15afa1e1eaf9f42820694a971a5c692fd3b34b28
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 char *audit_point_name[] = {
64         "pre page fault",
65         "post page fault",
66         "pre pte write",
67         "post pte write",
68         "pre sync",
69         "post sync"
70 };
71
72 #undef MMU_DEBUG
73
74 #ifdef MMU_DEBUG
75
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
78
79 #else
80
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
83
84 #endif
85
86 #ifdef MMU_DEBUG
87 static int dbg = 0;
88 module_param(dbg, bool, 0644);
89 #endif
90
91 static int oos_shadow = 1;
92 module_param(oos_shadow, bool, 0644);
93
94 #ifndef MMU_DEBUG
95 #define ASSERT(x) do { } while (0)
96 #else
97 #define ASSERT(x)                                                       \
98         if (!(x)) {                                                     \
99                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
100                        __FILE__, __LINE__, #x);                         \
101         }
102 #endif
103
104 #define PTE_PREFETCH_NUM                8
105
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
108
109 #define PT64_LEVEL_BITS 9
110
111 #define PT64_LEVEL_SHIFT(level) \
112                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
113
114 #define PT64_INDEX(address, level)\
115         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
116
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                                 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
132 #define PT64_DIR_BASE_ADDR_MASK \
133         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
134 #define PT64_LVL_ADDR_MASK(level) \
135         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136                                                 * PT64_LEVEL_BITS))) - 1))
137 #define PT64_LVL_OFFSET_MASK(level) \
138         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
139                                                 * PT64_LEVEL_BITS))) - 1))
140
141 #define PT32_BASE_ADDR_MASK PAGE_MASK
142 #define PT32_DIR_BASE_ADDR_MASK \
143         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
144 #define PT32_LVL_ADDR_MASK(level) \
145         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
146                                             * PT32_LEVEL_BITS))) - 1))
147
148 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
149                         | PT64_NX_MASK)
150
151 #define PTE_LIST_EXT 4
152
153 #define ACC_EXEC_MASK    1
154 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
155 #define ACC_USER_MASK    PT_USER_MASK
156 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
157
158 #include <trace/events/kvm.h>
159
160 #define CREATE_TRACE_POINTS
161 #include "mmutrace.h"
162
163 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
164
165 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
166
167 struct pte_list_desc {
168         u64 *sptes[PTE_LIST_EXT];
169         struct pte_list_desc *more;
170 };
171
172 struct kvm_shadow_walk_iterator {
173         u64 addr;
174         hpa_t shadow_addr;
175         int level;
176         u64 *sptep;
177         unsigned index;
178 };
179
180 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
181         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
182              shadow_walk_okay(&(_walker));                      \
183              shadow_walk_next(&(_walker)))
184
185 static struct kmem_cache *pte_list_desc_cache;
186 static struct kmem_cache *mmu_page_header_cache;
187 static struct percpu_counter kvm_total_used_mmu_pages;
188
189 static u64 __read_mostly shadow_trap_nonpresent_pte;
190 static u64 __read_mostly shadow_notrap_nonpresent_pte;
191 static u64 __read_mostly shadow_nx_mask;
192 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
193 static u64 __read_mostly shadow_user_mask;
194 static u64 __read_mostly shadow_accessed_mask;
195 static u64 __read_mostly shadow_dirty_mask;
196
197 static inline u64 rsvd_bits(int s, int e)
198 {
199         return ((1ULL << (e - s + 1)) - 1) << s;
200 }
201
202 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
203 {
204         shadow_trap_nonpresent_pte = trap_pte;
205         shadow_notrap_nonpresent_pte = notrap_pte;
206 }
207 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
208
209 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
210                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
211 {
212         shadow_user_mask = user_mask;
213         shadow_accessed_mask = accessed_mask;
214         shadow_dirty_mask = dirty_mask;
215         shadow_nx_mask = nx_mask;
216         shadow_x_mask = x_mask;
217 }
218 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
219
220 static bool is_write_protection(struct kvm_vcpu *vcpu)
221 {
222         return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
223 }
224
225 static int is_cpuid_PSE36(void)
226 {
227         return 1;
228 }
229
230 static int is_nx(struct kvm_vcpu *vcpu)
231 {
232         return vcpu->arch.efer & EFER_NX;
233 }
234
235 static int is_shadow_present_pte(u64 pte)
236 {
237         return pte != shadow_trap_nonpresent_pte
238                 && pte != shadow_notrap_nonpresent_pte;
239 }
240
241 static int is_large_pte(u64 pte)
242 {
243         return pte & PT_PAGE_SIZE_MASK;
244 }
245
246 static int is_writable_pte(unsigned long pte)
247 {
248         return pte & PT_WRITABLE_MASK;
249 }
250
251 static int is_dirty_gpte(unsigned long pte)
252 {
253         return pte & PT_DIRTY_MASK;
254 }
255
256 static int is_rmap_spte(u64 pte)
257 {
258         return is_shadow_present_pte(pte);
259 }
260
261 static int is_last_spte(u64 pte, int level)
262 {
263         if (level == PT_PAGE_TABLE_LEVEL)
264                 return 1;
265         if (is_large_pte(pte))
266                 return 1;
267         return 0;
268 }
269
270 static pfn_t spte_to_pfn(u64 pte)
271 {
272         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
273 }
274
275 static gfn_t pse36_gfn_delta(u32 gpte)
276 {
277         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
278
279         return (gpte & PT32_DIR_PSE36_MASK) << shift;
280 }
281
282 static void __set_spte(u64 *sptep, u64 spte)
283 {
284         set_64bit(sptep, spte);
285 }
286
287 static u64 __xchg_spte(u64 *sptep, u64 new_spte)
288 {
289 #ifdef CONFIG_X86_64
290         return xchg(sptep, new_spte);
291 #else
292         u64 old_spte;
293
294         do {
295                 old_spte = *sptep;
296         } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
297
298         return old_spte;
299 #endif
300 }
301
302 static bool spte_has_volatile_bits(u64 spte)
303 {
304         if (!shadow_accessed_mask)
305                 return false;
306
307         if (!is_shadow_present_pte(spte))
308                 return false;
309
310         if ((spte & shadow_accessed_mask) &&
311               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
312                 return false;
313
314         return true;
315 }
316
317 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
318 {
319         return (old_spte & bit_mask) && !(new_spte & bit_mask);
320 }
321
322 static void update_spte(u64 *sptep, u64 new_spte)
323 {
324         u64 mask, old_spte = *sptep;
325
326         WARN_ON(!is_rmap_spte(new_spte));
327
328         new_spte |= old_spte & shadow_dirty_mask;
329
330         mask = shadow_accessed_mask;
331         if (is_writable_pte(old_spte))
332                 mask |= shadow_dirty_mask;
333
334         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
335                 __set_spte(sptep, new_spte);
336         else
337                 old_spte = __xchg_spte(sptep, new_spte);
338
339         if (!shadow_accessed_mask)
340                 return;
341
342         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
343                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
344         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
345                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
346 }
347
348 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
349                                   struct kmem_cache *base_cache, int min)
350 {
351         void *obj;
352
353         if (cache->nobjs >= min)
354                 return 0;
355         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
356                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
357                 if (!obj)
358                         return -ENOMEM;
359                 cache->objects[cache->nobjs++] = obj;
360         }
361         return 0;
362 }
363
364 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
365                                   struct kmem_cache *cache)
366 {
367         while (mc->nobjs)
368                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
369 }
370
371 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
372                                        int min)
373 {
374         void *page;
375
376         if (cache->nobjs >= min)
377                 return 0;
378         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
379                 page = (void *)__get_free_page(GFP_KERNEL);
380                 if (!page)
381                         return -ENOMEM;
382                 cache->objects[cache->nobjs++] = page;
383         }
384         return 0;
385 }
386
387 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
388 {
389         while (mc->nobjs)
390                 free_page((unsigned long)mc->objects[--mc->nobjs]);
391 }
392
393 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
394 {
395         int r;
396
397         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
398                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
399         if (r)
400                 goto out;
401         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
402         if (r)
403                 goto out;
404         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
405                                    mmu_page_header_cache, 4);
406 out:
407         return r;
408 }
409
410 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
411 {
412         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
413                                 pte_list_desc_cache);
414         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
415         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
416                                 mmu_page_header_cache);
417 }
418
419 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
420                                     size_t size)
421 {
422         void *p;
423
424         BUG_ON(!mc->nobjs);
425         p = mc->objects[--mc->nobjs];
426         return p;
427 }
428
429 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
430 {
431         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
432                                       sizeof(struct pte_list_desc));
433 }
434
435 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
436 {
437         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
438 }
439
440 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
441 {
442         if (!sp->role.direct)
443                 return sp->gfns[index];
444
445         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
446 }
447
448 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
449 {
450         if (sp->role.direct)
451                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
452         else
453                 sp->gfns[index] = gfn;
454 }
455
456 /*
457  * Return the pointer to the large page information for a given gfn,
458  * handling slots that are not large page aligned.
459  */
460 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
461                                               struct kvm_memory_slot *slot,
462                                               int level)
463 {
464         unsigned long idx;
465
466         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
467               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
468         return &slot->lpage_info[level - 2][idx];
469 }
470
471 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
472 {
473         struct kvm_memory_slot *slot;
474         struct kvm_lpage_info *linfo;
475         int i;
476
477         slot = gfn_to_memslot(kvm, gfn);
478         for (i = PT_DIRECTORY_LEVEL;
479              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
480                 linfo = lpage_info_slot(gfn, slot, i);
481                 linfo->write_count += 1;
482         }
483         kvm->arch.indirect_shadow_pages++;
484 }
485
486 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
487 {
488         struct kvm_memory_slot *slot;
489         struct kvm_lpage_info *linfo;
490         int i;
491
492         slot = gfn_to_memslot(kvm, gfn);
493         for (i = PT_DIRECTORY_LEVEL;
494              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
495                 linfo = lpage_info_slot(gfn, slot, i);
496                 linfo->write_count -= 1;
497                 WARN_ON(linfo->write_count < 0);
498         }
499         kvm->arch.indirect_shadow_pages--;
500 }
501
502 static int has_wrprotected_page(struct kvm *kvm,
503                                 gfn_t gfn,
504                                 int level)
505 {
506         struct kvm_memory_slot *slot;
507         struct kvm_lpage_info *linfo;
508
509         slot = gfn_to_memslot(kvm, gfn);
510         if (slot) {
511                 linfo = lpage_info_slot(gfn, slot, level);
512                 return linfo->write_count;
513         }
514
515         return 1;
516 }
517
518 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
519 {
520         unsigned long page_size;
521         int i, ret = 0;
522
523         page_size = kvm_host_page_size(kvm, gfn);
524
525         for (i = PT_PAGE_TABLE_LEVEL;
526              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
527                 if (page_size >= KVM_HPAGE_SIZE(i))
528                         ret = i;
529                 else
530                         break;
531         }
532
533         return ret;
534 }
535
536 static struct kvm_memory_slot *
537 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
538                             bool no_dirty_log)
539 {
540         struct kvm_memory_slot *slot;
541
542         slot = gfn_to_memslot(vcpu->kvm, gfn);
543         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
544               (no_dirty_log && slot->dirty_bitmap))
545                 slot = NULL;
546
547         return slot;
548 }
549
550 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
551 {
552         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
553 }
554
555 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
556 {
557         int host_level, level, max_level;
558
559         host_level = host_mapping_level(vcpu->kvm, large_gfn);
560
561         if (host_level == PT_PAGE_TABLE_LEVEL)
562                 return host_level;
563
564         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
565                 kvm_x86_ops->get_lpage_level() : host_level;
566
567         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
568                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
569                         break;
570
571         return level - 1;
572 }
573
574 /*
575  * Pte mapping structures:
576  *
577  * If pte_list bit zero is zero, then pte_list point to the spte.
578  *
579  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
580  * pte_list_desc containing more mappings.
581  *
582  * Returns the number of pte entries before the spte was added or zero if
583  * the spte was not added.
584  *
585  */
586 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
587                         unsigned long *pte_list)
588 {
589         struct pte_list_desc *desc;
590         int i, count = 0;
591
592         if (!*pte_list) {
593                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
594                 *pte_list = (unsigned long)spte;
595         } else if (!(*pte_list & 1)) {
596                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
597                 desc = mmu_alloc_pte_list_desc(vcpu);
598                 desc->sptes[0] = (u64 *)*pte_list;
599                 desc->sptes[1] = spte;
600                 *pte_list = (unsigned long)desc | 1;
601                 ++count;
602         } else {
603                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
604                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
605                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
606                         desc = desc->more;
607                         count += PTE_LIST_EXT;
608                 }
609                 if (desc->sptes[PTE_LIST_EXT-1]) {
610                         desc->more = mmu_alloc_pte_list_desc(vcpu);
611                         desc = desc->more;
612                 }
613                 for (i = 0; desc->sptes[i]; ++i)
614                         ++count;
615                 desc->sptes[i] = spte;
616         }
617         return count;
618 }
619
620 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
621 {
622         struct pte_list_desc *desc;
623         u64 *prev_spte;
624         int i;
625
626         if (!*pte_list)
627                 return NULL;
628         else if (!(*pte_list & 1)) {
629                 if (!spte)
630                         return (u64 *)*pte_list;
631                 return NULL;
632         }
633         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
634         prev_spte = NULL;
635         while (desc) {
636                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
637                         if (prev_spte == spte)
638                                 return desc->sptes[i];
639                         prev_spte = desc->sptes[i];
640                 }
641                 desc = desc->more;
642         }
643         return NULL;
644 }
645
646 static void
647 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
648                            int i, struct pte_list_desc *prev_desc)
649 {
650         int j;
651
652         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
653                 ;
654         desc->sptes[i] = desc->sptes[j];
655         desc->sptes[j] = NULL;
656         if (j != 0)
657                 return;
658         if (!prev_desc && !desc->more)
659                 *pte_list = (unsigned long)desc->sptes[0];
660         else
661                 if (prev_desc)
662                         prev_desc->more = desc->more;
663                 else
664                         *pte_list = (unsigned long)desc->more | 1;
665         mmu_free_pte_list_desc(desc);
666 }
667
668 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
669 {
670         struct pte_list_desc *desc;
671         struct pte_list_desc *prev_desc;
672         int i;
673
674         if (!*pte_list) {
675                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
676                 BUG();
677         } else if (!(*pte_list & 1)) {
678                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
679                 if ((u64 *)*pte_list != spte) {
680                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
681                         BUG();
682                 }
683                 *pte_list = 0;
684         } else {
685                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
686                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
687                 prev_desc = NULL;
688                 while (desc) {
689                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
690                                 if (desc->sptes[i] == spte) {
691                                         pte_list_desc_remove_entry(pte_list,
692                                                                desc, i,
693                                                                prev_desc);
694                                         return;
695                                 }
696                         prev_desc = desc;
697                         desc = desc->more;
698                 }
699                 pr_err("pte_list_remove: %p many->many\n", spte);
700                 BUG();
701         }
702 }
703
704 typedef void (*pte_list_walk_fn) (u64 *spte);
705 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
706 {
707         struct pte_list_desc *desc;
708         int i;
709
710         if (!*pte_list)
711                 return;
712
713         if (!(*pte_list & 1))
714                 return fn((u64 *)*pte_list);
715
716         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
717         while (desc) {
718                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
719                         fn(desc->sptes[i]);
720                 desc = desc->more;
721         }
722 }
723
724 /*
725  * Take gfn and return the reverse mapping to it.
726  */
727 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
728 {
729         struct kvm_memory_slot *slot;
730         struct kvm_lpage_info *linfo;
731
732         slot = gfn_to_memslot(kvm, gfn);
733         if (likely(level == PT_PAGE_TABLE_LEVEL))
734                 return &slot->rmap[gfn - slot->base_gfn];
735
736         linfo = lpage_info_slot(gfn, slot, level);
737
738         return &linfo->rmap_pde;
739 }
740
741 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
742 {
743         struct kvm_mmu_page *sp;
744         unsigned long *rmapp;
745
746         if (!is_rmap_spte(*spte))
747                 return 0;
748
749         sp = page_header(__pa(spte));
750         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
751         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
752         return pte_list_add(vcpu, spte, rmapp);
753 }
754
755 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
756 {
757         return pte_list_next(rmapp, spte);
758 }
759
760 static void rmap_remove(struct kvm *kvm, u64 *spte)
761 {
762         struct kvm_mmu_page *sp;
763         gfn_t gfn;
764         unsigned long *rmapp;
765
766         sp = page_header(__pa(spte));
767         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
768         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
769         pte_list_remove(spte, rmapp);
770 }
771
772 static int set_spte_track_bits(u64 *sptep, u64 new_spte)
773 {
774         pfn_t pfn;
775         u64 old_spte = *sptep;
776
777         if (!spte_has_volatile_bits(old_spte))
778                 __set_spte(sptep, new_spte);
779         else
780                 old_spte = __xchg_spte(sptep, new_spte);
781
782         if (!is_rmap_spte(old_spte))
783                 return 0;
784
785         pfn = spte_to_pfn(old_spte);
786         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
787                 kvm_set_pfn_accessed(pfn);
788         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
789                 kvm_set_pfn_dirty(pfn);
790         return 1;
791 }
792
793 static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
794 {
795         if (set_spte_track_bits(sptep, new_spte))
796                 rmap_remove(kvm, sptep);
797 }
798
799 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
800 {
801         unsigned long *rmapp;
802         u64 *spte;
803         int i, write_protected = 0;
804
805         rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
806
807         spte = rmap_next(kvm, rmapp, NULL);
808         while (spte) {
809                 BUG_ON(!spte);
810                 BUG_ON(!(*spte & PT_PRESENT_MASK));
811                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
812                 if (is_writable_pte(*spte)) {
813                         update_spte(spte, *spte & ~PT_WRITABLE_MASK);
814                         write_protected = 1;
815                 }
816                 spte = rmap_next(kvm, rmapp, spte);
817         }
818
819         /* check for huge page mappings */
820         for (i = PT_DIRECTORY_LEVEL;
821              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
822                 rmapp = gfn_to_rmap(kvm, gfn, i);
823                 spte = rmap_next(kvm, rmapp, NULL);
824                 while (spte) {
825                         BUG_ON(!spte);
826                         BUG_ON(!(*spte & PT_PRESENT_MASK));
827                         BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
828                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
829                         if (is_writable_pte(*spte)) {
830                                 drop_spte(kvm, spte,
831                                           shadow_trap_nonpresent_pte);
832                                 --kvm->stat.lpages;
833                                 spte = NULL;
834                                 write_protected = 1;
835                         }
836                         spte = rmap_next(kvm, rmapp, spte);
837                 }
838         }
839
840         return write_protected;
841 }
842
843 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
844                            unsigned long data)
845 {
846         u64 *spte;
847         int need_tlb_flush = 0;
848
849         while ((spte = rmap_next(kvm, rmapp, NULL))) {
850                 BUG_ON(!(*spte & PT_PRESENT_MASK));
851                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
852                 drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
853                 need_tlb_flush = 1;
854         }
855         return need_tlb_flush;
856 }
857
858 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
859                              unsigned long data)
860 {
861         int need_flush = 0;
862         u64 *spte, new_spte;
863         pte_t *ptep = (pte_t *)data;
864         pfn_t new_pfn;
865
866         WARN_ON(pte_huge(*ptep));
867         new_pfn = pte_pfn(*ptep);
868         spte = rmap_next(kvm, rmapp, NULL);
869         while (spte) {
870                 BUG_ON(!is_shadow_present_pte(*spte));
871                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
872                 need_flush = 1;
873                 if (pte_write(*ptep)) {
874                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
875                         spte = rmap_next(kvm, rmapp, NULL);
876                 } else {
877                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
878                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
879
880                         new_spte &= ~PT_WRITABLE_MASK;
881                         new_spte &= ~SPTE_HOST_WRITEABLE;
882                         new_spte &= ~shadow_accessed_mask;
883                         set_spte_track_bits(spte, new_spte);
884                         spte = rmap_next(kvm, rmapp, spte);
885                 }
886         }
887         if (need_flush)
888                 kvm_flush_remote_tlbs(kvm);
889
890         return 0;
891 }
892
893 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
894                           unsigned long data,
895                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
896                                          unsigned long data))
897 {
898         int i, j;
899         int ret;
900         int retval = 0;
901         struct kvm_memslots *slots;
902
903         slots = kvm_memslots(kvm);
904
905         for (i = 0; i < slots->nmemslots; i++) {
906                 struct kvm_memory_slot *memslot = &slots->memslots[i];
907                 unsigned long start = memslot->userspace_addr;
908                 unsigned long end;
909
910                 end = start + (memslot->npages << PAGE_SHIFT);
911                 if (hva >= start && hva < end) {
912                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
913                         gfn_t gfn = memslot->base_gfn + gfn_offset;
914
915                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
916
917                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
918                                 struct kvm_lpage_info *linfo;
919
920                                 linfo = lpage_info_slot(gfn, memslot,
921                                                         PT_DIRECTORY_LEVEL + j);
922                                 ret |= handler(kvm, &linfo->rmap_pde, data);
923                         }
924                         trace_kvm_age_page(hva, memslot, ret);
925                         retval |= ret;
926                 }
927         }
928
929         return retval;
930 }
931
932 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
933 {
934         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
935 }
936
937 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
938 {
939         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
940 }
941
942 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
943                          unsigned long data)
944 {
945         u64 *spte;
946         int young = 0;
947
948         /*
949          * Emulate the accessed bit for EPT, by checking if this page has
950          * an EPT mapping, and clearing it if it does. On the next access,
951          * a new EPT mapping will be established.
952          * This has some overhead, but not as much as the cost of swapping
953          * out actively used pages or breaking up actively used hugepages.
954          */
955         if (!shadow_accessed_mask)
956                 return kvm_unmap_rmapp(kvm, rmapp, data);
957
958         spte = rmap_next(kvm, rmapp, NULL);
959         while (spte) {
960                 int _young;
961                 u64 _spte = *spte;
962                 BUG_ON(!(_spte & PT_PRESENT_MASK));
963                 _young = _spte & PT_ACCESSED_MASK;
964                 if (_young) {
965                         young = 1;
966                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
967                 }
968                 spte = rmap_next(kvm, rmapp, spte);
969         }
970         return young;
971 }
972
973 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
974                               unsigned long data)
975 {
976         u64 *spte;
977         int young = 0;
978
979         /*
980          * If there's no access bit in the secondary pte set by the
981          * hardware it's up to gup-fast/gup to set the access bit in
982          * the primary pte or in the page structure.
983          */
984         if (!shadow_accessed_mask)
985                 goto out;
986
987         spte = rmap_next(kvm, rmapp, NULL);
988         while (spte) {
989                 u64 _spte = *spte;
990                 BUG_ON(!(_spte & PT_PRESENT_MASK));
991                 young = _spte & PT_ACCESSED_MASK;
992                 if (young) {
993                         young = 1;
994                         break;
995                 }
996                 spte = rmap_next(kvm, rmapp, spte);
997         }
998 out:
999         return young;
1000 }
1001
1002 #define RMAP_RECYCLE_THRESHOLD 1000
1003
1004 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1005 {
1006         unsigned long *rmapp;
1007         struct kvm_mmu_page *sp;
1008
1009         sp = page_header(__pa(spte));
1010
1011         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1012
1013         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1014         kvm_flush_remote_tlbs(vcpu->kvm);
1015 }
1016
1017 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1018 {
1019         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1020 }
1021
1022 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1023 {
1024         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1025 }
1026
1027 #ifdef MMU_DEBUG
1028 static int is_empty_shadow_page(u64 *spt)
1029 {
1030         u64 *pos;
1031         u64 *end;
1032
1033         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1034                 if (is_shadow_present_pte(*pos)) {
1035                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1036                                pos, *pos);
1037                         return 0;
1038                 }
1039         return 1;
1040 }
1041 #endif
1042
1043 /*
1044  * This value is the sum of all of the kvm instances's
1045  * kvm->arch.n_used_mmu_pages values.  We need a global,
1046  * aggregate version in order to make the slab shrinker
1047  * faster
1048  */
1049 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1050 {
1051         kvm->arch.n_used_mmu_pages += nr;
1052         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1053 }
1054
1055 static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1056 {
1057         ASSERT(is_empty_shadow_page(sp->spt));
1058         hlist_del(&sp->hash_link);
1059         list_del(&sp->link);
1060         free_page((unsigned long)sp->spt);
1061         if (!sp->role.direct)
1062                 free_page((unsigned long)sp->gfns);
1063         kmem_cache_free(mmu_page_header_cache, sp);
1064         kvm_mod_used_mmu_pages(kvm, -1);
1065 }
1066
1067 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1068 {
1069         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1070 }
1071
1072 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1073                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1074 {
1075         if (!parent_pte)
1076                 return;
1077
1078         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1079 }
1080
1081 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1082                                        u64 *parent_pte)
1083 {
1084         pte_list_remove(parent_pte, &sp->parent_ptes);
1085 }
1086
1087 static void drop_parent_pte(struct kvm_mmu_page *sp,
1088                             u64 *parent_pte)
1089 {
1090         mmu_page_remove_parent_pte(sp, parent_pte);
1091         __set_spte(parent_pte, shadow_trap_nonpresent_pte);
1092 }
1093
1094 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1095                                                u64 *parent_pte, int direct)
1096 {
1097         struct kvm_mmu_page *sp;
1098         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1099                                         sizeof *sp);
1100         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1101         if (!direct)
1102                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1103                                                   PAGE_SIZE);
1104         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1105         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1106         bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1107         sp->parent_ptes = 0;
1108         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1109         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1110         return sp;
1111 }
1112
1113 static void mark_unsync(u64 *spte);
1114 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1115 {
1116         pte_list_walk(&sp->parent_ptes, mark_unsync);
1117 }
1118
1119 static void mark_unsync(u64 *spte)
1120 {
1121         struct kvm_mmu_page *sp;
1122         unsigned int index;
1123
1124         sp = page_header(__pa(spte));
1125         index = spte - sp->spt;
1126         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1127                 return;
1128         if (sp->unsync_children++)
1129                 return;
1130         kvm_mmu_mark_parents_unsync(sp);
1131 }
1132
1133 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1134                                     struct kvm_mmu_page *sp)
1135 {
1136         int i;
1137
1138         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1139                 sp->spt[i] = shadow_trap_nonpresent_pte;
1140 }
1141
1142 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1143                                struct kvm_mmu_page *sp)
1144 {
1145         return 1;
1146 }
1147
1148 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1149 {
1150 }
1151
1152 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1153                                  struct kvm_mmu_page *sp, u64 *spte,
1154                                  const void *pte)
1155 {
1156         WARN_ON(1);
1157 }
1158
1159 #define KVM_PAGE_ARRAY_NR 16
1160
1161 struct kvm_mmu_pages {
1162         struct mmu_page_and_offset {
1163                 struct kvm_mmu_page *sp;
1164                 unsigned int idx;
1165         } page[KVM_PAGE_ARRAY_NR];
1166         unsigned int nr;
1167 };
1168
1169 #define for_each_unsync_children(bitmap, idx)           \
1170         for (idx = find_first_bit(bitmap, 512);         \
1171              idx < 512;                                 \
1172              idx = find_next_bit(bitmap, 512, idx+1))
1173
1174 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1175                          int idx)
1176 {
1177         int i;
1178
1179         if (sp->unsync)
1180                 for (i=0; i < pvec->nr; i++)
1181                         if (pvec->page[i].sp == sp)
1182                                 return 0;
1183
1184         pvec->page[pvec->nr].sp = sp;
1185         pvec->page[pvec->nr].idx = idx;
1186         pvec->nr++;
1187         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1188 }
1189
1190 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1191                            struct kvm_mmu_pages *pvec)
1192 {
1193         int i, ret, nr_unsync_leaf = 0;
1194
1195         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1196                 struct kvm_mmu_page *child;
1197                 u64 ent = sp->spt[i];
1198
1199                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1200                         goto clear_child_bitmap;
1201
1202                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1203
1204                 if (child->unsync_children) {
1205                         if (mmu_pages_add(pvec, child, i))
1206                                 return -ENOSPC;
1207
1208                         ret = __mmu_unsync_walk(child, pvec);
1209                         if (!ret)
1210                                 goto clear_child_bitmap;
1211                         else if (ret > 0)
1212                                 nr_unsync_leaf += ret;
1213                         else
1214                                 return ret;
1215                 } else if (child->unsync) {
1216                         nr_unsync_leaf++;
1217                         if (mmu_pages_add(pvec, child, i))
1218                                 return -ENOSPC;
1219                 } else
1220                          goto clear_child_bitmap;
1221
1222                 continue;
1223
1224 clear_child_bitmap:
1225                 __clear_bit(i, sp->unsync_child_bitmap);
1226                 sp->unsync_children--;
1227                 WARN_ON((int)sp->unsync_children < 0);
1228         }
1229
1230
1231         return nr_unsync_leaf;
1232 }
1233
1234 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1235                            struct kvm_mmu_pages *pvec)
1236 {
1237         if (!sp->unsync_children)
1238                 return 0;
1239
1240         mmu_pages_add(pvec, sp, 0);
1241         return __mmu_unsync_walk(sp, pvec);
1242 }
1243
1244 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1245 {
1246         WARN_ON(!sp->unsync);
1247         trace_kvm_mmu_sync_page(sp);
1248         sp->unsync = 0;
1249         --kvm->stat.mmu_unsync;
1250 }
1251
1252 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1253                                     struct list_head *invalid_list);
1254 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1255                                     struct list_head *invalid_list);
1256
1257 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1258   hlist_for_each_entry(sp, pos,                                         \
1259    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1260         if ((sp)->gfn != (gfn)) {} else
1261
1262 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1263   hlist_for_each_entry(sp, pos,                                         \
1264    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1265                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1266                         (sp)->role.invalid) {} else
1267
1268 /* @sp->gfn should be write-protected at the call site */
1269 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1270                            struct list_head *invalid_list, bool clear_unsync)
1271 {
1272         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1273                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1274                 return 1;
1275         }
1276
1277         if (clear_unsync)
1278                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1279
1280         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1281                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1282                 return 1;
1283         }
1284
1285         kvm_mmu_flush_tlb(vcpu);
1286         return 0;
1287 }
1288
1289 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1290                                    struct kvm_mmu_page *sp)
1291 {
1292         LIST_HEAD(invalid_list);
1293         int ret;
1294
1295         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1296         if (ret)
1297                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1298
1299         return ret;
1300 }
1301
1302 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1303                          struct list_head *invalid_list)
1304 {
1305         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1306 }
1307
1308 /* @gfn should be write-protected at the call site */
1309 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1310 {
1311         struct kvm_mmu_page *s;
1312         struct hlist_node *node;
1313         LIST_HEAD(invalid_list);
1314         bool flush = false;
1315
1316         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1317                 if (!s->unsync)
1318                         continue;
1319
1320                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1321                 kvm_unlink_unsync_page(vcpu->kvm, s);
1322                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1323                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1324                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1325                         continue;
1326                 }
1327                 flush = true;
1328         }
1329
1330         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1331         if (flush)
1332                 kvm_mmu_flush_tlb(vcpu);
1333 }
1334
1335 struct mmu_page_path {
1336         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1337         unsigned int idx[PT64_ROOT_LEVEL-1];
1338 };
1339
1340 #define for_each_sp(pvec, sp, parents, i)                       \
1341                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1342                         sp = pvec.page[i].sp;                   \
1343                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1344                         i = mmu_pages_next(&pvec, &parents, i))
1345
1346 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1347                           struct mmu_page_path *parents,
1348                           int i)
1349 {
1350         int n;
1351
1352         for (n = i+1; n < pvec->nr; n++) {
1353                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1354
1355                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1356                         parents->idx[0] = pvec->page[n].idx;
1357                         return n;
1358                 }
1359
1360                 parents->parent[sp->role.level-2] = sp;
1361                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1362         }
1363
1364         return n;
1365 }
1366
1367 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1368 {
1369         struct kvm_mmu_page *sp;
1370         unsigned int level = 0;
1371
1372         do {
1373                 unsigned int idx = parents->idx[level];
1374
1375                 sp = parents->parent[level];
1376                 if (!sp)
1377                         return;
1378
1379                 --sp->unsync_children;
1380                 WARN_ON((int)sp->unsync_children < 0);
1381                 __clear_bit(idx, sp->unsync_child_bitmap);
1382                 level++;
1383         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1384 }
1385
1386 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1387                                struct mmu_page_path *parents,
1388                                struct kvm_mmu_pages *pvec)
1389 {
1390         parents->parent[parent->role.level-1] = NULL;
1391         pvec->nr = 0;
1392 }
1393
1394 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1395                               struct kvm_mmu_page *parent)
1396 {
1397         int i;
1398         struct kvm_mmu_page *sp;
1399         struct mmu_page_path parents;
1400         struct kvm_mmu_pages pages;
1401         LIST_HEAD(invalid_list);
1402
1403         kvm_mmu_pages_init(parent, &parents, &pages);
1404         while (mmu_unsync_walk(parent, &pages)) {
1405                 int protected = 0;
1406
1407                 for_each_sp(pages, sp, parents, i)
1408                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1409
1410                 if (protected)
1411                         kvm_flush_remote_tlbs(vcpu->kvm);
1412
1413                 for_each_sp(pages, sp, parents, i) {
1414                         kvm_sync_page(vcpu, sp, &invalid_list);
1415                         mmu_pages_clear_parents(&parents);
1416                 }
1417                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1418                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1419                 kvm_mmu_pages_init(parent, &parents, &pages);
1420         }
1421 }
1422
1423 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1424                                              gfn_t gfn,
1425                                              gva_t gaddr,
1426                                              unsigned level,
1427                                              int direct,
1428                                              unsigned access,
1429                                              u64 *parent_pte)
1430 {
1431         union kvm_mmu_page_role role;
1432         unsigned quadrant;
1433         struct kvm_mmu_page *sp;
1434         struct hlist_node *node;
1435         bool need_sync = false;
1436
1437         role = vcpu->arch.mmu.base_role;
1438         role.level = level;
1439         role.direct = direct;
1440         if (role.direct)
1441                 role.cr4_pae = 0;
1442         role.access = access;
1443         if (!vcpu->arch.mmu.direct_map
1444             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1445                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1446                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1447                 role.quadrant = quadrant;
1448         }
1449         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1450                 if (!need_sync && sp->unsync)
1451                         need_sync = true;
1452
1453                 if (sp->role.word != role.word)
1454                         continue;
1455
1456                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1457                         break;
1458
1459                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1460                 if (sp->unsync_children) {
1461                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1462                         kvm_mmu_mark_parents_unsync(sp);
1463                 } else if (sp->unsync)
1464                         kvm_mmu_mark_parents_unsync(sp);
1465
1466                 trace_kvm_mmu_get_page(sp, false);
1467                 return sp;
1468         }
1469         ++vcpu->kvm->stat.mmu_cache_miss;
1470         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1471         if (!sp)
1472                 return sp;
1473         sp->gfn = gfn;
1474         sp->role = role;
1475         hlist_add_head(&sp->hash_link,
1476                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1477         if (!direct) {
1478                 if (rmap_write_protect(vcpu->kvm, gfn))
1479                         kvm_flush_remote_tlbs(vcpu->kvm);
1480                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1481                         kvm_sync_pages(vcpu, gfn);
1482
1483                 account_shadowed(vcpu->kvm, gfn);
1484         }
1485         if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
1486                 vcpu->arch.mmu.prefetch_page(vcpu, sp);
1487         else
1488                 nonpaging_prefetch_page(vcpu, sp);
1489         trace_kvm_mmu_get_page(sp, true);
1490         return sp;
1491 }
1492
1493 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1494                              struct kvm_vcpu *vcpu, u64 addr)
1495 {
1496         iterator->addr = addr;
1497         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1498         iterator->level = vcpu->arch.mmu.shadow_root_level;
1499
1500         if (iterator->level == PT64_ROOT_LEVEL &&
1501             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1502             !vcpu->arch.mmu.direct_map)
1503                 --iterator->level;
1504
1505         if (iterator->level == PT32E_ROOT_LEVEL) {
1506                 iterator->shadow_addr
1507                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1508                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1509                 --iterator->level;
1510                 if (!iterator->shadow_addr)
1511                         iterator->level = 0;
1512         }
1513 }
1514
1515 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1516 {
1517         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1518                 return false;
1519
1520         if (iterator->level == PT_PAGE_TABLE_LEVEL)
1521                 if (is_large_pte(*iterator->sptep))
1522                         return false;
1523
1524         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1525         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1526         return true;
1527 }
1528
1529 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1530 {
1531         iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
1532         --iterator->level;
1533 }
1534
1535 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1536 {
1537         u64 spte;
1538
1539         spte = __pa(sp->spt)
1540                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1541                 | PT_WRITABLE_MASK | PT_USER_MASK;
1542         __set_spte(sptep, spte);
1543 }
1544
1545 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1546 {
1547         if (is_large_pte(*sptep)) {
1548                 drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1549                 kvm_flush_remote_tlbs(vcpu->kvm);
1550         }
1551 }
1552
1553 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1554                                    unsigned direct_access)
1555 {
1556         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1557                 struct kvm_mmu_page *child;
1558
1559                 /*
1560                  * For the direct sp, if the guest pte's dirty bit
1561                  * changed form clean to dirty, it will corrupt the
1562                  * sp's access: allow writable in the read-only sp,
1563                  * so we should update the spte at this point to get
1564                  * a new sp with the correct access.
1565                  */
1566                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1567                 if (child->role.access == direct_access)
1568                         return;
1569
1570                 drop_parent_pte(child, sptep);
1571                 kvm_flush_remote_tlbs(vcpu->kvm);
1572         }
1573 }
1574
1575 static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1576                              u64 *spte)
1577 {
1578         u64 pte;
1579         struct kvm_mmu_page *child;
1580
1581         pte = *spte;
1582         if (is_shadow_present_pte(pte)) {
1583                 if (is_last_spte(pte, sp->role.level))
1584                         drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
1585                 else {
1586                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1587                         drop_parent_pte(child, spte);
1588                 }
1589         }
1590         __set_spte(spte, shadow_trap_nonpresent_pte);
1591         if (is_large_pte(pte))
1592                 --kvm->stat.lpages;
1593 }
1594
1595 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1596                                          struct kvm_mmu_page *sp)
1597 {
1598         unsigned i;
1599
1600         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1601                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1602 }
1603
1604 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1605 {
1606         mmu_page_remove_parent_pte(sp, parent_pte);
1607 }
1608
1609 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1610 {
1611         int i;
1612         struct kvm_vcpu *vcpu;
1613
1614         kvm_for_each_vcpu(i, vcpu, kvm)
1615                 vcpu->arch.last_pte_updated = NULL;
1616 }
1617
1618 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1619 {
1620         u64 *parent_pte;
1621
1622         while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1623                 drop_parent_pte(sp, parent_pte);
1624 }
1625
1626 static int mmu_zap_unsync_children(struct kvm *kvm,
1627                                    struct kvm_mmu_page *parent,
1628                                    struct list_head *invalid_list)
1629 {
1630         int i, zapped = 0;
1631         struct mmu_page_path parents;
1632         struct kvm_mmu_pages pages;
1633
1634         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1635                 return 0;
1636
1637         kvm_mmu_pages_init(parent, &parents, &pages);
1638         while (mmu_unsync_walk(parent, &pages)) {
1639                 struct kvm_mmu_page *sp;
1640
1641                 for_each_sp(pages, sp, parents, i) {
1642                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1643                         mmu_pages_clear_parents(&parents);
1644                         zapped++;
1645                 }
1646                 kvm_mmu_pages_init(parent, &parents, &pages);
1647         }
1648
1649         return zapped;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653                                     struct list_head *invalid_list)
1654 {
1655         int ret;
1656
1657         trace_kvm_mmu_prepare_zap_page(sp);
1658         ++kvm->stat.mmu_shadow_zapped;
1659         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1660         kvm_mmu_page_unlink_children(kvm, sp);
1661         kvm_mmu_unlink_parents(kvm, sp);
1662         if (!sp->role.invalid && !sp->role.direct)
1663                 unaccount_shadowed(kvm, sp->gfn);
1664         if (sp->unsync)
1665                 kvm_unlink_unsync_page(kvm, sp);
1666         if (!sp->root_count) {
1667                 /* Count self */
1668                 ret++;
1669                 list_move(&sp->link, invalid_list);
1670         } else {
1671                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1672                 kvm_reload_remote_mmus(kvm);
1673         }
1674
1675         sp->role.invalid = 1;
1676         kvm_mmu_reset_last_pte_updated(kvm);
1677         return ret;
1678 }
1679
1680 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1681                                     struct list_head *invalid_list)
1682 {
1683         struct kvm_mmu_page *sp;
1684
1685         if (list_empty(invalid_list))
1686                 return;
1687
1688         kvm_flush_remote_tlbs(kvm);
1689
1690         do {
1691                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1692                 WARN_ON(!sp->role.invalid || sp->root_count);
1693                 kvm_mmu_free_page(kvm, sp);
1694         } while (!list_empty(invalid_list));
1695
1696 }
1697
1698 /*
1699  * Changing the number of mmu pages allocated to the vm
1700  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1701  */
1702 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1703 {
1704         LIST_HEAD(invalid_list);
1705         /*
1706          * If we set the number of mmu pages to be smaller be than the
1707          * number of actived pages , we must to free some mmu pages before we
1708          * change the value
1709          */
1710
1711         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1712                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1713                         !list_empty(&kvm->arch.active_mmu_pages)) {
1714                         struct kvm_mmu_page *page;
1715
1716                         page = container_of(kvm->arch.active_mmu_pages.prev,
1717                                             struct kvm_mmu_page, link);
1718                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1719                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1720                 }
1721                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1722         }
1723
1724         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1725 }
1726
1727 static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1728 {
1729         struct kvm_mmu_page *sp;
1730         struct hlist_node *node;
1731         LIST_HEAD(invalid_list);
1732         int r;
1733
1734         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1735         r = 0;
1736
1737         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1738                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
1739                          sp->role.word);
1740                 r = 1;
1741                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1742         }
1743         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1744         return r;
1745 }
1746
1747 static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
1748 {
1749         struct kvm_mmu_page *sp;
1750         struct hlist_node *node;
1751         LIST_HEAD(invalid_list);
1752
1753         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1754                 pgprintk("%s: zap %llx %x\n",
1755                          __func__, gfn, sp->role.word);
1756                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
1757         }
1758         kvm_mmu_commit_zap_page(kvm, &invalid_list);
1759 }
1760
1761 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
1762 {
1763         int slot = memslot_id(kvm, gfn);
1764         struct kvm_mmu_page *sp = page_header(__pa(pte));
1765
1766         __set_bit(slot, sp->slot_bitmap);
1767 }
1768
1769 static void mmu_convert_notrap(struct kvm_mmu_page *sp)
1770 {
1771         int i;
1772         u64 *pt = sp->spt;
1773
1774         if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
1775                 return;
1776
1777         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1778                 if (pt[i] == shadow_notrap_nonpresent_pte)
1779                         __set_spte(&pt[i], shadow_trap_nonpresent_pte);
1780         }
1781 }
1782
1783 /*
1784  * The function is based on mtrr_type_lookup() in
1785  * arch/x86/kernel/cpu/mtrr/generic.c
1786  */
1787 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
1788                          u64 start, u64 end)
1789 {
1790         int i;
1791         u64 base, mask;
1792         u8 prev_match, curr_match;
1793         int num_var_ranges = KVM_NR_VAR_MTRR;
1794
1795         if (!mtrr_state->enabled)
1796                 return 0xFF;
1797
1798         /* Make end inclusive end, instead of exclusive */
1799         end--;
1800
1801         /* Look in fixed ranges. Just return the type as per start */
1802         if (mtrr_state->have_fixed && (start < 0x100000)) {
1803                 int idx;
1804
1805                 if (start < 0x80000) {
1806                         idx = 0;
1807                         idx += (start >> 16);
1808                         return mtrr_state->fixed_ranges[idx];
1809                 } else if (start < 0xC0000) {
1810                         idx = 1 * 8;
1811                         idx += ((start - 0x80000) >> 14);
1812                         return mtrr_state->fixed_ranges[idx];
1813                 } else if (start < 0x1000000) {
1814                         idx = 3 * 8;
1815                         idx += ((start - 0xC0000) >> 12);
1816                         return mtrr_state->fixed_ranges[idx];
1817                 }
1818         }
1819
1820         /*
1821          * Look in variable ranges
1822          * Look of multiple ranges matching this address and pick type
1823          * as per MTRR precedence
1824          */
1825         if (!(mtrr_state->enabled & 2))
1826                 return mtrr_state->def_type;
1827
1828         prev_match = 0xFF;
1829         for (i = 0; i < num_var_ranges; ++i) {
1830                 unsigned short start_state, end_state;
1831
1832                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
1833                         continue;
1834
1835                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
1836                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
1837                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
1838                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
1839
1840                 start_state = ((start & mask) == (base & mask));
1841                 end_state = ((end & mask) == (base & mask));
1842                 if (start_state != end_state)
1843                         return 0xFE;
1844
1845                 if ((start & mask) != (base & mask))
1846                         continue;
1847
1848                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
1849                 if (prev_match == 0xFF) {
1850                         prev_match = curr_match;
1851                         continue;
1852                 }
1853
1854                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
1855                     curr_match == MTRR_TYPE_UNCACHABLE)
1856                         return MTRR_TYPE_UNCACHABLE;
1857
1858                 if ((prev_match == MTRR_TYPE_WRBACK &&
1859                      curr_match == MTRR_TYPE_WRTHROUGH) ||
1860                     (prev_match == MTRR_TYPE_WRTHROUGH &&
1861                      curr_match == MTRR_TYPE_WRBACK)) {
1862                         prev_match = MTRR_TYPE_WRTHROUGH;
1863                         curr_match = MTRR_TYPE_WRTHROUGH;
1864                 }
1865
1866                 if (prev_match != curr_match)
1867                         return MTRR_TYPE_UNCACHABLE;
1868         }
1869
1870         if (prev_match != 0xFF)
1871                 return prev_match;
1872
1873         return mtrr_state->def_type;
1874 }
1875
1876 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
1877 {
1878         u8 mtrr;
1879
1880         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
1881                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
1882         if (mtrr == 0xfe || mtrr == 0xff)
1883                 mtrr = MTRR_TYPE_WRBACK;
1884         return mtrr;
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
1887
1888 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1889 {
1890         trace_kvm_mmu_unsync_page(sp);
1891         ++vcpu->kvm->stat.mmu_unsync;
1892         sp->unsync = 1;
1893
1894         kvm_mmu_mark_parents_unsync(sp);
1895         mmu_convert_notrap(sp);
1896 }
1897
1898 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1899 {
1900         struct kvm_mmu_page *s;
1901         struct hlist_node *node;
1902
1903         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1904                 if (s->unsync)
1905                         continue;
1906                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1907                 __kvm_unsync_page(vcpu, s);
1908         }
1909 }
1910
1911 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
1912                                   bool can_unsync)
1913 {
1914         struct kvm_mmu_page *s;
1915         struct hlist_node *node;
1916         bool need_unsync = false;
1917
1918         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1919                 if (!can_unsync)
1920                         return 1;
1921
1922                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
1923                         return 1;
1924
1925                 if (!need_unsync && !s->unsync) {
1926                         if (!oos_shadow)
1927                                 return 1;
1928                         need_unsync = true;
1929                 }
1930         }
1931         if (need_unsync)
1932                 kvm_unsync_pages(vcpu, gfn);
1933         return 0;
1934 }
1935
1936 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1937                     unsigned pte_access, int user_fault,
1938                     int write_fault, int dirty, int level,
1939                     gfn_t gfn, pfn_t pfn, bool speculative,
1940                     bool can_unsync, bool host_writable)
1941 {
1942         u64 spte, entry = *sptep;
1943         int ret = 0;
1944
1945         /*
1946          * We don't set the accessed bit, since we sometimes want to see
1947          * whether the guest actually used the pte (in order to detect
1948          * demand paging).
1949          */
1950         spte = PT_PRESENT_MASK;
1951         if (!speculative)
1952                 spte |= shadow_accessed_mask;
1953         if (!dirty)
1954                 pte_access &= ~ACC_WRITE_MASK;
1955         if (pte_access & ACC_EXEC_MASK)
1956                 spte |= shadow_x_mask;
1957         else
1958                 spte |= shadow_nx_mask;
1959         if (pte_access & ACC_USER_MASK)
1960                 spte |= shadow_user_mask;
1961         if (level > PT_PAGE_TABLE_LEVEL)
1962                 spte |= PT_PAGE_SIZE_MASK;
1963         if (tdp_enabled)
1964                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
1965                         kvm_is_mmio_pfn(pfn));
1966
1967         if (host_writable)
1968                 spte |= SPTE_HOST_WRITEABLE;
1969         else
1970                 pte_access &= ~ACC_WRITE_MASK;
1971
1972         spte |= (u64)pfn << PAGE_SHIFT;
1973
1974         if ((pte_access & ACC_WRITE_MASK)
1975             || (!vcpu->arch.mmu.direct_map && write_fault
1976                 && !is_write_protection(vcpu) && !user_fault)) {
1977
1978                 if (level > PT_PAGE_TABLE_LEVEL &&
1979                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
1980                         ret = 1;
1981                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
1982                         goto done;
1983                 }
1984
1985                 spte |= PT_WRITABLE_MASK;
1986
1987                 if (!vcpu->arch.mmu.direct_map
1988                     && !(pte_access & ACC_WRITE_MASK))
1989                         spte &= ~PT_USER_MASK;
1990
1991                 /*
1992                  * Optimization: for pte sync, if spte was writable the hash
1993                  * lookup is unnecessary (and expensive). Write protection
1994                  * is responsibility of mmu_get_page / kvm_sync_page.
1995                  * Same reasoning can be applied to dirty page accounting.
1996                  */
1997                 if (!can_unsync && is_writable_pte(*sptep))
1998                         goto set_pte;
1999
2000                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2001                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2002                                  __func__, gfn);
2003                         ret = 1;
2004                         pte_access &= ~ACC_WRITE_MASK;
2005                         if (is_writable_pte(spte))
2006                                 spte &= ~PT_WRITABLE_MASK;
2007                 }
2008         }
2009
2010         if (pte_access & ACC_WRITE_MASK)
2011                 mark_page_dirty(vcpu->kvm, gfn);
2012
2013 set_pte:
2014         update_spte(sptep, spte);
2015         /*
2016          * If we overwrite a writable spte with a read-only one we
2017          * should flush remote TLBs. Otherwise rmap_write_protect
2018          * will find a read-only spte, even though the writable spte
2019          * might be cached on a CPU's TLB.
2020          */
2021         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2022                 kvm_flush_remote_tlbs(vcpu->kvm);
2023 done:
2024         return ret;
2025 }
2026
2027 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2028                          unsigned pt_access, unsigned pte_access,
2029                          int user_fault, int write_fault, int dirty,
2030                          int *ptwrite, int level, gfn_t gfn,
2031                          pfn_t pfn, bool speculative,
2032                          bool host_writable)
2033 {
2034         int was_rmapped = 0;
2035         int rmap_count;
2036
2037         pgprintk("%s: spte %llx access %x write_fault %d"
2038                  " user_fault %d gfn %llx\n",
2039                  __func__, *sptep, pt_access,
2040                  write_fault, user_fault, gfn);
2041
2042         if (is_rmap_spte(*sptep)) {
2043                 /*
2044                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2045                  * the parent of the now unreachable PTE.
2046                  */
2047                 if (level > PT_PAGE_TABLE_LEVEL &&
2048                     !is_large_pte(*sptep)) {
2049                         struct kvm_mmu_page *child;
2050                         u64 pte = *sptep;
2051
2052                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2053                         drop_parent_pte(child, sptep);
2054                         kvm_flush_remote_tlbs(vcpu->kvm);
2055                 } else if (pfn != spte_to_pfn(*sptep)) {
2056                         pgprintk("hfn old %llx new %llx\n",
2057                                  spte_to_pfn(*sptep), pfn);
2058                         drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
2059                         kvm_flush_remote_tlbs(vcpu->kvm);
2060                 } else
2061                         was_rmapped = 1;
2062         }
2063
2064         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2065                       dirty, level, gfn, pfn, speculative, true,
2066                       host_writable)) {
2067                 if (write_fault)
2068                         *ptwrite = 1;
2069                 kvm_mmu_flush_tlb(vcpu);
2070         }
2071
2072         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2073         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2074                  is_large_pte(*sptep)? "2MB" : "4kB",
2075                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2076                  *sptep, sptep);
2077         if (!was_rmapped && is_large_pte(*sptep))
2078                 ++vcpu->kvm->stat.lpages;
2079
2080         page_header_update_slot(vcpu->kvm, sptep, gfn);
2081         if (!was_rmapped) {
2082                 rmap_count = rmap_add(vcpu, sptep, gfn);
2083                 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2084                         rmap_recycle(vcpu, sptep, gfn);
2085         }
2086         kvm_release_pfn_clean(pfn);
2087         if (speculative) {
2088                 vcpu->arch.last_pte_updated = sptep;
2089                 vcpu->arch.last_pte_gfn = gfn;
2090         }
2091 }
2092
2093 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2094 {
2095 }
2096
2097 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2098                                      bool no_dirty_log)
2099 {
2100         struct kvm_memory_slot *slot;
2101         unsigned long hva;
2102
2103         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2104         if (!slot) {
2105                 get_page(bad_page);
2106                 return page_to_pfn(bad_page);
2107         }
2108
2109         hva = gfn_to_hva_memslot(slot, gfn);
2110
2111         return hva_to_pfn_atomic(vcpu->kvm, hva);
2112 }
2113
2114 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2115                                     struct kvm_mmu_page *sp,
2116                                     u64 *start, u64 *end)
2117 {
2118         struct page *pages[PTE_PREFETCH_NUM];
2119         unsigned access = sp->role.access;
2120         int i, ret;
2121         gfn_t gfn;
2122
2123         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2124         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2125                 return -1;
2126
2127         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2128         if (ret <= 0)
2129                 return -1;
2130
2131         for (i = 0; i < ret; i++, gfn++, start++)
2132                 mmu_set_spte(vcpu, start, ACC_ALL,
2133                              access, 0, 0, 1, NULL,
2134                              sp->role.level, gfn,
2135                              page_to_pfn(pages[i]), true, true);
2136
2137         return 0;
2138 }
2139
2140 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2141                                   struct kvm_mmu_page *sp, u64 *sptep)
2142 {
2143         u64 *spte, *start = NULL;
2144         int i;
2145
2146         WARN_ON(!sp->role.direct);
2147
2148         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2149         spte = sp->spt + i;
2150
2151         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2152                 if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
2153                         if (!start)
2154                                 continue;
2155                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2156                                 break;
2157                         start = NULL;
2158                 } else if (!start)
2159                         start = spte;
2160         }
2161 }
2162
2163 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2164 {
2165         struct kvm_mmu_page *sp;
2166
2167         /*
2168          * Since it's no accessed bit on EPT, it's no way to
2169          * distinguish between actually accessed translations
2170          * and prefetched, so disable pte prefetch if EPT is
2171          * enabled.
2172          */
2173         if (!shadow_accessed_mask)
2174                 return;
2175
2176         sp = page_header(__pa(sptep));
2177         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2178                 return;
2179
2180         __direct_pte_prefetch(vcpu, sp, sptep);
2181 }
2182
2183 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2184                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2185                         bool prefault)
2186 {
2187         struct kvm_shadow_walk_iterator iterator;
2188         struct kvm_mmu_page *sp;
2189         int pt_write = 0;
2190         gfn_t pseudo_gfn;
2191
2192         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2193                 if (iterator.level == level) {
2194                         unsigned pte_access = ACC_ALL;
2195
2196                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2197                                      0, write, 1, &pt_write,
2198                                      level, gfn, pfn, prefault, map_writable);
2199                         direct_pte_prefetch(vcpu, iterator.sptep);
2200                         ++vcpu->stat.pf_fixed;
2201                         break;
2202                 }
2203
2204                 if (*iterator.sptep == shadow_trap_nonpresent_pte) {
2205                         u64 base_addr = iterator.addr;
2206
2207                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2208                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2209                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2210                                               iterator.level - 1,
2211                                               1, ACC_ALL, iterator.sptep);
2212                         if (!sp) {
2213                                 pgprintk("nonpaging_map: ENOMEM\n");
2214                                 kvm_release_pfn_clean(pfn);
2215                                 return -ENOMEM;
2216                         }
2217
2218                         __set_spte(iterator.sptep,
2219                                    __pa(sp->spt)
2220                                    | PT_PRESENT_MASK | PT_WRITABLE_MASK
2221                                    | shadow_user_mask | shadow_x_mask
2222                                    | shadow_accessed_mask);
2223                 }
2224         }
2225         return pt_write;
2226 }
2227
2228 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2229 {
2230         siginfo_t info;
2231
2232         info.si_signo   = SIGBUS;
2233         info.si_errno   = 0;
2234         info.si_code    = BUS_MCEERR_AR;
2235         info.si_addr    = (void __user *)address;
2236         info.si_addr_lsb = PAGE_SHIFT;
2237
2238         send_sig_info(SIGBUS, &info, tsk);
2239 }
2240
2241 static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
2242 {
2243         kvm_release_pfn_clean(pfn);
2244         if (is_hwpoison_pfn(pfn)) {
2245                 kvm_send_hwpoison_signal(gfn_to_hva(kvm, gfn), current);
2246                 return 0;
2247         } else if (is_fault_pfn(pfn))
2248                 return -EFAULT;
2249
2250         return 1;
2251 }
2252
2253 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2254                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2255 {
2256         pfn_t pfn = *pfnp;
2257         gfn_t gfn = *gfnp;
2258         int level = *levelp;
2259
2260         /*
2261          * Check if it's a transparent hugepage. If this would be an
2262          * hugetlbfs page, level wouldn't be set to
2263          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2264          * here.
2265          */
2266         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2267             level == PT_PAGE_TABLE_LEVEL &&
2268             PageTransCompound(pfn_to_page(pfn)) &&
2269             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2270                 unsigned long mask;
2271                 /*
2272                  * mmu_notifier_retry was successful and we hold the
2273                  * mmu_lock here, so the pmd can't become splitting
2274                  * from under us, and in turn
2275                  * __split_huge_page_refcount() can't run from under
2276                  * us and we can safely transfer the refcount from
2277                  * PG_tail to PG_head as we switch the pfn to tail to
2278                  * head.
2279                  */
2280                 *levelp = level = PT_DIRECTORY_LEVEL;
2281                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2282                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2283                 if (pfn & mask) {
2284                         gfn &= ~mask;
2285                         *gfnp = gfn;
2286                         kvm_release_pfn_clean(pfn);
2287                         pfn &= ~mask;
2288                         if (!get_page_unless_zero(pfn_to_page(pfn)))
2289                                 BUG();
2290                         *pfnp = pfn;
2291                 }
2292         }
2293 }
2294
2295 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2296                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2297
2298 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2299                          bool prefault)
2300 {
2301         int r;
2302         int level;
2303         int force_pt_level;
2304         pfn_t pfn;
2305         unsigned long mmu_seq;
2306         bool map_writable;
2307
2308         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2309         if (likely(!force_pt_level)) {
2310                 level = mapping_level(vcpu, gfn);
2311                 /*
2312                  * This path builds a PAE pagetable - so we can map
2313                  * 2mb pages at maximum. Therefore check if the level
2314                  * is larger than that.
2315                  */
2316                 if (level > PT_DIRECTORY_LEVEL)
2317                         level = PT_DIRECTORY_LEVEL;
2318
2319                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2320         } else
2321                 level = PT_PAGE_TABLE_LEVEL;
2322
2323         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2324         smp_rmb();
2325
2326         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2327                 return 0;
2328
2329         /* mmio */
2330         if (is_error_pfn(pfn))
2331                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2332
2333         spin_lock(&vcpu->kvm->mmu_lock);
2334         if (mmu_notifier_retry(vcpu, mmu_seq))
2335                 goto out_unlock;
2336         kvm_mmu_free_some_pages(vcpu);
2337         if (likely(!force_pt_level))
2338                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2339         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2340                          prefault);
2341         spin_unlock(&vcpu->kvm->mmu_lock);
2342
2343
2344         return r;
2345
2346 out_unlock:
2347         spin_unlock(&vcpu->kvm->mmu_lock);
2348         kvm_release_pfn_clean(pfn);
2349         return 0;
2350 }
2351
2352
2353 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2354 {
2355         int i;
2356         struct kvm_mmu_page *sp;
2357         LIST_HEAD(invalid_list);
2358
2359         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2360                 return;
2361         spin_lock(&vcpu->kvm->mmu_lock);
2362         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2363             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2364              vcpu->arch.mmu.direct_map)) {
2365                 hpa_t root = vcpu->arch.mmu.root_hpa;
2366
2367                 sp = page_header(root);
2368                 --sp->root_count;
2369                 if (!sp->root_count && sp->role.invalid) {
2370                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2371                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2372                 }
2373                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2374                 spin_unlock(&vcpu->kvm->mmu_lock);
2375                 return;
2376         }
2377         for (i = 0; i < 4; ++i) {
2378                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2379
2380                 if (root) {
2381                         root &= PT64_BASE_ADDR_MASK;
2382                         sp = page_header(root);
2383                         --sp->root_count;
2384                         if (!sp->root_count && sp->role.invalid)
2385                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2386                                                          &invalid_list);
2387                 }
2388                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2389         }
2390         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2391         spin_unlock(&vcpu->kvm->mmu_lock);
2392         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2393 }
2394
2395 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2396 {
2397         int ret = 0;
2398
2399         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2400                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2401                 ret = 1;
2402         }
2403
2404         return ret;
2405 }
2406
2407 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2408 {
2409         struct kvm_mmu_page *sp;
2410         unsigned i;
2411
2412         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2413                 spin_lock(&vcpu->kvm->mmu_lock);
2414                 kvm_mmu_free_some_pages(vcpu);
2415                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2416                                       1, ACC_ALL, NULL);
2417                 ++sp->root_count;
2418                 spin_unlock(&vcpu->kvm->mmu_lock);
2419                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2420         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2421                 for (i = 0; i < 4; ++i) {
2422                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2423
2424                         ASSERT(!VALID_PAGE(root));
2425                         spin_lock(&vcpu->kvm->mmu_lock);
2426                         kvm_mmu_free_some_pages(vcpu);
2427                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2428                                               i << 30,
2429                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2430                                               NULL);
2431                         root = __pa(sp->spt);
2432                         ++sp->root_count;
2433                         spin_unlock(&vcpu->kvm->mmu_lock);
2434                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2435                 }
2436                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2437         } else
2438                 BUG();
2439
2440         return 0;
2441 }
2442
2443 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2444 {
2445         struct kvm_mmu_page *sp;
2446         u64 pdptr, pm_mask;
2447         gfn_t root_gfn;
2448         int i;
2449
2450         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2451
2452         if (mmu_check_root(vcpu, root_gfn))
2453                 return 1;
2454
2455         /*
2456          * Do we shadow a long mode page table? If so we need to
2457          * write-protect the guests page table root.
2458          */
2459         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2460                 hpa_t root = vcpu->arch.mmu.root_hpa;
2461
2462                 ASSERT(!VALID_PAGE(root));
2463
2464                 spin_lock(&vcpu->kvm->mmu_lock);
2465                 kvm_mmu_free_some_pages(vcpu);
2466                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2467                                       0, ACC_ALL, NULL);
2468                 root = __pa(sp->spt);
2469                 ++sp->root_count;
2470                 spin_unlock(&vcpu->kvm->mmu_lock);
2471                 vcpu->arch.mmu.root_hpa = root;
2472                 return 0;
2473         }
2474
2475         /*
2476          * We shadow a 32 bit page table. This may be a legacy 2-level
2477          * or a PAE 3-level page table. In either case we need to be aware that
2478          * the shadow page table may be a PAE or a long mode page table.
2479          */
2480         pm_mask = PT_PRESENT_MASK;
2481         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2482                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2483
2484         for (i = 0; i < 4; ++i) {
2485                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2486
2487                 ASSERT(!VALID_PAGE(root));
2488                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2489                         pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2490                         if (!is_present_gpte(pdptr)) {
2491                                 vcpu->arch.mmu.pae_root[i] = 0;
2492                                 continue;
2493                         }
2494                         root_gfn = pdptr >> PAGE_SHIFT;
2495                         if (mmu_check_root(vcpu, root_gfn))
2496                                 return 1;
2497                 }
2498                 spin_lock(&vcpu->kvm->mmu_lock);
2499                 kvm_mmu_free_some_pages(vcpu);
2500                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2501                                       PT32_ROOT_LEVEL, 0,
2502                                       ACC_ALL, NULL);
2503                 root = __pa(sp->spt);
2504                 ++sp->root_count;
2505                 spin_unlock(&vcpu->kvm->mmu_lock);
2506
2507                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2508         }
2509         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2510
2511         /*
2512          * If we shadow a 32 bit page table with a long mode page
2513          * table we enter this path.
2514          */
2515         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2516                 if (vcpu->arch.mmu.lm_root == NULL) {
2517                         /*
2518                          * The additional page necessary for this is only
2519                          * allocated on demand.
2520                          */
2521
2522                         u64 *lm_root;
2523
2524                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2525                         if (lm_root == NULL)
2526                                 return 1;
2527
2528                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2529
2530                         vcpu->arch.mmu.lm_root = lm_root;
2531                 }
2532
2533                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2534         }
2535
2536         return 0;
2537 }
2538
2539 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2540 {
2541         if (vcpu->arch.mmu.direct_map)
2542                 return mmu_alloc_direct_roots(vcpu);
2543         else
2544                 return mmu_alloc_shadow_roots(vcpu);
2545 }
2546
2547 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2548 {
2549         int i;
2550         struct kvm_mmu_page *sp;
2551
2552         if (vcpu->arch.mmu.direct_map)
2553                 return;
2554
2555         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2556                 return;
2557
2558         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2559         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2560                 hpa_t root = vcpu->arch.mmu.root_hpa;
2561                 sp = page_header(root);
2562                 mmu_sync_children(vcpu, sp);
2563                 trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2564                 return;
2565         }
2566         for (i = 0; i < 4; ++i) {
2567                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2568
2569                 if (root && VALID_PAGE(root)) {
2570                         root &= PT64_BASE_ADDR_MASK;
2571                         sp = page_header(root);
2572                         mmu_sync_children(vcpu, sp);
2573                 }
2574         }
2575         trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2576 }
2577
2578 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2579 {
2580         spin_lock(&vcpu->kvm->mmu_lock);
2581         mmu_sync_roots(vcpu);
2582         spin_unlock(&vcpu->kvm->mmu_lock);
2583 }
2584
2585 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2586                                   u32 access, struct x86_exception *exception)
2587 {
2588         if (exception)
2589                 exception->error_code = 0;
2590         return vaddr;
2591 }
2592
2593 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2594                                          u32 access,
2595                                          struct x86_exception *exception)
2596 {
2597         if (exception)
2598                 exception->error_code = 0;
2599         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2600 }
2601
2602 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2603                                 u32 error_code, bool prefault)
2604 {
2605         gfn_t gfn;
2606         int r;
2607
2608         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2609         r = mmu_topup_memory_caches(vcpu);
2610         if (r)
2611                 return r;
2612
2613         ASSERT(vcpu);
2614         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2615
2616         gfn = gva >> PAGE_SHIFT;
2617
2618         return nonpaging_map(vcpu, gva & PAGE_MASK,
2619                              error_code & PFERR_WRITE_MASK, gfn, prefault);
2620 }
2621
2622 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
2623 {
2624         struct kvm_arch_async_pf arch;
2625
2626         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
2627         arch.gfn = gfn;
2628         arch.direct_map = vcpu->arch.mmu.direct_map;
2629         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
2630
2631         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
2632 }
2633
2634 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
2635 {
2636         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
2637                      kvm_event_needs_reinjection(vcpu)))
2638                 return false;
2639
2640         return kvm_x86_ops->interrupt_allowed(vcpu);
2641 }
2642
2643 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2644                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
2645 {
2646         bool async;
2647
2648         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
2649
2650         if (!async)
2651                 return false; /* *pfn has correct page already */
2652
2653         put_page(pfn_to_page(*pfn));
2654
2655         if (!prefault && can_do_async_pf(vcpu)) {
2656                 trace_kvm_try_async_get_page(gva, gfn);
2657                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
2658                         trace_kvm_async_pf_doublefault(gva, gfn);
2659                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2660                         return true;
2661                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
2662                         return true;
2663         }
2664
2665         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
2666
2667         return false;
2668 }
2669
2670 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
2671                           bool prefault)
2672 {
2673         pfn_t pfn;
2674         int r;
2675         int level;
2676         int force_pt_level;
2677         gfn_t gfn = gpa >> PAGE_SHIFT;
2678         unsigned long mmu_seq;
2679         int write = error_code & PFERR_WRITE_MASK;
2680         bool map_writable;
2681
2682         ASSERT(vcpu);
2683         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2684
2685         r = mmu_topup_memory_caches(vcpu);
2686         if (r)
2687                 return r;
2688
2689         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2690         if (likely(!force_pt_level)) {
2691                 level = mapping_level(vcpu, gfn);
2692                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2693         } else
2694                 level = PT_PAGE_TABLE_LEVEL;
2695
2696         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2697         smp_rmb();
2698
2699         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
2700                 return 0;
2701
2702         /* mmio */
2703         if (is_error_pfn(pfn))
2704                 return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
2705         spin_lock(&vcpu->kvm->mmu_lock);
2706         if (mmu_notifier_retry(vcpu, mmu_seq))
2707                 goto out_unlock;
2708         kvm_mmu_free_some_pages(vcpu);
2709         if (likely(!force_pt_level))
2710                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2711         r = __direct_map(vcpu, gpa, write, map_writable,
2712                          level, gfn, pfn, prefault);
2713         spin_unlock(&vcpu->kvm->mmu_lock);
2714
2715         return r;
2716
2717 out_unlock:
2718         spin_unlock(&vcpu->kvm->mmu_lock);
2719         kvm_release_pfn_clean(pfn);
2720         return 0;
2721 }
2722
2723 static void nonpaging_free(struct kvm_vcpu *vcpu)
2724 {
2725         mmu_free_roots(vcpu);
2726 }
2727
2728 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
2729                                   struct kvm_mmu *context)
2730 {
2731         context->new_cr3 = nonpaging_new_cr3;
2732         context->page_fault = nonpaging_page_fault;
2733         context->gva_to_gpa = nonpaging_gva_to_gpa;
2734         context->free = nonpaging_free;
2735         context->prefetch_page = nonpaging_prefetch_page;
2736         context->sync_page = nonpaging_sync_page;
2737         context->invlpg = nonpaging_invlpg;
2738         context->update_pte = nonpaging_update_pte;
2739         context->root_level = 0;
2740         context->shadow_root_level = PT32E_ROOT_LEVEL;
2741         context->root_hpa = INVALID_PAGE;
2742         context->direct_map = true;
2743         context->nx = false;
2744         return 0;
2745 }
2746
2747 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
2748 {
2749         ++vcpu->stat.tlb_flush;
2750         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2751 }
2752
2753 static void paging_new_cr3(struct kvm_vcpu *vcpu)
2754 {
2755         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
2756         mmu_free_roots(vcpu);
2757 }
2758
2759 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
2760 {
2761         return kvm_read_cr3(vcpu);
2762 }
2763
2764 static void inject_page_fault(struct kvm_vcpu *vcpu,
2765                               struct x86_exception *fault)
2766 {
2767         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
2768 }
2769
2770 static void paging_free(struct kvm_vcpu *vcpu)
2771 {
2772         nonpaging_free(vcpu);
2773 }
2774
2775 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2776 {
2777         int bit7;
2778
2779         bit7 = (gpte >> 7) & 1;
2780         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2781 }
2782
2783 #define PTTYPE 64
2784 #include "paging_tmpl.h"
2785 #undef PTTYPE
2786
2787 #define PTTYPE 32
2788 #include "paging_tmpl.h"
2789 #undef PTTYPE
2790
2791 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
2792                                   struct kvm_mmu *context,
2793                                   int level)
2794 {
2795         int maxphyaddr = cpuid_maxphyaddr(vcpu);
2796         u64 exb_bit_rsvd = 0;
2797
2798         if (!context->nx)
2799                 exb_bit_rsvd = rsvd_bits(63, 63);
2800         switch (level) {
2801         case PT32_ROOT_LEVEL:
2802                 /* no rsvd bits for 2 level 4K page table entries */
2803                 context->rsvd_bits_mask[0][1] = 0;
2804                 context->rsvd_bits_mask[0][0] = 0;
2805                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2806
2807                 if (!is_pse(vcpu)) {
2808                         context->rsvd_bits_mask[1][1] = 0;
2809                         break;
2810                 }
2811
2812                 if (is_cpuid_PSE36())
2813                         /* 36bits PSE 4MB page */
2814                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
2815                 else
2816                         /* 32 bits PSE 4MB page */
2817                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
2818                 break;
2819         case PT32E_ROOT_LEVEL:
2820                 context->rsvd_bits_mask[0][2] =
2821                         rsvd_bits(maxphyaddr, 63) |
2822                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
2823                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2824                         rsvd_bits(maxphyaddr, 62);      /* PDE */
2825                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2826                         rsvd_bits(maxphyaddr, 62);      /* PTE */
2827                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2828                         rsvd_bits(maxphyaddr, 62) |
2829                         rsvd_bits(13, 20);              /* large page */
2830                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2831                 break;
2832         case PT64_ROOT_LEVEL:
2833                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
2834                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2835                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
2836                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
2837                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
2838                         rsvd_bits(maxphyaddr, 51);
2839                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
2840                         rsvd_bits(maxphyaddr, 51);
2841                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
2842                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
2843                         rsvd_bits(maxphyaddr, 51) |
2844                         rsvd_bits(13, 29);
2845                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
2846                         rsvd_bits(maxphyaddr, 51) |
2847                         rsvd_bits(13, 20);              /* large page */
2848                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
2849                 break;
2850         }
2851 }
2852
2853 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
2854                                         struct kvm_mmu *context,
2855                                         int level)
2856 {
2857         context->nx = is_nx(vcpu);
2858
2859         reset_rsvds_bits_mask(vcpu, context, level);
2860
2861         ASSERT(is_pae(vcpu));
2862         context->new_cr3 = paging_new_cr3;
2863         context->page_fault = paging64_page_fault;
2864         context->gva_to_gpa = paging64_gva_to_gpa;
2865         context->prefetch_page = paging64_prefetch_page;
2866         context->sync_page = paging64_sync_page;
2867         context->invlpg = paging64_invlpg;
2868         context->update_pte = paging64_update_pte;
2869         context->free = paging_free;
2870         context->root_level = level;
2871         context->shadow_root_level = level;
2872         context->root_hpa = INVALID_PAGE;
2873         context->direct_map = false;
2874         return 0;
2875 }
2876
2877 static int paging64_init_context(struct kvm_vcpu *vcpu,
2878                                  struct kvm_mmu *context)
2879 {
2880         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
2881 }
2882
2883 static int paging32_init_context(struct kvm_vcpu *vcpu,
2884                                  struct kvm_mmu *context)
2885 {
2886         context->nx = false;
2887
2888         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2889
2890         context->new_cr3 = paging_new_cr3;
2891         context->page_fault = paging32_page_fault;
2892         context->gva_to_gpa = paging32_gva_to_gpa;
2893         context->free = paging_free;
2894         context->prefetch_page = paging32_prefetch_page;
2895         context->sync_page = paging32_sync_page;
2896         context->invlpg = paging32_invlpg;
2897         context->update_pte = paging32_update_pte;
2898         context->root_level = PT32_ROOT_LEVEL;
2899         context->shadow_root_level = PT32E_ROOT_LEVEL;
2900         context->root_hpa = INVALID_PAGE;
2901         context->direct_map = false;
2902         return 0;
2903 }
2904
2905 static int paging32E_init_context(struct kvm_vcpu *vcpu,
2906                                   struct kvm_mmu *context)
2907 {
2908         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
2909 }
2910
2911 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
2912 {
2913         struct kvm_mmu *context = vcpu->arch.walk_mmu;
2914
2915         context->base_role.word = 0;
2916         context->new_cr3 = nonpaging_new_cr3;
2917         context->page_fault = tdp_page_fault;
2918         context->free = nonpaging_free;
2919         context->prefetch_page = nonpaging_prefetch_page;
2920         context->sync_page = nonpaging_sync_page;
2921         context->invlpg = nonpaging_invlpg;
2922         context->update_pte = nonpaging_update_pte;
2923         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
2924         context->root_hpa = INVALID_PAGE;
2925         context->direct_map = true;
2926         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
2927         context->get_cr3 = get_cr3;
2928         context->inject_page_fault = kvm_inject_page_fault;
2929         context->nx = is_nx(vcpu);
2930
2931         if (!is_paging(vcpu)) {
2932                 context->nx = false;
2933                 context->gva_to_gpa = nonpaging_gva_to_gpa;
2934                 context->root_level = 0;
2935         } else if (is_long_mode(vcpu)) {
2936                 context->nx = is_nx(vcpu);
2937                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
2938                 context->gva_to_gpa = paging64_gva_to_gpa;
2939                 context->root_level = PT64_ROOT_LEVEL;
2940         } else if (is_pae(vcpu)) {
2941                 context->nx = is_nx(vcpu);
2942                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
2943                 context->gva_to_gpa = paging64_gva_to_gpa;
2944                 context->root_level = PT32E_ROOT_LEVEL;
2945         } else {
2946                 context->nx = false;
2947                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
2948                 context->gva_to_gpa = paging32_gva_to_gpa;
2949                 context->root_level = PT32_ROOT_LEVEL;
2950         }
2951
2952         return 0;
2953 }
2954
2955 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
2956 {
2957         int r;
2958         ASSERT(vcpu);
2959         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2960
2961         if (!is_paging(vcpu))
2962                 r = nonpaging_init_context(vcpu, context);
2963         else if (is_long_mode(vcpu))
2964                 r = paging64_init_context(vcpu, context);
2965         else if (is_pae(vcpu))
2966                 r = paging32E_init_context(vcpu, context);
2967         else
2968                 r = paging32_init_context(vcpu, context);
2969
2970         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
2971         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
2972
2973         return r;
2974 }
2975 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
2976
2977 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
2978 {
2979         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
2980
2981         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
2982         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
2983         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
2984
2985         return r;
2986 }
2987
2988 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
2989 {
2990         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
2991
2992         g_context->get_cr3           = get_cr3;
2993         g_context->inject_page_fault = kvm_inject_page_fault;
2994
2995         /*
2996          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
2997          * translation of l2_gpa to l1_gpa addresses is done using the
2998          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
2999          * functions between mmu and nested_mmu are swapped.
3000          */
3001         if (!is_paging(vcpu)) {
3002                 g_context->nx = false;
3003                 g_context->root_level = 0;
3004                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3005         } else if (is_long_mode(vcpu)) {
3006                 g_context->nx = is_nx(vcpu);
3007                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3008                 g_context->root_level = PT64_ROOT_LEVEL;
3009                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3010         } else if (is_pae(vcpu)) {
3011                 g_context->nx = is_nx(vcpu);
3012                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3013                 g_context->root_level = PT32E_ROOT_LEVEL;
3014                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3015         } else {
3016                 g_context->nx = false;
3017                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3018                 g_context->root_level = PT32_ROOT_LEVEL;
3019                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3020         }
3021
3022         return 0;
3023 }
3024
3025 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3026 {
3027         if (mmu_is_nested(vcpu))
3028                 return init_kvm_nested_mmu(vcpu);
3029         else if (tdp_enabled)
3030                 return init_kvm_tdp_mmu(vcpu);
3031         else
3032                 return init_kvm_softmmu(vcpu);
3033 }
3034
3035 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3036 {
3037         ASSERT(vcpu);
3038         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3039                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3040                 vcpu->arch.mmu.free(vcpu);
3041 }
3042
3043 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3044 {
3045         destroy_kvm_mmu(vcpu);
3046         return init_kvm_mmu(vcpu);
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3049
3050 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3051 {
3052         int r;
3053
3054         r = mmu_topup_memory_caches(vcpu);
3055         if (r)
3056                 goto out;
3057         r = mmu_alloc_roots(vcpu);
3058         spin_lock(&vcpu->kvm->mmu_lock);
3059         mmu_sync_roots(vcpu);
3060         spin_unlock(&vcpu->kvm->mmu_lock);
3061         if (r)
3062                 goto out;
3063         /* set_cr3() should ensure TLB has been flushed */
3064         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3065 out:
3066         return r;
3067 }
3068 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3069
3070 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3071 {
3072         mmu_free_roots(vcpu);
3073 }
3074 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3075
3076 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3077                                   struct kvm_mmu_page *sp, u64 *spte,
3078                                   const void *new)
3079 {
3080         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3081                 ++vcpu->kvm->stat.mmu_pde_zapped;
3082                 return;
3083         }
3084
3085         ++vcpu->kvm->stat.mmu_pte_updated;
3086         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3087 }
3088
3089 static bool need_remote_flush(u64 old, u64 new)
3090 {
3091         if (!is_shadow_present_pte(old))
3092                 return false;
3093         if (!is_shadow_present_pte(new))
3094                 return true;
3095         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3096                 return true;
3097         old ^= PT64_NX_MASK;
3098         new ^= PT64_NX_MASK;
3099         return (old & ~new & PT64_PERM_MASK) != 0;
3100 }
3101
3102 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3103                                     bool remote_flush, bool local_flush)
3104 {
3105         if (zap_page)
3106                 return;
3107
3108         if (remote_flush)
3109                 kvm_flush_remote_tlbs(vcpu->kvm);
3110         else if (local_flush)
3111                 kvm_mmu_flush_tlb(vcpu);
3112 }
3113
3114 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3115 {
3116         u64 *spte = vcpu->arch.last_pte_updated;
3117
3118         return !!(spte && (*spte & shadow_accessed_mask));
3119 }
3120
3121 static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3122 {
3123         u64 *spte = vcpu->arch.last_pte_updated;
3124
3125         if (spte
3126             && vcpu->arch.last_pte_gfn == gfn
3127             && shadow_accessed_mask
3128             && !(*spte & shadow_accessed_mask)
3129             && is_shadow_present_pte(*spte))
3130                 set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3131 }
3132
3133 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3134                        const u8 *new, int bytes,
3135                        bool guest_initiated)
3136 {
3137         gfn_t gfn = gpa >> PAGE_SHIFT;
3138         union kvm_mmu_page_role mask = { .word = 0 };
3139         struct kvm_mmu_page *sp;
3140         struct hlist_node *node;
3141         LIST_HEAD(invalid_list);
3142         u64 entry, gentry, *spte;
3143         unsigned pte_size, page_offset, misaligned, quadrant, offset;
3144         int level, npte, invlpg_counter, r, flooded = 0;
3145         bool remote_flush, local_flush, zap_page;
3146
3147         /*
3148          * If we don't have indirect shadow pages, it means no page is
3149          * write-protected, so we can exit simply.
3150          */
3151         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3152                 return;
3153
3154         zap_page = remote_flush = local_flush = false;
3155         offset = offset_in_page(gpa);
3156
3157         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3158
3159         invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3160
3161         /*
3162          * Assume that the pte write on a page table of the same type
3163          * as the current vcpu paging mode since we update the sptes only
3164          * when they have the same mode.
3165          */
3166         if ((is_pae(vcpu) && bytes == 4) || !new) {
3167                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3168                 if (is_pae(vcpu)) {
3169                         gpa &= ~(gpa_t)7;
3170                         bytes = 8;
3171                 }
3172                 r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3173                 if (r)
3174                         gentry = 0;
3175                 new = (const u8 *)&gentry;
3176         }
3177
3178         switch (bytes) {
3179         case 4:
3180                 gentry = *(const u32 *)new;
3181                 break;
3182         case 8:
3183                 gentry = *(const u64 *)new;
3184                 break;
3185         default:
3186                 gentry = 0;
3187                 break;
3188         }
3189
3190         spin_lock(&vcpu->kvm->mmu_lock);
3191         if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3192                 gentry = 0;
3193         kvm_mmu_free_some_pages(vcpu);
3194         ++vcpu->kvm->stat.mmu_pte_write;
3195         trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3196         if (guest_initiated) {
3197                 kvm_mmu_access_page(vcpu, gfn);
3198                 if (gfn == vcpu->arch.last_pt_write_gfn
3199                     && !last_updated_pte_accessed(vcpu)) {
3200                         ++vcpu->arch.last_pt_write_count;
3201                         if (vcpu->arch.last_pt_write_count >= 3)
3202                                 flooded = 1;
3203                 } else {
3204                         vcpu->arch.last_pt_write_gfn = gfn;
3205                         vcpu->arch.last_pt_write_count = 1;
3206                         vcpu->arch.last_pte_updated = NULL;
3207                 }
3208         }
3209
3210         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3211         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3212                 pte_size = sp->role.cr4_pae ? 8 : 4;
3213                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3214                 misaligned |= bytes < 4;
3215                 if (misaligned || flooded) {
3216                         /*
3217                          * Misaligned accesses are too much trouble to fix
3218                          * up; also, they usually indicate a page is not used
3219                          * as a page table.
3220                          *
3221                          * If we're seeing too many writes to a page,
3222                          * it may no longer be a page table, or we may be
3223                          * forking, in which case it is better to unmap the
3224                          * page.
3225                          */
3226                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3227                                  gpa, bytes, sp->role.word);
3228                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3229                                                      &invalid_list);
3230                         ++vcpu->kvm->stat.mmu_flooded;
3231                         continue;
3232                 }
3233                 page_offset = offset;
3234                 level = sp->role.level;
3235                 npte = 1;
3236                 if (!sp->role.cr4_pae) {
3237                         page_offset <<= 1;      /* 32->64 */
3238                         /*
3239                          * A 32-bit pde maps 4MB while the shadow pdes map
3240                          * only 2MB.  So we need to double the offset again
3241                          * and zap two pdes instead of one.
3242                          */
3243                         if (level == PT32_ROOT_LEVEL) {
3244                                 page_offset &= ~7; /* kill rounding error */
3245                                 page_offset <<= 1;
3246                                 npte = 2;
3247                         }
3248                         quadrant = page_offset >> PAGE_SHIFT;
3249                         page_offset &= ~PAGE_MASK;
3250                         if (quadrant != sp->role.quadrant)
3251                                 continue;
3252                 }
3253                 local_flush = true;
3254                 spte = &sp->spt[page_offset / sizeof(*spte)];
3255                 while (npte--) {
3256                         entry = *spte;
3257                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3258                         if (gentry &&
3259                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3260                               & mask.word))
3261                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3262                         if (!remote_flush && need_remote_flush(entry, *spte))
3263                                 remote_flush = true;
3264                         ++spte;
3265                 }
3266         }
3267         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3268         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3269         trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3270         spin_unlock(&vcpu->kvm->mmu_lock);
3271 }
3272
3273 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3274 {
3275         gpa_t gpa;
3276         int r;
3277
3278         if (vcpu->arch.mmu.direct_map)
3279                 return 0;
3280
3281         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3282
3283         spin_lock(&vcpu->kvm->mmu_lock);
3284         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3285         spin_unlock(&vcpu->kvm->mmu_lock);
3286         return r;
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3289
3290 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3291 {
3292         LIST_HEAD(invalid_list);
3293
3294         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3295                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3296                 struct kvm_mmu_page *sp;
3297
3298                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3299                                   struct kvm_mmu_page, link);
3300                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3301                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3302                 ++vcpu->kvm->stat.mmu_recycled;
3303         }
3304 }
3305
3306 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3307                        void *insn, int insn_len)
3308 {
3309         int r;
3310         enum emulation_result er;
3311
3312         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3313         if (r < 0)
3314                 goto out;
3315
3316         if (!r) {
3317                 r = 1;
3318                 goto out;
3319         }
3320
3321         r = mmu_topup_memory_caches(vcpu);
3322         if (r)
3323                 goto out;
3324
3325         er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3326
3327         switch (er) {
3328         case EMULATE_DONE:
3329                 return 1;
3330         case EMULATE_DO_MMIO:
3331                 ++vcpu->stat.mmio_exits;
3332                 /* fall through */
3333         case EMULATE_FAIL:
3334                 return 0;
3335         default:
3336                 BUG();
3337         }
3338 out:
3339         return r;
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3342
3343 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3344 {
3345         vcpu->arch.mmu.invlpg(vcpu, gva);
3346         kvm_mmu_flush_tlb(vcpu);
3347         ++vcpu->stat.invlpg;
3348 }
3349 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3350
3351 void kvm_enable_tdp(void)
3352 {
3353         tdp_enabled = true;
3354 }
3355 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3356
3357 void kvm_disable_tdp(void)
3358 {
3359         tdp_enabled = false;
3360 }
3361 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3362
3363 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3364 {
3365         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3366         if (vcpu->arch.mmu.lm_root != NULL)
3367                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3368 }
3369
3370 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3371 {
3372         struct page *page;
3373         int i;
3374
3375         ASSERT(vcpu);
3376
3377         /*
3378          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3379          * Therefore we need to allocate shadow page tables in the first
3380          * 4GB of memory, which happens to fit the DMA32 zone.
3381          */
3382         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3383         if (!page)
3384                 return -ENOMEM;
3385
3386         vcpu->arch.mmu.pae_root = page_address(page);
3387         for (i = 0; i < 4; ++i)
3388                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3389
3390         return 0;
3391 }
3392
3393 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3394 {
3395         ASSERT(vcpu);
3396         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3397
3398         return alloc_mmu_pages(vcpu);
3399 }
3400
3401 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3402 {
3403         ASSERT(vcpu);
3404         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3405
3406         return init_kvm_mmu(vcpu);
3407 }
3408
3409 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3410 {
3411         struct kvm_mmu_page *sp;
3412
3413         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3414                 int i;
3415                 u64 *pt;
3416
3417                 if (!test_bit(slot, sp->slot_bitmap))
3418                         continue;
3419
3420                 pt = sp->spt;
3421                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3422                         if (!is_shadow_present_pte(pt[i]) ||
3423                               !is_last_spte(pt[i], sp->role.level))
3424                                 continue;
3425
3426                         if (is_large_pte(pt[i])) {
3427                                 drop_spte(kvm, &pt[i],
3428                                           shadow_trap_nonpresent_pte);
3429                                 --kvm->stat.lpages;
3430                                 continue;
3431                         }
3432
3433                         /* avoid RMW */
3434                         if (is_writable_pte(pt[i]))
3435                                 update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
3436                 }
3437         }
3438         kvm_flush_remote_tlbs(kvm);
3439 }
3440
3441 void kvm_mmu_zap_all(struct kvm *kvm)
3442 {
3443         struct kvm_mmu_page *sp, *node;
3444         LIST_HEAD(invalid_list);
3445
3446         spin_lock(&kvm->mmu_lock);
3447 restart:
3448         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3449                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3450                         goto restart;
3451
3452         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3453         spin_unlock(&kvm->mmu_lock);
3454 }
3455
3456 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3457                                                struct list_head *invalid_list)
3458 {
3459         struct kvm_mmu_page *page;
3460
3461         page = container_of(kvm->arch.active_mmu_pages.prev,
3462                             struct kvm_mmu_page, link);
3463         return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3464 }
3465
3466 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3467 {
3468         struct kvm *kvm;
3469         struct kvm *kvm_freed = NULL;
3470         int nr_to_scan = sc->nr_to_scan;
3471
3472         if (nr_to_scan == 0)
3473                 goto out;
3474
3475         raw_spin_lock(&kvm_lock);
3476
3477         list_for_each_entry(kvm, &vm_list, vm_list) {
3478                 int idx, freed_pages;
3479                 LIST_HEAD(invalid_list);
3480
3481                 idx = srcu_read_lock(&kvm->srcu);
3482                 spin_lock(&kvm->mmu_lock);
3483                 if (!kvm_freed && nr_to_scan > 0 &&
3484                     kvm->arch.n_used_mmu_pages > 0) {
3485                         freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3486                                                           &invalid_list);
3487                         kvm_freed = kvm;
3488                 }
3489                 nr_to_scan--;
3490
3491                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3492                 spin_unlock(&kvm->mmu_lock);
3493                 srcu_read_unlock(&kvm->srcu, idx);
3494         }
3495         if (kvm_freed)
3496                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3497
3498         raw_spin_unlock(&kvm_lock);
3499
3500 out:
3501         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3502 }
3503
3504 static struct shrinker mmu_shrinker = {
3505         .shrink = mmu_shrink,
3506         .seeks = DEFAULT_SEEKS * 10,
3507 };
3508
3509 static void mmu_destroy_caches(void)
3510 {
3511         if (pte_list_desc_cache)
3512                 kmem_cache_destroy(pte_list_desc_cache);
3513         if (mmu_page_header_cache)
3514                 kmem_cache_destroy(mmu_page_header_cache);
3515 }
3516
3517 int kvm_mmu_module_init(void)
3518 {
3519         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3520                                             sizeof(struct pte_list_desc),
3521                                             0, 0, NULL);
3522         if (!pte_list_desc_cache)
3523                 goto nomem;
3524
3525         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3526                                                   sizeof(struct kvm_mmu_page),
3527                                                   0, 0, NULL);
3528         if (!mmu_page_header_cache)
3529                 goto nomem;
3530
3531         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3532                 goto nomem;
3533
3534         register_shrinker(&mmu_shrinker);
3535
3536         return 0;
3537
3538 nomem:
3539         mmu_destroy_caches();
3540         return -ENOMEM;
3541 }
3542
3543 /*
3544  * Caculate mmu pages needed for kvm.
3545  */
3546 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3547 {
3548         int i;
3549         unsigned int nr_mmu_pages;
3550         unsigned int  nr_pages = 0;
3551         struct kvm_memslots *slots;
3552
3553         slots = kvm_memslots(kvm);
3554
3555         for (i = 0; i < slots->nmemslots; i++)
3556                 nr_pages += slots->memslots[i].npages;
3557
3558         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3559         nr_mmu_pages = max(nr_mmu_pages,
3560                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3561
3562         return nr_mmu_pages;
3563 }
3564
3565 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3566                                 unsigned len)
3567 {
3568         if (len > buffer->len)
3569                 return NULL;
3570         return buffer->ptr;
3571 }
3572
3573 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3574                                 unsigned len)
3575 {
3576         void *ret;
3577
3578         ret = pv_mmu_peek_buffer(buffer, len);
3579         if (!ret)
3580                 return ret;
3581         buffer->ptr += len;
3582         buffer->len -= len;
3583         buffer->processed += len;
3584         return ret;
3585 }
3586
3587 static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3588                              gpa_t addr, gpa_t value)
3589 {
3590         int bytes = 8;
3591         int r;
3592
3593         if (!is_long_mode(vcpu) && !is_pae(vcpu))
3594                 bytes = 4;
3595
3596         r = mmu_topup_memory_caches(vcpu);
3597         if (r)
3598                 return r;
3599
3600         if (!emulator_write_phys(vcpu, addr, &value, bytes))
3601                 return -EFAULT;
3602
3603         return 1;
3604 }
3605
3606 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3607 {
3608         (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
3609         return 1;
3610 }
3611
3612 static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
3613 {
3614         spin_lock(&vcpu->kvm->mmu_lock);
3615         mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
3616         spin_unlock(&vcpu->kvm->mmu_lock);
3617         return 1;
3618 }
3619
3620 static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
3621                              struct kvm_pv_mmu_op_buffer *buffer)
3622 {
3623         struct kvm_mmu_op_header *header;
3624
3625         header = pv_mmu_peek_buffer(buffer, sizeof *header);
3626         if (!header)
3627                 return 0;
3628         switch (header->op) {
3629         case KVM_MMU_OP_WRITE_PTE: {
3630                 struct kvm_mmu_op_write_pte *wpte;
3631
3632                 wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
3633                 if (!wpte)
3634                         return 0;
3635                 return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
3636                                         wpte->pte_val);
3637         }
3638         case KVM_MMU_OP_FLUSH_TLB: {
3639                 struct kvm_mmu_op_flush_tlb *ftlb;
3640
3641                 ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
3642                 if (!ftlb)
3643                         return 0;
3644                 return kvm_pv_mmu_flush_tlb(vcpu);
3645         }
3646         case KVM_MMU_OP_RELEASE_PT: {
3647                 struct kvm_mmu_op_release_pt *rpt;
3648
3649                 rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
3650                 if (!rpt)
3651                         return 0;
3652                 return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
3653         }
3654         default: return 0;
3655         }
3656 }
3657
3658 int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
3659                   gpa_t addr, unsigned long *ret)
3660 {
3661         int r;
3662         struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
3663
3664         buffer->ptr = buffer->buf;
3665         buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
3666         buffer->processed = 0;
3667
3668         r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
3669         if (r)
3670                 goto out;
3671
3672         while (buffer->len) {
3673                 r = kvm_pv_mmu_op_one(vcpu, buffer);
3674                 if (r < 0)
3675                         goto out;
3676                 if (r == 0)
3677                         break;
3678         }
3679
3680         r = 1;
3681 out:
3682         *ret = buffer->processed;
3683         return r;
3684 }
3685
3686 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
3687 {
3688         struct kvm_shadow_walk_iterator iterator;
3689         int nr_sptes = 0;
3690
3691         spin_lock(&vcpu->kvm->mmu_lock);
3692         for_each_shadow_entry(vcpu, addr, iterator) {
3693                 sptes[iterator.level-1] = *iterator.sptep;
3694                 nr_sptes++;
3695                 if (!is_shadow_present_pte(*iterator.sptep))
3696                         break;
3697         }
3698         spin_unlock(&vcpu->kvm->mmu_lock);
3699
3700         return nr_sptes;
3701 }
3702 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
3703
3704 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
3705 {
3706         ASSERT(vcpu);
3707
3708         destroy_kvm_mmu(vcpu);
3709         free_mmu_pages(vcpu);
3710         mmu_free_memory_caches(vcpu);
3711 }
3712
3713 #ifdef CONFIG_KVM_MMU_AUDIT
3714 #include "mmu_audit.c"
3715 #else
3716 static void mmu_audit_disable(void) { }
3717 #endif
3718
3719 void kvm_mmu_module_exit(void)
3720 {
3721         mmu_destroy_caches();
3722         percpu_counter_destroy(&kvm_total_used_mmu_pages);
3723         unregister_shrinker(&mmu_shrinker);
3724         mmu_audit_disable();
3725 }