0d094da49541d171e7218c7340e63dce6d35674c
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         /*
239          * Init kvm generation close to MMIO_MAX_GEN to easily test the
240          * code of handling generation number wrap-around.
241          */
242         return (kvm_memslots(kvm)->generation +
243                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300         return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306         shadow_user_mask = user_mask;
307         shadow_accessed_mask = accessed_mask;
308         shadow_dirty_mask = dirty_mask;
309         shadow_nx_mask = nx_mask;
310         shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316         return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321         return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331         return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_dirty_gpte(unsigned long pte)
335 {
336         return pte & PT_DIRTY_MASK;
337 }
338
339 static int is_rmap_spte(u64 pte)
340 {
341         return is_shadow_present_pte(pte);
342 }
343
344 static int is_last_spte(u64 pte, int level)
345 {
346         if (level == PT_PAGE_TABLE_LEVEL)
347                 return 1;
348         if (is_large_pte(pte))
349                 return 1;
350         return 0;
351 }
352
353 static pfn_t spte_to_pfn(u64 pte)
354 {
355         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
356 }
357
358 static gfn_t pse36_gfn_delta(u32 gpte)
359 {
360         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
361
362         return (gpte & PT32_DIR_PSE36_MASK) << shift;
363 }
364
365 #ifdef CONFIG_X86_64
366 static void __set_spte(u64 *sptep, u64 spte)
367 {
368         *sptep = spte;
369 }
370
371 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
372 {
373         *sptep = spte;
374 }
375
376 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
377 {
378         return xchg(sptep, spte);
379 }
380
381 static u64 __get_spte_lockless(u64 *sptep)
382 {
383         return ACCESS_ONCE(*sptep);
384 }
385
386 static bool __check_direct_spte_mmio_pf(u64 spte)
387 {
388         /* It is valid if the spte is zapped. */
389         return spte == 0ull;
390 }
391 #else
392 union split_spte {
393         struct {
394                 u32 spte_low;
395                 u32 spte_high;
396         };
397         u64 spte;
398 };
399
400 static void count_spte_clear(u64 *sptep, u64 spte)
401 {
402         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
403
404         if (is_shadow_present_pte(spte))
405                 return;
406
407         /* Ensure the spte is completely set before we increase the count */
408         smp_wmb();
409         sp->clear_spte_count++;
410 }
411
412 static void __set_spte(u64 *sptep, u64 spte)
413 {
414         union split_spte *ssptep, sspte;
415
416         ssptep = (union split_spte *)sptep;
417         sspte = (union split_spte)spte;
418
419         ssptep->spte_high = sspte.spte_high;
420
421         /*
422          * If we map the spte from nonpresent to present, We should store
423          * the high bits firstly, then set present bit, so cpu can not
424          * fetch this spte while we are setting the spte.
425          */
426         smp_wmb();
427
428         ssptep->spte_low = sspte.spte_low;
429 }
430
431 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432 {
433         union split_spte *ssptep, sspte;
434
435         ssptep = (union split_spte *)sptep;
436         sspte = (union split_spte)spte;
437
438         ssptep->spte_low = sspte.spte_low;
439
440         /*
441          * If we map the spte from present to nonpresent, we should clear
442          * present bit firstly to avoid vcpu fetch the old high bits.
443          */
444         smp_wmb();
445
446         ssptep->spte_high = sspte.spte_high;
447         count_spte_clear(sptep, spte);
448 }
449
450 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
451 {
452         union split_spte *ssptep, sspte, orig;
453
454         ssptep = (union split_spte *)sptep;
455         sspte = (union split_spte)spte;
456
457         /* xchg acts as a barrier before the setting of the high bits */
458         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
459         orig.spte_high = ssptep->spte_high;
460         ssptep->spte_high = sspte.spte_high;
461         count_spte_clear(sptep, spte);
462
463         return orig.spte;
464 }
465
466 /*
467  * The idea using the light way get the spte on x86_32 guest is from
468  * gup_get_pte(arch/x86/mm/gup.c).
469  *
470  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
471  * coalesces them and we are running out of the MMU lock.  Therefore
472  * we need to protect against in-progress updates of the spte.
473  *
474  * Reading the spte while an update is in progress may get the old value
475  * for the high part of the spte.  The race is fine for a present->non-present
476  * change (because the high part of the spte is ignored for non-present spte),
477  * but for a present->present change we must reread the spte.
478  *
479  * All such changes are done in two steps (present->non-present and
480  * non-present->present), hence it is enough to count the number of
481  * present->non-present updates: if it changed while reading the spte,
482  * we might have hit the race.  This is done using clear_spte_count.
483  */
484 static u64 __get_spte_lockless(u64 *sptep)
485 {
486         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
487         union split_spte spte, *orig = (union split_spte *)sptep;
488         int count;
489
490 retry:
491         count = sp->clear_spte_count;
492         smp_rmb();
493
494         spte.spte_low = orig->spte_low;
495         smp_rmb();
496
497         spte.spte_high = orig->spte_high;
498         smp_rmb();
499
500         if (unlikely(spte.spte_low != orig->spte_low ||
501               count != sp->clear_spte_count))
502                 goto retry;
503
504         return spte.spte;
505 }
506
507 static bool __check_direct_spte_mmio_pf(u64 spte)
508 {
509         union split_spte sspte = (union split_spte)spte;
510         u32 high_mmio_mask = shadow_mmio_mask >> 32;
511
512         /* It is valid if the spte is zapped. */
513         if (spte == 0ull)
514                 return true;
515
516         /* It is valid if the spte is being zapped. */
517         if (sspte.spte_low == 0ull &&
518             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
519                 return true;
520
521         return false;
522 }
523 #endif
524
525 static bool spte_is_locklessly_modifiable(u64 spte)
526 {
527         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
528                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
529 }
530
531 static bool spte_has_volatile_bits(u64 spte)
532 {
533         /*
534          * Always atomicly update spte if it can be updated
535          * out of mmu-lock, it can ensure dirty bit is not lost,
536          * also, it can help us to get a stable is_writable_pte()
537          * to ensure tlb flush is not missed.
538          */
539         if (spte_is_locklessly_modifiable(spte))
540                 return true;
541
542         if (!shadow_accessed_mask)
543                 return false;
544
545         if (!is_shadow_present_pte(spte))
546                 return false;
547
548         if ((spte & shadow_accessed_mask) &&
549               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
550                 return false;
551
552         return true;
553 }
554
555 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
556 {
557         return (old_spte & bit_mask) && !(new_spte & bit_mask);
558 }
559
560 /* Rules for using mmu_spte_set:
561  * Set the sptep from nonpresent to present.
562  * Note: the sptep being assigned *must* be either not present
563  * or in a state where the hardware will not attempt to update
564  * the spte.
565  */
566 static void mmu_spte_set(u64 *sptep, u64 new_spte)
567 {
568         WARN_ON(is_shadow_present_pte(*sptep));
569         __set_spte(sptep, new_spte);
570 }
571
572 /* Rules for using mmu_spte_update:
573  * Update the state bits, it means the mapped pfn is not changged.
574  *
575  * Whenever we overwrite a writable spte with a read-only one we
576  * should flush remote TLBs. Otherwise rmap_write_protect
577  * will find a read-only spte, even though the writable spte
578  * might be cached on a CPU's TLB, the return value indicates this
579  * case.
580  */
581 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
582 {
583         u64 old_spte = *sptep;
584         bool ret = false;
585
586         WARN_ON(!is_rmap_spte(new_spte));
587
588         if (!is_shadow_present_pte(old_spte)) {
589                 mmu_spte_set(sptep, new_spte);
590                 return ret;
591         }
592
593         if (!spte_has_volatile_bits(old_spte))
594                 __update_clear_spte_fast(sptep, new_spte);
595         else
596                 old_spte = __update_clear_spte_slow(sptep, new_spte);
597
598         /*
599          * For the spte updated out of mmu-lock is safe, since
600          * we always atomicly update it, see the comments in
601          * spte_has_volatile_bits().
602          */
603         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
604                 ret = true;
605
606         if (!shadow_accessed_mask)
607                 return ret;
608
609         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
610                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
611         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
612                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
613
614         return ret;
615 }
616
617 /*
618  * Rules for using mmu_spte_clear_track_bits:
619  * It sets the sptep from present to nonpresent, and track the
620  * state bits, it is used to clear the last level sptep.
621  */
622 static int mmu_spte_clear_track_bits(u64 *sptep)
623 {
624         pfn_t pfn;
625         u64 old_spte = *sptep;
626
627         if (!spte_has_volatile_bits(old_spte))
628                 __update_clear_spte_fast(sptep, 0ull);
629         else
630                 old_spte = __update_clear_spte_slow(sptep, 0ull);
631
632         if (!is_rmap_spte(old_spte))
633                 return 0;
634
635         pfn = spte_to_pfn(old_spte);
636
637         /*
638          * KVM does not hold the refcount of the page used by
639          * kvm mmu, before reclaiming the page, we should
640          * unmap it from mmu first.
641          */
642         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
643
644         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
645                 kvm_set_pfn_accessed(pfn);
646         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
647                 kvm_set_pfn_dirty(pfn);
648         return 1;
649 }
650
651 /*
652  * Rules for using mmu_spte_clear_no_track:
653  * Directly clear spte without caring the state bits of sptep,
654  * it is used to set the upper level spte.
655  */
656 static void mmu_spte_clear_no_track(u64 *sptep)
657 {
658         __update_clear_spte_fast(sptep, 0ull);
659 }
660
661 static u64 mmu_spte_get_lockless(u64 *sptep)
662 {
663         return __get_spte_lockless(sptep);
664 }
665
666 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
667 {
668         /*
669          * Prevent page table teardown by making any free-er wait during
670          * kvm_flush_remote_tlbs() IPI to all active vcpus.
671          */
672         local_irq_disable();
673         vcpu->mode = READING_SHADOW_PAGE_TABLES;
674         /*
675          * Make sure a following spte read is not reordered ahead of the write
676          * to vcpu->mode.
677          */
678         smp_mb();
679 }
680
681 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
682 {
683         /*
684          * Make sure the write to vcpu->mode is not reordered in front of
685          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
686          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
687          */
688         smp_mb();
689         vcpu->mode = OUTSIDE_GUEST_MODE;
690         local_irq_enable();
691 }
692
693 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
694                                   struct kmem_cache *base_cache, int min)
695 {
696         void *obj;
697
698         if (cache->nobjs >= min)
699                 return 0;
700         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
701                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
702                 if (!obj)
703                         return -ENOMEM;
704                 cache->objects[cache->nobjs++] = obj;
705         }
706         return 0;
707 }
708
709 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
710 {
711         return cache->nobjs;
712 }
713
714 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
715                                   struct kmem_cache *cache)
716 {
717         while (mc->nobjs)
718                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
719 }
720
721 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
722                                        int min)
723 {
724         void *page;
725
726         if (cache->nobjs >= min)
727                 return 0;
728         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
729                 page = (void *)__get_free_page(GFP_KERNEL);
730                 if (!page)
731                         return -ENOMEM;
732                 cache->objects[cache->nobjs++] = page;
733         }
734         return 0;
735 }
736
737 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
738 {
739         while (mc->nobjs)
740                 free_page((unsigned long)mc->objects[--mc->nobjs]);
741 }
742
743 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
744 {
745         int r;
746
747         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
748                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
749         if (r)
750                 goto out;
751         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
752         if (r)
753                 goto out;
754         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                    mmu_page_header_cache, 4);
756 out:
757         return r;
758 }
759
760 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
761 {
762         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
763                                 pte_list_desc_cache);
764         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
765         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
766                                 mmu_page_header_cache);
767 }
768
769 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
770 {
771         void *p;
772
773         BUG_ON(!mc->nobjs);
774         p = mc->objects[--mc->nobjs];
775         return p;
776 }
777
778 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
779 {
780         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
781 }
782
783 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
784 {
785         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
786 }
787
788 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
789 {
790         if (!sp->role.direct)
791                 return sp->gfns[index];
792
793         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
794 }
795
796 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
797 {
798         if (sp->role.direct)
799                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
800         else
801                 sp->gfns[index] = gfn;
802 }
803
804 /*
805  * Return the pointer to the large page information for a given gfn,
806  * handling slots that are not large page aligned.
807  */
808 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
809                                               struct kvm_memory_slot *slot,
810                                               int level)
811 {
812         unsigned long idx;
813
814         idx = gfn_to_index(gfn, slot->base_gfn, level);
815         return &slot->arch.lpage_info[level - 2][idx];
816 }
817
818 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
819 {
820         struct kvm_memory_slot *slot;
821         struct kvm_lpage_info *linfo;
822         int i;
823
824         slot = gfn_to_memslot(kvm, gfn);
825         for (i = PT_DIRECTORY_LEVEL;
826              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
827                 linfo = lpage_info_slot(gfn, slot, i);
828                 linfo->write_count += 1;
829         }
830         kvm->arch.indirect_shadow_pages++;
831 }
832
833 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
834 {
835         struct kvm_memory_slot *slot;
836         struct kvm_lpage_info *linfo;
837         int i;
838
839         slot = gfn_to_memslot(kvm, gfn);
840         for (i = PT_DIRECTORY_LEVEL;
841              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
842                 linfo = lpage_info_slot(gfn, slot, i);
843                 linfo->write_count -= 1;
844                 WARN_ON(linfo->write_count < 0);
845         }
846         kvm->arch.indirect_shadow_pages--;
847 }
848
849 static int has_wrprotected_page(struct kvm *kvm,
850                                 gfn_t gfn,
851                                 int level)
852 {
853         struct kvm_memory_slot *slot;
854         struct kvm_lpage_info *linfo;
855
856         slot = gfn_to_memslot(kvm, gfn);
857         if (slot) {
858                 linfo = lpage_info_slot(gfn, slot, level);
859                 return linfo->write_count;
860         }
861
862         return 1;
863 }
864
865 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
866 {
867         unsigned long page_size;
868         int i, ret = 0;
869
870         page_size = kvm_host_page_size(kvm, gfn);
871
872         for (i = PT_PAGE_TABLE_LEVEL;
873              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
874                 if (page_size >= KVM_HPAGE_SIZE(i))
875                         ret = i;
876                 else
877                         break;
878         }
879
880         return ret;
881 }
882
883 static struct kvm_memory_slot *
884 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
885                             bool no_dirty_log)
886 {
887         struct kvm_memory_slot *slot;
888
889         slot = gfn_to_memslot(vcpu->kvm, gfn);
890         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
891               (no_dirty_log && slot->dirty_bitmap))
892                 slot = NULL;
893
894         return slot;
895 }
896
897 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
898 {
899         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
903 {
904         int host_level, level, max_level;
905
906         host_level = host_mapping_level(vcpu->kvm, large_gfn);
907
908         if (host_level == PT_PAGE_TABLE_LEVEL)
909                 return host_level;
910
911         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
912
913         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
914                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
915                         break;
916
917         return level - 1;
918 }
919
920 /*
921  * Pte mapping structures:
922  *
923  * If pte_list bit zero is zero, then pte_list point to the spte.
924  *
925  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
926  * pte_list_desc containing more mappings.
927  *
928  * Returns the number of pte entries before the spte was added or zero if
929  * the spte was not added.
930  *
931  */
932 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
933                         unsigned long *pte_list)
934 {
935         struct pte_list_desc *desc;
936         int i, count = 0;
937
938         if (!*pte_list) {
939                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
940                 *pte_list = (unsigned long)spte;
941         } else if (!(*pte_list & 1)) {
942                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
943                 desc = mmu_alloc_pte_list_desc(vcpu);
944                 desc->sptes[0] = (u64 *)*pte_list;
945                 desc->sptes[1] = spte;
946                 *pte_list = (unsigned long)desc | 1;
947                 ++count;
948         } else {
949                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
950                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
951                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
952                         desc = desc->more;
953                         count += PTE_LIST_EXT;
954                 }
955                 if (desc->sptes[PTE_LIST_EXT-1]) {
956                         desc->more = mmu_alloc_pte_list_desc(vcpu);
957                         desc = desc->more;
958                 }
959                 for (i = 0; desc->sptes[i]; ++i)
960                         ++count;
961                 desc->sptes[i] = spte;
962         }
963         return count;
964 }
965
966 static void
967 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
968                            int i, struct pte_list_desc *prev_desc)
969 {
970         int j;
971
972         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
973                 ;
974         desc->sptes[i] = desc->sptes[j];
975         desc->sptes[j] = NULL;
976         if (j != 0)
977                 return;
978         if (!prev_desc && !desc->more)
979                 *pte_list = (unsigned long)desc->sptes[0];
980         else
981                 if (prev_desc)
982                         prev_desc->more = desc->more;
983                 else
984                         *pte_list = (unsigned long)desc->more | 1;
985         mmu_free_pte_list_desc(desc);
986 }
987
988 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
989 {
990         struct pte_list_desc *desc;
991         struct pte_list_desc *prev_desc;
992         int i;
993
994         if (!*pte_list) {
995                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
996                 BUG();
997         } else if (!(*pte_list & 1)) {
998                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
999                 if ((u64 *)*pte_list != spte) {
1000                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1001                         BUG();
1002                 }
1003                 *pte_list = 0;
1004         } else {
1005                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1006                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1007                 prev_desc = NULL;
1008                 while (desc) {
1009                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1010                                 if (desc->sptes[i] == spte) {
1011                                         pte_list_desc_remove_entry(pte_list,
1012                                                                desc, i,
1013                                                                prev_desc);
1014                                         return;
1015                                 }
1016                         prev_desc = desc;
1017                         desc = desc->more;
1018                 }
1019                 pr_err("pte_list_remove: %p many->many\n", spte);
1020                 BUG();
1021         }
1022 }
1023
1024 typedef void (*pte_list_walk_fn) (u64 *spte);
1025 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1026 {
1027         struct pte_list_desc *desc;
1028         int i;
1029
1030         if (!*pte_list)
1031                 return;
1032
1033         if (!(*pte_list & 1))
1034                 return fn((u64 *)*pte_list);
1035
1036         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1037         while (desc) {
1038                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1039                         fn(desc->sptes[i]);
1040                 desc = desc->more;
1041         }
1042 }
1043
1044 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1045                                     struct kvm_memory_slot *slot)
1046 {
1047         unsigned long idx;
1048
1049         idx = gfn_to_index(gfn, slot->base_gfn, level);
1050         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1051 }
1052
1053 /*
1054  * Take gfn and return the reverse mapping to it.
1055  */
1056 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1057 {
1058         struct kvm_memory_slot *slot;
1059
1060         slot = gfn_to_memslot(kvm, gfn);
1061         return __gfn_to_rmap(gfn, level, slot);
1062 }
1063
1064 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1065 {
1066         struct kvm_mmu_memory_cache *cache;
1067
1068         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1069         return mmu_memory_cache_free_objects(cache);
1070 }
1071
1072 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1073 {
1074         struct kvm_mmu_page *sp;
1075         unsigned long *rmapp;
1076
1077         sp = page_header(__pa(spte));
1078         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1079         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1080         return pte_list_add(vcpu, spte, rmapp);
1081 }
1082
1083 static void rmap_remove(struct kvm *kvm, u64 *spte)
1084 {
1085         struct kvm_mmu_page *sp;
1086         gfn_t gfn;
1087         unsigned long *rmapp;
1088
1089         sp = page_header(__pa(spte));
1090         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1091         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1092         pte_list_remove(spte, rmapp);
1093 }
1094
1095 /*
1096  * Used by the following functions to iterate through the sptes linked by a
1097  * rmap.  All fields are private and not assumed to be used outside.
1098  */
1099 struct rmap_iterator {
1100         /* private fields */
1101         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1102         int pos;                        /* index of the sptep */
1103 };
1104
1105 /*
1106  * Iteration must be started by this function.  This should also be used after
1107  * removing/dropping sptes from the rmap link because in such cases the
1108  * information in the itererator may not be valid.
1109  *
1110  * Returns sptep if found, NULL otherwise.
1111  */
1112 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1113 {
1114         if (!rmap)
1115                 return NULL;
1116
1117         if (!(rmap & 1)) {
1118                 iter->desc = NULL;
1119                 return (u64 *)rmap;
1120         }
1121
1122         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1123         iter->pos = 0;
1124         return iter->desc->sptes[iter->pos];
1125 }
1126
1127 /*
1128  * Must be used with a valid iterator: e.g. after rmap_get_first().
1129  *
1130  * Returns sptep if found, NULL otherwise.
1131  */
1132 static u64 *rmap_get_next(struct rmap_iterator *iter)
1133 {
1134         if (iter->desc) {
1135                 if (iter->pos < PTE_LIST_EXT - 1) {
1136                         u64 *sptep;
1137
1138                         ++iter->pos;
1139                         sptep = iter->desc->sptes[iter->pos];
1140                         if (sptep)
1141                                 return sptep;
1142                 }
1143
1144                 iter->desc = iter->desc->more;
1145
1146                 if (iter->desc) {
1147                         iter->pos = 0;
1148                         /* desc->sptes[0] cannot be NULL */
1149                         return iter->desc->sptes[iter->pos];
1150                 }
1151         }
1152
1153         return NULL;
1154 }
1155
1156 static void drop_spte(struct kvm *kvm, u64 *sptep)
1157 {
1158         if (mmu_spte_clear_track_bits(sptep))
1159                 rmap_remove(kvm, sptep);
1160 }
1161
1162
1163 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1164 {
1165         if (is_large_pte(*sptep)) {
1166                 WARN_ON(page_header(__pa(sptep))->role.level ==
1167                         PT_PAGE_TABLE_LEVEL);
1168                 drop_spte(kvm, sptep);
1169                 --kvm->stat.lpages;
1170                 return true;
1171         }
1172
1173         return false;
1174 }
1175
1176 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1177 {
1178         if (__drop_large_spte(vcpu->kvm, sptep))
1179                 kvm_flush_remote_tlbs(vcpu->kvm);
1180 }
1181
1182 /*
1183  * Write-protect on the specified @sptep, @pt_protect indicates whether
1184  * spte writ-protection is caused by protecting shadow page table.
1185  * @flush indicates whether tlb need be flushed.
1186  *
1187  * Note: write protection is difference between drity logging and spte
1188  * protection:
1189  * - for dirty logging, the spte can be set to writable at anytime if
1190  *   its dirty bitmap is properly set.
1191  * - for spte protection, the spte can be writable only after unsync-ing
1192  *   shadow page.
1193  *
1194  * Return true if the spte is dropped.
1195  */
1196 static bool
1197 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1198 {
1199         u64 spte = *sptep;
1200
1201         if (!is_writable_pte(spte) &&
1202               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1203                 return false;
1204
1205         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1206
1207         if (__drop_large_spte(kvm, sptep)) {
1208                 *flush |= true;
1209                 return true;
1210         }
1211
1212         if (pt_protect)
1213                 spte &= ~SPTE_MMU_WRITEABLE;
1214         spte = spte & ~PT_WRITABLE_MASK;
1215
1216         *flush |= mmu_spte_update(sptep, spte);
1217         return false;
1218 }
1219
1220 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1221                                  bool pt_protect)
1222 {
1223         u64 *sptep;
1224         struct rmap_iterator iter;
1225         bool flush = false;
1226
1227         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1228                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1229                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1230                         sptep = rmap_get_first(*rmapp, &iter);
1231                         continue;
1232                 }
1233
1234                 sptep = rmap_get_next(&iter);
1235         }
1236
1237         return flush;
1238 }
1239
1240 /**
1241  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1242  * @kvm: kvm instance
1243  * @slot: slot to protect
1244  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1245  * @mask: indicates which pages we should protect
1246  *
1247  * Used when we do not need to care about huge page mappings: e.g. during dirty
1248  * logging we do not have any such mappings.
1249  */
1250 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1251                                      struct kvm_memory_slot *slot,
1252                                      gfn_t gfn_offset, unsigned long mask)
1253 {
1254         unsigned long *rmapp;
1255
1256         while (mask) {
1257                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258                                       PT_PAGE_TABLE_LEVEL, slot);
1259                 __rmap_write_protect(kvm, rmapp, false);
1260
1261                 /* clear the first set bit */
1262                 mask &= mask - 1;
1263         }
1264 }
1265
1266 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1267 {
1268         struct kvm_memory_slot *slot;
1269         unsigned long *rmapp;
1270         int i;
1271         bool write_protected = false;
1272
1273         slot = gfn_to_memslot(kvm, gfn);
1274
1275         for (i = PT_PAGE_TABLE_LEVEL;
1276              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1277                 rmapp = __gfn_to_rmap(gfn, i, slot);
1278                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1279         }
1280
1281         return write_protected;
1282 }
1283
1284 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1285                            struct kvm_memory_slot *slot, unsigned long data)
1286 {
1287         u64 *sptep;
1288         struct rmap_iterator iter;
1289         int need_tlb_flush = 0;
1290
1291         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1292                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1293                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1294
1295                 drop_spte(kvm, sptep);
1296                 need_tlb_flush = 1;
1297         }
1298
1299         return need_tlb_flush;
1300 }
1301
1302 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1303                              struct kvm_memory_slot *slot, unsigned long data)
1304 {
1305         u64 *sptep;
1306         struct rmap_iterator iter;
1307         int need_flush = 0;
1308         u64 new_spte;
1309         pte_t *ptep = (pte_t *)data;
1310         pfn_t new_pfn;
1311
1312         WARN_ON(pte_huge(*ptep));
1313         new_pfn = pte_pfn(*ptep);
1314
1315         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1316                 BUG_ON(!is_shadow_present_pte(*sptep));
1317                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1318
1319                 need_flush = 1;
1320
1321                 if (pte_write(*ptep)) {
1322                         drop_spte(kvm, sptep);
1323                         sptep = rmap_get_first(*rmapp, &iter);
1324                 } else {
1325                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1326                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1327
1328                         new_spte &= ~PT_WRITABLE_MASK;
1329                         new_spte &= ~SPTE_HOST_WRITEABLE;
1330                         new_spte &= ~shadow_accessed_mask;
1331
1332                         mmu_spte_clear_track_bits(sptep);
1333                         mmu_spte_set(sptep, new_spte);
1334                         sptep = rmap_get_next(&iter);
1335                 }
1336         }
1337
1338         if (need_flush)
1339                 kvm_flush_remote_tlbs(kvm);
1340
1341         return 0;
1342 }
1343
1344 static int kvm_handle_hva_range(struct kvm *kvm,
1345                                 unsigned long start,
1346                                 unsigned long end,
1347                                 unsigned long data,
1348                                 int (*handler)(struct kvm *kvm,
1349                                                unsigned long *rmapp,
1350                                                struct kvm_memory_slot *slot,
1351                                                unsigned long data))
1352 {
1353         int j;
1354         int ret = 0;
1355         struct kvm_memslots *slots;
1356         struct kvm_memory_slot *memslot;
1357
1358         slots = kvm_memslots(kvm);
1359
1360         kvm_for_each_memslot(memslot, slots) {
1361                 unsigned long hva_start, hva_end;
1362                 gfn_t gfn_start, gfn_end;
1363
1364                 hva_start = max(start, memslot->userspace_addr);
1365                 hva_end = min(end, memslot->userspace_addr +
1366                                         (memslot->npages << PAGE_SHIFT));
1367                 if (hva_start >= hva_end)
1368                         continue;
1369                 /*
1370                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1371                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1372                  */
1373                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1374                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1375
1376                 for (j = PT_PAGE_TABLE_LEVEL;
1377                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1378                         unsigned long idx, idx_end;
1379                         unsigned long *rmapp;
1380
1381                         /*
1382                          * {idx(page_j) | page_j intersects with
1383                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1384                          */
1385                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1386                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1387
1388                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1389
1390                         for (; idx <= idx_end; ++idx)
1391                                 ret |= handler(kvm, rmapp++, memslot, data);
1392                 }
1393         }
1394
1395         return ret;
1396 }
1397
1398 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1399                           unsigned long data,
1400                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1401                                          struct kvm_memory_slot *slot,
1402                                          unsigned long data))
1403 {
1404         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1405 }
1406
1407 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1408 {
1409         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1410 }
1411
1412 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1413 {
1414         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1415 }
1416
1417 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1418 {
1419         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1420 }
1421
1422 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1423                          struct kvm_memory_slot *slot, unsigned long data)
1424 {
1425         u64 *sptep;
1426         struct rmap_iterator uninitialized_var(iter);
1427         int young = 0;
1428
1429         /*
1430          * In case of absence of EPT Access and Dirty Bits supports,
1431          * emulate the accessed bit for EPT, by checking if this page has
1432          * an EPT mapping, and clearing it if it does. On the next access,
1433          * a new EPT mapping will be established.
1434          * This has some overhead, but not as much as the cost of swapping
1435          * out actively used pages or breaking up actively used hugepages.
1436          */
1437         if (!shadow_accessed_mask) {
1438                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1439                 goto out;
1440         }
1441
1442         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1443              sptep = rmap_get_next(&iter)) {
1444                 BUG_ON(!is_shadow_present_pte(*sptep));
1445
1446                 if (*sptep & shadow_accessed_mask) {
1447                         young = 1;
1448                         clear_bit((ffs(shadow_accessed_mask) - 1),
1449                                  (unsigned long *)sptep);
1450                 }
1451         }
1452 out:
1453         /* @data has hva passed to kvm_age_hva(). */
1454         trace_kvm_age_page(data, slot, young);
1455         return young;
1456 }
1457
1458 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1459                               struct kvm_memory_slot *slot, unsigned long data)
1460 {
1461         u64 *sptep;
1462         struct rmap_iterator iter;
1463         int young = 0;
1464
1465         /*
1466          * If there's no access bit in the secondary pte set by the
1467          * hardware it's up to gup-fast/gup to set the access bit in
1468          * the primary pte or in the page structure.
1469          */
1470         if (!shadow_accessed_mask)
1471                 goto out;
1472
1473         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1474              sptep = rmap_get_next(&iter)) {
1475                 BUG_ON(!is_shadow_present_pte(*sptep));
1476
1477                 if (*sptep & shadow_accessed_mask) {
1478                         young = 1;
1479                         break;
1480                 }
1481         }
1482 out:
1483         return young;
1484 }
1485
1486 #define RMAP_RECYCLE_THRESHOLD 1000
1487
1488 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1489 {
1490         unsigned long *rmapp;
1491         struct kvm_mmu_page *sp;
1492
1493         sp = page_header(__pa(spte));
1494
1495         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1496
1497         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1498         kvm_flush_remote_tlbs(vcpu->kvm);
1499 }
1500
1501 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1502 {
1503         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1504 }
1505
1506 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1507 {
1508         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1509 }
1510
1511 #ifdef MMU_DEBUG
1512 static int is_empty_shadow_page(u64 *spt)
1513 {
1514         u64 *pos;
1515         u64 *end;
1516
1517         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1518                 if (is_shadow_present_pte(*pos)) {
1519                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1520                                pos, *pos);
1521                         return 0;
1522                 }
1523         return 1;
1524 }
1525 #endif
1526
1527 /*
1528  * This value is the sum of all of the kvm instances's
1529  * kvm->arch.n_used_mmu_pages values.  We need a global,
1530  * aggregate version in order to make the slab shrinker
1531  * faster
1532  */
1533 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1534 {
1535         kvm->arch.n_used_mmu_pages += nr;
1536         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1537 }
1538
1539 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1540 {
1541         ASSERT(is_empty_shadow_page(sp->spt));
1542         hlist_del(&sp->hash_link);
1543         list_del(&sp->link);
1544         free_page((unsigned long)sp->spt);
1545         if (!sp->role.direct)
1546                 free_page((unsigned long)sp->gfns);
1547         kmem_cache_free(mmu_page_header_cache, sp);
1548 }
1549
1550 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1551 {
1552         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1553 }
1554
1555 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1556                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1557 {
1558         if (!parent_pte)
1559                 return;
1560
1561         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1562 }
1563
1564 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1565                                        u64 *parent_pte)
1566 {
1567         pte_list_remove(parent_pte, &sp->parent_ptes);
1568 }
1569
1570 static void drop_parent_pte(struct kvm_mmu_page *sp,
1571                             u64 *parent_pte)
1572 {
1573         mmu_page_remove_parent_pte(sp, parent_pte);
1574         mmu_spte_clear_no_track(parent_pte);
1575 }
1576
1577 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1578                                                u64 *parent_pte, int direct)
1579 {
1580         struct kvm_mmu_page *sp;
1581
1582         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1583         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1584         if (!direct)
1585                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1586         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1587
1588         /*
1589          * The active_mmu_pages list is the FIFO list, do not move the
1590          * page until it is zapped. kvm_zap_obsolete_pages depends on
1591          * this feature. See the comments in kvm_zap_obsolete_pages().
1592          */
1593         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1594         sp->parent_ptes = 0;
1595         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1596         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1597         return sp;
1598 }
1599
1600 static void mark_unsync(u64 *spte);
1601 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1602 {
1603         pte_list_walk(&sp->parent_ptes, mark_unsync);
1604 }
1605
1606 static void mark_unsync(u64 *spte)
1607 {
1608         struct kvm_mmu_page *sp;
1609         unsigned int index;
1610
1611         sp = page_header(__pa(spte));
1612         index = spte - sp->spt;
1613         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1614                 return;
1615         if (sp->unsync_children++)
1616                 return;
1617         kvm_mmu_mark_parents_unsync(sp);
1618 }
1619
1620 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1621                                struct kvm_mmu_page *sp)
1622 {
1623         return 1;
1624 }
1625
1626 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1627 {
1628 }
1629
1630 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1631                                  struct kvm_mmu_page *sp, u64 *spte,
1632                                  const void *pte)
1633 {
1634         WARN_ON(1);
1635 }
1636
1637 #define KVM_PAGE_ARRAY_NR 16
1638
1639 struct kvm_mmu_pages {
1640         struct mmu_page_and_offset {
1641                 struct kvm_mmu_page *sp;
1642                 unsigned int idx;
1643         } page[KVM_PAGE_ARRAY_NR];
1644         unsigned int nr;
1645 };
1646
1647 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1648                          int idx)
1649 {
1650         int i;
1651
1652         if (sp->unsync)
1653                 for (i=0; i < pvec->nr; i++)
1654                         if (pvec->page[i].sp == sp)
1655                                 return 0;
1656
1657         pvec->page[pvec->nr].sp = sp;
1658         pvec->page[pvec->nr].idx = idx;
1659         pvec->nr++;
1660         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1661 }
1662
1663 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1664                            struct kvm_mmu_pages *pvec)
1665 {
1666         int i, ret, nr_unsync_leaf = 0;
1667
1668         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1669                 struct kvm_mmu_page *child;
1670                 u64 ent = sp->spt[i];
1671
1672                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1673                         goto clear_child_bitmap;
1674
1675                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1676
1677                 if (child->unsync_children) {
1678                         if (mmu_pages_add(pvec, child, i))
1679                                 return -ENOSPC;
1680
1681                         ret = __mmu_unsync_walk(child, pvec);
1682                         if (!ret)
1683                                 goto clear_child_bitmap;
1684                         else if (ret > 0)
1685                                 nr_unsync_leaf += ret;
1686                         else
1687                                 return ret;
1688                 } else if (child->unsync) {
1689                         nr_unsync_leaf++;
1690                         if (mmu_pages_add(pvec, child, i))
1691                                 return -ENOSPC;
1692                 } else
1693                          goto clear_child_bitmap;
1694
1695                 continue;
1696
1697 clear_child_bitmap:
1698                 __clear_bit(i, sp->unsync_child_bitmap);
1699                 sp->unsync_children--;
1700                 WARN_ON((int)sp->unsync_children < 0);
1701         }
1702
1703
1704         return nr_unsync_leaf;
1705 }
1706
1707 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1708                            struct kvm_mmu_pages *pvec)
1709 {
1710         if (!sp->unsync_children)
1711                 return 0;
1712
1713         mmu_pages_add(pvec, sp, 0);
1714         return __mmu_unsync_walk(sp, pvec);
1715 }
1716
1717 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1718 {
1719         WARN_ON(!sp->unsync);
1720         trace_kvm_mmu_sync_page(sp);
1721         sp->unsync = 0;
1722         --kvm->stat.mmu_unsync;
1723 }
1724
1725 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1726                                     struct list_head *invalid_list);
1727 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1728                                     struct list_head *invalid_list);
1729
1730 /*
1731  * NOTE: we should pay more attention on the zapped-obsolete page
1732  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1733  * since it has been deleted from active_mmu_pages but still can be found
1734  * at hast list.
1735  *
1736  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1737  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1738  * all the obsolete pages.
1739  */
1740 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1741         hlist_for_each_entry(_sp,                                       \
1742           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1743                 if ((_sp)->gfn != (_gfn)) {} else
1744
1745 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1746         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1747                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1748
1749 /* @sp->gfn should be write-protected at the call site */
1750 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1751                            struct list_head *invalid_list, bool clear_unsync)
1752 {
1753         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1754                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1755                 return 1;
1756         }
1757
1758         if (clear_unsync)
1759                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1760
1761         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1762                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1763                 return 1;
1764         }
1765
1766         kvm_mmu_flush_tlb(vcpu);
1767         return 0;
1768 }
1769
1770 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1771                                    struct kvm_mmu_page *sp)
1772 {
1773         LIST_HEAD(invalid_list);
1774         int ret;
1775
1776         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1777         if (ret)
1778                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1779
1780         return ret;
1781 }
1782
1783 #ifdef CONFIG_KVM_MMU_AUDIT
1784 #include "mmu_audit.c"
1785 #else
1786 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1787 static void mmu_audit_disable(void) { }
1788 #endif
1789
1790 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1791                          struct list_head *invalid_list)
1792 {
1793         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1794 }
1795
1796 /* @gfn should be write-protected at the call site */
1797 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1798 {
1799         struct kvm_mmu_page *s;
1800         LIST_HEAD(invalid_list);
1801         bool flush = false;
1802
1803         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1804                 if (!s->unsync)
1805                         continue;
1806
1807                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1808                 kvm_unlink_unsync_page(vcpu->kvm, s);
1809                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1810                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1811                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1812                         continue;
1813                 }
1814                 flush = true;
1815         }
1816
1817         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1818         if (flush)
1819                 kvm_mmu_flush_tlb(vcpu);
1820 }
1821
1822 struct mmu_page_path {
1823         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1824         unsigned int idx[PT64_ROOT_LEVEL-1];
1825 };
1826
1827 #define for_each_sp(pvec, sp, parents, i)                       \
1828                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1829                         sp = pvec.page[i].sp;                   \
1830                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1831                         i = mmu_pages_next(&pvec, &parents, i))
1832
1833 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1834                           struct mmu_page_path *parents,
1835                           int i)
1836 {
1837         int n;
1838
1839         for (n = i+1; n < pvec->nr; n++) {
1840                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1841
1842                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1843                         parents->idx[0] = pvec->page[n].idx;
1844                         return n;
1845                 }
1846
1847                 parents->parent[sp->role.level-2] = sp;
1848                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1849         }
1850
1851         return n;
1852 }
1853
1854 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1855 {
1856         struct kvm_mmu_page *sp;
1857         unsigned int level = 0;
1858
1859         do {
1860                 unsigned int idx = parents->idx[level];
1861
1862                 sp = parents->parent[level];
1863                 if (!sp)
1864                         return;
1865
1866                 --sp->unsync_children;
1867                 WARN_ON((int)sp->unsync_children < 0);
1868                 __clear_bit(idx, sp->unsync_child_bitmap);
1869                 level++;
1870         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1871 }
1872
1873 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1874                                struct mmu_page_path *parents,
1875                                struct kvm_mmu_pages *pvec)
1876 {
1877         parents->parent[parent->role.level-1] = NULL;
1878         pvec->nr = 0;
1879 }
1880
1881 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1882                               struct kvm_mmu_page *parent)
1883 {
1884         int i;
1885         struct kvm_mmu_page *sp;
1886         struct mmu_page_path parents;
1887         struct kvm_mmu_pages pages;
1888         LIST_HEAD(invalid_list);
1889
1890         kvm_mmu_pages_init(parent, &parents, &pages);
1891         while (mmu_unsync_walk(parent, &pages)) {
1892                 bool protected = false;
1893
1894                 for_each_sp(pages, sp, parents, i)
1895                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1896
1897                 if (protected)
1898                         kvm_flush_remote_tlbs(vcpu->kvm);
1899
1900                 for_each_sp(pages, sp, parents, i) {
1901                         kvm_sync_page(vcpu, sp, &invalid_list);
1902                         mmu_pages_clear_parents(&parents);
1903                 }
1904                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1905                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1906                 kvm_mmu_pages_init(parent, &parents, &pages);
1907         }
1908 }
1909
1910 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1911 {
1912         int i;
1913
1914         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1915                 sp->spt[i] = 0ull;
1916 }
1917
1918 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1919 {
1920         sp->write_flooding_count = 0;
1921 }
1922
1923 static void clear_sp_write_flooding_count(u64 *spte)
1924 {
1925         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1926
1927         __clear_sp_write_flooding_count(sp);
1928 }
1929
1930 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1931 {
1932         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1933 }
1934
1935 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1936                                              gfn_t gfn,
1937                                              gva_t gaddr,
1938                                              unsigned level,
1939                                              int direct,
1940                                              unsigned access,
1941                                              u64 *parent_pte)
1942 {
1943         union kvm_mmu_page_role role;
1944         unsigned quadrant;
1945         struct kvm_mmu_page *sp;
1946         bool need_sync = false;
1947
1948         role = vcpu->arch.mmu.base_role;
1949         role.level = level;
1950         role.direct = direct;
1951         if (role.direct)
1952                 role.cr4_pae = 0;
1953         role.access = access;
1954         if (!vcpu->arch.mmu.direct_map
1955             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1956                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1957                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1958                 role.quadrant = quadrant;
1959         }
1960         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1961                 if (is_obsolete_sp(vcpu->kvm, sp))
1962                         continue;
1963
1964                 if (!need_sync && sp->unsync)
1965                         need_sync = true;
1966
1967                 if (sp->role.word != role.word)
1968                         continue;
1969
1970                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1971                         break;
1972
1973                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1974                 if (sp->unsync_children) {
1975                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1976                         kvm_mmu_mark_parents_unsync(sp);
1977                 } else if (sp->unsync)
1978                         kvm_mmu_mark_parents_unsync(sp);
1979
1980                 __clear_sp_write_flooding_count(sp);
1981                 trace_kvm_mmu_get_page(sp, false);
1982                 return sp;
1983         }
1984         ++vcpu->kvm->stat.mmu_cache_miss;
1985         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1986         if (!sp)
1987                 return sp;
1988         sp->gfn = gfn;
1989         sp->role = role;
1990         hlist_add_head(&sp->hash_link,
1991                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1992         if (!direct) {
1993                 if (rmap_write_protect(vcpu->kvm, gfn))
1994                         kvm_flush_remote_tlbs(vcpu->kvm);
1995                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1996                         kvm_sync_pages(vcpu, gfn);
1997
1998                 account_shadowed(vcpu->kvm, gfn);
1999         }
2000         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2001         init_shadow_page_table(sp);
2002         trace_kvm_mmu_get_page(sp, true);
2003         return sp;
2004 }
2005
2006 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2007                              struct kvm_vcpu *vcpu, u64 addr)
2008 {
2009         iterator->addr = addr;
2010         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2011         iterator->level = vcpu->arch.mmu.shadow_root_level;
2012
2013         if (iterator->level == PT64_ROOT_LEVEL &&
2014             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2015             !vcpu->arch.mmu.direct_map)
2016                 --iterator->level;
2017
2018         if (iterator->level == PT32E_ROOT_LEVEL) {
2019                 iterator->shadow_addr
2020                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2021                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2022                 --iterator->level;
2023                 if (!iterator->shadow_addr)
2024                         iterator->level = 0;
2025         }
2026 }
2027
2028 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2029 {
2030         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2031                 return false;
2032
2033         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2034         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2035         return true;
2036 }
2037
2038 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2039                                u64 spte)
2040 {
2041         if (is_last_spte(spte, iterator->level)) {
2042                 iterator->level = 0;
2043                 return;
2044         }
2045
2046         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2047         --iterator->level;
2048 }
2049
2050 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2051 {
2052         return __shadow_walk_next(iterator, *iterator->sptep);
2053 }
2054
2055 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2056 {
2057         u64 spte;
2058
2059         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2060                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2061
2062         mmu_spte_set(sptep, spte);
2063 }
2064
2065 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2066                                    unsigned direct_access)
2067 {
2068         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2069                 struct kvm_mmu_page *child;
2070
2071                 /*
2072                  * For the direct sp, if the guest pte's dirty bit
2073                  * changed form clean to dirty, it will corrupt the
2074                  * sp's access: allow writable in the read-only sp,
2075                  * so we should update the spte at this point to get
2076                  * a new sp with the correct access.
2077                  */
2078                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2079                 if (child->role.access == direct_access)
2080                         return;
2081
2082                 drop_parent_pte(child, sptep);
2083                 kvm_flush_remote_tlbs(vcpu->kvm);
2084         }
2085 }
2086
2087 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2088                              u64 *spte)
2089 {
2090         u64 pte;
2091         struct kvm_mmu_page *child;
2092
2093         pte = *spte;
2094         if (is_shadow_present_pte(pte)) {
2095                 if (is_last_spte(pte, sp->role.level)) {
2096                         drop_spte(kvm, spte);
2097                         if (is_large_pte(pte))
2098                                 --kvm->stat.lpages;
2099                 } else {
2100                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2101                         drop_parent_pte(child, spte);
2102                 }
2103                 return true;
2104         }
2105
2106         if (is_mmio_spte(pte))
2107                 mmu_spte_clear_no_track(spte);
2108
2109         return false;
2110 }
2111
2112 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2113                                          struct kvm_mmu_page *sp)
2114 {
2115         unsigned i;
2116
2117         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2118                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2119 }
2120
2121 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2122 {
2123         mmu_page_remove_parent_pte(sp, parent_pte);
2124 }
2125
2126 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2127 {
2128         u64 *sptep;
2129         struct rmap_iterator iter;
2130
2131         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2132                 drop_parent_pte(sp, sptep);
2133 }
2134
2135 static int mmu_zap_unsync_children(struct kvm *kvm,
2136                                    struct kvm_mmu_page *parent,
2137                                    struct list_head *invalid_list)
2138 {
2139         int i, zapped = 0;
2140         struct mmu_page_path parents;
2141         struct kvm_mmu_pages pages;
2142
2143         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2144                 return 0;
2145
2146         kvm_mmu_pages_init(parent, &parents, &pages);
2147         while (mmu_unsync_walk(parent, &pages)) {
2148                 struct kvm_mmu_page *sp;
2149
2150                 for_each_sp(pages, sp, parents, i) {
2151                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2152                         mmu_pages_clear_parents(&parents);
2153                         zapped++;
2154                 }
2155                 kvm_mmu_pages_init(parent, &parents, &pages);
2156         }
2157
2158         return zapped;
2159 }
2160
2161 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2162                                     struct list_head *invalid_list)
2163 {
2164         int ret;
2165
2166         trace_kvm_mmu_prepare_zap_page(sp);
2167         ++kvm->stat.mmu_shadow_zapped;
2168         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2169         kvm_mmu_page_unlink_children(kvm, sp);
2170         kvm_mmu_unlink_parents(kvm, sp);
2171
2172         if (!sp->role.invalid && !sp->role.direct)
2173                 unaccount_shadowed(kvm, sp->gfn);
2174
2175         if (sp->unsync)
2176                 kvm_unlink_unsync_page(kvm, sp);
2177         if (!sp->root_count) {
2178                 /* Count self */
2179                 ret++;
2180                 list_move(&sp->link, invalid_list);
2181                 kvm_mod_used_mmu_pages(kvm, -1);
2182         } else {
2183                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2184
2185                 /*
2186                  * The obsolete pages can not be used on any vcpus.
2187                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2188                  */
2189                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2190                         kvm_reload_remote_mmus(kvm);
2191         }
2192
2193         sp->role.invalid = 1;
2194         return ret;
2195 }
2196
2197 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2198                                     struct list_head *invalid_list)
2199 {
2200         struct kvm_mmu_page *sp, *nsp;
2201
2202         if (list_empty(invalid_list))
2203                 return;
2204
2205         /*
2206          * wmb: make sure everyone sees our modifications to the page tables
2207          * rmb: make sure we see changes to vcpu->mode
2208          */
2209         smp_mb();
2210
2211         /*
2212          * Wait for all vcpus to exit guest mode and/or lockless shadow
2213          * page table walks.
2214          */
2215         kvm_flush_remote_tlbs(kvm);
2216
2217         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2218                 WARN_ON(!sp->role.invalid || sp->root_count);
2219                 kvm_mmu_free_page(sp);
2220         }
2221 }
2222
2223 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2224                                         struct list_head *invalid_list)
2225 {
2226         struct kvm_mmu_page *sp;
2227
2228         if (list_empty(&kvm->arch.active_mmu_pages))
2229                 return false;
2230
2231         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2232                         struct kvm_mmu_page, link);
2233         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2234
2235         return true;
2236 }
2237
2238 /*
2239  * Changing the number of mmu pages allocated to the vm
2240  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2241  */
2242 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2243 {
2244         LIST_HEAD(invalid_list);
2245
2246         spin_lock(&kvm->mmu_lock);
2247
2248         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2249                 /* Need to free some mmu pages to achieve the goal. */
2250                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2251                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2252                                 break;
2253
2254                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2255                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2256         }
2257
2258         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2259
2260         spin_unlock(&kvm->mmu_lock);
2261 }
2262
2263 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2264 {
2265         struct kvm_mmu_page *sp;
2266         LIST_HEAD(invalid_list);
2267         int r;
2268
2269         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2270         r = 0;
2271         spin_lock(&kvm->mmu_lock);
2272         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2273                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2274                          sp->role.word);
2275                 r = 1;
2276                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2277         }
2278         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2279         spin_unlock(&kvm->mmu_lock);
2280
2281         return r;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2284
2285 /*
2286  * The function is based on mtrr_type_lookup() in
2287  * arch/x86/kernel/cpu/mtrr/generic.c
2288  */
2289 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2290                          u64 start, u64 end)
2291 {
2292         int i;
2293         u64 base, mask;
2294         u8 prev_match, curr_match;
2295         int num_var_ranges = KVM_NR_VAR_MTRR;
2296
2297         if (!mtrr_state->enabled)
2298                 return 0xFF;
2299
2300         /* Make end inclusive end, instead of exclusive */
2301         end--;
2302
2303         /* Look in fixed ranges. Just return the type as per start */
2304         if (mtrr_state->have_fixed && (start < 0x100000)) {
2305                 int idx;
2306
2307                 if (start < 0x80000) {
2308                         idx = 0;
2309                         idx += (start >> 16);
2310                         return mtrr_state->fixed_ranges[idx];
2311                 } else if (start < 0xC0000) {
2312                         idx = 1 * 8;
2313                         idx += ((start - 0x80000) >> 14);
2314                         return mtrr_state->fixed_ranges[idx];
2315                 } else if (start < 0x1000000) {
2316                         idx = 3 * 8;
2317                         idx += ((start - 0xC0000) >> 12);
2318                         return mtrr_state->fixed_ranges[idx];
2319                 }
2320         }
2321
2322         /*
2323          * Look in variable ranges
2324          * Look of multiple ranges matching this address and pick type
2325          * as per MTRR precedence
2326          */
2327         if (!(mtrr_state->enabled & 2))
2328                 return mtrr_state->def_type;
2329
2330         prev_match = 0xFF;
2331         for (i = 0; i < num_var_ranges; ++i) {
2332                 unsigned short start_state, end_state;
2333
2334                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2335                         continue;
2336
2337                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2338                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2339                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2340                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2341
2342                 start_state = ((start & mask) == (base & mask));
2343                 end_state = ((end & mask) == (base & mask));
2344                 if (start_state != end_state)
2345                         return 0xFE;
2346
2347                 if ((start & mask) != (base & mask))
2348                         continue;
2349
2350                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2351                 if (prev_match == 0xFF) {
2352                         prev_match = curr_match;
2353                         continue;
2354                 }
2355
2356                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2357                     curr_match == MTRR_TYPE_UNCACHABLE)
2358                         return MTRR_TYPE_UNCACHABLE;
2359
2360                 if ((prev_match == MTRR_TYPE_WRBACK &&
2361                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2362                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2363                      curr_match == MTRR_TYPE_WRBACK)) {
2364                         prev_match = MTRR_TYPE_WRTHROUGH;
2365                         curr_match = MTRR_TYPE_WRTHROUGH;
2366                 }
2367
2368                 if (prev_match != curr_match)
2369                         return MTRR_TYPE_UNCACHABLE;
2370         }
2371
2372         if (prev_match != 0xFF)
2373                 return prev_match;
2374
2375         return mtrr_state->def_type;
2376 }
2377
2378 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2379 {
2380         u8 mtrr;
2381
2382         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2383                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2384         if (mtrr == 0xfe || mtrr == 0xff)
2385                 mtrr = MTRR_TYPE_WRBACK;
2386         return mtrr;
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2389
2390 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2391 {
2392         trace_kvm_mmu_unsync_page(sp);
2393         ++vcpu->kvm->stat.mmu_unsync;
2394         sp->unsync = 1;
2395
2396         kvm_mmu_mark_parents_unsync(sp);
2397 }
2398
2399 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2400 {
2401         struct kvm_mmu_page *s;
2402
2403         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404                 if (s->unsync)
2405                         continue;
2406                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2407                 __kvm_unsync_page(vcpu, s);
2408         }
2409 }
2410
2411 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2412                                   bool can_unsync)
2413 {
2414         struct kvm_mmu_page *s;
2415         bool need_unsync = false;
2416
2417         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2418                 if (!can_unsync)
2419                         return 1;
2420
2421                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2422                         return 1;
2423
2424                 if (!s->unsync)
2425                         need_unsync = true;
2426         }
2427         if (need_unsync)
2428                 kvm_unsync_pages(vcpu, gfn);
2429         return 0;
2430 }
2431
2432 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2433                     unsigned pte_access, int level,
2434                     gfn_t gfn, pfn_t pfn, bool speculative,
2435                     bool can_unsync, bool host_writable)
2436 {
2437         u64 spte;
2438         int ret = 0;
2439
2440         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2441                 return 0;
2442
2443         spte = PT_PRESENT_MASK;
2444         if (!speculative)
2445                 spte |= shadow_accessed_mask;
2446
2447         if (pte_access & ACC_EXEC_MASK)
2448                 spte |= shadow_x_mask;
2449         else
2450                 spte |= shadow_nx_mask;
2451
2452         if (pte_access & ACC_USER_MASK)
2453                 spte |= shadow_user_mask;
2454
2455         if (level > PT_PAGE_TABLE_LEVEL)
2456                 spte |= PT_PAGE_SIZE_MASK;
2457         if (tdp_enabled)
2458                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2459                         kvm_is_mmio_pfn(pfn));
2460
2461         if (host_writable)
2462                 spte |= SPTE_HOST_WRITEABLE;
2463         else
2464                 pte_access &= ~ACC_WRITE_MASK;
2465
2466         spte |= (u64)pfn << PAGE_SHIFT;
2467
2468         if (pte_access & ACC_WRITE_MASK) {
2469
2470                 /*
2471                  * Other vcpu creates new sp in the window between
2472                  * mapping_level() and acquiring mmu-lock. We can
2473                  * allow guest to retry the access, the mapping can
2474                  * be fixed if guest refault.
2475                  */
2476                 if (level > PT_PAGE_TABLE_LEVEL &&
2477                     has_wrprotected_page(vcpu->kvm, gfn, level))
2478                         goto done;
2479
2480                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2481
2482                 /*
2483                  * Optimization: for pte sync, if spte was writable the hash
2484                  * lookup is unnecessary (and expensive). Write protection
2485                  * is responsibility of mmu_get_page / kvm_sync_page.
2486                  * Same reasoning can be applied to dirty page accounting.
2487                  */
2488                 if (!can_unsync && is_writable_pte(*sptep))
2489                         goto set_pte;
2490
2491                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2492                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2493                                  __func__, gfn);
2494                         ret = 1;
2495                         pte_access &= ~ACC_WRITE_MASK;
2496                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2497                 }
2498         }
2499
2500         if (pte_access & ACC_WRITE_MASK)
2501                 mark_page_dirty(vcpu->kvm, gfn);
2502
2503 set_pte:
2504         if (mmu_spte_update(sptep, spte))
2505                 kvm_flush_remote_tlbs(vcpu->kvm);
2506 done:
2507         return ret;
2508 }
2509
2510 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2511                          unsigned pte_access, int write_fault, int *emulate,
2512                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2513                          bool host_writable)
2514 {
2515         int was_rmapped = 0;
2516         int rmap_count;
2517
2518         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2519                  *sptep, write_fault, gfn);
2520
2521         if (is_rmap_spte(*sptep)) {
2522                 /*
2523                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2524                  * the parent of the now unreachable PTE.
2525                  */
2526                 if (level > PT_PAGE_TABLE_LEVEL &&
2527                     !is_large_pte(*sptep)) {
2528                         struct kvm_mmu_page *child;
2529                         u64 pte = *sptep;
2530
2531                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2532                         drop_parent_pte(child, sptep);
2533                         kvm_flush_remote_tlbs(vcpu->kvm);
2534                 } else if (pfn != spte_to_pfn(*sptep)) {
2535                         pgprintk("hfn old %llx new %llx\n",
2536                                  spte_to_pfn(*sptep), pfn);
2537                         drop_spte(vcpu->kvm, sptep);
2538                         kvm_flush_remote_tlbs(vcpu->kvm);
2539                 } else
2540                         was_rmapped = 1;
2541         }
2542
2543         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2544               true, host_writable)) {
2545                 if (write_fault)
2546                         *emulate = 1;
2547                 kvm_mmu_flush_tlb(vcpu);
2548         }
2549
2550         if (unlikely(is_mmio_spte(*sptep) && emulate))
2551                 *emulate = 1;
2552
2553         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2554         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2555                  is_large_pte(*sptep)? "2MB" : "4kB",
2556                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2557                  *sptep, sptep);
2558         if (!was_rmapped && is_large_pte(*sptep))
2559                 ++vcpu->kvm->stat.lpages;
2560
2561         if (is_shadow_present_pte(*sptep)) {
2562                 if (!was_rmapped) {
2563                         rmap_count = rmap_add(vcpu, sptep, gfn);
2564                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2565                                 rmap_recycle(vcpu, sptep, gfn);
2566                 }
2567         }
2568
2569         kvm_release_pfn_clean(pfn);
2570 }
2571
2572 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2573 {
2574         mmu_free_roots(vcpu);
2575 }
2576
2577 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2578 {
2579         int bit7;
2580
2581         bit7 = (gpte >> 7) & 1;
2582         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2583 }
2584
2585 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2586                                      bool no_dirty_log)
2587 {
2588         struct kvm_memory_slot *slot;
2589
2590         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2591         if (!slot)
2592                 return KVM_PFN_ERR_FAULT;
2593
2594         return gfn_to_pfn_memslot_atomic(slot, gfn);
2595 }
2596
2597 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2598                                   struct kvm_mmu_page *sp, u64 *spte,
2599                                   u64 gpte)
2600 {
2601         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2602                 goto no_present;
2603
2604         if (!is_present_gpte(gpte))
2605                 goto no_present;
2606
2607         if (!(gpte & PT_ACCESSED_MASK))
2608                 goto no_present;
2609
2610         return false;
2611
2612 no_present:
2613         drop_spte(vcpu->kvm, spte);
2614         return true;
2615 }
2616
2617 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2618                                     struct kvm_mmu_page *sp,
2619                                     u64 *start, u64 *end)
2620 {
2621         struct page *pages[PTE_PREFETCH_NUM];
2622         unsigned access = sp->role.access;
2623         int i, ret;
2624         gfn_t gfn;
2625
2626         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2627         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2628                 return -1;
2629
2630         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2631         if (ret <= 0)
2632                 return -1;
2633
2634         for (i = 0; i < ret; i++, gfn++, start++)
2635                 mmu_set_spte(vcpu, start, access, 0, NULL,
2636                              sp->role.level, gfn, page_to_pfn(pages[i]),
2637                              true, true);
2638
2639         return 0;
2640 }
2641
2642 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2643                                   struct kvm_mmu_page *sp, u64 *sptep)
2644 {
2645         u64 *spte, *start = NULL;
2646         int i;
2647
2648         WARN_ON(!sp->role.direct);
2649
2650         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2651         spte = sp->spt + i;
2652
2653         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2654                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2655                         if (!start)
2656                                 continue;
2657                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2658                                 break;
2659                         start = NULL;
2660                 } else if (!start)
2661                         start = spte;
2662         }
2663 }
2664
2665 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2666 {
2667         struct kvm_mmu_page *sp;
2668
2669         /*
2670          * Since it's no accessed bit on EPT, it's no way to
2671          * distinguish between actually accessed translations
2672          * and prefetched, so disable pte prefetch if EPT is
2673          * enabled.
2674          */
2675         if (!shadow_accessed_mask)
2676                 return;
2677
2678         sp = page_header(__pa(sptep));
2679         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2680                 return;
2681
2682         __direct_pte_prefetch(vcpu, sp, sptep);
2683 }
2684
2685 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2686                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2687                         bool prefault)
2688 {
2689         struct kvm_shadow_walk_iterator iterator;
2690         struct kvm_mmu_page *sp;
2691         int emulate = 0;
2692         gfn_t pseudo_gfn;
2693
2694         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2695                 if (iterator.level == level) {
2696                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2697                                      write, &emulate, level, gfn, pfn,
2698                                      prefault, map_writable);
2699                         direct_pte_prefetch(vcpu, iterator.sptep);
2700                         ++vcpu->stat.pf_fixed;
2701                         break;
2702                 }
2703
2704                 if (!is_shadow_present_pte(*iterator.sptep)) {
2705                         u64 base_addr = iterator.addr;
2706
2707                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2708                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2709                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2710                                               iterator.level - 1,
2711                                               1, ACC_ALL, iterator.sptep);
2712
2713                         link_shadow_page(iterator.sptep, sp);
2714                 }
2715         }
2716         return emulate;
2717 }
2718
2719 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2720 {
2721         siginfo_t info;
2722
2723         info.si_signo   = SIGBUS;
2724         info.si_errno   = 0;
2725         info.si_code    = BUS_MCEERR_AR;
2726         info.si_addr    = (void __user *)address;
2727         info.si_addr_lsb = PAGE_SHIFT;
2728
2729         send_sig_info(SIGBUS, &info, tsk);
2730 }
2731
2732 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2733 {
2734         /*
2735          * Do not cache the mmio info caused by writing the readonly gfn
2736          * into the spte otherwise read access on readonly gfn also can
2737          * caused mmio page fault and treat it as mmio access.
2738          * Return 1 to tell kvm to emulate it.
2739          */
2740         if (pfn == KVM_PFN_ERR_RO_FAULT)
2741                 return 1;
2742
2743         if (pfn == KVM_PFN_ERR_HWPOISON) {
2744                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2745                 return 0;
2746         }
2747
2748         return -EFAULT;
2749 }
2750
2751 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2752                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2753 {
2754         pfn_t pfn = *pfnp;
2755         gfn_t gfn = *gfnp;
2756         int level = *levelp;
2757
2758         /*
2759          * Check if it's a transparent hugepage. If this would be an
2760          * hugetlbfs page, level wouldn't be set to
2761          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2762          * here.
2763          */
2764         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2765             level == PT_PAGE_TABLE_LEVEL &&
2766             PageTransCompound(pfn_to_page(pfn)) &&
2767             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2768                 unsigned long mask;
2769                 /*
2770                  * mmu_notifier_retry was successful and we hold the
2771                  * mmu_lock here, so the pmd can't become splitting
2772                  * from under us, and in turn
2773                  * __split_huge_page_refcount() can't run from under
2774                  * us and we can safely transfer the refcount from
2775                  * PG_tail to PG_head as we switch the pfn to tail to
2776                  * head.
2777                  */
2778                 *levelp = level = PT_DIRECTORY_LEVEL;
2779                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2780                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2781                 if (pfn & mask) {
2782                         gfn &= ~mask;
2783                         *gfnp = gfn;
2784                         kvm_release_pfn_clean(pfn);
2785                         pfn &= ~mask;
2786                         kvm_get_pfn(pfn);
2787                         *pfnp = pfn;
2788                 }
2789         }
2790 }
2791
2792 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2793                                 pfn_t pfn, unsigned access, int *ret_val)
2794 {
2795         bool ret = true;
2796
2797         /* The pfn is invalid, report the error! */
2798         if (unlikely(is_error_pfn(pfn))) {
2799                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2800                 goto exit;
2801         }
2802
2803         if (unlikely(is_noslot_pfn(pfn)))
2804                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2805
2806         ret = false;
2807 exit:
2808         return ret;
2809 }
2810
2811 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2812 {
2813         /*
2814          * #PF can be fast only if the shadow page table is present and it
2815          * is caused by write-protect, that means we just need change the
2816          * W bit of the spte which can be done out of mmu-lock.
2817          */
2818         if (!(error_code & PFERR_PRESENT_MASK) ||
2819               !(error_code & PFERR_WRITE_MASK))
2820                 return false;
2821
2822         return true;
2823 }
2824
2825 static bool
2826 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2827 {
2828         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2829         gfn_t gfn;
2830
2831         WARN_ON(!sp->role.direct);
2832
2833         /*
2834          * The gfn of direct spte is stable since it is calculated
2835          * by sp->gfn.
2836          */
2837         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2838
2839         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2840                 mark_page_dirty(vcpu->kvm, gfn);
2841
2842         return true;
2843 }
2844
2845 /*
2846  * Return value:
2847  * - true: let the vcpu to access on the same address again.
2848  * - false: let the real page fault path to fix it.
2849  */
2850 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2851                             u32 error_code)
2852 {
2853         struct kvm_shadow_walk_iterator iterator;
2854         bool ret = false;
2855         u64 spte = 0ull;
2856
2857         if (!page_fault_can_be_fast(vcpu, error_code))
2858                 return false;
2859
2860         walk_shadow_page_lockless_begin(vcpu);
2861         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2862                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2863                         break;
2864
2865         /*
2866          * If the mapping has been changed, let the vcpu fault on the
2867          * same address again.
2868          */
2869         if (!is_rmap_spte(spte)) {
2870                 ret = true;
2871                 goto exit;
2872         }
2873
2874         if (!is_last_spte(spte, level))
2875                 goto exit;
2876
2877         /*
2878          * Check if it is a spurious fault caused by TLB lazily flushed.
2879          *
2880          * Need not check the access of upper level table entries since
2881          * they are always ACC_ALL.
2882          */
2883          if (is_writable_pte(spte)) {
2884                 ret = true;
2885                 goto exit;
2886         }
2887
2888         /*
2889          * Currently, to simplify the code, only the spte write-protected
2890          * by dirty-log can be fast fixed.
2891          */
2892         if (!spte_is_locklessly_modifiable(spte))
2893                 goto exit;
2894
2895         /*
2896          * Currently, fast page fault only works for direct mapping since
2897          * the gfn is not stable for indirect shadow page.
2898          * See Documentation/virtual/kvm/locking.txt to get more detail.
2899          */
2900         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2901 exit:
2902         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2903                               spte, ret);
2904         walk_shadow_page_lockless_end(vcpu);
2905
2906         return ret;
2907 }
2908
2909 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2910                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2911 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2912
2913 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2914                          gfn_t gfn, bool prefault)
2915 {
2916         int r;
2917         int level;
2918         int force_pt_level;
2919         pfn_t pfn;
2920         unsigned long mmu_seq;
2921         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2922
2923         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2924         if (likely(!force_pt_level)) {
2925                 level = mapping_level(vcpu, gfn);
2926                 /*
2927                  * This path builds a PAE pagetable - so we can map
2928                  * 2mb pages at maximum. Therefore check if the level
2929                  * is larger than that.
2930                  */
2931                 if (level > PT_DIRECTORY_LEVEL)
2932                         level = PT_DIRECTORY_LEVEL;
2933
2934                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2935         } else
2936                 level = PT_PAGE_TABLE_LEVEL;
2937
2938         if (fast_page_fault(vcpu, v, level, error_code))
2939                 return 0;
2940
2941         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2942         smp_rmb();
2943
2944         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2945                 return 0;
2946
2947         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2948                 return r;
2949
2950         spin_lock(&vcpu->kvm->mmu_lock);
2951         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2952                 goto out_unlock;
2953         make_mmu_pages_available(vcpu);
2954         if (likely(!force_pt_level))
2955                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2956         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2957                          prefault);
2958         spin_unlock(&vcpu->kvm->mmu_lock);
2959
2960
2961         return r;
2962
2963 out_unlock:
2964         spin_unlock(&vcpu->kvm->mmu_lock);
2965         kvm_release_pfn_clean(pfn);
2966         return 0;
2967 }
2968
2969
2970 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2971 {
2972         int i;
2973         struct kvm_mmu_page *sp;
2974         LIST_HEAD(invalid_list);
2975
2976         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2977                 return;
2978
2979         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2980             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2981              vcpu->arch.mmu.direct_map)) {
2982                 hpa_t root = vcpu->arch.mmu.root_hpa;
2983
2984                 spin_lock(&vcpu->kvm->mmu_lock);
2985                 sp = page_header(root);
2986                 --sp->root_count;
2987                 if (!sp->root_count && sp->role.invalid) {
2988                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2989                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2990                 }
2991                 spin_unlock(&vcpu->kvm->mmu_lock);
2992                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2993                 return;
2994         }
2995
2996         spin_lock(&vcpu->kvm->mmu_lock);
2997         for (i = 0; i < 4; ++i) {
2998                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2999
3000                 if (root) {
3001                         root &= PT64_BASE_ADDR_MASK;
3002                         sp = page_header(root);
3003                         --sp->root_count;
3004                         if (!sp->root_count && sp->role.invalid)
3005                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3006                                                          &invalid_list);
3007                 }
3008                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3009         }
3010         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3011         spin_unlock(&vcpu->kvm->mmu_lock);
3012         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3013 }
3014
3015 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3016 {
3017         int ret = 0;
3018
3019         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3020                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3021                 ret = 1;
3022         }
3023
3024         return ret;
3025 }
3026
3027 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3028 {
3029         struct kvm_mmu_page *sp;
3030         unsigned i;
3031
3032         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3033                 spin_lock(&vcpu->kvm->mmu_lock);
3034                 make_mmu_pages_available(vcpu);
3035                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3036                                       1, ACC_ALL, NULL);
3037                 ++sp->root_count;
3038                 spin_unlock(&vcpu->kvm->mmu_lock);
3039                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3040         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3041                 for (i = 0; i < 4; ++i) {
3042                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3043
3044                         ASSERT(!VALID_PAGE(root));
3045                         spin_lock(&vcpu->kvm->mmu_lock);
3046                         make_mmu_pages_available(vcpu);
3047                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3048                                               i << 30,
3049                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3050                                               NULL);
3051                         root = __pa(sp->spt);
3052                         ++sp->root_count;
3053                         spin_unlock(&vcpu->kvm->mmu_lock);
3054                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3055                 }
3056                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3057         } else
3058                 BUG();
3059
3060         return 0;
3061 }
3062
3063 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3064 {
3065         struct kvm_mmu_page *sp;
3066         u64 pdptr, pm_mask;
3067         gfn_t root_gfn;
3068         int i;
3069
3070         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3071
3072         if (mmu_check_root(vcpu, root_gfn))
3073                 return 1;
3074
3075         /*
3076          * Do we shadow a long mode page table? If so we need to
3077          * write-protect the guests page table root.
3078          */
3079         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3080                 hpa_t root = vcpu->arch.mmu.root_hpa;
3081
3082                 ASSERT(!VALID_PAGE(root));
3083
3084                 spin_lock(&vcpu->kvm->mmu_lock);
3085                 make_mmu_pages_available(vcpu);
3086                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3087                                       0, ACC_ALL, NULL);
3088                 root = __pa(sp->spt);
3089                 ++sp->root_count;
3090                 spin_unlock(&vcpu->kvm->mmu_lock);
3091                 vcpu->arch.mmu.root_hpa = root;
3092                 return 0;
3093         }
3094
3095         /*
3096          * We shadow a 32 bit page table. This may be a legacy 2-level
3097          * or a PAE 3-level page table. In either case we need to be aware that
3098          * the shadow page table may be a PAE or a long mode page table.
3099          */
3100         pm_mask = PT_PRESENT_MASK;
3101         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3102                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3103
3104         for (i = 0; i < 4; ++i) {
3105                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3106
3107                 ASSERT(!VALID_PAGE(root));
3108                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3109                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3110                         if (!is_present_gpte(pdptr)) {
3111                                 vcpu->arch.mmu.pae_root[i] = 0;
3112                                 continue;
3113                         }
3114                         root_gfn = pdptr >> PAGE_SHIFT;
3115                         if (mmu_check_root(vcpu, root_gfn))
3116                                 return 1;
3117                 }
3118                 spin_lock(&vcpu->kvm->mmu_lock);
3119                 make_mmu_pages_available(vcpu);
3120                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3121                                       PT32_ROOT_LEVEL, 0,
3122                                       ACC_ALL, NULL);
3123                 root = __pa(sp->spt);
3124                 ++sp->root_count;
3125                 spin_unlock(&vcpu->kvm->mmu_lock);
3126
3127                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3128         }
3129         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3130
3131         /*
3132          * If we shadow a 32 bit page table with a long mode page
3133          * table we enter this path.
3134          */
3135         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3136                 if (vcpu->arch.mmu.lm_root == NULL) {
3137                         /*
3138                          * The additional page necessary for this is only
3139                          * allocated on demand.
3140                          */
3141
3142                         u64 *lm_root;
3143
3144                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3145                         if (lm_root == NULL)
3146                                 return 1;
3147
3148                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3149
3150                         vcpu->arch.mmu.lm_root = lm_root;
3151                 }
3152
3153                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3154         }
3155
3156         return 0;
3157 }
3158
3159 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3160 {
3161         if (vcpu->arch.mmu.direct_map)
3162                 return mmu_alloc_direct_roots(vcpu);
3163         else
3164                 return mmu_alloc_shadow_roots(vcpu);
3165 }
3166
3167 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3168 {
3169         int i;
3170         struct kvm_mmu_page *sp;
3171
3172         if (vcpu->arch.mmu.direct_map)
3173                 return;
3174
3175         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3176                 return;
3177
3178         vcpu_clear_mmio_info(vcpu, ~0ul);
3179         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3180         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3181                 hpa_t root = vcpu->arch.mmu.root_hpa;
3182                 sp = page_header(root);
3183                 mmu_sync_children(vcpu, sp);
3184                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3185                 return;
3186         }
3187         for (i = 0; i < 4; ++i) {
3188                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3189
3190                 if (root && VALID_PAGE(root)) {
3191                         root &= PT64_BASE_ADDR_MASK;
3192                         sp = page_header(root);
3193                         mmu_sync_children(vcpu, sp);
3194                 }
3195         }
3196         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3197 }
3198
3199 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3200 {
3201         spin_lock(&vcpu->kvm->mmu_lock);
3202         mmu_sync_roots(vcpu);
3203         spin_unlock(&vcpu->kvm->mmu_lock);
3204 }
3205
3206 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3207                                   u32 access, struct x86_exception *exception)
3208 {
3209         if (exception)
3210                 exception->error_code = 0;
3211         return vaddr;
3212 }
3213
3214 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3215                                          u32 access,
3216                                          struct x86_exception *exception)
3217 {
3218         if (exception)
3219                 exception->error_code = 0;
3220         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3221 }
3222
3223 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3224 {
3225         if (direct)
3226                 return vcpu_match_mmio_gpa(vcpu, addr);
3227
3228         return vcpu_match_mmio_gva(vcpu, addr);
3229 }
3230
3231
3232 /*
3233  * On direct hosts, the last spte is only allows two states
3234  * for mmio page fault:
3235  *   - It is the mmio spte
3236  *   - It is zapped or it is being zapped.
3237  *
3238  * This function completely checks the spte when the last spte
3239  * is not the mmio spte.
3240  */
3241 static bool check_direct_spte_mmio_pf(u64 spte)
3242 {
3243         return __check_direct_spte_mmio_pf(spte);
3244 }
3245
3246 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3247 {
3248         struct kvm_shadow_walk_iterator iterator;
3249         u64 spte = 0ull;
3250
3251         walk_shadow_page_lockless_begin(vcpu);
3252         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3253                 if (!is_shadow_present_pte(spte))
3254                         break;
3255         walk_shadow_page_lockless_end(vcpu);
3256
3257         return spte;
3258 }
3259
3260 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3261 {
3262         u64 spte;
3263
3264         if (quickly_check_mmio_pf(vcpu, addr, direct))
3265                 return RET_MMIO_PF_EMULATE;
3266
3267         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3268
3269         if (is_mmio_spte(spte)) {
3270                 gfn_t gfn = get_mmio_spte_gfn(spte);
3271                 unsigned access = get_mmio_spte_access(spte);
3272
3273                 if (!check_mmio_spte(vcpu->kvm, spte))
3274                         return RET_MMIO_PF_INVALID;
3275
3276                 if (direct)
3277                         addr = 0;
3278
3279                 trace_handle_mmio_page_fault(addr, gfn, access);
3280                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3281                 return RET_MMIO_PF_EMULATE;
3282         }
3283
3284         /*
3285          * It's ok if the gva is remapped by other cpus on shadow guest,
3286          * it's a BUG if the gfn is not a mmio page.
3287          */
3288         if (direct && !check_direct_spte_mmio_pf(spte))
3289                 return RET_MMIO_PF_BUG;
3290
3291         /*
3292          * If the page table is zapped by other cpus, let CPU fault again on
3293          * the address.
3294          */
3295         return RET_MMIO_PF_RETRY;
3296 }
3297 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3298
3299 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3300                                   u32 error_code, bool direct)
3301 {
3302         int ret;
3303
3304         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3305         WARN_ON(ret == RET_MMIO_PF_BUG);
3306         return ret;
3307 }
3308
3309 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3310                                 u32 error_code, bool prefault)
3311 {
3312         gfn_t gfn;
3313         int r;
3314
3315         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3316
3317         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3318                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3319
3320                 if (likely(r != RET_MMIO_PF_INVALID))
3321                         return r;
3322         }
3323
3324         r = mmu_topup_memory_caches(vcpu);
3325         if (r)
3326                 return r;
3327
3328         ASSERT(vcpu);
3329         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3330
3331         gfn = gva >> PAGE_SHIFT;
3332
3333         return nonpaging_map(vcpu, gva & PAGE_MASK,
3334                              error_code, gfn, prefault);
3335 }
3336
3337 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3338 {
3339         struct kvm_arch_async_pf arch;
3340
3341         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3342         arch.gfn = gfn;
3343         arch.direct_map = vcpu->arch.mmu.direct_map;
3344         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3345
3346         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3347 }
3348
3349 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3350 {
3351         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3352                      kvm_event_needs_reinjection(vcpu)))
3353                 return false;
3354
3355         return kvm_x86_ops->interrupt_allowed(vcpu);
3356 }
3357
3358 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3359                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3360 {
3361         bool async;
3362
3363         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3364
3365         if (!async)
3366                 return false; /* *pfn has correct page already */
3367
3368         if (!prefault && can_do_async_pf(vcpu)) {
3369                 trace_kvm_try_async_get_page(gva, gfn);
3370                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3371                         trace_kvm_async_pf_doublefault(gva, gfn);
3372                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3373                         return true;
3374                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3375                         return true;
3376         }
3377
3378         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3379
3380         return false;
3381 }
3382
3383 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3384                           bool prefault)
3385 {
3386         pfn_t pfn;
3387         int r;
3388         int level;
3389         int force_pt_level;
3390         gfn_t gfn = gpa >> PAGE_SHIFT;
3391         unsigned long mmu_seq;
3392         int write = error_code & PFERR_WRITE_MASK;
3393         bool map_writable;
3394
3395         ASSERT(vcpu);
3396         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3397
3398         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3399                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3400
3401                 if (likely(r != RET_MMIO_PF_INVALID))
3402                         return r;
3403         }
3404
3405         r = mmu_topup_memory_caches(vcpu);
3406         if (r)
3407                 return r;
3408
3409         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3410         if (likely(!force_pt_level)) {
3411                 level = mapping_level(vcpu, gfn);
3412                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3413         } else
3414                 level = PT_PAGE_TABLE_LEVEL;
3415
3416         if (fast_page_fault(vcpu, gpa, level, error_code))
3417                 return 0;
3418
3419         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3420         smp_rmb();
3421
3422         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3423                 return 0;
3424
3425         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3426                 return r;
3427
3428         spin_lock(&vcpu->kvm->mmu_lock);
3429         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3430                 goto out_unlock;
3431         make_mmu_pages_available(vcpu);
3432         if (likely(!force_pt_level))
3433                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3434         r = __direct_map(vcpu, gpa, write, map_writable,
3435                          level, gfn, pfn, prefault);
3436         spin_unlock(&vcpu->kvm->mmu_lock);
3437
3438         return r;
3439
3440 out_unlock:
3441         spin_unlock(&vcpu->kvm->mmu_lock);
3442         kvm_release_pfn_clean(pfn);
3443         return 0;
3444 }
3445
3446 static void nonpaging_free(struct kvm_vcpu *vcpu)
3447 {
3448         mmu_free_roots(vcpu);
3449 }
3450
3451 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3452                                   struct kvm_mmu *context)
3453 {
3454         context->new_cr3 = nonpaging_new_cr3;
3455         context->page_fault = nonpaging_page_fault;
3456         context->gva_to_gpa = nonpaging_gva_to_gpa;
3457         context->free = nonpaging_free;
3458         context->sync_page = nonpaging_sync_page;
3459         context->invlpg = nonpaging_invlpg;
3460         context->update_pte = nonpaging_update_pte;
3461         context->root_level = 0;
3462         context->shadow_root_level = PT32E_ROOT_LEVEL;
3463         context->root_hpa = INVALID_PAGE;
3464         context->direct_map = true;
3465         context->nx = false;
3466         return 0;
3467 }
3468
3469 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3470 {
3471         ++vcpu->stat.tlb_flush;
3472         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3473 }
3474
3475 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3476 {
3477         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3478         mmu_free_roots(vcpu);
3479 }
3480
3481 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3482 {
3483         return kvm_read_cr3(vcpu);
3484 }
3485
3486 static void inject_page_fault(struct kvm_vcpu *vcpu,
3487                               struct x86_exception *fault)
3488 {
3489         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3490 }
3491
3492 static void paging_free(struct kvm_vcpu *vcpu)
3493 {
3494         nonpaging_free(vcpu);
3495 }
3496
3497 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3498 {
3499         unsigned mask;
3500
3501         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3502
3503         mask = (unsigned)~ACC_WRITE_MASK;
3504         /* Allow write access to dirty gptes */
3505         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3506         *access &= mask;
3507 }
3508
3509 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3510                            unsigned access, int *nr_present)
3511 {
3512         if (unlikely(is_mmio_spte(*sptep))) {
3513                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3514                         mmu_spte_clear_no_track(sptep);
3515                         return true;
3516                 }
3517
3518                 (*nr_present)++;
3519                 mark_mmio_spte(kvm, sptep, gfn, access);
3520                 return true;
3521         }
3522
3523         return false;
3524 }
3525
3526 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3527 {
3528         unsigned access;
3529
3530         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3531         access &= ~(gpte >> PT64_NX_SHIFT);
3532
3533         return access;
3534 }
3535
3536 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3537 {
3538         unsigned index;
3539
3540         index = level - 1;
3541         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3542         return mmu->last_pte_bitmap & (1 << index);
3543 }
3544
3545 #define PTTYPE 64
3546 #include "paging_tmpl.h"
3547 #undef PTTYPE
3548
3549 #define PTTYPE 32
3550 #include "paging_tmpl.h"
3551 #undef PTTYPE
3552
3553 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3554                                   struct kvm_mmu *context)
3555 {
3556         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3557         u64 exb_bit_rsvd = 0;
3558
3559         if (!context->nx)
3560                 exb_bit_rsvd = rsvd_bits(63, 63);
3561         switch (context->root_level) {
3562         case PT32_ROOT_LEVEL:
3563                 /* no rsvd bits for 2 level 4K page table entries */
3564                 context->rsvd_bits_mask[0][1] = 0;
3565                 context->rsvd_bits_mask[0][0] = 0;
3566                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3567
3568                 if (!is_pse(vcpu)) {
3569                         context->rsvd_bits_mask[1][1] = 0;
3570                         break;
3571                 }
3572
3573                 if (is_cpuid_PSE36())
3574                         /* 36bits PSE 4MB page */
3575                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3576                 else
3577                         /* 32 bits PSE 4MB page */
3578                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3579                 break;
3580         case PT32E_ROOT_LEVEL:
3581                 context->rsvd_bits_mask[0][2] =
3582                         rsvd_bits(maxphyaddr, 63) |
3583                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3584                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3585                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3586                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3587                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3588                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3589                         rsvd_bits(maxphyaddr, 62) |
3590                         rsvd_bits(13, 20);              /* large page */
3591                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3592                 break;
3593         case PT64_ROOT_LEVEL:
3594                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3595                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3596                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3597                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3598                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3599                         rsvd_bits(maxphyaddr, 51);
3600                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3601                         rsvd_bits(maxphyaddr, 51);
3602                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3603                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3604                         rsvd_bits(maxphyaddr, 51) |
3605                         rsvd_bits(13, 29);
3606                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3607                         rsvd_bits(maxphyaddr, 51) |
3608                         rsvd_bits(13, 20);              /* large page */
3609                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3610                 break;
3611         }
3612 }
3613
3614 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3615 {
3616         unsigned bit, byte, pfec;
3617         u8 map;
3618         bool fault, x, w, u, wf, uf, ff, smep;
3619
3620         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3621         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3622                 pfec = byte << 1;
3623                 map = 0;
3624                 wf = pfec & PFERR_WRITE_MASK;
3625                 uf = pfec & PFERR_USER_MASK;
3626                 ff = pfec & PFERR_FETCH_MASK;
3627                 for (bit = 0; bit < 8; ++bit) {
3628                         x = bit & ACC_EXEC_MASK;
3629                         w = bit & ACC_WRITE_MASK;
3630                         u = bit & ACC_USER_MASK;
3631
3632                         /* Not really needed: !nx will cause pte.nx to fault */
3633                         x |= !mmu->nx;
3634                         /* Allow supervisor writes if !cr0.wp */
3635                         w |= !is_write_protection(vcpu) && !uf;
3636                         /* Disallow supervisor fetches of user code if cr4.smep */
3637                         x &= !(smep && u && !uf);
3638
3639                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3640                         map |= fault << bit;
3641                 }
3642                 mmu->permissions[byte] = map;
3643         }
3644 }
3645
3646 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3647 {
3648         u8 map;
3649         unsigned level, root_level = mmu->root_level;
3650         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3651
3652         if (root_level == PT32E_ROOT_LEVEL)
3653                 --root_level;
3654         /* PT_PAGE_TABLE_LEVEL always terminates */
3655         map = 1 | (1 << ps_set_index);
3656         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3657                 if (level <= PT_PDPE_LEVEL
3658                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3659                         map |= 1 << (ps_set_index | (level - 1));
3660         }
3661         mmu->last_pte_bitmap = map;
3662 }
3663
3664 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3665                                         struct kvm_mmu *context,
3666                                         int level)
3667 {
3668         context->nx = is_nx(vcpu);
3669         context->root_level = level;
3670
3671         reset_rsvds_bits_mask(vcpu, context);
3672         update_permission_bitmask(vcpu, context);
3673         update_last_pte_bitmap(vcpu, context);
3674
3675         ASSERT(is_pae(vcpu));
3676         context->new_cr3 = paging_new_cr3;
3677         context->page_fault = paging64_page_fault;
3678         context->gva_to_gpa = paging64_gva_to_gpa;
3679         context->sync_page = paging64_sync_page;
3680         context->invlpg = paging64_invlpg;
3681         context->update_pte = paging64_update_pte;
3682         context->free = paging_free;
3683         context->shadow_root_level = level;
3684         context->root_hpa = INVALID_PAGE;
3685         context->direct_map = false;
3686         return 0;
3687 }
3688
3689 static int paging64_init_context(struct kvm_vcpu *vcpu,
3690                                  struct kvm_mmu *context)
3691 {
3692         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3693 }
3694
3695 static int paging32_init_context(struct kvm_vcpu *vcpu,
3696                                  struct kvm_mmu *context)
3697 {
3698         context->nx = false;
3699         context->root_level = PT32_ROOT_LEVEL;
3700
3701         reset_rsvds_bits_mask(vcpu, context);
3702         update_permission_bitmask(vcpu, context);
3703         update_last_pte_bitmap(vcpu, context);
3704
3705         context->new_cr3 = paging_new_cr3;
3706         context->page_fault = paging32_page_fault;
3707         context->gva_to_gpa = paging32_gva_to_gpa;
3708         context->free = paging_free;
3709         context->sync_page = paging32_sync_page;
3710         context->invlpg = paging32_invlpg;
3711         context->update_pte = paging32_update_pte;
3712         context->shadow_root_level = PT32E_ROOT_LEVEL;
3713         context->root_hpa = INVALID_PAGE;
3714         context->direct_map = false;
3715         return 0;
3716 }
3717
3718 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3719                                   struct kvm_mmu *context)
3720 {
3721         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3722 }
3723
3724 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3725 {
3726         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3727
3728         context->base_role.word = 0;
3729         context->new_cr3 = nonpaging_new_cr3;
3730         context->page_fault = tdp_page_fault;
3731         context->free = nonpaging_free;
3732         context->sync_page = nonpaging_sync_page;
3733         context->invlpg = nonpaging_invlpg;
3734         context->update_pte = nonpaging_update_pte;
3735         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3736         context->root_hpa = INVALID_PAGE;
3737         context->direct_map = true;
3738         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3739         context->get_cr3 = get_cr3;
3740         context->get_pdptr = kvm_pdptr_read;
3741         context->inject_page_fault = kvm_inject_page_fault;
3742
3743         if (!is_paging(vcpu)) {
3744                 context->nx = false;
3745                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3746                 context->root_level = 0;
3747         } else if (is_long_mode(vcpu)) {
3748                 context->nx = is_nx(vcpu);
3749                 context->root_level = PT64_ROOT_LEVEL;
3750                 reset_rsvds_bits_mask(vcpu, context);
3751                 context->gva_to_gpa = paging64_gva_to_gpa;
3752         } else if (is_pae(vcpu)) {
3753                 context->nx = is_nx(vcpu);
3754                 context->root_level = PT32E_ROOT_LEVEL;
3755                 reset_rsvds_bits_mask(vcpu, context);
3756                 context->gva_to_gpa = paging64_gva_to_gpa;
3757         } else {
3758                 context->nx = false;
3759                 context->root_level = PT32_ROOT_LEVEL;
3760                 reset_rsvds_bits_mask(vcpu, context);
3761                 context->gva_to_gpa = paging32_gva_to_gpa;
3762         }
3763
3764         update_permission_bitmask(vcpu, context);
3765         update_last_pte_bitmap(vcpu, context);
3766
3767         return 0;
3768 }
3769
3770 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3771 {
3772         int r;
3773         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3774         ASSERT(vcpu);
3775         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3776
3777         if (!is_paging(vcpu))
3778                 r = nonpaging_init_context(vcpu, context);
3779         else if (is_long_mode(vcpu))
3780                 r = paging64_init_context(vcpu, context);
3781         else if (is_pae(vcpu))
3782                 r = paging32E_init_context(vcpu, context);
3783         else
3784                 r = paging32_init_context(vcpu, context);
3785
3786         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3787         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3788         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3789         vcpu->arch.mmu.base_role.smep_andnot_wp
3790                 = smep && !is_write_protection(vcpu);
3791
3792         return r;
3793 }
3794 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3795
3796 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3797 {
3798         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3799
3800         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3801         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3802         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3803         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3804
3805         return r;
3806 }
3807
3808 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3809 {
3810         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3811
3812         g_context->get_cr3           = get_cr3;
3813         g_context->get_pdptr         = kvm_pdptr_read;
3814         g_context->inject_page_fault = kvm_inject_page_fault;
3815
3816         /*
3817          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3818          * translation of l2_gpa to l1_gpa addresses is done using the
3819          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3820          * functions between mmu and nested_mmu are swapped.
3821          */
3822         if (!is_paging(vcpu)) {
3823                 g_context->nx = false;
3824                 g_context->root_level = 0;
3825                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3826         } else if (is_long_mode(vcpu)) {
3827                 g_context->nx = is_nx(vcpu);
3828                 g_context->root_level = PT64_ROOT_LEVEL;
3829                 reset_rsvds_bits_mask(vcpu, g_context);
3830                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3831         } else if (is_pae(vcpu)) {
3832                 g_context->nx = is_nx(vcpu);
3833                 g_context->root_level = PT32E_ROOT_LEVEL;
3834                 reset_rsvds_bits_mask(vcpu, g_context);
3835                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3836         } else {
3837                 g_context->nx = false;
3838                 g_context->root_level = PT32_ROOT_LEVEL;
3839                 reset_rsvds_bits_mask(vcpu, g_context);
3840                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3841         }
3842
3843         update_permission_bitmask(vcpu, g_context);
3844         update_last_pte_bitmap(vcpu, g_context);
3845
3846         return 0;
3847 }
3848
3849 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3850 {
3851         if (mmu_is_nested(vcpu))
3852                 return init_kvm_nested_mmu(vcpu);
3853         else if (tdp_enabled)
3854                 return init_kvm_tdp_mmu(vcpu);
3855         else
3856                 return init_kvm_softmmu(vcpu);
3857 }
3858
3859 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3860 {
3861         ASSERT(vcpu);
3862         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3863                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3864                 vcpu->arch.mmu.free(vcpu);
3865 }
3866
3867 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3868 {
3869         destroy_kvm_mmu(vcpu);
3870         return init_kvm_mmu(vcpu);
3871 }
3872 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3873
3874 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3875 {
3876         int r;
3877
3878         r = mmu_topup_memory_caches(vcpu);
3879         if (r)
3880                 goto out;
3881         r = mmu_alloc_roots(vcpu);
3882         kvm_mmu_sync_roots(vcpu);
3883         if (r)
3884                 goto out;
3885         /* set_cr3() should ensure TLB has been flushed */
3886         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3887 out:
3888         return r;
3889 }
3890 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3891
3892 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3893 {
3894         mmu_free_roots(vcpu);
3895 }
3896 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3897
3898 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3899                                   struct kvm_mmu_page *sp, u64 *spte,
3900                                   const void *new)
3901 {
3902         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3903                 ++vcpu->kvm->stat.mmu_pde_zapped;
3904                 return;
3905         }
3906
3907         ++vcpu->kvm->stat.mmu_pte_updated;
3908         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3909 }
3910
3911 static bool need_remote_flush(u64 old, u64 new)
3912 {
3913         if (!is_shadow_present_pte(old))
3914                 return false;
3915         if (!is_shadow_present_pte(new))
3916                 return true;
3917         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3918                 return true;
3919         old ^= PT64_NX_MASK;
3920         new ^= PT64_NX_MASK;
3921         return (old & ~new & PT64_PERM_MASK) != 0;
3922 }
3923
3924 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3925                                     bool remote_flush, bool local_flush)
3926 {
3927         if (zap_page)
3928                 return;
3929
3930         if (remote_flush)
3931                 kvm_flush_remote_tlbs(vcpu->kvm);
3932         else if (local_flush)
3933                 kvm_mmu_flush_tlb(vcpu);
3934 }
3935
3936 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3937                                     const u8 *new, int *bytes)
3938 {
3939         u64 gentry;
3940         int r;
3941
3942         /*
3943          * Assume that the pte write on a page table of the same type
3944          * as the current vcpu paging mode since we update the sptes only
3945          * when they have the same mode.
3946          */
3947         if (is_pae(vcpu) && *bytes == 4) {
3948                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3949                 *gpa &= ~(gpa_t)7;
3950                 *bytes = 8;
3951                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3952                 if (r)
3953                         gentry = 0;
3954                 new = (const u8 *)&gentry;
3955         }
3956
3957         switch (*bytes) {
3958         case 4:
3959                 gentry = *(const u32 *)new;
3960                 break;
3961         case 8:
3962                 gentry = *(const u64 *)new;
3963                 break;
3964         default:
3965                 gentry = 0;
3966                 break;
3967         }
3968
3969         return gentry;
3970 }
3971
3972 /*
3973  * If we're seeing too many writes to a page, it may no longer be a page table,
3974  * or we may be forking, in which case it is better to unmap the page.
3975  */
3976 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3977 {
3978         /*
3979          * Skip write-flooding detected for the sp whose level is 1, because
3980          * it can become unsync, then the guest page is not write-protected.
3981          */
3982         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3983                 return false;
3984
3985         return ++sp->write_flooding_count >= 3;
3986 }
3987
3988 /*
3989  * Misaligned accesses are too much trouble to fix up; also, they usually
3990  * indicate a page is not used as a page table.
3991  */
3992 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3993                                     int bytes)
3994 {
3995         unsigned offset, pte_size, misaligned;
3996
3997         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3998                  gpa, bytes, sp->role.word);
3999
4000         offset = offset_in_page(gpa);
4001         pte_size = sp->role.cr4_pae ? 8 : 4;
4002
4003         /*
4004          * Sometimes, the OS only writes the last one bytes to update status
4005          * bits, for example, in linux, andb instruction is used in clear_bit().
4006          */
4007         if (!(offset & (pte_size - 1)) && bytes == 1)
4008                 return false;
4009
4010         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4011         misaligned |= bytes < 4;
4012
4013         return misaligned;
4014 }
4015
4016 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4017 {
4018         unsigned page_offset, quadrant;
4019         u64 *spte;
4020         int level;
4021
4022         page_offset = offset_in_page(gpa);
4023         level = sp->role.level;
4024         *nspte = 1;
4025         if (!sp->role.cr4_pae) {
4026                 page_offset <<= 1;      /* 32->64 */
4027                 /*
4028                  * A 32-bit pde maps 4MB while the shadow pdes map
4029                  * only 2MB.  So we need to double the offset again
4030                  * and zap two pdes instead of one.
4031                  */
4032                 if (level == PT32_ROOT_LEVEL) {
4033                         page_offset &= ~7; /* kill rounding error */
4034                         page_offset <<= 1;
4035                         *nspte = 2;
4036                 }
4037                 quadrant = page_offset >> PAGE_SHIFT;
4038                 page_offset &= ~PAGE_MASK;
4039                 if (quadrant != sp->role.quadrant)
4040                         return NULL;
4041         }
4042
4043         spte = &sp->spt[page_offset / sizeof(*spte)];
4044         return spte;
4045 }
4046
4047 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4048                        const u8 *new, int bytes)
4049 {
4050         gfn_t gfn = gpa >> PAGE_SHIFT;
4051         union kvm_mmu_page_role mask = { .word = 0 };
4052         struct kvm_mmu_page *sp;
4053         LIST_HEAD(invalid_list);
4054         u64 entry, gentry, *spte;
4055         int npte;
4056         bool remote_flush, local_flush, zap_page;
4057
4058         /*
4059          * If we don't have indirect shadow pages, it means no page is
4060          * write-protected, so we can exit simply.
4061          */
4062         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4063                 return;
4064
4065         zap_page = remote_flush = local_flush = false;
4066
4067         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4068
4069         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4070
4071         /*
4072          * No need to care whether allocation memory is successful
4073          * or not since pte prefetch is skiped if it does not have
4074          * enough objects in the cache.
4075          */
4076         mmu_topup_memory_caches(vcpu);
4077
4078         spin_lock(&vcpu->kvm->mmu_lock);
4079         ++vcpu->kvm->stat.mmu_pte_write;
4080         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4081
4082         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4083         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4084                 if (detect_write_misaligned(sp, gpa, bytes) ||
4085                       detect_write_flooding(sp)) {
4086                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4087                                                      &invalid_list);
4088                         ++vcpu->kvm->stat.mmu_flooded;
4089                         continue;
4090                 }
4091
4092                 spte = get_written_sptes(sp, gpa, &npte);
4093                 if (!spte)
4094                         continue;
4095
4096                 local_flush = true;
4097                 while (npte--) {
4098                         entry = *spte;
4099                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4100                         if (gentry &&
4101                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4102                               & mask.word) && rmap_can_add(vcpu))
4103                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4104                         if (need_remote_flush(entry, *spte))
4105                                 remote_flush = true;
4106                         ++spte;
4107                 }
4108         }
4109         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4110         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4111         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4112         spin_unlock(&vcpu->kvm->mmu_lock);
4113 }
4114
4115 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4116 {
4117         gpa_t gpa;
4118         int r;
4119
4120         if (vcpu->arch.mmu.direct_map)
4121                 return 0;
4122
4123         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4124
4125         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4126
4127         return r;
4128 }
4129 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4130
4131 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4132 {
4133         LIST_HEAD(invalid_list);
4134
4135         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4136                 return;
4137
4138         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4139                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4140                         break;
4141
4142                 ++vcpu->kvm->stat.mmu_recycled;
4143         }
4144         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4145 }
4146
4147 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4148 {
4149         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4150                 return vcpu_match_mmio_gpa(vcpu, addr);
4151
4152         return vcpu_match_mmio_gva(vcpu, addr);
4153 }
4154
4155 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4156                        void *insn, int insn_len)
4157 {
4158         int r, emulation_type = EMULTYPE_RETRY;
4159         enum emulation_result er;
4160
4161         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4162         if (r < 0)
4163                 goto out;
4164
4165         if (!r) {
4166                 r = 1;
4167                 goto out;
4168         }
4169
4170         if (is_mmio_page_fault(vcpu, cr2))
4171                 emulation_type = 0;
4172
4173         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4174
4175         switch (er) {
4176         case EMULATE_DONE:
4177                 return 1;
4178         case EMULATE_DO_MMIO:
4179                 ++vcpu->stat.mmio_exits;
4180                 /* fall through */
4181         case EMULATE_FAIL:
4182                 return 0;
4183         default:
4184                 BUG();
4185         }
4186 out:
4187         return r;
4188 }
4189 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4190
4191 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4192 {
4193         vcpu->arch.mmu.invlpg(vcpu, gva);
4194         kvm_mmu_flush_tlb(vcpu);
4195         ++vcpu->stat.invlpg;
4196 }
4197 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4198
4199 void kvm_enable_tdp(void)
4200 {
4201         tdp_enabled = true;
4202 }
4203 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4204
4205 void kvm_disable_tdp(void)
4206 {
4207         tdp_enabled = false;
4208 }
4209 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4210
4211 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4212 {
4213         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4214         if (vcpu->arch.mmu.lm_root != NULL)
4215                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4216 }
4217
4218 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4219 {
4220         struct page *page;
4221         int i;
4222
4223         ASSERT(vcpu);
4224
4225         /*
4226          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4227          * Therefore we need to allocate shadow page tables in the first
4228          * 4GB of memory, which happens to fit the DMA32 zone.
4229          */
4230         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4231         if (!page)
4232                 return -ENOMEM;
4233
4234         vcpu->arch.mmu.pae_root = page_address(page);
4235         for (i = 0; i < 4; ++i)
4236                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4237
4238         return 0;
4239 }
4240
4241 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4242 {
4243         ASSERT(vcpu);
4244
4245         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4246         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4247         vcpu->arch.mmu.translate_gpa = translate_gpa;
4248         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4249
4250         return alloc_mmu_pages(vcpu);
4251 }
4252
4253 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4254 {
4255         ASSERT(vcpu);
4256         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4257
4258         return init_kvm_mmu(vcpu);
4259 }
4260
4261 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4262 {
4263         struct kvm_memory_slot *memslot;
4264         gfn_t last_gfn;
4265         int i;
4266
4267         memslot = id_to_memslot(kvm->memslots, slot);
4268         last_gfn = memslot->base_gfn + memslot->npages - 1;
4269
4270         spin_lock(&kvm->mmu_lock);
4271
4272         for (i = PT_PAGE_TABLE_LEVEL;
4273              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4274                 unsigned long *rmapp;
4275                 unsigned long last_index, index;
4276
4277                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4278                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4279
4280                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4281                         if (*rmapp)
4282                                 __rmap_write_protect(kvm, rmapp, false);
4283
4284                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4285                                 kvm_flush_remote_tlbs(kvm);
4286                                 cond_resched_lock(&kvm->mmu_lock);
4287                         }
4288                 }
4289         }
4290
4291         kvm_flush_remote_tlbs(kvm);
4292         spin_unlock(&kvm->mmu_lock);
4293 }
4294
4295 #define BATCH_ZAP_PAGES 10
4296 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4297 {
4298         struct kvm_mmu_page *sp, *node;
4299         int batch = 0;
4300
4301 restart:
4302         list_for_each_entry_safe_reverse(sp, node,
4303               &kvm->arch.active_mmu_pages, link) {
4304                 int ret;
4305
4306                 /*
4307                  * No obsolete page exists before new created page since
4308                  * active_mmu_pages is the FIFO list.
4309                  */
4310                 if (!is_obsolete_sp(kvm, sp))
4311                         break;
4312
4313                 /*
4314                  * Since we are reversely walking the list and the invalid
4315                  * list will be moved to the head, skip the invalid page
4316                  * can help us to avoid the infinity list walking.
4317                  */
4318                 if (sp->role.invalid)
4319                         continue;
4320
4321                 /*
4322                  * Need not flush tlb since we only zap the sp with invalid
4323                  * generation number.
4324                  */
4325                 if (batch >= BATCH_ZAP_PAGES &&
4326                       cond_resched_lock(&kvm->mmu_lock)) {
4327                         batch = 0;
4328                         goto restart;
4329                 }
4330
4331                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4332                                 &kvm->arch.zapped_obsolete_pages);
4333                 batch += ret;
4334
4335                 if (ret)
4336                         goto restart;
4337         }
4338
4339         /*
4340          * Should flush tlb before free page tables since lockless-walking
4341          * may use the pages.
4342          */
4343         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4344 }
4345
4346 /*
4347  * Fast invalidate all shadow pages and use lock-break technique
4348  * to zap obsolete pages.
4349  *
4350  * It's required when memslot is being deleted or VM is being
4351  * destroyed, in these cases, we should ensure that KVM MMU does
4352  * not use any resource of the being-deleted slot or all slots
4353  * after calling the function.
4354  */
4355 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4356 {
4357         spin_lock(&kvm->mmu_lock);
4358         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4359         kvm->arch.mmu_valid_gen++;
4360
4361         /*
4362          * Notify all vcpus to reload its shadow page table
4363          * and flush TLB. Then all vcpus will switch to new
4364          * shadow page table with the new mmu_valid_gen.
4365          *
4366          * Note: we should do this under the protection of
4367          * mmu-lock, otherwise, vcpu would purge shadow page
4368          * but miss tlb flush.
4369          */
4370         kvm_reload_remote_mmus(kvm);
4371
4372         kvm_zap_obsolete_pages(kvm);
4373         spin_unlock(&kvm->mmu_lock);
4374 }
4375
4376 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4377 {
4378         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4379 }
4380
4381 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4382 {
4383         /*
4384          * The very rare case: if the generation-number is round,
4385          * zap all shadow pages.
4386          *
4387          * The max value is MMIO_MAX_GEN - 1 since it is not called
4388          * when mark memslot invalid.
4389          */
4390         if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1))) {
4391                 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
4392                 kvm_mmu_invalidate_zap_all_pages(kvm);
4393         }
4394 }
4395
4396 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4397 {
4398         struct kvm *kvm;
4399         int nr_to_scan = sc->nr_to_scan;
4400
4401         if (nr_to_scan == 0)
4402                 goto out;
4403
4404         raw_spin_lock(&kvm_lock);
4405
4406         list_for_each_entry(kvm, &vm_list, vm_list) {
4407                 int idx;
4408                 LIST_HEAD(invalid_list);
4409
4410                 /*
4411                  * Never scan more than sc->nr_to_scan VM instances.
4412                  * Will not hit this condition practically since we do not try
4413                  * to shrink more than one VM and it is very unlikely to see
4414                  * !n_used_mmu_pages so many times.
4415                  */
4416                 if (!nr_to_scan--)
4417                         break;
4418                 /*
4419                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4420                  * here. We may skip a VM instance errorneosly, but we do not
4421                  * want to shrink a VM that only started to populate its MMU
4422                  * anyway.
4423                  */
4424                 if (!kvm->arch.n_used_mmu_pages &&
4425                       !kvm_has_zapped_obsolete_pages(kvm))
4426                         continue;
4427
4428                 idx = srcu_read_lock(&kvm->srcu);
4429                 spin_lock(&kvm->mmu_lock);
4430
4431                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4432                         kvm_mmu_commit_zap_page(kvm,
4433                               &kvm->arch.zapped_obsolete_pages);
4434                         goto unlock;
4435                 }
4436
4437                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4438                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4439
4440 unlock:
4441                 spin_unlock(&kvm->mmu_lock);
4442                 srcu_read_unlock(&kvm->srcu, idx);
4443
4444                 list_move_tail(&kvm->vm_list, &vm_list);
4445                 break;
4446         }
4447
4448         raw_spin_unlock(&kvm_lock);
4449
4450 out:
4451         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4452 }
4453
4454 static struct shrinker mmu_shrinker = {
4455         .shrink = mmu_shrink,
4456         .seeks = DEFAULT_SEEKS * 10,
4457 };
4458
4459 static void mmu_destroy_caches(void)
4460 {
4461         if (pte_list_desc_cache)
4462                 kmem_cache_destroy(pte_list_desc_cache);
4463         if (mmu_page_header_cache)
4464                 kmem_cache_destroy(mmu_page_header_cache);
4465 }
4466
4467 int kvm_mmu_module_init(void)
4468 {
4469         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4470                                             sizeof(struct pte_list_desc),
4471                                             0, 0, NULL);
4472         if (!pte_list_desc_cache)
4473                 goto nomem;
4474
4475         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4476                                                   sizeof(struct kvm_mmu_page),
4477                                                   0, 0, NULL);
4478         if (!mmu_page_header_cache)
4479                 goto nomem;
4480
4481         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4482                 goto nomem;
4483
4484         register_shrinker(&mmu_shrinker);
4485
4486         return 0;
4487
4488 nomem:
4489         mmu_destroy_caches();
4490         return -ENOMEM;
4491 }
4492
4493 /*
4494  * Caculate mmu pages needed for kvm.
4495  */
4496 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4497 {
4498         unsigned int nr_mmu_pages;
4499         unsigned int  nr_pages = 0;
4500         struct kvm_memslots *slots;
4501         struct kvm_memory_slot *memslot;
4502
4503         slots = kvm_memslots(kvm);
4504
4505         kvm_for_each_memslot(memslot, slots)
4506                 nr_pages += memslot->npages;
4507
4508         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4509         nr_mmu_pages = max(nr_mmu_pages,
4510                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4511
4512         return nr_mmu_pages;
4513 }
4514
4515 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4516 {
4517         struct kvm_shadow_walk_iterator iterator;
4518         u64 spte;
4519         int nr_sptes = 0;
4520
4521         walk_shadow_page_lockless_begin(vcpu);
4522         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4523                 sptes[iterator.level-1] = spte;
4524                 nr_sptes++;
4525                 if (!is_shadow_present_pte(spte))
4526                         break;
4527         }
4528         walk_shadow_page_lockless_end(vcpu);
4529
4530         return nr_sptes;
4531 }
4532 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4533
4534 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4535 {
4536         ASSERT(vcpu);
4537
4538         destroy_kvm_mmu(vcpu);
4539         free_mmu_pages(vcpu);
4540         mmu_free_memory_caches(vcpu);
4541 }
4542
4543 void kvm_mmu_module_exit(void)
4544 {
4545         mmu_destroy_caches();
4546         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4547         unregister_shrinker(&mmu_shrinker);
4548         mmu_audit_disable();
4549 }