Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204         trace_mark_mmio_spte(sptep, gfn, access);
205         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225         if (unlikely(is_noslot_pfn(pfn))) {
226                 mark_mmio_spte(sptep, gfn, access);
227                 return true;
228         }
229
230         return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235         return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241         shadow_user_mask = user_mask;
242         shadow_accessed_mask = accessed_mask;
243         shadow_dirty_mask = dirty_mask;
244         shadow_nx_mask = nx_mask;
245         shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251         return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266         return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271         return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276         return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281         if (level == PT_PAGE_TABLE_LEVEL)
282                 return 1;
283         if (is_large_pte(pte))
284                 return 1;
285         return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297         return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303         *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308         *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313         return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318         return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323         /* It is valid if the spte is zapped. */
324         return spte == 0ull;
325 }
326 #else
327 union split_spte {
328         struct {
329                 u32 spte_low;
330                 u32 spte_high;
331         };
332         u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
338
339         if (is_shadow_present_pte(spte))
340                 return;
341
342         /* Ensure the spte is completely set before we increase the count */
343         smp_wmb();
344         sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349         union split_spte *ssptep, sspte;
350
351         ssptep = (union split_spte *)sptep;
352         sspte = (union split_spte)spte;
353
354         ssptep->spte_high = sspte.spte_high;
355
356         /*
357          * If we map the spte from nonpresent to present, We should store
358          * the high bits firstly, then set present bit, so cpu can not
359          * fetch this spte while we are setting the spte.
360          */
361         smp_wmb();
362
363         ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         union split_spte *ssptep, sspte;
369
370         ssptep = (union split_spte *)sptep;
371         sspte = (union split_spte)spte;
372
373         ssptep->spte_low = sspte.spte_low;
374
375         /*
376          * If we map the spte from present to nonpresent, we should clear
377          * present bit firstly to avoid vcpu fetch the old high bits.
378          */
379         smp_wmb();
380
381         ssptep->spte_high = sspte.spte_high;
382         count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387         union split_spte *ssptep, sspte, orig;
388
389         ssptep = (union split_spte *)sptep;
390         sspte = (union split_spte)spte;
391
392         /* xchg acts as a barrier before the setting of the high bits */
393         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394         orig.spte_high = ssptep->spte_high;
395         ssptep->spte_high = sspte.spte_high;
396         count_spte_clear(sptep, spte);
397
398         return orig.spte;
399 }
400
401 /*
402  * The idea using the light way get the spte on x86_32 guest is from
403  * gup_get_pte(arch/x86/mm/gup.c).
404  * The difference is we can not catch the spte tlb flush if we leave
405  * guest mode, so we emulate it by increase clear_spte_count when spte
406  * is cleared.
407  */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
411         union split_spte spte, *orig = (union split_spte *)sptep;
412         int count;
413
414 retry:
415         count = sp->clear_spte_count;
416         smp_rmb();
417
418         spte.spte_low = orig->spte_low;
419         smp_rmb();
420
421         spte.spte_high = orig->spte_high;
422         smp_rmb();
423
424         if (unlikely(spte.spte_low != orig->spte_low ||
425               count != sp->clear_spte_count))
426                 goto retry;
427
428         return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433         union split_spte sspte = (union split_spte)spte;
434         u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436         /* It is valid if the spte is zapped. */
437         if (spte == 0ull)
438                 return true;
439
440         /* It is valid if the spte is being zapped. */
441         if (sspte.spte_low == 0ull &&
442             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443                 return true;
444
445         return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451         return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456         /*
457          * Always atomicly update spte if it can be updated
458          * out of mmu-lock, it can ensure dirty bit is not lost,
459          * also, it can help us to get a stable is_writable_pte()
460          * to ensure tlb flush is not missed.
461          */
462         if (spte_is_locklessly_modifiable(spte))
463                 return true;
464
465         if (!shadow_accessed_mask)
466                 return false;
467
468         if (!is_shadow_present_pte(spte))
469                 return false;
470
471         if ((spte & shadow_accessed_mask) &&
472               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473                 return false;
474
475         return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480         return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484  * Set the sptep from nonpresent to present.
485  * Note: the sptep being assigned *must* be either not present
486  * or in a state where the hardware will not attempt to update
487  * the spte.
488  */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491         WARN_ON(is_shadow_present_pte(*sptep));
492         __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496  * Update the state bits, it means the mapped pfn is not changged.
497  *
498  * Whenever we overwrite a writable spte with a read-only one we
499  * should flush remote TLBs. Otherwise rmap_write_protect
500  * will find a read-only spte, even though the writable spte
501  * might be cached on a CPU's TLB, the return value indicates this
502  * case.
503  */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506         u64 old_spte = *sptep;
507         bool ret = false;
508
509         WARN_ON(!is_rmap_spte(new_spte));
510
511         if (!is_shadow_present_pte(old_spte)) {
512                 mmu_spte_set(sptep, new_spte);
513                 return ret;
514         }
515
516         if (!spte_has_volatile_bits(old_spte))
517                 __update_clear_spte_fast(sptep, new_spte);
518         else
519                 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521         /*
522          * For the spte updated out of mmu-lock is safe, since
523          * we always atomicly update it, see the comments in
524          * spte_has_volatile_bits().
525          */
526         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527                 ret = true;
528
529         if (!shadow_accessed_mask)
530                 return ret;
531
532         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537         return ret;
538 }
539
540 /*
541  * Rules for using mmu_spte_clear_track_bits:
542  * It sets the sptep from present to nonpresent, and track the
543  * state bits, it is used to clear the last level sptep.
544  */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547         pfn_t pfn;
548         u64 old_spte = *sptep;
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, 0ull);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555         if (!is_rmap_spte(old_spte))
556                 return 0;
557
558         pfn = spte_to_pfn(old_spte);
559         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560                 kvm_set_pfn_accessed(pfn);
561         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562                 kvm_set_pfn_dirty(pfn);
563         return 1;
564 }
565
566 /*
567  * Rules for using mmu_spte_clear_no_track:
568  * Directly clear spte without caring the state bits of sptep,
569  * it is used to set the upper level spte.
570  */
571 static void mmu_spte_clear_no_track(u64 *sptep)
572 {
573         __update_clear_spte_fast(sptep, 0ull);
574 }
575
576 static u64 mmu_spte_get_lockless(u64 *sptep)
577 {
578         return __get_spte_lockless(sptep);
579 }
580
581 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582 {
583         /*
584          * Prevent page table teardown by making any free-er wait during
585          * kvm_flush_remote_tlbs() IPI to all active vcpus.
586          */
587         local_irq_disable();
588         vcpu->mode = READING_SHADOW_PAGE_TABLES;
589         /*
590          * Make sure a following spte read is not reordered ahead of the write
591          * to vcpu->mode.
592          */
593         smp_mb();
594 }
595
596 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597 {
598         /*
599          * Make sure the write to vcpu->mode is not reordered in front of
600          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
601          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602          */
603         smp_mb();
604         vcpu->mode = OUTSIDE_GUEST_MODE;
605         local_irq_enable();
606 }
607
608 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
609                                   struct kmem_cache *base_cache, int min)
610 {
611         void *obj;
612
613         if (cache->nobjs >= min)
614                 return 0;
615         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
616                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
617                 if (!obj)
618                         return -ENOMEM;
619                 cache->objects[cache->nobjs++] = obj;
620         }
621         return 0;
622 }
623
624 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625 {
626         return cache->nobjs;
627 }
628
629 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630                                   struct kmem_cache *cache)
631 {
632         while (mc->nobjs)
633                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
634 }
635
636 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
637                                        int min)
638 {
639         void *page;
640
641         if (cache->nobjs >= min)
642                 return 0;
643         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
644                 page = (void *)__get_free_page(GFP_KERNEL);
645                 if (!page)
646                         return -ENOMEM;
647                 cache->objects[cache->nobjs++] = page;
648         }
649         return 0;
650 }
651
652 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653 {
654         while (mc->nobjs)
655                 free_page((unsigned long)mc->objects[--mc->nobjs]);
656 }
657
658 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
659 {
660         int r;
661
662         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
663                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
664         if (r)
665                 goto out;
666         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
667         if (r)
668                 goto out;
669         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
670                                    mmu_page_header_cache, 4);
671 out:
672         return r;
673 }
674
675 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676 {
677         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678                                 pte_list_desc_cache);
679         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
680         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681                                 mmu_page_header_cache);
682 }
683
684 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
685 {
686         void *p;
687
688         BUG_ON(!mc->nobjs);
689         p = mc->objects[--mc->nobjs];
690         return p;
691 }
692
693 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
694 {
695         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
696 }
697
698 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
699 {
700         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
701 }
702
703 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704 {
705         if (!sp->role.direct)
706                 return sp->gfns[index];
707
708         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709 }
710
711 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712 {
713         if (sp->role.direct)
714                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715         else
716                 sp->gfns[index] = gfn;
717 }
718
719 /*
720  * Return the pointer to the large page information for a given gfn,
721  * handling slots that are not large page aligned.
722  */
723 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724                                               struct kvm_memory_slot *slot,
725                                               int level)
726 {
727         unsigned long idx;
728
729         idx = gfn_to_index(gfn, slot->base_gfn, level);
730         return &slot->arch.lpage_info[level - 2][idx];
731 }
732
733 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734 {
735         struct kvm_memory_slot *slot;
736         struct kvm_lpage_info *linfo;
737         int i;
738
739         slot = gfn_to_memslot(kvm, gfn);
740         for (i = PT_DIRECTORY_LEVEL;
741              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
742                 linfo = lpage_info_slot(gfn, slot, i);
743                 linfo->write_count += 1;
744         }
745         kvm->arch.indirect_shadow_pages++;
746 }
747
748 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749 {
750         struct kvm_memory_slot *slot;
751         struct kvm_lpage_info *linfo;
752         int i;
753
754         slot = gfn_to_memslot(kvm, gfn);
755         for (i = PT_DIRECTORY_LEVEL;
756              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
757                 linfo = lpage_info_slot(gfn, slot, i);
758                 linfo->write_count -= 1;
759                 WARN_ON(linfo->write_count < 0);
760         }
761         kvm->arch.indirect_shadow_pages--;
762 }
763
764 static int has_wrprotected_page(struct kvm *kvm,
765                                 gfn_t gfn,
766                                 int level)
767 {
768         struct kvm_memory_slot *slot;
769         struct kvm_lpage_info *linfo;
770
771         slot = gfn_to_memslot(kvm, gfn);
772         if (slot) {
773                 linfo = lpage_info_slot(gfn, slot, level);
774                 return linfo->write_count;
775         }
776
777         return 1;
778 }
779
780 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
781 {
782         unsigned long page_size;
783         int i, ret = 0;
784
785         page_size = kvm_host_page_size(kvm, gfn);
786
787         for (i = PT_PAGE_TABLE_LEVEL;
788              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789                 if (page_size >= KVM_HPAGE_SIZE(i))
790                         ret = i;
791                 else
792                         break;
793         }
794
795         return ret;
796 }
797
798 static struct kvm_memory_slot *
799 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800                             bool no_dirty_log)
801 {
802         struct kvm_memory_slot *slot;
803
804         slot = gfn_to_memslot(vcpu->kvm, gfn);
805         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806               (no_dirty_log && slot->dirty_bitmap))
807                 slot = NULL;
808
809         return slot;
810 }
811
812 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813 {
814         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
815 }
816
817 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818 {
819         int host_level, level, max_level;
820
821         host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823         if (host_level == PT_PAGE_TABLE_LEVEL)
824                 return host_level;
825
826         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827                 kvm_x86_ops->get_lpage_level() : host_level;
828
829         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
830                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831                         break;
832
833         return level - 1;
834 }
835
836 /*
837  * Pte mapping structures:
838  *
839  * If pte_list bit zero is zero, then pte_list point to the spte.
840  *
841  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842  * pte_list_desc containing more mappings.
843  *
844  * Returns the number of pte entries before the spte was added or zero if
845  * the spte was not added.
846  *
847  */
848 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849                         unsigned long *pte_list)
850 {
851         struct pte_list_desc *desc;
852         int i, count = 0;
853
854         if (!*pte_list) {
855                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856                 *pte_list = (unsigned long)spte;
857         } else if (!(*pte_list & 1)) {
858                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859                 desc = mmu_alloc_pte_list_desc(vcpu);
860                 desc->sptes[0] = (u64 *)*pte_list;
861                 desc->sptes[1] = spte;
862                 *pte_list = (unsigned long)desc | 1;
863                 ++count;
864         } else {
865                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
868                         desc = desc->more;
869                         count += PTE_LIST_EXT;
870                 }
871                 if (desc->sptes[PTE_LIST_EXT-1]) {
872                         desc->more = mmu_alloc_pte_list_desc(vcpu);
873                         desc = desc->more;
874                 }
875                 for (i = 0; desc->sptes[i]; ++i)
876                         ++count;
877                 desc->sptes[i] = spte;
878         }
879         return count;
880 }
881
882 static void
883 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884                            int i, struct pte_list_desc *prev_desc)
885 {
886         int j;
887
888         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
889                 ;
890         desc->sptes[i] = desc->sptes[j];
891         desc->sptes[j] = NULL;
892         if (j != 0)
893                 return;
894         if (!prev_desc && !desc->more)
895                 *pte_list = (unsigned long)desc->sptes[0];
896         else
897                 if (prev_desc)
898                         prev_desc->more = desc->more;
899                 else
900                         *pte_list = (unsigned long)desc->more | 1;
901         mmu_free_pte_list_desc(desc);
902 }
903
904 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
905 {
906         struct pte_list_desc *desc;
907         struct pte_list_desc *prev_desc;
908         int i;
909
910         if (!*pte_list) {
911                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
912                 BUG();
913         } else if (!(*pte_list & 1)) {
914                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
915                 if ((u64 *)*pte_list != spte) {
916                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
917                         BUG();
918                 }
919                 *pte_list = 0;
920         } else {
921                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
922                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
923                 prev_desc = NULL;
924                 while (desc) {
925                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
926                                 if (desc->sptes[i] == spte) {
927                                         pte_list_desc_remove_entry(pte_list,
928                                                                desc, i,
929                                                                prev_desc);
930                                         return;
931                                 }
932                         prev_desc = desc;
933                         desc = desc->more;
934                 }
935                 pr_err("pte_list_remove: %p many->many\n", spte);
936                 BUG();
937         }
938 }
939
940 typedef void (*pte_list_walk_fn) (u64 *spte);
941 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942 {
943         struct pte_list_desc *desc;
944         int i;
945
946         if (!*pte_list)
947                 return;
948
949         if (!(*pte_list & 1))
950                 return fn((u64 *)*pte_list);
951
952         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953         while (desc) {
954                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955                         fn(desc->sptes[i]);
956                 desc = desc->more;
957         }
958 }
959
960 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
961                                     struct kvm_memory_slot *slot)
962 {
963         struct kvm_lpage_info *linfo;
964
965         if (likely(level == PT_PAGE_TABLE_LEVEL))
966                 return &slot->rmap[gfn - slot->base_gfn];
967
968         linfo = lpage_info_slot(gfn, slot, level);
969         return &linfo->rmap_pde;
970 }
971
972 /*
973  * Take gfn and return the reverse mapping to it.
974  */
975 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976 {
977         struct kvm_memory_slot *slot;
978
979         slot = gfn_to_memslot(kvm, gfn);
980         return __gfn_to_rmap(gfn, level, slot);
981 }
982
983 static bool rmap_can_add(struct kvm_vcpu *vcpu)
984 {
985         struct kvm_mmu_memory_cache *cache;
986
987         cache = &vcpu->arch.mmu_pte_list_desc_cache;
988         return mmu_memory_cache_free_objects(cache);
989 }
990
991 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992 {
993         struct kvm_mmu_page *sp;
994         unsigned long *rmapp;
995
996         sp = page_header(__pa(spte));
997         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999         return pte_list_add(vcpu, spte, rmapp);
1000 }
1001
1002 static void rmap_remove(struct kvm *kvm, u64 *spte)
1003 {
1004         struct kvm_mmu_page *sp;
1005         gfn_t gfn;
1006         unsigned long *rmapp;
1007
1008         sp = page_header(__pa(spte));
1009         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011         pte_list_remove(spte, rmapp);
1012 }
1013
1014 /*
1015  * Used by the following functions to iterate through the sptes linked by a
1016  * rmap.  All fields are private and not assumed to be used outside.
1017  */
1018 struct rmap_iterator {
1019         /* private fields */
1020         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1021         int pos;                        /* index of the sptep */
1022 };
1023
1024 /*
1025  * Iteration must be started by this function.  This should also be used after
1026  * removing/dropping sptes from the rmap link because in such cases the
1027  * information in the itererator may not be valid.
1028  *
1029  * Returns sptep if found, NULL otherwise.
1030  */
1031 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032 {
1033         if (!rmap)
1034                 return NULL;
1035
1036         if (!(rmap & 1)) {
1037                 iter->desc = NULL;
1038                 return (u64 *)rmap;
1039         }
1040
1041         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042         iter->pos = 0;
1043         return iter->desc->sptes[iter->pos];
1044 }
1045
1046 /*
1047  * Must be used with a valid iterator: e.g. after rmap_get_first().
1048  *
1049  * Returns sptep if found, NULL otherwise.
1050  */
1051 static u64 *rmap_get_next(struct rmap_iterator *iter)
1052 {
1053         if (iter->desc) {
1054                 if (iter->pos < PTE_LIST_EXT - 1) {
1055                         u64 *sptep;
1056
1057                         ++iter->pos;
1058                         sptep = iter->desc->sptes[iter->pos];
1059                         if (sptep)
1060                                 return sptep;
1061                 }
1062
1063                 iter->desc = iter->desc->more;
1064
1065                 if (iter->desc) {
1066                         iter->pos = 0;
1067                         /* desc->sptes[0] cannot be NULL */
1068                         return iter->desc->sptes[iter->pos];
1069                 }
1070         }
1071
1072         return NULL;
1073 }
1074
1075 static void drop_spte(struct kvm *kvm, u64 *sptep)
1076 {
1077         if (mmu_spte_clear_track_bits(sptep))
1078                 rmap_remove(kvm, sptep);
1079 }
1080
1081
1082 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083 {
1084         if (is_large_pte(*sptep)) {
1085                 WARN_ON(page_header(__pa(sptep))->role.level ==
1086                         PT_PAGE_TABLE_LEVEL);
1087                 drop_spte(kvm, sptep);
1088                 --kvm->stat.lpages;
1089                 return true;
1090         }
1091
1092         return false;
1093 }
1094
1095 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096 {
1097         if (__drop_large_spte(vcpu->kvm, sptep))
1098                 kvm_flush_remote_tlbs(vcpu->kvm);
1099 }
1100
1101 /*
1102  * Write-protect on the specified @sptep, @pt_protect indicates whether
1103  * spte writ-protection is caused by protecting shadow page table.
1104  * @flush indicates whether tlb need be flushed.
1105  *
1106  * Note: write protection is difference between drity logging and spte
1107  * protection:
1108  * - for dirty logging, the spte can be set to writable at anytime if
1109  *   its dirty bitmap is properly set.
1110  * - for spte protection, the spte can be writable only after unsync-ing
1111  *   shadow page.
1112  *
1113  * Return true if the spte is dropped.
1114  */
1115 static bool
1116 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1117 {
1118         u64 spte = *sptep;
1119
1120         if (!is_writable_pte(spte) &&
1121               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1122                 return false;
1123
1124         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
1126         if (__drop_large_spte(kvm, sptep)) {
1127                 *flush |= true;
1128                 return true;
1129         }
1130
1131         if (pt_protect)
1132                 spte &= ~SPTE_MMU_WRITEABLE;
1133         spte = spte & ~PT_WRITABLE_MASK;
1134
1135         *flush |= mmu_spte_update(sptep, spte);
1136         return false;
1137 }
1138
1139 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140                                  int level, bool pt_protect)
1141 {
1142         u64 *sptep;
1143         struct rmap_iterator iter;
1144         bool flush = false;
1145
1146         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1148                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1149                         sptep = rmap_get_first(*rmapp, &iter);
1150                         continue;
1151                 }
1152
1153                 sptep = rmap_get_next(&iter);
1154         }
1155
1156         return flush;
1157 }
1158
1159 /**
1160  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161  * @kvm: kvm instance
1162  * @slot: slot to protect
1163  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164  * @mask: indicates which pages we should protect
1165  *
1166  * Used when we do not need to care about huge page mappings: e.g. during dirty
1167  * logging we do not have any such mappings.
1168  */
1169 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170                                      struct kvm_memory_slot *slot,
1171                                      gfn_t gfn_offset, unsigned long mask)
1172 {
1173         unsigned long *rmapp;
1174
1175         while (mask) {
1176                 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1177                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1178
1179                 /* clear the first set bit */
1180                 mask &= mask - 1;
1181         }
1182 }
1183
1184 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1185 {
1186         struct kvm_memory_slot *slot;
1187         unsigned long *rmapp;
1188         int i;
1189         bool write_protected = false;
1190
1191         slot = gfn_to_memslot(kvm, gfn);
1192
1193         for (i = PT_PAGE_TABLE_LEVEL;
1194              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195                 rmapp = __gfn_to_rmap(gfn, i, slot);
1196                 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1197         }
1198
1199         return write_protected;
1200 }
1201
1202 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1203                            unsigned long data)
1204 {
1205         u64 *sptep;
1206         struct rmap_iterator iter;
1207         int need_tlb_flush = 0;
1208
1209         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213                 drop_spte(kvm, sptep);
1214                 need_tlb_flush = 1;
1215         }
1216
1217         return need_tlb_flush;
1218 }
1219
1220 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1221                              unsigned long data)
1222 {
1223         u64 *sptep;
1224         struct rmap_iterator iter;
1225         int need_flush = 0;
1226         u64 new_spte;
1227         pte_t *ptep = (pte_t *)data;
1228         pfn_t new_pfn;
1229
1230         WARN_ON(pte_huge(*ptep));
1231         new_pfn = pte_pfn(*ptep);
1232
1233         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234                 BUG_ON(!is_shadow_present_pte(*sptep));
1235                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
1237                 need_flush = 1;
1238
1239                 if (pte_write(*ptep)) {
1240                         drop_spte(kvm, sptep);
1241                         sptep = rmap_get_first(*rmapp, &iter);
1242                 } else {
1243                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1244                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246                         new_spte &= ~PT_WRITABLE_MASK;
1247                         new_spte &= ~SPTE_HOST_WRITEABLE;
1248                         new_spte &= ~shadow_accessed_mask;
1249
1250                         mmu_spte_clear_track_bits(sptep);
1251                         mmu_spte_set(sptep, new_spte);
1252                         sptep = rmap_get_next(&iter);
1253                 }
1254         }
1255
1256         if (need_flush)
1257                 kvm_flush_remote_tlbs(kvm);
1258
1259         return 0;
1260 }
1261
1262 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1263                           unsigned long data,
1264                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1265                                          unsigned long data))
1266 {
1267         int j;
1268         int ret;
1269         int retval = 0;
1270         struct kvm_memslots *slots;
1271         struct kvm_memory_slot *memslot;
1272
1273         slots = kvm_memslots(kvm);
1274
1275         kvm_for_each_memslot(memslot, slots) {
1276                 unsigned long start = memslot->userspace_addr;
1277                 unsigned long end;
1278
1279                 end = start + (memslot->npages << PAGE_SHIFT);
1280                 if (hva >= start && hva < end) {
1281                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1282                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1283
1284                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1285
1286                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1287                                 struct kvm_lpage_info *linfo;
1288
1289                                 linfo = lpage_info_slot(gfn, memslot,
1290                                                         PT_DIRECTORY_LEVEL + j);
1291                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1292                         }
1293                         trace_kvm_age_page(hva, memslot, ret);
1294                         retval |= ret;
1295                 }
1296         }
1297
1298         return retval;
1299 }
1300
1301 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1302 {
1303         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1304 }
1305
1306 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1307 {
1308         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1309 }
1310
1311 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1312                          unsigned long data)
1313 {
1314         u64 *sptep;
1315         struct rmap_iterator uninitialized_var(iter);
1316         int young = 0;
1317
1318         /*
1319          * In case of absence of EPT Access and Dirty Bits supports,
1320          * emulate the accessed bit for EPT, by checking if this page has
1321          * an EPT mapping, and clearing it if it does. On the next access,
1322          * a new EPT mapping will be established.
1323          * This has some overhead, but not as much as the cost of swapping
1324          * out actively used pages or breaking up actively used hugepages.
1325          */
1326         if (!shadow_accessed_mask)
1327                 return kvm_unmap_rmapp(kvm, rmapp, data);
1328
1329         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1330              sptep = rmap_get_next(&iter)) {
1331                 BUG_ON(!is_shadow_present_pte(*sptep));
1332
1333                 if (*sptep & shadow_accessed_mask) {
1334                         young = 1;
1335                         clear_bit((ffs(shadow_accessed_mask) - 1),
1336                                  (unsigned long *)sptep);
1337                 }
1338         }
1339
1340         return young;
1341 }
1342
1343 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1344                               unsigned long data)
1345 {
1346         u64 *sptep;
1347         struct rmap_iterator iter;
1348         int young = 0;
1349
1350         /*
1351          * If there's no access bit in the secondary pte set by the
1352          * hardware it's up to gup-fast/gup to set the access bit in
1353          * the primary pte or in the page structure.
1354          */
1355         if (!shadow_accessed_mask)
1356                 goto out;
1357
1358         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1359              sptep = rmap_get_next(&iter)) {
1360                 BUG_ON(!is_shadow_present_pte(*sptep));
1361
1362                 if (*sptep & shadow_accessed_mask) {
1363                         young = 1;
1364                         break;
1365                 }
1366         }
1367 out:
1368         return young;
1369 }
1370
1371 #define RMAP_RECYCLE_THRESHOLD 1000
1372
1373 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1374 {
1375         unsigned long *rmapp;
1376         struct kvm_mmu_page *sp;
1377
1378         sp = page_header(__pa(spte));
1379
1380         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1381
1382         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1383         kvm_flush_remote_tlbs(vcpu->kvm);
1384 }
1385
1386 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1387 {
1388         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1389 }
1390
1391 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1392 {
1393         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1394 }
1395
1396 #ifdef MMU_DEBUG
1397 static int is_empty_shadow_page(u64 *spt)
1398 {
1399         u64 *pos;
1400         u64 *end;
1401
1402         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1403                 if (is_shadow_present_pte(*pos)) {
1404                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1405                                pos, *pos);
1406                         return 0;
1407                 }
1408         return 1;
1409 }
1410 #endif
1411
1412 /*
1413  * This value is the sum of all of the kvm instances's
1414  * kvm->arch.n_used_mmu_pages values.  We need a global,
1415  * aggregate version in order to make the slab shrinker
1416  * faster
1417  */
1418 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1419 {
1420         kvm->arch.n_used_mmu_pages += nr;
1421         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1422 }
1423
1424 /*
1425  * Remove the sp from shadow page cache, after call it,
1426  * we can not find this sp from the cache, and the shadow
1427  * page table is still valid.
1428  * It should be under the protection of mmu lock.
1429  */
1430 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1431 {
1432         ASSERT(is_empty_shadow_page(sp->spt));
1433         hlist_del(&sp->hash_link);
1434         if (!sp->role.direct)
1435                 free_page((unsigned long)sp->gfns);
1436 }
1437
1438 /*
1439  * Free the shadow page table and the sp, we can do it
1440  * out of the protection of mmu lock.
1441  */
1442 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1443 {
1444         list_del(&sp->link);
1445         free_page((unsigned long)sp->spt);
1446         kmem_cache_free(mmu_page_header_cache, sp);
1447 }
1448
1449 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1450 {
1451         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1452 }
1453
1454 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1455                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1456 {
1457         if (!parent_pte)
1458                 return;
1459
1460         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1461 }
1462
1463 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1464                                        u64 *parent_pte)
1465 {
1466         pte_list_remove(parent_pte, &sp->parent_ptes);
1467 }
1468
1469 static void drop_parent_pte(struct kvm_mmu_page *sp,
1470                             u64 *parent_pte)
1471 {
1472         mmu_page_remove_parent_pte(sp, parent_pte);
1473         mmu_spte_clear_no_track(parent_pte);
1474 }
1475
1476 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1477                                                u64 *parent_pte, int direct)
1478 {
1479         struct kvm_mmu_page *sp;
1480         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1481         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1482         if (!direct)
1483                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1484         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1485         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1486         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1487         sp->parent_ptes = 0;
1488         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1489         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1490         return sp;
1491 }
1492
1493 static void mark_unsync(u64 *spte);
1494 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1495 {
1496         pte_list_walk(&sp->parent_ptes, mark_unsync);
1497 }
1498
1499 static void mark_unsync(u64 *spte)
1500 {
1501         struct kvm_mmu_page *sp;
1502         unsigned int index;
1503
1504         sp = page_header(__pa(spte));
1505         index = spte - sp->spt;
1506         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1507                 return;
1508         if (sp->unsync_children++)
1509                 return;
1510         kvm_mmu_mark_parents_unsync(sp);
1511 }
1512
1513 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1514                                struct kvm_mmu_page *sp)
1515 {
1516         return 1;
1517 }
1518
1519 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1520 {
1521 }
1522
1523 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1524                                  struct kvm_mmu_page *sp, u64 *spte,
1525                                  const void *pte)
1526 {
1527         WARN_ON(1);
1528 }
1529
1530 #define KVM_PAGE_ARRAY_NR 16
1531
1532 struct kvm_mmu_pages {
1533         struct mmu_page_and_offset {
1534                 struct kvm_mmu_page *sp;
1535                 unsigned int idx;
1536         } page[KVM_PAGE_ARRAY_NR];
1537         unsigned int nr;
1538 };
1539
1540 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1541                          int idx)
1542 {
1543         int i;
1544
1545         if (sp->unsync)
1546                 for (i=0; i < pvec->nr; i++)
1547                         if (pvec->page[i].sp == sp)
1548                                 return 0;
1549
1550         pvec->page[pvec->nr].sp = sp;
1551         pvec->page[pvec->nr].idx = idx;
1552         pvec->nr++;
1553         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1554 }
1555
1556 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1557                            struct kvm_mmu_pages *pvec)
1558 {
1559         int i, ret, nr_unsync_leaf = 0;
1560
1561         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1562                 struct kvm_mmu_page *child;
1563                 u64 ent = sp->spt[i];
1564
1565                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1566                         goto clear_child_bitmap;
1567
1568                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1569
1570                 if (child->unsync_children) {
1571                         if (mmu_pages_add(pvec, child, i))
1572                                 return -ENOSPC;
1573
1574                         ret = __mmu_unsync_walk(child, pvec);
1575                         if (!ret)
1576                                 goto clear_child_bitmap;
1577                         else if (ret > 0)
1578                                 nr_unsync_leaf += ret;
1579                         else
1580                                 return ret;
1581                 } else if (child->unsync) {
1582                         nr_unsync_leaf++;
1583                         if (mmu_pages_add(pvec, child, i))
1584                                 return -ENOSPC;
1585                 } else
1586                          goto clear_child_bitmap;
1587
1588                 continue;
1589
1590 clear_child_bitmap:
1591                 __clear_bit(i, sp->unsync_child_bitmap);
1592                 sp->unsync_children--;
1593                 WARN_ON((int)sp->unsync_children < 0);
1594         }
1595
1596
1597         return nr_unsync_leaf;
1598 }
1599
1600 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1601                            struct kvm_mmu_pages *pvec)
1602 {
1603         if (!sp->unsync_children)
1604                 return 0;
1605
1606         mmu_pages_add(pvec, sp, 0);
1607         return __mmu_unsync_walk(sp, pvec);
1608 }
1609
1610 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1611 {
1612         WARN_ON(!sp->unsync);
1613         trace_kvm_mmu_sync_page(sp);
1614         sp->unsync = 0;
1615         --kvm->stat.mmu_unsync;
1616 }
1617
1618 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1619                                     struct list_head *invalid_list);
1620 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1621                                     struct list_head *invalid_list);
1622
1623 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1624   hlist_for_each_entry(sp, pos,                                         \
1625    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1626         if ((sp)->gfn != (gfn)) {} else
1627
1628 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1629   hlist_for_each_entry(sp, pos,                                         \
1630    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1631                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1632                         (sp)->role.invalid) {} else
1633
1634 /* @sp->gfn should be write-protected at the call site */
1635 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1636                            struct list_head *invalid_list, bool clear_unsync)
1637 {
1638         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1639                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1640                 return 1;
1641         }
1642
1643         if (clear_unsync)
1644                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1645
1646         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1647                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1648                 return 1;
1649         }
1650
1651         kvm_mmu_flush_tlb(vcpu);
1652         return 0;
1653 }
1654
1655 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1656                                    struct kvm_mmu_page *sp)
1657 {
1658         LIST_HEAD(invalid_list);
1659         int ret;
1660
1661         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1662         if (ret)
1663                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1664
1665         return ret;
1666 }
1667
1668 #ifdef CONFIG_KVM_MMU_AUDIT
1669 #include "mmu_audit.c"
1670 #else
1671 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1672 static void mmu_audit_disable(void) { }
1673 #endif
1674
1675 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1676                          struct list_head *invalid_list)
1677 {
1678         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1679 }
1680
1681 /* @gfn should be write-protected at the call site */
1682 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1683 {
1684         struct kvm_mmu_page *s;
1685         struct hlist_node *node;
1686         LIST_HEAD(invalid_list);
1687         bool flush = false;
1688
1689         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1690                 if (!s->unsync)
1691                         continue;
1692
1693                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1694                 kvm_unlink_unsync_page(vcpu->kvm, s);
1695                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1696                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1697                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1698                         continue;
1699                 }
1700                 flush = true;
1701         }
1702
1703         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1704         if (flush)
1705                 kvm_mmu_flush_tlb(vcpu);
1706 }
1707
1708 struct mmu_page_path {
1709         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1710         unsigned int idx[PT64_ROOT_LEVEL-1];
1711 };
1712
1713 #define for_each_sp(pvec, sp, parents, i)                       \
1714                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1715                         sp = pvec.page[i].sp;                   \
1716                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1717                         i = mmu_pages_next(&pvec, &parents, i))
1718
1719 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1720                           struct mmu_page_path *parents,
1721                           int i)
1722 {
1723         int n;
1724
1725         for (n = i+1; n < pvec->nr; n++) {
1726                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1727
1728                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1729                         parents->idx[0] = pvec->page[n].idx;
1730                         return n;
1731                 }
1732
1733                 parents->parent[sp->role.level-2] = sp;
1734                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1735         }
1736
1737         return n;
1738 }
1739
1740 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1741 {
1742         struct kvm_mmu_page *sp;
1743         unsigned int level = 0;
1744
1745         do {
1746                 unsigned int idx = parents->idx[level];
1747
1748                 sp = parents->parent[level];
1749                 if (!sp)
1750                         return;
1751
1752                 --sp->unsync_children;
1753                 WARN_ON((int)sp->unsync_children < 0);
1754                 __clear_bit(idx, sp->unsync_child_bitmap);
1755                 level++;
1756         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1757 }
1758
1759 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1760                                struct mmu_page_path *parents,
1761                                struct kvm_mmu_pages *pvec)
1762 {
1763         parents->parent[parent->role.level-1] = NULL;
1764         pvec->nr = 0;
1765 }
1766
1767 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1768                               struct kvm_mmu_page *parent)
1769 {
1770         int i;
1771         struct kvm_mmu_page *sp;
1772         struct mmu_page_path parents;
1773         struct kvm_mmu_pages pages;
1774         LIST_HEAD(invalid_list);
1775
1776         kvm_mmu_pages_init(parent, &parents, &pages);
1777         while (mmu_unsync_walk(parent, &pages)) {
1778                 bool protected = false;
1779
1780                 for_each_sp(pages, sp, parents, i)
1781                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1782
1783                 if (protected)
1784                         kvm_flush_remote_tlbs(vcpu->kvm);
1785
1786                 for_each_sp(pages, sp, parents, i) {
1787                         kvm_sync_page(vcpu, sp, &invalid_list);
1788                         mmu_pages_clear_parents(&parents);
1789                 }
1790                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1791                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1792                 kvm_mmu_pages_init(parent, &parents, &pages);
1793         }
1794 }
1795
1796 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1797 {
1798         int i;
1799
1800         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1801                 sp->spt[i] = 0ull;
1802 }
1803
1804 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1805 {
1806         sp->write_flooding_count = 0;
1807 }
1808
1809 static void clear_sp_write_flooding_count(u64 *spte)
1810 {
1811         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1812
1813         __clear_sp_write_flooding_count(sp);
1814 }
1815
1816 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1817                                              gfn_t gfn,
1818                                              gva_t gaddr,
1819                                              unsigned level,
1820                                              int direct,
1821                                              unsigned access,
1822                                              u64 *parent_pte)
1823 {
1824         union kvm_mmu_page_role role;
1825         unsigned quadrant;
1826         struct kvm_mmu_page *sp;
1827         struct hlist_node *node;
1828         bool need_sync = false;
1829
1830         role = vcpu->arch.mmu.base_role;
1831         role.level = level;
1832         role.direct = direct;
1833         if (role.direct)
1834                 role.cr4_pae = 0;
1835         role.access = access;
1836         if (!vcpu->arch.mmu.direct_map
1837             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1838                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1839                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1840                 role.quadrant = quadrant;
1841         }
1842         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1843                 if (!need_sync && sp->unsync)
1844                         need_sync = true;
1845
1846                 if (sp->role.word != role.word)
1847                         continue;
1848
1849                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1850                         break;
1851
1852                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1853                 if (sp->unsync_children) {
1854                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1855                         kvm_mmu_mark_parents_unsync(sp);
1856                 } else if (sp->unsync)
1857                         kvm_mmu_mark_parents_unsync(sp);
1858
1859                 __clear_sp_write_flooding_count(sp);
1860                 trace_kvm_mmu_get_page(sp, false);
1861                 return sp;
1862         }
1863         ++vcpu->kvm->stat.mmu_cache_miss;
1864         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1865         if (!sp)
1866                 return sp;
1867         sp->gfn = gfn;
1868         sp->role = role;
1869         hlist_add_head(&sp->hash_link,
1870                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1871         if (!direct) {
1872                 if (rmap_write_protect(vcpu->kvm, gfn))
1873                         kvm_flush_remote_tlbs(vcpu->kvm);
1874                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1875                         kvm_sync_pages(vcpu, gfn);
1876
1877                 account_shadowed(vcpu->kvm, gfn);
1878         }
1879         init_shadow_page_table(sp);
1880         trace_kvm_mmu_get_page(sp, true);
1881         return sp;
1882 }
1883
1884 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1885                              struct kvm_vcpu *vcpu, u64 addr)
1886 {
1887         iterator->addr = addr;
1888         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1889         iterator->level = vcpu->arch.mmu.shadow_root_level;
1890
1891         if (iterator->level == PT64_ROOT_LEVEL &&
1892             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1893             !vcpu->arch.mmu.direct_map)
1894                 --iterator->level;
1895
1896         if (iterator->level == PT32E_ROOT_LEVEL) {
1897                 iterator->shadow_addr
1898                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1899                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1900                 --iterator->level;
1901                 if (!iterator->shadow_addr)
1902                         iterator->level = 0;
1903         }
1904 }
1905
1906 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1907 {
1908         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1909                 return false;
1910
1911         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1912         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1913         return true;
1914 }
1915
1916 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1917                                u64 spte)
1918 {
1919         if (is_last_spte(spte, iterator->level)) {
1920                 iterator->level = 0;
1921                 return;
1922         }
1923
1924         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1925         --iterator->level;
1926 }
1927
1928 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1929 {
1930         return __shadow_walk_next(iterator, *iterator->sptep);
1931 }
1932
1933 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1934 {
1935         u64 spte;
1936
1937         spte = __pa(sp->spt)
1938                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1939                 | PT_WRITABLE_MASK | PT_USER_MASK;
1940         mmu_spte_set(sptep, spte);
1941 }
1942
1943 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1944                                    unsigned direct_access)
1945 {
1946         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1947                 struct kvm_mmu_page *child;
1948
1949                 /*
1950                  * For the direct sp, if the guest pte's dirty bit
1951                  * changed form clean to dirty, it will corrupt the
1952                  * sp's access: allow writable in the read-only sp,
1953                  * so we should update the spte at this point to get
1954                  * a new sp with the correct access.
1955                  */
1956                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1957                 if (child->role.access == direct_access)
1958                         return;
1959
1960                 drop_parent_pte(child, sptep);
1961                 kvm_flush_remote_tlbs(vcpu->kvm);
1962         }
1963 }
1964
1965 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1966                              u64 *spte)
1967 {
1968         u64 pte;
1969         struct kvm_mmu_page *child;
1970
1971         pte = *spte;
1972         if (is_shadow_present_pte(pte)) {
1973                 if (is_last_spte(pte, sp->role.level)) {
1974                         drop_spte(kvm, spte);
1975                         if (is_large_pte(pte))
1976                                 --kvm->stat.lpages;
1977                 } else {
1978                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1979                         drop_parent_pte(child, spte);
1980                 }
1981                 return true;
1982         }
1983
1984         if (is_mmio_spte(pte))
1985                 mmu_spte_clear_no_track(spte);
1986
1987         return false;
1988 }
1989
1990 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1991                                          struct kvm_mmu_page *sp)
1992 {
1993         unsigned i;
1994
1995         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1996                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1997 }
1998
1999 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2000 {
2001         mmu_page_remove_parent_pte(sp, parent_pte);
2002 }
2003
2004 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2005 {
2006         u64 *sptep;
2007         struct rmap_iterator iter;
2008
2009         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2010                 drop_parent_pte(sp, sptep);
2011 }
2012
2013 static int mmu_zap_unsync_children(struct kvm *kvm,
2014                                    struct kvm_mmu_page *parent,
2015                                    struct list_head *invalid_list)
2016 {
2017         int i, zapped = 0;
2018         struct mmu_page_path parents;
2019         struct kvm_mmu_pages pages;
2020
2021         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2022                 return 0;
2023
2024         kvm_mmu_pages_init(parent, &parents, &pages);
2025         while (mmu_unsync_walk(parent, &pages)) {
2026                 struct kvm_mmu_page *sp;
2027
2028                 for_each_sp(pages, sp, parents, i) {
2029                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2030                         mmu_pages_clear_parents(&parents);
2031                         zapped++;
2032                 }
2033                 kvm_mmu_pages_init(parent, &parents, &pages);
2034         }
2035
2036         return zapped;
2037 }
2038
2039 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2040                                     struct list_head *invalid_list)
2041 {
2042         int ret;
2043
2044         trace_kvm_mmu_prepare_zap_page(sp);
2045         ++kvm->stat.mmu_shadow_zapped;
2046         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2047         kvm_mmu_page_unlink_children(kvm, sp);
2048         kvm_mmu_unlink_parents(kvm, sp);
2049         if (!sp->role.invalid && !sp->role.direct)
2050                 unaccount_shadowed(kvm, sp->gfn);
2051         if (sp->unsync)
2052                 kvm_unlink_unsync_page(kvm, sp);
2053         if (!sp->root_count) {
2054                 /* Count self */
2055                 ret++;
2056                 list_move(&sp->link, invalid_list);
2057                 kvm_mod_used_mmu_pages(kvm, -1);
2058         } else {
2059                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2060                 kvm_reload_remote_mmus(kvm);
2061         }
2062
2063         sp->role.invalid = 1;
2064         return ret;
2065 }
2066
2067 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2068                                     struct list_head *invalid_list)
2069 {
2070         struct kvm_mmu_page *sp;
2071
2072         if (list_empty(invalid_list))
2073                 return;
2074
2075         /*
2076          * wmb: make sure everyone sees our modifications to the page tables
2077          * rmb: make sure we see changes to vcpu->mode
2078          */
2079         smp_mb();
2080
2081         /*
2082          * Wait for all vcpus to exit guest mode and/or lockless shadow
2083          * page table walks.
2084          */
2085         kvm_flush_remote_tlbs(kvm);
2086
2087         do {
2088                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2089                 WARN_ON(!sp->role.invalid || sp->root_count);
2090                 kvm_mmu_isolate_page(sp);
2091                 kvm_mmu_free_page(sp);
2092         } while (!list_empty(invalid_list));
2093 }
2094
2095 /*
2096  * Changing the number of mmu pages allocated to the vm
2097  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2098  */
2099 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2100 {
2101         LIST_HEAD(invalid_list);
2102         /*
2103          * If we set the number of mmu pages to be smaller be than the
2104          * number of actived pages , we must to free some mmu pages before we
2105          * change the value
2106          */
2107
2108         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2109                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2110                         !list_empty(&kvm->arch.active_mmu_pages)) {
2111                         struct kvm_mmu_page *page;
2112
2113                         page = container_of(kvm->arch.active_mmu_pages.prev,
2114                                             struct kvm_mmu_page, link);
2115                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2116                 }
2117                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2118                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2119         }
2120
2121         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2122 }
2123
2124 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2125 {
2126         struct kvm_mmu_page *sp;
2127         struct hlist_node *node;
2128         LIST_HEAD(invalid_list);
2129         int r;
2130
2131         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2132         r = 0;
2133         spin_lock(&kvm->mmu_lock);
2134         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2135                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2136                          sp->role.word);
2137                 r = 1;
2138                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2139         }
2140         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2141         spin_unlock(&kvm->mmu_lock);
2142
2143         return r;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2146
2147 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2148 {
2149         int slot = memslot_id(kvm, gfn);
2150         struct kvm_mmu_page *sp = page_header(__pa(pte));
2151
2152         __set_bit(slot, sp->slot_bitmap);
2153 }
2154
2155 /*
2156  * The function is based on mtrr_type_lookup() in
2157  * arch/x86/kernel/cpu/mtrr/generic.c
2158  */
2159 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2160                          u64 start, u64 end)
2161 {
2162         int i;
2163         u64 base, mask;
2164         u8 prev_match, curr_match;
2165         int num_var_ranges = KVM_NR_VAR_MTRR;
2166
2167         if (!mtrr_state->enabled)
2168                 return 0xFF;
2169
2170         /* Make end inclusive end, instead of exclusive */
2171         end--;
2172
2173         /* Look in fixed ranges. Just return the type as per start */
2174         if (mtrr_state->have_fixed && (start < 0x100000)) {
2175                 int idx;
2176
2177                 if (start < 0x80000) {
2178                         idx = 0;
2179                         idx += (start >> 16);
2180                         return mtrr_state->fixed_ranges[idx];
2181                 } else if (start < 0xC0000) {
2182                         idx = 1 * 8;
2183                         idx += ((start - 0x80000) >> 14);
2184                         return mtrr_state->fixed_ranges[idx];
2185                 } else if (start < 0x1000000) {
2186                         idx = 3 * 8;
2187                         idx += ((start - 0xC0000) >> 12);
2188                         return mtrr_state->fixed_ranges[idx];
2189                 }
2190         }
2191
2192         /*
2193          * Look in variable ranges
2194          * Look of multiple ranges matching this address and pick type
2195          * as per MTRR precedence
2196          */
2197         if (!(mtrr_state->enabled & 2))
2198                 return mtrr_state->def_type;
2199
2200         prev_match = 0xFF;
2201         for (i = 0; i < num_var_ranges; ++i) {
2202                 unsigned short start_state, end_state;
2203
2204                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2205                         continue;
2206
2207                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2208                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2209                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2210                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2211
2212                 start_state = ((start & mask) == (base & mask));
2213                 end_state = ((end & mask) == (base & mask));
2214                 if (start_state != end_state)
2215                         return 0xFE;
2216
2217                 if ((start & mask) != (base & mask))
2218                         continue;
2219
2220                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2221                 if (prev_match == 0xFF) {
2222                         prev_match = curr_match;
2223                         continue;
2224                 }
2225
2226                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2227                     curr_match == MTRR_TYPE_UNCACHABLE)
2228                         return MTRR_TYPE_UNCACHABLE;
2229
2230                 if ((prev_match == MTRR_TYPE_WRBACK &&
2231                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2232                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2233                      curr_match == MTRR_TYPE_WRBACK)) {
2234                         prev_match = MTRR_TYPE_WRTHROUGH;
2235                         curr_match = MTRR_TYPE_WRTHROUGH;
2236                 }
2237
2238                 if (prev_match != curr_match)
2239                         return MTRR_TYPE_UNCACHABLE;
2240         }
2241
2242         if (prev_match != 0xFF)
2243                 return prev_match;
2244
2245         return mtrr_state->def_type;
2246 }
2247
2248 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2249 {
2250         u8 mtrr;
2251
2252         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2253                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2254         if (mtrr == 0xfe || mtrr == 0xff)
2255                 mtrr = MTRR_TYPE_WRBACK;
2256         return mtrr;
2257 }
2258 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2259
2260 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2261 {
2262         trace_kvm_mmu_unsync_page(sp);
2263         ++vcpu->kvm->stat.mmu_unsync;
2264         sp->unsync = 1;
2265
2266         kvm_mmu_mark_parents_unsync(sp);
2267 }
2268
2269 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2270 {
2271         struct kvm_mmu_page *s;
2272         struct hlist_node *node;
2273
2274         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2275                 if (s->unsync)
2276                         continue;
2277                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2278                 __kvm_unsync_page(vcpu, s);
2279         }
2280 }
2281
2282 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2283                                   bool can_unsync)
2284 {
2285         struct kvm_mmu_page *s;
2286         struct hlist_node *node;
2287         bool need_unsync = false;
2288
2289         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2290                 if (!can_unsync)
2291                         return 1;
2292
2293                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2294                         return 1;
2295
2296                 if (!need_unsync && !s->unsync) {
2297                         need_unsync = true;
2298                 }
2299         }
2300         if (need_unsync)
2301                 kvm_unsync_pages(vcpu, gfn);
2302         return 0;
2303 }
2304
2305 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2306                     unsigned pte_access, int user_fault,
2307                     int write_fault, int level,
2308                     gfn_t gfn, pfn_t pfn, bool speculative,
2309                     bool can_unsync, bool host_writable)
2310 {
2311         u64 spte;
2312         int ret = 0;
2313
2314         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2315                 return 0;
2316
2317         spte = PT_PRESENT_MASK;
2318         if (!speculative)
2319                 spte |= shadow_accessed_mask;
2320
2321         if (pte_access & ACC_EXEC_MASK)
2322                 spte |= shadow_x_mask;
2323         else
2324                 spte |= shadow_nx_mask;
2325
2326         if (pte_access & ACC_USER_MASK)
2327                 spte |= shadow_user_mask;
2328
2329         if (level > PT_PAGE_TABLE_LEVEL)
2330                 spte |= PT_PAGE_SIZE_MASK;
2331         if (tdp_enabled)
2332                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2333                         kvm_is_mmio_pfn(pfn));
2334
2335         if (host_writable)
2336                 spte |= SPTE_HOST_WRITEABLE;
2337         else
2338                 pte_access &= ~ACC_WRITE_MASK;
2339
2340         spte |= (u64)pfn << PAGE_SHIFT;
2341
2342         if ((pte_access & ACC_WRITE_MASK)
2343             || (!vcpu->arch.mmu.direct_map && write_fault
2344                 && !is_write_protection(vcpu) && !user_fault)) {
2345
2346                 if (level > PT_PAGE_TABLE_LEVEL &&
2347                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2348                         ret = 1;
2349                         drop_spte(vcpu->kvm, sptep);
2350                         goto done;
2351                 }
2352
2353                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2354
2355                 if (!vcpu->arch.mmu.direct_map
2356                     && !(pte_access & ACC_WRITE_MASK)) {
2357                         spte &= ~PT_USER_MASK;
2358                         /*
2359                          * If we converted a user page to a kernel page,
2360                          * so that the kernel can write to it when cr0.wp=0,
2361                          * then we should prevent the kernel from executing it
2362                          * if SMEP is enabled.
2363                          */
2364                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2365                                 spte |= PT64_NX_MASK;
2366                 }
2367
2368                 /*
2369                  * Optimization: for pte sync, if spte was writable the hash
2370                  * lookup is unnecessary (and expensive). Write protection
2371                  * is responsibility of mmu_get_page / kvm_sync_page.
2372                  * Same reasoning can be applied to dirty page accounting.
2373                  */
2374                 if (!can_unsync && is_writable_pte(*sptep))
2375                         goto set_pte;
2376
2377                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2378                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2379                                  __func__, gfn);
2380                         ret = 1;
2381                         pte_access &= ~ACC_WRITE_MASK;
2382                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2383                 }
2384         }
2385
2386         if (pte_access & ACC_WRITE_MASK)
2387                 mark_page_dirty(vcpu->kvm, gfn);
2388
2389 set_pte:
2390         if (mmu_spte_update(sptep, spte))
2391                 kvm_flush_remote_tlbs(vcpu->kvm);
2392 done:
2393         return ret;
2394 }
2395
2396 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2397                          unsigned pt_access, unsigned pte_access,
2398                          int user_fault, int write_fault,
2399                          int *emulate, int level, gfn_t gfn,
2400                          pfn_t pfn, bool speculative,
2401                          bool host_writable)
2402 {
2403         int was_rmapped = 0;
2404         int rmap_count;
2405
2406         pgprintk("%s: spte %llx access %x write_fault %d"
2407                  " user_fault %d gfn %llx\n",
2408                  __func__, *sptep, pt_access,
2409                  write_fault, user_fault, gfn);
2410
2411         if (is_rmap_spte(*sptep)) {
2412                 /*
2413                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2414                  * the parent of the now unreachable PTE.
2415                  */
2416                 if (level > PT_PAGE_TABLE_LEVEL &&
2417                     !is_large_pte(*sptep)) {
2418                         struct kvm_mmu_page *child;
2419                         u64 pte = *sptep;
2420
2421                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2422                         drop_parent_pte(child, sptep);
2423                         kvm_flush_remote_tlbs(vcpu->kvm);
2424                 } else if (pfn != spte_to_pfn(*sptep)) {
2425                         pgprintk("hfn old %llx new %llx\n",
2426                                  spte_to_pfn(*sptep), pfn);
2427                         drop_spte(vcpu->kvm, sptep);
2428                         kvm_flush_remote_tlbs(vcpu->kvm);
2429                 } else
2430                         was_rmapped = 1;
2431         }
2432
2433         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2434                       level, gfn, pfn, speculative, true,
2435                       host_writable)) {
2436                 if (write_fault)
2437                         *emulate = 1;
2438                 kvm_mmu_flush_tlb(vcpu);
2439         }
2440
2441         if (unlikely(is_mmio_spte(*sptep) && emulate))
2442                 *emulate = 1;
2443
2444         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2445         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2446                  is_large_pte(*sptep)? "2MB" : "4kB",
2447                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2448                  *sptep, sptep);
2449         if (!was_rmapped && is_large_pte(*sptep))
2450                 ++vcpu->kvm->stat.lpages;
2451
2452         if (is_shadow_present_pte(*sptep)) {
2453                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2454                 if (!was_rmapped) {
2455                         rmap_count = rmap_add(vcpu, sptep, gfn);
2456                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2457                                 rmap_recycle(vcpu, sptep, gfn);
2458                 }
2459         }
2460         kvm_release_pfn_clean(pfn);
2461 }
2462
2463 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2464 {
2465         mmu_free_roots(vcpu);
2466 }
2467
2468 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2469                                      bool no_dirty_log)
2470 {
2471         struct kvm_memory_slot *slot;
2472         unsigned long hva;
2473
2474         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2475         if (!slot) {
2476                 get_page(fault_page);
2477                 return page_to_pfn(fault_page);
2478         }
2479
2480         hva = gfn_to_hva_memslot(slot, gfn);
2481
2482         return hva_to_pfn_atomic(vcpu->kvm, hva);
2483 }
2484
2485 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2486                                     struct kvm_mmu_page *sp,
2487                                     u64 *start, u64 *end)
2488 {
2489         struct page *pages[PTE_PREFETCH_NUM];
2490         unsigned access = sp->role.access;
2491         int i, ret;
2492         gfn_t gfn;
2493
2494         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2495         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2496                 return -1;
2497
2498         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2499         if (ret <= 0)
2500                 return -1;
2501
2502         for (i = 0; i < ret; i++, gfn++, start++)
2503                 mmu_set_spte(vcpu, start, ACC_ALL,
2504                              access, 0, 0, NULL,
2505                              sp->role.level, gfn,
2506                              page_to_pfn(pages[i]), true, true);
2507
2508         return 0;
2509 }
2510
2511 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2512                                   struct kvm_mmu_page *sp, u64 *sptep)
2513 {
2514         u64 *spte, *start = NULL;
2515         int i;
2516
2517         WARN_ON(!sp->role.direct);
2518
2519         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2520         spte = sp->spt + i;
2521
2522         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2523                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2524                         if (!start)
2525                                 continue;
2526                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2527                                 break;
2528                         start = NULL;
2529                 } else if (!start)
2530                         start = spte;
2531         }
2532 }
2533
2534 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2535 {
2536         struct kvm_mmu_page *sp;
2537
2538         /*
2539          * Since it's no accessed bit on EPT, it's no way to
2540          * distinguish between actually accessed translations
2541          * and prefetched, so disable pte prefetch if EPT is
2542          * enabled.
2543          */
2544         if (!shadow_accessed_mask)
2545                 return;
2546
2547         sp = page_header(__pa(sptep));
2548         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2549                 return;
2550
2551         __direct_pte_prefetch(vcpu, sp, sptep);
2552 }
2553
2554 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2555                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2556                         bool prefault)
2557 {
2558         struct kvm_shadow_walk_iterator iterator;
2559         struct kvm_mmu_page *sp;
2560         int emulate = 0;
2561         gfn_t pseudo_gfn;
2562
2563         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2564                 if (iterator.level == level) {
2565                         unsigned pte_access = ACC_ALL;
2566
2567                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2568                                      0, write, &emulate,
2569                                      level, gfn, pfn, prefault, map_writable);
2570                         direct_pte_prefetch(vcpu, iterator.sptep);
2571                         ++vcpu->stat.pf_fixed;
2572                         break;
2573                 }
2574
2575                 if (!is_shadow_present_pte(*iterator.sptep)) {
2576                         u64 base_addr = iterator.addr;
2577
2578                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2579                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2580                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2581                                               iterator.level - 1,
2582                                               1, ACC_ALL, iterator.sptep);
2583                         if (!sp) {
2584                                 pgprintk("nonpaging_map: ENOMEM\n");
2585                                 kvm_release_pfn_clean(pfn);
2586                                 return -ENOMEM;
2587                         }
2588
2589                         mmu_spte_set(iterator.sptep,
2590                                      __pa(sp->spt)
2591                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2592                                      | shadow_user_mask | shadow_x_mask
2593                                      | shadow_accessed_mask);
2594                 }
2595         }
2596         return emulate;
2597 }
2598
2599 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2600 {
2601         siginfo_t info;
2602
2603         info.si_signo   = SIGBUS;
2604         info.si_errno   = 0;
2605         info.si_code    = BUS_MCEERR_AR;
2606         info.si_addr    = (void __user *)address;
2607         info.si_addr_lsb = PAGE_SHIFT;
2608
2609         send_sig_info(SIGBUS, &info, tsk);
2610 }
2611
2612 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2613 {
2614         kvm_release_pfn_clean(pfn);
2615         if (is_hwpoison_pfn(pfn)) {
2616                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2617                 return 0;
2618         }
2619
2620         return -EFAULT;
2621 }
2622
2623 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2624                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2625 {
2626         pfn_t pfn = *pfnp;
2627         gfn_t gfn = *gfnp;
2628         int level = *levelp;
2629
2630         /*
2631          * Check if it's a transparent hugepage. If this would be an
2632          * hugetlbfs page, level wouldn't be set to
2633          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2634          * here.
2635          */
2636         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2637             level == PT_PAGE_TABLE_LEVEL &&
2638             PageTransCompound(pfn_to_page(pfn)) &&
2639             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2640                 unsigned long mask;
2641                 /*
2642                  * mmu_notifier_retry was successful and we hold the
2643                  * mmu_lock here, so the pmd can't become splitting
2644                  * from under us, and in turn
2645                  * __split_huge_page_refcount() can't run from under
2646                  * us and we can safely transfer the refcount from
2647                  * PG_tail to PG_head as we switch the pfn to tail to
2648                  * head.
2649                  */
2650                 *levelp = level = PT_DIRECTORY_LEVEL;
2651                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2652                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2653                 if (pfn & mask) {
2654                         gfn &= ~mask;
2655                         *gfnp = gfn;
2656                         kvm_release_pfn_clean(pfn);
2657                         pfn &= ~mask;
2658                         kvm_get_pfn(pfn);
2659                         *pfnp = pfn;
2660                 }
2661         }
2662 }
2663
2664 static bool mmu_invalid_pfn(pfn_t pfn)
2665 {
2666         return unlikely(is_invalid_pfn(pfn));
2667 }
2668
2669 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2670                                 pfn_t pfn, unsigned access, int *ret_val)
2671 {
2672         bool ret = true;
2673
2674         /* The pfn is invalid, report the error! */
2675         if (unlikely(is_invalid_pfn(pfn))) {
2676                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2677                 goto exit;
2678         }
2679
2680         if (unlikely(is_noslot_pfn(pfn)))
2681                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2682
2683         ret = false;
2684 exit:
2685         return ret;
2686 }
2687
2688 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2689 {
2690         /*
2691          * #PF can be fast only if the shadow page table is present and it
2692          * is caused by write-protect, that means we just need change the
2693          * W bit of the spte which can be done out of mmu-lock.
2694          */
2695         if (!(error_code & PFERR_PRESENT_MASK) ||
2696               !(error_code & PFERR_WRITE_MASK))
2697                 return false;
2698
2699         return true;
2700 }
2701
2702 static bool
2703 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2704 {
2705         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2706         gfn_t gfn;
2707
2708         WARN_ON(!sp->role.direct);
2709
2710         /*
2711          * The gfn of direct spte is stable since it is calculated
2712          * by sp->gfn.
2713          */
2714         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2715
2716         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2717                 mark_page_dirty(vcpu->kvm, gfn);
2718
2719         return true;
2720 }
2721
2722 /*
2723  * Return value:
2724  * - true: let the vcpu to access on the same address again.
2725  * - false: let the real page fault path to fix it.
2726  */
2727 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2728                             u32 error_code)
2729 {
2730         struct kvm_shadow_walk_iterator iterator;
2731         bool ret = false;
2732         u64 spte = 0ull;
2733
2734         if (!page_fault_can_be_fast(vcpu, error_code))
2735                 return false;
2736
2737         walk_shadow_page_lockless_begin(vcpu);
2738         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2739                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2740                         break;
2741
2742         /*
2743          * If the mapping has been changed, let the vcpu fault on the
2744          * same address again.
2745          */
2746         if (!is_rmap_spte(spte)) {
2747                 ret = true;
2748                 goto exit;
2749         }
2750
2751         if (!is_last_spte(spte, level))
2752                 goto exit;
2753
2754         /*
2755          * Check if it is a spurious fault caused by TLB lazily flushed.
2756          *
2757          * Need not check the access of upper level table entries since
2758          * they are always ACC_ALL.
2759          */
2760          if (is_writable_pte(spte)) {
2761                 ret = true;
2762                 goto exit;
2763         }
2764
2765         /*
2766          * Currently, to simplify the code, only the spte write-protected
2767          * by dirty-log can be fast fixed.
2768          */
2769         if (!spte_is_locklessly_modifiable(spte))
2770                 goto exit;
2771
2772         /*
2773          * Currently, fast page fault only works for direct mapping since
2774          * the gfn is not stable for indirect shadow page.
2775          * See Documentation/virtual/kvm/locking.txt to get more detail.
2776          */
2777         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2778 exit:
2779         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2780                               spte, ret);
2781         walk_shadow_page_lockless_end(vcpu);
2782
2783         return ret;
2784 }
2785
2786 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2787                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2788
2789 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2790                          gfn_t gfn, bool prefault)
2791 {
2792         int r;
2793         int level;
2794         int force_pt_level;
2795         pfn_t pfn;
2796         unsigned long mmu_seq;
2797         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2798
2799         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2800         if (likely(!force_pt_level)) {
2801                 level = mapping_level(vcpu, gfn);
2802                 /*
2803                  * This path builds a PAE pagetable - so we can map
2804                  * 2mb pages at maximum. Therefore check if the level
2805                  * is larger than that.
2806                  */
2807                 if (level > PT_DIRECTORY_LEVEL)
2808                         level = PT_DIRECTORY_LEVEL;
2809
2810                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2811         } else
2812                 level = PT_PAGE_TABLE_LEVEL;
2813
2814         if (fast_page_fault(vcpu, v, level, error_code))
2815                 return 0;
2816
2817         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2818         smp_rmb();
2819
2820         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2821                 return 0;
2822
2823         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2824                 return r;
2825
2826         spin_lock(&vcpu->kvm->mmu_lock);
2827         if (mmu_notifier_retry(vcpu, mmu_seq))
2828                 goto out_unlock;
2829         kvm_mmu_free_some_pages(vcpu);
2830         if (likely(!force_pt_level))
2831                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2832         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2833                          prefault);
2834         spin_unlock(&vcpu->kvm->mmu_lock);
2835
2836
2837         return r;
2838
2839 out_unlock:
2840         spin_unlock(&vcpu->kvm->mmu_lock);
2841         kvm_release_pfn_clean(pfn);
2842         return 0;
2843 }
2844
2845
2846 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2847 {
2848         int i;
2849         struct kvm_mmu_page *sp;
2850         LIST_HEAD(invalid_list);
2851
2852         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2853                 return;
2854         spin_lock(&vcpu->kvm->mmu_lock);
2855         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2856             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2857              vcpu->arch.mmu.direct_map)) {
2858                 hpa_t root = vcpu->arch.mmu.root_hpa;
2859
2860                 sp = page_header(root);
2861                 --sp->root_count;
2862                 if (!sp->root_count && sp->role.invalid) {
2863                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2864                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2865                 }
2866                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2867                 spin_unlock(&vcpu->kvm->mmu_lock);
2868                 return;
2869         }
2870         for (i = 0; i < 4; ++i) {
2871                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2872
2873                 if (root) {
2874                         root &= PT64_BASE_ADDR_MASK;
2875                         sp = page_header(root);
2876                         --sp->root_count;
2877                         if (!sp->root_count && sp->role.invalid)
2878                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2879                                                          &invalid_list);
2880                 }
2881                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2882         }
2883         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2884         spin_unlock(&vcpu->kvm->mmu_lock);
2885         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2886 }
2887
2888 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2889 {
2890         int ret = 0;
2891
2892         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2893                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2894                 ret = 1;
2895         }
2896
2897         return ret;
2898 }
2899
2900 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2901 {
2902         struct kvm_mmu_page *sp;
2903         unsigned i;
2904
2905         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2906                 spin_lock(&vcpu->kvm->mmu_lock);
2907                 kvm_mmu_free_some_pages(vcpu);
2908                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2909                                       1, ACC_ALL, NULL);
2910                 ++sp->root_count;
2911                 spin_unlock(&vcpu->kvm->mmu_lock);
2912                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2913         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2914                 for (i = 0; i < 4; ++i) {
2915                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2916
2917                         ASSERT(!VALID_PAGE(root));
2918                         spin_lock(&vcpu->kvm->mmu_lock);
2919                         kvm_mmu_free_some_pages(vcpu);
2920                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2921                                               i << 30,
2922                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2923                                               NULL);
2924                         root = __pa(sp->spt);
2925                         ++sp->root_count;
2926                         spin_unlock(&vcpu->kvm->mmu_lock);
2927                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2928                 }
2929                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2930         } else
2931                 BUG();
2932
2933         return 0;
2934 }
2935
2936 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2937 {
2938         struct kvm_mmu_page *sp;
2939         u64 pdptr, pm_mask;
2940         gfn_t root_gfn;
2941         int i;
2942
2943         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2944
2945         if (mmu_check_root(vcpu, root_gfn))
2946                 return 1;
2947
2948         /*
2949          * Do we shadow a long mode page table? If so we need to
2950          * write-protect the guests page table root.
2951          */
2952         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2953                 hpa_t root = vcpu->arch.mmu.root_hpa;
2954
2955                 ASSERT(!VALID_PAGE(root));
2956
2957                 spin_lock(&vcpu->kvm->mmu_lock);
2958                 kvm_mmu_free_some_pages(vcpu);
2959                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2960                                       0, ACC_ALL, NULL);
2961                 root = __pa(sp->spt);
2962                 ++sp->root_count;
2963                 spin_unlock(&vcpu->kvm->mmu_lock);
2964                 vcpu->arch.mmu.root_hpa = root;
2965                 return 0;
2966         }
2967
2968         /*
2969          * We shadow a 32 bit page table. This may be a legacy 2-level
2970          * or a PAE 3-level page table. In either case we need to be aware that
2971          * the shadow page table may be a PAE or a long mode page table.
2972          */
2973         pm_mask = PT_PRESENT_MASK;
2974         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2975                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2976
2977         for (i = 0; i < 4; ++i) {
2978                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2979
2980                 ASSERT(!VALID_PAGE(root));
2981                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2982                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2983                         if (!is_present_gpte(pdptr)) {
2984                                 vcpu->arch.mmu.pae_root[i] = 0;
2985                                 continue;
2986                         }
2987                         root_gfn = pdptr >> PAGE_SHIFT;
2988                         if (mmu_check_root(vcpu, root_gfn))
2989                                 return 1;
2990                 }
2991                 spin_lock(&vcpu->kvm->mmu_lock);
2992                 kvm_mmu_free_some_pages(vcpu);
2993                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2994                                       PT32_ROOT_LEVEL, 0,
2995                                       ACC_ALL, NULL);
2996                 root = __pa(sp->spt);
2997                 ++sp->root_count;
2998                 spin_unlock(&vcpu->kvm->mmu_lock);
2999
3000                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3001         }
3002         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3003
3004         /*
3005          * If we shadow a 32 bit page table with a long mode page
3006          * table we enter this path.
3007          */
3008         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3009                 if (vcpu->arch.mmu.lm_root == NULL) {
3010                         /*
3011                          * The additional page necessary for this is only
3012                          * allocated on demand.
3013                          */
3014
3015                         u64 *lm_root;
3016
3017                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3018                         if (lm_root == NULL)
3019                                 return 1;
3020
3021                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3022
3023                         vcpu->arch.mmu.lm_root = lm_root;
3024                 }
3025
3026                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3027         }
3028
3029         return 0;
3030 }
3031
3032 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3033 {
3034         if (vcpu->arch.mmu.direct_map)
3035                 return mmu_alloc_direct_roots(vcpu);
3036         else
3037                 return mmu_alloc_shadow_roots(vcpu);
3038 }
3039
3040 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3041 {
3042         int i;
3043         struct kvm_mmu_page *sp;
3044
3045         if (vcpu->arch.mmu.direct_map)
3046                 return;
3047
3048         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3049                 return;
3050
3051         vcpu_clear_mmio_info(vcpu, ~0ul);
3052         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3053         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3054                 hpa_t root = vcpu->arch.mmu.root_hpa;
3055                 sp = page_header(root);
3056                 mmu_sync_children(vcpu, sp);
3057                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3058                 return;
3059         }
3060         for (i = 0; i < 4; ++i) {
3061                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3062
3063                 if (root && VALID_PAGE(root)) {
3064                         root &= PT64_BASE_ADDR_MASK;
3065                         sp = page_header(root);
3066                         mmu_sync_children(vcpu, sp);
3067                 }
3068         }
3069         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3070 }
3071
3072 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3073 {
3074         spin_lock(&vcpu->kvm->mmu_lock);
3075         mmu_sync_roots(vcpu);
3076         spin_unlock(&vcpu->kvm->mmu_lock);
3077 }
3078
3079 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3080                                   u32 access, struct x86_exception *exception)
3081 {
3082         if (exception)
3083                 exception->error_code = 0;
3084         return vaddr;
3085 }
3086
3087 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3088                                          u32 access,
3089                                          struct x86_exception *exception)
3090 {
3091         if (exception)
3092                 exception->error_code = 0;
3093         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3094 }
3095
3096 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3097 {
3098         if (direct)
3099                 return vcpu_match_mmio_gpa(vcpu, addr);
3100
3101         return vcpu_match_mmio_gva(vcpu, addr);
3102 }
3103
3104
3105 /*
3106  * On direct hosts, the last spte is only allows two states
3107  * for mmio page fault:
3108  *   - It is the mmio spte
3109  *   - It is zapped or it is being zapped.
3110  *
3111  * This function completely checks the spte when the last spte
3112  * is not the mmio spte.
3113  */
3114 static bool check_direct_spte_mmio_pf(u64 spte)
3115 {
3116         return __check_direct_spte_mmio_pf(spte);
3117 }
3118
3119 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3120 {
3121         struct kvm_shadow_walk_iterator iterator;
3122         u64 spte = 0ull;
3123
3124         walk_shadow_page_lockless_begin(vcpu);
3125         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3126                 if (!is_shadow_present_pte(spte))
3127                         break;
3128         walk_shadow_page_lockless_end(vcpu);
3129
3130         return spte;
3131 }
3132
3133 /*
3134  * If it is a real mmio page fault, return 1 and emulat the instruction
3135  * directly, return 0 to let CPU fault again on the address, -1 is
3136  * returned if bug is detected.
3137  */
3138 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3139 {
3140         u64 spte;
3141
3142         if (quickly_check_mmio_pf(vcpu, addr, direct))
3143                 return 1;
3144
3145         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3146
3147         if (is_mmio_spte(spte)) {
3148                 gfn_t gfn = get_mmio_spte_gfn(spte);
3149                 unsigned access = get_mmio_spte_access(spte);
3150
3151                 if (direct)
3152                         addr = 0;
3153
3154                 trace_handle_mmio_page_fault(addr, gfn, access);
3155                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3156                 return 1;
3157         }
3158
3159         /*
3160          * It's ok if the gva is remapped by other cpus on shadow guest,
3161          * it's a BUG if the gfn is not a mmio page.
3162          */
3163         if (direct && !check_direct_spte_mmio_pf(spte))
3164                 return -1;
3165
3166         /*
3167          * If the page table is zapped by other cpus, let CPU fault again on
3168          * the address.
3169          */
3170         return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3173
3174 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3175                                   u32 error_code, bool direct)
3176 {
3177         int ret;
3178
3179         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3180         WARN_ON(ret < 0);
3181         return ret;
3182 }
3183
3184 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3185                                 u32 error_code, bool prefault)
3186 {
3187         gfn_t gfn;
3188         int r;
3189
3190         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3191
3192         if (unlikely(error_code & PFERR_RSVD_MASK))
3193                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3194
3195         r = mmu_topup_memory_caches(vcpu);
3196         if (r)
3197                 return r;
3198
3199         ASSERT(vcpu);
3200         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3201
3202         gfn = gva >> PAGE_SHIFT;
3203
3204         return nonpaging_map(vcpu, gva & PAGE_MASK,
3205                              error_code, gfn, prefault);
3206 }
3207
3208 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3209 {
3210         struct kvm_arch_async_pf arch;
3211
3212         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3213         arch.gfn = gfn;
3214         arch.direct_map = vcpu->arch.mmu.direct_map;
3215         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3216
3217         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3218 }
3219
3220 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3221 {
3222         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3223                      kvm_event_needs_reinjection(vcpu)))
3224                 return false;
3225
3226         return kvm_x86_ops->interrupt_allowed(vcpu);
3227 }
3228
3229 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3230                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3231 {
3232         bool async;
3233
3234         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3235
3236         if (!async)
3237                 return false; /* *pfn has correct page already */
3238
3239         put_page(pfn_to_page(*pfn));
3240
3241         if (!prefault && can_do_async_pf(vcpu)) {
3242                 trace_kvm_try_async_get_page(gva, gfn);
3243                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3244                         trace_kvm_async_pf_doublefault(gva, gfn);
3245                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3246                         return true;
3247                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3248                         return true;
3249         }
3250
3251         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3252
3253         return false;
3254 }
3255
3256 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3257                           bool prefault)
3258 {
3259         pfn_t pfn;
3260         int r;
3261         int level;
3262         int force_pt_level;
3263         gfn_t gfn = gpa >> PAGE_SHIFT;
3264         unsigned long mmu_seq;
3265         int write = error_code & PFERR_WRITE_MASK;
3266         bool map_writable;
3267
3268         ASSERT(vcpu);
3269         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3270
3271         if (unlikely(error_code & PFERR_RSVD_MASK))
3272                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3273
3274         r = mmu_topup_memory_caches(vcpu);
3275         if (r)
3276                 return r;
3277
3278         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3279         if (likely(!force_pt_level)) {
3280                 level = mapping_level(vcpu, gfn);
3281                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3282         } else
3283                 level = PT_PAGE_TABLE_LEVEL;
3284
3285         if (fast_page_fault(vcpu, gpa, level, error_code))
3286                 return 0;
3287
3288         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3289         smp_rmb();
3290
3291         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3292                 return 0;
3293
3294         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3295                 return r;
3296
3297         spin_lock(&vcpu->kvm->mmu_lock);
3298         if (mmu_notifier_retry(vcpu, mmu_seq))
3299                 goto out_unlock;
3300         kvm_mmu_free_some_pages(vcpu);
3301         if (likely(!force_pt_level))
3302                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3303         r = __direct_map(vcpu, gpa, write, map_writable,
3304                          level, gfn, pfn, prefault);
3305         spin_unlock(&vcpu->kvm->mmu_lock);
3306
3307         return r;
3308
3309 out_unlock:
3310         spin_unlock(&vcpu->kvm->mmu_lock);
3311         kvm_release_pfn_clean(pfn);
3312         return 0;
3313 }
3314
3315 static void nonpaging_free(struct kvm_vcpu *vcpu)
3316 {
3317         mmu_free_roots(vcpu);
3318 }
3319
3320 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3321                                   struct kvm_mmu *context)
3322 {
3323         context->new_cr3 = nonpaging_new_cr3;
3324         context->page_fault = nonpaging_page_fault;
3325         context->gva_to_gpa = nonpaging_gva_to_gpa;
3326         context->free = nonpaging_free;
3327         context->sync_page = nonpaging_sync_page;
3328         context->invlpg = nonpaging_invlpg;
3329         context->update_pte = nonpaging_update_pte;
3330         context->root_level = 0;
3331         context->shadow_root_level = PT32E_ROOT_LEVEL;
3332         context->root_hpa = INVALID_PAGE;
3333         context->direct_map = true;
3334         context->nx = false;
3335         return 0;
3336 }
3337
3338 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3339 {
3340         ++vcpu->stat.tlb_flush;
3341         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3342 }
3343
3344 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3345 {
3346         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3347         mmu_free_roots(vcpu);
3348 }
3349
3350 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3351 {
3352         return kvm_read_cr3(vcpu);
3353 }
3354
3355 static void inject_page_fault(struct kvm_vcpu *vcpu,
3356                               struct x86_exception *fault)
3357 {
3358         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3359 }
3360
3361 static void paging_free(struct kvm_vcpu *vcpu)
3362 {
3363         nonpaging_free(vcpu);
3364 }
3365
3366 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3367 {
3368         int bit7;
3369
3370         bit7 = (gpte >> 7) & 1;
3371         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3372 }
3373
3374 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3375                            int *nr_present)
3376 {
3377         if (unlikely(is_mmio_spte(*sptep))) {
3378                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3379                         mmu_spte_clear_no_track(sptep);
3380                         return true;
3381                 }
3382
3383                 (*nr_present)++;
3384                 mark_mmio_spte(sptep, gfn, access);
3385                 return true;
3386         }
3387
3388         return false;
3389 }
3390
3391 #define PTTYPE 64
3392 #include "paging_tmpl.h"
3393 #undef PTTYPE
3394
3395 #define PTTYPE 32
3396 #include "paging_tmpl.h"
3397 #undef PTTYPE
3398
3399 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3400                                   struct kvm_mmu *context)
3401 {
3402         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3403         u64 exb_bit_rsvd = 0;
3404
3405         if (!context->nx)
3406                 exb_bit_rsvd = rsvd_bits(63, 63);
3407         switch (context->root_level) {
3408         case PT32_ROOT_LEVEL:
3409                 /* no rsvd bits for 2 level 4K page table entries */
3410                 context->rsvd_bits_mask[0][1] = 0;
3411                 context->rsvd_bits_mask[0][0] = 0;
3412                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3413
3414                 if (!is_pse(vcpu)) {
3415                         context->rsvd_bits_mask[1][1] = 0;
3416                         break;
3417                 }
3418
3419                 if (is_cpuid_PSE36())
3420                         /* 36bits PSE 4MB page */
3421                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3422                 else
3423                         /* 32 bits PSE 4MB page */
3424                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3425                 break;
3426         case PT32E_ROOT_LEVEL:
3427                 context->rsvd_bits_mask[0][2] =
3428                         rsvd_bits(maxphyaddr, 63) |
3429                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3430                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3431                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3432                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3433                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3434                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3435                         rsvd_bits(maxphyaddr, 62) |
3436                         rsvd_bits(13, 20);              /* large page */
3437                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3438                 break;
3439         case PT64_ROOT_LEVEL:
3440                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3441                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3442                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3443                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3444                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3445                         rsvd_bits(maxphyaddr, 51);
3446                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3447                         rsvd_bits(maxphyaddr, 51);
3448                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3449                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3450                         rsvd_bits(maxphyaddr, 51) |
3451                         rsvd_bits(13, 29);
3452                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3453                         rsvd_bits(maxphyaddr, 51) |
3454                         rsvd_bits(13, 20);              /* large page */
3455                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3456                 break;
3457         }
3458 }
3459
3460 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3461                                         struct kvm_mmu *context,
3462                                         int level)
3463 {
3464         context->nx = is_nx(vcpu);
3465         context->root_level = level;
3466
3467         reset_rsvds_bits_mask(vcpu, context);
3468
3469         ASSERT(is_pae(vcpu));
3470         context->new_cr3 = paging_new_cr3;
3471         context->page_fault = paging64_page_fault;
3472         context->gva_to_gpa = paging64_gva_to_gpa;
3473         context->sync_page = paging64_sync_page;
3474         context->invlpg = paging64_invlpg;
3475         context->update_pte = paging64_update_pte;
3476         context->free = paging_free;
3477         context->shadow_root_level = level;
3478         context->root_hpa = INVALID_PAGE;
3479         context->direct_map = false;
3480         return 0;
3481 }
3482
3483 static int paging64_init_context(struct kvm_vcpu *vcpu,
3484                                  struct kvm_mmu *context)
3485 {
3486         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3487 }
3488
3489 static int paging32_init_context(struct kvm_vcpu *vcpu,
3490                                  struct kvm_mmu *context)
3491 {
3492         context->nx = false;
3493         context->root_level = PT32_ROOT_LEVEL;
3494
3495         reset_rsvds_bits_mask(vcpu, context);
3496
3497         context->new_cr3 = paging_new_cr3;
3498         context->page_fault = paging32_page_fault;
3499         context->gva_to_gpa = paging32_gva_to_gpa;
3500         context->free = paging_free;
3501         context->sync_page = paging32_sync_page;
3502         context->invlpg = paging32_invlpg;
3503         context->update_pte = paging32_update_pte;
3504         context->shadow_root_level = PT32E_ROOT_LEVEL;
3505         context->root_hpa = INVALID_PAGE;
3506         context->direct_map = false;
3507         return 0;
3508 }
3509
3510 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3511                                   struct kvm_mmu *context)
3512 {
3513         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3514 }
3515
3516 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3517 {
3518         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3519
3520         context->base_role.word = 0;
3521         context->new_cr3 = nonpaging_new_cr3;
3522         context->page_fault = tdp_page_fault;
3523         context->free = nonpaging_free;
3524         context->sync_page = nonpaging_sync_page;
3525         context->invlpg = nonpaging_invlpg;
3526         context->update_pte = nonpaging_update_pte;
3527         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3528         context->root_hpa = INVALID_PAGE;
3529         context->direct_map = true;
3530         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3531         context->get_cr3 = get_cr3;
3532         context->get_pdptr = kvm_pdptr_read;
3533         context->inject_page_fault = kvm_inject_page_fault;
3534
3535         if (!is_paging(vcpu)) {
3536                 context->nx = false;
3537                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3538                 context->root_level = 0;
3539         } else if (is_long_mode(vcpu)) {
3540                 context->nx = is_nx(vcpu);
3541                 context->root_level = PT64_ROOT_LEVEL;
3542                 reset_rsvds_bits_mask(vcpu, context);
3543                 context->gva_to_gpa = paging64_gva_to_gpa;
3544         } else if (is_pae(vcpu)) {
3545                 context->nx = is_nx(vcpu);
3546                 context->root_level = PT32E_ROOT_LEVEL;
3547                 reset_rsvds_bits_mask(vcpu, context);
3548                 context->gva_to_gpa = paging64_gva_to_gpa;
3549         } else {
3550                 context->nx = false;
3551                 context->root_level = PT32_ROOT_LEVEL;
3552                 reset_rsvds_bits_mask(vcpu, context);
3553                 context->gva_to_gpa = paging32_gva_to_gpa;
3554         }
3555
3556         return 0;
3557 }
3558
3559 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3560 {
3561         int r;
3562         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3563         ASSERT(vcpu);
3564         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3565
3566         if (!is_paging(vcpu))
3567                 r = nonpaging_init_context(vcpu, context);
3568         else if (is_long_mode(vcpu))
3569                 r = paging64_init_context(vcpu, context);
3570         else if (is_pae(vcpu))
3571                 r = paging32E_init_context(vcpu, context);
3572         else
3573                 r = paging32_init_context(vcpu, context);
3574
3575         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3576         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3577         vcpu->arch.mmu.base_role.smep_andnot_wp
3578                 = smep && !is_write_protection(vcpu);
3579
3580         return r;
3581 }
3582 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3583
3584 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3585 {
3586         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3587
3588         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3589         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3590         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3591         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3592
3593         return r;
3594 }
3595
3596 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3597 {
3598         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3599
3600         g_context->get_cr3           = get_cr3;
3601         g_context->get_pdptr         = kvm_pdptr_read;
3602         g_context->inject_page_fault = kvm_inject_page_fault;
3603
3604         /*
3605          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3606          * translation of l2_gpa to l1_gpa addresses is done using the
3607          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3608          * functions between mmu and nested_mmu are swapped.
3609          */
3610         if (!is_paging(vcpu)) {
3611                 g_context->nx = false;
3612                 g_context->root_level = 0;
3613                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3614         } else if (is_long_mode(vcpu)) {
3615                 g_context->nx = is_nx(vcpu);
3616                 g_context->root_level = PT64_ROOT_LEVEL;
3617                 reset_rsvds_bits_mask(vcpu, g_context);
3618                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3619         } else if (is_pae(vcpu)) {
3620                 g_context->nx = is_nx(vcpu);
3621                 g_context->root_level = PT32E_ROOT_LEVEL;
3622                 reset_rsvds_bits_mask(vcpu, g_context);
3623                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3624         } else {
3625                 g_context->nx = false;
3626                 g_context->root_level = PT32_ROOT_LEVEL;
3627                 reset_rsvds_bits_mask(vcpu, g_context);
3628                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3629         }
3630
3631         return 0;
3632 }
3633
3634 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3635 {
3636         if (mmu_is_nested(vcpu))
3637                 return init_kvm_nested_mmu(vcpu);
3638         else if (tdp_enabled)
3639                 return init_kvm_tdp_mmu(vcpu);
3640         else
3641                 return init_kvm_softmmu(vcpu);
3642 }
3643
3644 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3645 {
3646         ASSERT(vcpu);
3647         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3648                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3649                 vcpu->arch.mmu.free(vcpu);
3650 }
3651
3652 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3653 {
3654         destroy_kvm_mmu(vcpu);
3655         return init_kvm_mmu(vcpu);
3656 }
3657 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3658
3659 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3660 {
3661         int r;
3662
3663         r = mmu_topup_memory_caches(vcpu);
3664         if (r)
3665                 goto out;
3666         r = mmu_alloc_roots(vcpu);
3667         spin_lock(&vcpu->kvm->mmu_lock);
3668         mmu_sync_roots(vcpu);
3669         spin_unlock(&vcpu->kvm->mmu_lock);
3670         if (r)
3671                 goto out;
3672         /* set_cr3() should ensure TLB has been flushed */
3673         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3674 out:
3675         return r;
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3678
3679 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3680 {
3681         mmu_free_roots(vcpu);
3682 }
3683 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3684
3685 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3686                                   struct kvm_mmu_page *sp, u64 *spte,
3687                                   const void *new)
3688 {
3689         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3690                 ++vcpu->kvm->stat.mmu_pde_zapped;
3691                 return;
3692         }
3693
3694         ++vcpu->kvm->stat.mmu_pte_updated;
3695         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3696 }
3697
3698 static bool need_remote_flush(u64 old, u64 new)
3699 {
3700         if (!is_shadow_present_pte(old))
3701                 return false;
3702         if (!is_shadow_present_pte(new))
3703                 return true;
3704         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3705                 return true;
3706         old ^= PT64_NX_MASK;
3707         new ^= PT64_NX_MASK;
3708         return (old & ~new & PT64_PERM_MASK) != 0;
3709 }
3710
3711 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3712                                     bool remote_flush, bool local_flush)
3713 {
3714         if (zap_page)
3715                 return;
3716
3717         if (remote_flush)
3718                 kvm_flush_remote_tlbs(vcpu->kvm);
3719         else if (local_flush)
3720                 kvm_mmu_flush_tlb(vcpu);
3721 }
3722
3723 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3724                                     const u8 *new, int *bytes)
3725 {
3726         u64 gentry;
3727         int r;
3728
3729         /*
3730          * Assume that the pte write on a page table of the same type
3731          * as the current vcpu paging mode since we update the sptes only
3732          * when they have the same mode.
3733          */
3734         if (is_pae(vcpu) && *bytes == 4) {
3735                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3736                 *gpa &= ~(gpa_t)7;
3737                 *bytes = 8;
3738                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3739                 if (r)
3740                         gentry = 0;
3741                 new = (const u8 *)&gentry;
3742         }
3743
3744         switch (*bytes) {
3745         case 4:
3746                 gentry = *(const u32 *)new;
3747                 break;
3748         case 8:
3749                 gentry = *(const u64 *)new;
3750                 break;
3751         default:
3752                 gentry = 0;
3753                 break;
3754         }
3755
3756         return gentry;
3757 }
3758
3759 /*
3760  * If we're seeing too many writes to a page, it may no longer be a page table,
3761  * or we may be forking, in which case it is better to unmap the page.
3762  */
3763 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3764 {
3765         /*
3766          * Skip write-flooding detected for the sp whose level is 1, because
3767          * it can become unsync, then the guest page is not write-protected.
3768          */
3769         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3770                 return false;
3771
3772         return ++sp->write_flooding_count >= 3;
3773 }
3774
3775 /*
3776  * Misaligned accesses are too much trouble to fix up; also, they usually
3777  * indicate a page is not used as a page table.
3778  */
3779 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3780                                     int bytes)
3781 {
3782         unsigned offset, pte_size, misaligned;
3783
3784         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3785                  gpa, bytes, sp->role.word);
3786
3787         offset = offset_in_page(gpa);
3788         pte_size = sp->role.cr4_pae ? 8 : 4;
3789
3790         /*
3791          * Sometimes, the OS only writes the last one bytes to update status
3792          * bits, for example, in linux, andb instruction is used in clear_bit().
3793          */
3794         if (!(offset & (pte_size - 1)) && bytes == 1)
3795                 return false;
3796
3797         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3798         misaligned |= bytes < 4;
3799
3800         return misaligned;
3801 }
3802
3803 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3804 {
3805         unsigned page_offset, quadrant;
3806         u64 *spte;
3807         int level;
3808
3809         page_offset = offset_in_page(gpa);
3810         level = sp->role.level;
3811         *nspte = 1;
3812         if (!sp->role.cr4_pae) {
3813                 page_offset <<= 1;      /* 32->64 */
3814                 /*
3815                  * A 32-bit pde maps 4MB while the shadow pdes map
3816                  * only 2MB.  So we need to double the offset again
3817                  * and zap two pdes instead of one.
3818                  */
3819                 if (level == PT32_ROOT_LEVEL) {
3820                         page_offset &= ~7; /* kill rounding error */
3821                         page_offset <<= 1;
3822                         *nspte = 2;
3823                 }
3824                 quadrant = page_offset >> PAGE_SHIFT;
3825                 page_offset &= ~PAGE_MASK;
3826                 if (quadrant != sp->role.quadrant)
3827                         return NULL;
3828         }
3829
3830         spte = &sp->spt[page_offset / sizeof(*spte)];
3831         return spte;
3832 }
3833
3834 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3835                        const u8 *new, int bytes)
3836 {
3837         gfn_t gfn = gpa >> PAGE_SHIFT;
3838         union kvm_mmu_page_role mask = { .word = 0 };
3839         struct kvm_mmu_page *sp;
3840         struct hlist_node *node;
3841         LIST_HEAD(invalid_list);
3842         u64 entry, gentry, *spte;
3843         int npte;
3844         bool remote_flush, local_flush, zap_page;
3845
3846         /*
3847          * If we don't have indirect shadow pages, it means no page is
3848          * write-protected, so we can exit simply.
3849          */
3850         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3851                 return;
3852
3853         zap_page = remote_flush = local_flush = false;
3854
3855         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3856
3857         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3858
3859         /*
3860          * No need to care whether allocation memory is successful
3861          * or not since pte prefetch is skiped if it does not have
3862          * enough objects in the cache.
3863          */
3864         mmu_topup_memory_caches(vcpu);
3865
3866         spin_lock(&vcpu->kvm->mmu_lock);
3867         ++vcpu->kvm->stat.mmu_pte_write;
3868         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3869
3870         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3871         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3872                 if (detect_write_misaligned(sp, gpa, bytes) ||
3873                       detect_write_flooding(sp)) {
3874                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3875                                                      &invalid_list);
3876                         ++vcpu->kvm->stat.mmu_flooded;
3877                         continue;
3878                 }
3879
3880                 spte = get_written_sptes(sp, gpa, &npte);
3881                 if (!spte)
3882                         continue;
3883
3884                 local_flush = true;
3885                 while (npte--) {
3886                         entry = *spte;
3887                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3888                         if (gentry &&
3889                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3890                               & mask.word) && rmap_can_add(vcpu))
3891                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3892                         if (!remote_flush && need_remote_flush(entry, *spte))
3893                                 remote_flush = true;
3894                         ++spte;
3895                 }
3896         }
3897         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3898         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3899         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3900         spin_unlock(&vcpu->kvm->mmu_lock);
3901 }
3902
3903 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3904 {
3905         gpa_t gpa;
3906         int r;
3907
3908         if (vcpu->arch.mmu.direct_map)
3909                 return 0;
3910
3911         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3912
3913         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3914
3915         return r;
3916 }
3917 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3918
3919 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3920 {
3921         LIST_HEAD(invalid_list);
3922
3923         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3924                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3925                 struct kvm_mmu_page *sp;
3926
3927                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3928                                   struct kvm_mmu_page, link);
3929                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3930                 ++vcpu->kvm->stat.mmu_recycled;
3931         }
3932         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3933 }
3934
3935 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3936 {
3937         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3938                 return vcpu_match_mmio_gpa(vcpu, addr);
3939
3940         return vcpu_match_mmio_gva(vcpu, addr);
3941 }
3942
3943 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3944                        void *insn, int insn_len)
3945 {
3946         int r, emulation_type = EMULTYPE_RETRY;
3947         enum emulation_result er;
3948
3949         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3950         if (r < 0)
3951                 goto out;
3952
3953         if (!r) {
3954                 r = 1;
3955                 goto out;
3956         }
3957
3958         if (is_mmio_page_fault(vcpu, cr2))
3959                 emulation_type = 0;
3960
3961         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3962
3963         switch (er) {
3964         case EMULATE_DONE:
3965                 return 1;
3966         case EMULATE_DO_MMIO:
3967                 ++vcpu->stat.mmio_exits;
3968                 /* fall through */
3969         case EMULATE_FAIL:
3970                 return 0;
3971         default:
3972                 BUG();
3973         }
3974 out:
3975         return r;
3976 }
3977 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3978
3979 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3980 {
3981         vcpu->arch.mmu.invlpg(vcpu, gva);
3982         kvm_mmu_flush_tlb(vcpu);
3983         ++vcpu->stat.invlpg;
3984 }
3985 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3986
3987 void kvm_enable_tdp(void)
3988 {
3989         tdp_enabled = true;
3990 }
3991 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3992
3993 void kvm_disable_tdp(void)
3994 {
3995         tdp_enabled = false;
3996 }
3997 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3998
3999 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4000 {
4001         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4002         if (vcpu->arch.mmu.lm_root != NULL)
4003                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4004 }
4005
4006 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4007 {
4008         struct page *page;
4009         int i;
4010
4011         ASSERT(vcpu);
4012
4013         /*
4014          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4015          * Therefore we need to allocate shadow page tables in the first
4016          * 4GB of memory, which happens to fit the DMA32 zone.
4017          */
4018         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4019         if (!page)
4020                 return -ENOMEM;
4021
4022         vcpu->arch.mmu.pae_root = page_address(page);
4023         for (i = 0; i < 4; ++i)
4024                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4025
4026         return 0;
4027 }
4028
4029 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4030 {
4031         ASSERT(vcpu);
4032
4033         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4034         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4035         vcpu->arch.mmu.translate_gpa = translate_gpa;
4036         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4037
4038         return alloc_mmu_pages(vcpu);
4039 }
4040
4041 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4042 {
4043         ASSERT(vcpu);
4044         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4045
4046         return init_kvm_mmu(vcpu);
4047 }
4048
4049 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4050 {
4051         struct kvm_mmu_page *sp;
4052         bool flush = false;
4053
4054         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4055                 int i;
4056                 u64 *pt;
4057
4058                 if (!test_bit(slot, sp->slot_bitmap))
4059                         continue;
4060
4061                 pt = sp->spt;
4062                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4063                         if (!is_shadow_present_pte(pt[i]) ||
4064                               !is_last_spte(pt[i], sp->role.level))
4065                                 continue;
4066
4067                         spte_write_protect(kvm, &pt[i], &flush, false);
4068                 }
4069         }
4070         kvm_flush_remote_tlbs(kvm);
4071 }
4072
4073 void kvm_mmu_zap_all(struct kvm *kvm)
4074 {
4075         struct kvm_mmu_page *sp, *node;
4076         LIST_HEAD(invalid_list);
4077
4078         spin_lock(&kvm->mmu_lock);
4079 restart:
4080         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4081                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4082                         goto restart;
4083
4084         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4085         spin_unlock(&kvm->mmu_lock);
4086 }
4087
4088 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4089                                                 struct list_head *invalid_list)
4090 {
4091         struct kvm_mmu_page *page;
4092
4093         if (list_empty(&kvm->arch.active_mmu_pages))
4094                 return;
4095
4096         page = container_of(kvm->arch.active_mmu_pages.prev,
4097                             struct kvm_mmu_page, link);
4098         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4099 }
4100
4101 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4102 {
4103         struct kvm *kvm;
4104         int nr_to_scan = sc->nr_to_scan;
4105
4106         if (nr_to_scan == 0)
4107                 goto out;
4108
4109         raw_spin_lock(&kvm_lock);
4110
4111         list_for_each_entry(kvm, &vm_list, vm_list) {
4112                 int idx;
4113                 LIST_HEAD(invalid_list);
4114
4115                 /*
4116                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4117                  * here. We may skip a VM instance errorneosly, but we do not
4118                  * want to shrink a VM that only started to populate its MMU
4119                  * anyway.
4120                  */
4121                 if (kvm->arch.n_used_mmu_pages > 0) {
4122                         if (!nr_to_scan--)
4123                                 break;
4124                         continue;
4125                 }
4126
4127                 idx = srcu_read_lock(&kvm->srcu);
4128                 spin_lock(&kvm->mmu_lock);
4129
4130                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4131                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4132
4133                 spin_unlock(&kvm->mmu_lock);
4134                 srcu_read_unlock(&kvm->srcu, idx);
4135
4136                 list_move_tail(&kvm->vm_list, &vm_list);
4137                 break;
4138         }
4139
4140         raw_spin_unlock(&kvm_lock);
4141
4142 out:
4143         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4144 }
4145
4146 static struct shrinker mmu_shrinker = {
4147         .shrink = mmu_shrink,
4148         .seeks = DEFAULT_SEEKS * 10,
4149 };
4150
4151 static void mmu_destroy_caches(void)
4152 {
4153         if (pte_list_desc_cache)
4154                 kmem_cache_destroy(pte_list_desc_cache);
4155         if (mmu_page_header_cache)
4156                 kmem_cache_destroy(mmu_page_header_cache);
4157 }
4158
4159 int kvm_mmu_module_init(void)
4160 {
4161         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4162                                             sizeof(struct pte_list_desc),
4163                                             0, 0, NULL);
4164         if (!pte_list_desc_cache)
4165                 goto nomem;
4166
4167         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4168                                                   sizeof(struct kvm_mmu_page),
4169                                                   0, 0, NULL);
4170         if (!mmu_page_header_cache)
4171                 goto nomem;
4172
4173         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4174                 goto nomem;
4175
4176         register_shrinker(&mmu_shrinker);
4177
4178         return 0;
4179
4180 nomem:
4181         mmu_destroy_caches();
4182         return -ENOMEM;
4183 }
4184
4185 /*
4186  * Caculate mmu pages needed for kvm.
4187  */
4188 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4189 {
4190         unsigned int nr_mmu_pages;
4191         unsigned int  nr_pages = 0;
4192         struct kvm_memslots *slots;
4193         struct kvm_memory_slot *memslot;
4194
4195         slots = kvm_memslots(kvm);
4196
4197         kvm_for_each_memslot(memslot, slots)
4198                 nr_pages += memslot->npages;
4199
4200         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4201         nr_mmu_pages = max(nr_mmu_pages,
4202                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4203
4204         return nr_mmu_pages;
4205 }
4206
4207 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4208 {
4209         struct kvm_shadow_walk_iterator iterator;
4210         u64 spte;
4211         int nr_sptes = 0;
4212
4213         walk_shadow_page_lockless_begin(vcpu);
4214         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4215                 sptes[iterator.level-1] = spte;
4216                 nr_sptes++;
4217                 if (!is_shadow_present_pte(spte))
4218                         break;
4219         }
4220         walk_shadow_page_lockless_end(vcpu);
4221
4222         return nr_sptes;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4225
4226 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4227 {
4228         ASSERT(vcpu);
4229
4230         destroy_kvm_mmu(vcpu);
4231         free_mmu_pages(vcpu);
4232         mmu_free_memory_caches(vcpu);
4233 }
4234
4235 void kvm_mmu_module_exit(void)
4236 {
4237         mmu_destroy_caches();
4238         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4239         unregister_shrinker(&mmu_shrinker);
4240         mmu_audit_disable();
4241 }