Merge tag 'v3.10.72' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
27 {
28         struct kvm_cpuid_entry2 *best;
29         struct kvm_lapic *apic = vcpu->arch.apic;
30
31         best = kvm_find_cpuid_entry(vcpu, 1, 0);
32         if (!best)
33                 return;
34
35         /* Update OSXSAVE bit */
36         if (cpu_has_xsave && best->function == 0x1) {
37                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
40         }
41
42         if (apic) {
43                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44                         apic->lapic_timer.timer_mode_mask = 3 << 17;
45                 else
46                         apic->lapic_timer.timer_mode_mask = 1 << 17;
47         }
48
49         kvm_pmu_cpuid_update(vcpu);
50 }
51
52 static int is_efer_nx(void)
53 {
54         unsigned long long efer = 0;
55
56         rdmsrl_safe(MSR_EFER, &efer);
57         return efer & EFER_NX;
58 }
59
60 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
61 {
62         int i;
63         struct kvm_cpuid_entry2 *e, *entry;
64
65         entry = NULL;
66         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
67                 e = &vcpu->arch.cpuid_entries[i];
68                 if (e->function == 0x80000001) {
69                         entry = e;
70                         break;
71                 }
72         }
73         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
74                 entry->edx &= ~(1 << 20);
75                 printk(KERN_INFO "kvm: guest NX capability removed\n");
76         }
77 }
78
79 /* when an old userspace process fills a new kernel module */
80 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
81                              struct kvm_cpuid *cpuid,
82                              struct kvm_cpuid_entry __user *entries)
83 {
84         int r, i;
85         struct kvm_cpuid_entry *cpuid_entries;
86
87         r = -E2BIG;
88         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
89                 goto out;
90         r = -ENOMEM;
91         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
92         if (!cpuid_entries)
93                 goto out;
94         r = -EFAULT;
95         if (copy_from_user(cpuid_entries, entries,
96                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
97                 goto out_free;
98         for (i = 0; i < cpuid->nent; i++) {
99                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
100                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
101                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
102                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
103                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
104                 vcpu->arch.cpuid_entries[i].index = 0;
105                 vcpu->arch.cpuid_entries[i].flags = 0;
106                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
107                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
108                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
109         }
110         vcpu->arch.cpuid_nent = cpuid->nent;
111         cpuid_fix_nx_cap(vcpu);
112         r = 0;
113         kvm_apic_set_version(vcpu);
114         kvm_x86_ops->cpuid_update(vcpu);
115         kvm_update_cpuid(vcpu);
116
117 out_free:
118         vfree(cpuid_entries);
119 out:
120         return r;
121 }
122
123 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
124                               struct kvm_cpuid2 *cpuid,
125                               struct kvm_cpuid_entry2 __user *entries)
126 {
127         int r;
128
129         r = -E2BIG;
130         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131                 goto out;
132         r = -EFAULT;
133         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
134                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
135                 goto out;
136         vcpu->arch.cpuid_nent = cpuid->nent;
137         kvm_apic_set_version(vcpu);
138         kvm_x86_ops->cpuid_update(vcpu);
139         kvm_update_cpuid(vcpu);
140         return 0;
141
142 out:
143         return r;
144 }
145
146 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
147                               struct kvm_cpuid2 *cpuid,
148                               struct kvm_cpuid_entry2 __user *entries)
149 {
150         int r;
151
152         r = -E2BIG;
153         if (cpuid->nent < vcpu->arch.cpuid_nent)
154                 goto out;
155         r = -EFAULT;
156         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
157                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
158                 goto out;
159         return 0;
160
161 out:
162         cpuid->nent = vcpu->arch.cpuid_nent;
163         return r;
164 }
165
166 static void cpuid_mask(u32 *word, int wordnum)
167 {
168         *word &= boot_cpu_data.x86_capability[wordnum];
169 }
170
171 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
172                            u32 index)
173 {
174         entry->function = function;
175         entry->index = index;
176         cpuid_count(entry->function, entry->index,
177                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
178         entry->flags = 0;
179 }
180
181 static bool supported_xcr0_bit(unsigned bit)
182 {
183         u64 mask = ((u64)1 << bit);
184
185         return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
186 }
187
188 #define F(x) bit(X86_FEATURE_##x)
189
190 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
191                                    u32 func, u32 index, int *nent, int maxnent)
192 {
193         return 0;
194 }
195
196 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
197                                  u32 index, int *nent, int maxnent)
198 {
199         int r;
200         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
201 #ifdef CONFIG_X86_64
202         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
203                                 ? F(GBPAGES) : 0;
204         unsigned f_lm = F(LM);
205 #else
206         unsigned f_gbpages = 0;
207         unsigned f_lm = 0;
208 #endif
209         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
210         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
211
212         /* cpuid 1.edx */
213         const u32 kvm_supported_word0_x86_features =
214                 F(FPU) | F(VME) | F(DE) | F(PSE) |
215                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
216                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
217                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
218                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
219                 0 /* Reserved, DS, ACPI */ | F(MMX) |
220                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
221                 0 /* HTT, TM, Reserved, PBE */;
222         /* cpuid 0x80000001.edx */
223         const u32 kvm_supported_word1_x86_features =
224                 F(FPU) | F(VME) | F(DE) | F(PSE) |
225                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
226                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
227                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
228                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
229                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
230                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
231                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
232         /* cpuid 1.ecx */
233         const u32 kvm_supported_word4_x86_features =
234                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
235                 0 /* DS-CPL, VMX, SMX, EST */ |
236                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
237                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
238                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
239                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
240                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
241                 F(F16C) | F(RDRAND);
242         /* cpuid 0x80000001.ecx */
243         const u32 kvm_supported_word6_x86_features =
244                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
245                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
246                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
247                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
248
249         /* cpuid 0xC0000001.edx */
250         const u32 kvm_supported_word5_x86_features =
251                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
252                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
253                 F(PMM) | F(PMM_EN);
254
255         /* cpuid 7.0.ebx */
256         const u32 kvm_supported_word9_x86_features =
257                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
258                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
259
260         /* all calls to cpuid_count() should be made on the same cpu */
261         get_cpu();
262
263         r = -E2BIG;
264
265         if (*nent >= maxnent)
266                 goto out;
267
268         do_cpuid_1_ent(entry, function, index);
269         ++*nent;
270
271         switch (function) {
272         case 0:
273                 entry->eax = min(entry->eax, (u32)0xd);
274                 break;
275         case 1:
276                 entry->edx &= kvm_supported_word0_x86_features;
277                 cpuid_mask(&entry->edx, 0);
278                 entry->ecx &= kvm_supported_word4_x86_features;
279                 cpuid_mask(&entry->ecx, 4);
280                 /* we support x2apic emulation even if host does not support
281                  * it since we emulate x2apic in software */
282                 entry->ecx |= F(X2APIC);
283                 break;
284         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
285          * may return different values. This forces us to get_cpu() before
286          * issuing the first command, and also to emulate this annoying behavior
287          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
288         case 2: {
289                 int t, times = entry->eax & 0xff;
290
291                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
292                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
293                 for (t = 1; t < times; ++t) {
294                         if (*nent >= maxnent)
295                                 goto out;
296
297                         do_cpuid_1_ent(&entry[t], function, 0);
298                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
299                         ++*nent;
300                 }
301                 break;
302         }
303         /* function 4 has additional index. */
304         case 4: {
305                 int i, cache_type;
306
307                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
308                 /* read more entries until cache_type is zero */
309                 for (i = 1; ; ++i) {
310                         if (*nent >= maxnent)
311                                 goto out;
312
313                         cache_type = entry[i - 1].eax & 0x1f;
314                         if (!cache_type)
315                                 break;
316                         do_cpuid_1_ent(&entry[i], function, i);
317                         entry[i].flags |=
318                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
319                         ++*nent;
320                 }
321                 break;
322         }
323         case 7: {
324                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
325                 /* Mask ebx against host capability word 9 */
326                 if (index == 0) {
327                         entry->ebx &= kvm_supported_word9_x86_features;
328                         cpuid_mask(&entry->ebx, 9);
329                         // TSC_ADJUST is emulated
330                         entry->ebx |= F(TSC_ADJUST);
331                 } else
332                         entry->ebx = 0;
333                 entry->eax = 0;
334                 entry->ecx = 0;
335                 entry->edx = 0;
336                 break;
337         }
338         case 9:
339                 break;
340         case 0xa: { /* Architectural Performance Monitoring */
341                 struct x86_pmu_capability cap;
342                 union cpuid10_eax eax;
343                 union cpuid10_edx edx;
344
345                 perf_get_x86_pmu_capability(&cap);
346
347                 /*
348                  * Only support guest architectural pmu on a host
349                  * with architectural pmu.
350                  */
351                 if (!cap.version)
352                         memset(&cap, 0, sizeof(cap));
353
354                 eax.split.version_id = min(cap.version, 2);
355                 eax.split.num_counters = cap.num_counters_gp;
356                 eax.split.bit_width = cap.bit_width_gp;
357                 eax.split.mask_length = cap.events_mask_len;
358
359                 edx.split.num_counters_fixed = cap.num_counters_fixed;
360                 edx.split.bit_width_fixed = cap.bit_width_fixed;
361                 edx.split.reserved = 0;
362
363                 entry->eax = eax.full;
364                 entry->ebx = cap.events_mask;
365                 entry->ecx = 0;
366                 entry->edx = edx.full;
367                 break;
368         }
369         /* function 0xb has additional index. */
370         case 0xb: {
371                 int i, level_type;
372
373                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
374                 /* read more entries until level_type is zero */
375                 for (i = 1; ; ++i) {
376                         if (*nent >= maxnent)
377                                 goto out;
378
379                         level_type = entry[i - 1].ecx & 0xff00;
380                         if (!level_type)
381                                 break;
382                         do_cpuid_1_ent(&entry[i], function, i);
383                         entry[i].flags |=
384                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
385                         ++*nent;
386                 }
387                 break;
388         }
389         case 0xd: {
390                 int idx, i;
391
392                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
393                 for (idx = 1, i = 1; idx < 64; ++idx) {
394                         if (*nent >= maxnent)
395                                 goto out;
396
397                         do_cpuid_1_ent(&entry[i], function, idx);
398                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
399                                 continue;
400                         entry[i].flags |=
401                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
402                         ++*nent;
403                         ++i;
404                 }
405                 break;
406         }
407         case KVM_CPUID_SIGNATURE: {
408                 static const char signature[12] = "KVMKVMKVM\0\0";
409                 const u32 *sigptr = (const u32 *)signature;
410                 entry->eax = KVM_CPUID_FEATURES;
411                 entry->ebx = sigptr[0];
412                 entry->ecx = sigptr[1];
413                 entry->edx = sigptr[2];
414                 break;
415         }
416         case KVM_CPUID_FEATURES:
417                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
418                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
419                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
420                              (1 << KVM_FEATURE_ASYNC_PF) |
421                              (1 << KVM_FEATURE_PV_EOI) |
422                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
423
424                 if (sched_info_on())
425                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
426
427                 entry->ebx = 0;
428                 entry->ecx = 0;
429                 entry->edx = 0;
430                 break;
431         case 0x80000000:
432                 entry->eax = min(entry->eax, 0x8000001a);
433                 break;
434         case 0x80000001:
435                 entry->edx &= kvm_supported_word1_x86_features;
436                 cpuid_mask(&entry->edx, 1);
437                 entry->ecx &= kvm_supported_word6_x86_features;
438                 cpuid_mask(&entry->ecx, 6);
439                 break;
440         case 0x80000008: {
441                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
442                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
443                 unsigned phys_as = entry->eax & 0xff;
444
445                 if (!g_phys_as)
446                         g_phys_as = phys_as;
447                 entry->eax = g_phys_as | (virt_as << 8);
448                 entry->ebx = entry->edx = 0;
449                 break;
450         }
451         case 0x80000019:
452                 entry->ecx = entry->edx = 0;
453                 break;
454         case 0x8000001a:
455                 break;
456         case 0x8000001d:
457                 break;
458         /*Add support for Centaur's CPUID instruction*/
459         case 0xC0000000:
460                 /*Just support up to 0xC0000004 now*/
461                 entry->eax = min(entry->eax, 0xC0000004);
462                 break;
463         case 0xC0000001:
464                 entry->edx &= kvm_supported_word5_x86_features;
465                 cpuid_mask(&entry->edx, 5);
466                 break;
467         case 3: /* Processor serial number */
468         case 5: /* MONITOR/MWAIT */
469         case 6: /* Thermal management */
470         case 0x80000007: /* Advanced power management */
471         case 0xC0000002:
472         case 0xC0000003:
473         case 0xC0000004:
474         default:
475                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
476                 break;
477         }
478
479         kvm_x86_ops->set_supported_cpuid(function, entry);
480
481         r = 0;
482
483 out:
484         put_cpu();
485
486         return r;
487 }
488
489 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
490                         u32 idx, int *nent, int maxnent, unsigned int type)
491 {
492         if (type == KVM_GET_EMULATED_CPUID)
493                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
494
495         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
496 }
497
498 #undef F
499
500 struct kvm_cpuid_param {
501         u32 func;
502         u32 idx;
503         bool has_leaf_count;
504         bool (*qualifier)(const struct kvm_cpuid_param *param);
505 };
506
507 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
508 {
509         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
510 }
511
512 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
513                                  __u32 num_entries, unsigned int ioctl_type)
514 {
515         int i;
516
517         if (ioctl_type != KVM_GET_EMULATED_CPUID)
518                 return false;
519
520         /*
521          * We want to make sure that ->padding is being passed clean from
522          * userspace in case we want to use it for something in the future.
523          *
524          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
525          * have to give ourselves satisfied only with the emulated side. /me
526          * sheds a tear.
527          */
528         for (i = 0; i < num_entries; i++) {
529                 if (entries[i].padding[0] ||
530                     entries[i].padding[1] ||
531                     entries[i].padding[2])
532                         return true;
533         }
534         return false;
535 }
536
537 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
538                             struct kvm_cpuid_entry2 __user *entries,
539                             unsigned int type)
540 {
541         struct kvm_cpuid_entry2 *cpuid_entries;
542         int limit, nent = 0, r = -E2BIG, i;
543         u32 func;
544         static const struct kvm_cpuid_param param[] = {
545                 { .func = 0, .has_leaf_count = true },
546                 { .func = 0x80000000, .has_leaf_count = true },
547                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
548                 { .func = KVM_CPUID_SIGNATURE },
549                 { .func = KVM_CPUID_FEATURES },
550         };
551
552         if (cpuid->nent < 1)
553                 goto out;
554         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
555                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
556
557         if (sanity_check_entries(entries, cpuid->nent, type))
558                 return -EINVAL;
559
560         r = -ENOMEM;
561         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
562         if (!cpuid_entries)
563                 goto out;
564
565         r = 0;
566         for (i = 0; i < ARRAY_SIZE(param); i++) {
567                 const struct kvm_cpuid_param *ent = &param[i];
568
569                 if (ent->qualifier && !ent->qualifier(ent))
570                         continue;
571
572                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
573                                 &nent, cpuid->nent, type);
574
575                 if (r)
576                         goto out_free;
577
578                 if (!ent->has_leaf_count)
579                         continue;
580
581                 limit = cpuid_entries[nent - 1].eax;
582                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
583                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
584                                      &nent, cpuid->nent, type);
585
586                 if (r)
587                         goto out_free;
588         }
589
590         r = -EFAULT;
591         if (copy_to_user(entries, cpuid_entries,
592                          nent * sizeof(struct kvm_cpuid_entry2)))
593                 goto out_free;
594         cpuid->nent = nent;
595         r = 0;
596
597 out_free:
598         vfree(cpuid_entries);
599 out:
600         return r;
601 }
602
603 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
604 {
605         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
606         int j, nent = vcpu->arch.cpuid_nent;
607
608         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
609         /* when no next entry is found, the current entry[i] is reselected */
610         for (j = i + 1; ; j = (j + 1) % nent) {
611                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
612                 if (ej->function == e->function) {
613                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
614                         return j;
615                 }
616         }
617         return 0; /* silence gcc, even though control never reaches here */
618 }
619
620 /* find an entry with matching function, matching index (if needed), and that
621  * should be read next (if it's stateful) */
622 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
623         u32 function, u32 index)
624 {
625         if (e->function != function)
626                 return 0;
627         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
628                 return 0;
629         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
630             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
631                 return 0;
632         return 1;
633 }
634
635 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
636                                               u32 function, u32 index)
637 {
638         int i;
639         struct kvm_cpuid_entry2 *best = NULL;
640
641         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
642                 struct kvm_cpuid_entry2 *e;
643
644                 e = &vcpu->arch.cpuid_entries[i];
645                 if (is_matching_cpuid_entry(e, function, index)) {
646                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
647                                 move_to_next_stateful_cpuid_entry(vcpu, i);
648                         best = e;
649                         break;
650                 }
651         }
652         return best;
653 }
654 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
655
656 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
657 {
658         struct kvm_cpuid_entry2 *best;
659
660         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
661         if (!best || best->eax < 0x80000008)
662                 goto not_found;
663         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
664         if (best)
665                 return best->eax & 0xff;
666 not_found:
667         return 36;
668 }
669
670 /*
671  * If no match is found, check whether we exceed the vCPU's limit
672  * and return the content of the highest valid _standard_ leaf instead.
673  * This is to satisfy the CPUID specification.
674  */
675 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
676                                                   u32 function, u32 index)
677 {
678         struct kvm_cpuid_entry2 *maxlevel;
679
680         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
681         if (!maxlevel || maxlevel->eax >= function)
682                 return NULL;
683         if (function & 0x80000000) {
684                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
685                 if (!maxlevel)
686                         return NULL;
687         }
688         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
689 }
690
691 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
692 {
693         u32 function = *eax, index = *ecx;
694         struct kvm_cpuid_entry2 *best;
695
696         best = kvm_find_cpuid_entry(vcpu, function, index);
697
698         if (!best)
699                 best = check_cpuid_limit(vcpu, function, index);
700
701         if (best) {
702                 *eax = best->eax;
703                 *ebx = best->ebx;
704                 *ecx = best->ecx;
705                 *edx = best->edx;
706         } else
707                 *eax = *ebx = *ecx = *edx = 0;
708 }
709 EXPORT_SYMBOL_GPL(kvm_cpuid);
710
711 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
712 {
713         u32 function, eax, ebx, ecx, edx;
714
715         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
716         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
717         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
718         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
719         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
720         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
721         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
722         kvm_x86_ops->skip_emulated_instruction(vcpu);
723         trace_kvm_cpuid(function, eax, ebx, ecx, edx);
724 }
725 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);