Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40
41 #ifndef CONFIG_X86_64
42 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
43 #else
44 #define mod_64(x, y) ((x) % (y))
45 #endif
46
47 #define RW_STATE_LSB 1
48 #define RW_STATE_MSB 2
49 #define RW_STATE_WORD0 3
50 #define RW_STATE_WORD1 4
51
52 /* Compute with 96 bit intermediate result: (a*b)/c */
53 static u64 muldiv64(u64 a, u32 b, u32 c)
54 {
55         union {
56                 u64 ll;
57                 struct {
58                         u32 low, high;
59                 } l;
60         } u, res;
61         u64 rl, rh;
62
63         u.ll = a;
64         rl = (u64)u.l.low * (u64)b;
65         rh = (u64)u.l.high * (u64)b;
66         rh += (rl >> 32);
67         res.l.high = div64_u64(rh, c);
68         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
69         return res.ll;
70 }
71
72 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
73 {
74         struct kvm_kpit_channel_state *c =
75                 &kvm->arch.vpit->pit_state.channels[channel];
76
77         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
78
79         switch (c->mode) {
80         default:
81         case 0:
82         case 4:
83                 /* XXX: just disable/enable counting */
84                 break;
85         case 1:
86         case 2:
87         case 3:
88         case 5:
89                 /* Restart counting on rising edge. */
90                 if (c->gate < val)
91                         c->count_load_time = ktime_get();
92                 break;
93         }
94
95         c->gate = val;
96 }
97
98 static int pit_get_gate(struct kvm *kvm, int channel)
99 {
100         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
101
102         return kvm->arch.vpit->pit_state.channels[channel].gate;
103 }
104
105 static s64 __kpit_elapsed(struct kvm *kvm)
106 {
107         s64 elapsed;
108         ktime_t remaining;
109         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
110
111         if (!ps->pit_timer.period)
112                 return 0;
113
114         /*
115          * The Counter does not stop when it reaches zero. In
116          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
117          * the highest count, either FFFF hex for binary counting
118          * or 9999 for BCD counting, and continues counting.
119          * Modes 2 and 3 are periodic; the Counter reloads
120          * itself with the initial count and continues counting
121          * from there.
122          */
123         remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
124         elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
125         elapsed = mod_64(elapsed, ps->pit_timer.period);
126
127         return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131                         int channel)
132 {
133         if (channel == 0)
134                 return __kpit_elapsed(kvm);
135
136         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141         struct kvm_kpit_channel_state *c =
142                 &kvm->arch.vpit->pit_state.channels[channel];
143         s64 d, t;
144         int counter;
145
146         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148         t = kpit_elapsed(kvm, c, channel);
149         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         case 0:
153         case 1:
154         case 4:
155         case 5:
156                 counter = (c->count - d) & 0xffff;
157                 break;
158         case 3:
159                 /* XXX: may be incorrect for odd counts */
160                 counter = c->count - (mod_64((2 * d), c->count));
161                 break;
162         default:
163                 counter = c->count - mod_64(d, c->count);
164                 break;
165         }
166         return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171         struct kvm_kpit_channel_state *c =
172                 &kvm->arch.vpit->pit_state.channels[channel];
173         s64 d, t;
174         int out;
175
176         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178         t = kpit_elapsed(kvm, c, channel);
179         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181         switch (c->mode) {
182         default:
183         case 0:
184                 out = (d >= c->count);
185                 break;
186         case 1:
187                 out = (d < c->count);
188                 break;
189         case 2:
190                 out = ((mod_64(d, c->count) == 0) && (d != 0));
191                 break;
192         case 3:
193                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194                 break;
195         case 4:
196         case 5:
197                 out = (d == c->count);
198                 break;
199         }
200
201         return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206         struct kvm_kpit_channel_state *c =
207                 &kvm->arch.vpit->pit_state.channels[channel];
208
209         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211         if (!c->count_latched) {
212                 c->latched_count = pit_get_count(kvm, channel);
213                 c->count_latched = c->rw_mode;
214         }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219         struct kvm_kpit_channel_state *c =
220                 &kvm->arch.vpit->pit_state.channels[channel];
221
222         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224         if (!c->status_latched) {
225                 /* TODO: Return NULL COUNT (bit 6). */
226                 c->status = ((pit_get_out(kvm, channel) << 7) |
227                                 (c->rw_mode << 4) |
228                                 (c->mode << 1) |
229                                 c->bcd);
230                 c->status_latched = 1;
231         }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237                                                  irq_ack_notifier);
238         int value;
239
240         spin_lock(&ps->inject_lock);
241         value = atomic_dec_return(&ps->pit_timer.pending);
242         if (value < 0)
243                 /* spurious acks can be generated if, for example, the
244                  * PIC is being reset.  Handle it gracefully here
245                  */
246                 atomic_inc(&ps->pit_timer.pending);
247         else if (value > 0)
248                 /* in this case, we had multiple outstanding pit interrupts
249                  * that we needed to inject.  Reinject
250                  */
251                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252         ps->irq_ack = 1;
253         spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259         struct hrtimer *timer;
260
261         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262                 return;
263
264         timer = &pit->pit_state.pit_timer.timer;
265         if (hrtimer_cancel(timer))
266                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
267 }
268
269 static void destroy_pit_timer(struct kvm_pit *pit)
270 {
271         hrtimer_cancel(&pit->pit_state.pit_timer.timer);
272         flush_kthread_work(&pit->expired);
273 }
274
275 static bool kpit_is_periodic(struct kvm_timer *ktimer)
276 {
277         struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
278                                                  pit_timer);
279         return ps->is_periodic;
280 }
281
282 static struct kvm_timer_ops kpit_ops = {
283         .is_periodic = kpit_is_periodic,
284 };
285
286 static void pit_do_work(struct kthread_work *work)
287 {
288         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
289         struct kvm *kvm = pit->kvm;
290         struct kvm_vcpu *vcpu;
291         int i;
292         struct kvm_kpit_state *ps = &pit->pit_state;
293         int inject = 0;
294
295         /* Try to inject pending interrupts when
296          * last one has been acked.
297          */
298         spin_lock(&ps->inject_lock);
299         if (ps->irq_ack) {
300                 ps->irq_ack = 0;
301                 inject = 1;
302         }
303         spin_unlock(&ps->inject_lock);
304         if (inject) {
305                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
306                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
307
308                 /*
309                  * Provides NMI watchdog support via Virtual Wire mode.
310                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
311                  *
312                  * Note: Our Virtual Wire implementation is simplified, only
313                  * propagating PIT interrupts to all VCPUs when they have set
314                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
315                  * VCPU0, and only if its LVT0 is in EXTINT mode.
316                  */
317                 if (kvm->arch.vapics_in_nmi_mode > 0)
318                         kvm_for_each_vcpu(i, vcpu, kvm)
319                                 kvm_apic_nmi_wd_deliver(vcpu);
320         }
321 }
322
323 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
324 {
325         struct kvm_timer *ktimer = container_of(data, struct kvm_timer, timer);
326         struct kvm_pit *pt = ktimer->kvm->arch.vpit;
327
328         if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
329                 atomic_inc(&ktimer->pending);
330                 queue_kthread_work(&pt->worker, &pt->expired);
331         }
332
333         if (ktimer->t_ops->is_periodic(ktimer)) {
334                 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
335                 return HRTIMER_RESTART;
336         } else
337                 return HRTIMER_NORESTART;
338 }
339
340 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
341 {
342         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
343         struct kvm_timer *pt = &ps->pit_timer;
344         s64 interval;
345
346         if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
347                 return;
348
349         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
350
351         pr_debug("create pit timer, interval is %llu nsec\n", interval);
352
353         /* TODO The new value only affected after the retriggered */
354         hrtimer_cancel(&pt->timer);
355         flush_kthread_work(&ps->pit->expired);
356         pt->period = interval;
357         ps->is_periodic = is_period;
358
359         pt->timer.function = pit_timer_fn;
360         pt->t_ops = &kpit_ops;
361         pt->kvm = ps->pit->kvm;
362
363         atomic_set(&pt->pending, 0);
364         ps->irq_ack = 1;
365
366         hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
367                       HRTIMER_MODE_ABS);
368 }
369
370 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
371 {
372         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
373
374         WARN_ON(!mutex_is_locked(&ps->lock));
375
376         pr_debug("load_count val is %d, channel is %d\n", val, channel);
377
378         /*
379          * The largest possible initial count is 0; this is equivalent
380          * to 216 for binary counting and 104 for BCD counting.
381          */
382         if (val == 0)
383                 val = 0x10000;
384
385         ps->channels[channel].count = val;
386
387         if (channel != 0) {
388                 ps->channels[channel].count_load_time = ktime_get();
389                 return;
390         }
391
392         /* Two types of timer
393          * mode 1 is one shot, mode 2 is period, otherwise del timer */
394         switch (ps->channels[0].mode) {
395         case 0:
396         case 1:
397         /* FIXME: enhance mode 4 precision */
398         case 4:
399                 create_pit_timer(kvm, val, 0);
400                 break;
401         case 2:
402         case 3:
403                 create_pit_timer(kvm, val, 1);
404                 break;
405         default:
406                 destroy_pit_timer(kvm->arch.vpit);
407         }
408 }
409
410 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
411 {
412         u8 saved_mode;
413         if (hpet_legacy_start) {
414                 /* save existing mode for later reenablement */
415                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
416                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
417                 pit_load_count(kvm, channel, val);
418                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
419         } else {
420                 pit_load_count(kvm, channel, val);
421         }
422 }
423
424 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
425 {
426         return container_of(dev, struct kvm_pit, dev);
427 }
428
429 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
430 {
431         return container_of(dev, struct kvm_pit, speaker_dev);
432 }
433
434 static inline int pit_in_range(gpa_t addr)
435 {
436         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
437                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
438 }
439
440 static int pit_ioport_write(struct kvm_io_device *this,
441                             gpa_t addr, int len, const void *data)
442 {
443         struct kvm_pit *pit = dev_to_pit(this);
444         struct kvm_kpit_state *pit_state = &pit->pit_state;
445         struct kvm *kvm = pit->kvm;
446         int channel, access;
447         struct kvm_kpit_channel_state *s;
448         u32 val = *(u32 *) data;
449         if (!pit_in_range(addr))
450                 return -EOPNOTSUPP;
451
452         val  &= 0xff;
453         addr &= KVM_PIT_CHANNEL_MASK;
454
455         mutex_lock(&pit_state->lock);
456
457         if (val != 0)
458                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
459                          (unsigned int)addr, len, val);
460
461         if (addr == 3) {
462                 channel = val >> 6;
463                 if (channel == 3) {
464                         /* Read-Back Command. */
465                         for (channel = 0; channel < 3; channel++) {
466                                 s = &pit_state->channels[channel];
467                                 if (val & (2 << channel)) {
468                                         if (!(val & 0x20))
469                                                 pit_latch_count(kvm, channel);
470                                         if (!(val & 0x10))
471                                                 pit_latch_status(kvm, channel);
472                                 }
473                         }
474                 } else {
475                         /* Select Counter <channel>. */
476                         s = &pit_state->channels[channel];
477                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
478                         if (access == 0) {
479                                 pit_latch_count(kvm, channel);
480                         } else {
481                                 s->rw_mode = access;
482                                 s->read_state = access;
483                                 s->write_state = access;
484                                 s->mode = (val >> 1) & 7;
485                                 if (s->mode > 5)
486                                         s->mode -= 4;
487                                 s->bcd = val & 1;
488                         }
489                 }
490         } else {
491                 /* Write Count. */
492                 s = &pit_state->channels[addr];
493                 switch (s->write_state) {
494                 default:
495                 case RW_STATE_LSB:
496                         pit_load_count(kvm, addr, val);
497                         break;
498                 case RW_STATE_MSB:
499                         pit_load_count(kvm, addr, val << 8);
500                         break;
501                 case RW_STATE_WORD0:
502                         s->write_latch = val;
503                         s->write_state = RW_STATE_WORD1;
504                         break;
505                 case RW_STATE_WORD1:
506                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
507                         s->write_state = RW_STATE_WORD0;
508                         break;
509                 }
510         }
511
512         mutex_unlock(&pit_state->lock);
513         return 0;
514 }
515
516 static int pit_ioport_read(struct kvm_io_device *this,
517                            gpa_t addr, int len, void *data)
518 {
519         struct kvm_pit *pit = dev_to_pit(this);
520         struct kvm_kpit_state *pit_state = &pit->pit_state;
521         struct kvm *kvm = pit->kvm;
522         int ret, count;
523         struct kvm_kpit_channel_state *s;
524         if (!pit_in_range(addr))
525                 return -EOPNOTSUPP;
526
527         addr &= KVM_PIT_CHANNEL_MASK;
528         if (addr == 3)
529                 return 0;
530
531         s = &pit_state->channels[addr];
532
533         mutex_lock(&pit_state->lock);
534
535         if (s->status_latched) {
536                 s->status_latched = 0;
537                 ret = s->status;
538         } else if (s->count_latched) {
539                 switch (s->count_latched) {
540                 default:
541                 case RW_STATE_LSB:
542                         ret = s->latched_count & 0xff;
543                         s->count_latched = 0;
544                         break;
545                 case RW_STATE_MSB:
546                         ret = s->latched_count >> 8;
547                         s->count_latched = 0;
548                         break;
549                 case RW_STATE_WORD0:
550                         ret = s->latched_count & 0xff;
551                         s->count_latched = RW_STATE_MSB;
552                         break;
553                 }
554         } else {
555                 switch (s->read_state) {
556                 default:
557                 case RW_STATE_LSB:
558                         count = pit_get_count(kvm, addr);
559                         ret = count & 0xff;
560                         break;
561                 case RW_STATE_MSB:
562                         count = pit_get_count(kvm, addr);
563                         ret = (count >> 8) & 0xff;
564                         break;
565                 case RW_STATE_WORD0:
566                         count = pit_get_count(kvm, addr);
567                         ret = count & 0xff;
568                         s->read_state = RW_STATE_WORD1;
569                         break;
570                 case RW_STATE_WORD1:
571                         count = pit_get_count(kvm, addr);
572                         ret = (count >> 8) & 0xff;
573                         s->read_state = RW_STATE_WORD0;
574                         break;
575                 }
576         }
577
578         if (len > sizeof(ret))
579                 len = sizeof(ret);
580         memcpy(data, (char *)&ret, len);
581
582         mutex_unlock(&pit_state->lock);
583         return 0;
584 }
585
586 static int speaker_ioport_write(struct kvm_io_device *this,
587                                 gpa_t addr, int len, const void *data)
588 {
589         struct kvm_pit *pit = speaker_to_pit(this);
590         struct kvm_kpit_state *pit_state = &pit->pit_state;
591         struct kvm *kvm = pit->kvm;
592         u32 val = *(u32 *) data;
593         if (addr != KVM_SPEAKER_BASE_ADDRESS)
594                 return -EOPNOTSUPP;
595
596         mutex_lock(&pit_state->lock);
597         pit_state->speaker_data_on = (val >> 1) & 1;
598         pit_set_gate(kvm, 2, val & 1);
599         mutex_unlock(&pit_state->lock);
600         return 0;
601 }
602
603 static int speaker_ioport_read(struct kvm_io_device *this,
604                                gpa_t addr, int len, void *data)
605 {
606         struct kvm_pit *pit = speaker_to_pit(this);
607         struct kvm_kpit_state *pit_state = &pit->pit_state;
608         struct kvm *kvm = pit->kvm;
609         unsigned int refresh_clock;
610         int ret;
611         if (addr != KVM_SPEAKER_BASE_ADDRESS)
612                 return -EOPNOTSUPP;
613
614         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
615         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
616
617         mutex_lock(&pit_state->lock);
618         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
619                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
620         if (len > sizeof(ret))
621                 len = sizeof(ret);
622         memcpy(data, (char *)&ret, len);
623         mutex_unlock(&pit_state->lock);
624         return 0;
625 }
626
627 void kvm_pit_reset(struct kvm_pit *pit)
628 {
629         int i;
630         struct kvm_kpit_channel_state *c;
631
632         mutex_lock(&pit->pit_state.lock);
633         pit->pit_state.flags = 0;
634         for (i = 0; i < 3; i++) {
635                 c = &pit->pit_state.channels[i];
636                 c->mode = 0xff;
637                 c->gate = (i != 2);
638                 pit_load_count(pit->kvm, i, 0);
639         }
640         mutex_unlock(&pit->pit_state.lock);
641
642         atomic_set(&pit->pit_state.pit_timer.pending, 0);
643         pit->pit_state.irq_ack = 1;
644 }
645
646 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
647 {
648         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
649
650         if (!mask) {
651                 atomic_set(&pit->pit_state.pit_timer.pending, 0);
652                 pit->pit_state.irq_ack = 1;
653         }
654 }
655
656 static const struct kvm_io_device_ops pit_dev_ops = {
657         .read     = pit_ioport_read,
658         .write    = pit_ioport_write,
659 };
660
661 static const struct kvm_io_device_ops speaker_dev_ops = {
662         .read     = speaker_ioport_read,
663         .write    = speaker_ioport_write,
664 };
665
666 /* Caller must hold slots_lock */
667 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
668 {
669         struct kvm_pit *pit;
670         struct kvm_kpit_state *pit_state;
671         struct pid *pid;
672         pid_t pid_nr;
673         int ret;
674
675         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
676         if (!pit)
677                 return NULL;
678
679         pit->irq_source_id = kvm_request_irq_source_id(kvm);
680         if (pit->irq_source_id < 0) {
681                 kfree(pit);
682                 return NULL;
683         }
684
685         mutex_init(&pit->pit_state.lock);
686         mutex_lock(&pit->pit_state.lock);
687         spin_lock_init(&pit->pit_state.inject_lock);
688
689         pid = get_pid(task_tgid(current));
690         pid_nr = pid_vnr(pid);
691         put_pid(pid);
692
693         init_kthread_worker(&pit->worker);
694         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
695                                        "kvm-pit/%d", pid_nr);
696         if (IS_ERR(pit->worker_task)) {
697                 mutex_unlock(&pit->pit_state.lock);
698                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
699                 kfree(pit);
700                 return NULL;
701         }
702         init_kthread_work(&pit->expired, pit_do_work);
703
704         kvm->arch.vpit = pit;
705         pit->kvm = kvm;
706
707         pit_state = &pit->pit_state;
708         pit_state->pit = pit;
709         hrtimer_init(&pit_state->pit_timer.timer,
710                      CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
711         pit_state->irq_ack_notifier.gsi = 0;
712         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
713         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
714         pit_state->pit_timer.reinject = true;
715         mutex_unlock(&pit->pit_state.lock);
716
717         kvm_pit_reset(pit);
718
719         pit->mask_notifier.func = pit_mask_notifer;
720         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
721
722         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
723         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
724                                       KVM_PIT_MEM_LENGTH, &pit->dev);
725         if (ret < 0)
726                 goto fail;
727
728         if (flags & KVM_PIT_SPEAKER_DUMMY) {
729                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
730                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
731                                               KVM_SPEAKER_BASE_ADDRESS, 4,
732                                               &pit->speaker_dev);
733                 if (ret < 0)
734                         goto fail_unregister;
735         }
736
737         return pit;
738
739 fail_unregister:
740         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741
742 fail:
743         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
744         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
745         kvm_free_irq_source_id(kvm, pit->irq_source_id);
746         kthread_stop(pit->worker_task);
747         kfree(pit);
748         return NULL;
749 }
750
751 void kvm_free_pit(struct kvm *kvm)
752 {
753         struct hrtimer *timer;
754
755         if (kvm->arch.vpit) {
756                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
757                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
758                                               &kvm->arch.vpit->speaker_dev);
759                 kvm_unregister_irq_mask_notifier(kvm, 0,
760                                                &kvm->arch.vpit->mask_notifier);
761                 kvm_unregister_irq_ack_notifier(kvm,
762                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
763                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
764                 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
765                 hrtimer_cancel(timer);
766                 flush_kthread_work(&kvm->arch.vpit->expired);
767                 kthread_stop(kvm->arch.vpit->worker_task);
768                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
769                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
770                 kfree(kvm->arch.vpit);
771         }
772 }