KVM: MMU: use kvm_release_pfn_clean to release pfn
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204         trace_mark_mmio_spte(sptep, gfn, access);
205         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225         if (unlikely(is_noslot_pfn(pfn))) {
226                 mark_mmio_spte(sptep, gfn, access);
227                 return true;
228         }
229
230         return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235         return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241         shadow_user_mask = user_mask;
242         shadow_accessed_mask = accessed_mask;
243         shadow_dirty_mask = dirty_mask;
244         shadow_nx_mask = nx_mask;
245         shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251         return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266         return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271         return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276         return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281         if (level == PT_PAGE_TABLE_LEVEL)
282                 return 1;
283         if (is_large_pte(pte))
284                 return 1;
285         return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297         return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303         *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308         *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313         return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318         return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323         /* It is valid if the spte is zapped. */
324         return spte == 0ull;
325 }
326 #else
327 union split_spte {
328         struct {
329                 u32 spte_low;
330                 u32 spte_high;
331         };
332         u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
338
339         if (is_shadow_present_pte(spte))
340                 return;
341
342         /* Ensure the spte is completely set before we increase the count */
343         smp_wmb();
344         sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349         union split_spte *ssptep, sspte;
350
351         ssptep = (union split_spte *)sptep;
352         sspte = (union split_spte)spte;
353
354         ssptep->spte_high = sspte.spte_high;
355
356         /*
357          * If we map the spte from nonpresent to present, We should store
358          * the high bits firstly, then set present bit, so cpu can not
359          * fetch this spte while we are setting the spte.
360          */
361         smp_wmb();
362
363         ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         union split_spte *ssptep, sspte;
369
370         ssptep = (union split_spte *)sptep;
371         sspte = (union split_spte)spte;
372
373         ssptep->spte_low = sspte.spte_low;
374
375         /*
376          * If we map the spte from present to nonpresent, we should clear
377          * present bit firstly to avoid vcpu fetch the old high bits.
378          */
379         smp_wmb();
380
381         ssptep->spte_high = sspte.spte_high;
382         count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387         union split_spte *ssptep, sspte, orig;
388
389         ssptep = (union split_spte *)sptep;
390         sspte = (union split_spte)spte;
391
392         /* xchg acts as a barrier before the setting of the high bits */
393         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394         orig.spte_high = ssptep->spte_high;
395         ssptep->spte_high = sspte.spte_high;
396         count_spte_clear(sptep, spte);
397
398         return orig.spte;
399 }
400
401 /*
402  * The idea using the light way get the spte on x86_32 guest is from
403  * gup_get_pte(arch/x86/mm/gup.c).
404  * The difference is we can not catch the spte tlb flush if we leave
405  * guest mode, so we emulate it by increase clear_spte_count when spte
406  * is cleared.
407  */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
411         union split_spte spte, *orig = (union split_spte *)sptep;
412         int count;
413
414 retry:
415         count = sp->clear_spte_count;
416         smp_rmb();
417
418         spte.spte_low = orig->spte_low;
419         smp_rmb();
420
421         spte.spte_high = orig->spte_high;
422         smp_rmb();
423
424         if (unlikely(spte.spte_low != orig->spte_low ||
425               count != sp->clear_spte_count))
426                 goto retry;
427
428         return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433         union split_spte sspte = (union split_spte)spte;
434         u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436         /* It is valid if the spte is zapped. */
437         if (spte == 0ull)
438                 return true;
439
440         /* It is valid if the spte is being zapped. */
441         if (sspte.spte_low == 0ull &&
442             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443                 return true;
444
445         return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451         return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456         /*
457          * Always atomicly update spte if it can be updated
458          * out of mmu-lock, it can ensure dirty bit is not lost,
459          * also, it can help us to get a stable is_writable_pte()
460          * to ensure tlb flush is not missed.
461          */
462         if (spte_is_locklessly_modifiable(spte))
463                 return true;
464
465         if (!shadow_accessed_mask)
466                 return false;
467
468         if (!is_shadow_present_pte(spte))
469                 return false;
470
471         if ((spte & shadow_accessed_mask) &&
472               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473                 return false;
474
475         return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480         return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484  * Set the sptep from nonpresent to present.
485  * Note: the sptep being assigned *must* be either not present
486  * or in a state where the hardware will not attempt to update
487  * the spte.
488  */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491         WARN_ON(is_shadow_present_pte(*sptep));
492         __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496  * Update the state bits, it means the mapped pfn is not changged.
497  *
498  * Whenever we overwrite a writable spte with a read-only one we
499  * should flush remote TLBs. Otherwise rmap_write_protect
500  * will find a read-only spte, even though the writable spte
501  * might be cached on a CPU's TLB, the return value indicates this
502  * case.
503  */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506         u64 old_spte = *sptep;
507         bool ret = false;
508
509         WARN_ON(!is_rmap_spte(new_spte));
510
511         if (!is_shadow_present_pte(old_spte)) {
512                 mmu_spte_set(sptep, new_spte);
513                 return ret;
514         }
515
516         if (!spte_has_volatile_bits(old_spte))
517                 __update_clear_spte_fast(sptep, new_spte);
518         else
519                 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521         /*
522          * For the spte updated out of mmu-lock is safe, since
523          * we always atomicly update it, see the comments in
524          * spte_has_volatile_bits().
525          */
526         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527                 ret = true;
528
529         if (!shadow_accessed_mask)
530                 return ret;
531
532         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537         return ret;
538 }
539
540 /*
541  * Rules for using mmu_spte_clear_track_bits:
542  * It sets the sptep from present to nonpresent, and track the
543  * state bits, it is used to clear the last level sptep.
544  */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547         pfn_t pfn;
548         u64 old_spte = *sptep;
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, 0ull);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555         if (!is_rmap_spte(old_spte))
556                 return 0;
557
558         pfn = spte_to_pfn(old_spte);
559
560         /*
561          * KVM does not hold the refcount of the page used by
562          * kvm mmu, before reclaiming the page, we should
563          * unmap it from mmu first.
564          */
565         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568                 kvm_set_pfn_accessed(pfn);
569         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570                 kvm_set_pfn_dirty(pfn);
571         return 1;
572 }
573
574 /*
575  * Rules for using mmu_spte_clear_no_track:
576  * Directly clear spte without caring the state bits of sptep,
577  * it is used to set the upper level spte.
578  */
579 static void mmu_spte_clear_no_track(u64 *sptep)
580 {
581         __update_clear_spte_fast(sptep, 0ull);
582 }
583
584 static u64 mmu_spte_get_lockless(u64 *sptep)
585 {
586         return __get_spte_lockless(sptep);
587 }
588
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590 {
591         /*
592          * Prevent page table teardown by making any free-er wait during
593          * kvm_flush_remote_tlbs() IPI to all active vcpus.
594          */
595         local_irq_disable();
596         vcpu->mode = READING_SHADOW_PAGE_TABLES;
597         /*
598          * Make sure a following spte read is not reordered ahead of the write
599          * to vcpu->mode.
600          */
601         smp_mb();
602 }
603
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605 {
606         /*
607          * Make sure the write to vcpu->mode is not reordered in front of
608          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
609          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610          */
611         smp_mb();
612         vcpu->mode = OUTSIDE_GUEST_MODE;
613         local_irq_enable();
614 }
615
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617                                   struct kmem_cache *base_cache, int min)
618 {
619         void *obj;
620
621         if (cache->nobjs >= min)
622                 return 0;
623         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625                 if (!obj)
626                         return -ENOMEM;
627                 cache->objects[cache->nobjs++] = obj;
628         }
629         return 0;
630 }
631
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633 {
634         return cache->nobjs;
635 }
636
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638                                   struct kmem_cache *cache)
639 {
640         while (mc->nobjs)
641                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 }
643
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645                                        int min)
646 {
647         void *page;
648
649         if (cache->nobjs >= min)
650                 return 0;
651         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652                 page = (void *)__get_free_page(GFP_KERNEL);
653                 if (!page)
654                         return -ENOMEM;
655                 cache->objects[cache->nobjs++] = page;
656         }
657         return 0;
658 }
659
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661 {
662         while (mc->nobjs)
663                 free_page((unsigned long)mc->objects[--mc->nobjs]);
664 }
665
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667 {
668         int r;
669
670         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672         if (r)
673                 goto out;
674         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675         if (r)
676                 goto out;
677         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678                                    mmu_page_header_cache, 4);
679 out:
680         return r;
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686                                 pte_list_desc_cache);
687         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689                                 mmu_page_header_cache);
690 }
691
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 {
694         void *p;
695
696         BUG_ON(!mc->nobjs);
697         p = mc->objects[--mc->nobjs];
698         return p;
699 }
700
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702 {
703         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 }
705
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707 {
708         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 }
710
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712 {
713         if (!sp->role.direct)
714                 return sp->gfns[index];
715
716         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717 }
718
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720 {
721         if (sp->role.direct)
722                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723         else
724                 sp->gfns[index] = gfn;
725 }
726
727 /*
728  * Return the pointer to the large page information for a given gfn,
729  * handling slots that are not large page aligned.
730  */
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732                                               struct kvm_memory_slot *slot,
733                                               int level)
734 {
735         unsigned long idx;
736
737         idx = gfn_to_index(gfn, slot->base_gfn, level);
738         return &slot->arch.lpage_info[level - 2][idx];
739 }
740
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742 {
743         struct kvm_memory_slot *slot;
744         struct kvm_lpage_info *linfo;
745         int i;
746
747         slot = gfn_to_memslot(kvm, gfn);
748         for (i = PT_DIRECTORY_LEVEL;
749              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750                 linfo = lpage_info_slot(gfn, slot, i);
751                 linfo->write_count += 1;
752         }
753         kvm->arch.indirect_shadow_pages++;
754 }
755
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757 {
758         struct kvm_memory_slot *slot;
759         struct kvm_lpage_info *linfo;
760         int i;
761
762         slot = gfn_to_memslot(kvm, gfn);
763         for (i = PT_DIRECTORY_LEVEL;
764              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765                 linfo = lpage_info_slot(gfn, slot, i);
766                 linfo->write_count -= 1;
767                 WARN_ON(linfo->write_count < 0);
768         }
769         kvm->arch.indirect_shadow_pages--;
770 }
771
772 static int has_wrprotected_page(struct kvm *kvm,
773                                 gfn_t gfn,
774                                 int level)
775 {
776         struct kvm_memory_slot *slot;
777         struct kvm_lpage_info *linfo;
778
779         slot = gfn_to_memslot(kvm, gfn);
780         if (slot) {
781                 linfo = lpage_info_slot(gfn, slot, level);
782                 return linfo->write_count;
783         }
784
785         return 1;
786 }
787
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789 {
790         unsigned long page_size;
791         int i, ret = 0;
792
793         page_size = kvm_host_page_size(kvm, gfn);
794
795         for (i = PT_PAGE_TABLE_LEVEL;
796              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797                 if (page_size >= KVM_HPAGE_SIZE(i))
798                         ret = i;
799                 else
800                         break;
801         }
802
803         return ret;
804 }
805
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808                             bool no_dirty_log)
809 {
810         struct kvm_memory_slot *slot;
811
812         slot = gfn_to_memslot(vcpu->kvm, gfn);
813         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814               (no_dirty_log && slot->dirty_bitmap))
815                 slot = NULL;
816
817         return slot;
818 }
819
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821 {
822         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 }
824
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826 {
827         int host_level, level, max_level;
828
829         host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831         if (host_level == PT_PAGE_TABLE_LEVEL)
832                 return host_level;
833
834         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835                 kvm_x86_ops->get_lpage_level() : host_level;
836
837         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839                         break;
840
841         return level - 1;
842 }
843
844 /*
845  * Pte mapping structures:
846  *
847  * If pte_list bit zero is zero, then pte_list point to the spte.
848  *
849  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850  * pte_list_desc containing more mappings.
851  *
852  * Returns the number of pte entries before the spte was added or zero if
853  * the spte was not added.
854  *
855  */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857                         unsigned long *pte_list)
858 {
859         struct pte_list_desc *desc;
860         int i, count = 0;
861
862         if (!*pte_list) {
863                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864                 *pte_list = (unsigned long)spte;
865         } else if (!(*pte_list & 1)) {
866                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867                 desc = mmu_alloc_pte_list_desc(vcpu);
868                 desc->sptes[0] = (u64 *)*pte_list;
869                 desc->sptes[1] = spte;
870                 *pte_list = (unsigned long)desc | 1;
871                 ++count;
872         } else {
873                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876                         desc = desc->more;
877                         count += PTE_LIST_EXT;
878                 }
879                 if (desc->sptes[PTE_LIST_EXT-1]) {
880                         desc->more = mmu_alloc_pte_list_desc(vcpu);
881                         desc = desc->more;
882                 }
883                 for (i = 0; desc->sptes[i]; ++i)
884                         ++count;
885                 desc->sptes[i] = spte;
886         }
887         return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892                            int i, struct pte_list_desc *prev_desc)
893 {
894         int j;
895
896         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897                 ;
898         desc->sptes[i] = desc->sptes[j];
899         desc->sptes[j] = NULL;
900         if (j != 0)
901                 return;
902         if (!prev_desc && !desc->more)
903                 *pte_list = (unsigned long)desc->sptes[0];
904         else
905                 if (prev_desc)
906                         prev_desc->more = desc->more;
907                 else
908                         *pte_list = (unsigned long)desc->more | 1;
909         mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914         struct pte_list_desc *desc;
915         struct pte_list_desc *prev_desc;
916         int i;
917
918         if (!*pte_list) {
919                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920                 BUG();
921         } else if (!(*pte_list & 1)) {
922                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
923                 if ((u64 *)*pte_list != spte) {
924                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
925                         BUG();
926                 }
927                 *pte_list = 0;
928         } else {
929                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
930                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931                 prev_desc = NULL;
932                 while (desc) {
933                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934                                 if (desc->sptes[i] == spte) {
935                                         pte_list_desc_remove_entry(pte_list,
936                                                                desc, i,
937                                                                prev_desc);
938                                         return;
939                                 }
940                         prev_desc = desc;
941                         desc = desc->more;
942                 }
943                 pr_err("pte_list_remove: %p many->many\n", spte);
944                 BUG();
945         }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951         struct pte_list_desc *desc;
952         int i;
953
954         if (!*pte_list)
955                 return;
956
957         if (!(*pte_list & 1))
958                 return fn((u64 *)*pte_list);
959
960         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961         while (desc) {
962                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963                         fn(desc->sptes[i]);
964                 desc = desc->more;
965         }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969                                     struct kvm_memory_slot *slot)
970 {
971         unsigned long idx;
972
973         if (likely(level == PT_PAGE_TABLE_LEVEL))
974                 return &slot->rmap[gfn - slot->base_gfn];
975
976         idx = gfn_to_index(gfn, slot->base_gfn, level);
977         return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
978 }
979
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985         struct kvm_memory_slot *slot;
986
987         slot = gfn_to_memslot(kvm, gfn);
988         return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993         struct kvm_mmu_memory_cache *cache;
994
995         cache = &vcpu->arch.mmu_pte_list_desc_cache;
996         return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001         struct kvm_mmu_page *sp;
1002         unsigned long *rmapp;
1003
1004         sp = page_header(__pa(spte));
1005         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007         return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012         struct kvm_mmu_page *sp;
1013         gfn_t gfn;
1014         unsigned long *rmapp;
1015
1016         sp = page_header(__pa(spte));
1017         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019         pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027         /* private fields */
1028         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1029         int pos;                        /* index of the sptep */
1030 };
1031
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041         if (!rmap)
1042                 return NULL;
1043
1044         if (!(rmap & 1)) {
1045                 iter->desc = NULL;
1046                 return (u64 *)rmap;
1047         }
1048
1049         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050         iter->pos = 0;
1051         return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         u64 *sptep;
1064
1065                         ++iter->pos;
1066                         sptep = iter->desc->sptes[iter->pos];
1067                         if (sptep)
1068                                 return sptep;
1069                 }
1070
1071                 iter->desc = iter->desc->more;
1072
1073                 if (iter->desc) {
1074                         iter->pos = 0;
1075                         /* desc->sptes[0] cannot be NULL */
1076                         return iter->desc->sptes[iter->pos];
1077                 }
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085         if (mmu_spte_clear_track_bits(sptep))
1086                 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092         if (is_large_pte(*sptep)) {
1093                 WARN_ON(page_header(__pa(sptep))->role.level ==
1094                         PT_PAGE_TABLE_LEVEL);
1095                 drop_spte(kvm, sptep);
1096                 --kvm->stat.lpages;
1097                 return true;
1098         }
1099
1100         return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105         if (__drop_large_spte(vcpu->kvm, sptep))
1106                 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126         u64 spte = *sptep;
1127
1128         if (!is_writable_pte(spte) &&
1129               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130                 return false;
1131
1132         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134         if (__drop_large_spte(kvm, sptep)) {
1135                 *flush |= true;
1136                 return true;
1137         }
1138
1139         if (pt_protect)
1140                 spte &= ~SPTE_MMU_WRITEABLE;
1141         spte = spte & ~PT_WRITABLE_MASK;
1142
1143         *flush |= mmu_spte_update(sptep, spte);
1144         return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148                                  int level, bool pt_protect)
1149 {
1150         u64 *sptep;
1151         struct rmap_iterator iter;
1152         bool flush = false;
1153
1154         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157                         sptep = rmap_get_first(*rmapp, &iter);
1158                         continue;
1159                 }
1160
1161                 sptep = rmap_get_next(&iter);
1162         }
1163
1164         return flush;
1165 }
1166
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         unsigned long *rmapp;
1182
1183         while (mask) {
1184                 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1185                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1186
1187                 /* clear the first set bit */
1188                 mask &= mask - 1;
1189         }
1190 }
1191
1192 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1193 {
1194         struct kvm_memory_slot *slot;
1195         unsigned long *rmapp;
1196         int i;
1197         bool write_protected = false;
1198
1199         slot = gfn_to_memslot(kvm, gfn);
1200
1201         for (i = PT_PAGE_TABLE_LEVEL;
1202              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1203                 rmapp = __gfn_to_rmap(gfn, i, slot);
1204                 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1205         }
1206
1207         return write_protected;
1208 }
1209
1210 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1211                            struct kvm_memory_slot *slot, unsigned long data)
1212 {
1213         u64 *sptep;
1214         struct rmap_iterator iter;
1215         int need_tlb_flush = 0;
1216
1217         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1218                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1219                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1220
1221                 drop_spte(kvm, sptep);
1222                 need_tlb_flush = 1;
1223         }
1224
1225         return need_tlb_flush;
1226 }
1227
1228 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1229                              struct kvm_memory_slot *slot, unsigned long data)
1230 {
1231         u64 *sptep;
1232         struct rmap_iterator iter;
1233         int need_flush = 0;
1234         u64 new_spte;
1235         pte_t *ptep = (pte_t *)data;
1236         pfn_t new_pfn;
1237
1238         WARN_ON(pte_huge(*ptep));
1239         new_pfn = pte_pfn(*ptep);
1240
1241         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1242                 BUG_ON(!is_shadow_present_pte(*sptep));
1243                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1244
1245                 need_flush = 1;
1246
1247                 if (pte_write(*ptep)) {
1248                         drop_spte(kvm, sptep);
1249                         sptep = rmap_get_first(*rmapp, &iter);
1250                 } else {
1251                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1252                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1253
1254                         new_spte &= ~PT_WRITABLE_MASK;
1255                         new_spte &= ~SPTE_HOST_WRITEABLE;
1256                         new_spte &= ~shadow_accessed_mask;
1257
1258                         mmu_spte_clear_track_bits(sptep);
1259                         mmu_spte_set(sptep, new_spte);
1260                         sptep = rmap_get_next(&iter);
1261                 }
1262         }
1263
1264         if (need_flush)
1265                 kvm_flush_remote_tlbs(kvm);
1266
1267         return 0;
1268 }
1269
1270 static int kvm_handle_hva_range(struct kvm *kvm,
1271                                 unsigned long start,
1272                                 unsigned long end,
1273                                 unsigned long data,
1274                                 int (*handler)(struct kvm *kvm,
1275                                                unsigned long *rmapp,
1276                                                struct kvm_memory_slot *slot,
1277                                                unsigned long data))
1278 {
1279         int j;
1280         int ret = 0;
1281         struct kvm_memslots *slots;
1282         struct kvm_memory_slot *memslot;
1283
1284         slots = kvm_memslots(kvm);
1285
1286         kvm_for_each_memslot(memslot, slots) {
1287                 unsigned long hva_start, hva_end;
1288                 gfn_t gfn_start, gfn_end;
1289
1290                 hva_start = max(start, memslot->userspace_addr);
1291                 hva_end = min(end, memslot->userspace_addr +
1292                                         (memslot->npages << PAGE_SHIFT));
1293                 if (hva_start >= hva_end)
1294                         continue;
1295                 /*
1296                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1297                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1298                  */
1299                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1300                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1301
1302                 for (j = PT_PAGE_TABLE_LEVEL;
1303                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1304                         unsigned long idx, idx_end;
1305                         unsigned long *rmapp;
1306
1307                         /*
1308                          * {idx(page_j) | page_j intersects with
1309                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1310                          */
1311                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1312                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1313
1314                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1315
1316                         for (; idx <= idx_end; ++idx)
1317                                 ret |= handler(kvm, rmapp++, memslot, data);
1318                 }
1319         }
1320
1321         return ret;
1322 }
1323
1324 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1325                           unsigned long data,
1326                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1327                                          struct kvm_memory_slot *slot,
1328                                          unsigned long data))
1329 {
1330         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1331 }
1332
1333 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1334 {
1335         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1336 }
1337
1338 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1339 {
1340         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1341 }
1342
1343 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1344 {
1345         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1346 }
1347
1348 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1349                          struct kvm_memory_slot *slot, unsigned long data)
1350 {
1351         u64 *sptep;
1352         struct rmap_iterator uninitialized_var(iter);
1353         int young = 0;
1354
1355         /*
1356          * In case of absence of EPT Access and Dirty Bits supports,
1357          * emulate the accessed bit for EPT, by checking if this page has
1358          * an EPT mapping, and clearing it if it does. On the next access,
1359          * a new EPT mapping will be established.
1360          * This has some overhead, but not as much as the cost of swapping
1361          * out actively used pages or breaking up actively used hugepages.
1362          */
1363         if (!shadow_accessed_mask) {
1364                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1365                 goto out;
1366         }
1367
1368         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1369              sptep = rmap_get_next(&iter)) {
1370                 BUG_ON(!is_shadow_present_pte(*sptep));
1371
1372                 if (*sptep & shadow_accessed_mask) {
1373                         young = 1;
1374                         clear_bit((ffs(shadow_accessed_mask) - 1),
1375                                  (unsigned long *)sptep);
1376                 }
1377         }
1378 out:
1379         /* @data has hva passed to kvm_age_hva(). */
1380         trace_kvm_age_page(data, slot, young);
1381         return young;
1382 }
1383
1384 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1385                               struct kvm_memory_slot *slot, unsigned long data)
1386 {
1387         u64 *sptep;
1388         struct rmap_iterator iter;
1389         int young = 0;
1390
1391         /*
1392          * If there's no access bit in the secondary pte set by the
1393          * hardware it's up to gup-fast/gup to set the access bit in
1394          * the primary pte or in the page structure.
1395          */
1396         if (!shadow_accessed_mask)
1397                 goto out;
1398
1399         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1400              sptep = rmap_get_next(&iter)) {
1401                 BUG_ON(!is_shadow_present_pte(*sptep));
1402
1403                 if (*sptep & shadow_accessed_mask) {
1404                         young = 1;
1405                         break;
1406                 }
1407         }
1408 out:
1409         return young;
1410 }
1411
1412 #define RMAP_RECYCLE_THRESHOLD 1000
1413
1414 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1415 {
1416         unsigned long *rmapp;
1417         struct kvm_mmu_page *sp;
1418
1419         sp = page_header(__pa(spte));
1420
1421         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1422
1423         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1424         kvm_flush_remote_tlbs(vcpu->kvm);
1425 }
1426
1427 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1428 {
1429         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1430 }
1431
1432 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1433 {
1434         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1435 }
1436
1437 #ifdef MMU_DEBUG
1438 static int is_empty_shadow_page(u64 *spt)
1439 {
1440         u64 *pos;
1441         u64 *end;
1442
1443         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1444                 if (is_shadow_present_pte(*pos)) {
1445                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1446                                pos, *pos);
1447                         return 0;
1448                 }
1449         return 1;
1450 }
1451 #endif
1452
1453 /*
1454  * This value is the sum of all of the kvm instances's
1455  * kvm->arch.n_used_mmu_pages values.  We need a global,
1456  * aggregate version in order to make the slab shrinker
1457  * faster
1458  */
1459 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1460 {
1461         kvm->arch.n_used_mmu_pages += nr;
1462         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1463 }
1464
1465 /*
1466  * Remove the sp from shadow page cache, after call it,
1467  * we can not find this sp from the cache, and the shadow
1468  * page table is still valid.
1469  * It should be under the protection of mmu lock.
1470  */
1471 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1472 {
1473         ASSERT(is_empty_shadow_page(sp->spt));
1474         hlist_del(&sp->hash_link);
1475         if (!sp->role.direct)
1476                 free_page((unsigned long)sp->gfns);
1477 }
1478
1479 /*
1480  * Free the shadow page table and the sp, we can do it
1481  * out of the protection of mmu lock.
1482  */
1483 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1484 {
1485         list_del(&sp->link);
1486         free_page((unsigned long)sp->spt);
1487         kmem_cache_free(mmu_page_header_cache, sp);
1488 }
1489
1490 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1491 {
1492         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1493 }
1494
1495 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1496                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1497 {
1498         if (!parent_pte)
1499                 return;
1500
1501         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1502 }
1503
1504 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1505                                        u64 *parent_pte)
1506 {
1507         pte_list_remove(parent_pte, &sp->parent_ptes);
1508 }
1509
1510 static void drop_parent_pte(struct kvm_mmu_page *sp,
1511                             u64 *parent_pte)
1512 {
1513         mmu_page_remove_parent_pte(sp, parent_pte);
1514         mmu_spte_clear_no_track(parent_pte);
1515 }
1516
1517 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1518                                                u64 *parent_pte, int direct)
1519 {
1520         struct kvm_mmu_page *sp;
1521         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1522         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523         if (!direct)
1524                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1525         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1526         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1527         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1528         sp->parent_ptes = 0;
1529         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1530         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1531         return sp;
1532 }
1533
1534 static void mark_unsync(u64 *spte);
1535 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1536 {
1537         pte_list_walk(&sp->parent_ptes, mark_unsync);
1538 }
1539
1540 static void mark_unsync(u64 *spte)
1541 {
1542         struct kvm_mmu_page *sp;
1543         unsigned int index;
1544
1545         sp = page_header(__pa(spte));
1546         index = spte - sp->spt;
1547         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1548                 return;
1549         if (sp->unsync_children++)
1550                 return;
1551         kvm_mmu_mark_parents_unsync(sp);
1552 }
1553
1554 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1555                                struct kvm_mmu_page *sp)
1556 {
1557         return 1;
1558 }
1559
1560 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1561 {
1562 }
1563
1564 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1565                                  struct kvm_mmu_page *sp, u64 *spte,
1566                                  const void *pte)
1567 {
1568         WARN_ON(1);
1569 }
1570
1571 #define KVM_PAGE_ARRAY_NR 16
1572
1573 struct kvm_mmu_pages {
1574         struct mmu_page_and_offset {
1575                 struct kvm_mmu_page *sp;
1576                 unsigned int idx;
1577         } page[KVM_PAGE_ARRAY_NR];
1578         unsigned int nr;
1579 };
1580
1581 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1582                          int idx)
1583 {
1584         int i;
1585
1586         if (sp->unsync)
1587                 for (i=0; i < pvec->nr; i++)
1588                         if (pvec->page[i].sp == sp)
1589                                 return 0;
1590
1591         pvec->page[pvec->nr].sp = sp;
1592         pvec->page[pvec->nr].idx = idx;
1593         pvec->nr++;
1594         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1595 }
1596
1597 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1598                            struct kvm_mmu_pages *pvec)
1599 {
1600         int i, ret, nr_unsync_leaf = 0;
1601
1602         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1603                 struct kvm_mmu_page *child;
1604                 u64 ent = sp->spt[i];
1605
1606                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1607                         goto clear_child_bitmap;
1608
1609                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1610
1611                 if (child->unsync_children) {
1612                         if (mmu_pages_add(pvec, child, i))
1613                                 return -ENOSPC;
1614
1615                         ret = __mmu_unsync_walk(child, pvec);
1616                         if (!ret)
1617                                 goto clear_child_bitmap;
1618                         else if (ret > 0)
1619                                 nr_unsync_leaf += ret;
1620                         else
1621                                 return ret;
1622                 } else if (child->unsync) {
1623                         nr_unsync_leaf++;
1624                         if (mmu_pages_add(pvec, child, i))
1625                                 return -ENOSPC;
1626                 } else
1627                          goto clear_child_bitmap;
1628
1629                 continue;
1630
1631 clear_child_bitmap:
1632                 __clear_bit(i, sp->unsync_child_bitmap);
1633                 sp->unsync_children--;
1634                 WARN_ON((int)sp->unsync_children < 0);
1635         }
1636
1637
1638         return nr_unsync_leaf;
1639 }
1640
1641 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1642                            struct kvm_mmu_pages *pvec)
1643 {
1644         if (!sp->unsync_children)
1645                 return 0;
1646
1647         mmu_pages_add(pvec, sp, 0);
1648         return __mmu_unsync_walk(sp, pvec);
1649 }
1650
1651 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1652 {
1653         WARN_ON(!sp->unsync);
1654         trace_kvm_mmu_sync_page(sp);
1655         sp->unsync = 0;
1656         --kvm->stat.mmu_unsync;
1657 }
1658
1659 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1660                                     struct list_head *invalid_list);
1661 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1662                                     struct list_head *invalid_list);
1663
1664 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1665   hlist_for_each_entry(sp, pos,                                         \
1666    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1667         if ((sp)->gfn != (gfn)) {} else
1668
1669 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1670   hlist_for_each_entry(sp, pos,                                         \
1671    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1672                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1673                         (sp)->role.invalid) {} else
1674
1675 /* @sp->gfn should be write-protected at the call site */
1676 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1677                            struct list_head *invalid_list, bool clear_unsync)
1678 {
1679         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1680                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1681                 return 1;
1682         }
1683
1684         if (clear_unsync)
1685                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1686
1687         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1688                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1689                 return 1;
1690         }
1691
1692         kvm_mmu_flush_tlb(vcpu);
1693         return 0;
1694 }
1695
1696 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1697                                    struct kvm_mmu_page *sp)
1698 {
1699         LIST_HEAD(invalid_list);
1700         int ret;
1701
1702         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1703         if (ret)
1704                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1705
1706         return ret;
1707 }
1708
1709 #ifdef CONFIG_KVM_MMU_AUDIT
1710 #include "mmu_audit.c"
1711 #else
1712 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1713 static void mmu_audit_disable(void) { }
1714 #endif
1715
1716 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1717                          struct list_head *invalid_list)
1718 {
1719         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1720 }
1721
1722 /* @gfn should be write-protected at the call site */
1723 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1724 {
1725         struct kvm_mmu_page *s;
1726         struct hlist_node *node;
1727         LIST_HEAD(invalid_list);
1728         bool flush = false;
1729
1730         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1731                 if (!s->unsync)
1732                         continue;
1733
1734                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1735                 kvm_unlink_unsync_page(vcpu->kvm, s);
1736                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1737                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1738                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1739                         continue;
1740                 }
1741                 flush = true;
1742         }
1743
1744         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1745         if (flush)
1746                 kvm_mmu_flush_tlb(vcpu);
1747 }
1748
1749 struct mmu_page_path {
1750         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1751         unsigned int idx[PT64_ROOT_LEVEL-1];
1752 };
1753
1754 #define for_each_sp(pvec, sp, parents, i)                       \
1755                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1756                         sp = pvec.page[i].sp;                   \
1757                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1758                         i = mmu_pages_next(&pvec, &parents, i))
1759
1760 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1761                           struct mmu_page_path *parents,
1762                           int i)
1763 {
1764         int n;
1765
1766         for (n = i+1; n < pvec->nr; n++) {
1767                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1768
1769                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1770                         parents->idx[0] = pvec->page[n].idx;
1771                         return n;
1772                 }
1773
1774                 parents->parent[sp->role.level-2] = sp;
1775                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1776         }
1777
1778         return n;
1779 }
1780
1781 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1782 {
1783         struct kvm_mmu_page *sp;
1784         unsigned int level = 0;
1785
1786         do {
1787                 unsigned int idx = parents->idx[level];
1788
1789                 sp = parents->parent[level];
1790                 if (!sp)
1791                         return;
1792
1793                 --sp->unsync_children;
1794                 WARN_ON((int)sp->unsync_children < 0);
1795                 __clear_bit(idx, sp->unsync_child_bitmap);
1796                 level++;
1797         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1798 }
1799
1800 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1801                                struct mmu_page_path *parents,
1802                                struct kvm_mmu_pages *pvec)
1803 {
1804         parents->parent[parent->role.level-1] = NULL;
1805         pvec->nr = 0;
1806 }
1807
1808 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1809                               struct kvm_mmu_page *parent)
1810 {
1811         int i;
1812         struct kvm_mmu_page *sp;
1813         struct mmu_page_path parents;
1814         struct kvm_mmu_pages pages;
1815         LIST_HEAD(invalid_list);
1816
1817         kvm_mmu_pages_init(parent, &parents, &pages);
1818         while (mmu_unsync_walk(parent, &pages)) {
1819                 bool protected = false;
1820
1821                 for_each_sp(pages, sp, parents, i)
1822                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1823
1824                 if (protected)
1825                         kvm_flush_remote_tlbs(vcpu->kvm);
1826
1827                 for_each_sp(pages, sp, parents, i) {
1828                         kvm_sync_page(vcpu, sp, &invalid_list);
1829                         mmu_pages_clear_parents(&parents);
1830                 }
1831                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1832                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1833                 kvm_mmu_pages_init(parent, &parents, &pages);
1834         }
1835 }
1836
1837 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1838 {
1839         int i;
1840
1841         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1842                 sp->spt[i] = 0ull;
1843 }
1844
1845 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1846 {
1847         sp->write_flooding_count = 0;
1848 }
1849
1850 static void clear_sp_write_flooding_count(u64 *spte)
1851 {
1852         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1853
1854         __clear_sp_write_flooding_count(sp);
1855 }
1856
1857 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1858                                              gfn_t gfn,
1859                                              gva_t gaddr,
1860                                              unsigned level,
1861                                              int direct,
1862                                              unsigned access,
1863                                              u64 *parent_pte)
1864 {
1865         union kvm_mmu_page_role role;
1866         unsigned quadrant;
1867         struct kvm_mmu_page *sp;
1868         struct hlist_node *node;
1869         bool need_sync = false;
1870
1871         role = vcpu->arch.mmu.base_role;
1872         role.level = level;
1873         role.direct = direct;
1874         if (role.direct)
1875                 role.cr4_pae = 0;
1876         role.access = access;
1877         if (!vcpu->arch.mmu.direct_map
1878             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1879                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1880                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1881                 role.quadrant = quadrant;
1882         }
1883         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1884                 if (!need_sync && sp->unsync)
1885                         need_sync = true;
1886
1887                 if (sp->role.word != role.word)
1888                         continue;
1889
1890                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1891                         break;
1892
1893                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1894                 if (sp->unsync_children) {
1895                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1896                         kvm_mmu_mark_parents_unsync(sp);
1897                 } else if (sp->unsync)
1898                         kvm_mmu_mark_parents_unsync(sp);
1899
1900                 __clear_sp_write_flooding_count(sp);
1901                 trace_kvm_mmu_get_page(sp, false);
1902                 return sp;
1903         }
1904         ++vcpu->kvm->stat.mmu_cache_miss;
1905         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1906         if (!sp)
1907                 return sp;
1908         sp->gfn = gfn;
1909         sp->role = role;
1910         hlist_add_head(&sp->hash_link,
1911                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1912         if (!direct) {
1913                 if (rmap_write_protect(vcpu->kvm, gfn))
1914                         kvm_flush_remote_tlbs(vcpu->kvm);
1915                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1916                         kvm_sync_pages(vcpu, gfn);
1917
1918                 account_shadowed(vcpu->kvm, gfn);
1919         }
1920         init_shadow_page_table(sp);
1921         trace_kvm_mmu_get_page(sp, true);
1922         return sp;
1923 }
1924
1925 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1926                              struct kvm_vcpu *vcpu, u64 addr)
1927 {
1928         iterator->addr = addr;
1929         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1930         iterator->level = vcpu->arch.mmu.shadow_root_level;
1931
1932         if (iterator->level == PT64_ROOT_LEVEL &&
1933             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1934             !vcpu->arch.mmu.direct_map)
1935                 --iterator->level;
1936
1937         if (iterator->level == PT32E_ROOT_LEVEL) {
1938                 iterator->shadow_addr
1939                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1940                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1941                 --iterator->level;
1942                 if (!iterator->shadow_addr)
1943                         iterator->level = 0;
1944         }
1945 }
1946
1947 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1948 {
1949         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1950                 return false;
1951
1952         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1953         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1954         return true;
1955 }
1956
1957 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1958                                u64 spte)
1959 {
1960         if (is_last_spte(spte, iterator->level)) {
1961                 iterator->level = 0;
1962                 return;
1963         }
1964
1965         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1966         --iterator->level;
1967 }
1968
1969 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1970 {
1971         return __shadow_walk_next(iterator, *iterator->sptep);
1972 }
1973
1974 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1975 {
1976         u64 spte;
1977
1978         spte = __pa(sp->spt)
1979                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1980                 | PT_WRITABLE_MASK | PT_USER_MASK;
1981         mmu_spte_set(sptep, spte);
1982 }
1983
1984 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1985                                    unsigned direct_access)
1986 {
1987         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1988                 struct kvm_mmu_page *child;
1989
1990                 /*
1991                  * For the direct sp, if the guest pte's dirty bit
1992                  * changed form clean to dirty, it will corrupt the
1993                  * sp's access: allow writable in the read-only sp,
1994                  * so we should update the spte at this point to get
1995                  * a new sp with the correct access.
1996                  */
1997                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1998                 if (child->role.access == direct_access)
1999                         return;
2000
2001                 drop_parent_pte(child, sptep);
2002                 kvm_flush_remote_tlbs(vcpu->kvm);
2003         }
2004 }
2005
2006 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2007                              u64 *spte)
2008 {
2009         u64 pte;
2010         struct kvm_mmu_page *child;
2011
2012         pte = *spte;
2013         if (is_shadow_present_pte(pte)) {
2014                 if (is_last_spte(pte, sp->role.level)) {
2015                         drop_spte(kvm, spte);
2016                         if (is_large_pte(pte))
2017                                 --kvm->stat.lpages;
2018                 } else {
2019                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2020                         drop_parent_pte(child, spte);
2021                 }
2022                 return true;
2023         }
2024
2025         if (is_mmio_spte(pte))
2026                 mmu_spte_clear_no_track(spte);
2027
2028         return false;
2029 }
2030
2031 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2032                                          struct kvm_mmu_page *sp)
2033 {
2034         unsigned i;
2035
2036         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2037                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2038 }
2039
2040 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2041 {
2042         mmu_page_remove_parent_pte(sp, parent_pte);
2043 }
2044
2045 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2046 {
2047         u64 *sptep;
2048         struct rmap_iterator iter;
2049
2050         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2051                 drop_parent_pte(sp, sptep);
2052 }
2053
2054 static int mmu_zap_unsync_children(struct kvm *kvm,
2055                                    struct kvm_mmu_page *parent,
2056                                    struct list_head *invalid_list)
2057 {
2058         int i, zapped = 0;
2059         struct mmu_page_path parents;
2060         struct kvm_mmu_pages pages;
2061
2062         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2063                 return 0;
2064
2065         kvm_mmu_pages_init(parent, &parents, &pages);
2066         while (mmu_unsync_walk(parent, &pages)) {
2067                 struct kvm_mmu_page *sp;
2068
2069                 for_each_sp(pages, sp, parents, i) {
2070                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2071                         mmu_pages_clear_parents(&parents);
2072                         zapped++;
2073                 }
2074                 kvm_mmu_pages_init(parent, &parents, &pages);
2075         }
2076
2077         return zapped;
2078 }
2079
2080 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2081                                     struct list_head *invalid_list)
2082 {
2083         int ret;
2084
2085         trace_kvm_mmu_prepare_zap_page(sp);
2086         ++kvm->stat.mmu_shadow_zapped;
2087         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2088         kvm_mmu_page_unlink_children(kvm, sp);
2089         kvm_mmu_unlink_parents(kvm, sp);
2090         if (!sp->role.invalid && !sp->role.direct)
2091                 unaccount_shadowed(kvm, sp->gfn);
2092         if (sp->unsync)
2093                 kvm_unlink_unsync_page(kvm, sp);
2094         if (!sp->root_count) {
2095                 /* Count self */
2096                 ret++;
2097                 list_move(&sp->link, invalid_list);
2098                 kvm_mod_used_mmu_pages(kvm, -1);
2099         } else {
2100                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2101                 kvm_reload_remote_mmus(kvm);
2102         }
2103
2104         sp->role.invalid = 1;
2105         return ret;
2106 }
2107
2108 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2109                                     struct list_head *invalid_list)
2110 {
2111         struct kvm_mmu_page *sp;
2112
2113         if (list_empty(invalid_list))
2114                 return;
2115
2116         /*
2117          * wmb: make sure everyone sees our modifications to the page tables
2118          * rmb: make sure we see changes to vcpu->mode
2119          */
2120         smp_mb();
2121
2122         /*
2123          * Wait for all vcpus to exit guest mode and/or lockless shadow
2124          * page table walks.
2125          */
2126         kvm_flush_remote_tlbs(kvm);
2127
2128         do {
2129                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2130                 WARN_ON(!sp->role.invalid || sp->root_count);
2131                 kvm_mmu_isolate_page(sp);
2132                 kvm_mmu_free_page(sp);
2133         } while (!list_empty(invalid_list));
2134 }
2135
2136 /*
2137  * Changing the number of mmu pages allocated to the vm
2138  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2139  */
2140 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2141 {
2142         LIST_HEAD(invalid_list);
2143         /*
2144          * If we set the number of mmu pages to be smaller be than the
2145          * number of actived pages , we must to free some mmu pages before we
2146          * change the value
2147          */
2148
2149         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2150                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2151                         !list_empty(&kvm->arch.active_mmu_pages)) {
2152                         struct kvm_mmu_page *page;
2153
2154                         page = container_of(kvm->arch.active_mmu_pages.prev,
2155                                             struct kvm_mmu_page, link);
2156                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2157                 }
2158                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2159                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2160         }
2161
2162         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2163 }
2164
2165 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2166 {
2167         struct kvm_mmu_page *sp;
2168         struct hlist_node *node;
2169         LIST_HEAD(invalid_list);
2170         int r;
2171
2172         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2173         r = 0;
2174         spin_lock(&kvm->mmu_lock);
2175         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2176                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2177                          sp->role.word);
2178                 r = 1;
2179                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2180         }
2181         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2182         spin_unlock(&kvm->mmu_lock);
2183
2184         return r;
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2187
2188 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2189 {
2190         int slot = memslot_id(kvm, gfn);
2191         struct kvm_mmu_page *sp = page_header(__pa(pte));
2192
2193         __set_bit(slot, sp->slot_bitmap);
2194 }
2195
2196 /*
2197  * The function is based on mtrr_type_lookup() in
2198  * arch/x86/kernel/cpu/mtrr/generic.c
2199  */
2200 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2201                          u64 start, u64 end)
2202 {
2203         int i;
2204         u64 base, mask;
2205         u8 prev_match, curr_match;
2206         int num_var_ranges = KVM_NR_VAR_MTRR;
2207
2208         if (!mtrr_state->enabled)
2209                 return 0xFF;
2210
2211         /* Make end inclusive end, instead of exclusive */
2212         end--;
2213
2214         /* Look in fixed ranges. Just return the type as per start */
2215         if (mtrr_state->have_fixed && (start < 0x100000)) {
2216                 int idx;
2217
2218                 if (start < 0x80000) {
2219                         idx = 0;
2220                         idx += (start >> 16);
2221                         return mtrr_state->fixed_ranges[idx];
2222                 } else if (start < 0xC0000) {
2223                         idx = 1 * 8;
2224                         idx += ((start - 0x80000) >> 14);
2225                         return mtrr_state->fixed_ranges[idx];
2226                 } else if (start < 0x1000000) {
2227                         idx = 3 * 8;
2228                         idx += ((start - 0xC0000) >> 12);
2229                         return mtrr_state->fixed_ranges[idx];
2230                 }
2231         }
2232
2233         /*
2234          * Look in variable ranges
2235          * Look of multiple ranges matching this address and pick type
2236          * as per MTRR precedence
2237          */
2238         if (!(mtrr_state->enabled & 2))
2239                 return mtrr_state->def_type;
2240
2241         prev_match = 0xFF;
2242         for (i = 0; i < num_var_ranges; ++i) {
2243                 unsigned short start_state, end_state;
2244
2245                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2246                         continue;
2247
2248                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2249                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2250                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2251                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2252
2253                 start_state = ((start & mask) == (base & mask));
2254                 end_state = ((end & mask) == (base & mask));
2255                 if (start_state != end_state)
2256                         return 0xFE;
2257
2258                 if ((start & mask) != (base & mask))
2259                         continue;
2260
2261                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2262                 if (prev_match == 0xFF) {
2263                         prev_match = curr_match;
2264                         continue;
2265                 }
2266
2267                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2268                     curr_match == MTRR_TYPE_UNCACHABLE)
2269                         return MTRR_TYPE_UNCACHABLE;
2270
2271                 if ((prev_match == MTRR_TYPE_WRBACK &&
2272                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2273                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2274                      curr_match == MTRR_TYPE_WRBACK)) {
2275                         prev_match = MTRR_TYPE_WRTHROUGH;
2276                         curr_match = MTRR_TYPE_WRTHROUGH;
2277                 }
2278
2279                 if (prev_match != curr_match)
2280                         return MTRR_TYPE_UNCACHABLE;
2281         }
2282
2283         if (prev_match != 0xFF)
2284                 return prev_match;
2285
2286         return mtrr_state->def_type;
2287 }
2288
2289 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2290 {
2291         u8 mtrr;
2292
2293         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2294                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2295         if (mtrr == 0xfe || mtrr == 0xff)
2296                 mtrr = MTRR_TYPE_WRBACK;
2297         return mtrr;
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2300
2301 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2302 {
2303         trace_kvm_mmu_unsync_page(sp);
2304         ++vcpu->kvm->stat.mmu_unsync;
2305         sp->unsync = 1;
2306
2307         kvm_mmu_mark_parents_unsync(sp);
2308 }
2309
2310 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2311 {
2312         struct kvm_mmu_page *s;
2313         struct hlist_node *node;
2314
2315         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2316                 if (s->unsync)
2317                         continue;
2318                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2319                 __kvm_unsync_page(vcpu, s);
2320         }
2321 }
2322
2323 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2324                                   bool can_unsync)
2325 {
2326         struct kvm_mmu_page *s;
2327         struct hlist_node *node;
2328         bool need_unsync = false;
2329
2330         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2331                 if (!can_unsync)
2332                         return 1;
2333
2334                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2335                         return 1;
2336
2337                 if (!need_unsync && !s->unsync) {
2338                         need_unsync = true;
2339                 }
2340         }
2341         if (need_unsync)
2342                 kvm_unsync_pages(vcpu, gfn);
2343         return 0;
2344 }
2345
2346 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2347                     unsigned pte_access, int user_fault,
2348                     int write_fault, int level,
2349                     gfn_t gfn, pfn_t pfn, bool speculative,
2350                     bool can_unsync, bool host_writable)
2351 {
2352         u64 spte;
2353         int ret = 0;
2354
2355         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2356                 return 0;
2357
2358         spte = PT_PRESENT_MASK;
2359         if (!speculative)
2360                 spte |= shadow_accessed_mask;
2361
2362         if (pte_access & ACC_EXEC_MASK)
2363                 spte |= shadow_x_mask;
2364         else
2365                 spte |= shadow_nx_mask;
2366
2367         if (pte_access & ACC_USER_MASK)
2368                 spte |= shadow_user_mask;
2369
2370         if (level > PT_PAGE_TABLE_LEVEL)
2371                 spte |= PT_PAGE_SIZE_MASK;
2372         if (tdp_enabled)
2373                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2374                         kvm_is_mmio_pfn(pfn));
2375
2376         if (host_writable)
2377                 spte |= SPTE_HOST_WRITEABLE;
2378         else
2379                 pte_access &= ~ACC_WRITE_MASK;
2380
2381         spte |= (u64)pfn << PAGE_SHIFT;
2382
2383         if ((pte_access & ACC_WRITE_MASK)
2384             || (!vcpu->arch.mmu.direct_map && write_fault
2385                 && !is_write_protection(vcpu) && !user_fault)) {
2386
2387                 if (level > PT_PAGE_TABLE_LEVEL &&
2388                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2389                         ret = 1;
2390                         drop_spte(vcpu->kvm, sptep);
2391                         goto done;
2392                 }
2393
2394                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2395
2396                 if (!vcpu->arch.mmu.direct_map
2397                     && !(pte_access & ACC_WRITE_MASK)) {
2398                         spte &= ~PT_USER_MASK;
2399                         /*
2400                          * If we converted a user page to a kernel page,
2401                          * so that the kernel can write to it when cr0.wp=0,
2402                          * then we should prevent the kernel from executing it
2403                          * if SMEP is enabled.
2404                          */
2405                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2406                                 spte |= PT64_NX_MASK;
2407                 }
2408
2409                 /*
2410                  * Optimization: for pte sync, if spte was writable the hash
2411                  * lookup is unnecessary (and expensive). Write protection
2412                  * is responsibility of mmu_get_page / kvm_sync_page.
2413                  * Same reasoning can be applied to dirty page accounting.
2414                  */
2415                 if (!can_unsync && is_writable_pte(*sptep))
2416                         goto set_pte;
2417
2418                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2419                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2420                                  __func__, gfn);
2421                         ret = 1;
2422                         pte_access &= ~ACC_WRITE_MASK;
2423                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2424                 }
2425         }
2426
2427         if (pte_access & ACC_WRITE_MASK)
2428                 mark_page_dirty(vcpu->kvm, gfn);
2429
2430 set_pte:
2431         if (mmu_spte_update(sptep, spte))
2432                 kvm_flush_remote_tlbs(vcpu->kvm);
2433 done:
2434         return ret;
2435 }
2436
2437 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2438                          unsigned pt_access, unsigned pte_access,
2439                          int user_fault, int write_fault,
2440                          int *emulate, int level, gfn_t gfn,
2441                          pfn_t pfn, bool speculative,
2442                          bool host_writable)
2443 {
2444         int was_rmapped = 0;
2445         int rmap_count;
2446
2447         pgprintk("%s: spte %llx access %x write_fault %d"
2448                  " user_fault %d gfn %llx\n",
2449                  __func__, *sptep, pt_access,
2450                  write_fault, user_fault, gfn);
2451
2452         if (is_rmap_spte(*sptep)) {
2453                 /*
2454                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2455                  * the parent of the now unreachable PTE.
2456                  */
2457                 if (level > PT_PAGE_TABLE_LEVEL &&
2458                     !is_large_pte(*sptep)) {
2459                         struct kvm_mmu_page *child;
2460                         u64 pte = *sptep;
2461
2462                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2463                         drop_parent_pte(child, sptep);
2464                         kvm_flush_remote_tlbs(vcpu->kvm);
2465                 } else if (pfn != spte_to_pfn(*sptep)) {
2466                         pgprintk("hfn old %llx new %llx\n",
2467                                  spte_to_pfn(*sptep), pfn);
2468                         drop_spte(vcpu->kvm, sptep);
2469                         kvm_flush_remote_tlbs(vcpu->kvm);
2470                 } else
2471                         was_rmapped = 1;
2472         }
2473
2474         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2475                       level, gfn, pfn, speculative, true,
2476                       host_writable)) {
2477                 if (write_fault)
2478                         *emulate = 1;
2479                 kvm_mmu_flush_tlb(vcpu);
2480         }
2481
2482         if (unlikely(is_mmio_spte(*sptep) && emulate))
2483                 *emulate = 1;
2484
2485         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2486         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2487                  is_large_pte(*sptep)? "2MB" : "4kB",
2488                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2489                  *sptep, sptep);
2490         if (!was_rmapped && is_large_pte(*sptep))
2491                 ++vcpu->kvm->stat.lpages;
2492
2493         if (is_shadow_present_pte(*sptep)) {
2494                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2495                 if (!was_rmapped) {
2496                         rmap_count = rmap_add(vcpu, sptep, gfn);
2497                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2498                                 rmap_recycle(vcpu, sptep, gfn);
2499                 }
2500         }
2501         kvm_release_pfn_clean(pfn);
2502 }
2503
2504 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2505 {
2506         mmu_free_roots(vcpu);
2507 }
2508
2509 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2510                                      bool no_dirty_log)
2511 {
2512         struct kvm_memory_slot *slot;
2513         unsigned long hva;
2514
2515         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2516         if (!slot)
2517                 return get_fault_pfn();
2518
2519         hva = gfn_to_hva_memslot(slot, gfn);
2520
2521         return hva_to_pfn_atomic(hva);
2522 }
2523
2524 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2525                                     struct kvm_mmu_page *sp,
2526                                     u64 *start, u64 *end)
2527 {
2528         struct page *pages[PTE_PREFETCH_NUM];
2529         unsigned access = sp->role.access;
2530         int i, ret;
2531         gfn_t gfn;
2532
2533         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2534         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2535                 return -1;
2536
2537         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2538         if (ret <= 0)
2539                 return -1;
2540
2541         for (i = 0; i < ret; i++, gfn++, start++)
2542                 mmu_set_spte(vcpu, start, ACC_ALL,
2543                              access, 0, 0, NULL,
2544                              sp->role.level, gfn,
2545                              page_to_pfn(pages[i]), true, true);
2546
2547         return 0;
2548 }
2549
2550 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2551                                   struct kvm_mmu_page *sp, u64 *sptep)
2552 {
2553         u64 *spte, *start = NULL;
2554         int i;
2555
2556         WARN_ON(!sp->role.direct);
2557
2558         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2559         spte = sp->spt + i;
2560
2561         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2562                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2563                         if (!start)
2564                                 continue;
2565                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2566                                 break;
2567                         start = NULL;
2568                 } else if (!start)
2569                         start = spte;
2570         }
2571 }
2572
2573 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2574 {
2575         struct kvm_mmu_page *sp;
2576
2577         /*
2578          * Since it's no accessed bit on EPT, it's no way to
2579          * distinguish between actually accessed translations
2580          * and prefetched, so disable pte prefetch if EPT is
2581          * enabled.
2582          */
2583         if (!shadow_accessed_mask)
2584                 return;
2585
2586         sp = page_header(__pa(sptep));
2587         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2588                 return;
2589
2590         __direct_pte_prefetch(vcpu, sp, sptep);
2591 }
2592
2593 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2594                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2595                         bool prefault)
2596 {
2597         struct kvm_shadow_walk_iterator iterator;
2598         struct kvm_mmu_page *sp;
2599         int emulate = 0;
2600         gfn_t pseudo_gfn;
2601
2602         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2603                 if (iterator.level == level) {
2604                         unsigned pte_access = ACC_ALL;
2605
2606                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2607                                      0, write, &emulate,
2608                                      level, gfn, pfn, prefault, map_writable);
2609                         direct_pte_prefetch(vcpu, iterator.sptep);
2610                         ++vcpu->stat.pf_fixed;
2611                         break;
2612                 }
2613
2614                 if (!is_shadow_present_pte(*iterator.sptep)) {
2615                         u64 base_addr = iterator.addr;
2616
2617                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2618                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2619                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2620                                               iterator.level - 1,
2621                                               1, ACC_ALL, iterator.sptep);
2622                         if (!sp) {
2623                                 pgprintk("nonpaging_map: ENOMEM\n");
2624                                 kvm_release_pfn_clean(pfn);
2625                                 return -ENOMEM;
2626                         }
2627
2628                         mmu_spte_set(iterator.sptep,
2629                                      __pa(sp->spt)
2630                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2631                                      | shadow_user_mask | shadow_x_mask
2632                                      | shadow_accessed_mask);
2633                 }
2634         }
2635         return emulate;
2636 }
2637
2638 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2639 {
2640         siginfo_t info;
2641
2642         info.si_signo   = SIGBUS;
2643         info.si_errno   = 0;
2644         info.si_code    = BUS_MCEERR_AR;
2645         info.si_addr    = (void __user *)address;
2646         info.si_addr_lsb = PAGE_SHIFT;
2647
2648         send_sig_info(SIGBUS, &info, tsk);
2649 }
2650
2651 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2652 {
2653         kvm_release_pfn_clean(pfn);
2654         if (is_hwpoison_pfn(pfn)) {
2655                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2656                 return 0;
2657         }
2658
2659         return -EFAULT;
2660 }
2661
2662 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2663                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2664 {
2665         pfn_t pfn = *pfnp;
2666         gfn_t gfn = *gfnp;
2667         int level = *levelp;
2668
2669         /*
2670          * Check if it's a transparent hugepage. If this would be an
2671          * hugetlbfs page, level wouldn't be set to
2672          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2673          * here.
2674          */
2675         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2676             level == PT_PAGE_TABLE_LEVEL &&
2677             PageTransCompound(pfn_to_page(pfn)) &&
2678             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2679                 unsigned long mask;
2680                 /*
2681                  * mmu_notifier_retry was successful and we hold the
2682                  * mmu_lock here, so the pmd can't become splitting
2683                  * from under us, and in turn
2684                  * __split_huge_page_refcount() can't run from under
2685                  * us and we can safely transfer the refcount from
2686                  * PG_tail to PG_head as we switch the pfn to tail to
2687                  * head.
2688                  */
2689                 *levelp = level = PT_DIRECTORY_LEVEL;
2690                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2691                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2692                 if (pfn & mask) {
2693                         gfn &= ~mask;
2694                         *gfnp = gfn;
2695                         kvm_release_pfn_clean(pfn);
2696                         pfn &= ~mask;
2697                         kvm_get_pfn(pfn);
2698                         *pfnp = pfn;
2699                 }
2700         }
2701 }
2702
2703 static bool mmu_invalid_pfn(pfn_t pfn)
2704 {
2705         return unlikely(is_invalid_pfn(pfn));
2706 }
2707
2708 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2709                                 pfn_t pfn, unsigned access, int *ret_val)
2710 {
2711         bool ret = true;
2712
2713         /* The pfn is invalid, report the error! */
2714         if (unlikely(is_invalid_pfn(pfn))) {
2715                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2716                 goto exit;
2717         }
2718
2719         if (unlikely(is_noslot_pfn(pfn)))
2720                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2721
2722         ret = false;
2723 exit:
2724         return ret;
2725 }
2726
2727 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2728 {
2729         /*
2730          * #PF can be fast only if the shadow page table is present and it
2731          * is caused by write-protect, that means we just need change the
2732          * W bit of the spte which can be done out of mmu-lock.
2733          */
2734         if (!(error_code & PFERR_PRESENT_MASK) ||
2735               !(error_code & PFERR_WRITE_MASK))
2736                 return false;
2737
2738         return true;
2739 }
2740
2741 static bool
2742 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2743 {
2744         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2745         gfn_t gfn;
2746
2747         WARN_ON(!sp->role.direct);
2748
2749         /*
2750          * The gfn of direct spte is stable since it is calculated
2751          * by sp->gfn.
2752          */
2753         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2754
2755         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2756                 mark_page_dirty(vcpu->kvm, gfn);
2757
2758         return true;
2759 }
2760
2761 /*
2762  * Return value:
2763  * - true: let the vcpu to access on the same address again.
2764  * - false: let the real page fault path to fix it.
2765  */
2766 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2767                             u32 error_code)
2768 {
2769         struct kvm_shadow_walk_iterator iterator;
2770         bool ret = false;
2771         u64 spte = 0ull;
2772
2773         if (!page_fault_can_be_fast(vcpu, error_code))
2774                 return false;
2775
2776         walk_shadow_page_lockless_begin(vcpu);
2777         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2778                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2779                         break;
2780
2781         /*
2782          * If the mapping has been changed, let the vcpu fault on the
2783          * same address again.
2784          */
2785         if (!is_rmap_spte(spte)) {
2786                 ret = true;
2787                 goto exit;
2788         }
2789
2790         if (!is_last_spte(spte, level))
2791                 goto exit;
2792
2793         /*
2794          * Check if it is a spurious fault caused by TLB lazily flushed.
2795          *
2796          * Need not check the access of upper level table entries since
2797          * they are always ACC_ALL.
2798          */
2799          if (is_writable_pte(spte)) {
2800                 ret = true;
2801                 goto exit;
2802         }
2803
2804         /*
2805          * Currently, to simplify the code, only the spte write-protected
2806          * by dirty-log can be fast fixed.
2807          */
2808         if (!spte_is_locklessly_modifiable(spte))
2809                 goto exit;
2810
2811         /*
2812          * Currently, fast page fault only works for direct mapping since
2813          * the gfn is not stable for indirect shadow page.
2814          * See Documentation/virtual/kvm/locking.txt to get more detail.
2815          */
2816         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2817 exit:
2818         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2819                               spte, ret);
2820         walk_shadow_page_lockless_end(vcpu);
2821
2822         return ret;
2823 }
2824
2825 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2826                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2827
2828 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2829                          gfn_t gfn, bool prefault)
2830 {
2831         int r;
2832         int level;
2833         int force_pt_level;
2834         pfn_t pfn;
2835         unsigned long mmu_seq;
2836         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2837
2838         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2839         if (likely(!force_pt_level)) {
2840                 level = mapping_level(vcpu, gfn);
2841                 /*
2842                  * This path builds a PAE pagetable - so we can map
2843                  * 2mb pages at maximum. Therefore check if the level
2844                  * is larger than that.
2845                  */
2846                 if (level > PT_DIRECTORY_LEVEL)
2847                         level = PT_DIRECTORY_LEVEL;
2848
2849                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2850         } else
2851                 level = PT_PAGE_TABLE_LEVEL;
2852
2853         if (fast_page_fault(vcpu, v, level, error_code))
2854                 return 0;
2855
2856         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2857         smp_rmb();
2858
2859         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2860                 return 0;
2861
2862         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2863                 return r;
2864
2865         spin_lock(&vcpu->kvm->mmu_lock);
2866         if (mmu_notifier_retry(vcpu, mmu_seq))
2867                 goto out_unlock;
2868         kvm_mmu_free_some_pages(vcpu);
2869         if (likely(!force_pt_level))
2870                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2871         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2872                          prefault);
2873         spin_unlock(&vcpu->kvm->mmu_lock);
2874
2875
2876         return r;
2877
2878 out_unlock:
2879         spin_unlock(&vcpu->kvm->mmu_lock);
2880         kvm_release_pfn_clean(pfn);
2881         return 0;
2882 }
2883
2884
2885 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2886 {
2887         int i;
2888         struct kvm_mmu_page *sp;
2889         LIST_HEAD(invalid_list);
2890
2891         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2892                 return;
2893         spin_lock(&vcpu->kvm->mmu_lock);
2894         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2895             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2896              vcpu->arch.mmu.direct_map)) {
2897                 hpa_t root = vcpu->arch.mmu.root_hpa;
2898
2899                 sp = page_header(root);
2900                 --sp->root_count;
2901                 if (!sp->root_count && sp->role.invalid) {
2902                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2903                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2904                 }
2905                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2906                 spin_unlock(&vcpu->kvm->mmu_lock);
2907                 return;
2908         }
2909         for (i = 0; i < 4; ++i) {
2910                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2911
2912                 if (root) {
2913                         root &= PT64_BASE_ADDR_MASK;
2914                         sp = page_header(root);
2915                         --sp->root_count;
2916                         if (!sp->root_count && sp->role.invalid)
2917                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2918                                                          &invalid_list);
2919                 }
2920                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2921         }
2922         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2923         spin_unlock(&vcpu->kvm->mmu_lock);
2924         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2925 }
2926
2927 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2928 {
2929         int ret = 0;
2930
2931         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2932                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2933                 ret = 1;
2934         }
2935
2936         return ret;
2937 }
2938
2939 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2940 {
2941         struct kvm_mmu_page *sp;
2942         unsigned i;
2943
2944         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2945                 spin_lock(&vcpu->kvm->mmu_lock);
2946                 kvm_mmu_free_some_pages(vcpu);
2947                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2948                                       1, ACC_ALL, NULL);
2949                 ++sp->root_count;
2950                 spin_unlock(&vcpu->kvm->mmu_lock);
2951                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2952         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2953                 for (i = 0; i < 4; ++i) {
2954                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2955
2956                         ASSERT(!VALID_PAGE(root));
2957                         spin_lock(&vcpu->kvm->mmu_lock);
2958                         kvm_mmu_free_some_pages(vcpu);
2959                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2960                                               i << 30,
2961                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2962                                               NULL);
2963                         root = __pa(sp->spt);
2964                         ++sp->root_count;
2965                         spin_unlock(&vcpu->kvm->mmu_lock);
2966                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2967                 }
2968                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2969         } else
2970                 BUG();
2971
2972         return 0;
2973 }
2974
2975 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2976 {
2977         struct kvm_mmu_page *sp;
2978         u64 pdptr, pm_mask;
2979         gfn_t root_gfn;
2980         int i;
2981
2982         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2983
2984         if (mmu_check_root(vcpu, root_gfn))
2985                 return 1;
2986
2987         /*
2988          * Do we shadow a long mode page table? If so we need to
2989          * write-protect the guests page table root.
2990          */
2991         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2992                 hpa_t root = vcpu->arch.mmu.root_hpa;
2993
2994                 ASSERT(!VALID_PAGE(root));
2995
2996                 spin_lock(&vcpu->kvm->mmu_lock);
2997                 kvm_mmu_free_some_pages(vcpu);
2998                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2999                                       0, ACC_ALL, NULL);
3000                 root = __pa(sp->spt);
3001                 ++sp->root_count;
3002                 spin_unlock(&vcpu->kvm->mmu_lock);
3003                 vcpu->arch.mmu.root_hpa = root;
3004                 return 0;
3005         }
3006
3007         /*
3008          * We shadow a 32 bit page table. This may be a legacy 2-level
3009          * or a PAE 3-level page table. In either case we need to be aware that
3010          * the shadow page table may be a PAE or a long mode page table.
3011          */
3012         pm_mask = PT_PRESENT_MASK;
3013         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3014                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3015
3016         for (i = 0; i < 4; ++i) {
3017                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3018
3019                 ASSERT(!VALID_PAGE(root));
3020                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3021                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3022                         if (!is_present_gpte(pdptr)) {
3023                                 vcpu->arch.mmu.pae_root[i] = 0;
3024                                 continue;
3025                         }
3026                         root_gfn = pdptr >> PAGE_SHIFT;
3027                         if (mmu_check_root(vcpu, root_gfn))
3028                                 return 1;
3029                 }
3030                 spin_lock(&vcpu->kvm->mmu_lock);
3031                 kvm_mmu_free_some_pages(vcpu);
3032                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3033                                       PT32_ROOT_LEVEL, 0,
3034                                       ACC_ALL, NULL);
3035                 root = __pa(sp->spt);
3036                 ++sp->root_count;
3037                 spin_unlock(&vcpu->kvm->mmu_lock);
3038
3039                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3040         }
3041         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3042
3043         /*
3044          * If we shadow a 32 bit page table with a long mode page
3045          * table we enter this path.
3046          */
3047         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3048                 if (vcpu->arch.mmu.lm_root == NULL) {
3049                         /*
3050                          * The additional page necessary for this is only
3051                          * allocated on demand.
3052                          */
3053
3054                         u64 *lm_root;
3055
3056                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3057                         if (lm_root == NULL)
3058                                 return 1;
3059
3060                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3061
3062                         vcpu->arch.mmu.lm_root = lm_root;
3063                 }
3064
3065                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3066         }
3067
3068         return 0;
3069 }
3070
3071 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3072 {
3073         if (vcpu->arch.mmu.direct_map)
3074                 return mmu_alloc_direct_roots(vcpu);
3075         else
3076                 return mmu_alloc_shadow_roots(vcpu);
3077 }
3078
3079 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3080 {
3081         int i;
3082         struct kvm_mmu_page *sp;
3083
3084         if (vcpu->arch.mmu.direct_map)
3085                 return;
3086
3087         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3088                 return;
3089
3090         vcpu_clear_mmio_info(vcpu, ~0ul);
3091         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3092         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3093                 hpa_t root = vcpu->arch.mmu.root_hpa;
3094                 sp = page_header(root);
3095                 mmu_sync_children(vcpu, sp);
3096                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3097                 return;
3098         }
3099         for (i = 0; i < 4; ++i) {
3100                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3101
3102                 if (root && VALID_PAGE(root)) {
3103                         root &= PT64_BASE_ADDR_MASK;
3104                         sp = page_header(root);
3105                         mmu_sync_children(vcpu, sp);
3106                 }
3107         }
3108         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3109 }
3110
3111 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3112 {
3113         spin_lock(&vcpu->kvm->mmu_lock);
3114         mmu_sync_roots(vcpu);
3115         spin_unlock(&vcpu->kvm->mmu_lock);
3116 }
3117
3118 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3119                                   u32 access, struct x86_exception *exception)
3120 {
3121         if (exception)
3122                 exception->error_code = 0;
3123         return vaddr;
3124 }
3125
3126 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3127                                          u32 access,
3128                                          struct x86_exception *exception)
3129 {
3130         if (exception)
3131                 exception->error_code = 0;
3132         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3133 }
3134
3135 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3136 {
3137         if (direct)
3138                 return vcpu_match_mmio_gpa(vcpu, addr);
3139
3140         return vcpu_match_mmio_gva(vcpu, addr);
3141 }
3142
3143
3144 /*
3145  * On direct hosts, the last spte is only allows two states
3146  * for mmio page fault:
3147  *   - It is the mmio spte
3148  *   - It is zapped or it is being zapped.
3149  *
3150  * This function completely checks the spte when the last spte
3151  * is not the mmio spte.
3152  */
3153 static bool check_direct_spte_mmio_pf(u64 spte)
3154 {
3155         return __check_direct_spte_mmio_pf(spte);
3156 }
3157
3158 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3159 {
3160         struct kvm_shadow_walk_iterator iterator;
3161         u64 spte = 0ull;
3162
3163         walk_shadow_page_lockless_begin(vcpu);
3164         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3165                 if (!is_shadow_present_pte(spte))
3166                         break;
3167         walk_shadow_page_lockless_end(vcpu);
3168
3169         return spte;
3170 }
3171
3172 /*
3173  * If it is a real mmio page fault, return 1 and emulat the instruction
3174  * directly, return 0 to let CPU fault again on the address, -1 is
3175  * returned if bug is detected.
3176  */
3177 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3178 {
3179         u64 spte;
3180
3181         if (quickly_check_mmio_pf(vcpu, addr, direct))
3182                 return 1;
3183
3184         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3185
3186         if (is_mmio_spte(spte)) {
3187                 gfn_t gfn = get_mmio_spte_gfn(spte);
3188                 unsigned access = get_mmio_spte_access(spte);
3189
3190                 if (direct)
3191                         addr = 0;
3192
3193                 trace_handle_mmio_page_fault(addr, gfn, access);
3194                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3195                 return 1;
3196         }
3197
3198         /*
3199          * It's ok if the gva is remapped by other cpus on shadow guest,
3200          * it's a BUG if the gfn is not a mmio page.
3201          */
3202         if (direct && !check_direct_spte_mmio_pf(spte))
3203                 return -1;
3204
3205         /*
3206          * If the page table is zapped by other cpus, let CPU fault again on
3207          * the address.
3208          */
3209         return 0;
3210 }
3211 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3212
3213 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3214                                   u32 error_code, bool direct)
3215 {
3216         int ret;
3217
3218         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3219         WARN_ON(ret < 0);
3220         return ret;
3221 }
3222
3223 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3224                                 u32 error_code, bool prefault)
3225 {
3226         gfn_t gfn;
3227         int r;
3228
3229         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3230
3231         if (unlikely(error_code & PFERR_RSVD_MASK))
3232                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3233
3234         r = mmu_topup_memory_caches(vcpu);
3235         if (r)
3236                 return r;
3237
3238         ASSERT(vcpu);
3239         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3240
3241         gfn = gva >> PAGE_SHIFT;
3242
3243         return nonpaging_map(vcpu, gva & PAGE_MASK,
3244                              error_code, gfn, prefault);
3245 }
3246
3247 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3248 {
3249         struct kvm_arch_async_pf arch;
3250
3251         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3252         arch.gfn = gfn;
3253         arch.direct_map = vcpu->arch.mmu.direct_map;
3254         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3255
3256         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3257 }
3258
3259 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3260 {
3261         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3262                      kvm_event_needs_reinjection(vcpu)))
3263                 return false;
3264
3265         return kvm_x86_ops->interrupt_allowed(vcpu);
3266 }
3267
3268 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3269                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3270 {
3271         bool async;
3272
3273         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3274
3275         if (!async)
3276                 return false; /* *pfn has correct page already */
3277
3278         kvm_release_pfn_clean(*pfn);
3279
3280         if (!prefault && can_do_async_pf(vcpu)) {
3281                 trace_kvm_try_async_get_page(gva, gfn);
3282                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3283                         trace_kvm_async_pf_doublefault(gva, gfn);
3284                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3285                         return true;
3286                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3287                         return true;
3288         }
3289
3290         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3291
3292         return false;
3293 }
3294
3295 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3296                           bool prefault)
3297 {
3298         pfn_t pfn;
3299         int r;
3300         int level;
3301         int force_pt_level;
3302         gfn_t gfn = gpa >> PAGE_SHIFT;
3303         unsigned long mmu_seq;
3304         int write = error_code & PFERR_WRITE_MASK;
3305         bool map_writable;
3306
3307         ASSERT(vcpu);
3308         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3309
3310         if (unlikely(error_code & PFERR_RSVD_MASK))
3311                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3312
3313         r = mmu_topup_memory_caches(vcpu);
3314         if (r)
3315                 return r;
3316
3317         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3318         if (likely(!force_pt_level)) {
3319                 level = mapping_level(vcpu, gfn);
3320                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3321         } else
3322                 level = PT_PAGE_TABLE_LEVEL;
3323
3324         if (fast_page_fault(vcpu, gpa, level, error_code))
3325                 return 0;
3326
3327         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3328         smp_rmb();
3329
3330         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3331                 return 0;
3332
3333         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3334                 return r;
3335
3336         spin_lock(&vcpu->kvm->mmu_lock);
3337         if (mmu_notifier_retry(vcpu, mmu_seq))
3338                 goto out_unlock;
3339         kvm_mmu_free_some_pages(vcpu);
3340         if (likely(!force_pt_level))
3341                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3342         r = __direct_map(vcpu, gpa, write, map_writable,
3343                          level, gfn, pfn, prefault);
3344         spin_unlock(&vcpu->kvm->mmu_lock);
3345
3346         return r;
3347
3348 out_unlock:
3349         spin_unlock(&vcpu->kvm->mmu_lock);
3350         kvm_release_pfn_clean(pfn);
3351         return 0;
3352 }
3353
3354 static void nonpaging_free(struct kvm_vcpu *vcpu)
3355 {
3356         mmu_free_roots(vcpu);
3357 }
3358
3359 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3360                                   struct kvm_mmu *context)
3361 {
3362         context->new_cr3 = nonpaging_new_cr3;
3363         context->page_fault = nonpaging_page_fault;
3364         context->gva_to_gpa = nonpaging_gva_to_gpa;
3365         context->free = nonpaging_free;
3366         context->sync_page = nonpaging_sync_page;
3367         context->invlpg = nonpaging_invlpg;
3368         context->update_pte = nonpaging_update_pte;
3369         context->root_level = 0;
3370         context->shadow_root_level = PT32E_ROOT_LEVEL;
3371         context->root_hpa = INVALID_PAGE;
3372         context->direct_map = true;
3373         context->nx = false;
3374         return 0;
3375 }
3376
3377 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3378 {
3379         ++vcpu->stat.tlb_flush;
3380         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3381 }
3382
3383 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3384 {
3385         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3386         mmu_free_roots(vcpu);
3387 }
3388
3389 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3390 {
3391         return kvm_read_cr3(vcpu);
3392 }
3393
3394 static void inject_page_fault(struct kvm_vcpu *vcpu,
3395                               struct x86_exception *fault)
3396 {
3397         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3398 }
3399
3400 static void paging_free(struct kvm_vcpu *vcpu)
3401 {
3402         nonpaging_free(vcpu);
3403 }
3404
3405 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3406 {
3407         int bit7;
3408
3409         bit7 = (gpte >> 7) & 1;
3410         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3411 }
3412
3413 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3414                            int *nr_present)
3415 {
3416         if (unlikely(is_mmio_spte(*sptep))) {
3417                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3418                         mmu_spte_clear_no_track(sptep);
3419                         return true;
3420                 }
3421
3422                 (*nr_present)++;
3423                 mark_mmio_spte(sptep, gfn, access);
3424                 return true;
3425         }
3426
3427         return false;
3428 }
3429
3430 #define PTTYPE 64
3431 #include "paging_tmpl.h"
3432 #undef PTTYPE
3433
3434 #define PTTYPE 32
3435 #include "paging_tmpl.h"
3436 #undef PTTYPE
3437
3438 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3439                                   struct kvm_mmu *context)
3440 {
3441         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3442         u64 exb_bit_rsvd = 0;
3443
3444         if (!context->nx)
3445                 exb_bit_rsvd = rsvd_bits(63, 63);
3446         switch (context->root_level) {
3447         case PT32_ROOT_LEVEL:
3448                 /* no rsvd bits for 2 level 4K page table entries */
3449                 context->rsvd_bits_mask[0][1] = 0;
3450                 context->rsvd_bits_mask[0][0] = 0;
3451                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3452
3453                 if (!is_pse(vcpu)) {
3454                         context->rsvd_bits_mask[1][1] = 0;
3455                         break;
3456                 }
3457
3458                 if (is_cpuid_PSE36())
3459                         /* 36bits PSE 4MB page */
3460                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3461                 else
3462                         /* 32 bits PSE 4MB page */
3463                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3464                 break;
3465         case PT32E_ROOT_LEVEL:
3466                 context->rsvd_bits_mask[0][2] =
3467                         rsvd_bits(maxphyaddr, 63) |
3468                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3469                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3470                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3471                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3472                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3473                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3474                         rsvd_bits(maxphyaddr, 62) |
3475                         rsvd_bits(13, 20);              /* large page */
3476                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3477                 break;
3478         case PT64_ROOT_LEVEL:
3479                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3480                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3482                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3483                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3484                         rsvd_bits(maxphyaddr, 51);
3485                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3486                         rsvd_bits(maxphyaddr, 51);
3487                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3488                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3489                         rsvd_bits(maxphyaddr, 51) |
3490                         rsvd_bits(13, 29);
3491                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3492                         rsvd_bits(maxphyaddr, 51) |
3493                         rsvd_bits(13, 20);              /* large page */
3494                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3495                 break;
3496         }
3497 }
3498
3499 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3500                                         struct kvm_mmu *context,
3501                                         int level)
3502 {
3503         context->nx = is_nx(vcpu);
3504         context->root_level = level;
3505
3506         reset_rsvds_bits_mask(vcpu, context);
3507
3508         ASSERT(is_pae(vcpu));
3509         context->new_cr3 = paging_new_cr3;
3510         context->page_fault = paging64_page_fault;
3511         context->gva_to_gpa = paging64_gva_to_gpa;
3512         context->sync_page = paging64_sync_page;
3513         context->invlpg = paging64_invlpg;
3514         context->update_pte = paging64_update_pte;
3515         context->free = paging_free;
3516         context->shadow_root_level = level;
3517         context->root_hpa = INVALID_PAGE;
3518         context->direct_map = false;
3519         return 0;
3520 }
3521
3522 static int paging64_init_context(struct kvm_vcpu *vcpu,
3523                                  struct kvm_mmu *context)
3524 {
3525         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3526 }
3527
3528 static int paging32_init_context(struct kvm_vcpu *vcpu,
3529                                  struct kvm_mmu *context)
3530 {
3531         context->nx = false;
3532         context->root_level = PT32_ROOT_LEVEL;
3533
3534         reset_rsvds_bits_mask(vcpu, context);
3535
3536         context->new_cr3 = paging_new_cr3;
3537         context->page_fault = paging32_page_fault;
3538         context->gva_to_gpa = paging32_gva_to_gpa;
3539         context->free = paging_free;
3540         context->sync_page = paging32_sync_page;
3541         context->invlpg = paging32_invlpg;
3542         context->update_pte = paging32_update_pte;
3543         context->shadow_root_level = PT32E_ROOT_LEVEL;
3544         context->root_hpa = INVALID_PAGE;
3545         context->direct_map = false;
3546         return 0;
3547 }
3548
3549 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3550                                   struct kvm_mmu *context)
3551 {
3552         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3553 }
3554
3555 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3556 {
3557         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3558
3559         context->base_role.word = 0;
3560         context->new_cr3 = nonpaging_new_cr3;
3561         context->page_fault = tdp_page_fault;
3562         context->free = nonpaging_free;
3563         context->sync_page = nonpaging_sync_page;
3564         context->invlpg = nonpaging_invlpg;
3565         context->update_pte = nonpaging_update_pte;
3566         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3567         context->root_hpa = INVALID_PAGE;
3568         context->direct_map = true;
3569         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3570         context->get_cr3 = get_cr3;
3571         context->get_pdptr = kvm_pdptr_read;
3572         context->inject_page_fault = kvm_inject_page_fault;
3573
3574         if (!is_paging(vcpu)) {
3575                 context->nx = false;
3576                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3577                 context->root_level = 0;
3578         } else if (is_long_mode(vcpu)) {
3579                 context->nx = is_nx(vcpu);
3580                 context->root_level = PT64_ROOT_LEVEL;
3581                 reset_rsvds_bits_mask(vcpu, context);
3582                 context->gva_to_gpa = paging64_gva_to_gpa;
3583         } else if (is_pae(vcpu)) {
3584                 context->nx = is_nx(vcpu);
3585                 context->root_level = PT32E_ROOT_LEVEL;
3586                 reset_rsvds_bits_mask(vcpu, context);
3587                 context->gva_to_gpa = paging64_gva_to_gpa;
3588         } else {
3589                 context->nx = false;
3590                 context->root_level = PT32_ROOT_LEVEL;
3591                 reset_rsvds_bits_mask(vcpu, context);
3592                 context->gva_to_gpa = paging32_gva_to_gpa;
3593         }
3594
3595         return 0;
3596 }
3597
3598 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3599 {
3600         int r;
3601         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3602         ASSERT(vcpu);
3603         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3604
3605         if (!is_paging(vcpu))
3606                 r = nonpaging_init_context(vcpu, context);
3607         else if (is_long_mode(vcpu))
3608                 r = paging64_init_context(vcpu, context);
3609         else if (is_pae(vcpu))
3610                 r = paging32E_init_context(vcpu, context);
3611         else
3612                 r = paging32_init_context(vcpu, context);
3613
3614         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3615         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3616         vcpu->arch.mmu.base_role.smep_andnot_wp
3617                 = smep && !is_write_protection(vcpu);
3618
3619         return r;
3620 }
3621 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3622
3623 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3624 {
3625         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3626
3627         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3628         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3629         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3630         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3631
3632         return r;
3633 }
3634
3635 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3636 {
3637         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3638
3639         g_context->get_cr3           = get_cr3;
3640         g_context->get_pdptr         = kvm_pdptr_read;
3641         g_context->inject_page_fault = kvm_inject_page_fault;
3642
3643         /*
3644          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3645          * translation of l2_gpa to l1_gpa addresses is done using the
3646          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3647          * functions between mmu and nested_mmu are swapped.
3648          */
3649         if (!is_paging(vcpu)) {
3650                 g_context->nx = false;
3651                 g_context->root_level = 0;
3652                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3653         } else if (is_long_mode(vcpu)) {
3654                 g_context->nx = is_nx(vcpu);
3655                 g_context->root_level = PT64_ROOT_LEVEL;
3656                 reset_rsvds_bits_mask(vcpu, g_context);
3657                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3658         } else if (is_pae(vcpu)) {
3659                 g_context->nx = is_nx(vcpu);
3660                 g_context->root_level = PT32E_ROOT_LEVEL;
3661                 reset_rsvds_bits_mask(vcpu, g_context);
3662                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3663         } else {
3664                 g_context->nx = false;
3665                 g_context->root_level = PT32_ROOT_LEVEL;
3666                 reset_rsvds_bits_mask(vcpu, g_context);
3667                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3668         }
3669
3670         return 0;
3671 }
3672
3673 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3674 {
3675         if (mmu_is_nested(vcpu))
3676                 return init_kvm_nested_mmu(vcpu);
3677         else if (tdp_enabled)
3678                 return init_kvm_tdp_mmu(vcpu);
3679         else
3680                 return init_kvm_softmmu(vcpu);
3681 }
3682
3683 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3684 {
3685         ASSERT(vcpu);
3686         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3687                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3688                 vcpu->arch.mmu.free(vcpu);
3689 }
3690
3691 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3692 {
3693         destroy_kvm_mmu(vcpu);
3694         return init_kvm_mmu(vcpu);
3695 }
3696 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3697
3698 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3699 {
3700         int r;
3701
3702         r = mmu_topup_memory_caches(vcpu);
3703         if (r)
3704                 goto out;
3705         r = mmu_alloc_roots(vcpu);
3706         spin_lock(&vcpu->kvm->mmu_lock);
3707         mmu_sync_roots(vcpu);
3708         spin_unlock(&vcpu->kvm->mmu_lock);
3709         if (r)
3710                 goto out;
3711         /* set_cr3() should ensure TLB has been flushed */
3712         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3713 out:
3714         return r;
3715 }
3716 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3717
3718 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3719 {
3720         mmu_free_roots(vcpu);
3721 }
3722 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3723
3724 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3725                                   struct kvm_mmu_page *sp, u64 *spte,
3726                                   const void *new)
3727 {
3728         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3729                 ++vcpu->kvm->stat.mmu_pde_zapped;
3730                 return;
3731         }
3732
3733         ++vcpu->kvm->stat.mmu_pte_updated;
3734         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3735 }
3736
3737 static bool need_remote_flush(u64 old, u64 new)
3738 {
3739         if (!is_shadow_present_pte(old))
3740                 return false;
3741         if (!is_shadow_present_pte(new))
3742                 return true;
3743         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3744                 return true;
3745         old ^= PT64_NX_MASK;
3746         new ^= PT64_NX_MASK;
3747         return (old & ~new & PT64_PERM_MASK) != 0;
3748 }
3749
3750 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3751                                     bool remote_flush, bool local_flush)
3752 {
3753         if (zap_page)
3754                 return;
3755
3756         if (remote_flush)
3757                 kvm_flush_remote_tlbs(vcpu->kvm);
3758         else if (local_flush)
3759                 kvm_mmu_flush_tlb(vcpu);
3760 }
3761
3762 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3763                                     const u8 *new, int *bytes)
3764 {
3765         u64 gentry;
3766         int r;
3767
3768         /*
3769          * Assume that the pte write on a page table of the same type
3770          * as the current vcpu paging mode since we update the sptes only
3771          * when they have the same mode.
3772          */
3773         if (is_pae(vcpu) && *bytes == 4) {
3774                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3775                 *gpa &= ~(gpa_t)7;
3776                 *bytes = 8;
3777                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3778                 if (r)
3779                         gentry = 0;
3780                 new = (const u8 *)&gentry;
3781         }
3782
3783         switch (*bytes) {
3784         case 4:
3785                 gentry = *(const u32 *)new;
3786                 break;
3787         case 8:
3788                 gentry = *(const u64 *)new;
3789                 break;
3790         default:
3791                 gentry = 0;
3792                 break;
3793         }
3794
3795         return gentry;
3796 }
3797
3798 /*
3799  * If we're seeing too many writes to a page, it may no longer be a page table,
3800  * or we may be forking, in which case it is better to unmap the page.
3801  */
3802 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3803 {
3804         /*
3805          * Skip write-flooding detected for the sp whose level is 1, because
3806          * it can become unsync, then the guest page is not write-protected.
3807          */
3808         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3809                 return false;
3810
3811         return ++sp->write_flooding_count >= 3;
3812 }
3813
3814 /*
3815  * Misaligned accesses are too much trouble to fix up; also, they usually
3816  * indicate a page is not used as a page table.
3817  */
3818 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3819                                     int bytes)
3820 {
3821         unsigned offset, pte_size, misaligned;
3822
3823         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3824                  gpa, bytes, sp->role.word);
3825
3826         offset = offset_in_page(gpa);
3827         pte_size = sp->role.cr4_pae ? 8 : 4;
3828
3829         /*
3830          * Sometimes, the OS only writes the last one bytes to update status
3831          * bits, for example, in linux, andb instruction is used in clear_bit().
3832          */
3833         if (!(offset & (pte_size - 1)) && bytes == 1)
3834                 return false;
3835
3836         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3837         misaligned |= bytes < 4;
3838
3839         return misaligned;
3840 }
3841
3842 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3843 {
3844         unsigned page_offset, quadrant;
3845         u64 *spte;
3846         int level;
3847
3848         page_offset = offset_in_page(gpa);
3849         level = sp->role.level;
3850         *nspte = 1;
3851         if (!sp->role.cr4_pae) {
3852                 page_offset <<= 1;      /* 32->64 */
3853                 /*
3854                  * A 32-bit pde maps 4MB while the shadow pdes map
3855                  * only 2MB.  So we need to double the offset again
3856                  * and zap two pdes instead of one.
3857                  */
3858                 if (level == PT32_ROOT_LEVEL) {
3859                         page_offset &= ~7; /* kill rounding error */
3860                         page_offset <<= 1;
3861                         *nspte = 2;
3862                 }
3863                 quadrant = page_offset >> PAGE_SHIFT;
3864                 page_offset &= ~PAGE_MASK;
3865                 if (quadrant != sp->role.quadrant)
3866                         return NULL;
3867         }
3868
3869         spte = &sp->spt[page_offset / sizeof(*spte)];
3870         return spte;
3871 }
3872
3873 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3874                        const u8 *new, int bytes)
3875 {
3876         gfn_t gfn = gpa >> PAGE_SHIFT;
3877         union kvm_mmu_page_role mask = { .word = 0 };
3878         struct kvm_mmu_page *sp;
3879         struct hlist_node *node;
3880         LIST_HEAD(invalid_list);
3881         u64 entry, gentry, *spte;
3882         int npte;
3883         bool remote_flush, local_flush, zap_page;
3884
3885         /*
3886          * If we don't have indirect shadow pages, it means no page is
3887          * write-protected, so we can exit simply.
3888          */
3889         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3890                 return;
3891
3892         zap_page = remote_flush = local_flush = false;
3893
3894         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3895
3896         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3897
3898         /*
3899          * No need to care whether allocation memory is successful
3900          * or not since pte prefetch is skiped if it does not have
3901          * enough objects in the cache.
3902          */
3903         mmu_topup_memory_caches(vcpu);
3904
3905         spin_lock(&vcpu->kvm->mmu_lock);
3906         ++vcpu->kvm->stat.mmu_pte_write;
3907         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3908
3909         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3910         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3911                 if (detect_write_misaligned(sp, gpa, bytes) ||
3912                       detect_write_flooding(sp)) {
3913                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3914                                                      &invalid_list);
3915                         ++vcpu->kvm->stat.mmu_flooded;
3916                         continue;
3917                 }
3918
3919                 spte = get_written_sptes(sp, gpa, &npte);
3920                 if (!spte)
3921                         continue;
3922
3923                 local_flush = true;
3924                 while (npte--) {
3925                         entry = *spte;
3926                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3927                         if (gentry &&
3928                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3929                               & mask.word) && rmap_can_add(vcpu))
3930                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3931                         if (!remote_flush && need_remote_flush(entry, *spte))
3932                                 remote_flush = true;
3933                         ++spte;
3934                 }
3935         }
3936         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3937         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3938         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3939         spin_unlock(&vcpu->kvm->mmu_lock);
3940 }
3941
3942 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3943 {
3944         gpa_t gpa;
3945         int r;
3946
3947         if (vcpu->arch.mmu.direct_map)
3948                 return 0;
3949
3950         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3951
3952         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3953
3954         return r;
3955 }
3956 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3957
3958 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3959 {
3960         LIST_HEAD(invalid_list);
3961
3962         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3963                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3964                 struct kvm_mmu_page *sp;
3965
3966                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3967                                   struct kvm_mmu_page, link);
3968                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3969                 ++vcpu->kvm->stat.mmu_recycled;
3970         }
3971         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3972 }
3973
3974 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3975 {
3976         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3977                 return vcpu_match_mmio_gpa(vcpu, addr);
3978
3979         return vcpu_match_mmio_gva(vcpu, addr);
3980 }
3981
3982 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3983                        void *insn, int insn_len)
3984 {
3985         int r, emulation_type = EMULTYPE_RETRY;
3986         enum emulation_result er;
3987
3988         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3989         if (r < 0)
3990                 goto out;
3991
3992         if (!r) {
3993                 r = 1;
3994                 goto out;
3995         }
3996
3997         if (is_mmio_page_fault(vcpu, cr2))
3998                 emulation_type = 0;
3999
4000         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4001
4002         switch (er) {
4003         case EMULATE_DONE:
4004                 return 1;
4005         case EMULATE_DO_MMIO:
4006                 ++vcpu->stat.mmio_exits;
4007                 /* fall through */
4008         case EMULATE_FAIL:
4009                 return 0;
4010         default:
4011                 BUG();
4012         }
4013 out:
4014         return r;
4015 }
4016 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4017
4018 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4019 {
4020         vcpu->arch.mmu.invlpg(vcpu, gva);
4021         kvm_mmu_flush_tlb(vcpu);
4022         ++vcpu->stat.invlpg;
4023 }
4024 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4025
4026 void kvm_enable_tdp(void)
4027 {
4028         tdp_enabled = true;
4029 }
4030 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4031
4032 void kvm_disable_tdp(void)
4033 {
4034         tdp_enabled = false;
4035 }
4036 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4037
4038 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4039 {
4040         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4041         if (vcpu->arch.mmu.lm_root != NULL)
4042                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4043 }
4044
4045 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4046 {
4047         struct page *page;
4048         int i;
4049
4050         ASSERT(vcpu);
4051
4052         /*
4053          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4054          * Therefore we need to allocate shadow page tables in the first
4055          * 4GB of memory, which happens to fit the DMA32 zone.
4056          */
4057         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4058         if (!page)
4059                 return -ENOMEM;
4060
4061         vcpu->arch.mmu.pae_root = page_address(page);
4062         for (i = 0; i < 4; ++i)
4063                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4064
4065         return 0;
4066 }
4067
4068 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4069 {
4070         ASSERT(vcpu);
4071
4072         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4073         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4074         vcpu->arch.mmu.translate_gpa = translate_gpa;
4075         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4076
4077         return alloc_mmu_pages(vcpu);
4078 }
4079
4080 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4081 {
4082         ASSERT(vcpu);
4083         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4084
4085         return init_kvm_mmu(vcpu);
4086 }
4087
4088 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4089 {
4090         struct kvm_mmu_page *sp;
4091         bool flush = false;
4092
4093         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4094                 int i;
4095                 u64 *pt;
4096
4097                 if (!test_bit(slot, sp->slot_bitmap))
4098                         continue;
4099
4100                 pt = sp->spt;
4101                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4102                         if (!is_shadow_present_pte(pt[i]) ||
4103                               !is_last_spte(pt[i], sp->role.level))
4104                                 continue;
4105
4106                         spte_write_protect(kvm, &pt[i], &flush, false);
4107                 }
4108         }
4109         kvm_flush_remote_tlbs(kvm);
4110 }
4111
4112 void kvm_mmu_zap_all(struct kvm *kvm)
4113 {
4114         struct kvm_mmu_page *sp, *node;
4115         LIST_HEAD(invalid_list);
4116
4117         spin_lock(&kvm->mmu_lock);
4118 restart:
4119         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4120                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4121                         goto restart;
4122
4123         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4124         spin_unlock(&kvm->mmu_lock);
4125 }
4126
4127 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4128                                                 struct list_head *invalid_list)
4129 {
4130         struct kvm_mmu_page *page;
4131
4132         if (list_empty(&kvm->arch.active_mmu_pages))
4133                 return;
4134
4135         page = container_of(kvm->arch.active_mmu_pages.prev,
4136                             struct kvm_mmu_page, link);
4137         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4138 }
4139
4140 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4141 {
4142         struct kvm *kvm;
4143         int nr_to_scan = sc->nr_to_scan;
4144
4145         if (nr_to_scan == 0)
4146                 goto out;
4147
4148         raw_spin_lock(&kvm_lock);
4149
4150         list_for_each_entry(kvm, &vm_list, vm_list) {
4151                 int idx;
4152                 LIST_HEAD(invalid_list);
4153
4154                 /*
4155                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4156                  * here. We may skip a VM instance errorneosly, but we do not
4157                  * want to shrink a VM that only started to populate its MMU
4158                  * anyway.
4159                  */
4160                 if (kvm->arch.n_used_mmu_pages > 0) {
4161                         if (!nr_to_scan--)
4162                                 break;
4163                         continue;
4164                 }
4165
4166                 idx = srcu_read_lock(&kvm->srcu);
4167                 spin_lock(&kvm->mmu_lock);
4168
4169                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4170                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4171
4172                 spin_unlock(&kvm->mmu_lock);
4173                 srcu_read_unlock(&kvm->srcu, idx);
4174
4175                 list_move_tail(&kvm->vm_list, &vm_list);
4176                 break;
4177         }
4178
4179         raw_spin_unlock(&kvm_lock);
4180
4181 out:
4182         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4183 }
4184
4185 static struct shrinker mmu_shrinker = {
4186         .shrink = mmu_shrink,
4187         .seeks = DEFAULT_SEEKS * 10,
4188 };
4189
4190 static void mmu_destroy_caches(void)
4191 {
4192         if (pte_list_desc_cache)
4193                 kmem_cache_destroy(pte_list_desc_cache);
4194         if (mmu_page_header_cache)
4195                 kmem_cache_destroy(mmu_page_header_cache);
4196 }
4197
4198 int kvm_mmu_module_init(void)
4199 {
4200         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4201                                             sizeof(struct pte_list_desc),
4202                                             0, 0, NULL);
4203         if (!pte_list_desc_cache)
4204                 goto nomem;
4205
4206         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4207                                                   sizeof(struct kvm_mmu_page),
4208                                                   0, 0, NULL);
4209         if (!mmu_page_header_cache)
4210                 goto nomem;
4211
4212         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4213                 goto nomem;
4214
4215         register_shrinker(&mmu_shrinker);
4216
4217         return 0;
4218
4219 nomem:
4220         mmu_destroy_caches();
4221         return -ENOMEM;
4222 }
4223
4224 /*
4225  * Caculate mmu pages needed for kvm.
4226  */
4227 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4228 {
4229         unsigned int nr_mmu_pages;
4230         unsigned int  nr_pages = 0;
4231         struct kvm_memslots *slots;
4232         struct kvm_memory_slot *memslot;
4233
4234         slots = kvm_memslots(kvm);
4235
4236         kvm_for_each_memslot(memslot, slots)
4237                 nr_pages += memslot->npages;
4238
4239         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4240         nr_mmu_pages = max(nr_mmu_pages,
4241                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4242
4243         return nr_mmu_pages;
4244 }
4245
4246 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4247 {
4248         struct kvm_shadow_walk_iterator iterator;
4249         u64 spte;
4250         int nr_sptes = 0;
4251
4252         walk_shadow_page_lockless_begin(vcpu);
4253         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4254                 sptes[iterator.level-1] = spte;
4255                 nr_sptes++;
4256                 if (!is_shadow_present_pte(spte))
4257                         break;
4258         }
4259         walk_shadow_page_lockless_end(vcpu);
4260
4261         return nr_sptes;
4262 }
4263 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4264
4265 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4266 {
4267         ASSERT(vcpu);
4268
4269         destroy_kvm_mmu(vcpu);
4270         free_mmu_pages(vcpu);
4271         mmu_free_memory_caches(vcpu);
4272 }
4273
4274 void kvm_mmu_module_exit(void)
4275 {
4276         mmu_destroy_caches();
4277         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4278         unregister_shrinker(&mmu_shrinker);
4279         mmu_audit_disable();
4280 }