740 {
1741         struct vcpu_svm *svm = to_svm(vcpu);
1742
1743         return svm->nested.nested_cr3;
1744 }
1745
1746 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1747                                    unsigned long root)
1748 {
1749         struct vcpu_svm *svm = to_svm(vcpu);
1750
1751         svm->vmcb->control.nested_cr3 = root;
1752         force_new_asid(vcpu);
1753 }
1754
1755 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1756                                        struct x86_exception *fault)
1757 {
1758         struct vcpu_svm *svm = to_svm(vcpu);
1759
1760         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1761         svm->vmcb->control.exit_code_hi = 0;
1762         svm->vmcb->control.exit_info_1 = fault->error_code;
1763         svm->vmcb->control.exit_info_2 = fault->address;
1764
1765         nested_svm_vmexit(svm);
1766 }
1767
1768 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1769 {
1770         int r;
1771
1772         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1773
1774         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1775         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1776         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1777         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1778         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1779
1780         return r;
1781 }
1782
1783 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1784 {
1785         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1786 }
1787
1788 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1789 {
1790         if (!(svm->vcpu.arch.efer & EFER_SVME)
1791             || !is_paging(&svm->vcpu)) {
1792                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1793                 return 1;
1794         }
1795
1796         if (svm->vmcb->save.cpl) {
1797                 kvm_inject_gp(&svm->vcpu, 0);
1798                 return 1;
1799         }
1800
1801        return 0;
1802 }
1803
1804 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1805                                       bool has_error_code, u32 error_code)
1806 {
1807         int vmexit;
1808
1809         if (!is_guest_mode(&svm->vcpu))
1810                 return 0;
1811
1812         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1813         svm->vmcb->control.exit_code_hi = 0;
1814         svm->vmcb->control.exit_info_1 = error_code;
1815         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1816
1817         vmexit = nested_svm_intercept(svm);
1818         if (vmexit == NESTED_EXIT_DONE)
1819                 svm->nested.exit_required = true;
1820
1821         return vmexit;
1822 }
1823
1824 /* This function returns true if it is save to enable the irq window */
1825 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1826 {
1827         if (!is_guest_mode(&svm->vcpu))
1828                 return true;
1829
1830         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1831                 return true;
1832
1833         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1834                 return false;
1835
1836         /*
1837          * if vmexit was already requested (by intercepted exception
1838          * for instance) do not overwrite it with "external interrupt"
1839          * vmexit.
1840          */
1841         if (svm->nested.exit_required)
1842                 return false;
1843
1844         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1845         svm->vmcb->control.exit_info_1 = 0;
1846         svm->vmcb->control.exit_info_2 = 0;
1847
1848         if (svm->nested.intercept & 1ULL) {
1849                 /*
1850                  * The #vmexit can't be emulated here directly because this
1851                  * code path runs with irqs and preemtion disabled. A
1852                  * #vmexit emulation might sleep. Only signal request for
1853                  * the #vmexit here.
1854                  */
1855                 svm->nested.exit_required = true;
1856                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1857                 return false;
1858         }
1859
1860         return true;
1861 }
1862
1863 /* This function returns true if it is save to enable the nmi window */
1864 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1865 {
1866         if (!is_guest_mode(&svm->vcpu))
1867                 return true;
1868
1869         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1870                 return true;
1871
1872         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1873         svm->nested.exit_required = true;
1874
1875         return false;
1876 }
1877
1878 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1879 {
1880         struct page *page;
1881
1882         might_sleep();
1883
1884         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1885         if (is_error_page(page))
1886                 goto error;
1887
1888         *_page = page;
1889
1890         return kmap(page);
1891
1892 error:
1893         kvm_release_page_clean(page);
1894         kvm_inject_gp(&svm->vcpu, 0);
1895
1896         return NULL;
1897 }
1898
1899 static void nested_svm_unmap(struct page *page)
1900 {
1901         kunmap(page);
1902         kvm_release_page_dirty(page);
1903 }
1904
1905 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1906 {
1907         unsigned port;
1908         u8 val, bit;
1909         u64 gpa;
1910
1911         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1912                 return NESTED_EXIT_HOST;
1913
1914         port = svm->vmcb->control.exit_info_1 >> 16;
1915         gpa  = svm->nested.vmcb_iopm + (port / 8);
1916         bit  = port % 8;
1917         val  = 0;
1918
1919         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1920                 val &= (1 << bit);
1921
1922         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1923 }
1924
1925 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1926 {
1927         u32 offset, msr, value;
1928         int write, mask;
1929
1930         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1931                 return NESTED_EXIT_HOST;
1932
1933         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1934         offset = svm_msrpm_offset(msr);
1935         write  = svm->vmcb->control.exit_info_1 & 1;
1936         mask   = 1 << ((2 * (msr & 0xf)) + write);
1937
1938         if (offset == MSR_INVALID)
1939                 return NESTED_EXIT_DONE;
1940
1941         /* Offset is in 32 bit units but need in 8 bit units */
1942         offset *= 4;
1943
1944         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1945                 return NESTED_EXIT_DONE;
1946
1947         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1948 }
1949
1950 static int nested_svm_exit_special(struct vcpu_svm *svm)
1951 {
1952         u32 exit_code = svm->vmcb->control.exit_code;
1953
1954         switch (exit_code) {
1955         case SVM_EXIT_INTR:
1956         case SVM_EXIT_NMI:
1957         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1958                 return NESTED_EXIT_HOST;
1959         case SVM_EXIT_NPF:
1960                 /* For now we are always handling NPFs when using them */
1961                 if (npt_enabled)
1962                         return NESTED_EXIT_HOST;
1963                 break;
1964         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1965                 /* When we're shadowing, trap PFs, but not async PF */
1966                 if (!npt_enabled && svm->apf_reason == 0)
1967                         return NESTED_EXIT_HOST;
1968                 break;
1969         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1970                 nm_interception(svm);
1971                 break;
1972         default:
1973                 break;
1974         }
1975
1976         return NESTED_EXIT_CONTINUE;
1977 }
1978
1979 /*
1980  * If this function returns true, this #vmexit was already handled
1981  */
1982 static int nested_svm_intercept(struct vcpu_svm *svm)
1983 {
1984         u32 exit_code = svm->vmcb->control.exit_code;
1985         int vmexit = NESTED_EXIT_HOST;
1986
1987         switch (exit_code) {
1988         case SVM_EXIT_MSR:
1989                 vmexit = nested_svm_exit_handled_msr(svm);
1990                 break;
1991         case SVM_EXIT_IOIO:
1992                 vmexit = nested_svm_intercept_ioio(svm);
1993                 break;
1994         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
1995                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
1996                 if (svm->nested.intercept_cr & bit)
1997                         vmexit = NESTED_EXIT_DONE;
1998                 break;
1999         }
2000         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2001                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2002                 if (svm->nested.intercept_dr & bit)
2003                         vmexit = NESTED_EXIT_DONE;
2004                 break;
2005         }
2006         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2007                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2008                 if (svm->nested.intercept_exceptions & excp_bits)
2009                         vmexit = NESTED_EXIT_DONE;
2010                 /* async page fault always cause vmexit */
2011                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2012                          svm->apf_reason != 0)
2013                         vmexit = NESTED_EXIT_DONE;
2014                 break;
2015         }
2016         case SVM_EXIT_ERR: {
2017                 vmexit = NESTED_EXIT_DONE;
2018                 break;
2019         }
2020         default: {
2021                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2022                 if (svm->nested.intercept & exit_bits)
2023                         vmexit = NESTED_EXIT_DONE;
2024         }
2025         }
2026
2027         return vmexit;
2028 }
2029
2030 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2031 {
2032         int vmexit;
2033
2034         vmexit = nested_svm_intercept(svm);
2035
2036         if (vmexit == NESTED_EXIT_DONE)
2037                 nested_svm_vmexit(svm);
2038
2039         return vmexit;
2040 }
2041
2042 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2043 {
2044         struct vmcb_control_area *dst  = &dst_vmcb->control;
2045         struct vmcb_control_area *from = &from_vmcb->control;
2046
2047         dst->intercept_cr         = from->intercept_cr;
2048         dst->intercept_dr         = from->intercept_dr;
2049         dst->intercept_exceptions = from->intercept_exceptions;
2050         dst->intercept            = from->intercept;
2051         dst->iopm_base_pa         = from->iopm_base_pa;
2052         dst->msrpm_base_pa        = from->msrpm_base_pa;
2053         dst->tsc_offset           = from->tsc_offset;
2054         dst->asid                 = from->asid;
2055         dst->tlb_ctl              = from->tlb_ctl;
2056         dst->int_ctl              = from->int_ctl;
2057         dst->int_vector           = from->int_vector;
2058         dst->int_state            = from->int_state;
2059         dst->exit_code            = from->exit_code;
2060         dst->exit_code_hi         = from->exit_code_hi;
2061         dst->exit_info_1          = from->exit_info_1;
2062         dst->exit_info_2          = from->exit_info_2;
2063         dst->exit_int_info        = from->exit_int_info;
2064         dst->exit_int_info_err    = from->exit_int_info_err;
2065         dst->nested_ctl           = from->nested_ctl;
2066         dst->event_inj            = from->event_inj;
2067         dst->event_inj_err        = from->event_inj_err;
2068         dst->nested_cr3           = from->nested_cr3;
2069         dst->lbr_ctl              = from->lbr_ctl;
2070 }
2071
2072 static int nested_svm_vmexit(struct vcpu_svm *svm)
2073 {
2074         struct vmcb *nested_vmcb;
2075         struct vmcb *hsave = svm->nested.hsave;
2076         struct vmcb *vmcb = svm->vmcb;
2077         struct page *page;
2078
2079         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2080                                        vmcb->control.exit_info_1,
2081                                        vmcb->control.exit_info_2,
2082                                        vmcb->control.exit_int_info,
2083                                        vmcb->control.exit_int_info_err);
2084
2085         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2086         if (!nested_vmcb)
2087                 return 1;
2088
2089         /* Exit Guest-Mode */
2090         leave_guest_mode(&svm->vcpu);
2091         svm->nested.vmcb = 0;
2092
2093         /* Give the current vmcb to the guest */
2094         disable_gif(svm);
2095
2096         nested_vmcb->save.es     = vmcb->save.es;
2097         nested_vmcb->save.cs     = vmcb->save.cs;
2098         nested_vmcb->save.ss     = vmcb->save.ss;
2099         nested_vmcb->save.ds     = vmcb->save.ds;
2100         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2101         nested_vmcb->save.idtr   = vmcb->save.idtr;
2102         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2103         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2104         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2105         nested_vmcb->save.cr2    = vmcb->save.cr2;
2106         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2107         nested_vmcb->save.rflags = vmcb->save.rflags;
2108         nested_vmcb->save.rip    = vmcb->save.rip;
2109         nested_vmcb->save.rsp    = vmcb->save.rsp;
2110         nested_vmcb->save.rax    = vmcb->save.rax;
2111         nested_vmcb->save.dr7    = vmcb->save.dr7;
2112         nested_vmcb->save.dr6    = vmcb->save.dr6;
2113         nested_vmcb->save.cpl    = vmcb->save.cpl;
2114
2115         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2116         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2117         nested_vmcb->control.int_state         = vmcb->control.int_state;
2118         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2119         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2120         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2121         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2122         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2123         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2124         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2125
2126         /*
2127          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2128          * to make sure that we do not lose injected events. So check event_inj
2129          * here and copy it to exit_int_info if it is valid.
2130          * Exit_int_info and event_inj can't be both valid because the case
2131          * below only happens on a VMRUN instruction intercept which has
2132          * no valid exit_int_info set.
2133          */
2134         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2135                 struct vmcb_control_area *nc = &nested_vmcb->control;
2136
2137                 nc->exit_int_info     = vmcb->control.event_inj;
2138                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2139         }
2140
2141         nested_vmcb->control.tlb_ctl           = 0;
2142         nested_vmcb->control.event_inj         = 0;
2143         nested_vmcb->control.event_inj_err     = 0;
2144
2145         /* We always set V_INTR_MASKING and remember the old value in hflags */
2146         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2147                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2148
2149         /* Restore the original control entries */
2150         copy_vmcb_control_area(vmcb, hsave);
2151
2152         kvm_clear_exception_queue(&svm->vcpu);
2153         kvm_clear_interrupt_queue(&svm->vcpu);
2154
2155         svm->nested.nested_cr3 = 0;
2156
2157         /* Restore selected save entries */
2158         svm->vmcb->save.es = hsave->save.es;
2159         svm->vmcb->save.cs = hsave->save.cs;
2160         svm->vmcb->save.ss = hsave->save.ss;
2161         svm->vmcb->save.ds = hsave->save.ds;
2162         svm->vmcb->save.gdtr = hsave->save.gdtr;
2163         svm->vmcb->save.idtr = hsave->save.idtr;
2164         svm->vmcb->save.rflags = hsave->save.rflags;
2165         svm_set_efer(&svm->vcpu, hsave->save.efer);
2166         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2167         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2168         if (npt_enabled) {
2169                 svm->vmcb->save.cr3 = hsave->save.cr3;
2170                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2171         } else {
2172                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2173         }
2174         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2175         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2176         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2177         svm->vmcb->save.dr7 = 0;
2178         svm->vmcb->save.cpl = 0;
2179         svm->vmcb->control.exit_int_info = 0;
2180
2181         mark_all_dirty(svm->vmcb);
2182
2183         nested_svm_unmap(page);
2184
2185         nested_svm_uninit_mmu_context(&svm->vcpu);
2186         kvm_mmu_reset_context(&svm->vcpu);
2187         kvm_mmu_load(&svm->vcpu);
2188
2189         return 0;
2190 }
2191
2192 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2193 {
2194         /*
2195          * This function merges the msr permission bitmaps of kvm and the
2196          * nested vmcb. It is omptimized in that it only merges the parts where
2197          * the kvm msr permission bitmap may contain zero bits
2198          */
2199         int i;
2200
2201         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2202                 return true;
2203
2204         for (i = 0; i < MSRPM_OFFSETS; i++) {
2205                 u32 value, p;
2206                 u64 offset;
2207
2208                 if (msrpm_offsets[i] == 0xffffffff)
2209                         break;
2210
2211                 p      = msrpm_offsets[i];
2212                 offset = svm->nested.vmcb_msrpm + (p * 4);
2213
2214                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2215                         return false;
2216
2217                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2218         }
2219
2220         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2221
2222         return true;
2223 }
2224
2225 static bool nested_vmcb_checks(struct vmcb *vmcb)
2226 {
2227         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2228                 return false;
2229
2230         if (vmcb->control.asid == 0)
2231                 return false;
2232
2233         if (vmcb->control.nested_ctl && !npt_enabled)
2234                 return false;
2235
2236         return true;
2237 }
2238
2239 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2240 {
2241         struct vmcb *nested_vmcb;
2242         struct vmcb *hsave = svm->nested.hsave;
2243         struct vmcb *vmcb = svm->vmcb;
2244         struct page *page;
2245         u64 vmcb_gpa;
2246
2247         vmcb_gpa = svm->vmcb->save.rax;
2248
2249         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2250         if (!nested_vmcb)
2251                 return false;
2252
2253         if (!nested_vmcb_checks(nested_vmcb)) {
2254                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2255                 nested_vmcb->control.exit_code_hi = 0;
2256                 nested_vmcb->control.exit_info_1  = 0;
2257                 nested_vmcb->control.exit_info_2  = 0;
2258
2259                 nested_svm_unmap(page);
2260
2261                 return false;
2262         }
2263
2264         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2265                                nested_vmcb->save.rip,
2266                                nested_vmcb->control.int_ctl,
2267                                nested_vmcb->control.event_inj,
2268                                nested_vmcb->control.nested_ctl);
2269
2270         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2271                                     nested_vmcb->control.intercept_cr >> 16,
2272                                     nested_vmcb->control.intercept_exceptions,
2273                                     nested_vmcb->control.intercept);
2274
2275         /* Clear internal status */
2276         kvm_clear_exception_queue(&svm->vcpu);
2277         kvm_clear_interrupt_queue(&svm->vcpu);
2278
2279         /*
2280          * Save the old vmcb, so we don't need to pick what we save, but can
2281          * restore everything when a VMEXIT occurs
2282          */
2283         hsave->save.es     = vmcb->save.es;
2284         hsave->save.cs     = vmcb->save.cs;
2285         hsave->save.ss     = vmcb->save.ss;
2286         hsave->save.ds     = vmcb->save.ds;
2287         hsave->save.gdtr   = vmcb->save.gdtr;
2288         hsave->save.idtr   = vmcb->save.idtr;
2289         hsave->save.efer   = svm->vcpu.arch.efer;
2290         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2291         hsave->save.cr4    = svm->vcpu.arch.cr4;
2292         hsave->save.rflags = vmcb->save.rflags;
2293         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2294         hsave->save.rsp    = vmcb->save.rsp;
2295         hsave->save.rax    = vmcb->save.rax;
2296         if (npt_enabled)
2297                 hsave->save.cr3    = vmcb->save.cr3;
2298         else
2299                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2300
2301         copy_vmcb_control_area(hsave, vmcb);
2302
2303         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2304                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2305         else
2306                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2307
2308         if (nested_vmcb->control.nested_ctl) {
2309                 kvm_mmu_unload(&svm->vcpu);
2310                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2311                 nested_svm_init_mmu_context(&svm->vcpu);
2312         }
2313
2314         /* Load the nested guest state */
2315         svm->vmcb->save.es = nested_vmcb->save.es;
2316         svm->vmcb->save.cs = nested_vmcb->save.cs;
2317         svm->vmcb->save.ss = nested_vmcb->save.ss;
2318         svm->vmcb->save.ds = nested_vmcb->save.ds;
2319         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2320         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2321         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2322         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2323         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2324         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2325         if (npt_enabled) {
2326                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2327                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2328         } else
2329                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2330
2331         /* Guest paging mode is active - reset mmu */
2332         kvm_mmu_reset_context(&svm->vcpu);
2333
2334         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2335         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2336         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2337         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2338
2339         /* In case we don't even reach vcpu_run, the fields are not updated */
2340         svm->vmcb->save.rax = nested_vmcb->save.rax;
2341         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2342         svm->vmcb->save.rip = nested_vmcb->save.rip;
2343         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2344         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2345         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2346
2347         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2348         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2349
2350         /* cache intercepts */
2351         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2352         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2353         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2354         svm->nested.intercept            = nested_vmcb->control.intercept;
2355
2356         force_new_asid(&svm->vcpu);
2357         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2358         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2359                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2360         else
2361                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2362
2363         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2364                 /* We only want the cr8 intercept bits of the guest */
2365                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2366                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2367         }
2368
2369         /* We don't want to see VMMCALLs from a nested guest */
2370         clr_intercept(svm, INTERCEPT_VMMCALL);
2371
2372         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2373         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2374         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2375         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2376         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2377         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2378
2379         nested_svm_unmap(page);
2380
2381         /* Enter Guest-Mode */
2382         enter_guest_mode(&svm->vcpu);
2383
2384         /*
2385          * Merge guest and host intercepts - must be called  with vcpu in
2386          * guest-mode to take affect here
2387          */
2388         recalc_intercepts(svm);
2389
2390         svm->nested.vmcb = vmcb_gpa;
2391
2392         enable_gif(svm);
2393
2394         mark_all_dirty(svm->vmcb);
2395
2396         return true;
2397 }
2398
2399 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2400 {
2401         to_vmcb->save.fs = from_vmcb->save.fs;
2402         to_vmcb->save.gs = from_vmcb->save.gs;
2403         to_vmcb->save.tr = from_vmcb->save.tr;
2404         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2405         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2406         to_vmcb->save.star = from_vmcb->save.star;
2407         to_vmcb->save.lstar = from_vmcb->save.lstar;
2408         to_vmcb->save.cstar = from_vmcb->save.cstar;
2409         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2410         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2411         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2412         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2413 }
2414
2415 static int vmload_interception(struct vcpu_svm *svm)
2416 {
2417         struct vmcb *nested_vmcb;
2418         struct page *page;
2419
2420         if (nested_svm_check_permissions(svm))
2421                 return 1;
2422
2423         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2424         skip_emulated_instruction(&svm->vcpu);
2425
2426         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2427         if (!nested_vmcb)
2428                 return 1;
2429
2430         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2431         nested_svm_unmap(page);
2432
2433         return 1;
2434 }
2435
2436 static int vmsave_interception(struct vcpu_svm *svm)
2437 {
2438         struct vmcb *nested_vmcb;
2439         struct page *page;
2440
2441         if (nested_svm_check_permissions(svm))
2442                 return 1;
2443
2444         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2445         skip_emulated_instruction(&svm->vcpu);
2446
2447         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2448         if (!nested_vmcb)
2449                 return 1;
2450
2451         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2452         nested_svm_unmap(page);
2453
2454         return 1;
2455 }
2456
2457 static int vmrun_interception(struct vcpu_svm *svm)
2458 {
2459         if (nested_svm_check_permissions(svm))
2460                 return 1;
2461
2462         /* Save rip after vmrun instruction */
2463         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2464
2465         if (!nested_svm_vmrun(svm))
2466                 return 1;
2467
2468         if (!nested_svm_vmrun_msrpm(svm))
2469                 goto failed;
2470
2471         return 1;
2472
2473 failed:
2474
2475         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2476         svm->vmcb->control.exit_code_hi = 0;
2477         svm->vmcb->control.exit_info_1  = 0;
2478         svm->vmcb->control.exit_info_2  = 0;
2479
2480         nested_svm_vmexit(svm);
2481
2482         return 1;
2483 }
2484
2485 static int stgi_interception(struct vcpu_svm *svm)
2486 {
2487         if (nested_svm_check_permissions(svm))
2488                 return 1;
2489
2490         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2491         skip_emulated_instruction(&svm->vcpu);
2492         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2493
2494         enable_gif(svm);
2495
2496         return 1;
2497 }
2498
2499 static int clgi_interception(struct vcpu_svm *svm)
2500 {
2501         if (nested_svm_check_permissions(svm))
2502                 return 1;
2503
2504         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2505         skip_emulated_instruction(&svm->vcpu);
2506
2507         disable_gif(svm);
2508
2509         /* After a CLGI no interrupts should come */
2510         svm_clear_vintr(svm);
2511         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2512
2513         mark_dirty(svm->vmcb, VMCB_INTR);
2514
2515         return 1;
2516 }
2517
2518 static int invlpga_interception(struct vcpu_svm *svm)
2519 {
2520         struct kvm_vcpu *vcpu = &svm->vcpu;
2521
2522         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2523                           vcpu->arch.regs[VCPU_REGS_RAX]);
2524
2525         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2526         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2527
2528         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2529         skip_emulated_instruction(&svm->vcpu);
2530         return 1;
2531 }
2532
2533 static int skinit_interception(struct vcpu_svm *svm)
2534 {
2535         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2536
2537         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2538         return 1;
2539 }
2540
2541 static int invalid_op_interception(struct vcpu_svm *svm)
2542 {
2543         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2544         return 1;
2545 }
2546
2547 static int task_switch_interception(struct vcpu_svm *svm)
2548 {
2549         u16 tss_selector;
2550         int reason;
2551         int int_type = svm->vmcb->control.exit_int_info &
2552                 SVM_EXITINTINFO_TYPE_MASK;
2553         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2554         uint32_t type =
2555                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2556         uint32_t idt_v =
2557                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2558         bool has_error_code = false;
2559         u32 error_code = 0;
2560
2561         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2562
2563         if (svm->vmcb->control.exit_info_2 &
2564             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2565                 reason = TASK_SWITCH_IRET;
2566         else if (svm->vmcb->control.exit_info_2 &
2567                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2568                 reason = TASK_SWITCH_JMP;
2569         else if (idt_v)
2570                 reason = TASK_SWITCH_GATE;
2571         else
2572                 reason = TASK_SWITCH_CALL;
2573
2574         if (reason == TASK_SWITCH_GATE) {
2575                 switch (type) {
2576                 case SVM_EXITINTINFO_TYPE_NMI:
2577                         svm->vcpu.arch.nmi_injected = false;
2578                         break;
2579                 case SVM_EXITINTINFO_TYPE_EXEPT:
2580                         if (svm->vmcb->control.exit_info_2 &
2581                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2582                                 has_error_code = true;
2583                                 error_code =
2584                                         (u32)svm->vmcb->control.exit_info_2;
2585                         }
2586                         kvm_clear_exception_queue(&svm->vcpu);
2587                         break;
2588                 case SVM_EXITINTINFO_TYPE_INTR:
2589                         kvm_clear_interrupt_queue(&svm->vcpu);
2590                         break;
2591                 default:
2592                         break;
2593                 }
2594         }
2595
2596         if (reason != TASK_SWITCH_GATE ||
2597             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2598             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2599              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2600                 skip_emulated_instruction(&svm->vcpu);
2601
2602         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2603                                 has_error_code, error_code) == EMULATE_FAIL) {
2604                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2605                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2606                 svm->vcpu.run->internal.ndata = 0;
2607                 return 0;
2608         }
2609         return 1;
2610 }
2611
2612 static int cpuid_interception(struct vcpu_svm *svm)
2613 {
2614         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2615         kvm_emulate_cpuid(&svm->vcpu);
2616         return 1;
2617 }
2618
2619 static int iret_interception(struct vcpu_svm *svm)
2620 {
2621         ++svm->vcpu.stat.nmi_window_exits;
2622         clr_intercept(svm, INTERCEPT_IRET);
2623         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2624         return 1;
2625 }
2626
2627 static int invlpg_interception(struct vcpu_svm *svm)
2628 {
2629         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2630 }
2631
2632 static int emulate_on_interception(struct vcpu_svm *svm)
2633 {
2634         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2635 }
2636
2637 static int cr0_write_interception(struct vcpu_svm *svm)
2638 {
2639         struct kvm_vcpu *vcpu = &svm->vcpu;
2640         int r;
2641
2642         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2643
2644         if (svm->nested.vmexit_rip) {
2645                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2646                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2647                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2648                 svm->nested.vmexit_rip = 0;
2649         }
2650
2651         return r == EMULATE_DONE;
2652 }
2653
2654 static int cr8_write_interception(struct vcpu_svm *svm)
2655 {
2656         struct kvm_run *kvm_run = svm->vcpu.run;
2657
2658         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2659         /* instruction emulation calls kvm_set_cr8() */
2660         emulate_instruction(&svm->vcpu, 0, 0, 0);
2661         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2662                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2663                 return 1;
2664         }
2665         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2666                 return 1;
2667         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2668         return 0;
2669 }
2670
2671 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2672 {
2673         struct vcpu_svm *svm = to_svm(vcpu);
2674
2675         switch (ecx) {
2676         case MSR_IA32_TSC: {
2677                 struct vmcb *vmcb = get_host_vmcb(svm);
2678
2679                 *data = vmcb->control.tsc_offset + native_read_tsc();
2680                 break;
2681         }
2682         case MSR_STAR:
2683                 *data = svm->vmcb->save.star;
2684                 break;
2685 #ifdef CONFIG_X86_64
2686         case MSR_LSTAR:
2687                 *data = svm->vmcb->save.lstar;
2688                 break;
2689         case MSR_CSTAR:
2690                 *data = svm->vmcb->save.cstar;
2691                 break;
2692         case MSR_KERNEL_GS_BASE:
2693                 *data = svm->vmcb->save.kernel_gs_base;
2694                 break;
2695         case MSR_SYSCALL_MASK:
2696                 *data = svm->vmcb->save.sfmask;
2697                 break;
2698 #endif
2699         case MSR_IA32_SYSENTER_CS:
2700                 *data = svm->vmcb->save.sysenter_cs;
2701                 break;
2702         case MSR_IA32_SYSENTER_EIP:
2703                 *data = svm->sysenter_eip;
2704                 break;
2705         case MSR_IA32_SYSENTER_ESP:
2706                 *data = svm->sysenter_esp;
2707                 break;
2708         /*
2709          * Nobody will change the following 5 values in the VMCB so we can
2710          * safely return them on rdmsr. They will always be 0 until LBRV is
2711          * implemented.
2712          */
2713         case MSR_IA32_DEBUGCTLMSR:
2714                 *data = svm->vmcb->save.dbgctl;
2715                 break;
2716         case MSR_IA32_LASTBRANCHFROMIP:
2717                 *data = svm->vmcb->save.br_from;
2718                 break;
2719         case MSR_IA32_LASTBRANCHTOIP:
2720                 *data = svm->vmcb->save.br_to;
2721                 break;
2722         case MSR_IA32_LASTINTFROMIP:
2723                 *data = svm->vmcb->save.last_excp_from;
2724                 break;
2725         case MSR_IA32_LASTINTTOIP:
2726                 *data = svm->vmcb->save.last_excp_to;
2727                 break;
2728         case MSR_VM_HSAVE_PA:
2729                 *data = svm->nested.hsave_msr;
2730                 break;
2731         case MSR_VM_CR:
2732                 *data = svm->nested.vm_cr_msr;
2733                 break;
2734         case MSR_IA32_UCODE_REV:
2735                 *data = 0x01000065;
2736                 break;
2737         default:
2738                 return kvm_get_msr_common(vcpu, ecx, data);
2739         }
2740         return 0;
2741 }
2742
2743 static int rdmsr_interception(struct vcpu_svm *svm)
2744 {
2745         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2746         u64 data;
2747
2748         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2749                 trace_kvm_msr_read_ex(ecx);
2750                 kvm_inject_gp(&svm->vcpu, 0);
2751         } else {
2752                 trace_kvm_msr_read(ecx, data);
2753
2754                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2755                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2756                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2757                 skip_emulated_instruction(&svm->vcpu);
2758         }
2759         return 1;
2760 }
2761
2762 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2763 {
2764         struct vcpu_svm *svm = to_svm(vcpu);
2765         int svm_dis, chg_mask;
2766
2767         if (data & ~SVM_VM_CR_VALID_MASK)
2768                 return 1;
2769
2770         chg_mask = SVM_VM_CR_VALID_MASK;
2771
2772         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2773                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2774
2775         svm->nested.vm_cr_msr &= ~chg_mask;
2776         svm->nested.vm_cr_msr |= (data & chg_mask);
2777
2778         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2779
2780         /* check for svm_disable while efer.svme is set */
2781         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2782                 return 1;
2783
2784         return 0;
2785 }
2786
2787 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2788 {
2789         struct vcpu_svm *svm = to_svm(vcpu);
2790
2791         switch (ecx) {
2792         case MSR_IA32_TSC:
2793                 kvm_write_tsc(vcpu, data);
2794                 break;
2795         case MSR_STAR:
2796                 svm->vmcb->save.star = data;
2797                 break;
2798 #ifdef CONFIG_X86_64
2799         case MSR_LSTAR:
2800                 svm->vmcb->save.lstar = data;
2801                 break;
2802         case MSR_CSTAR:
2803                 svm->vmcb->save.cstar = data;
2804                 break;
2805         case MSR_KERNEL_GS_BASE:
2806                 svm->vmcb->save.kernel_gs_base = data;
2807                 break;
2808         case MSR_SYSCALL_MASK:
2809                 svm->vmcb->save.sfmask = data;
2810                 break;
2811 #endif
2812         case MSR_IA32_SYSENTER_CS:
2813                 svm->vmcb->save.sysenter_cs = data;
2814                 break;
2815         case MSR_IA32_SYSENTER_EIP:
2816                 svm->sysenter_eip = data;
2817                 svm->vmcb->save.sysenter_eip = data;
2818                 break;
2819         case MSR_IA32_SYSENTER_ESP:
2820                 svm->sysenter_esp = data;
2821                 svm->vmcb->save.sysenter_esp = data;
2822                 break;
2823         case MSR_IA32_DEBUGCTLMSR:
2824                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2825                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2826                                         __func__, data);
2827                         break;
2828                 }
2829                 if (data & DEBUGCTL_RESERVED_BITS)
2830                         return 1;
2831
2832                 svm->vmcb->save.dbgctl = data;
2833                 if (data & (1ULL<<0))
2834                         svm_enable_lbrv(svm);
2835                 else
2836                         svm_disable_lbrv(svm);
2837                 break;
2838         case MSR_VM_HSAVE_PA:
2839                 svm->nested.hsave_msr = data;
2840                 break;
2841         case MSR_VM_CR:
2842                 return svm_set_vm_cr(vcpu, data);
2843         case MSR_VM_IGNNE:
2844                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2845                 break;
2846         default:
2847                 return kvm_set_msr_common(vcpu, ecx, data);
2848         }
2849         return 0;
2850 }
2851
2852 static int wrmsr_interception(struct vcpu_svm *svm)
2853 {
2854         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2855         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2856                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2857
2858
2859         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2860         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2861                 trace_kvm_msr_write_ex(ecx, data);
2862                 kvm_inject_gp(&svm->vcpu, 0);
2863         } else {
2864                 trace_kvm_msr_write(ecx, data);
2865                 skip_emulated_instruction(&svm->vcpu);
2866         }
2867         return 1;
2868 }
2869
2870 static int msr_interception(struct vcpu_svm *svm)
2871 {
2872         if (svm->vmcb->control.exit_info_1)
2873                 return wrmsr_interception(svm);
2874         else
2875                 return rdmsr_interception(svm);
2876 }
2877
2878 static int interrupt_window_interception(struct vcpu_svm *svm)
2879 {
2880         struct kvm_run *kvm_run = svm->vcpu.run;
2881
2882         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2883         svm_clear_vintr(svm);
2884         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2885         mark_dirty(svm->vmcb, VMCB_INTR);
2886         /*
2887          * If the user space waits to inject interrupts, exit as soon as
2888          * possible
2889          */
2890         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2891             kvm_run->request_interrupt_window &&
2892             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2893                 ++svm->vcpu.stat.irq_window_exits;
2894                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2895                 return 0;
2896         }
2897
2898         return 1;
2899 }
2900
2901 static int pause_interception(struct vcpu_svm *svm)
2902 {
2903         kvm_vcpu_on_spin(&(svm->vcpu));
2904         return 1;
2905 }
2906
2907 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2908         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2909         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2910         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2911         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2912         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2913         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2914         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2915         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2916         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2917         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2918         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2919         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2920         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2921         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2922         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2923         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2924         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2925         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2926         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2927         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2928         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2929         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2930         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2931         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2932         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2933         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2934         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2935         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2936         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2937         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2938         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2939         [SVM_EXIT_INTR]                         = intr_interception,
2940         [SVM_EXIT_NMI]                          = nmi_interception,
2941         [SVM_EXIT_SMI]                          = nop_on_interception,
2942         [SVM_EXIT_INIT]                         = nop_on_interception,
2943         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2944         [SVM_EXIT_CPUID]                        = cpuid_interception,
2945         [SVM_EXIT_IRET]                         = iret_interception,
2946         [SVM_EXIT_INVD]                         = emulate_on_interception,
2947         [SVM_EXIT_PAUSE]                        = pause_interception,
2948         [SVM_EXIT_HLT]                          = halt_interception,
2949         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2950         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2951         [SVM_EXIT_IOIO]                         = io_interception,
2952         [SVM_EXIT_MSR]                          = msr_interception,
2953         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2954         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2955         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2956         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2957         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2958         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2959         [SVM_EXIT_STGI]                         = stgi_interception,
2960         [SVM_EXIT_CLGI]                         = clgi_interception,
2961         [SVM_EXIT_SKINIT]                       = skinit_interception,
2962         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2963         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2964         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2965         [SVM_EXIT_NPF]                          = pf_interception,
2966 };
2967
2968 void dump_vmcb(struct kvm_vcpu *vcpu)
2969 {
2970         struct vcpu_svm *svm = to_svm(vcpu);
2971         struct vmcb_control_area *control = &svm->vmcb->control;
2972         struct vmcb_save_area *save = &svm->vmcb->save;
2973
2974         pr_err("VMCB Control Area:\n");
2975         pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff);
2976         pr_err("cr_write:           %04x\n", control->intercept_cr >> 16);
2977         pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff);
2978         pr_err("dr_write:           %04x\n", control->intercept_dr >> 16);
2979         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2980         pr_err("intercepts:         %016llx\n", control->intercept);
2981         pr_err("pause filter count: %d\n", control->pause_filter_count);
2982         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2983         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2984         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2985         pr_err("asid:               %d\n", control->asid);
2986         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2987         pr_err("int_ctl:            %08x\n", control->int_ctl);
2988         pr_err("int_vector:         %08x\n", control->int_vector);
2989         pr_err("int_state:          %08x\n", control->int_state);
2990         pr_err("exit_code:          %08x\n", control->exit_code);
2991         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2992         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2993         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2994         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2995         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2996         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2997         pr_err("event_inj:          %08x\n", control->event_inj);
2998         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2999         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
3000         pr_err("next_rip:           %016llx\n", control->next_rip);
3001         pr_err("VMCB State Save Area:\n");
3002         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
3003                 save->es.selector, save->es.attrib,
3004                 save->es.limit, save->es.base);
3005         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
3006                 save->cs.selector, save->cs.attrib,
3007                 save->cs.limit, save->cs.base);
3008         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
3009                 save->ss.selector, save->ss.attrib,
3010                 save->ss.limit, save->ss.base);
3011         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
3012                 save->ds.selector, save->ds.attrib,
3013                 save->ds.limit, save->ds.base);
3014         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
3015                 save->fs.selector, save->fs.attrib,
3016                 save->fs.limit, save->fs.base);
3017         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
3018                 save->gs.selector, save->gs.attrib,
3019                 save->gs.limit, save->gs.base);
3020         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3021                 save->gdtr.selector, save->gdtr.attrib,
3022                 save->gdtr.limit, save->gdtr.base);
3023         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3024                 save->ldtr.selector, save->ldtr.attrib,
3025                 save->ldtr.limit, save->ldtr.base);
3026         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3027                 save->idtr.selector, save->idtr.attrib,
3028                 save->idtr.limit, save->idtr.base);
3029         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
3030                 save->tr.selector, save->tr.attrib,
3031                 save->tr.limit, save->tr.base);
3032         pr_err("cpl:            %d                efer:         %016llx\n",
3033                 save->cpl, save->efer);
3034         pr_err("cr0:            %016llx cr2:          %016llx\n",
3035                 save->cr0, save->cr2);
3036         pr_err("cr3:            %016llx cr4:          %016llx\n",
3037                 save->cr3, save->cr4);
3038         pr_err("dr6:            %016llx dr7:          %016llx\n",
3039                 save->dr6, save->dr7);
3040         pr_err("rip:            %016llx rflags:       %016llx\n",
3041                 save->rip, save->rflags);
3042         pr_err("rsp:            %016llx rax:          %016llx\n",
3043                 save->rsp, save->rax);
3044         pr_err("star:           %016llx lstar:        %016llx\n",
3045                 save->star, save->lstar);
3046         pr_err("cstar:          %016llx sfmask:       %016llx\n",
3047                 save->cstar, save->sfmask);
3048         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
3049                 save->kernel_gs_base, save->sysenter_cs);
3050         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
3051                 save->sysenter_esp, save->sysenter_eip);
3052         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
3053                 save->g_pat, save->dbgctl);
3054         pr_err("br_from:        %016llx br_to:        %016llx\n",
3055                 save->br_from, save->br_to);
3056         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
3057                 save->last_excp_from, save->last_excp_to);
3058
3059 }
3060
3061 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3062 {
3063         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3064
3065         *info1 = control->exit_info_1;
3066         *info2 = control->exit_info_2;
3067 }
3068
3069 static int handle_exit(struct kvm_vcpu *vcpu)
3070 {
3071         struct vcpu_svm *svm = to_svm(vcpu);
3072         struct kvm_run *kvm_run = vcpu->run;
3073         u32 exit_code = svm->vmcb->control.exit_code;
3074
3075         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3076
3077         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3078                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3079         if (npt_enabled)
3080                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3081
3082         if (unlikely(svm->nested.exit_required)) {
3083                 nested_svm_vmexit(svm);
3084                 svm->nested.exit_required = false;
3085
3086                 return 1;
3087         }
3088
3089         if (is_guest_mode(vcpu)) {
3090                 int vmexit;
3091
3092                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3093                                         svm->vmcb->control.exit_info_1,
3094                                         svm->vmcb->control.exit_info_2,
3095                                         svm->vmcb->control.exit_int_info,
3096                                         svm->vmcb->control.exit_int_info_err);
3097
3098                 vmexit = nested_svm_exit_special(svm);
3099
3100                 if (vmexit == NESTED_EXIT_CONTINUE)
3101                         vmexit = nested_svm_exit_handled(svm);
3102
3103                 if (vmexit == NESTED_EXIT_DONE)
3104                         return 1;
3105         }
3106
3107         svm_complete_interrupts(svm);
3108
3109         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3110                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3111                 kvm_run->fail_entry.hardware_entry_failure_reason
3112                         = svm->vmcb->control.exit_code;
3113                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3114                 dump_vmcb(vcpu);
3115                 return 0;
3116         }
3117
3118         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3119             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3120             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3121             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3122                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3123                        "exit_code 0x%x\n",
3124                        __func__, svm->vmcb->control.exit_int_info,
3125                        exit_code);
3126
3127         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3128             || !svm_exit_handlers[exit_code]) {
3129                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3130                 kvm_run->hw.hardware_exit_reason = exit_code;
3131                 return 0;
3132         }
3133
3134         return svm_exit_handlers[exit_code](svm);
3135 }
3136
3137 static void reload_tss(struct kvm_vcpu *vcpu)
3138 {
3139         int cpu = raw_smp_processor_id();
3140
3141         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3142         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3143         load_TR_desc();
3144 }
3145
3146 static void pre_svm_run(struct vcpu_svm *svm)
3147 {
3148         int cpu = raw_smp_processor_id();
3149
3150         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3151
3152         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3153         /* FIXME: handle wraparound of asid_generation */
3154         if (svm->asid_generation != sd->asid_generation)
3155                 new_asid(svm, sd);
3156 }
3157
3158 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3159 {
3160         struct vcpu_svm *svm = to_svm(vcpu);
3161
3162         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3163         vcpu->arch.hflags |= HF_NMI_MASK;
3164         set_intercept(svm, INTERCEPT_IRET);
3165         ++vcpu->stat.nmi_injections;
3166 }
3167
3168 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3169 {
3170         struct vmcb_control_area *control;
3171
3172         control = &svm->vmcb->control;
3173         control->int_vector = irq;
3174         control->int_ctl &= ~V_INTR_PRIO_MASK;
3175         control->int_ctl |= V_IRQ_MASK |
3176                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3177         mark_dirty(svm->vmcb, VMCB_INTR);
3178 }
3179
3180 static void svm_set_irq(struct kvm_vcpu *vcpu)
3181 {
3182         struct vcpu_svm *svm = to_svm(vcpu);
3183
3184         BUG_ON(!(gif_set(svm)));
3185
3186         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3187         ++vcpu->stat.irq_injections;
3188
3189         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3190                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3191 }
3192
3193 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3194 {
3195         struct vcpu_svm *svm = to_svm(vcpu);
3196
3197         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3198                 return;
3199
3200         if (irr == -1)
3201                 return;
3202
3203         if (tpr >= irr)
3204                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3205 }
3206
3207 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3208 {
3209         struct vcpu_svm *svm = to_svm(vcpu);
3210         struct vmcb *vmcb = svm->vmcb;
3211         int ret;
3212         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3213               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3214         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3215
3216         return ret;
3217 }
3218
3219 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3220 {
3221         struct vcpu_svm *svm = to_svm(vcpu);
3222
3223         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3224 }
3225
3226 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3227 {
3228         struct vcpu_svm *svm = to_svm(vcpu);
3229
3230         if (masked) {
3231                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3232                 set_intercept(svm, INTERCEPT_IRET);
3233         } else {
3234                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3235                 clr_intercept(svm, INTERCEPT_IRET);
3236         }
3237 }
3238
3239 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3240 {
3241         struct vcpu_svm *svm = to_svm(vcpu);
3242         struct vmcb *vmcb = svm->vmcb;
3243         int ret;
3244
3245         if (!gif_set(svm) ||
3246              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3247                 return 0;
3248
3249         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3250
3251         if (is_guest_mode(vcpu))
3252                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3253
3254         return ret;
3255 }
3256
3257 static void enable_irq_window(struct kvm_vcpu *vcpu)
3258 {
3259         struct vcpu_svm *svm = to_svm(vcpu);
3260
3261         /*
3262          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3263          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3264          * get that intercept, this function will be called again though and
3265          * we'll get the vintr intercept.
3266          */
3267         if (gif_set(svm) && nested_svm_intr(svm)) {
3268                 svm_set_vintr(svm);
3269                 svm_inject_irq(svm, 0x0);
3270         }
3271 }
3272
3273 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3274 {
3275         struct vcpu_svm *svm = to_svm(vcpu);
3276
3277         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3278             == HF_NMI_MASK)
3279                 return; /* IRET will cause a vm exit */
3280
3281         /*
3282          * Something prevents NMI from been injected. Single step over possible
3283          * problem (IRET or exception injection or interrupt shadow)
3284          */
3285         svm->nmi_singlestep = true;
3286         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3287         update_db_intercept(vcpu);
3288 }
3289
3290 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3291 {
3292         return 0;
3293 }
3294
3295 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3296 {
3297         force_new_asid(vcpu);
3298 }
3299
3300 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3301 {
3302 }
3303
3304 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3305 {
3306         struct vcpu_svm *svm = to_svm(vcpu);
3307
3308         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3309                 return;
3310
3311         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3312                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3313                 kvm_set_cr8(vcpu, cr8);
3314         }
3315 }
3316
3317 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3318 {
3319         struct vcpu_svm *svm = to_svm(vcpu);
3320         u64 cr8;
3321
3322         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3323                 return;
3324
3325         cr8 = kvm_get_cr8(vcpu);
3326         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3327         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3328 }
3329
3330 static void svm_complete_interrupts(struct vcpu_svm *svm)
3331 {
3332         u8 vector;
3333         int type;
3334         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3335         unsigned int3_injected = svm->int3_injected;
3336
3337         svm->int3_injected = 0;
3338
3339         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3340                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3341                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3342         }
3343
3344         svm->vcpu.arch.nmi_injected = false;
3345         kvm_clear_exception_queue(&svm->vcpu);
3346         kvm_clear_interrupt_queue(&svm->vcpu);
3347
3348         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3349                 return;
3350
3351         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3352
3353         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3354         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3355
3356         switch (type) {
3357         case SVM_EXITINTINFO_TYPE_NMI:
3358                 svm->vcpu.arch.nmi_injected = true;
3359                 break;
3360         case SVM_EXITINTINFO_TYPE_EXEPT:
3361                 /*
3362                  * In case of software exceptions, do not reinject the vector,
3363                  * but re-execute the instruction instead. Rewind RIP first
3364                  * if we emulated INT3 before.
3365                  */
3366                 if (kvm_exception_is_soft(vector)) {
3367                         if (vector == BP_VECTOR && int3_injected &&
3368                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3369                                 kvm_rip_write(&svm->vcpu,
3370                                               kvm_rip_read(&svm->vcpu) -
3371                                               int3_injected);
3372                         break;
3373                 }
3374                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3375                         u32 err = svm->vmcb->control.exit_int_info_err;
3376                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3377
3378                 } else
3379                         kvm_requeue_exception(&svm->vcpu, vector);
3380                 break;
3381         case SVM_EXITINTINFO_TYPE_INTR:
3382                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3383                 break;
3384         default:
3385                 break;
3386         }
3387 }
3388
3389 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3390 {
3391         struct vcpu_svm *svm = to_svm(vcpu);
3392         struct vmcb_control_area *control = &svm->vmcb->control;
3393
3394         control->exit_int_info = control->event_inj;
3395         control->exit_int_info_err = control->event_inj_err;
3396         control->event_inj = 0;
3397         svm_complete_interrupts(svm);
3398 }
3399
3400 #ifdef CONFIG_X86_64
3401 #define R "r"
3402 #else
3403 #define R "e"
3404 #endif
3405
3406 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3407 {
3408         struct vcpu_svm *svm = to_svm(vcpu);
3409
3410         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3411         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3412         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3413
3414         /*
3415          * A vmexit emulation is required before the vcpu can be executed
3416          * again.
3417          */
3418         if (unlikely(svm->nested.exit_required))
3419                 return;
3420
3421         pre_svm_run(svm);
3422
3423         sync_lapic_to_cr8(vcpu);
3424
3425         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3426
3427         clgi();
3428
3429         local_irq_enable();
3430
3431         asm volatile (
3432                 "push %%"R"bp; \n\t"
3433                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3434                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3435                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3436                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3437                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3438                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3439 #ifdef CONFIG_X86_64
3440                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3441                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3442                 "mov %c[r10](%[svm]), %%r10 \n\t"
3443                 "mov %c[r11](%[svm]), %%r11 \n\t"
3444                 "mov %c[r12](%[svm]), %%r12 \n\t"
3445                 "mov %c[r13](%[svm]), %%r13 \n\t"
3446                 "mov %c[r14](%[svm]), %%r14 \n\t"
3447                 "mov %c[r15](%[svm]), %%r15 \n\t"
3448 #endif
3449
3450                 /* Enter guest mode */
3451                 "push %%"R"ax \n\t"
3452                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3453                 __ex(SVM_VMLOAD) "\n\t"
3454                 __ex(SVM_VMRUN) "\n\t"
3455                 __ex(SVM_VMSAVE) "\n\t"
3456                 "pop %%"R"ax \n\t"
3457
3458                 /* Save guest registers, load host registers */
3459                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3460                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3461                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3462                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3463                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3464                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3465 #ifdef CONFIG_X86_64
3466                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3467                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3468                 "mov %%r10, %c[r10](%[svm]) \n\t"
3469                 "mov %%r11, %c[r11](%[svm]) \n\t"
3470                 "mov %%r12, %c[r12](%[svm]) \n\t"
3471                 "mov %%r13, %c[r13](%[svm]) \n\t"
3472                 "mov %%r14, %c[r14](%[svm]) \n\t"
3473                 "mov %%r15, %c[r15](%[svm]) \n\t"
3474 #endif
3475                 "pop %%"R"bp"
3476                 :
3477                 : [svm]"a"(svm),
3478                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3479                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3480                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3481                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3482                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3483                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3484                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3485 #ifdef CONFIG_X86_64
3486                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3487                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3488                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3489                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3490                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3491                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3492                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3493                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3494 #endif
3495                 : "cc", "memory"
3496                 , R"bx", R"cx", R"dx", R"si", R"di"
3497 #ifdef CONFIG_X86_64
3498                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3499 #endif
3500                 );
3501
3502 #ifdef CONFIG_X86_64
3503         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3504 #else
3505         loadsegment(fs, svm->host.fs);
3506 #endif
3507
3508         reload_tss(vcpu);
3509
3510         local_irq_disable();
3511
3512         stgi();
3513
3514         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3515         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3516         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3517         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3518
3519         sync_cr8_to_lapic(vcpu);
3520
3521         svm->next_rip = 0;
3522
3523         /* if exit due to PF check for async PF */
3524         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3525                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3526
3527         if (npt_enabled) {
3528                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3529                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3530         }
3531
3532         /*
3533          * We need to handle MC intercepts here before the vcpu has a chance to
3534          * change the physical cpu
3535          */
3536         if (unlikely(svm->vmcb->control.exit_code ==
3537                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3538                 svm_handle_mce(svm);
3539
3540         mark_all_clean(svm->vmcb);
3541 }
3542
3543 #undef R
3544
3545 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3546 {
3547         struct vcpu_svm *svm = to_svm(vcpu);
3548
3549         svm->vmcb->save.cr3 = root;
3550         force_new_asid(vcpu);
3551 }
3552
3553 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3554 {
3555         struct vcpu_svm *svm = to_svm(vcpu);
3556
3557         svm->vmcb->control.nested_cr3 = root;
3558
3559         /* Also sync guest cr3 here in case we live migrate */
3560         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3561
3562         force_new_asid(vcpu);
3563 }
3564
3565 static int is_disabled(void)
3566 {
3567         u64 vm_cr;
3568
3569         rdmsrl(MSR_VM_CR, vm_cr);
3570         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3571                 return 1;
3572
3573         return 0;
3574 }
3575
3576 static void
3577 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3578 {
3579         /*
3580          * Patch in the VMMCALL instruction:
3581          */
3582         hypercall[0] = 0x0f;
3583         hypercall[1] = 0x01;
3584         hypercall[2] = 0xd9;
3585 }
3586
3587 static void svm_check_processor_compat(void *rtn)
3588 {
3589         *(int *)rtn = 0;
3590 }
3591
3592 static bool svm_cpu_has_accelerated_tpr(void)
3593 {
3594         return false;
3595 }
3596
3597 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3598 {
3599         return 0;
3600 }
3601
3602 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3603 {
3604 }
3605
3606 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3607 {
3608         switch (func) {
3609         case 0x00000001:
3610                 /* Mask out xsave bit as long as it is not supported by SVM */
3611                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3612                 break;
3613         case 0x80000001:
3614                 if (nested)
3615                         entry->ecx |= (1 << 2); /* Set SVM bit */
3616                 break;
3617         case 0x8000000A:
3618                 entry->eax = 1; /* SVM revision 1 */
3619                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3620                                    ASID emulation to nested SVM */
3621                 entry->ecx = 0; /* Reserved */
3622                 entry->edx = 0; /* Per default do not support any
3623                                    additional features */
3624
3625                 /* Support next_rip if host supports it */
3626                 if (boot_cpu_has(X86_FEATURE_NRIPS))
3627                         entry->edx |= SVM_FEATURE_NRIP;
3628
3629                 /* Support NPT for the guest if enabled */
3630                 if (npt_enabled)
3631                         entry->edx |= SVM_FEATURE_NPT;
3632
3633                 break;
3634         }
3635 }
3636
3637 static const struct trace_print_flags svm_exit_reasons_str[] = {
3638         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3639         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3640         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3641         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3642         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3643         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3644         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3645         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3646         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3647         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3648         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3649         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3650         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3651         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3652         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3653         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3654         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3655         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3656         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3657         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3658         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3659         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3660         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3661         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3662         { SVM_EXIT_INTR,                        "interrupt" },
3663         { SVM_EXIT_NMI,                         "nmi" },
3664         { SVM_EXIT_SMI,                         "smi" },
3665         { SVM_EXIT_INIT,                        "init" },
3666         { SVM_EXIT_VINTR,                       "vintr" },
3667         { SVM_EXIT_CPUID,                       "cpuid" },
3668         { SVM_EXIT_INVD,                        "invd" },
3669         { SVM_EXIT_HLT,                         "hlt" },
3670         { SVM_EXIT_INVLPG,                      "invlpg" },
3671         { SVM_EXIT_INVLPGA,                     "invlpga" },
3672         { SVM_EXIT_IOIO,                        "io" },
3673         { SVM_EXIT_MSR,                         "msr" },
3674         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3675         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3676         { SVM_EXIT_VMRUN,                       "vmrun" },
3677         { SVM_EXIT_VMMCALL,                     "hypercall" },
3678         { SVM_EXIT_VMLOAD,                      "vmload" },
3679         { SVM_EXIT_VMSAVE,                      "vmsave" },
3680         { SVM_EXIT_STGI,                        "stgi" },
3681         { SVM_EXIT_CLGI,                        "clgi" },
3682         { SVM_EXIT_SKINIT,                      "skinit" },
3683         { SVM_EXIT_WBINVD,                      "wbinvd" },
3684         { SVM_EXIT_MONITOR,                     "monitor" },
3685         { SVM_EXIT_MWAIT,                       "mwait" },
3686         { SVM_EXIT_NPF,                         "npf" },
3687         { -1, NULL }
3688 };
3689
3690 static int svm_get_lpage_level(void)
3691 {
3692         return PT_PDPE_LEVEL;
3693 }
3694
3695 static bool svm_rdtscp_supported(void)
3696 {
3697         return false;
3698 }
3699
3700 static bool svm_has_wbinvd_exit(void)
3701 {
3702         return true;
3703 }
3704
3705 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3706 {
3707         struct vcpu_svm *svm = to_svm(vcpu);
3708
3709         set_exception_intercept(svm, NM_VECTOR);
3710         update_cr0_intercept(svm);
3711 }
3712
3713 static struct kvm_x86_ops svm_x86_ops = {
3714         .cpu_has_kvm_support = has_svm,
3715         .disabled_by_bios = is_disabled,
3716         .hardware_setup = svm_hardware_setup,
3717         .hardware_unsetup = svm_hardware_unsetup,
3718         .check_processor_compatibility = svm_check_processor_compat,
3719         .hardware_enable = svm_hardware_enable,
3720         .hardware_disable = svm_hardware_disable,
3721         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3722
3723         .vcpu_create = svm_create_vcpu,
3724         .vcpu_free = svm_free_vcpu,
3725         .vcpu_reset = svm_vcpu_reset,
3726
3727         .prepare_guest_switch = svm_prepare_guest_switch,
3728         .vcpu_load = svm_vcpu_load,
3729         .vcpu_put = svm_vcpu_put,
3730
3731         .set_guest_debug = svm_guest_debug,
3732         .get_msr = svm_get_msr,
3733         .set_msr = svm_set_msr,
3734         .get_segment_base = svm_get_segment_base,
3735         .get_segment = svm_get_segment,
3736         .set_segment = svm_set_segment,
3737         .get_cpl = svm_get_cpl,
3738         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3739         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3740         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3741         .set_cr0 = svm_set_cr0,
3742         .set_cr3 = svm_set_cr3,
3743         .set_cr4 = svm_set_cr4,
3744         .set_efer = svm_set_efer,
3745         .get_idt = svm_get_idt,
3746         .set_idt = svm_set_idt,
3747         .get_gdt = svm_get_gdt,
3748         .set_gdt = svm_set_gdt,
3749         .set_dr7 = svm_set_dr7,
3750         .cache_reg = svm_cache_reg,
3751         .get_rflags = svm_get_rflags,
3752         .set_rflags = svm_set_rflags,
3753         .fpu_activate = svm_fpu_activate,
3754         .fpu_deactivate = svm_fpu_deactivate,
3755
3756         .tlb_flush = svm_flush_tlb,
3757
3758         .run = svm_vcpu_run,
3759         .handle_exit = handle_exit,
3760         .skip_emulated_instruction = skip_emulated_instruction,
3761         .set_interrupt_shadow = svm_set_interrupt_shadow,
3762         .get_interrupt_shadow = svm_get_interrupt_shadow,
3763         .patch_hypercall = svm_patch_hypercall,
3764         .set_irq = svm_set_irq,
3765         .set_nmi = svm_inject_nmi,
3766         .queue_exception = svm_queue_exception,
3767         .cancel_injection = svm_cancel_injection,
3768         .interrupt_allowed = svm_interrupt_allowed,
3769         .nmi_allowed = svm_nmi_allowed,
3770         .get_nmi_mask = svm_get_nmi_mask,
3771         .set_nmi_mask = svm_set_nmi_mask,
3772         .enable_nmi_window = enable_nmi_window,
3773         .enable_irq_window = enable_irq_window,
3774         .update_cr8_intercept = update_cr8_intercept,
3775
3776         .set_tss_addr = svm_set_tss_addr,
3777         .get_tdp_level = get_npt_level,
3778         .get_mt_mask = svm_get_mt_mask,
3779
3780         .get_exit_info = svm_get_exit_info,
3781         .exit_reasons_str = svm_exit_reasons_str,
3782
3783         .get_lpage_level = svm_get_lpage_level,
3784
3785         .cpuid_update = svm_cpuid_update,
3786
3787         .rdtscp_supported = svm_rdtscp_supported,
3788
3789         .set_supported_cpuid = svm_set_supported_cpuid,
3790
3791         .has_wbinvd_exit = svm_has_wbinvd_exit,
3792
3793         .write_tsc_offset = svm_write_tsc_offset,
3794         .adjust_tsc_offset = svm_adjust_tsc_offset,
3795
3796         .set_tdp_cr3 = set_tdp_cr3,
3797 };
3798
3799 static int __init svm_init(void)
3800 {
3801         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3802                         __alignof__(struct vcpu_svm), THIS_MODULE);
3803 }
3804
3805 static void __exit svm_exit(void)
3806 {
3807         kvm_exit();
3808 }
3809
3810 module_init(svm_init)
3811 module_exit(svm_exit)